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Abstract

We conducted an extensive investigation into the internal structure of pseudo-scalar
mesons, employing a unified algebraic model based on the Schwinger-Dyson equations
(SDEs). Our study involved the calculation of various non-perturbative objects, such as
electromagnetic (EFFs) and transition form factors (TFFs), parton distribution func-
tions (PDFs), generalized parton distributions (GPDs), and impact parameter space
GPDs.

To achieve this, we employed two different approaches: the overlap approximation in
the light front formalism and the triangle diagram approximation (impulse approxima-
tion). The overlap approximation of the light front wave function straitly related to the
distribution amplitudes of quarks, allowed us to construct the GPDs, providing a 3D
image of mesons. From these GPDs, we derived PDFs, EFFs, and the impact parame-
ter space GPD. Furthermore, the PDFs of mesons containing the light valence quarks
were evolved from the hadronic scale of approximately 0.3 GeV to the experimentally
relevant scale of 5.2 GeV.

Concurrently, the triangle diagram approximation facilitated the construction of EFFs
and TFFs (M → γγ∗) in a simplified manner. This approach enabled us to fit the
model’s parameters through a global analysis, leading to excellent agreement with
experimental and phenomenological results. We also determined the charge radius end
presented our results for pion, kaon, ηc, and ηb using the algebraic model and compared
these findings with previous theoretical approaches, including SDEs and lattice.

Furthermore, we collaborated on an exhaustive study of EFFs for all light, heavy-light,
and heavy ground-state scalar and pseudoscalar mesons. This research was based on
the treatment of SDEs involving a vector × vector contact interaction.

Through these endeavors, we gained a comprehensive understanding of the capabilities
and limitations of the algebraic model and the contact interaction model concerning
pseudoscalar mesons. Our research significantly contributes to advancing our knowl-
edge of the internal structure of these mesons, providing valuable insights for future
studies.





Resumen

Realizamos una extensa investigación sobre la estructura interna de los mesones pseu-
doescalares, empleando un modelo algebraico unificado basado en las ecuaciones de
Schwinger-Dyson (SDEs). Nuestro estudio involucró el cálculo de varios objetos no per-
turbadores, como factores de forma electromagnéticos (EFFs) y de transición (TFFs),
funciones de distribución de partones (PDFs), distribuciones generalizadas de partones
(GPDs) y el parámetro de impacto del espacio de GPD.

Para lograr esto, empleamos dos enfoques diferentes: la aproximación de superposición
en el formalismo de frente de luz y la aproximación del diagrama de triángulo (aproxi-
mación de impulso). La aproximación de superposición de la función de onda del frente
de luz (estrechamente relacionada con las amplitudes de distribución de los quarks),
nos permitió construir los GPDs, proporcionando una imagen 3D de los mesones. A
partir de estos GPDs, derivamos las PDFs, EFFs y el parámetro de impacto del espa-
cio de GPDs. Además, las PDFs de los mesones que contienen los quarks de valencia
ligeros se evolucionaron desde la escala hadrónica de aproximadamente 0.3 GeV a la
escala experimental relevante de 5.2 GeV.

Al mismo tiempo, la aproximación del diagrama de triángulos facilitó la construcción
de EFFs y TFFs (M → γγ∗) de manera simplificada. Este enfoque nos permitió ajustar
los parámetros del modelo a través de un análisis global, lo que llevó a una excelente
concordancia con los resultados experimentales y fenomenológicos. También determi-
namos el radio de carga y presentamos nuestros resultados para pion, kaon, ηc y ηb

utilizando el modelo algebraico y comparamos estos hallazgos con enfoques teóricos
anteriores, incluidas las SDEs y Lattice.

Además, colaboramos en un estudio exhaustivo de los EFFs para todos los mesones
escalares y pseudoescalares ligeros, pesados-ligeros y pesados. Esta investigación se
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basó en el tratamiento de las SDEs que involucran una interacción de contacto vector
× vector.

A través de estos esfuerzos, obtuvimos una comprensión integral de las capacidades y
limitaciones del modelo algebraico y el modelo de interacción de contacto con respecto
a los mesones pseudoescalares. Nuestra investigación contribuye significativamente al
avance de nuestro conocimiento de la estructura interna de estos mesones, proporcio-
nando información valiosa para futuros estudios.

Modelo Algebraico, Imagen tridimensional, Ecuaciones de Schwinger-Dyson,
Funciones de Distribución, Factores de Forma de Transición.
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Chapter 1

Introduction

Particle physics delves into the fundamental building blocks of the universe and the
forces that control their interactions. At the heart of this endeavor lies the well-known
Standard Model, the most successful framework to date that elegantly encapsulates
these components across the spectrum of the fundamental forces: electromagnetic,
weak, and strong nuclear. However, our journey is far from complete. As we venture
deeper, the mysteries invite us to explore further. For instance, some of the more
enigmatic unresolved phenomena concerning strong interactions are confinement and
dynamical mass generation, which plays a crucial role on the spectrum and dynamics
of nuclear and hadronic structure [1].

The masses of particles, once attributed to the Higgs boson [2], raise deeper questions
about the mechanisms underlying the dynamical mass generation. Since, despite the
essential role played by the Electro-Weak symmetry breaking, it contributes only a
marginal fraction to the overall mass of visible matter. Surprisingly, about 98% of the
total visible matter mass is due to dynamical chiral symmetry breaking (DCSB) [3],
a mechanism intrinsically related to strong interactions. Quantum Chromodynamics
(QCD), is the theory that describes strong interactions between its degrees of freedom
-quarks and gluons-, the only particles not found freely in nature, implying that they
are confined within hadrons [4–6], but also, presenting asymptotic freedom at high
energy scales [7–9]. The confinement property presents a challenge in the description
of the hadronic structure in terms of quarks and gluons from first principles. Since,
perturbative studies become impossible at low energy scales due to the QCD’s coupling
constant.

1



Chapter I. Introduction 2

Consequently, emerging concepts aim to improve our understanding of hadrons, such as
“factorization” [10], which represents high-energy processes as a convolution of partonic
subprocess happening at the given hard scale and non-perturbative objects, such as
Parton Distribution Functions (PDFs), Form Factors (FFs), and Generalized Parton
Distributions (GPDs), encapsulating information about hadron structure.

In recent decades, all over the world several accelerators have been built, like Jefferson
Lab (JLab), Large Hadron Collider (LHC), German Electron Synchrotron (DESY),
Relativistic Heavy Ion Collider (RHIC), High Energy Accelerator Research Organiza-
tion (KEK), Stanford Linear Accelerator Center (SLAC), among others, which have
generated a vast amount of experimental data, playing a significant role in the exper-
imental pursuits [11–20]. The horizon looks even brighter with ongoing projects like
JLab12 and, on a broader timescale, the ambitious Electron-Ion Collider (EIC) planned
for potential construction in the U.S. during the 2020s [21–25].

The development of phenomenological models can help to improve agreement with
available experimental data, but they inherently fall short of providing a complete dy-
namic understanding, like how GPDs are generated from the fundamental degrees
of freedom of the theory. For this level of comprehension, models based in non-
perturbative methods are indispensable. The method discussed here is based on the
Schwinger-Dyson equations (SDEs) [26], which have achieved notable success. Nev-
ertheless, the fusion of phenomenological and theoretical approaches enables a com-
prehensive harmony between experimental data and theoretical frameworks, giving a
better understanding of the nature of hadrons [27, 28].

The structure of this thesis is as follows: Chapter 1 introduces the historical discovery of
the hadron internal structure and the beginning of QCD. QCD’s symmetry, Lagrangian,
and chiral symmetry breaking will be discussed. Chapter 2 advances in the theoretical
definitions of our interest equations such as the EFFs, PDFs, GPDs, and the parton
distribution amplitudes (PDAs). Chapter 3 explains SDEs, their underlying physics,
and the developed models that will help us to obtain the non-perturbative functions
of the following chapters. Then, in Chapter 4 we find the computation and extraction
of the GPDs, PDFs, EFFs, and impact parameter space GPD, on the light-front for-
malism through its respective PDA. Chapter 5 shows the analytical development and
the extraction of EFFs and TFFs through the triangle diagram with two approaches
that are the Contact Interaction (CI) model and the Algebraic Model (AM). Finally, in
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Chapter 6, we discuss the results obtained by comparing and summarizing the findings
of the different methods and models, and concludes this work.

