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mı́ y por enseñarme a crecer. Agradezco especialmente a mis padres, Fina y Luis por todo
su amor, toda su confianza, todo su tiempo, por ser siempre mi mayor sostén, por todo, por
siempre, gracias.

Morelia MEX., April 9, 2019



ABSTRACT

’An Implementation of the Lattice Boltzmann Method for the Analysis of Capillary Waves
in Confined Geometries’ presents a code capable of simulating in 3 dimensions a two phase
fluid using the Shan-Chen approach in addition to the lattice Boltzmann model. The work
presents the pertinent mathematical analysis that enables a fair understanding of the method
and its validity as well as the mathematical derivation and physical concepts of the hydro-
dynamic equations. By focusing on the development of a computational code, the work
also presents a non-dimesionalisation analysis, boundary conditions and more importantly,
all basic tests any computational method of this nature should verify in order to be reliable.
Finally, the influence of confined geometries over the dynamics of standing capillary waves
is analyzed, specially the effects of the boundaries parallel to the interface between the two
phases of the fluid.

Keywords: Lattice Boltzmann method, Shan-Chen approach, two phase fluids, capil-
lary waves, confined geometries, Computational Fluid Dynamics.
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RESUMEN

’Implementación del Método de Malla de Boltzmann para el Análisis de Ondas Capilares
en Geometrı́as Confinadas’ presenta un código capaz de simular en 3 dimensiones un fluido
bifásico utilizando el enfoque de Shan-Chen además del modelo de malla de Boltzmann.
El trabajo presenta el análisis matemático pertinente que permite una comprensión justa
del método y su validez, ası́ como la derivación matemática y los conceptos fı́sicos de las
ecuaciones hidrodinámicas. Al centrarse en el desarrollo de un código computacional, el
trabajo también presenta un análisis de no-desdimesionalización, condiciones de frontera
y, lo que es más importante, todas las pruebas básicas que cualquier método computacional
de esta naturaleza debe verificar para ser confiable. Finalmente, se analiza la influencia de
las geometrı́as confinadas sobre la dinámica de las ondas capilares estacionarias, especial-
mente se estudian los efectos de las fronteras paralelas a la interfaz entre las dos fases del
fluido.

Palabras clave: Método de Malla de Boltzmann, aproximación de Shan-Chen, fluido
de dos fases, ondas capilares, geometrı́as confinadas, Dinámica de Fluidos Computacional.
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Chapter 1

Introduction

Complex fluids are ubiquitous in natural and industrial processes, they can involve single
component multiphase fluids such as water and vapor water, or multicomponent fluids,
such as oil and water. The hydrodynamics and kinetics of these type of complex fluids
present a wealth of physical problems of technological but also fundamental importance:
wave dynamics, marine engineering, chemical engineering, the food processing industry,
recovery of petroleum resources from reservoirs, non-aqueous phase liquid contamination
of ground water, soil water behaviour, surface wetting phenomena, fuel cell operation and
the movement and evolution of clouds [1] [2].

These physical problems represent an important challenge for both experimental an
computational scientists. For the case or experiments, scientists encounter important limi-
tations regarding the systems that they can analyze, for instance, a limited range of scales
for the fluid velocity, temperature, time or length scale of the system. Thus, computational
fluid dynamics (CFD) concerned with numerical solution to differential equations govern-
ing transport of mass, momentum and energy in moving fluids, has become, over the last
four decades, a powerful area in fluid flow studies [3]. An inevitable consequence of the
computational analysis of a two phase fluid system, which also adds another level of com-
plexity to the problem, is the interface between these two fluids. Quality that also provides
a rich variety of phenomena to investigate, specially in the field of micro and nanofluidics
[4] [5].

From the interface between the fluids, comes the key to the physics of multiphase flows,
the notion of surface tension, which is mesoscopic in nature. Surface tension is, at the same
time, the starting point to some other interesting physical phenomena such as droplet co-
alescence, falling droplets and capillary phenomena [6] [7] [8] [9] [10] and some other
where the lattice Boltzmann method (LBM) looks or has already been promising: impact
of droplets on solid subtrates, droplets brake-up, capillarity instabilities and bouncing tran-
sitions, liquid fragmentation, water repellency on structured surfaces [11] [12] [13] [14]
[15]. On the other hand, capillary waves, which are harmonic waves located in the inter-
face between two phases and whose dynamics is governed by surface tension, acting as a
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14 Chapter 1. Introduction

restoring force and fluid viscosity, is yet a physical phenomena new to lattice Boltzmann
method, even when their scientific relevance was recognized years ago. The first attempt to
give a scientific basis to this phenomenon was made by Benjamin Franklin and later shown
by Lord Kelvin that the properties of these waves are determined by surface tension [16].

Therefore, this work focuses on the particularly challenging problem of analyzing cap-
illary waves with the lattice Boltzmann method.

The dissertation presents a fully working three-dimensional lattice Boltzmann method
code in FORTRAN 90, developed from scratch without the usage of any packages or li-
braries, that implements a Shan-Chen model that uses Guo’s Forcing Scheme in order to
simulate a two phase fluid that evolves a stationary capillary wave. A free version of the
code is available in https://github.com/veneciachm/LatticeBoltzmannMethod.

Despite the existence of a wide rage of lattice Boltzmann method implementations
available: from specialized academic packages [17][18][19] to very versatile open-source
projects [20][21] as well as commercial applications [22][23], this work prioritizes the de-
velopment of a computational code and the analysis of the method, not focusing precisely
on the optimal performance of the implementation but rather readability and comprehen-
sion. Therefore, the code verifies all basic tests any numerical method should check about
convergence and stability of the solution, as well as the basic benchmark cases a lattice
Boltzmann method should present. Regarding the implementation of the Shan-Chen model
for a two phase fluid, the work also includes tests for galilean invariance and the Laplace
pressure test.

Lattice Boltzmann method along with Shan-Chen approach is characterized by the def-
inition of two free parameters in numerical simulations: viscosity, by setting a timescale
that dictates the relaxation of the system to equilibrium via collisions, and surface ten-
sion, through the definition of a temperature-like parameter in charge of phase coexistence.
These two parameters control the behaviour of capillary waves. Hence, the work uses the
possibility of analyzing them to provide a framework for the description of capillary waves
based on the mesoscopical approach that the lattice Boltzmann method represents.

Another asset of this method is that the Shan-Chen approach is a straight forward way
to model multiphase fluids without the need of an extra algorithm to track the evolution of
interfaces, unlike the widely used Eulerian methods (e.g., finite difference method, finite
volume method, etc.). Thus, interests are growing in adopting LBM in multiphase simula-
tions as a mesoscopic interpretation of fluid phenomena through simple streaming-collision
processes [24]. Considering in addition that any fluid interphase boundary is mesoscopic
in nature [25], LBM becomes a strong candidate for the numerical analysis of capillary
waves.

The dissertation is organized as follows. As the Navier-Stokes equations solver the
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lattice Boltzmann method is, chapter 2 presents a reminder of the basic notions of hydro-
dynamics and classical statistical mechanics, thus given the kinetic nature of the method,
chapter 2 also contains the study of the Chapman-Enskog analysis in charge of recovering
the macroscopic behaviour of the system out of the mesoscopic approach that the lattice
Boltzmann equation is. In chapter 3, I present all the necessary theory for a complete under-
standing of the method: from the discretisation of the governing equation, the introduction
of forces -crucial to the implementation of then Shan-Chen model- to the analysis of non-
dimesionalisation, accuracy of the method and boundary conditions. A breakdown of the
theory for the Shan-Chen model is presented in chapter 4. I also present in chapters 3 and
4 the basic benchmark tests in two and three dimensions studied for the correct implemen-
tation of the numerical method considering the inclusion to it of forces and the Shan-Chen
approach. Chapter 5 presents the main results of this work, there I analyze and discuss the
influence of confined geometries over the dynamics of standing capillary waves, making
special emphasis over the effects of the boundaries parallel to the interface between the two
phases of the fluid. Finally, I conclude this work with some conclusions and final remarks
in chapter 6.





Chapter 2

Theoretical Background of the Method

A physical system such as a fluid, can be studied using different scales. In each scale,
exist different interactions that control the dynamics of the system and, with it, different
equations and regimes dictating the evolution of processes. See Fig. 2.1 for an schematic
representation of the various regimes used to study the fluid dynamics.

Parting from the micro-scale, the system is considered to be a collection of N molecules
that interact via two-body intermolecular potentials. If the size of the molecules s is much
smaller than their mean interparticle separation, it is safe to consider the molecules as
point-like structureless particles. Under this condition, the de Broglie length λ = h/p
of these particles is much smaller than any other length scale of the system, so that the
classical Newton equations govern their dynamics, in the N-body regime. Upon speci-
fying initial and boundary conditions, Newton equations will yield the entire state of the
system. Nonetheless, N here is usually of the order of Avogradro number (1023), only a
cubic millimeter of air contains approximately 1016 particles [26], consequently this N-
body approach to the system turns-out computationally impossible to solve. Fortunately,
the physical observables this work is interested in are macroscopic (pressure, velocity, den-
sity of a fluid) and originate from an statistical average over a large number of individual
molecules, therefore the need of the analysis of the system at different scales that will be
described now: the lattice Boltzmann equation is based on statistical mechanics principles
to solve the hydrodynamics of a fluid flow. Therefore, in the last section of this chapter, I
will also discuss how this link between kinetic theory and hydrodynamics is established in
the lattice Boltzmann equation.

Figure 2.1: Scheme of the different relevant length-scales on which a fluid can be analyzed.
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18 Chapter 2. Theoretical Background of the Method

2.1 Hydrodynamics

This regime uses a continuous approach to the system where macroscopic variables such
as velocity, pressure and density will give all the important properties of the dynamics.
The continuous approach means that any small volume element in the fluid is supposed
to be so large that it contains a very large number of molecules, enough to be considered
statistically meaningful, but the volume yet small enough compared to the global dimension
of the macroscopic domain where the fluid evolves. This volume element will be referred
to as parcel of fluid or fluid element and its properties u, p and ρ will be function of the
spatial coordinates x, y, z of the parcel and time.

Equations governing the system come from conservation principles: mass, momentum
and energy. Taking as a starting point the equation which describes the conservation of
mass, consider a volume V0. The mass contained in this volume is

∫
V0
ρdV with ρ = ρ(x, t)

the fluid density. The mass of fluid flowing with velocity u = u(x, t) in unit time through
an element dσ of the surface bounding this volume is ρu · dσ. Considering dσ along the
outward pointing normal, the total mass flowing out of V0 per unit of time is∮

ρu · dσ =

∫
∇ · (ρu)dV,

where Green’s formula has been used, and the decrease per unit time in the mass of fluid in
the volume V0 can be written as

−
∂

∂t

∫
ρdV.

Therefore, equating these two expressions one obtains that

∂

∂t

∫
ρdV = −

∫
∇ · (ρu)dV,

∫ [
∂ρ

∂t
+ ∇ · (ρu)

]
dV = 0.

The later is valid for any volume, so the integrand must always vanish

∂ρ

∂t
+ ∇ · (ρu) = 0. (2.1)

This is the equation of continuity in differential form.
Similarly, considering the change of net momentum in or out of the fluid element,

changes in pressure p and external body forces F

d
dt

∫
V0

ρudV = −

∮
∂V0

ρuu · dσ −
∮
∂V0

pdσ +

∫
V0

FdV,
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here uu denotes the outer product. Using the divergence theorem∫
V0

∂(ρu)
∂t

dV = −

∫
V0

∇ · (ρuu)dV −
∫

V0

∇pdV +

∫
V0

FdV,

results, once again, in an expression valid for any volume, the Euler equation

∂(ρu)
∂t

+ ∇ · (ρuu) = −∇p + F. (2.2)

First obtained by L. Euler in 1755 is one of the fundamental equations of fluid dynamics
[27].

Defining the momentum flux density tensor as

Παβ = ρuαuβ − pδαβ

equation (2.2) takes a more general form as the Cauchy momentum equation

∂(ρu)
∂t

+ ∇ ·Π = F. (2.3)

This equation only considers momentum transfer that is reversible. When considering the
effect of energy dissipation due to internal friction (viscosity) and thermal conduction,
the inclusion of additional terms in the equation describing this ideal fluid is necessary.
Whereas the continuity equation remains valid whether this fluid is viscous or not, Euler’s
equation requires modifications when viscosity is to be considered.

To establish the new form of this equation, considering now internal friction the addition
of a term −σ′αβ that represents this irreversible viscous transfer of momentum, is necessary.
Writing then the momentum flux density tensor as follows

Παβ = ρuαuβ − σαβ, (2.4)

with the stress tensor
σαβ = −pδαβ + σ′αβ (2.5)

and σ′αβ a tensor of rank two which takes the form [27][28]

σ′αβ = η

(
∂uα
∂xβ

+
∂uβ
∂xα
−

2
3
δαβ

∂uγ
∂xγ

)
+ ηBδαβ

∂uγ
∂xγ

. (2.6)

Coefficients η and ηB referred to as coefficients of shear and bulk viscosity respectively, are
independent of the fluid velocity, both positive and usually assumed isotropic and uniform∗.

∗Not the case for, for example, non-Newtonian fluids.
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Finally, the substitution of equations (2.5) and (2.6) into (2.3) using (2.4) results in

∂(ρuα)
∂t

+
∂(ρuαuβ)
∂xβ

= −
∂p
∂xα

+
∂

∂xβ

[
η

(
∂uα
∂xβ

+
∂uβ
∂xα

)
+

(
ηB −

2
3
η

)
∂uγ
∂xγ

δαβ

]
+ Fα,

the Navier-Stokes equation.

Assuming viscosities are constant and regarding the flow as incompressible† (∇·u = 0),
results in the incompressible Navier-Stokes equation

ρ

(
∂

∂t
+ u · ∇

)
u = −∇p + η∆u + F. (2.7)

Up to this point, the dynamics of the fluid flow is described by 4 equations, one representing
the conservation of mass and three for the conservation of momentum (one for each spatial
component), but five unknown hydrodynamic variables (ρ, p, ux, uy and uz), hence the need
of another equation to close the system. An equation of state relates any state variable as
density, pressure, temperature, internal energy or entropy to any other two of these state
variables [28].

If the fluid is considered to have constant temperature T0, the isothermal equation of
state is a linear relationship between pressure p and density ρ:

p = ρRT0,

with R the specific gas constant. For this equation of state, the speed of sound is

cs =
√

RT0,

therefore the pressure and density of the fluid are related by

p = c2
sρ. (2.8)

Equation (2.8) provides the extra equation that closes the full system of equations and will
be very useful in the formulation of the lattice Boltzmann method.

As mentioned in the introduction to this chapter and to this dissertation, the lattice
Boltzmann method uses a mesoscopic approach to describe the dynamics of a fluid. I
present next a reminder of the basic notions of kinetic theory.

†Since the lattice Boltzmann method used in this work will only work in the incompressible limit.
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2.2 Kinetic Theory
“I am conscious of being only an individual struggling weakly against the stream of time.

But it still remains in my power to contribute in such a way that, the theory of gases is again
revived, no too much will have to be rediscovered. ”

-Ludwig Boltzmann.

As stated before, pressure, velocity and density, originate from a statistical average over
a large number of individual molecules. This statistical point of view can be explored at
various levels of complexity. Considering the simplest one, i. e. the one-body kinetic level
[26], its pivotal variable is the distribution function f (x, ξ, t) which describes the probability
density (density of particles) of finding a particle around the spatial position x at time t with
velocity ξ. Therefore the units of this function are

[ f ] =
kg s3

m6 .

In 1872, Ludwig Boltzmann derived the now referred to as the Boltzmann equation, an
equation that describes the evolution of the distribution function in terms of microdynamic
interactions,

∂ f
∂t

+ ξβ
∂ f
∂xβ

+
Fβ

ρ

∂ f
∂ξβ

= Ω( f ) (2.9)

with the source term Ω( f ) as the collision operator. Within this equation, the first two terms
describe the advection of the distribution function (streaming), the third term describes how
forces affect the system and Ω( f ) the local redistribution of f due to two body collisions,
consequently the collision operator involves a two-body distribution function f12. In fact,
streaming and collision are the two main mechanisms dictating the dynamics of the system
and also of the lattice Boltzmann method.

What is more, Boltzmann assumed the system was a dilute gas of point-like, structure-
less molecules interacting via a short-range two-body potential [26], this way collisions
become localized and binary, which results into Boltzmann’s closure assumption

f12 = f1 f2, (2.10)

equivalent to assuming no correlations between molecules entering a collision.

As kinetic theory describes processes along their relaxation towards thermodynamic
equilibrium, central to it is the concept of local equilibrium described by the associated
distribution function f eq. In this state, mathematically, the condition f eq fulfills is

Ω( f eq) = 0.
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This annihilation of the collision operator, leads to the detailed balance condition, mean-
ing that any collision process is balanced by an inverse one, using equation (2.10), this
translates into

f ′1 f ′2 = f1 f2,

with f ′ denoting the inverse collision process. Taking logarithms

ln f ′1 + ln f ′2 = ln f1 + ln f2,

hence ln f is a variable that does not change under the effect of collisions. This means that
f must be a function only of dynamic collision invariants (mass, momentum and energy)
[26]:

ln f = A + Bαuα +
1
2

Cu2

with A, Bα and C five lagrangian multipliers, obtained by imposing conservation of these
dynamic collision invariants [26], conditions that are moments of the distribution function,
which are integrals of f weighted with some function of ξ:

0th moment (mass density)

ρ(x, t) =

∫
f (x, ξ, t)d3ξ (2.11)

1st moment (momentum density)

ρ(x, t)u(x, t) =

∫
ξ f (x, ξ, t)d3ξ (2.12)

2nd moment (total energy density)

ρ(x, t)E(x, t) =
1
2

∫
|ξ|2 f (x, ξ, t)d3ξ. (2.13)

Thus, demanding that f eq has the same moments as f , the equilibrium distribution
function in d-dimension is [28]

f eq(ρ,u, θ, ξ) =
ρ

(2π)d/2 e−
(ξ−u)2

2θ , (2.14)

with θ the temperature of the system. This distribution function is the Maxwell-Boltzmann
distribution.

Note that f and f eq are connected to the macroscopic variables via equations (2.11),
(2.12) and (2.13).