1.1 The structure of hadrons and the beginning of a

theory

1.1.1 The internal structure of nucleons

Since Ernest Rutherford’s discovery of the proton in 1919 [29], scientists thought of it
as a point-like particle. However, in the early 1930s, the proton’s magnetic moment
was first measured [30], revealing substantial deviations from the predictions derived
from Paul Dirac’s equation, which had treated the proton as a point particle. This
offered the first indication of the internal complexity of the proton.

However, it was until 1953 that Hofstadter’s breakthrough came to light [31]. Through
the elastic scattering of electrons on nucleons, his experiments dismantled the notion
of nucleons as rigid, indivisible point particles and instead exhibited a charge and
current distribution within them, as visually depicted in Figure 1.1. This suggested

Figure 1.1: Original measurements by Hofstadter taken from [32]. Left panel-
Cross section of an electron-proton scattering from a proton. Right panel- Proton

form factor as a function of the photon incidence energy, q2.

that the cross section of such a process would require the existence of form factors, the
presence of which would lead to a reduction of the effective values of the charge and
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Figure 1.2: Left panel- Elastic scattering for a e−p → e−p collision. Right panel-
e−p Deep Inelastic Scattering.

magnetic moment. In essence, the calculation of the amplitude of the elastic scattering
e−p→ e−p represented in the left panel of Figure 1.2 is as follows:

M(e−p→ e−p) = jµe−(pa, ka)
(
i∆0

µν(q)
)
jµp (pb, kb)

=
e2

q2
ue(ka)γ

µue(pa)⟨pb|jµp (0)|kb⟩ , (1.1)

where e is the electric charge. Consequently, the resulting spin average invariant am-
plitude becomes:

|M(e−p→ e−p)|2 = e4

q4
LeµνW

µν
p , (1.2)

with,

Leµν ≡
1

2

∑
se

(
ue(kA)γµue(pA)

)(
ue(kA)γνue(pA)

)∗
, (1.3)

W µν
p ≡ 1

2

∑
sp

(
vp(kB)γ

µvp(pB)
)(
vp(kB)γ

νvp(pB)
)∗
, (1.4)

where the sum is over the projections of the spin of the electron (se) and the proton
(sp). This, in turn, leads to the cross section for a 1/2-spin particle:

dσ

dΩ
(e−p→ e−p) =

(
dσ

dΩ

)
Mott

[
A(q2) +B(q2) tan2 (θ/2)

]
, (1.5)

where θ is the scattering angle of the electron, Ω is the solid angle of the outgoing elec-
tron and q2 = −Q2 is the square momentum transferred by the photon mediating the
interaction. Furthermore, (dσ/dΩ)Mott is the cross section associated to the scattering
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between an electron and a fundamental spin-0 particle, the subscript “Mott” is in honor
of the scientist Nevill Francis Mott, and is given by:(

dσ

dΩ

)
Mott

=
α2
em cos2(θ/2)

16M2
pE

i 2
e sin4(θ/2)

Ei
e

Ef
e

. (1.6)

Ei
e y Ef

e are the electron initial and final energies, respectively, and Mp is the proton
mass. Finally, A(q2) and B(q2) are the introduced electric and magnetic form factors.
Fundamentally, these form factors would not depend on Q2 for a point particle. Some-
thing that indeed was not observed by Hofstadter’s results, as seen in the right panel
of Figure 1.1, confirming that the proton possesses an extended nature and giving him
the Novel Prize in 1961. Actually, these functions are related with the Saks’s electric
and magnetic form factors GE y GM , of proton in the following form:

A(q2) =
G2
E(q

2) + τG2
M(q2)

1 + τ
, (1.7)

B(q2) = 2τG2
M(q2) . (1.8)

In a corresponding manner, these form factors are interconnected with the renowned
Dirac (F1) and Pauli (F2) form factors, outlined as follows:

GE(q
2) = F1(q

2)− τκF2(q
2) , (1.9)

GM(q2) = F1(q
2) + κF2(q

2) , (1.10)

where F1(0) = F2(0) = 1. And finally, in the previous expressions, κ is the anomalous
magnetic moment of the proton, τ is a scaling variable defined as τ = Q2/4M2

p .

The next decade was characterized by a profusion of conceptual developments concern-
ing the potential constituents of nucleons (protons and neutrons) and another large
array of particles, referred to as hadrons, that were being discovered concurrently. Ini-
tially, these particles were categorized based on their charge and isospin according to
their strangeness. To obtain further insights, hadrons were classified into groups with
similar properties and masses, a process facilitated by the “eightfold way” method intro-
duced in 1961 by Gell-Mann and Yuval Ne’eman [33]. Additionally, in 1964, Gell-Mann
and George Zweig proposed that the structure of hadron could be explained by adding a
new quantum number called flavor, derived from subatomic constituents called quarks.
This concept aimed to elucidate the diversity of hadrons through the SU(3) symmetry.
This model gained credibility by predicting the existence of the Ω− baryon. Yet, the
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quark model encountered initial inconsistencies. The ∆++ baryon, in the quark model,
is composed of three up quarks with parallel spins, which violate the Pauli exclusion
principle.

In 1964-1965, independent solutions emerged from Greenberg and Han-Nambu. They
proposed an added gauge degree of freedom—later referred to as color charge—for
quarks, within SUc(3) symmetry. Han and Nambu noted that quarks could interact
via an octet of vector gauge bosons known as gluons. This marked the inception of
Quantum Chromodynamics (QCD).

However, in the late 1960s, new visualizations emerged with the first Deep Inelastic
Scattering (DIS) experiment at SLAC12 [34, 35]. This experiment yielded fresh visu-
alizations that affirmed the reality of quarks as genuine particles, a concept Richard
Feynman called “partons”.

1.1.2 Parton Model

In 1969, Bjorken [36, 37] and Feynman [38] provided crucial insights into deep inelastic
scattering (DIS) measurements by proposing that the proton was comprised of point-
like particles with spin 1/2. This groundbreaking concept, known as the “parton model ”,
aligned well with the experimental results from SLAC. The key characteristics of the
parton model are summarized below. With P as the momentum of the target hadron,
we can express the invariant amplitude of the processes e−p → e−X (shown in the
right panel of Figure 1.2) in terms of the leptonic (Leµν) and hadronic (W µν

p ) tensors,
analogous to Eq. (1.2), as:

|M(e−p→ e−X)|2 = e4

q4
LeµνW

µν
X . (1.11)

Leading to the cross-section:

d2σ

d2ΩdEf
e

=
α2
em

Q2

Ef
e

Ei
e

LeµνW
µν
p . (1.12)
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The leptonic tensor is entirely described by Quantum Electrodynamics (QED) and can
be calculated at the tree level as follows:

Leµν = 2

(
pµak

ν
a + kµap

ν
a −

Q2

2
gµν
)
, (1.13)

where gµν is the metric tensor. However, the hadronic tensor cannot be computed
directly beforehand. Nevertheless, Hermiticity and current conservation yield:

W µν
p = W νµ

p , (1.14)

qµW
µν
p = 0 . (1.15)

Hence, the hadronic tensor can be expressed in terms of two essential structure func-
tions, W1(Q

2, ν) and W2(Q
2, ν):

W µν
p = W1(Q

2, ν)

(
gµν − qµqν

q2

)
+
W2(Q

2, ν)

M2

(
P µ − P · q

q2
qµ
)(

P ν − P · q
q2

qν
)
.(1.16)

This leads to the following form of the cross section:

d2σ

dQ2dν
(e−p→ e−X) =

πα2

4Ei 2
e sin4(θ/2)

1

Ei
eE

f
e

[
W2 cos

2(θ/2) + 2W1 sin
2(θ/2)

]
. (1.17)

In principle, one might expect that the dependence of W1 and W2 on the variables Q2

and ν would be very complicated, reflecting the complexity of the inelastic scattering
processes. However, in 1969, Bjorken [36] predicted that in the DIS regime, when Q2

and ν are infinitely large (compared to the natural scales of the system, such as particle
masses), the functions W1 and W2 behave in a very simple way: in DIS, these structure
functions scale, meaning they become functions not of Q2 and ν independently but of
the ratio Q2/ν between them. This property is known as “Bjorken scaling”. Therefore,
it is convenient to introduce the following scaling variables:

xB = Q2/2Mpν , (1.18)

yB = ν/Ei
e . (1.19)
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Explicitly, the Bjorken scaling tells us that for very large values of Q2 and ν, but a
fixed value for x, we have:

W1(Q
2, ν) → F1(xB) ,

W2(Q
2, ν) → F2(xB) . (1.20)

Introducing the functions qi(x) that represent the probability density of finding a partic-
ular charged parton of type i carrying a momentum fraction x of the total momentum of
the proton. By averaging the structure functions, we arrive at the following equations:

F1(xB) =
∑
i

∫
dxe2i qi(x)

1

2
δ(x− xB) , (1.21)

F2(xB) =
∑
i

∫
dxe2i qi(x)xδ(x− xB) . (1.22)

These qi functions are the so called Parton Distribution Functions (PDFs). Subse-
quently, works by Callan, Gross, and Feynman [38, 39] showed that 2xF1(xB) = F2(xB).
We should not confuse these functions F1 and F2 with the Dirac and Pauli form factors.