To conclude with this section, let me go back to the collision term, one of the major
problems when dealing with the Boltzmann equation. In order to facilitate numerical and
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analytical solutions, simpler expressions of this collision term have been proposed. Any
collision term must, as stated before:

1. Conserve mass, momentum and energy

0th moment ∫
Ω( f )d3ξ = 0 (2.15)

1st moment ∫
ξΩ( f )d3ξ = 0 (2.16)

2nd moment
1
2

∫
|ξ|2Ω( f )d3ξ = 0. (2.17)

2. Express the tendency of the system to approach to a Maxwellian distribution [29].

An expression that avoids most of the mathematical difficulties but meets the basic
physics, including equations (2.15), (2.16) and (2.17), is the so-called BGK collision oper-
ator

Ω( f ) = −
1
τ

( f − f eq). (2.18)

Proposed by Bhatnagar, Gross and Krook in 1954 [30], uses τ as the time scale associated
with the speed at which the system (described by f ) goes by means of collisions towards
local equilibrium, f eq (second condition stated before). This relaxation time, directly de-
termines the fluid viscosity η. To illustate it with an example, think of a fluid with small
viscosity, this means, as I will show in the next chapter, that τ is also small, hence Ω( f )
will be big and the system will present a lot of collisions as intuition dictates.

Equation (2.9) together with equation (2.18) imply that

∂ f
∂t

+ ξβ
∂ f
∂xβ

+
Fβ

ρ

∂ f
∂ξβ

= −
1
τ

( f − f eq) (2.19)

which is one of the main equations of this work and the pillar of chapter 3.

2.3 From Kinetic Theory to Hydrodynamics: Chapman-
Enskog analysis

Up to this point, this chapter has been all about kinetic theory and hydrodynamics as sep-
arate topics. In the last section I focused the discussion only on the kinetic regime driven
mainly by local relaxation towards equilibrium and collisions but, how is this regime con-
nected to fluid dynamics?
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Fluid dynamics and, particularly, Navier Stokes equations, can be seen as the mean
field picture of a perturbative treatment of the kinetic description of the system, where the
perturbation parameter is the Knudsen Number [26]

Kn =
lm f p

l

defined as ratio between the mean free path and the shortest scale at which macroscopic
variations are appreciated. This passage between kinetic theory and fluid dynamics is
known as the Chapman-Enskog analysis.

Named after Sydney Chapman and David Eskog, a version of this analysis was ex-
pressed concisely by Enskog in 1917, while later, in 1939, Chapman combined it with his
derivation in his book [31], into what is now known as the Chapman Enskog analysis.

As seen earlier in this chapter, the assumption f ≈ f eq leads to the Euler momentum
equation thus, any other macroscopic behaviour not represented in Euler equation, should
be connected to the non-equilibrium part of the system:

f neq = f − f eq.

To determine the way on which this connection works, Chapman-Enskog expansion is used,
consisting in general on a double expansion of both dependent and independent variables.

The former, the expansion around the dependent variable, i. e. the distribution function,
reads

f = f (0) + ε f (1) + ε2 f (2) + ... (2.20)

with εn referring to terms of order of Knn and identifying the first term f (0) as the equilib-
rium distribution function f eq. Here, terms of lowest order result in the Euler momentum
equation, whereas the higher order terms will represent corrections.

On the other hand, this analysis poses a multiple-scale expansion in time and space
derivatives, whose basic idea is to represent the independent variables in terms of a hierar-
chy of scales that otherwise result in terms growing without bound. Hence, in this multiple
scale expansion, each variable is O(1) at its own relevant scale. This hierarchy suggests
[26]

x =
x(1)

ε
, t =

t(1)

ε
+

t(2)

ε2 .

The above induces the following representation of the differential operators [28]:

δtckα∂α f = δt(εckα∂
(1)
α ) f ,

δt∂t f = δt(ε∂(1)
t + ε2∂(2)

t ) f ,
(2.21)

where the expansion ∂t =
∑∞

n=0 ∂
(n)
t , is just a formal definition.
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By introducing the following expansion

f (x + ξδt, t + δt) =

∞∑
n=0

δtn

n!
D(n)

t f (x, t) (2.22)

with D(n)
tα ≡ (∂t + ξα∂α)n, Boltzmann Equation can be written as follows. Considering the

ansatz that only the two lowest orders in Kn are significant when recovering the macro-
scopic behaviour of the system (for notation purposes f (x, t) = f )

f + δt(∂t + ξα∂α) f +
δt2

2
(∂t + ξα∂α)2 f + O(δt3)︸                                                        ︷︷                                                        ︸

f (xα+ξαδt,t+δt)

− f = −
δt
τ

( f − f eq), (2.23)

canceling the respective terms and rearranging the equation, results in

δt∂t f + δtξα∂α f +
1
2

[δt∂t f + δtξα∂α f ]2 = −
δt
τ

( f − f eq).

Now substituting equations (2.21)

δtε∂(1)
t f + δtε2∂(2)

t f + δtεξα∂(1)
α f +

δt2

2
[ε∂(1)

t + ε2∂(2)
t + εξα∂

(1)
α ]2 f = −

δt
τ

( f − f eq)

and also equation (2.20), considering that only the 2 lowest order terms in Kn will con-
tribute:

δtε∂(1)
t ( f (0) + ε f (1))+δtε2∂(2)

t ( f (0)) + δtεξα∂(1)
α ( f (0) + ε f (1))

+
δt2

2
[ε∂(1)

t + ε2∂(2)
t + εξα∂

(1)
α ]2( f (0)) = −

δt
τ

(( f (0) + ε f (1) + ε2 f (2)) − f eq)

finally results in

δtε∂(1)
t f (0)+δtε2∂(1)

t f (1) + δtε2∂(2)
t f (0) + δtεξα∂(1)

α f (0) + δtε2ξα∂
(1)
α f (1)

+
δt2

2
[ε2∂(1)

t
2

+ 2ε2ξα∂
(1)
t ∂(1)

α + ε2ξ2
α∂

(1)
α

2] f (0) = −
δt
τ

( f (0) + ε f (1) + ε2 f (2) − f eq)
.

(2.24)

Once the equation on which I will base the rest of the analysis has been derived , let us
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remember that the relaxation process should conserve mass and momentum:∫
f eqd3ξ =

∫
f d3ξ = ρ∫

ξα f eqd3ξ =

∫
ξα f d3ξ = uαρ

and that, given the supposition f neq = f − f eq, I can express∫
f neqd3ξ = 0,

∫
ξα f neqd3ξ = 0,

which, together with equation (2.20), lead to∫
f (n)d3ξ = 0,

∫
ξα f (n)d3ξ = 0 ∀ n ≥ 1, (2.25)

known as the conditions of solubility [31]. This mean that that corrections of order of ε and
bigger, do not contribute to the local values of mass and momentum density [29].

Going back to equation (2.24), it can be sorted according to the order of magnitude of
ε, and replaced by a set of equations arranged in a consecutive order of magnitude of this
same parameter [32]:

O(ε0): Relaxation towards local equilibrium with few collisions necessary to reach
such equilibrium, a very fast process.

f (0) = f eq (2.26)

O(ε1): Sound waves and advection, a fast process but slower than relaxation towards
local equilibrium [29].

δtε∂(1)
t f (0) + δtεξα∂(1)

α f (0) = −
δt
τ
ε f (1)

which simplifies to (
∂(1)

t + ξα∂
(1)
α

)
f (0) = −

1
τ

f (1). (2.27)

Taking the zero-th to second moments of this equation corresponding to equations
(2.11), (2.12) and (2.13) and considering the conditions of solubility (2.25) one ob-
tains:

0th moment:
∂(1)

t ρ + ∂(1)
α ρuα = 0, (2.28)

which is the equivalent at O(ε1) of the continuity equation.
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1st moment: ∫ (
ξα(∂(1)

t + ξα∂
(1)
α ) f (0)

)
d3ξ = −

∫
ξα
τ

f (1)d3ξ

which using equation (2.26) results in

∂(1)
t (ρuα) + ∂(1)

β Π
eq
αβ = 0, (2.29)

the O(ε1) Euler equation.

2nd moment: Following the same steps, the resulting equation is:

∂(1)
t Π

eq
αβ + ∂(1)

γ Π
eq
αβγ = −

1
τ

Π
(1)
αβ , (2.30)

where the moments are

Π
eq
αβ =

∫
f eqξαξβd3ξ = ρc2

sδαβ + ρuαuβ,

Π
eq
αβγ =

∫
f eqξαξβξγd3ξ = ρc2

s(uαδβγ + uβδαγ + uγδαβ),

Π
(1)
αβ =

∫
ξαξβ f (1)d3ξ.

(2.31)

O(ε2): This correction of second order in ε corresponds to diffusion processes which
are considerably slower than sound waves and advection.

δtε2∂(1)
t f (1) + δtε2∂(2)

t f (0)+δtε2ξα∂
(1)
α f (1)

+
δt2

2
[ε2∂(1)

t
2

+ 2ε2ξα∂
(1)
t ∂(1)

α + ε2ξ2
α∂

(1)
α

2] f (0) = −
δt
τ
ε2 f (2)

∂(2)
t f (0) + (∂(1)

t + ξα∂
(1)
α ) f (1) +

δt
2

[∂(1)
t

2
+ 2ξα∂

(1)
t ∂(1)

α + ξ2
α∂

(1)
α

2] f (0)︸                                      ︷︷                                      ︸
~

= −
1
τ

f (2) (2.32)

Let us focus on the term ~ for a moment. Applying (∂(1)
t + ξα∂

(1)
α ) to both sides of

equation (2.27)‡:(
∂(1)

t
2

+ 2ξα∂(1)
α ∂

(1)
t + ξα

2∂(1)
α

2
)

f (0)︸                                     ︷︷                                     ︸
2
δt~

= −
1
τ

(∂(1)
t + ξα∂

(1)
α ) f (1).

‡Throughout all this analysis it is supposed that the changes in f are slow, occurring only on a macroscopic
scale [28].
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After substituting the later in equation (2.32) and doing some algebra one obtains

∂(2)
t f eq + (∂(1)

t + ξα∂
(1)
α )(1 −

δt
2τ

) f (1) = −
1
τ

f (2).

Taking its moments and considering again the conditions of solubility, the following
relations arise:

0th moment:
∂(2)

t ρ = 0 (2.33)

1st moment:
∂(2)

t (ρuα) + ∂(1)
β

(
1 −

δt
2τ

)
Π

(1)
αβ = 0 (2.34)

these equations are interpreted as second order in ε corrections to the equations cor-
responding to O(ε) above.

Hence, assembling the moments of order zero of both O(ε) and O(ε2), i.e. equations
(2.28) and (2.33), I can obtain the correction to continuity equation:

(ε∂(1)
t + ε2∂(2)

t )ρ + ∂(1)
α ρuα = 0 (2.35)

which, when reversing expansions in equation (2.21), will be zero, since it is exact already
at O(ε), unlike momentum conservation equation as I will show next.

Doing the same, but now for the moments of order one, that is, equations (2.29) and
(2.34)

(ε∂(1)
t + ε2∂(2)

t )(ρuα) + ε∂(1)
β Π

eq
αβ = −ε2∂(1)

β

(
1 −

δt
2τ

)
Π

(1)
αβ , (2.36)

the needed corrections of O(ε2) for momentum conservation equation with the unknown
viscous stress tensor are found [28]:

σ′αβ = −

(
1 −

δt
2τ

)
Π

(1)
αβ . (2.37)

For the calculation of this perturbation moment, I refer to Appendix A.2.2 of [28]. Where
using equation (2.30), they find an explicit expression for Π

(1)
αβ in terms of u, ρ and their

derivatives. This explicit expression is

Π
(1)
αβ = −τ

ρc2
s(∂

(1)
β uα + ∂(1)

α uβ)︸                  ︷︷                  ︸
N-S viscous stress tensor

− ∂(1)
γ (ρuαuβuγ)︸          ︷︷          ︸
error of O(u3)

 . (2.38)

The error term can be neglected for incompressible flows, that is, when the Mach number
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is small. The Mach number
Ma =

tsound

tconv
=

u
cs

defines the ratio between the acoustic and advective scales. Then, the error term is ne-
glected when Ma2 � 1 or, what is equivalent, u2 � c2

s , reason why LBM is only valid for
weakly compressible phenomena [33]. In simulations, a steady fluid flow with Ma ≤ 0.1
is assumed to be incompressible [28]. Later in this work, I will mention more restrictions
the method has to meet in order to simulate the correct physic of a system.

Once counting with all the ingredients to recover the macroscopic equations arising
from this kinetic regime that represents lattice Boltzmann, insert, from equation (2.38),
only the viscous stress tensor into equation (2.36) and reverse expansions in (2.21) to finally
express continuity equation and Navier-Stokes equation:

∂tρ + ∂γ(ρuγ) =0,

∂t(ρuα) + ∂β(ρuαuβ) = − ∂αp + ∂β
(
η[∂βuα + ∂αuβ]

) (2.39)

with
p = ρc2

s , η = ρc2
s

(
τ −

δt
2

)
, ηB =

2
3
η. (2.40)

The same macroscopic equations can be found by using more general collision opera-
tors. Here, using Boltzmann equation along with the BGK collision operator, a formula,
equation (2.40), was obtained to correlate the LBM model parameters to the kinematic
viscosity implicitly implemented in LBM simulations. It is important to mention that this
theoretical derivation of the viscosity coefficient is only applicable in the domain of validity
of the Chapman-Enskog analysis, that is, near local equilibrium [28].

In the next chapter I present all the necessary theory for a complete understanding of
the method.





Chapter 3

Lattice Boltzmann Method

In this chapter, I present an overview of the Lattice Boltzman Method with the main ele-
ments of lattice Boltzmann equation theory, including the derivation of the lattice Boltz-
mann equation and the discretisation of velocity space, physical space and time. In par-
ticular, I only analyze the Bhatnagar-Gross-Krook model introduced in 1954. This Lattice
Bhatnagar-Gross-Krook scheme (LBGK) is the ideal lattice Boltzmann model in terms
of simplicity and effectiveness. Next, I include an analysis of the method, including non-
dimensionalisation, a review of its accuracy, stability and efficiency as well as the extension
of the model to 3 dimensions and the analysis of Boundary Conditions. Later, I discuss the
forcing scheme in 3D. Finally, some benchmark cases to the method are presented.

3.1 Lattice Boltzmann Equation

Lattice Gas Cellular Automata as the precursor of the lattice Boltzmann method, is de-
scribed by kinetic equations of the type

fk(x + ĉk∆t, t + ∆t) = fk(x, t) + Ωk. (3.1)

This form of discrete equation expressing that particles in fk(x, t) move with velocity ĉk to
a point x + ĉk∆t in the neighborhood of x at the next time step, being affected at the same
time by a collision operator Ωk, is referred to as lattice Boltzmann equation, with its basic
quantity being the discrete-velocity distribution function fk(x, t). The correspondence of
equation (3.1) to the Boltzmann equation is established by discretising Boltzmann equation
in velocity space, physical space and time. Hence, all the argument variables of fk are
discrete in comparison to those of the continuous distribution function. Velocity space is
dicretised by introducing a finite set of velocities ĉk as follows.

31
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3.1.1 Discretisation in velocity space

Any sufficiently well-behaved continuous function f (x) ∈ R can be represented as a series
of Hermite polynomials in d dimensions (x ∈ Rd) as

f (x) = w(x)
∞∑

n=0

1
n!

a(n) ·H(n)(x)

with
a(n) =

∫
f (x)H(n)(x)dd x (3.2)

a tensor of rank n and

H(n)(x) = (−1)n 1
w(x)

∇(n)w(x), w(x) =
1

(2π)d/2 e−
x2
2 . (3.3)

Applying the Hermite series expansion to the equilibrium distribution function and limiting
this expansion to the N − th order, results in

f eq(ρ,u, θ, ξ) ≈ w(ξ)
N∑

n=0

1
n!

a(n),eq(ρ,u, θ) ·H(n)(ξ), (3.4)

a(n),eq(ρ,u, θ) =

∫
f eq(ρ,u, θ, ξ)H(n)(ξ)ddξ, (3.5)

where ρ is the density of the parcel of fluid, u the macroscopic velocity, θ the temperature
and ξ the velocity of the particles in f . The equilibrium distribution function explicitly up
to the second order, N = 2 in ξ from equation (3.4), is

f eq(ρ,u, θ, ξ) ≈ w(ξ)ρ
[
1 + ξαuα +

1
2

(uαuβ + (θ − 1)δαβ)(ξαξβ − δαβ)
]

= w(ξ)ρQ(u, θ, ξ),

(3.6)
note that f eq(ρ,u, θ, ξ) =

ρ

(2π)d/2 e−
(ξ−u)2

2θ has the same form as the weight function in (3.3)
with the argument x =

ξ−u
√
θ

. This way, (3.5) takes the form:

a(n),eq =
ρ

θd/2

∫
w

(
ξ − u
√
θ

)
︸  ︷︷  ︸

η

H(n)(ξ)ddξ

= ρ

∫
w(η)H(n)(

√
θη + u)ddη.

(3.7)
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Relation that will provide the discrete velocity set necessary to discretise the velocity space,
replacing ξ by a discrete set of velocities {ξk}.

First, let us consider the Gauss-Hermite quadrature rule that allows us to calculate the
value of integrals of the form

∫
w(x)P(n)(x)dd x, P(n)(x) a polynomial of order N, by consid-

ering its values only in certain points xk roots of the Hermite polinomial:

H(n)(xαk) = 0, α = 1, ... , d.

That is ∫
w(x)P(N)(x)dd x =

N∑
k=1

wkP(N)(xk), wk =
n!

(nH(n−1)(xk))2 .

Instead of using (3.7) with the Gaussian-Hermite quadrature, go back to (3.5) and substitute
(3.6):

a(n),eq =

∫
f eq(ξ)H(n)(ξ)ddξ = ρ

∫
w(ξ)Q(ξ)H(n)(ξ)ddξ = ρ

n∑
k=1

wkQ(ξk)H
(n)(ξk). (3.8)

Now, defining n quantities, each related to one velocity direction ξk as

f eq
k (x, t) = wkρ(x, t)Q(u(x, t), θ(x, t), ξk) (3.9)

in such a way that instead of a continuous function I have a finite set of them discretised in
velocity space. Hence equation (3.6) will take the following form

f eq
k = wkρ

(
1 + ξkαuα +

1
2

(uαuβ + (θ − 1)δαβ)(ξkαξkβ)
)
. (3.10)

This discrete set of equilibrium distribution functions, satisfies the same conservation laws
that its continuous version [28].

From the discretised Hermite series expansion in equation (3.8), n is the required num-
ber of abscissae suffiecient to obtain the correct macroscopic conservation laws. For this
case, at least n = 3, therefore, the abscissae are given by the roots of H(3)(ξkα), α = 1, .., d.

Abscissae suitable for LB simulations of the Navier-Stokes equation in d = 2 and d = 3
appear in Table 3.1 respective to D2Q9 and D3Q19 velocity sets.