One of the most important consequences of Eqs. (1.20) is that, in the DIS regime,
the cross-section for the e−p → e−X scattering, Eq. (1.17), does not depend on Q2.
Behavior that only occurs in elastic scattering processes.

The cross-section for DIS behaves akin to elastic scattering at high values of Q2 and
ν. In this high-energy regime, the electron’s interaction with the proton undergoes a
fundamental change – it no longer treats the proton as a point-like entity but rather
interacts with its constituent quarks. These quarks, being elementary and indivisible
particles. This insightful interpretation of Bjorken scaling was first articulated by Feyn-
man, who introduced the concept of the electron engaging with the proton’s point-like
constituents, partons (Feynman’s parton model). In the contemporary understanding,
we not only recognize quarks but also include gluons in the category of partons.

Feynman’s parton model provides compelling evidence for the idea that nucleons con-
sist of point-like, independent particles known as quarks or partons with spin-1/2.
Moreover, it offers an explanation for the lack of dependence on Q2 in the nucleon’s
scattering structure functions by framing electron-proton scattering as an incoherent
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summation of the electron’s elastic interactions with quarks. Consequently, the funda-
mental equation of the parton model is as follows:

σeh(pb, q) =
∑
a

∫ 1

0

σea(xpb, q)fa/h(x) . (1.23)

Here, we have σeh(pb, q) as the cross-section for the process e−(pa)+p(pb) → e−(ka)+X,
and σea(xpb, q) as the cross-section for e−(pa) + a(xpb) → e−(ka) + a(xpb + q), where
a represents a parton with a momentum fraction of the hadron h. Additionally, we
introduce fa(x), as the PDFs, which quantifies the probability of finding a parton of
type a (whether it’s a quark or gluon) within a given hadron, such as the proton. This
probability depends on a specific momentum fraction, denoted by x within the range
of [0, 1]. Notably, these functions are differents for each type of parton, necessitating a
summation over all possible partons.

It is important to note that we assume these PDFs to be independent of the specific
scattering process. Furthermore, the inelastic hadron cross-section can be expressed as
the sum of the convolutions between the elastic parton cross-sections and the parton
distribution of the hadron. In the context of quantum mechanics, this summing of
probabilities without taking into account the amplitudes represents an incoherence
between the scattering at high momenta q and the parton distributions.

In addition, by invoking the parton model, we can describe the tensor W µν
X associ-

ated with the e−p → e−X scattering in the single-photon exchange approximation, as
illustrated in the right panel of Figure 1.2, using the following expression:

W µν
X (q, pb) =

∑
a

∫ 1

y

dx

x
fa(x, µ

2)Hµν
a (q, xp, µ, αs(µ)) + corrections . (1.24)

In this context, µ defines the factorization scale, and the term referred to as "correc-
tions" takes into consideration processes involving the exchange of two or more photons.
We can observe that the PDF is also dependent of the scale. Finally, each tensor coef-
ficient Hµν

a is exclusively associated with the interaction between the photon and the
respective parton a.

In 1979, the revelation of asymptotic freedom in strong interactions, along with the
discovery of the existence of gluons and other phenomena, has led to the realization
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that QCD emerges as the preeminent theory for describing the strong interactions
among these elementary particles residing within hadrons.

1.2 Quantum Chromodynamics: general properties

QCD is a renormalizable quantum field theory that exhibits a perturbative and a non-
perturbative facet, it governs the strong interactions (one of the four fundamental forces
of the universe) between its degrees of freedom, the quarks, and gluons. Unlike QED,
the gauge group of QCD is non-abelian. Next, we will see the fundamental properties
of QCD:

• Asymptotic Freedom. At very high energies (or short distances), quarks and
gluons interact very weakly. QCD predicts this behavior, which was discovered
by David Politzer, Frank Wilczek and Davis Gross, and thanks to which they won
the Nobel Prize in Physics in 2004. The discovery of asymptotic freedom allowed
physicists to make more precise predictions using the perturbation theory tech-
nique. Evidence for gluons was seen first at PETRA in 1979. These experiments
became increasingly precise, culminating in the perturbative verification of QCD
at LEP and CERN.

• Confinement. Quarks and gluons cannot be seen free in nature at low ener-
gies (or long distances), but are observed confined within the hadrons. Quarks
and gluons have then three color quantum numbers: red, green, and blue. The
physical states correspond to neutral states (without color), being a combination
of the colors. Since gluons can interact with each other, they form a color field
that prevents the quarks from separating. The potential between quarks grows
linearly with distance and, therefore, an infinite amount of energy is required to
separate two quarks.

These resolution scale-dependent phenomena are due to the variation of the coupling
constant of the strong interaction αs(Q

2). We can observe in Figure 1.3 that at low
energies, αs ∼ 1, [40]. However, at high energies we have αs(MZ) ∼ 0.118, where Mz

is the Z boson mass.
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Figure 1.3: Strong coupling constant as a function of the energy scale, Q. The
figure is taken from [40].

As a consequence of these dynamics, another intriguing phenomenon manifests within
this theory: the dynamical chiral symmetry breaking (DCSB). This phenomenon
tell us how quarks and gluons spontaneously acquire mass as the energy scale decreases.
A more detailed exploration of this fascinating phenomenon awaits us in Chapter 3.

On the other hand, we can observed that at high energies, the strong coupling becomes
small enough to allow us to employ perturbation theory, a crucial phenomenological
tool. Within this framework, we can explore QCD dynamics depending on the energy
regime we are investigating, distinguishing between perturbative QCD (pQCD) and
non-perturbative QCD (npQCD).

pQCD, associated with the concept of asymptotic freedom, is effective for energy scales
beyond the hadron mass. However, beyond this point, where the coupling constant
becomes sufficiently large, perturbative techniques become invalid. Consequently, pro-
cesses involving elementary particles in confinement scales cannot be directly calculated
using pQCD.

In contrast, the npQCD regime necessitates the development of specific techniques
to investigate quarks within their confined states, as detailed in Chapter 3. Thanks
to the Factorization Theorem [41] of QCD, we can separate the scattering cross sec-
tions of processes into two distinct components: those calculable at short distances
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using perturbation theory and universal functions that characterize long-distance be-
havior. Examples of these universal functions include the aforementioned EFF, PDFs,
as well as the fragmentation functions, generalized parton distributions (GPDs), and
parton distribution amplitudes (PDAs). These functions can be extracted through
phenomenological adjustments, as we will show in this thesis.

Now because the dynamics of a system can be extracted from the corresponding La-
grangian, in the next section we will focus on the study of the QCD Lagrangian.

1.2.1 QCD lagrangian

The Lagrangian that describes QCD is given by the following elements:

LQCD = Lclas + Lg−f + Lghost . (1.25)

In this context, Lclas represents the classical Lagrangian density, characterizing the
interaction of quarks with a mass m0, alongside massless gluons. The subsequent term,
Lg−f , serves as the factor that establishes the scale, a crucial parameter in defining the
gluon propagator. The introduction of this term also necessitates the incorporation of
the third term, Lghost, each of which will be described bellow.

• Classical lagrangian . The classical lagrangian density has the form:

Lclas =
Nf∑
j=1

ψ̄jl (iγ
µDµ −mj)ψ

j
l −

1

4
F a
µνF

µν
a . (1.26)

Quarks are represented by the fermionic field ψjq , where l is the color index,
Nf is the number of flavors, and j = u, d, s, c, b, t is the flavor index. Also,
Dµ = ∂µ + igst

aAaµ is the covariant derivative, with Aaµ the corresponding gluon
field, gs the coupling constant of the strong interaction according to αs = g2s/4π

and ta are the generators of the SUc(3) group.

The second term encompasses the dynamics of the gauge fields (gluons), including
their kinetic energy and self-interactions, where F a

µν is the energy-momentum
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tensor of the gluons, defined as (a = 1, ..., 8 is the color index):

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gsfabcA

b
µA

c
ν . (1.27)

In the above expression, the last term is responsible for introducing interactions
among the gauge bosons themselves, a characteristic feature of non-abelian the-
ories, i.e., theories described by a non-commutative symmetry group.