Many of these abscissae contain factors of
√

3, so one simplification to equation (3.10)
can be

ĉk =
ξk
√

3
.

Another common simplification is the isothermal assumption that removes temperature of
the equation by implying θ = 1. Finally, considering the isothermal speed of sound, rewrite
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Dimension Number of abscissae Abscissae Weights
D q xk wk

2 9
(0, 0) 4/9
(0,±

√
3),(±

√
3, 0) 1/9

(±
√

3,±
√

3) 1/36

3 19
(0, 0, 0) 1/3
(±
√

3, 0, 0), (0,±
√

3, 0), (0, 0,±
√

3) 1/18
(±
√

3,±
√

3, 0), (±
√

3, 0,±
√

3), (0,±
√

3,±
√

3) 1/36

Table 3.1: Abscissae and weights from exact integration of 2D and 3D polynomials.

(3.10) as

f eq
k = wkρ

(
1 +

ĉkαuα
c2

s
+

uαuβ(ĉkαĉkβ − c2
sδαβ)

2c4
s

)
, (3.11)

the equilibrium distribution function that will be used and one of the most important equa-
tions in this work and LB theory in general. Note that it depends only on the local quantities
ρ and u. Now, discretising the distribution function in the same way as the equilibrium dis-
tribution function, the conservation laws for mass and momentum will be still satisfied.
Then using Gauss-Hermite rule:

a(n)(x, t) =

∫
f (x, ĉ, t)H(n)(ĉ)ddĉ =

∫
w(ĉ)
w(ĉ)

f (x, ĉ, t)H(n)(ĉ)ddĉ

≈

q∑
k=1

wk

w(ĉk)
f (x, ĉk, t)H(n)(ĉk) =

q∑
k=1

fk(x, t)H(n)(ĉk)

with fk the population of particles moving in the ĉk direction:

fk(x, t) =
wk

w(ĉk)
f (x, ĉk, t).

This discretised version of f is governed by the discrete ∗ Boltzmann equation:

∂ fk(x, t)
∂t

+ ĉk · ∇ fk(x, t) = Ω( fk(x, t)), k = 1, .., q. (3.12)

Note that this is the same equation as the one introduced in Chapter 2, equation (2.9), but in
a version with discrete velocity space ξ → ĉ, and without forces, which will be introduced
later.

Some remarks about this equation:

• The number of velocities in a model is given by the parameter q, whereas its dimen-
sion by d, hence the notation DdQq. The velocity sets that I use in this work, are

∗Not discretised Boltzmann equation, which I will introduce in the next section by discretising physical
space and time.
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i 0 1 2 3 4 5 6 7 8
wk

4
9

1
9

1
9

1
9

1
9

1
36

1
36

1
36

1
36

ĉkx 0 +1 0 −1 0 +1 −1 −1 +1
ĉky 0 0 +1 0 −1 +1 +1 −1 −1

Table 3.2: Components of the D2Q9 velocity set {ĉk}. In this table ĉk = (ĉkx, ĉky) and the
weights wk verify restrictions imposed in equations (3.14).

Figure 3.1: D2Q9 computational molecule. The arrows correspond to each ĉk, where k =

0, ..., 8.

D2Q9 and D3Q19. Figures. 3.1 and 3.2 show a schematic version of this velocity
sets, while the explicit values for D2Q9 with its respective weights are given in Table
3.2. Further on I will treat with more detail the three dimensional case.

• The macroscopic moments of this discrete equation are finite sums instead of the
integrals in the velocity space of the continuous version of the equation shown in
equations (2.11) and (2.12) :

ρ =

q∑
k=1

fk =

q∑
k=1

f eq
k ,

ρu =

q∑
k=1

fkĉk =

q∑
k=1

f eq
k ĉk.

(3.13)

• Regardless of the velocity set used, mass and momentum conservation, as well as the
rotational isotropy of the lattice †, require the isotropy of moments of the Hermite-

†As a Navier-Stokes solver, all moments of the Hermite-weights up to the fifth order must be isotropic.
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Figure 3.2: D3Q19 computational molecule. The arrows correspond to each ĉk, where
k = 0, ..., 18.

weights up to the fifth order:

q∑
k=0

wk = 1,

q∑
k=0

wkckα = 0,

q∑
k=0

wkckαckβ = c2
sδαβ,

q∑
k=0

wkckαckβckγ = 0,

q∑
k=0

wkckαckβckγckµ = c4
s(δαβδγµ + δαγδβµ + δαµδβγ),

q∑
k=0

wkckαckβckγckµckν = 0,

(3.14)

with q = 9 for 2 dimensions and q = 19 for 3.

• Finally, the discrete version of the Bhatnagar-Gross-Krook collision operator,

Ωk = −
fk − f eq

k

τ
(3.15)

portrays its property of mass and momentum conservation, given the relations for
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macroscopic moments in equation (3.13) ‡. It also portrays the tendency of the sys-
tem to approach its equilibrium state after a time τ, hence the name of this parameter,
the relaxation time.

• Equation (3.12) is still continuous in space and time.

In the following, I will present the discretised version of this discrete equation, that is,
once having an equation in a discrete velocity space (discrete equation) now follows the
discretised equation which includes the discretisation in physical space and in time.

3.1.2 Discretisation in space and time

The spatial and temporal discretisation will define the computational lattice the numerical
method will work on, leaving then aside the continuous domain on which the Boltzmann
Equation is defined. Hence, for a continuous spatial domain x ∈ [xmin, xmax], taking the
x-axis as an example, an uniform discretisation is

∆x =
xmax − xmin

Nx − 1
, (3.16)

with Nx,y,z the number of lattice sites along each spatial direction. Such lattice sites are
defined by

xi = xmin + i ∆x, i = 0, ..., Nx − 1. (3.17)

The temporal discretisation works the same way. Defining each time-step as

∆t =
tmax − tmin

Nt − 1
, (3.18)

the discretised Boltzmann Equation will be now solved only in the following Nt time-steps:

tn = tmin + n ∆t, n = 0, ..., Nt − 1, (3.19)

and not anymore in the continuous temporal domain.
Once the physical and temporal domains have been discretised, it is the turn for equation

‡This because of the linear form of the collision operator:

∑
k Ωk ∝

∑
k( fk − f eq

k ) = 0∑
k Ωkĉk ∝

∑
k( fkĉk − f eq

k ĉk) = 0
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(3.12) which , combined with the BGK collision operator from equation (3.13), is

∂ fk(x, t)
∂t

+ ĉk · ∇ fk(x, t) = −
fk(x, t) − f eq

k (x, t)
τ

. (3.20)

This is a first order hyperbolic partial differential equation, that will be solved by using
the method of characteristics, assuming the existence of a parameter χ that parametrises a
trajectory along which the PDE becomes an ordinary differential equation (ODE).

See Appendix A for the full mathematical analysis, which results into the Lattice Bhat-
nagar Gross Krook equation (a special case of the lattice Boltzmann equation that uses
the BGK collision operator) discretised in velocity space, physical space and time:

fk(x + ĉk∆t, t + ∆t)︸                  ︷︷                  ︸
streaming

= fk(x, t) +
∆t
τ

(
f eq
k (x, t) − fk(x, t)

)
.︸                        ︷︷                        ︸

collision

(3.21)

• In this lattice Boltzmann equation, also referred to as Lattice BGK equation, the
collision term is evaluated locally and has only one streaming step per lattice velocity
ĉk. This stream-collide interpretation is a result of the Lagrangian character of the
equation [34].

• Although this scheme is first order accurate in time, a second order approximation of
this particular integral (equation (A.5)) leads to the same form of LBE, thus, equation
(3.21) is actually second order accurate in time [28].

• Even when it can be derived from the Boltzmann equation, the entire idea of LBM
has its origins in lattice gas models which solved a Lattice Gas Boltzmann equation
(specifically Lattice Gas Cellular Automata). Then, in order to get rid mainly of sta-
tistical noise but also other problems that these Lattice Gas presented, the idea of
assuming that particle populations were only either zero or one was introduced [35]
by using instead a particle distribution function. In other words, lattice Boltzmann
equation was originally constructed empirically as an extension of Lattice Gas Au-
tomata and later shown that a direct derivation from Boltzmann equation is possible.
Hence the approach used here, is also useful for ensuring that the LBE reproduces
the correct continuum behaviour.

3.2 Lattice Boltzmann Method
Overall, I have described the basic equations of the lattice Boltzmann method, making
emphasis over the collision and streaming steps. Now, I will summarize the general steps
of the lattice Boltzmann method algorithm, after initializing the system by specifying the
macroscopic moments from equation (3.13):
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1. Construct the equilibrium distribution function at this current time-step from equa-
tion (3.11).

2. Perform collision and streaming as indicated in the Lattice Bhatnagar Gross Krook
equation (3.21).

3. Consider boundary conditions (this topic is covered ahead in this section).

4. Compute macroscopic fields again as indicated in equation (3.13).

5. Increase the time-step to t + ∆t and go back to step 1 of this list.

Note that the order of these steps is important since the later steps depend on the earlier
ones. In the next sections I will cover some important details for a successful implementa-
tion of this method.

3.2.1 Non-Dimensionalisation
This section will show how to convert parameters from the physical world, which will
be referred to as dimensionalised values, to their respective values in simulations, i. e.
non-dimesionalised. First of all, it is important to notice how in physics all phenomena
are independent of units, since units are nothing but a human construct. Therefore, and
by the very concept of these units, what matters to our analysis are ratios of the physical
quantities. In particular, the physical outcome should not depend on whether I use one set
of units, another or even dimensionless quantities. Nevertheless, it is always important and
fundamental to be able to represent the results of our simulations in actual physical units.
In this work and for the sake of convenience, I shall refer to the MKS system.

Non-dimensionalisation is achieved by dividing a quantity with units by a chosen refer-
ence quantity with the same units, the result is a number which I will call the lattice value
of the quantity in a simulation which will be in lattice units with the reference quantity as
the conversion factor, C. If I use a ? to denote the non-dimensionalised quantity, then for
example, for the especial case of a quantity with units of length, I have:

l? =
l

Cl
(3.22)

with l the length in meters, Cl the conversion factor and l? the lattice length. One of the
purposes of this section is to learn how to chose these conversion factors C appropriately.

In general, a mechanical quantity, say q, has dimensions that turn out to be a combina-
tion of length, time and mass. From here, I conclude that these three fundamental dimen-
sions are sufficient to generate the dimension that any mechanical quantity may have. So
with the only requirement of exactly three independent conversion factors, it is possible to
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define a unique non-dimensionalisation scheme. From now on, any set of three independent
conversion factors will be a set of basic conversion factors.

The selection of these basic conversion factors is arbitrary, but in LBM one usually
takes

Cl, Ct, (or Cu) and ρ. (3.23)

as the conversion factor for distance, time (or velocity) and density respectively, in charge
of re-scaling a simulation value to its respective parameter in the physical world.

To argue that all that matters to us scientists are ratios of a physical quantity, I turn
to the Law of Similarity [27]: flows which can be obtained from one another by simply
changing the unit of measurement of co-ordinates and velocities are said to be similar.
Let us commence with an example from geometry. Just as it is said that bodies of the
same shape are geometrically similar when they can be obtained from one another by only
changing all their linear dimensions in the same ratio, the same logic can be applied to the
study of fluids motion. Same physical properties will be measured on the system, as long
as they are re-scaled by the appropriate factors.

Considering steady flows and supposing incompressible fluids, from the parameters that
characterize the fluid itself, only the kinematic viscosity ν = η/ρ appears in the equations of
hydrodynamics (Navier-Stokes equations). On these equations and when incompressibility
is supposed, the unknown function that has to be determined is the velocity u. Moreover,
the flow depends, through the boundary conditions, on the shape and dimensions of the
body through which the fluid is moving and on its velocity field. Since the shape of the
body is assumed known, its geometrical properties as treated before, are determined by one
linear dimension, say l. Then, any flow is specified by these three parameters:

ν, u, l

with the following dimensions:

[ν] =
m2

sec
, [u] =

m
sec

, [l] = m.

It is easy, then, to verify that the only dimensionless quantity that can be formed by the
above three, is:

Re =
ul
ν

=
ρul
η

(3.24)

namely, the Reynolds number. Named by Arnold Sommerfeld after Osborne Reynolds,
who popularized its use in 1883.

Re being the only dimensionless number, any other dimensionless parameter can be
written as a function of it, including the velocity field obtained by solving the equation of
incompressible flow and which is given by a function of the form
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v = u U(r/l,Re). (3.25)

Lengths will be now measured in terms of l, and velocities in terms of u. i.e. I introduce the
dimensionless quantities r/l and vi/ui, with r and vi the new reference quantities. It is seen
from these expressions that, in two different flows of the same type, the velocities (vi/ui)
are the same function of (r/l) if the Reynolds number is the same for each flow. Then, now
once introduced the Reynolds number, the law of similarity can be reformulated: flows of
the same type with the same Reynolds number are said to be similar.

Here, l and u are the typical length and velocity scales in the system and ρ, ν and η are
the density, kinematic viscosity and dynamic viscosity of the fluid.

To ensure that the result of our simulations can be applied to any two equivalent physical
systems, the Reynolds number must be identical in both unit systems, dimensionalised and
non-dimensionalised, that is, the quantities in reality (l, u and ν) and the quantities in our
simulations (l∗, u∗ and ν∗) :

Re =
l?u?

ν?
=

lu
ν

(3.26)

or, what is equivalent:
ClCu

Cν

= 1. (3.27)

This way, the law of similarity for the Reynolds number, uniquely defines the relation of
the conversion factors for viscosity, length and velocity, and with them, the expression of
any other conversion factor is unique as a combination of the basic ones.

On account of this, it should be acknowledged that some important quantities that one
has to keep in mind while performing LBM simulations (see equation (3.23)), are ∆x, the
distance between neighboring lattice sites in length units (meters in case of MKS), ∆t,
the physical length of a time step, τ the BGK relaxation parameter (both in time units,
seconds on MKS) and the dimensionless fluid density ρ?. Here, it is useful to remember
that the physical density of an incompressible fluid is constant, while the LB density can
fluctuate, reason why, its average value is usually set to unity, ρ?0 = 1 (situation that will
change in the case of multiphase fluids). Another important quantity is the typical simulated
velocity u?, which is usually part of the simulation output and not an input parameter, even
though some boundary conditions require the specification of this velocity at the boundary.
Sometimes it is important to estimate the magnitude of u? before the simulation in order to
avoid unstable situations or very long computing times.

One more important quantity to consider is the speed of sound, its physical value can
be defined as

Cs = cs
∆x
∆t
, (3.28)

where the capital denotes the physical value and cs the dimensionless grid value. It can be
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shown ([28] Secc. 12.1) that in the D1Q3, D2Q9, D3Q15, D3Q19 and D3Q27 velocity sets,
cs represents the isothermal model’s speed of sound with c2

s = 1
3

∆x?2

∆t?2 . Hence, in the standard
LBM, where ∆x?/∆t? = 1 in considered, the lattice speed of sound is cs =

√
1/3 ≈ 0.577.

In addition, in order to work in the quasi-incompressible limit, all simulated velocities of
any system have to be significantly smaller, u? � cs. In practice this means that the lattice
Boltzmann method works around u? ≈ 0.2 [28].

Later I will impose more conditions on this parameters in order to ensure the stability
of our simulations. But first, I have to relate all physical parameters mentioned above to
their counterparts in lattice units and vice versa.

As mentioned, a very usual and recommended choice is to settle

∆x? = ∆t? = 1 and ρ? = 1, (3.29)

choices that lead to
Cl = ∆x, Ct = ∆t, Cρ = ρ (3.30)

and
τ = τ?Ct = τ?∆t (3.31)

with the unique combination of

Cu =
Cl

Ct
=

∆x
∆t

(3.32)

after all, ∆x,∆t and ρ form a unique set of basic conversion factors.

Viscosity. One notices the importance of the kinematic viscosity in simulations the
moment one understand the relevance of the Reynolds number. From [28]

η = ρC2
s

(
τ −

∆t
2

)
(3.33)

the kinematic viscosity is obtained

ν = C2
s

(
τ −

∆t
2

)
(3.34)

therefore

ν = c2
s
∆x2

∆t2

(
τ?∆t −

∆t
2

)
= c2

s

(
τ? −

1
2

)
∆x2

∆t
(3.35)

where clearly

[ν] =
m2

s



3.2. Lattice Boltzmann Method 43

so that
ν? = c2

s(τ
? −

1
2

), (3.36)

is the dimensionless viscosity.

Pressure. From the equation of state of the LB fluid, equation (2.8),

p = cs
2ρ. (3.37)

However only the pressure gradient appears in the Navier-Stokes equation, so only the pres-
sure changes matter [28]. Nottice that total pressure p does appear in the energy equation
but this equation is not relevant for non-thermal LB models as the one used in this work,
earlier in this chapter the isothermal assumption was mentioned when temperature was set
to a constant, θ = 1. On this note, one has to decompose the LB density into its constant
average ρ?0 and deviation ρ′? from the average, such that

ρ? = ρ?0 + ρ′?, (3.38)

and the LB density can be converted to the physical pressure as

p = p0 + p′ = p0 + p′?Cp, p′? = cs
2ρ′?, (3.39)

where

Cp = CρC2
l /C

2
t = CρC2

u (3.40)

is the conversion factor for the pressure and p0 is the physical reference pressure which can
be freely specified by the user.

Force. The conversion factor for any force with units [F] =
kg m

s2 , is

CF =
CρC4

l

C2
t
, (3.41)

whereas, for the body force density [FB] =
kg m

s2
1

m3 =
kg

(m s)2 , the factor is

CFB =
CF

C3
l

=
CρCl

C2
t
. (3.42)

As a special case, let us consider gravity, which is an acceleration, not a force, with units

[g] = m/s2
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Quantity Non-dimentionalisation Grid parameter Physical Value
ρ ρ = Cρρ

? ρ? = 1 Cρ = ρ

∆x ∆x = Cl∆x? ∆x? = 1 Cl = ∆x
l l = Cll? = ∆xl? l? = l

∆x l? = Nx

∆t ∆t = Ct∆t? ∆t? = 1 Ct = ∆t
t t = Ct t? = ∆t t? t? = t

∆t t? = Nt

Table 3.3: Physical parameters and their appropriate conversion factors.

and its conversion factor Cg = Cl/C2
t . The gravitational force density Fg is given by Fg =

ρg.