Moreover, fabc are the completely antisymmetric structure constants of the gauge
group of QCD. We have the following relationships:

[ta, tb] = ifabct
c ,

tata = CF I ,

T r[tatb] =
1

2
δab ,

facdfbcd = CAδab . (1.28)

In the fundamental representation of SUc(3): CA = 3, CF = 4/3, ta = λa/2 where
λa are the Gell-Man matrices.

• Covariant terms . The second term, Lg−f , in the Lagrangian takes the following
form:

Lg−f = − 1

2ξ
(∂µAµa)2 . (1.29)

This term is introduced to eliminate redundant degrees of freedom, ensuring the
invertibility of the gluon differential operator and well-defined propagators at
the tree level. This is achieved by fixing the gauge, with ξ as the gauge-fixing
parameter. Specifically, ξ = 0 corresponds to the Landau gauge, while ξ = 1

corresponds to the Feynman gauge. Fixing the gauge results in the Lagrangian
losing its gauge invariance. However, it’s important to note that physical observ-
ables are inherently independent of the gauge choice and remain gauge-invariant
in nature. Therefore, the choice of ξ doesn’t impact the final results.

Finally, the third term, denoted as Lghost in the Lagrangian, takes the following
form:

Lghost = −(∂µη̄a)(∂µηa)− gsfabc(∂µη̄a)A
µ
b ηc . (1.30)
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These fields, represented by ηa, correspond to the Faddeev-Popov ghost fields.
In the context of non-abelian QCD, their inclusion becomes necessary when in-
troducing the gauge term. These ghost fields don’t represent physical particles;
instead, they manifest as virtual entities in Feynman diagrams. Nevertheless,
they play a crucial role in calculations involving arbitrary covariant gauges. The
specific characteristics of these ghost fields may vary depending on the chosen
gauge standard.

Therefore, the complete QCD Lagrangian Eq. (1.25) corresponds to

LQCD =

Nf∑
j=1

ψ̄jl (iγ
µDµ −mj)ψ

j
l −

1

4
F a
µνF

µν
a − 1

2ξ
(∂µAµa)2 − (∂µη̄a)(∂µηa)

− gsfabc(∂µη̄a)A
µ
b ηc . (1.31)

Quantum Field Theories (QFTs) are one of the most significant theoretical concepts
of the past century because they successfully combine two central theories of modern
physics: special relativity and quantum mechanics. Among these QFTs are the so-called
“gauge theories”, which have proven to be highly successful in describing fundamental
phenomena. In fact, the Standard Model (SM) is based on this type of theory.

Gauge theories are founded on the well-known “gauge principle”, which states that
interactions between fundamental particles are obtained by imposing that the system’s
Lagrangian remains invariant under a certain group of symmetry. This symmetry must
be local and continuous, and it is referred to as “gauge symmetry”.

The gauge symmetry corresponding to the SM is SUC(3) × SUL(2) × UY (1). The
SUL(2) × UY (1) gauge group describes the electroweak sector, unifying electromag-
netic and weak interactions, while SUC(3) is the fundamental symmetry of Quantum
Chromodynamics (QCD). We will now explore some QCD symmetries.

1.2.2 flavor and baryon number symmetries

• Baryon number symmetry .

First, corresponding to the symmetry of the baryon number, we have the global
U(1) symmetry, where a field transformation ψ(x) → eiθψ(x) results in a baryonic
current JµB(x) = ψ̄(x)γµψ(x).
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The conserved charge, denoted as B, is defined as the integral of the density
B =

∫
d3xψ†(x)ψ(x) and corresponds to the baryon number.

• Flavor symmetry . We start with a state represented as ψ(x) = (u d)T . When
we consider isospin symmetry, it means that we assume the masses of the up and
down quarks, denoted as mu and md, are equal. To account for this symmetry,
the flavor transformation of SU(2) is as follows:

ψ(x) → ψ′(x) = ei
τa

2
θa . (1.32)

Here, τa/2 (with a = 1, 2, 3) represents the SU(2) generators, the well-known
Pauli matrices.

Within this framework, we define conserved currents as

V̄ µ
a (x) = ψ(x)γµ

τa
2
ψ(x) , (1.33)

and the conserved charge QV is expressed as the integral of the density

QV =

∫
dx, V̄ µ

a (x) . (1.34)

It’s important to note that this description can be extended to situations where
there are three different flavors of quarks (Nf = 3). In this extension, we include
the strange quark component within the ψ(x) representation, and we assume that
the masses of the up, down, and strange quarks are all equal (mu = md = ms).
In this case, we replace the Pauli matrices τa with the Gell-Mann matrices λa
(where a = 1, . . . , 8).

1.2.3 Gauge symmetry

We will elucidate how the imposition of gauge invariance under SUC(3) within the
Lagrangian that characterizes quarks leads to the introduction of interactions among
them.

Starting with a Lagrangian of spin-1/2 fermions, the Dirac Lagrangian:

LDirac(x) = ψ̄jl (x)
(
i/∂ −mj

)
ψjl (x), (1.35)
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where /∂ ≡ γµ∂µ, and mj represents the quark mass. Quarks are represented by the
fermionic field ψjl (x) as we already mentioned, the sum over the indices is implicit.
To introduce interactions among quarks, we need to ensure that this Lagrangian is
invariant under gauge transformations related to SUC(3). For fermionic fields, gauge
transformation is as follows:

ψq(x) → ψ′
q(x) = eit

aθa(x)ψq(x) ,

with θa(x) as scalar functions, and ta as the generators of the SUC(3) group as regularly.

To maintain gauge invariance, we promote the partial derivative ∂µ to the covariant
derivative Dµ = ∂µ + igst

aAaµ.

where we have introduce the spin-1 gauge fields, Aaµ corresponging to gluons. The
gauge transformation for Aaµ is given by:

Aaµ → A′a
µ = Aaµ − ∂µθ

a(x)− gsf
abcθb(x)Acµ(x) , (1.36)

fabc is the already mentioned tructure constants. With these rules, the Dirac La-
grangian is redefined as:

LDirac(x) → LI(x) = ψ̄(x) (iγµDµ−m)ψ(x) . (1.37)

To identify the fields Aaµ as physical particles (gluons), we introduce kinetic and po-
tential energy terms. This requires adding a kinetic energy term to the Lagrangian as
follows:

LI(x) → LQCD(x) = LI(x)−
1

4
F a
µνF

µν
a , (1.38)

where F a
µν is the energy-momentum tensor of gluons Eq. (1.27). Until now, the QCD

Lagrangian is then expressed as:

LQCD(x) =

Nf∑
j=1

ψ̄jl (iγ
µDµ −mj)ψ

j
l −

1

4
F a
µνF

µν
a . (1.39)

This Lagrangian corresponds to the classical Lagrangian.
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Now, in order to eliminate unnecessary degrees of freedom within the gauge fields, we
need to impose constraints on these fields. One such constraint involves setting the
covariant gauge condition, typically referred to as the Lorentz gauge:

G(A) = ∂µAµ = 0 . (1.40)

To incorporate this constraint, we introduce a term λ(∂µAaµ)
2 where λ = −1/(2ξ) which

acts as a Lagrange multiplier, a parameter that we can adjust. When we add this term
to the Eq. (1.39), it yields the following Lagrangian:

LQCD =

Nf∑
j=1

ψ̄jl (iγ
µDµ −mj)ψ

j
l −

1

4
F a
µνF

µν
a − 1

2ξ
(∂µAµa)2 . (1.41)

It is important to note that, for quantization purposes, the introduction of ghosts are
necessary to ensure unitarity. However, these aspects go beyond the scope of this thesis.

1.2.4 Chiral symmetry and its spontaneous violation

Chiral symmetry in QCD, is manifested when quark masses become exceedingly small.
While quarks possess current masses (the mass of free quarks), we observed that it
is substantially smaller than that of hadrons. This observation hints at an intriguing
phenomenon – an approximate chiral symmetry, where mu ≈ md ≈ 0. Allowing us to
treat chiral symmetry as an approximation within strong interactions.

This symmetry is closely tied to the vector-axial current, which, when spontaneously
broken, results in what we call spontaneous chiral symmetry breaking. This process
dynamically generates masses for the particles involved.