Finally I summarize all the sufficient parameters needed to conduct a simulation with
all the correct lattice values in Table 3.3. The steps to obtain all these values are:

1. Cρ: Set Cρ in kg
m3 as the density of the fluid whose dynamics we are to simulate.

2. ∆x: Set the spatial domain l, in meters and Nx the number of lattice sites (in lattice
units) used to discretise the spatial domain so that

∆x =
l

Nx
. (3.43)

3. ∆t: For a given physical viscosity ν, in m2

s , and given a proper τ? (I will comment
about this more in detail on the next section), from equation (3.35), one gets:

∆t = c2
s

(
τ? −

1
2

)
∆x2

ν
. (3.44)

This way, I obtain the needed set of basic conversion factors that will be used to go
from simulation values to physical ones.

3.2.2 Accuracy, stability and efficiency
Since the lattice Boltzmann method was introduced in the late 1980s, several kinds of lat-
tice Boltzmann approaches have been developed. However, despite its notable success,
methodical investigations on their stability and hydrodynamic behaviors are still demand-
ing [36]. The ongoing section then presents a short analysis about the stability of the code
developed along with this work, which uses the knowledge described so far.
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In traditional kinetic theory, the equilibrium velocity distribution function is the max-
imum entropy state, any initial state will evolve towards a state of higher entropy. This
result is known as Boltzmann’s H-theorem which ensures an increase of entropy, and en-
sures stability. Therefore, the continuous Boltzmann equation is completely stable in terms
of the Boltzmann’s H-theorem. If one could guarantee that the equilibrium distribution
function for LB methods is the maximum entropy state, then stability can be guaranteed.
The problem with this approach is that one cannot usually find an equilibrium distribution
function that can simultaneously guarantee anH-theorem and allow the correct form of the
equation to be obtained (Navier-Stokes equation)§. Since, in the LBM, only a small set of
discrete velocities is used and the equilibrium distribution function is usually derived from
the Maxwell equilibrium distribution function by the truncated Taylor series expansion, the
H-theorem is no longer satisfied. Specifically, the incompressible Navier-Stokes Equations
do not have anH-theorem. As a consequence, the LBM is subject to numerical instability
[36]. The problem of the existence of instability issues is also obvious considering the lat-
tice Boltzmann equation is a finite difference form of the continuous Boltzmann equation
[37] so, like any other numerical scheme, LBM is always accompanied by stability and
accuracy issues that have to be treated.

On computational physics it is understood that instability in a LB simulation refers
to situations where the errors of our hydrodynamic variables, as population, density or
velocity, grow exponentially [28].

As mentioned in the previous section, to simulate physical systems of our interest, there
are some important dimensionless quantities that need to be under control, meaning that,
one needs to be careful with the choice of certain specific parameters that need to fulfill
certain conditions in order for our simulation results to be stable, since this choice is not
arbitrary and a wrong selection of this parameters may lead to numerical instability. The
restrictions that the values of this parameters need to meet is the subject of this section.

Usually, for problems involving evolution of initial conditions, the analysis of the
Courant Number C = |u|∆t/∆x, is enough to ensure the stability of our results. It compares
the speed ∆x/∆t at which information propagates in the model, with the physical speed |u|
at which the fluid field is being advected. Therefore, C ≤ 1 i.e. |u| ≤ ∆x/∆t, is often
necessary so the simulation can propagate the physical solution faster than the numerical
errors, making the simulation results stable.

Unfortunately, even when this condition is kept, one can encounter unstable results.
This is because, for the LBM, stability analysis is much more complicated than the ma-
jority of numerical methods such as Finite Differences, Finite Element or Finite Volume,
considering that the lattice Boltzmann equation has more degrees of freedom to be treated
carefully. One of these important parameters, is the relaxation time, τ, and with it, the

§Studies have been made on the so called, entropic collision operators, which consist on defining a lattice
version of the H-function, i.e, looking for a lattice version of the H-theorem, ensuring that collisions only
ever increase the entropy of the system, ruling out many cases of instability [28] (p. 409).
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viscosity.
From equation (3.36), it is clear that, for the viscosity to be non-negative, the value

of the relaxation time has to be greater than half the time step [34]. Result supported by
previous stability studies [38], showing that stability of the LBE based on D2Q9 lattice
model deteriorate as τ? approaches to 1/2 in the u − τ? plane and, as proven in [36], all
the LBE approaches are unstable when τ? 6 1/2. Thus, stability of uniform flows is
guaranteed if τ? > 1

2 [34].
For this method, all the conditions for the parameters that I will state, including the

ones that I have already mentioned, are obtained analytically in the bulk far away from any
boundaries. This type of analysis does not include the effects of boundaries or machine
round-off errors, reason why, the analytically derived stability conditions act as guidelines
[28] and are considered necessary conditions.

Another dimensionless number that has to be considered is the velocity which, in this
case, is the characteristic Mach number, which should be small in order to simulate in-
compressible flows. This way, the convergence to the analytic solution of a computational
program with a given Reynolds number is performed by increasing Nx = l/∆x while either
increasing τ? and/or u? appropriately, in such a way that a decrease on the value of u?,
should be accompanied by an increase in the number of time steps needed to reach the
same flow evolution time [34].

It is also known that, for models valid only in the incompressible regime, velocity
should be small for both stability and accuracy [34]. Care then must be always taken
to ensure that the Mach number is small enough that the deviation from incompressible
behavior is negligible. The smaller the Mach number is, the more accurate the method for
simulating the incompressible Navier-Stokes equation will be. This is why, in the previous
section, I mentioned that u? ≈ 0.2.

Furthermore, a stability analysis made in [28], specifically for the BGK collision op-
erator, shows that a sufficient stability condition is the non-negativity of all equilibrium
populations, i.e, f eq

k > 0.
Given all these parameter restrictions, it is clever to enlist some parameter selection

strategies. Taking into account also the previous section:

1. Cρ: Set Cρ and choose ρ?0 arbitrarily, this last parameter does not have any effect on
accuracy, stability or efficiency. As stated, it is usually set to unity.

2. ∆x: Set the spatial domain, l and Nx.

3. ∆t: For a given physical viscosity, ν and a given Reynolds number, choose a proper
τ?. It is generally recommended to choose relaxation times around unity as well [28].

(a) If τ? is too small, ∆x should decrease or equivalently, l? should increase. Mak-
ing simulations more expensive.
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(b) If τ? is too big, u? will increase and, as a result, simulations will be less accurate
and possibly less stable. Specially values τ? � 1 should be avoided.

Once the appripiate τ? is chosen, use equation (3.44) to determine ∆t.

Notice here that stability and accuracy do not come for free, they usually come at the
expense of a more expensive computing process.

Let me now say a few words about how accurate the LBM is as a Navier-Stokes solver,
subject that cannot be left aside since there are several error terms that affect the accuracy of
a LB simulation. Overall, a discretisation scheme like the one treated herein, is consistent
if its truncation errors tend to zero when its discretisation parameters, the numerical time
step ∆t and the lattice length ∆x, approach zero. That is, if the numerical solution tends to
the solution in the continuum when the discrete domain tends to the continuous one. The
rate at which this happens, establishes the formal order of convergence of the discretisation
scheme. In addition, when stability is ensured, this order of convergence dictates the rate
at which the numerical solution approaches towards the targeted PDE solution, known as
the rate of convergence of the numerical solution. Usually, on discretisation schemes like
finite differences, it is possible and relatively easy to evaluate the accuracy of a numerical
scheme theoretically, however, LBM is a non-linear scheme due to the use of the equilib-
rium distribution function in the collision term. This function is quadratic in velocity and
the density and velocity are computed as sums over all of the populations at a site [34].
Also, it is affected by other error sources like round-off error, iterative errors, that is dif-
ference between numerical solution and the actual steady state, discretisation errors and so
on. Consequently, a theoretical measure of accuracy is not enough, rather an estimate of it
is needed.

Focusing on the spatial discretisation error, assuming it to be the dominant numerical
error, one has

εφ ∝ ∆xp
i (3.45)

where εφ is the numerical error related to the desired observable φ:

εφ(t) :=

√∑
x (φn(x, t) − φo(x, t))2∑

x φo(x, t)2 , (3.46)

with φn the value of the observable at the current iteration, φo the exact value of the observ-
able at that time and

∑
x referring to a sum over all the spatial domain.
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Autoconvergence. The key point in equation (3.45) is the assumption that εφ follows a
power-law relation. Assume the next to be of the form:

εφ = E(x)∆xαi . (3.47)

here, ∆xi is the spatial resolution of the domain for the chosen refinement level i, and α
is the order of accuracy of the method used to construct φ. By analyzing the solution
for the observable φi in three different mesh refinements, say ∆x1 = ∆x, ∆x2 = ∆x

κ
and

∆x3 = ∆x2
κ

= ∆x
κ2 , with κ > 1 the autoconvergence order of the solution can be estimated.

Say that φi is the numerical solution in space at a certain time t, suppose the analytic
solution is also known, φ0. Then, one can express φi as follows, using equation (3.47),

φi(x) = φ0(x) + E(x)∆xαi + O(∆xα+1
i ). (3.48)

Then combining the solutions with different refinements using (3.48) for i = 1, 2, 3

φ1 − φ2

φ2 − φ3
=

E(~x)∆xα(1 − (1
r )α) + O(∆xα+1)

E(~x)∆xα(( 1
κ
)α − ( 1

κ2 )α) + O(∆xα+1)

=
(1 − 1

κα
)

1
κα

(1 − 1
κα

)
+ O(∆x)

= κα + O(∆x).

determines the difference among solutions using two consecutive resolutions. The relation
that must be fulfilled in order for a simulation to converge is

φ1 − φ2

φ2 − φ3
≈ κα. (3.49)

and α is the order of convergence that in theory should coincide with that in equation (3.47).
It has been proven ([28] p. 53, 54) that, the standard LBM, the one treated here, is a

second order accurate solver in space and time for the weakly compressible Navier-Stokes
equation (weakly compressible refers to errors that become relevant as Mach number ap-
proaches unity). Second order in space means that the error decreases quadratically with
∆x when fixing the dimensionless ratio ν? ∆t?

∆x?2 and given our choice of ∆t? and ∆x? as the
unity, this level of accuracy is obtained when fixing ν?.

As an important side note to the conventional dependence of truncation errors on ∆x
and ∆t, truncation errors on LBM also depend on the relaxation time parameter ([28] p.
142).

Finally, stability of LB schemes can also be improved by adopting larger discrete ve-
locity sets, by adding, for example, higher-order Hermite polynomial tensors to the equi-
librium distribution [39], leading, ultimately, to larger discrete velocity sets.
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
wk

1
3

1
18

1
18

1
18

1
18

1
18

1
18

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

ckx 0 +1 −1 0 0 0 0 +1 −1 +1 −1 0 0 +1 −1 +1 −1 0 0
cky 0 0 0 +1 −1 0 0 +1 −1 0 0 +1 −1 −1 +1 0 0 +1 −1
ckz 0 0 0 0 0 +1 −1 0 0 +1 −1 +1 −1 0 0 −1 +1 −1 +1

Table 3.4: D3Q19 Velocity Sets in explicit form. This table is easier to understand fol-
lowing at the same time Fig. 3.3. Here the velocity vectors are ĉk = (ĉkx, ĉky, ĉkz) and the
weights wk verify restrictions imposed in equations (3.14).

3.2.3 Extension to 3D
The lattice Boltzmann method with the BGK operator has been discussed only in 2 di-
mensions up to here, however, the extension to three dimensions is straightforward. One
just has to choose a D3Qj lattice and calculate appropriate equilibrium distributions. There
are a number of viable three dimensional velocity sets, such as the D3Q15, D3Q19 and
D3Q27. In fact, D2Q9 is the two dimensional projection of D3Q19 onto the xy plane. The
computational molecule of the D3Q19 velocity set is displayed in Figs. 3.2 and 3.3.

For hydrodynamic simulations, D. d’Humières, P. Lallemand and U. Frisch, proposed in
Lattice Gas Models for 3D hydrodynamics [41], a multispeed lattice-gas cellular automata
over a cubic lattice with 19 velocities. The explicit velocity sets for this molecule and its
respective weights are given in Table 3.4.

The D3Q19 is a multi-speed velocity set, with velocities of length 1 and
√

2. The fact
that lower dimensional velocity sets are sometimes the projection of higher dimensional
ones, means that in cases of the existence of invariance along one or more axes, the simu-
lations can be easily simplified. For this reason, I will not present benchmark cases for 3D
as those I will presented for 2D, instead, I will add a body force to the system and present
its pertinent test directly in three dimensions.

3.3 Boundary Conditions
When I introduced the concept of Law of Similarity, I also mentioned how important geom-
etry is on a computational fluid dynamics problem and, even though boundary conditions
apply to a small portion of the fluid domain, their influence usually will be reflected in the
overall behavior of the flow. In fact, the dynamics of fluid flows is highly dependent on
the surrounding environment and on how it interacts with the fluid. The way in which this
influence can be described mathematically in our code via the respective boundary condi-
tions is described in this section. Boundary conditions play also a crucial role since they
transmit the physical constrictions imposed by the external media into the flow.

Specifying boundary conditions to the Navier-Stokes equations is relatively easy, how-
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Figure 3.3: Structure of the 3D computational molecule and its velocity vectors illustrated
on Table 3.4.

ever not the case for the LB approximation of the problem. Here, the behavior of the
discretised distribution function on the lattice nodes needs to be mathematically specified
depending on how the fluid interacts with the physical boundary, rather than specifying
the macroscopic variables of interest such as the fluid density and velocity, therefore, on
this approximation to the problem, there are more degrees of freedom, one for each meso-
scopic population fk. Based on the above, I shall consider the following types of boundary
conditions:

1. Periodic

2. No-slip or Bounce back

3. Specification of pressure and velocity using the Zou-He Scheme

For the sake of illustration, I explain conditions for a 3D problem in this chapter and later
in Appendix B, the boundary conditions in 2D used in some tests of this work are specified.

In three dimensions, the boundary consists of 6 different plane faces on which the differ-
ent types of boundary conditions need to be considered. From now on and using definitions
in equations (3.16) and (3.17), I will refer to them as follows:

1. Top face: all boundary lattice sites or nodes where z = zmax with its associated distri-
bution functions as f top

k .

2. Bottom face: nodes where z = zmin with f bottom
k .

3. East face: boundary nodes where y = ymax with f east
k .

4. West face: y = ymin with f west
k .
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5. Frontal face: x = xmax with f f ront
k .

6. Rear face: x = xmin with f back
k .

3.3.1 Periodic boundary conditions in 3D
Periodic Boundary conditions are most commonly intended for physical phenomena where
surface effects play a negligible role. This type of boundary condition is usually the sim-
plest of the list which is equivalent to changing the topology of the domain to a periodic
one. Here the discretised distribution function at one side of the domain is assigned to that
at the opposite site of the domain in the streaming process.

East face: The distribution functions pointing towards the inner side of this face are,
according to Fig. 3.2):

f east
4 = f west

4

f east
8 = f west

8

f east
12 = f west

12

f east
13 = f west

13

f east
18 = f west

18

(3.50)

West face: Again following the D3Q19 molecule illustrated in Fig. 3.2, the appropriate
distribution functions to be indicated are:

f west
3 = f east

3

f west
7 = f east

7

f west
11 = f east

11

f west
14 = f east

14

f west
17 = f east

17

(3.51)

The logic is the same for the rest of the faces, where the distribution functions to be
indicated are:

Frontal face: f2, f8, f10, f14 and f16.
Rear face: f1, f7, f9, f13 and f15.
Bottom face: f5, f9, f11, f16 and f18.
Top face: f6, f10, f12, f15 and f17.
These boundary conditions are the most used along this work.

3.3.2 Bounce-back Boundary Conditions in 3D
These are used to model solid stationary or moving boundaries. In this case, populations
hitting a rigid wall during propagation, are reflected back to where they came from. This
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Figure 3.4: Scheme of the non-slip (Bounce-Back) boundary condition for a south wall.
The dashed line represents the lattice site, the gray shaded, the solid region and the solid
line, the boundary.

Figure 3.5: The black arrow represents the particle distribution being reflected during the
streaming process of a halfway Bounce-Back boundary condition.

scheme implies two facts: first, the wall is impermeable to the fluid, second, as the fluid
does not slip on the wall, there is no relative transverse motion between fluid and boundary.
These two implications show the reason why the Bounce-Back (BB) method mirrors the
Dirichlet Boundary conditions at the macroscopic level [28].

In general, boundary conditions may belong to one of two groups, mid-grid or on-grid.
Whereas BB may also be either halfway or fullway. In particular, in this work I use mid-
grid halfway Bounce-Back method.

Mid-grid or also called link-wise, means that the boundary lies on the lattice links of
the computational domain, as shown in Fig. 3.4, not on the lattice site. Halfway, that
particles are considered to travel only half of the link distance, thereby the reflection of the
distribution velocity occurs during the streaming step, see Fig. 3.5.

Based on this two figures, 3.4 and 3.5, it is obvious how, for link-wise methods, the
inclusion of the boundary condition represents also the inclusion of half a lattice site ∆x

2
into the physical domain.



3.3. Boundary Conditions 53

Defining

f ?k (xB, t) = fk(xB, t) −
1
τ

(
fk(xB, t) − f eq

k (xB, t)
)

(3.52)

with xB the boundary node, for example nodes in the top boundary are xB = (x, y, zmax) and
the notation for the distribution function defined in equation (3.52) for these top boundary
nodes will be f ?k

top(t), then the specific implementation for each possible segment of the
boundary of this non-slip boundary is:

Top face:

f top
6 (t + ∆t) = f ?5

top(t)

f top
10 (t + ∆t) = f ?9

top(t)

f top
12 (t + ∆t) = f ?11

top(t)

f top
15 (t + ∆t) = f ?16

top(t)

f top
17 (t + ∆t) = f ?18

top(t)

(3.53)

Bottom face:

f bottom
5 (t + ∆t) = f ?6

bottom(t)

f bottom
9 (t + ∆t) = f ?10

bottom(t)

f bottom
11 (t + ∆t) = f ?12

bottom(t)

f bottom
16 (t + ∆t) = f ?15

bottom(t)

f bottom
18 (t + ∆t) = f ?17

bottom(t)

(3.54)

Frontal face:

f f ront
2 (t + ∆t) = f ?1

f ront(t)

f f ront
8 (t + ∆t) = f ?7

f ront(t)

f f ront
10 (t + ∆t) = f ?9

f ront(t)

f f ront
14 (t + ∆t) = f ?13

f ront(t)

f f ront
16 (t + ∆t) = f ?15

f ront(t)

(3.55)
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Rear face:

f back
1 (t + ∆t) = f ?2

back(t)

f back
7 (t + ∆t) = f ?8

back(t)

f back
9 (t + ∆t) = f ?10

back(t)

f back
13 (t + ∆t) = f ?14

back(t)

f back
15 (t + ∆t) = f ?16

back(t)

(3.56)

East face:

f east
4 (t + ∆t) = f ?3

east(t)

f east
8 (t + ∆t) = f ?7

east(t)

f east
12 (t + ∆t) = f ?11

east(t)

f east
13 (t + ∆t) = f ?14

east(t)

f east
18 (t + ∆t) = f ?17

east(t)

(3.57)

West face:

f west
3 (t + ∆t) = f ?4

west(t)

f west
7 (t + ∆t) = f ?8

west(t)

f west
11 (t + ∆t) = f ?12

west(t)

f west
14 (t + ∆t) = f ?13

west(t)

f west
17 (t + ∆t) = f ?18

west(t)

(3.58)

These boundary conditions will be mainly used in the study of capillary waves, where their
influence over the temporal evolution of the wave will be analyzed.