A significant implication of this symmetry breaking is the presence of the Goldstone
boson. In QCD, the Goldstone boson is the pion, which, according to this symmetry
breaking, should ideally possess zero mass. The slight mass exhibited by pions arises
from explicit chiral symmetry breaking, caused by the non-zero mass of free quarks.
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For a more detailed perspective, let’s examine a Lagrangian for two massless fermion
flavors, a model that can be readily applied to QCD. We begin with the Dirac La-
grangian for m=0, which reads as follows:

L = iψ̄j /∂ψj . (1.42)

Where the subscript j can represent u or d quarks. Now, let’s consider the following
transformation:

ψj −→ e−i
τ
2
·θψj ≃

(
1− i

τ

2
· θ
)
ψj . (1.43)

Here, τ⃗ represents the Pauli matrices for isospin. The conjugate field transforms as:

ψ̄j −→ ψ̄jei
τ
2
·θ ≃ ψ̄j

(
1 + i

τ

2
· θ
)
. (1.44)

It is evident that the Lagrangian (1.42) remains invariant under transformation (1.43):

L = iψ̄j /∂, ψj −→ L′ = iψ̄j /∂, ψj − iθ ·
(
iψ̄j /∂

τ

2
ψj − iψ̄j

τ

2
/∂ψj
)

= iψ̄j /∂ψj . (1.45)

Thus, the associated conserved current is:

V a
µ = ψ̄jγµ

τa

2
ψj , (1.46)

which is known as the vector current. Considering the following transformation:

ψj −→ e−iγ5
τ
2
·θψj =

(
1− iγ5

τ

2
· θ
)
ψj , (1.47)

and, taking into account the gamma matrix anticommutation relationships, particularly
γ0γ5 = −γ5γ0, it is evident that the Lagrangian pf Eq. (1.42) also remains invariant
under transformation of Eq. (1.47):

L = iψ̄j ̸!∂, ψj −→ L′ = iψ̄j /∂, ψj − iθ ·
(
iψ̄j /∂γµγ5

τa

2
ψj − iψ̄jγ5

τ

2
/∂γµψj

)
= iψ̄j /∂ψ

j . (1.48)



Chapter I. Introduction 19

This results in the associated current:

Aaµ = ψ̄jγµγ5
τa

2
ψj . (1.49)

Known as the vector-axial current. We can see that the Lagrangian for two massless
fermions in QCD remains invariant under both transformations, forming the so-called
chiral symmetry. However, when we introduce a mass term in the Lagrangian:

δL = −mψ̄jψj . (1.50)

It becomes clear that this term is invariant under transformation of Eq. (1.43) but not
under transformation of Eq. (1.47). In particular, under transformation in Eq. (1.47),
this term transforms as:

δL = −mψ̄jψj −→ −mψ̄jψj + 2imθ

(
ψ̄j
τa

2
γ5ψ

j

)
. (1.51)

This reveals a symmetry breaking for quarks due to their current mass. Since this mass
is considerably small, we can treat it as an approximate symmetry. However, this is
why we observe a dynamic generation of masses as energy decreases, transitioning from
perturbative to non-perturbative regimes. This process is explored in more detail in
Chapter 3 within the Schwinger-Dyson Equations approach.





Chapter 2

Hadronic structure

2.1 Electromagnetic Form Factor

Studying the nuclear structure of hadrons through an electromagnetic processes is
one of the cleanest approaches available, as opposed to using alpha particles, which
Rutherford famously employed to discover the atomic nucleus. Regarding the previous
Chapter, if we consider the scenario of an elastic scattering between an electron and a
composite particle, such as the proton (e−p→ e−p), which is depicted in the left panel
of Figure 1.2, we would have that the electron interacts electromagnetically with the
proton through the exchange of a photon. Also, by increasing the energy or frequency
of this photon, it can probe the internal quark structure of the proton. Additionally,
the quarks within the proton interact strongly with each other through the exchange
of particles called gluons. This strong coupling between quarks and gluons at low
energies makes these interactions non-perturbative. As a result, describing electron-
proton scattering requires the introduction of the electromagnetic form factors. These
form factors provide a way to encapsulate the non-perturbative nature of the strong
interactions within the proton and help us understand its charge density. Furthermore,
these form factors are experimentally accessible quantities.

To simplify and illustrate the concept, we can focus on a specific example involving
spin-0 targets like pseudoscalar mesons, such as the pion. In the case of the elastic
scattering between an electron and a pion (e−π+(π−) → e−π+(π−)), we can visualize a
diagram similar to the one of the left shown in Figure 1.2, where the circle represents

21
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all potential interactions between the photon and the fundamental components of the
pion.

Now, when considering a Coulomb scattering process, if the potential V 0(r) arises from
a charge density ρ(r), then V 0(r) must satisfy the Poisson equation:

∇2V 0(r) = −Zeρ(r) . (2.1)

Here, Z represents the charge, and e is the elementary charge. In a special case where
the charge density is concentrated at a single point (ρ(r) = δ(r)), the potential V 0(r)

reduces to the familiar form for a point charge: V 0(r) = Ze/4π|r|. To characterize this
potential mathematically, we calculate its Fourier transform:

Ṽ 0(q) =

∫
eiq·rV 0(r)d3r . (2.2)

Here, q represents the momentum transfer, and Ṽ 0(q) is the Fourier-transformed po-
tential. By applying the definition of V 0(r), we derive the following relation:∫

eiq·r∇2V 0(r) = −Ze
∫
eiq·rρ(r)d3r ≡ −ZeF (q) . (2.3)

In this equation, the function F (q) emerges as the static form factor, encapsulating
the charge distribution’s Fourier components. It’s crucial to note that F (q) satisfies
the normalization condition F (0) = 1, signifying that the total charge is Ze.

Additionally, it is worth noting that:∫ (
∇2eiq·r

)
V 0(r) = −q2

∫
eiq·rV 0(r)d3r . (2.4)

As a result, when we employ the outcomes of Eqs. (2.2), (2.3), and (2.4), we obtain:

Ṽ 0(q) =
F (q)

q2
Ze . (2.5)

Consequently, we observe that, at the lowest order in perturbation theory, the transi-
tion element matrix is determined by the point-like amplitude, multiplied by the form
factor F (q). In this straightforward scenario, the form factor interprets as the Fourier
transform of the charge distribution.
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In the absence of a comprehensive theory, we turn to the principles of Lorentz invariance
and the electromagnetic current conservation to restrict the general structure of the
pion-pion-photon vertex. This approach allows us to derive a generalized static form
factor for the real pion. To begin, considering Lorentz invariance, the electromagnetic
vertex of a pion assumes the following form:

jµπ+(p, p
′) = ⟨π+, p′|jµem,π(0)|π+, p⟩ = e

[
F (q2)(p′ + p)µ +G(q2)qµ

]
. (2.6)

The functions F (q2) and G(q2) represent the form factors. To derive these, we started
by considering the condition p′ = p + q, where p2 = p′2 = M2

π , leading to q2 =

2M2
π − 2p · p′, being p and p′ the corresponding initial and final moments of the pion.

Now, in order to determine the pion’s form factor, we must adhere to our second
principle, the conservation of electromagnetic current. In other words, we need to
satisfy the current conservation condition:

qµ⟨π+(p′)|ĵµem,π(0)|π+(p)⟩ = 0 . (2.7)

Combining the above equation with Eq. (2.6), we arrive at the following condition:

qµ
[
F (q2)(p′ + p)µ +G(q2)qµ

]
= 0 . (2.8)

The first term (q ·(p′+p)) is zero, as it signifies the electromagnetic current conservation
condition for the vertex of a point-like particle. However, for the second term, we have
q2 ̸= 0, implying that current conservation dictates that G(q2) = 0.

In simpler terms, all the virtual effects of strong interaction in the pion-pion-photon
vertex can be encapsulated by a Lorentz scalar function. Consequently, the pion’s
electromagnetic vertex can be expressed as:

jµπ+(p, p
′) = eF (q2)(p′ + p)µ . (2.9)

Thus, a spin-0 particle such as the pion possesses a single electromagnetic form factor,
denoted as F (q2), which extends the concept of the static form factor seen earlier. This
form factor retains the normalization condition F (0) = 1.

Furthermore, we can observe that the invariant amplitude in Eq. (1.1) for e−(k) +
π+(p) → e−(k′)+π+(p′) can be derived by simply substituting jµp (pb, kb) with jµpi+(p, p

′),
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along with the respective momenta for the electron. This implies that when q2 is
relatively small, the amplitude remains largely unchanged, reflecting the conservation
of the initial state. As q2 increases, we expect the amplitude for an inelastic process,
involving the production of additional particles, will increase, while the amplitude for
an elastic process correspondingly decreases.

Moreover, the form factor allows us to determine the charge radius of a particle, which
will be explored next.

2.1.1 Charge radius

Recalling the expression:

F (q2) =

∫
ρ(r)eiq·rd3r , (2.10)

where d3r = dϕ sin θdθr2dr, the form factor for a radial charge density will be:

F (q2) =

∫ 2π

0

dϕ

∫ π

0

sin θdθ

∫ ∞

0

r2ρ(r)eiq·rdr

= 2π

∫ ∞

0

r2ρ(r)dr

∫ 1

−1

d cos θeiqr cos θ

= 2π

∫ ∞

0

rρ(r)

[
eiqr − e−iqr

iq

]
dr

=
4π

q

∫ ∞

0

rρ(r) sin(qr)dr . (2.11)

Working in the limit of small momentum transfer, we can expand in sin(qr). From the
equation above, we have:

F (q2) =
4π

q

∫ ∞

0

rρ(r)

[
qr − 1

3!
(qr)3 + ...

]
dr

=

∫ ∞

0

ρ(r)d3r − q2

6

∫ ∞

0

r2ρ(r)d3r +O(q4)

= 1− q2

6

∫ ∞

0

ψ∗r2ψd3r +O(q4)

= 1− q2

6
⟨r2⟩+O(q4) , (2.12)
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where ρ(r) = ψ∗ψ is the probability density. This expression leads to:

⟨r2⟩ = −6
dF (q2)

dq2

∣∣∣∣
q2=0

. (2.13)

Being ⟨r2⟩ the charge radius of the hadron that corresponds to its charge density.

2.2 Parton Distribution Functions

PDFs are another fundamental quantity in the framework of non-perturbative QCD.
They provide crucial insight into the internal structure of hadrons, offering a probabilis-
tic description of how the momentum of a hadron is distributed among its constituent
partons as a function of momentum fraction and energy scale.

For example, lets consider a simplified model without QCD interactions, nucleons (pro-
tons and neutrons) are viewed as composed of point-like, free spin-1/2 partons within
the quark model. Gluons, although present, do not directly interact with photons; in-
stead, photons-gluons interaction only occurs through the virtual quark-antiquark (qq̄)
pairs coupled to the gluons constituents. This creates a sea of qq̄ partons within the
nucleon. We can represent the probability distributions for the quarks u, ū, d, d̄, s, s̄,
etc., as u(x), ū(x), d(x), d̄(x), s(x), s̄(x), etc., with momentum fraction x in the proton.
And, within the parton model, the proton structure functions have the following simple
form in terms of parton distribution:

F ep
2 (x)/x = 2F ep

1 (x) =
4

9
[u(x) + ū(x)] +

1

9
[d(x) + d̄(x)] +

1

9
[s(x) + s̄(x)] + . . . .(2.14)

Using isospin symmetry, we can relate the up- and down-quark distributions in a neu-
tron to those in a proton:

un(x) = dp(x) ≡ d(x) ; dn(x) = up(x) ≡ u(x) . (2.15)

This connection enables us to obtain separate information of the individual PDFs by
combining data from different DIS processes.
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Quark distributions must adhere to specific rules. For instance, both protons and
neutrons having zero strangeness leads to the constraint:∫ 1

0

dx[s(x)− s̄(x)] = 0 . (2.16)

Similar rules apply to heavier flavors. Furthermore, the electric charges of protons and
neutrons result in two additional sum rules:∫ 1

0

dx[u(x)− ū(x)] = 2 ,

∫ 1

0

dx[d(x)− d̄(x)] = 1 . (2.17)

These sum rules reflect the excess of up and down quarks over their respective anti-
quarks.

Valence and sea contributions provide insight into nucleon structure. The remaining
parton distributions are regarded as pure sea, simplifying the number of independent
distributions, such as:

u(x) = uv(x) + qs(x) ,

d(x) = dv(x) + qs(x) ,

ū(x) = d̄(x) = s(x) = s̄(x) = . . . = qs(x) . (2.18)

This model automatically satisfies the strangeness constraint while implicating con-
straints primarily on valence-quark distributions.

In a related scenario of quasi-elastic electron-deuterium scattering, we observe a pro-
nounced peak in the structure function at x = 1/2. This outcome aligns with expecta-
tions since the deuteron, composed of two nucleon constituents, shares total momentum
equally, with MN ≈ 2Md (N= p or n). In a simplistic three-quark model for nucleons,
one would anticipate a similar peak at x = 1

3
in both proton and neutron structure

functions. However, the distribution does not show such behavior. Therefore, the de-
viation can be readily attributed to contributions from parton-sea. By contrasting the
proton and neutron structure functions and canceling out the sea’s influence, the data
indeed reveals a broad peak at x = 1

3
.
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This observation is in accordance with our isospin symmetric parton model and under-
lines the presence of the so-called Gottfried sum rule:∫ 1

0

dx

x
[F ep

2 (x)− F en
2 (x)] =

1

3

∫ 1

0

dx[uv(x)− dv(x)] =
1

3
. (2.19)

Another interesting parameter is the ratio:

F en
2 (x)

F ep
2 (x)

=
4dv(x) + uv(x) +

∑
sea

4uv(x) + dv(x) +
∑

sea

, (2.20)

where
∑

sea is the total sea contribution. This ratio should satisfy specific the bounds
1
4
≤ F en

2 (x)/F ep
2 (x) ≥ 4, consistent with data, and tends to 1 at small x, suggesting

that sea contributions dominate in that region.

The conservation of total proton momentum leads to the essential sum rule:∫ 1

0

dxx[u(x) + ū(x) + d(x) + d̄(x) + s(x) + s̄(x) + . . . ] = 1− ϵ , (2.21)

where ϵ is the fraction of momentum that is not carried by quarks. Empirical evidence
suggests that ϵ ≈ 1/2 (at Q2 ∼ 10 − 40GeV 2), indicating that roughly half of the
momentum is carried by gluons. This underscores the pivotal role of gluons in shaping
proton structure, highlighting the limitations of the naive quark model, particularly at
large Q2.

Additionally, PDFs themselves cannot be directly measured but are determined through
a combination of experimental data and theoretical calculations. Global fits to experi-
mental data with DIS experiments, are used to extract PDFs at various energy scales,
providing essential information.

2.2.1 Evolution equations

One of the most remarkable predictions of the quark-parton model is that the structure
functions exhibit scaling behavior as Wi(x,Q

2) → Fi(x) in the Bjorken limit, where Q2,
and ν tend toward infinity while keeping x fixed, Eq. (1.18). This property is based on
the assumption that partons’ transverse momentum in the proton’s infinite-momentum
frame is small. However, in QCD, the emission of hard gluons from quarks violates this
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assumption, resulting in logarithmic scaling violations, particularly at low values of x.
This emission of gluons leads to the evolution of structure functions. As Q2 increases,
more gluons are emitted, subsequently splitting into qq̄ pairs. This process leads to
a softening of the initial quark momentum distributions and an increase in both the
gluon density and the qq̄ sea as x decreases. In the framework of QCD, this process is
explained through scale-dependent parton distributions fa(x, µ2), where a represents
either gluons (g) or quarks (q) and, µ is the scale associated with the probe Q2.

This evolution in µ is described then by the DGLAP equations [42] which have the
schematic form:

∂qNS

∂lnµ2
=
αs(µ

2)

2π
Pqq ⊗ qNS ,

∂

∂lnµ2

(
qS

g

)
=
αs(µ

2)

2π

(
Pqq 2NfPqg

Pgq Pgg

)
⊗

(
qS

g

)
, (2.22)

where ⊗ denotes a convolution operation:

C ⊗ f =

∫ 1

x

dy

y
C(y)f

(
x

y

)
, (2.23)

also, Pab describes the probability of a given parton splitting into two others. Nf

is the number of active quark flavors, g represent the gluon distribution, meanwhile
qNS = qi − q̄i and qS =

∑
(qi + q̄i) represents the non-singlet and singlet quarks

distributions respectively. The leading-order Altarelli-Parisi splitting functions [43] are
as follows:

Pqq =
4

3

[
1 + x2

1− x +

]
+ 2δ(1− x) ,

Pqg =
1

2

[
x2 + (1− x)2

]
,

Pgq =
4

3

[
1 + (1− x)2

x

]
,

Pgg = 6

[
1− x

x
+ x(1− x) +

x

(1− x)+

]
. (2.24)

Finally, the notation [H(x)]+ defines a distribution in such a way that for any suffi-
ciently regular test function h(x): h(x)[H(x)]+ = (h(x)− h(1))H(x).
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In these DGLAP equations, the initial PDFs cannot be predicted at a specific µ0 be-
forehand. Thus, they must be measured at an initial scale µ0 before QCD predictions
can be compared to data at different scales µ. In general, all observables involving a
hard hadronic interaction (such as structure functions) can be expressed as a convo-
lution of calculable, process-dependent coefficient functions and these universal parton
distributions.