3.3.3 Specification of Pressure and Velocity Boundary Conditions us-
ing the Zou-He Scheme in 3D

These are conditions based on the idea of bounce-back of the non-equilibrium distribution
function following the approach by Zou and He [40]. Here I will derive explicitly the
corresponding relations for the top face (z = zmax) and only give the results for the rest of the
faces. The same process to derive the conditions applies for the relations in 2 dimensions.
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To obtain the necessary conditions, I use

ρ(x, t) =
∑18

k=0 fk(x, t), (3.59)
u(x, t) = 1

ρ(x,t)
∑18

k=0 fk(x, t)ĉk. (3.60)

Top face: As can be seen from the molecule in Fig. 3.2, the distribution functions
pointing inwards, that is, the unknowns are:

f6, f10, f12, f15 and f17. (3.61)

Then, solving for these functions from the velocity in the z-direction in (3.60),

f6 + f10 + f12 + f15 + f17 = f5 + f9 + f11 + f16 + f18 − ρvz (3.62)

and from the density (3.59),

f6 + f10 + f12 + f15 + f17 = ρ− ( f0 + f1 + f2 + f3 + f4 + f5 + f7 + f8 + f9 + f11 + f13 + f18). (3.63)

This way, one obtains a relation for the density in terms of all the known distribution func-
tions:

ρ =[2( f5 + f9 + f11 + f16 + f18)

+ f0 + f1 + f2 + f3 + f4 + f7 + f8 + f13 + f14]
1

1 + uz

(3.64)

However, the unknown distribution functions remain undetermined. To close the sys-
tem, I assume, as suggested by Zou and He, the Bounceback rule is still correct for the
non-equilibrium part of the particle distribution function normal to the surface:

f ∗k = fk − f (eq)
k , (3.65)

That is, in the case of the top boundary:

f ∗6 = f6 − f (eq)
6 = f5 − f (eq)

5 = f ∗5 , (3.66)

so that

f6 = f5 + ( f (eq)
6 − f (eq)

5 ). (3.67)

Considering the relations for f (eq)
6 and f (eq)

5 , leads to the condition that defines f6:

f6 = f5 −
ρ

3
uz. (3.68)
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Applying the same rule for the rest of the unknown distribution functions, one obtains
the following four expressions:

f10 = f9 −
ρ

6
(ux + uz),

f12 = f11 −
ρ

6
(uy + uz),

f15 = f16 +
ρ

6
(ux − uz),

f17 = f18 +
ρ

6
(uy − uz).

(3.69)

When this kind of boundary condition is used to simulate a laminar flow driven by a moving
lid in the y-direction, these physical constraints translate into

f10 = f9,

f12 = f11 −
ρ

6
ulid,

f15 = f16,

f17 = f18 +
ρ

6
ulid.

(3.70)

with uy = ulid the velocity of the lid.

Below, I give the expressions for the east and west boundaries. These conditions will
be mainly used for a flow driven by a gradient pressure, hence a corresponding gradient
density, always in the incompressible limit, along the y-direction. So, contrary to the re-
lation obtained in equation (3.64), albeit the inlet (west boundary) outlet (east boundary)
densities are specified by the problem, a relation to determine the appropriate velocities is
needed.

East face:

uy = 1
ρ
[ f0 + f1 + f2 + f5 + f6 + f9 + f10 + f15 + f16 + 2( f3 + f7 + f11 + f14 + f17)] − 1 (3.71)
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with uy = uoutlet, and the unknown particle distribution functions are:

f4 = f3 −
ρ

3
uy

f8 = f7 −
ρ

6
(ux + uy)

f12 = f11 −
ρ

6
(uy + uz)

f13 = f14 +
ρ

6
(ux − uy)

f18 = f17 +
ρ

6
(uz − uy)

(3.72)

West face: Considering here uy = uinlet as

uy = 1 −
1
ρ

[ f0 + f1 + f2 + f5 + f6 + f9 + f10 + f15 + f16 + 2( f4 + f8 + f12 + f13 + f18)] (3.73)

and

f3 = f4 +
ρ

3
uy

f7 = f8 +
ρ

6
(ux + uy)

f11 = f12 +
ρ

6
(uy + uz)

f14 = f13 −
ρ

6
(ux − uy)

f17 = f18 −
ρ

6
(uz − uy)

(3.74)

The rest of the boundaries are not used on this work, but the way to obtain them is
analog to what I have done for the top boundary here.

3.4 Forcing scheme

In this work, a proper discussion of the implementation of a body force in the LB algorithm
is essential, since a force Fα is a momentum source term on the Navier-Stokes equations,

∂tρ + ∂γ(ρuγ) =0,

∂t(ρuα) + ∂β(ρuαuβ) = − ∂αp + ∂β
(
η[∂βuα + ∂αuβ]

)
+ Fα.

(3.75)

It is also important because in order to prepare the 3D BGK LBM as a Shan-Chen pseu-
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dopotential method used in the multiphase problemas below, it is necessary to understand
and implement correctly body forces in our simulations. In this section I will show how,
with the inclusion of forces and assuming still the BGK collision operator, the original
algorithm does not suffer mayor modifications.

There are various schemes to implement force in a lattice Boltzmann model, in this
work I only focus on the one proposed by Z. Guo, C. Zheng, and B. Shi in 2002 [42].

Considering first the continuous Boltzmann equation with a forcing term,

∂ f
∂t

+ ξα
∂ f
∂xα

+
Fα

ρ

∂ f
∂ξα

= Ω( f ) (3.76)

the goal is to discretise it in velocity space, physical space and time. Using, once again,
Hermite polynomials, the force contribution to the system takes the form:

F
ρ
· ∇ξ f ≈ −

F
ρ
· w

N∑
n=1

(−1)n

n!
na(n−1) ·H(n),

now, by replacing the continuous ξ by the discrete velocity set ĉk and renormalising by the
lattice weights wk, the discrete form of the forcing term is

Fk(x, t) = −
wk

w(ξ)
F
ρ
· ∇ξ f |ξ→√3ĉk

, (3.77)

so the discrete velocity Boltzmann equation with a forcing term Fk can be written as

∂ fk + ckα∂α fk = Ωk + Fk, k = 0, ...q − 1, (3.78)

with q the number of elements in the velocity set, as before q = 9 in 2D and q = 19 in 3D.
This forcing term represents the body force of the system, which, truncated up to second
order in velocity, is:

Fk = wk

(
ckα

c2
s

+
(ckαckβ − c2

sδαβ)uβ
c4

s

)
Fα, (3.79)

using Einstein summation convention over Greek indices. This expression recovers the
body force at its first order velocity moment:

18∑
k=0

Fkckα = Fα
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which is a source of momentum, just as expected for the Navier-Stokes equation, but not a
mass source as confirmed on its zeroth order moment:

18∑
k=0

Fk = 0.

On the other hand, a second order accurate discretisation of the LBGK including the
forcing term is [28]:

fk(x + ĉk∆t, t + ∆t)︸                  ︷︷                  ︸
streaming

= fk(x, t) +
∆t
τ

(
f eq
k (x, t) − fk(x, t)

)
︸                      ︷︷                      ︸

collision

+

(
1 −

∆t
2τ

)
Fk∆t. (3.80)

By defining the source term as

S k =

(
1 −

∆t
2τ

)
Fk, (3.81)

the post collision population suffers the following modification:

f ?k = fk + (Ωk + S k)∆t. (3.82)

Finally, the macroscopic moments are modified

ρ =
∑

k

fk +
∆t
2

∑
k

Fk,

ρu =
∑

k

fkck +
∆t
2

∑
k

Fkck =
∑

k

fkck +
∆t
2

F.
(3.83)

This forcing scheme is used in the rest of this work, because when introducing the two-
phase method, which is one of the goals of this work, this forcing scheme will lead to
viscosity-independent and thus τ-independent, surface tension [28], still other implemen-
tations are also possible [43].

3.5 Benchmark cases

As examples of what has been learned up to here on the three previous sections, I illustrate
the Poiseuille and Couette Flows in 2 dimensions.

In these simulations, as typically done in literature, the dimensionless time step and
lattice spacing are set equal to unity (∆x? = ∆t? = 1) and numerical contributions to
viscosity are accounted for and considered to be part of the physics of the method.
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3.5.1 Couette problem

Considering first the steady laminar¶ flow known as Couette Flow, where an incompressible
fluid is sandwiched between two infinite parallel plates, located at y = 0, y = L, system
simulated by using periodic boundary conditions along the x-axis in the domain x ∈ [0, L]×
y ∈ [0, L]. The bottom plate is held fixed such that u(ux(y = 0), 0) = (0, 0), while the top
plate moves with velocity u(ux(y = L), 0) = (V0, 0). This way, the Navier-Stokes equation
of the system reduces to

ρ
�
�
��7

0
Du
Dt︸︷︷︸

steady and incompressible

=��
�*0

−∇p + η∇2u +��7
0

F,

so that the equation to solve is

∇2u = 0.

Taking the symmetries of the problem, this equation further reduces to

d2ux(y)
dy2 = 0

and considering the boundary conditions, ux(0) = 0 and ux(L) = V0, the velocity profile
solution of the fluid is

ux(y) =
V0

L
y. (3.84)

The system in the simulation is initially at rest reaching the steady state of equation (3.84)
after 200 hours (in physical units) of evolution. A schematic example of the velocity profile
formed by this flow appears in Fig. 3.6.

The goal of this section is to show the resulting velocity field, provided specific initial
and boundary conditions, therefore I will use this space as an example of adimensionali-
sation: given the physical parameters, I will obtain the corresponding conversion factors.
The flow is simulated for the physical parameters:

¶A laminar flow occurs when a fluid flows in parallel layers, with no disruption between the layers, i.e. it
is not turbulent.
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Figure 3.6: Schematic velocity profile of Couette Flow.

Re = 125

ν = 10−6m2/s
L = 1m

ρ = 103kg/m3

V0 = 1.25 × 10−4m/s.

(3.85)

Following subsection 3.2.1 and considering Nx = 100 and τ? = 0.9, the following parame-
ters are obtained:

∆x = 1 m
100 = 1 × 10−2m, (3.86)

∆t = 13.333s, (3.87)
ν? = 0.133 (3.88)

as stated in equation (3.36). On the other hand, using (3.32), the non-dimensional velocity
of the lid is

V?
0 = 0.166, (3.89)

which is needed to use specification of velocity boundary conditions, shown in equations
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Figure 3.7: Snapshots of ux(y) at x = L/2 for Couette Flow. Starting the simulation with
the fluid flow at rest, the velocity profile approaches that of equation (3.84) after 200 hours
of evolution in physical time.

(B.9).
The evolution of the velocity profile of this flow, simulated using the lattice Boltzmann

method described so far and with the code developed with this work, using the aforemen-
tioned characteristics, is illustrated in Fig. 3.7 for different times until the steady state is
reached.

For this simulation, periodic boundary conditions were used on the east and west bound-
aries, equations (B.2) and (B.1) in x = L and x = 0 respectively, bounce back at the bottom,
equations (B.4) at y = 0 and moving lid at the top boundary, equations (B.9) at y = L.

In order to illustrate the convergence of the method, the same flow is simulated but with
other 3 finer meshes, i.e, Nx = 200, Nx = 400 and Nx = 800. This, as previously mentioned,
setting the non-dimensional ratio ν? ∆t?

∆x?2 to a constant value.
Fig. 3.8a shows how the difference between simulations for different resolutions is

actually extremely small, plot that represents the velocity profile of each mesh at the steady
state (250hours) zoomed in.

At this respect, it is important to mention that the simulation for each resolution of the
mesh, approaches a stationary regime at different times imposed numerically by

εui(t) :=

√∑
x (uin(x, t) − uio(x, t))2∑

x uio(x, t)2 ≈ 10−7 (3.90)

with i = x, y (and z in case of 3 dimensions).
Fig. 3.9 shows the value of equation (3.46), as a function of time for 4 different reso-

lutions. All the four simulations were carried out up to t = 250 hours but the same figure
indicates the point at which each simulation reached the steady state, condition (3.90).
Given the resulting velocity profile for each simulation at t = 250 hours, I carried out a
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Figure 3.8: Comparison of Couette Flow for different refinements of the spatial domain.
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meshes used and the time at which each simulations reaches the steady state, defined by
the threshold in equation (3.90).
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Figure 3.10: Time-steps (vertical axis) at which the steady state (equation (3.90)) for Cou-
ette Flow is reached for the same physical system but simulated with different relaxation
times.

study of convergence. Fig. 3.8b lets us appreciate how the finer the mesh, the smaller the
difference between the resulting velocity profile for each different simulation, as expected.

Another important parameter of the LB Method is the relaxation time, Fig. 3.10 illus-
trates the dependence on τ of the time at which the steady state is reached. Here, different
values of the relaxation parameter were used, maintaining Re constant and Nx = 100, so
the physical system that the numerical set up represents is the same in all cases.

3.5.2 Poiseuille

For a second example, let us consider the Poiseuille Flow, a steady, laminar, incompressible
fluid flow, confined between to infinite parallel plates separated a distance L along the y-
axis. The fluid is moving in the x-direction, in this case, due to a constant pressure gradient
in the x-direction, as illustrated on Fig. 3.11. This system has a closed stationary solution
that can be constructed from the stationary Navier-Stokes equation,

ρ
�
�
��7

0
Du
Dt︸︷︷︸

steady and incompressible

= −∇p + η∇2u +��7
0

F.
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Figure 3.11: Schematic velocity profile of Poiseuille Flow.

Assuming the flow only along the x-direction, the system to solve is(
∂p
∂x
0

)
= η

((
∂2

∂x2 + ∂2

∂y2

)
ux (y) .

0

)
and considering no-slip boundary condition between the fluid and the parallel plates,

ux(y = 0) = 0, ux(y = L) = 0

the resulting velocity profile is

ux(y) =
1
2η

dp
dx

y(y − L). (3.91)

The simulation was carried out starting with the fluid at rest and using specification
of pressure boundary conditions, equations (B.7) and (B.8) for east and west boundaries
and bounce back, equations (B.3) and (B.4) for the top and bottom walls, and using the
following physical parameters:
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plot) at various times calculated on a 100 × 100 mesh using τ = 0.9.

Re = 1.25

ν = 10−6m2/s
L = 0.01m

ρ = 103kg/m3

∇p = 0.1 kg
m
s2︸︷︷︸

Units of force

1
m2

1
m

(3.92)

Care must be taken in the code in respect of the value and units of the pressure gradient,
since this simulation is in two dimensions, defining a pressure over a boundary side with
units of length instead a face with units of area is not that straightforward. One must add a
scaling factor representing the extra missing dimension.

The resulting velocity profile is shown on Fig. 3.12 at different times until the steady
state is reached at t = 100sec. I carried out this simulation with Nx = Ny = 100 and τ = 0.9.

For the analysis of the autoconvergence, I ran three other simulations now with Nx =

200, Nx = 400 and Nx = 800 making sure again that the dimensionless ratio ν? ∆t?

∆x?2 was
always constant and, with it, the corresponding Reynolds number.

The plot for the second order autoconvergence can be appreciated on Fig. 3.13 where
the colored lines represent the factors in (3.49) for φ = ux
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Figure 3.13: Autoconvergence analysis for the numerical simulations of the Poiseuille
Flow.

ux100×100 − ux200×200,

(ux200×200 − ux400×400)4,
(ux400×400 − ux800×800)16.

Here, factors 4 and 16 are the corresponding κα from equation (3.49) with α = 2 the
autoconvergence order and κ = 2.

Once again, in the same manner as in Couette Flow, the effects of the relaxation param-
eter and of the lattice resolution on the time at which the steady state is reached, are shown
in Figs. 3.14a and 3.14b.

3.5.3 Lid Driven Cavity

Another problem used as a benchmark test for CFD codes, is the Lid driven cavity. A
square cavity filled with fluid and whose lid is set to motion. Here I present a 0.1m cavity
with a lid moving with velocity 1.55 × 10−2m/s along the x direction, with a Reynolds
number of Re = 1550. The resulting velocity field is shown in Fig. 3.15 and quite well
compares with benchmark solutions, for instance with results of section 5.5 from [44].
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3.5.4 Benchmark cases for the forcing scheme

Using the Guo’s scheme introduced before, with second order integration for the forcing
term, I successfully simulated in 3 dimensions and using the code developed in this work,
the benchmark flow consisting of a constant force

F(x, t) = F0, (3.93)

whose velocity profile results in

u(t) =
F0

ρ
t. (3.94)

Using periodic boundary conditions in all the boundary faces, the simulation starts with
a fluid flow at rest as an initial condition and a randomly directed force defined as F0 =

(0.0035, 0.007, 0.0061). The resulting velocities corresponding to equation (3.94) are shown
in Fig. 3.16. The red dots of the plot indicate the analytic values of equation (3.94) for each
spatial component of the velocity at the final time of the simulation, which corresponds to
t = 80 using non-dimensionalised units. These quantities coincide with the numerical re-
sult from the simulation, verifying then the correct implementation of the forcing term in
the code.

I also validated the code by simulating the unsteady Taylor-Green vortex flow, which is
a solution of the incompressible Navier-Stokes equations. In this system, as in the majority
of the literature that solves this problem in 2D, that is F = (Fx, Fy, 0), the force field applied
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is a function of space and time:

F = −ρ
F2

0

2

(
kx sin(2kxx))êx +

k2
x

ky
sin(2kyy)êy

)
e−2ν(k2

x+k2
y )t, (3.95)

with kx,y = 2π
Nx,y

. The analytic solution for the velocity components, given this force field is:

ux = −u0 cos(kxx) sin(kyy)e−2ν(k2
x+k2

y )t,

uy = −u0
kx

ky
sin(kxx) cos(kyy)e−2ν(k2

x+k2
y )t.

(3.96)

The computational domain in this simulation is [1, 50] × [1, 50] × [1, 50] with u0 = 0.1
and τ = 1.0, the velocity and the relaxation parameter. Once again, all boundaries are
periodic and the initial condition for the simulation is given by equation (3.96) with t = 0.

Fig. 3.17 shows the velocity field of the Taylor-Green vortex flow. It is verified that
it maintains the same structure while decaying exponentially as expected from equation
(3.96).

Once a breakdown of the lattice Boltzmann method for a single phase fluid has been
presented in this chapter, next chapter discusses the theory of the Shan-Chen model, an
extension of the LBM capable of simulating two phase fluids.
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Chapter 4

Shan-Chen Pseudopotential method

A multiphase flow occurs when two or more fluids that differ by their physical proper-
ties and that do not easily mix, share an interface. They can be single component fluid
flows like liquid-water and water-vapor, that can inter-convert (evaporate or condense), or
multicomponet fluid flows such as water and oil were diffusion may happen.

Some important everyday two-phase systems that can be encountered in nature is the
dynamics of clouds, in the industries, recovery of bioproducts [45], purification of biomolecules
[46], the recovery of petroleum, etc.

Lately, and specially for multiphase flows, LBM has become a novel and powerful tool.
There are various LB methods for multiphase/multicomponent systems:

1. Color gradient, 1991.

2. Shan-Chen, 1994.

3. Free Energy, 1994.

4. He-Chen-Zhang, 1999.

to mention a few, among which, in this work I use the Shan-Chen approach. As I will
mention with more detail later, for Shan-Chen method surface tension is an emergent effect.
Effect that is crucial in the study of capillary waves, main goal of this work. Consequently,
one of the questions I look to answer is whether this characteristic of the method turns out
to be an advantage to the study of these waves.

Therefore, before going to the specifics of the method, it is convenient to introduce an
essential property of any two phase fluid flow and a property that will be vital along the
rest of this work. The interface between the two phases and the parameter in charge of
regulating this interaction between the phases, is the surface tension. Energy per unit

area required to form the interface between the two fluid phases∗ [26]. Phenomenon
∗Definition only valid for simple fluids. In general, the energy per unit area for stretching the interface is

given by Ω = σ + dσ/dε with ε the strain, but for simple liquids dσ/dε = 0 [28].

73
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Figure 4.1: Schematic representation of surface tension, showing the excess of energy of a
surface particle in comparison to the energy of an internal one.

that is a function of temperature and, at microscopic level, this tension at the interface is
due to molecular interactions, see Fig. 4.1.

Surface Tension
The key to the physics of multiphase flows is this notion of surface tension,σ: reversible

work per unit area needed to increase the area A of surface Σ by an amount ∆A. Consider
a spherical droplet of one fluid suspended in another fluid, e.g. liquid suspended in a gas,
then (see Fig. 4.2):

∆W =σ∆A
=∆P∆V (work done by a gas)

then ∆P(4πR2∆R) = σ(8πR∆R) and cancelling out the extra terms, the Laplace relation is
obtained:

∆P =
2σ
R
, (4.1)

which relates the curvature of the surface and the surface tension, σ to the pressure jump,
Laplace pressure (Pl − Pg = ∆P), across the interface. This equation is only valid in 3D,
whereas in 2D for a circular droplet this relation is†:

∆P =
σ

R
.

†Where cylindrical coordinates should be used instead of spherical ones and consider a symmetry along
the z-axis. This 2D version is used when studying for example blood flow through arteries or flows in pipes.
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Figure 4.2: Schematic representation of Laplace Relation, where σ is the parameter that
relates the curvature of the surface and ∆P.

Liquid-Gas coexistence
Thermodynamics tells us that an ideal gas equation of state (EoS) cannot represent a

liquid/vapour coexistence. Hence, one important condition when working with a multi-
phase fluid is that, unlike some parameters like viscosity that is a well defined concept
for ideal gases, the mere coexistence of two phases on one fluid, commands a non-ideal
non-monotonic equation of state capable of describing the phase coexistence. Therefore,
given the nature of the system that concerns us, one of the key questions to solve along
this chapter and that will be helpful when constructing the Shan-Chen method is: What is
the condition for the existence of liquid/vapor equilibrium? Physically, the response to this
question represents a constrain to the equation of state.
Let us use van der Waals equation of state for a liquid vapor system to illustrate this argu-
ment,

P =
KT

v − b
−

a
v2 , (4.2)

whose diagram for an isotherm is shown in Fig. 4.3. It is seen that it has a local minimum
and a maximum. Any EoS that displays this property, allows the coexistence of two bulk
fluids as shown also in Fig. 4.3. These P-V diagrams are useful to find the coexisting densi-
ties of the phases (liquid and gas) along with the Maxwell’s construction rule. Analytically
it can be stated as ∫ vl

vg

P(v′,T )dv′ = P0(vg − vl) (4.3)
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Figure 4.3: Isotherm of the van der Waals equation of state, showing that the phase transi-
tion occurs at a pressure P0, allowing two different bulk fluids.

where P0 is the constant pressure at which the coexistence happens. Going back to Fig.
4.3, equation (4.3) means that, for a given temperature T , both shaded areas bounded by
the curve should be identical [2]. In terms of density, equation (4.3) is [28]:∫ ρl

ρg

(
P0 − P(ρ′,T )

) dρ′

ρ′2
(4.4)

where the subscript g stands for the gas and l for the liquid and both densities satisfy
P0 = P(ρg,T ) = P(ρl,T ).

Any model for the equation of state that satisfies equation (4.4) is thermodynamically
consistent.

Numerical Modeling
In order to model the interactions above described, two approaches can be followed in

terms of the interface between the two phases:

• Sharp interface model: Interface is a 2D boundary simulated by a different computa-
tional mesh than the used for the rest of the fluid flow, ergo, the need of an explicit
tracking of the boundary.

• Diffuse interface approach: approach used by the LB community. Implies a hyper-
bolic tangent-like transition of the order parameter (density) between one phase and
the other as illustrated in Fig. 4.4).
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Figure 4.4: Typical density profile in the diffuse interface approach. ρg denotes the gas
density and ρl the liquid density across the spatial domain.

Physically, for substances like water, the interface width is of the order of nanometers but,
numerically, it is required to be of several lattice units for the sake of stability of the method.
Ideally, as I will show later on, Shan-Chen model works in a regime where the simulation
results do not depend on the interface width, that is, within an order of magnitude smaller
than the first important length scale of the system.

A key advantage of this diffuse interface models is that it does not need to be tracked
explicitly. This and the fact that the density variation is smooth, allows the method to incor-
porate the description of surface tension into the equations of motion in the pressure tensor.
The way this pressure tensor depends on the density categorizes into two approaches:

• Top-down approach: Starting from a macroscopic concept one obtains a force that
leads to phase separation. The Free energy method belongs to this kind of approach.

• Bottom-up approach: The postulation of a microscopic interaction, leads to a macro-
scopic separation of phases by redefining the equilibrium velocity distribution in or-
der to simulate a fluid with a nonideal equation of state. However, this approach
leads to inconsistent thermodynamics unless a particular equation of state is chosen.

Shan-Chen model lies in the bottom-up type and is suitable for using a diffuse interface,
since in Shan-Chen surface tension is an emergent effect. One important advantage of
diffuse interface models is that the interface does not need to be tracked explicitly, making
the model convenient for studying problems with nontrivial surface geometries, hence the
decision of tackling the analysis of capillary waves with this model.

4.1 Theory of Shan-Chen method
This method was proposed in two articles in 1993 [47] and in 1994 [48] by Xiaowen Shan
and Hudong Chen, its fundamental feature is the introduction of an interparticle potential,
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which adds an attractive or repulsive tail to the collision term leading to phase separation.
The method replaces the ideal gas equation of state by a non-ideal non-monotonic EoS.
I will show that these conditions are necessary for the thermodynamic phase transition
to occur according to Maxwell’s construction rule. This way evaporation, condensation,
cavitation and diffusion of a single component fluid can be simulated. In the case of multi-
component flows, each component will use its own distribution function.

The basic idea of the model is the incorporation of nonlocal interactions among the
particles through an interparticle potential [47] which is, in fact, encoded on a so called
SC force. The idea behind such a force is the assumption that intermolecular forces act
between pairs of molecules and are additive, also that this interaction is a strong function
of the distance between fluid elements:

FS C(x) =

∫
(x̃ − x)G(x̃, x)Ψ(x)Ψ(x̃)d3x̃

with x̃ , x and G(x̃, x) expressing the pairwise interaction between sites x̃ and x, therefore
carrying information about spatial dependence of the force, and Ψ(x) a kind of effective
free energy of the system [26].

The inter-particle-like interaction proposed by Shan and Chen is:

FSC(x) = −GΨ(x)ΣkwkΨ(x + ĉk∆t)ĉk∆t, (4.5)

which conserves total momentum, though not locally, given that momentum lost in one
phase is gained by the other one‡. This form of the force, encoded as the result of pairwise
molecular interaction, represents a sum of pseudopotential interaction with only the nearest
neighboring fluid cells, taking G(x̃, x) as

G(x̃, x) =

{
wkG for x̃ = x + ĉk∆t

0 otherwise (4.6)

and the constant G controlling the strength of the interaction. Note that positive G means
attraction and negative repulsion.

The big question following the liquid-gas coexistence and the Maxwell’s construction
rule is, which equation of state corresponds to the Shan-Chen method?

4.1.1 Equation of State of the model

The Equation of State of this method needs additional terms making it non-monotonic so
that a phase transition and coexistence of phases is possible. The additional terms are
encoded on the SC force.

Taylor-expanding the pseudopotential Ψ(x + ĉk∆t) around x, substitute it on equation

‡For a prove of this argument I refer to Shan and Chen 1994 [48].
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(4.5) and considering the restrictions imposed to the moments of the weight wi mentioned
in chapter 3, one obtains

FS C
µ (x) = −GΨ(x)Σkwk[Ψ(x) + ∂αΨ(x)ckα∆t +

1
2!
∂α∂βΨ(x)ckαckβ∆t2

+
1
3!
∂α∂β∂γΨ(x)ckαckβckγ∆t3 + O(δ4)]ckµ∆t

= −GΨ(x)[Ψ(x)Σkwkckµ∆t + ∂αΨ(x)Σkwkckαckµ∆t2 +
1
2!
∂α∂βΨ(x)Σkwkckαckβckµ∆t3

+
1
3!
∂α∂β∂γΨ(x)Σkwkckαckβckγckµ∆t4 + O(δ4)]

= −GΨ(x)
(
c2

s∆t2∂αΨ(x) +
1
6

c4
s3∂αγγΨ(x)∆t4

)
δαµ

= −

(
Gc2

s∆t2Ψ(x)∂µΨ(x) +
1
2

c4
sΨ(x)∂µγγΨ(x)∆t4

)
= −

(
1
2

Gc2
s∆t2∂µΨ

2(x) +
1
2

c4
sΨ(x)∂µγγΨ(x)∆t4

)
.

(4.7)

For diffuse interface models as this one, the smoothness of the transition of the density
across the interface permits the incorporation of the surface tension into the fluid equations
of motion in the description of the pressure tensor P. The tensor Pαβ corresponds to force
per unit area in the β-direction on a surface pointing along the α-direction. For an isotropic
fluid, the pressure tensor is Pαβ = pbδαβ and so the treatment of the pressure as a scalar.
Nonetheless, when an interface is involved, the isotropy is broken. Now the pressure tensor
for SC is defined as the excess pressure of the interparticle force with respect to that of the
ideal gas:

∇ · PSC = ∇c2
sρ − FSC, (4.8)

this way, if ∆t = 1 in equation (4.7),

∂αPαµ =∂µ
(
c2

sρ
)

+

(
1
2

Gc2
s∂µΨ

2(x) +
1
2

c4
sΨ(x)∂µγγΨ(x)

)
= ∂µ

(
c2

sρ +
1
2

Gc2
sΨ

2(x)
)

+
1
2

c4
sΨ(x)∂µγγΨ(x)

= ∂µpb(ρ) +
1
2

c4
sΨ(x)∂µγγΨ(x).

(4.9)

Even though the detailed form of the pressure tensor depends on the specific model, inde-
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pendently of the model, this pressure tensor must describe an equation of state that allows
for phase coexistence and accounts for the surface tension. In diffuse interface models, this
surface tension is accounted via a force,

F = κρ∇∆ρ.

Force that leads to

∂αpb − Fα = ∂β

[(
pb −

κ

2
(∂γρ)2 − κρ∂γ∂γρ)

)
δαβ + κ(∂αρ)(∂βρ)

]
:= ∂βPαβ, (4.10)

the pressure tensor Pαβ also contains information about the equation of state and the surface
tension [28]. Comparing equation (4.9) and (4.10), one finally obtains the equation of state
of the multiphase Shan-Chen model:

pb(ρ) = c2
sρ +

1
2

Gc2
sΨ

2(x), (4.11)

with

κ = −G
c4

s

2
, Ψ(x) ∝ ρ. (4.12)

As a remark, it is obvious that for G → 0 the ideal equation of state is recovered, so G is in
charge of controlling the strength of the interaction, generating the conditions necessary for
phase transitions, that is why this parameter is referred to as the temperature like parameter.

Shan and Chen proposed in their original paper, the following pseudopotential function:

Ψ(x) = ρ0

[
1 − exp

(
−
ρ0

ρ(x)

)]
(4.13)

with ρ0 usually equal to unity and Ψ(x) bounded between 0 and ρ0, as seen in Fig. 4.5. This
way FSC remains finite even for large densities, resulting in stable simulations for density
ratios even larger than for the other common form of the pseudopotential,

Ψ(ρ) = ρ.

Furthermore, by taking Ψ like in equation (4.13), the coexistence curve of the LBM
agrees with the thermodynamic theory [48].

Given this form of pseudopotential, equation (4.13), and considering that there is a
stationary inflection point in the constant-G line on a ρ/ρ0 − p diagram,

(
∂p(ρ)
∂ρ

)
G

= 0,(
∂2 p(ρ)
∂ρ2

)
G

= 0,
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ρ� ψ ρ)

Figure 4.5: Pseudopotential proposed by Shan and Chen, bounded between 0 and ρ0.

with critical values of

ρcrit

ρ0
= ln 2

G =
−4
ρ0

(4.14)

and with the common choice of ρ0 = 1, phase separation occurs only for G < −4 as I will
show in the next sections.

As final comments to this section, as every computational method, Shan-Chen model
has its own limitations:

• Limited to low density ratios: bigger ones will lead to numerical instability since the
forcing scheme will generate bigger velocities than those it can support.

• Surface tension cannot be specified independently of the density ratio.

• Depending on the potential chosen there is a possible lack of thermodynamic consis-
tency.

And some main fields of applications, but not restricted to them:

• Dynamics of bubbles.

• Suspension of solid particles in liquid and/or vapor phases.

4.2 Basic test
All the simulations henceforth presented are carried out using a three dimensional code and
presented in lattice units.



82 Chapter 4. Shan-Chen Pseudopotential method

Figure 4.6: Maximum and minimum density values, equivalent to liquid and gas phases
respectively as a function of G. The bifurcation of the system represents phase separation
from an homogeneous critical density ρcrit = ln 2, into two phases at Gcrit = −4. This result
should be compared with Figure 9.9 in [28] and Figure 1 in [47].

4.2.1 Phase transition

The liquid-gas phase transition is shown to occur for a properly chosen interparticle po-
tential, in our case equation (4.13), and a temperature-like parameter below the critical
value.

The simulations reported here are constructed on a 50 × 50 × 1 lattice with periodic
boundary conditions in all faces of the domain. Initially, the density distribution is homo-
geneous plus a small random fluctuation (ρ = ρcrit ± δρ = ln 2± 0.001), with ρ0 from (4.14)
equal to unity. Fig. 4.6 shows the maximum and the minimum densities in the final steady
state of this simulations as function of the temperature-like parameter G. The figure shows
how, as G goes below the critical value, the system transits from a single phase fluid to a
two phase fluid. Whereas Fig. 4.7 displays the time evolution of the density for the case
with G = −6.0.

Hence, the separation of two phases and with it, the emergent effect of surface tension.

4.2.2 Liquid droplet in a gas phase

The surface tension defined as the mismatch between the normal and transversal compo-
nents of the pressure tensor, integrated across the interface in its normal direction

σ =

∫ ∞

−∞

(Pn − Pt)dn̂ (4.15)
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(b) t = 300.
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(c) t = 1500.
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(d) t = 18000.

Figure 4.7: Phase transition in a 50 × 50 × 1 lattice. Shown is the time evolution of the
density at t = 0 with ρcrit ± 0.001, t = 300, t = 1500 and its final steady state at t = 18000.
Color black indicates a gas phase and yellow a liquid phase.
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Figure 4.8: Steady state of a liquid droplet in a gas sea with ρl/ρg = 8.741732, R = 13.9972,
∆p = 2.98 × 10−3 and σ = 2.0856 × 10−2 and its hyperbolic tangent-like density profile.

is not always straightforward to compute in simulations. However, it is possible to compute
surface tension by exploiting the Laplace relation in equation (4.1), using the so called
Laplace test or bubble test. For a three dimensional bubble at rest of one fluid phase, say
liquid, immersed in a sea of the other fluid phase, say gas, Laplace law states:

Pl − Pg =
2σ
R
,

where σ is the surface tension and R the radius of the droplet as illustrated in Fig. 4.2.
For the test I use a 64 × 64 × 64 lattice, initialized a bubble of density ρl = 2.1 and

R = 15 in a sea with density ρg = 0.15 with a sharp interface and G = −4.7. When
the system reaches equilibrium, a spherical bubble with a diffuse hyperbolic tangent-like
interface forms, shown in Fig. 4.8,

ρ(x) =
ρl − ρg

2
tanh

(
x − x0

2ξ

)
+
ρl + ρg

2
. (4.16)

At its steady state, ρl/ρg = 8.741732, R = 13.9972, δp = 2.98×10−3 andσ = 2.0856×10−2.
The density profile of this droplet is shown in Fig. 4.8 with the best fit parameters of the
interface profile of equation (4.16).