2.3 Generalized Distribution Functions

Figure 2.1: Left panel- Deeply virtual Compton scattering process of pion. Right
panel- Quark GPD contibution to the DVCS.

The generalized parton distributions (GPDs) have emerged as a comprehensive tool
to describe a three-dimensional image hadron structure probed in hard scattering pro-
cesses [44–51]. These GPDs establish a connection between the electromagnetic form
factors (EFFs) of hadrons, measured in elastic processes, and the longitudinal PDFs,
which are probed in DIS experiments. In other words, GPDs provide a kaleidoscopic
view of the 3D spatial structure of hadrons being a generalization of the EFFs and the
PDFs. According to this, they are expressed as functions of the longitudinal momen-
tum fraction x, the momentum transfer t, and the skewness variable ξ (representing
longitudinal momentum transfer).

Experimental measurements of GPDs are achievable through processes like deeply vir-
tual Compton scattering (DVCS), in which an electron scatters off a proton that carries
a momentum p. This interaction results in the production of a photon in the final state
in addition to a nucleon with momentum p′, where −t = ∆2 = (p− p′)2. An example
of a pion DVCS is illustrated in the Figure 2.1.
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GPDs are determined through the Fourier transformation of nonlocal matrix elements
associated with hadrons. In the context of this thesis, our primary emphasis will be on
pseudoscalar mesons, then in this case, the corresponding quark GPD is as follows [48]:

Hq
M(x, ξ, t) =

∫
dλ

2π
eixλ⟨p|ψ̄q

(
−λn

2

)
/nψq

(
λn

2

)
|p′⟩ , (2.25)

where n is a light-like four-vector, such that n2 = 0, and n · P = −mM with P =

(p+ p′)/2, and p (p′) the initial (final) meson momentum.

Lightfront quantization is a valuable method that enables us to represent any state of
hadrons with a specific momentum using a Fock basis composed of N-particle partonic
states. These states are characterized by lightfront wave functions (LFWFs), which
encompass all the crucial nonperturbative aspects (we will delve deeper into these
functions in Chapter 4). As a result, it becomes practical to describe GPDs in terms
of these LFWFs. However, it is important to recognize that the partonic framework
and the connection between GPDs and LFWFs may exhibit variations depending on
the specific kinematic conditions.

In the DGLAP region, when |x| > ξ, the GPD can be seen as an overlap of LFWFs,
particularly focusing on the same number of constituents. To illustrate, studying pseu-
doscalar mesons and just considering the valence contribution (i.e., the two-particle
Fock state), in the DGLAP region, we can describe the GPD using the so-called over-
lap representation [48], namely:

Hq
M(x, ξ, t)=

∫
d2k⊥
16π3

ψq∗M
(
x−, (k−

⊥)
2
)
ψqM
(
x+, (k+

⊥)
2
)
,

x± =
x± ξ

1± ξ
, k±

⊥ = k⊥ ∓ ∆⊥

2

1− x

1± ξ
. (2.26)

The momentum transfer is defined by −t = ∆2 = (p− p′)2; ∆2
⊥ = ∆2(1− ξ2)− 4ξ2m2

M.
In addition, the longitudinal momentum fraction transfer is ξ = [−n · ∆]/[2n · P ].
Both x and ξ have support on [−1, 1]. The kinematical completion (the extension to
the ERBL domain), required to fulfill the polinomiality property [48], can be achieved
through the covariant extension from Refs. [52–55]. Notwithstanding, the GPD is even
in ξ and only non-zero for the valence quark if x > −ξ (the antiquark GPD is non-zero
if x < ξ); hence, in this thesis, we shall restrain ourselves to ξ ≥ 0. Notice again
that Eq. (2.26) implies that the meson is described as a two-body Fock state. This
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picture is then valid at the hadronic scale, in which the fully dressed quark/antiquark
quasiparticles encode all the properties of the meson.

In the scenario where we approach the forward limit, with ξ = 0 and t = 0, x transforms
into the Bjorken-x, leading to the simplification of the GPD into a PDF:

qM(x) = Hq
M(x, 0, 0) . (2.27)

For the corresponding antiquark, h̄M , at the hadronic sacale:

h̄M = qM(1− x) . (2.28)

Furthermore, regardless of the specific value of ξ the computation of the electromagnetic
pion form factor is achievable through:

F q
M(t) =

∫ 1

−1

dx Hq
M(x, ξ, t) . (2.29)

We well delve into the extraction of this functions in the chapter 4.

2.4 Parton Distribution Amplitude

The Parton distribution amplitudes (PDAs) are analogous to wave functions in momen-
tum space in the context of quantum mechanics, including all the properties demanded
by a QFT. These functions enable us to study the moment distribution for dressed va-
lence quarks within a hadron. PDAs are described in the light-cone formalism, where
the eigenfunctions of the Hamiltonian are independent of the system’s four-momentum.

The explicit definition of a PDA can be understood as a probability distribution for
finding a valence quark-antiquark pair with momentum fractions x and 1 − x, re-
spectively, forming a bound state. Mathematically, this distribution is defined as the
projection of the Bethe-Salpeter wave function, χM(k, P ) (we will further explore this
equation in Chapter 3), onto the light-cone. In the context of a pseudoscalar meson,
the expression takes the form:

fMϕM(x) = TrCD

∫
dk

δ(n · k − xn · P )γ5γ · nχM(k, P ) . (2.30)
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Here, fM is the meson’s decay constant, ϕ(x) corresponds to the PDA, and P is the
total momentum of the meson such that P 2 = −m2

M (with mM being the meson’s
mass). n is the light-front four-vector, satisfying n2 = 0 and n · P = −mM . Lastly,

∫
dk

represents a Poincaré-invariant four-dimensional integral.

Independent of the valence quarks constitution, in the asymptotic limit, when the scale
µ→ ∞, the PDA takes the form:

ϕCL(x) = ϕ(x, µ→ ∞) = 6x(1− x) . (2.31)

Furthermore, the Mellin moments of the distribution corresponding to the PDA are
given by:

⟨xm⟩ =
∫ 1

0

xmϕM(x)dx , (2.32)

where, once again it is essential to satisfy the normalization condition:

⟨x0⟩ =
∫ 1

0

dxϕM(x) = 1 . (2.33)

New facilities are nowadays discussed to test the behavior of hadrons at different en-
ergy scales in order to produce important quantum states for the Physics community
such are the Goldstone bosons. Since pion and kaon pseudoscalar mesons are largely
produced in high-energy reactions, one would naively expect that the kinematics of the
constituent partons would be known at a certain level of accuracy. However, strong
dynamics makes this statement hard to realize, since the separation of soft from hard
interactions is not a simple task. Thus, as an alternative approach, the theoretical com-
munity is developing different effective theories to understand the full theory of hadrons
and providing accurate phenomenological predictions. In fact there have been great
predictions inspired by phenomenological approaches for instance, Schwinger-Dyson
equations (SDEs) [26, 56–59], lattice-QCD [60], Non-relativistic QCD (nrQCD) [61],
etc. In the following chapter we will focus on the Schwinger-Dyson equations to de-
scribe then the most fundamental particles and its interactions in the non perturbative
regime.



Chapter 3

The Schwinger-Dyson and
Bethe-Salpeter Approaches

The SDEs, named in honor of Julian Schwinger and Freeman Dyson, have earned a
classic status since their introduction at the inception of quantum field theory. These
non-perturbative equations form an infinite set of coupled integral equations that estab-
lish the connection between Green’s functions in a quantum field theory. Consequently,
they offer a comprehensive depiction of the theory, enabling the investigation of cru-
cial aspects of QCD, such as dynamical chiral symmetry breaking (DCSB) and the
confinement of quarks and gluons.

Deriving the SDEs can be accomplished through Feynman path integrals or via an
intuitive approach involving perturbative diagrammatic expansion in powers of the α
coupling. However, this yields an infinite series of coupled integral equations, neces-
sitating truncation for practical purposes. The most widely known and systematic
truncation is the perturbative approach. Despite its effectiveness, there are instances
where this expansion is not viable due to α being close to or even exceeding 1. In
such cases, non-perturbative methods become indispensable for truncating these infi-
nite equations. Various truncation schemes exist, and we will explore some of these
later.