A number of tests with different bubble radii were ran for a fixed G to show that
δp vs. 1/R is linear, with 2σ being the slope of the curve, as shown in Fig. 4.9. While
maintaining the spherical shape of the droplet, these simulations also prove the isotropy of
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Figure 4.9: Results of the Young-Laplace test for a liquid droplet in a gas phase. The
relation is linear, with the slope of the curve being twice the surface tension, 2σ, i.e. the
linear fit is 2σ 1

R + ∆p0 = 2(0.0203) 1
R + 7.73007 × 10−5 for G = −4.7, with the small

correction of 7.73007 × 10−5 due to numerical errors.

the surface tension.
In these simulations, a zero fluid velocity is expected everywhere. However, numerical

simulations often present microcurrents or parasitic currents near the droplet interface due
to the truncated nature of the numerical method as the next section presents, i.e. truncation
errors arising from the SC Force.

4.2.3 Spurious currents
The presence of spurious currents is an unphysical and undesirable effect, hence if its mag-
nitude is large, the results are inaccurate and can lead to numerical instability. They arise
from the numerical approximation of the surface tension force in equation (4.7), specially
when this approximation is not perfectly isotropic.

Continuing Taylor expansion to higher orders in equation (4.7), Shan-Chen force in
D3Q19 is a combination of dominating isotropic contributions and an isotropic error term
(see Appendix C for details)

Faniso ∝ GΨ(x)(êx∂
5
x + êy∂

5
y + êz∂

5
z )Ψ(x), (4.17)

that gives rise to spurious currents increasing proportionally with G. This dependence
of the magnitude of the spurious currents on the temperature like parameter, is shown in
Fig. 4.10 where I represent the velocity field resulting out of this phenomenon, here as |G|
increases, the emerging spurious currents increase as well.
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magnified by a factor of 50.

Figure 4.10: Velocity field representing spurious currents of the liquid droplet in a gas
phase at equilibrium.

4.2.4 Galilean invariance test: Liquid droplet with a constant velocity
Now I simulate a liquid droplet immerse in a gas phase with a constant velocity vy =

0.025∆y/∆t. As expected, the fact that the droplet maintains its spherical shape through
the evolution of the system, once again proves the isotropy of the model, at least at a good
order of approximation.

Up to this point, I have discussed all basic theory and benchmark tests necessary to
understand and implement a code capable of simulating a two phase fluid in 3 dimensions.
Next in this work is the analysis of capillary waves, a characteristic phenomenon of any
two phase fluid.
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(c) t = 3, 540.

Figure 4.11: Liquid drop immerse in a gas phase with constant velocity proving, by main-
taining its spherical shape, the galilean invariance of the model .





Chapter 5

Simulation of small amplitude capillary
waves in confined geometries

5.1 Physical problem

Waves at fluid interfaces in two phase flows are ubiquitous across a wide range of scales.
From tidal waves with a wavelength of λ ≈ 107m and tsunamis with λ > 105m, to interfa-
cial waves with long wavelengths such as gravity waves where the force of gravity tries to
restore equilibrium and those with small wavelengths called capillary waves, whose domi-
nant restoring mechanisms are surface tension and viscosity of the fluid. Fig. 5.1 shows a
schematic description of these waves. Its characteristic wavelength is [49]

λc =

√
σ

ρg
.

For λ � λc one has the case of capillary waves, on the contrary, for λ � λc, the case of
gravity waves and when λ ≈ λc, gravity-capillary waves. In nature, the wavelength of a
capillary wave on water is typically less than a few centimeters, in addition, their amplitude
is much smaller than their wavelength A � λ. For these short wavelengths, λ � λc, gravity
forces can be ignored from the analysis [27].

Capillary waves take part in many physical phenomena, natural processes and engineer-
ing applications [49]. They play an important role in Rayleigh-Plateau instability [50], the
atomization of liquid jets [51], they are observed at the front of short gravity waves [52],
etc. They are also a central interest in cell biology [53] [54] [55], influencing properties of
lipid membranes, micelles and vesicles, and naturally in microfluidics, specially for appli-
cations such as surface wave acoustics [56], microstreaming [57] and ultrasound cavitation
[58].

In this chapter and as the main goal of this work, I focus the rest of the analysis on the
temporal behaviour of the amplitude of stationary capillary waves and the effect of confined

89
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Figure 5.1: Schematic representation of interfacial capillary waves with A � λ. For these
waves, the dominant restoring mechanisms are surface tension and viscosity of the fluid.

geometries and different values of surface tension have in it.

5.2 Numerical setup
For this purpose, I exploit some of the advantages of the lattice Boltzmann method and
the Shan-Chen implementation, namely, a single numerical parameter τ representing the
viscosity η of the fluid, via equation (2.40) as well as the temperature like parameter G,
which is directly related to the surface tension of the system σ, as seen in the Young-
Laplace test and Fig. 4.9. These two parameters, τ and G represent, in the code and in
the method, the two main restoring forces of the dynamics of a stationary capillary wave.
Another possible asset of this method for the study of capillary waves that I will analyze in
the work, is the fact of the Shan-Chen approach being a bottom-up diffuse interface model,
meaning that surface tension is an emergent effect, and that the interface does not need to
be tracked explicitly, this makes it suitable for the study of systems with intricate interfacial
geometries. Finally, for the simulation of confining geometries, I will also use two different
kinds of boundary conditions: Bounce-back boundaries in the top and bottom sides of the
domain, representing the effect of walls, and periodic boundary conditions in the rest of the
spatial domain, particularly, I will reduce the 3 dimensional domain to a 2 dimensional one
by using a slab symmetry along the x-axis such that the computational lattice, hence the
volume to analyze, will be defined as [1, 1] × [1, λ] × [1, L], as illustrated in Fig. 5.2.

For the initial setup of the system, following experimental methods [59], the wave is
generated as follows: a fluid interface originally in thermodynamic equilibrium is excited
by pressure fluctuations generated locally at the interface, equation (4.11) translates these
pressure fluctuations into density fluctuations which will generate a stationary wave of
initial amplitude A0 and constant wavelength of λ. In most simulations presented in this
work, this density fluctuation will be considered at t = 0 with A0 = 3 lu and λ = 160 lu, as



5.2. Numerical setup 91

Figure 5.2: Initial configuration of a stationary capillary wave in confined geometries with
a spatial domain of [1, 1] × [1, λ] × [1, L] and amplitude A.

illustrated in Fig. 5.2. Numerically, the thermodynamic equilibrium means that the system
has reached ρl and ρg dictated by equation (4.11) and a diffuse density profile that can be
adjusted by the profile

ρ(z) =
ρl − ρg

2
tanh

(
z − z0

2ξ

)
+
ρl + ρg

2
, (5.1)

with z0 the location of the interface which, from now on and, as notation in Fig. 5.2 sug-
gests, will be referred to as zint. Once thermodynamic equilibrium is reached in the simula-
tion, the density fluctuation is defined as a sine function

zw(y) = z0 + A0 sin
(
2π y
λ

)
, (5.2)

that will generate the density profile corresponding to a capillary wave like the one illus-
trated in Fig. 5.2:

ρ(y, z) =
ρl − ρg

2
tanh

(
z − zw(y)

2ξ

)
+
ρl + ρg

2
. (5.3)

Note that, for equation (5.2), the maximum amplitude of the wave occurs when y = λ/4
since zw(y = λ/4) = z0 + A0, hence to analyze the temporal evolution of the amplitude
A(t) given this initial setup, a detector that measures the position of the interface with time,
is located at ydet = λ/4. For this interface tracking analysis, based on the density profile
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Figure 5.3: Density profile of a stationary capillary wave with initial density profile defined
by equation (5.3), with G = −5.3, τ = 1.0, L = 200 lu, zint = 100 lu, A0 = 3 lu and
λ = 160 lu. Only the region of interest of the z-axis is shown in the figure. Color green
represents the density of the gas ρg = 0.07823 and blue that of the liquid ρl = 2.107.
The different figures represent snapshots of the evolution of the system in time. The wave
damps out gradually until the interface reaches a flat profile as the one defined in equation
(5.1).

defined in equation (5.3), the location of the interface zdet will be defined as the position
along the z-direction in ydet where zdet =

ρl+ρg

2 , where a second order interpolation was used
to establish its value.

When considering the effects of the geometry into the evolution of confined waves, the
parameters to vary, from Fig. 5.2, are: zint and L which will translate into a variation of Lg

and Ll. I will also consider the effects of varying the value of surface tension σ determined
by different values of the temperature like parameter, G = −5.1,−5.3,−5.5. To reduce the
cases of study, all simulations will have a fixed value of τ = 1.0, hence I will only analyze
effects of different temperature like parameters and different geometries into the temporal
evolution of the system for a single viscosity parameter.

First, I will develop the particular case of G = −5.3, and L = 200 lu, I will analyze
the dynamics of the system given zint = 100 lu. These values of G and τ result into values
for the densities at equilibrium of ρl = 2.107 and ρg = 0.07823. The initial configuration
for a system with these characteristics is illustrated in Fig. 5.3 at t = 0 together with its
evolution in time until t = 150000.
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Figure 5.4: Dynamics of the amplitude of the wave for a spatial domain of [1, 160] ×
[1, 200], with G = −5.3, periodic boundary conditions along the horizontal domain and
bounce-back in top and bottom boundaries.

Fig. 5.4 shows values of the interface position. It represents the temporal evolution of
the position of the amplitude. This figure also shows an important condition that the method
needs to fulfill at all times, that is, conservation of total mass of the system. This condition
will no longer be mentioned in next results, nonetheless, it is fulfilled by all simulations.

Once a general overview to the initial setup of simulations for this section is presented
and before going for an analysis of the influence different geometries have in the dynam-
ics of a stationary capillary wave, it is important to mention how the conditions of initial
thermodynamic equilibrium were constructed in numerical simulations for this work. Us-
ing previous results for ρl and ρg obtained from the analysis made for phase transitions in
chapter 4, and given different values of the temperature like parameter, the spatial domain
described in the previous example [1, 160]×[1, 200], was initialized with a diffuse interface
density profile as the one described in equation (5.1). Note that this equation already repre-
sents a flat interface. Next, I analyzed the changes of location of the interface in time, which
is already supposed to be in equilibrium, nonetheless, as Fig. 5.5 indicates, the interface
suffers some small amplitude and high frequency oscillations even though I have not added
any density fluctuations. These particular oscillations, whose frequency was measured with
a Fourier transform of the amplitude signal presented in same Fig. 5.5, will be ignored in
the rest of the results presented in this work, since they result to be a phenomenon of the
initial setup of the system and not the capillary wave per se. These peculiar oscillations
will have higher frequency and amplitude for smaller values of G which represent a larger
surface tension, but are still insignificant to the dynamics that is of interest to this work.
Another peculiarity that this initial setup will present, is a small shift of the original posi-
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Figure 5.5: Interface position for a system at initial equilibrium with no wave, illustrating
the temporal evolution of the system for different values of G and with initial density profile
defined by equation (5.1), with τ = 1.0, L = 200 lu and zint = 100 lu as well as the Fourier
transform of the signal.

G ρl ρg

−5.1 1.964 0.1035
−5.3 2.107 0.07823
−5.5 2.242 0.05625

Table 5.1: Different study cases for the temperature like parameter G and its densities at
phase equilibrium ρl and ρg.

tion of the interface zint. This shift is, at most, less than half of a lattice unit and is due to
a small condensation or evaporation of the fluid. Effect that will also be ignored in results
since mass is still conserved and will not affect the evolution of the wave considering it
manifests itself even when the system is initialized without a wave.

5.3 Results and analysis
In this final section, I will analyze some representative cases of the study of capillary waves
in confined geometries. The selected cases are described in Table 5.1 for the values of the
temperature like parameter G and its respective densities ρl and ρg, and in Table 5.2 for the
different geometries defined by the variation of either L, zint or both.

I will first analyze, for G = −5.3, the three cases for fixed L defined in Table 5.2. Results
for the evolution of the amplitude are shown in Fig. 5.6 for L = 200 lu, considering for each
case zint as the origin of the z-axis. From the plot, a recognizable difference in the oscillatory
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Case 1 Case 2 Case 3Different Geometries
L zint L zint L zint

Fixed L 200 lu 150 lu 200 lu 50 lu
Height 100 lu 100 lu
Depth

200 lu 100 lu
300 lu

200 lu
400 lu

300 lu

Table 5.2: Different study cases defined by different geometries of the spatial domain.
Parameters L and zint represent the total depth of the domain (Ll + Lg) and the location of
the interface respectively, both in lattice units (lu).
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Figure 5.6: Dynamics of the amplitude of the wave for a spatial domain of [1, 160] ×
[1, 200], with G = −5.3, A0 = 3.0 lu, periodic boundary conditions along the horizon-
tal domain and bounce-back in top and bottom boundaries and different positions of the
interface: zint = 100 lu, 150 lu and 50 lu.

behaviour of the system is noticeable. It seems like if the closer the top boundary is from
the position of the wave (case 2), the more oscillations the system presents as if this region
defined an underdamped regime for the system. Whereas the farther the wave is from the
top wall of the system (case 3), the fewer oscillations it presents, as an overdamped regime
would.

Fig. 5.7 shows results for 3 different cases of height defined in Table 5.2. These different
simulations are used to analyze the influence of Lg = L − zint in the oscillatory behavior of
the wave and confirm the effect the top boundary has over the evolution of it. Considering
that the blue squares, which plot the most overdamped curve of the three, correspond to the
geometrical configuration with the furthest-away top boundary, it is possible to conclude
that, at least for G = −5.3, the distance of the top boundary, which represents the ceiling of
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Figure 5.7: Dynamics of the amplitude of the wave for different spatial domains defined
in cases 1, 2 and 3 for Height geometries in Table 5.2. With [1, 160] × [1, L] defining
the spatial domain and with G = −5.3, A0 = 3.0 lu, periodic boundary conditions along
the horizontal domain and bounce-back in top and bottom boundaries and same position
z = 100 lu for the interface. This plot shows the influence of Lg = L − zint (From Fig. 5.2)
over the oscillatory behaviour of the wave.

the system, over the position of the capillary wave, damps the oscillatory behaviour of the
interface.

On the same note, Fig. 5.8 shows how, depending on the distance between the top
boundary and the interface position, the frequency of the damping of the wave suffers a
soft linear increase in its value. Hence, not only does Lg modifies the overall behaviour of
the system but also its initial response to the surface tension and fluid viscosity as two of
the main forces that govern the system.

To verify whether the same result was also valid for the depth Ll of the system, three
cases labeled as Depth in Table 5.2 were analyzed.

Fig. 5.9 shows there is a threshold for Ll for which the closer the wave is to the bottom
of the system, the more damped its evolution is. Hence the distance of this boundary to the
relative position of the interface Ll has the opposite effect over the evolution of the interface
than that of Lg. As expected, based on this result, same thing happens for the frequency of
oscillations, instead of linearly increasing, they decrease, see linear fit in Fig. 5.8.

The later results were for G = −5.3, but surprisingly the dynamics is not similar for
other values of G. Same three cases for Height and Depth geometries were simulated
and results show that Lg and Ll when G = −5.1 and G = −5.5, do not interfere over
the overdamped (all geometries for G=-5.1) or underdamped (all geometries for G=-5.5)
regime of the system. Whereas they do have an effect on the representative frequencies
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Figure 5.10: Fourier transform of the amplitudes of wave simulated using Depth geometries
of Table 5.2. With [1, 160] × [1, L], G = −5.5, A0 = 3.0 lu, periodic boundary conditions
along the horizontal domain and bounce-back in top and bottom boundaries and different
positions of the interface zint.

of the motion. Fig. 5.10 presents the Fourier transform of the amplitudes A(t) for cases
corresponding to different depths of the system when G = −5.5. Each case shows two
different frequencies for each value of Lg when the depth of the system is modified. First
value, which approximately coincides regardless of the geometry, corresponds to the initial
damping of the system, same as the one observed when G = −5.3. The other frequencies
observed in this plot, the ones that do not coincide for any G, correspond to the remaining
oscillation of the system that takes place due to the high value of surface tension that G =

−5.5 represents. On this note, it is also verified that even when the value of the G parameter
determines two damping regimes, it does not determine the values of the frequency of the
damping which is rather influenced by the different values of zint and L.

Finally, Tables 5.3 and 5.4 summarize all main results presented in this chapter. In
Table 5.3 I show frequencies for all cases when G = −5.3. If case 1, whose parameters
of L and zint are the same for all 3 geometries: Fixed L, Height or Depth, is considered as
the standard case, since it has the property of Lg = Ll = 100 lu, notice that its frequency
is ω = 0.000133 = ω0, value by which the rest of the frequencies are normalised in both
tables. Parting from this value, Table 5.3 shows the influence of Lg over the frequency:
all boxes in the darker grey have a higher frequency than ω0, but also larger values of Lg

than 100 lu, hence, as concluded before, the further the top boundary is from the interface,
the bigger its damping effect over the wave. On the contrary, all boxes in the lighter grey
have smaller values of the frequency than ω0 and at the same time, larger values of Ll than
100 lu. Therefore, Ll decreases the value of the frequency when it increases by damping
the behaviour of the system the closer it is.
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G = −5.3
Case 1 Case 2 Case 3

Fixed L 0.902255 1.097744
Height 1.052631 1.097744
Depth

1.00
0.947368 0.902255

Table 5.3: Frequencies of the damping for all cases when G = −5.3. Note that all values
are normalised by ω0 = 0.000133, which is the value of the frequency for the case shown
in Fig. 5.4, with G = −5.3, L = 200 lu and zint = 100 lu. Darker grey shows the influence
of Lg over the frequency: the further the top boundary is from the interface, the bigger its
damping effect over the wave. Lighter grey shows the effect of Ll. This parameter decreases
the value of the frequency when it increases by damping the behaviour of the system the
closer it is.

L = 200 lu, zint = 100 lu L = 400 lu, zint = 100 lu L = 400 lu, zint = 300 lu
G = −5.1 1.00 0.947368 1.052631
G = −5.3 1.00 1.097744 0.902255
G = −5.5 1.097744 1.097744 1.150375

Table 5.4: Influence of G over the dynamics of the system. The numerical values represent
the frequencies of the damping normalised by ω0 = 0.000133.
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Table 5.4 presents the influence of G over the dynamics of the system. Nonetheless its
influence is not as straightforward as that of the geometry. From the tables it looks like this
parameter only defines a threshold over which the system is either overdamped (G = −5.1)
or underdamped (G = −5.5) without a soft transition between the two regimes. As future
analysis, the study of more cases of G may reveal a more clear influence of this parameter
over the system, since, at the end of the day, it defines the surface tension of the fluid.

Up to now, this chapter has been mostly descriptive. The next and final section will
present a discussion from the physical point of view of the previous results.

5.4 Discussion and future work
An interfacial wave such as a capillary wave, is affected by restoring forces during the
evolution toward the equilibrium, forces that will generate recirculation of the fluid above
and bellow the interface as shown in Fig. 5.11.

The resulting flow patterns eventually reach the nearby walls and bounce back towards
the interface with which it interferes. The closer the walls, the more the recirculation will
be perturbed and the stronger the waves will be affected by the geometry of the domain.
The velocity of recirculation will depend upon the viscosity and density of the fluid. For
the case of interfacial capillary waves, even when the fluid in both sides of the wave is the
same, density is not and, with it, neither is the dynamic viscosity. Therefore the surrounding
walls of the system will have different effects depending on the fluid with which they are in
contact. This explains why top wall which is surrounded by gas has a different impact over
the evolution of the wave than that of the bottom wall in contact with liquid. This argument
is shown in Fig. 5.12, that shows the vorticity of the system ∇× v, for different times when
G = −5.3, L = 200 and zint = 100. In this figure it is clear how after t ∼ 400 the effect
of the top boundary is reflected towards the interface such that at t the effects have already
reached the interface intervening in the dynamics of the wave. This is the reason why the
frequency of the damping ω, depends on the system.

The previous discussion of the results, encourages to pose more questions that will be
tackled in further analysis, including a quantitative description of the effects of boundaries
on the flow patterns interfering with the interface.

In the meanwhile, in next an final chapter, I will review the work presented in this
dissertation with some conclusions and an outlook of the research.
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Figure 5.11: Vector field of the system scaled by a factor of 5× 105 for different times with
G = −5.3, τ = 1.0, L = 200 lu, zint = 100 lu, A0 = 3 lu and λ = 160 lu. The different plots
show the evolution of the redistribution of the flow patterns.



102 Chapter 5. Simulation of small amplitude capillary waves in confined geometries

 0  20  40  60  80  100  120  140  160

y

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

z

−0.001 −0.0005  0  0.0005  0.001  0.0015  0.002

(a) t = 0

 0  20  40  60  80  100  120  140  160

y

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

z

−0.001 −0.0005  0  0.0005  0.001  0.0015  0.002

(b) t = 100

 0  20  40  60  80  100  120  140  160

y

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

z

−0.001 −0.0005  0  0.0005  0.001  0.0015  0.002

(c) t = 200

 0  20  40  60  80  100  120  140  160

y

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

z

−0.001 −0.0005  0  0.0005  0.001  0.0015  0.002

(d) t = 300

 0  20  40  60  80  100  120  140  160

y

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

z

−0.001 −0.0005  0  0.0005  0.001  0.0015  0.002

(e) t = 400

 0  20  40  60  80  100  120  140  160

y

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

z

−0.001 −0.0005  0  0.0005  0.001  0.0015  0.002

(f) t = 4000

Figure 5.12: Vorticity ∇ × v of the system for different times with G = −5.3, τ = 1.0,
L = 200 lu, zint = 100 lu, A0 = 3 lu and λ = 160 lu. The different plots show the evolution
of the resulting flow patterns which eventually reach the top wall at t ∼ 200 and bounce
back towards the interface with which it interferes at t ∼ 400.



Chapter 6

Conclusions

In this work I presented a totally functional code in FORTRAN 90 implemented from
scratch and without the use of any library or packages. The code is a lattice Boltzmann
method implementation extended with a Shan-Chen approach making it capable of simu-
lating in 3 dimensions, a two phase fluid throughout a considerable range of density ratios.
Along the work, I presented all basic benchmark tests that ensure the correct implementa-
tion of this numerical method and discussed important topics to the implementation of it
such as the non-dimesionalization of the code, boundary conditions and the introduction of
a forcing scheme crucial to the Shan-Chen model.

I also included an explicit mathematical derivation of the main equation used within
this model, the lattice Boltzmann equation, and how it is linked to the macroscopic anal-
ysis of a fluid by introducing the Chapman Enskog analysis, in charge of recovering the
hydrodynamics of the system parting from the kinetic approach that the Lattice Boltmann
Method uses.

In the last chapter, I included the main results of this work, where I analyzed the tempo-
ral evolution of the amplitude of a stationary capillary wave in confined geometries. Prior
to this dissertation, up to the best of my knowledge, there are no studies that analyze the
dynamics of standing capillary waves under this conditions, not even with other numerical
methods or experimentally. Studies that could have useful application mainly to under-
stand properties of multiphase fluids since, for example, the analysis of capillary waves
can reveal information such as surface tension or viscosity of fluids when not known.

All the analysis here presented, leads me to conclude that, even with the limitations
that the Shan-Chen approach presents, regarding, for example, a relatively short range of
density ratios in comparison to other methods, its advantages are more relevant to the study
of this particular system: the surface tension being an emergent effect, as well as the co-
existence of two phases added to the fact that there is no need of the inclusion of another
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numerical or analytic tools in charge of tracking the interface between the two phases, these
advantages allow more freedom to the evolution of intricate interfacial geometries, which
is crucial in the analysis of capillary waves, as interfacial perturbations of the pressure that
they are.

Regarding the influence the geometry has over the evolution of the system, the analysis
is still young and much work is needed ahead. Nonetheless, the results that I present
are a clear indicator that different geometries influence in different ways the dynamics of
standing capillary waves. Hence not only the study of the influence of the bottom wall is
important in the analysis of these systems, concluding that previous results about waves in
shallow waters do not apply to the analysis of this work.

The previous conclusion and results from last chapter, also leads me to stand out the
lack of experimental results and theoretical analysis towards the study of capillary waves
in confined geometries. Experimental results in this topic could have been a solid basis
of comparison of our numerical results, in the mean time, all that there is as validation of
these results are the benchmark cases that were used also to test the validity of the code
here presented.

Finally, as an important remark, there is possibility for further analysis regarding this
topic: a bigger range of values for surface tension, the inclusion of viscosity as a free
parameter or the analysis of a broader range of geometries, for example, waves that no
longer have a symmetry along the third dimension or that are confined in another direction
such as a rectangular pipe.



Appendix A

Method of Characteristics

In this appendix, the full mathematical procedure used to discretise in space and time the
Boltzmann equation will be described . Taking equation (3.20) as the starting point

∂ fk(x, t)
∂t

+ ĉk · ∇ fk(x, t) = −
fk(x, t) − f eq

k (x, t)
τ

, (A.1)

which is a first order hyperbolic partial differential equation and using the method of char-
acteristics, the existence of a parameter χ that parametrises a trajectory along which this
PDE becomes an ordinary differential equation (ODE) will be assumed.

The new system to solve in terms of this parameter χ, is

d fk

dχ
=
∂ fk

∂t
dt
dχ

+
∂ fk

∂xα

dxα
dχ

= −
fk − f eq

k

τ
(A.2)

along the trajectories
t(χ) = χ + t0, x(χ) = ĉkχ + x0

such that
dt
dχ

= 1,
dxα
dχ

= ĉkα

with initial conditions t(0) = t0 and x(0) = x0, recovering then equation (A.2). Rewriting
equation (A.2) now in the form of an ODE,

d fk(χ)
dχ

+
1
τ

fk(χ) =
1
τ

f eq
k (χ)
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and multiplying both sides by e
χ
τ ,

e
χ
τ
d fk(χ)

dχ
+

e
χ
τ

τ
fk(χ)︸                   ︷︷                   ︸

d
dt (e

χ
τ fk(χ))

=
e
χ
τ

τ
f eq
k (χ)

a total differential is obtained,

d
dt

(e
χ
τ fk(χ)) =

e
χ
τ

τ
f eq
k (χ) (A.3)

which can be integrated over one time step of size ∆t. For the left-hand side:∫ χ0+∆t

χ0

d(e
χ′

τ fk(χ′)) = e
χ′

τ fk(χ′)|χ0+∆t
χ0

= e
χ0+∆t
τ fk(x0 + ĉk(χ0 + ∆t), t0 + χ0 + ∆t) − e

χ0
τ fk(x0 + ĉkχ0, t0 + χ0).

Choosing integration constants arbitrarily as χ0 = 0 and x = x0, t = t0, the result is∫ χ0+∆t

χ0

d(e
χ′

τ fk(χ′)) = e
∆t
τ fk(x + ĉk∆t, t + ∆t) − fk(x, t),

whereas for the right hand side:∫ χ0+∆t

χ0

1
τ

f eq
k (χ′)dχ′ =

1
τ

∫ t+∆t

t
f eq
k (x − ĉk(t′ − t), t′)e

t′−t
τ dt′.

Matching right and left hand sides

e
∆t
τ fk(x + ĉk∆t, t + ∆t) − fk(x, t) =

1
τ

∫ t+∆t

t
f eq
k (x − ĉk(t′ − t), t′)e

t′−t
τ dt′,

finally results in the integral-form solution of the Lattice BGK equation:

fk(x + ĉk∆t, t + ∆t) =
e−

∆t
τ

τ

∫ t+∆t

t
f eq
k (x − ĉk(t′ − t), t′)e

t′−t
τ dt′ + e−

∆t
τ fk(x, t). (A.4)

In order to discretise this integral solution, ∆t is assumed small and f eq
k locally smooth,

hence, after using the forward Euler approximation∫ t+∆t

t
f eq
k (x − ĉk(t′ − t), t′)e

t′−t
τ dt′ = f eq

k (x, t)∆t, (A.5)
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results into an equation that, when using a Taylor expansion of the exponential, reads

fk(x + ĉk∆t, t + ∆t) = e−
∆t
τ︸︷︷︸

1− ∆t
τ +O(∆t2)

1
τ

f eq
k (x, t)∆t + e−

∆t
τ︸︷︷︸

1− ∆t
τ +O(∆t2)

fk(x, t)

=

(
1 −

∆t
τ

+ O(∆t2)
)

1
τ

f eq
k (x, t)∆t +

(
1 −

∆t
τ

+ O(∆t2)
)

fk(x, t)

=

(
∆t
τ
−

∆t2

τ2 + O(∆t3)
)

f eq
k (x, t) +

(
1 −

∆t
τ

+ O(∆t2)
)

fk(x, t),

notice that ĉk∆t = ∆x with ∆x along the k-direction. Keeping only terms up to first order in
∆t, last equation reduces to

fk(x + ĉk∆t, t + ∆t) = fk(x, t) −
∆t
τ

fk(x, t) +
∆t
τ

f eq
k (x, t) + O(∆t2).

After comparing this equation with equation (3.1), the Lattice Bhatnagar Gross Krook
equation discretised in velocity space, physical space and time is obtained:

fk(x + ĉk∆t, t + ∆t)︸                  ︷︷                  ︸
streaming

= fk(x, t) +
∆t
τ

(
f eq
k (x, t) − fk(x, t)

)
,︸                        ︷︷                        ︸

collision

(A.6)

a special case of the Lattice Boltzmann equation that uses the BGK collision operator.





Appendix B

Boundary Conditions in 2 Dimensions

This appendix includes all boundary conditions in 2D used in this work. In this case, the
spatial domain has 4 boundaries and not 6 as in 3D:

1. North face: all boundary nodes where y = ymax with its associated distribution func-
tions as f north

k .

2. South face: nodes where y = ymin with f south
k .

3. East face: boundary nodes where x = xmax with f east
k .

4. West face: x = xmin with f west
k .

B.1 Periodic Boundary Conditions in 2D.

Like in 3 dimensions, periodic boundary conditions are the easiest case. May be suitable
for periodic or to simulate infinite domains.

Periodic East and West Boundary Conditions.
The schematic diagram of this boundary lattice sites is given in Fig. B.1. At the west

boundary, the inlet particle distributions for a 2D problem f1, f5 and f8 are unknown af-
ter the streaming operation, their values are obtained from the respective outlet particle
distribution function from the east, that is:

f west
1 = f east

1

f west
5 = f east

5

f west
8 = f east

8

(B.1)
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Figure B.1: Illustration of east and west periodic boundary conditions in 2 dimensions for
the LBM D2Q9.

On the other side, at the east boundary, f3, f6 and f7 are unknown and obtained from the
respective outlet particle distribution from the west side:

f east
3 = f west

3

f east
6 = f west

6

f east
7 = f west

7

(B.2)

For the northern and southern boundaries, the relations are obtained in an analog man-
ner.

B.2 Bounce-Back Boundary Conditions in 2D

Once again, the construction is similar as for the 3D case, notation is also similar with xB
the boundary node and simplifying notation with fk(t + ∆t) = fk(xB, t + ∆t).

North:

f north
7 (t + ∆t) = f ?5

north(t)

f north
4 (t + ∆t) = f ?2

north(t)

f north
8 (t + ∆t) = f ?6

north(t)

(B.3)
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South:

f south
5 (t + ∆t) = f ?7

south(t)

f south
2 (t + ∆t) = f ?4

south(t)

f south
6 (t + ∆t) = f ?8

south(t)

(B.4)

East:

f east
6 (t + ∆t) = f ?8

east(t)

f east
3 (t + ∆t) = f ?1

east(t)

f east
7 (t + ∆t) = f ?5

east(t)

(B.5)

West:

f west
5 (t + ∆t) = f ?7

west(t)

f west
1 (t + ∆t) = f ?3

west(t)

f west
8 (t + ∆t) = f ?6

west(t)

(B.6)

This type of boundary is used in this work for the lid driven cavity.

B.3 Specification of Pressure and Velocity Boundary Con-
ditions using the Zou-He Scheme

As mentioned, in the lattice Boltzmann method, the pressure is related to the density by the
isothermal equation of state,

p = c2
sρ,

implying that, a specification of pressure difference means a specification of density differ-
ence.

East: Consider a 2 dimensional domain, with

pout = c2
sρout

where ρout and pout are the values of density and pressure at the east boundary and pout is
a given value of pressure at that boundary. Explicitly, the conditions for f3, f6, f7 and the
x-component of u are
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ux =
1
ρout

( f0 + f2 + f4 + 2( f1 + f5 + f8)) − 1

f3 = f1 −
2
3
ρoutux

f6 = f8 −
1
2

( f2 − f4) −
1
6
ρoutux +

1
2
ρoutuy

f7 = f5 +
1
2

( f2 − f4) −
1
6
ρoutux −

1
2
ρoutuy

(B.7)

and if a velocity uxout = ux is required to hold at the boundary instead of the pressure, then

ρout =
1

1 + ux
( f0 + f2 + f4 + 2( f1 + f5 + f8)).

West: At boundary segment, the specified values for density and pressure are related
by

pin = c2
sρin,

implying that

ux = 1 −
1
ρin

( f0 + f2 + f4 + 2( f6 + f3 + f7))

f1 = f3 +
2
3
ρinux

f5 = f7 −
1
2

( f2 − f4) +
1
6
ρinux +

1
2
ρinuy

f8 = f6 +
1
2

( f2 − f4) +
1
6
ρinux −

1
2
ρinuy

(B.8)

or if the velocity is specified and not the pressure:

ρin =
1

1 − ux
( f0 + f2 + f4 + 2( f6 + f3 + f7)).
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North: For a prescribed y-component of the velocity at the top boundary:

ρ =
1

1 + uy
( f0 + f1 + f3 + 2( f2 + f5 + f6))

f4 = f2 −
2
3
ρuy

f7 = f5 +
1
2

( f1 − f3) −
1
2
ρux −

1
6
ρuy

f8 = f6 −
1
2

( f1 − f3) +
1
2
ρux −

1
6
ρuy.

(B.9)

If the prescribed value was ρ instead of uy, solve the first condition for uy.
South: Again, for a prescribed value of uy now in the south boundary:

ρ =
1

1 − uy
( f0 + f1 + f3 + ( f4 + f7 + f8))

f2 = f4 +
2
3
ρuy

f5 = f7 −
1
2

( f1 − f3) +
1
2
ρux +

1
6
ρuy

f6 = f8 +
1
2

( f1 − f3) −
1
2
ρux +

1
6
ρuy.

(B.10)

The case of a prescribed y-component of the velocity at the top boundary is used in the
work for the case of the Couette Flow, whereas the case of specification of pressure at east
and west boundaries is used for Poiseuille Flow.





Appendix C

Spurious Currents

In this appendix will be shown how to derive the nonisotropic contributions of the Shan-
Chen force due to discretzations of the method [60]. This, by Taylor-expanding to higher
orders the pseudopotential Ψ(x + ĉk∆t) around x.

As stated, the forcing term is written in the form

FSC(x) = −GΨ(x)ΣkwkΨ(x + ĉk∆t)ĉk∆t,

so, applying the Taylor expansion to Ψ(x + ĉk∆t) and substituting in FSC:

FS C
α (x) = −GΨ(x)[Ψ(x)E(1) + ∂βΨ(x)E(2)∆t2 +

1
2!
∂β∂γΨ(x)E(3)∆t3

+
1
3!
∂β∂γ∂µΨ(x)E(4)∆t4 +

1
4!
∂β∂γ∂µ∂νΨ(x)E(5)∆t5

+
1
5!
∂β∂γ∂µ∂ν∂ξΨ(x)E(6)∆t6 + O(δ6)].

(C.1)

Introducing the notation

E(m) = E(m)
α1α2...αm

=
∑

k

wkckα1ckα2 ...ckαm (C.2)

with E(2n+1) = 0 and E(2n) = c2
s∆

(2n) where

∆(2n) = ∆(2n)
α1α2...α2n

=

2n∑
j=2

δα1α j∆
(2n−2)
α2...α2n

,

and in particular, ∆2
αβ = δαβ and ∆4

αβγµ = δαβδγµ + δαγδβµ + δαµδβγ.
Now we will show that the truncated isotropy of the lattice up to the fifth order, induces

anisotropic contributions to the Shan-Chen Force, which trigger spurious currents. First,
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this truncated isotropy means that all the tensors up to the fifth order are isotropic while the
higher order ones are not. Going back to equation (C.1), it then becomes

FS C
α (x) = −GΨ(x)[c2

s∆
2
αβ∆t2∂βΨ(x) +

1
3!

c4
s∆

4
αβγµ∆t4∂β∂γ∂µΨ(x)

+
1
5!

c6
s∆

6
αβγµνξ∆t6∂β∂γ∂µ∂ν∂ξΨ(x) + O(δ6)].

(C.3)

Finally, after some algebra and assuming spherical symmetry of the pseudopotential, Ψ =

Ψ(r) so that ∇ = r̂∂r and ∇2 = ∂2r + 2∂r
r , we obtain (ignoring some constants and coeffi-

cients):

FS C(x) ≈ −GΨ(x){∇[Ψ(x) + ∇2Ψ(x) + ∇2∇2Ψ(x)]︸                                  ︷︷                                  ︸
isotropic part

+ (êx∂
5
x + êy∂

5
y + êz∂

5
z )Ψ(x) + O(δ6)︸                                     ︷︷                                     ︸

anisotropic part

}.

(C.4)
This anisotropic component of the force due to the anisotropy of E(6) is responsible for
spurious currents.
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