On the other hand, as we already know QCD is a gauge theory, quarks are confined
inside hadrons and their mass (principaly for the light quarks) is dynamically generated
through their interactions with gluons which is visible from the mass function, this

33
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can be understood through DCSB. Therefore, let us proceed with describing the quark
SDEs and the Bethe-Salpeter equation corresponding to the mesons first using a general
and intuitive approach.

It is important to note that the solutions to Dyson-Schwinger equations are obtained
in Euclidean space. Consequently, the crucial question of how to convert the results
between Euclidean space and Minkowskian space arises. In the following, we will use
then Euclidean time. Further details are provided in Appendix B.

(a) (b) (c)

Figure 3.1: Representation of a dressed propagator and a vertex. (a) Dressed quark
propagator, S(p). (b) Dressed gluon propagator, ∆µν(q). (c) Dressed quark-gluon

vertex, Γµ(k, p).

Firstly, we present a schematic representation of the fully dressed propagators and ver-
tex in Figure 3.1. The term “dressed” indicates that they include all possible corrections
and have corresponding Feynman rules with additional factors compared to tree-level
(or bare) propagators. Furthermore, each of these propagators and vertex obey their
own SDE.

Figure 3.2: Corrections to the fermionic propagator.

The quark SDE, also known as the GAP equation, describes the dressed quark propa-
gator, which can be derived by summing all conceivable perturbative corrections to the
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bare fermionic propagator S0(p). In the context of QED interactions with the photon
as the mediating gauge boson, there are four infinite series of corrections: re-corrections
(combinations and repetitions of all correction types), corrections to the quark propaga-
tor, corrections to the photon propagator, and corrections to the quark-photon vertex.
These components are visually depicted in Figure 3.2.

Figure 3.3: Complete fermionic propagator.

To simplify the representation, each type of correction can be denoted with a filled
circle in its corresponding propagator or vertex, being the dressed propagators or vertex,
leading to a reduced expression, as shown in Figure 3.3. Vertex corrections are displayed
on one side to avoid redundancy.

This diagrammatic representation is mathematically expressed as:

iS(p) = iS0(p) + iS0(p)Σ(p)iS0(p) + iS0(p)Σ(p)iS0(p)Σ(p)iS0(p) + ...

= iS0(p) + iS0(p)Σ(p) [iS0(p) + iS0(p)Σ(p)iS0(p) + ...]

= iS0(p) + iS0(p)Σ(p)iS(p) , (3.1)

where Σ(p) is named as the self energy, and S0(p)
−1 = (i ̸p +m0) represents the bare

fermionic propagator with m0 the bare current quark mass as discussed in Chapter 1.

Multiplying the Eq. 3.1 on the right by −iS−1(p) and on the left by S−1
0 (p), we obtain

S−1
0 = S−1(p) + iΣ(p) , (3.2)

from which it is evident that

S−1(p) = S−1
0 (p)− iΣ(p) . (3.3)

This corresponds to the GAP equation, and can also be represented diagrammatically
as shown in Figure 3.4.

Similarly, we can extend this result to the exchanged QCD interaction by substituting
the photon propagator with the gluon propagator. It is essential to note that unlike
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Figure 3.4: Quark Schwinger-Dyson equation.

the photon, the gluon interacts with itself through additional interactions adding many
more Feynman diagrams. Nevertheless, when employing more sophisticated methods
for calculations, they converge to the result obtained in Eq. (3.3).

3.1 Quark Schwinger-Dyson equation

One of the most studied SDE is the GAP equation (shown in Figure 3.4) which bounds
the fully dressed gluon propagator, the fully dressed quark-gluon vertex and again
the quark propagator. The quark SDE corresponding to Eq. (3.3) can be explicitly
expressed as:

S−1(p) = Z2(iγ · p+m0) + Σ(p) , (3.4)

where m0 is the bare current quark mass, Z2 is the quark renormalization constant and
the self-energy has the explicit form:

Σ(p) = Z1fg
2Cf

∫
Λ

d4q

(2π)4
γµS(q)Γν(l, k)Dµν(k) , (3.5)

where,

• g is the strong coupling (αQCD = g2/(4π)), the prefactor Cf = 4/3 comes from
the color trace and the subscript Λ (the mass scale) indicates that the integral is
regularised.

• Dµν(k) is the dressed gluon propagator that depends on the gluon momentum
k = q − p.

• Z1f is the quark-gluon vertex renormalization constant. Both, Z1f and Z2 depend
on the renormalization scale µR and on the regulator Λ.
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• The dressed quark-gluon vertex gΓν(l, k) depends on the average quark momen-
tum l = (q + p)/2 and the gluon momentum k. It consists of 12 Lorentz-Dirac
tensors:

Γν(l, k) =
4∑
j=1

(
f
(1)
j iγν + f

(2)
j ilν + f

(3)
j ikν

)
τj(l, k) , (3.6)

where fmj (l2, l · k, k2,m2) with m = 1, 2, 3 as Lorentz invariant functions and
τj(l, k) = {1, ̸k, ̸ l, [̸ l, ̸k]}.

To ensure that the GAP equation can accurately reproduce perturbation theory, it
must satisfy the following condition:

S−1(p)|p2=µ2R = iγ · p+mq(µR) , (3.7)

where, mq(µR) is the renormalized current quark mass.

In QFT, the fundamental quantity characterizing a particle is its propagator. The
counterparts of Eq. (3.10) for the propagators in QCD are the SDEs. Then, the most
general form for the dressed quark propagator is

S(p) =
−iγ · pA(p2, µ2

R) +B(p2, µ2
R)

A2(p2, µ2
R)p

2 +B2(p2, µ2
R)

= −iγ · pσv(p2, µ2
R) + σs(p

2, µ2
R) , (3.8)

≡ F (p2, µ2
R)

iγ · p+M(p2, µ2
R)
, (3.9)

⇒ S−1(p) = iγ · pA(p2, µ2
R) +B(p2, µ2

R), (3.10)

where, A(p2, µ2
R) and B(p2, µ2

R), or equivalently σv(p2, µ2
R) and σs(p2, µ2

R), or F (p2, µ2
R)

and M(p2, µ2
R) are the dressing functions. Also, p2 take values p2 ∈ C. Furthermore,

as we already know the analytic structure of the propagators are more complex, hence,
the functions σv(p2, µ2

R) and σs(p2, µ2
R) can also have poles in the complex plane of p2,

where the particles are on-shell (p2 = −m2
q).

The so-called renormalization of the wave function and the quark mass function are
defined as F (p2, µ2

R) = 1/A(p2, µ2
R) and M(p2, µ2

R) = B(p2, µ2
R)/A(p

2, µ2
R) respec-

tively. For a free spin-1/2 particle, the propagator simplifies to level tree according
to A(p2, µ2

R) = 1 and B(p2, µ2
R) = mq(µR). Using the renormalization conditions of
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Eq. (3.7) one can relate M(p2, µ2
R) with mq(µR) through

mq(µR) =M(µ2
R) . (3.11)

To ensure multiplicative renormalization, the mass function is unaffected by the renor-
malization constant, setting it apart from the other dressing functions. That is,
M(p2, µ2

R) =M(p2).

Subsequently, in order to perform actual calculations, it becomes imperative to establish
a truncation scheme, which will be discussed later. Prior to that, we shall present an
overview of the equation governing quark-antiquark bound states, known as the Bethe-
Salpeter equation.

3.2 Bethe-Salpeter equation

The BS equation provides a fully relativistic description of two-particle bound states,
particularly relevant in the context of mesons. Independently formulated by several
groups in the early 1950s [56, 57, 62–64], this equation, illustrated in Figure 3.5, repre-
sents a homogeneous integral equation that determines the BS amplitude (BSA). The
explicit form of the BSE is given by

[ΓabM(p, P )]αβ =

∫
d4q

(2π)4
[K]αγ,δβ[χ

ab
M(q, P )]γδ , (3.12)

χabM(q, P ) = Sa(q+)Γ
ab
M(q, P )Sb(q−) , (3.13)

where,

• ΓabM(p, P ) is the BSA of the meson (M) which represents the amputated and irre-
ducible quark-meson vertex.

• χabM(q, P ) corresponds to the BS wave function (BSWF).

• K is the quark-antiquark irreducible kernel and the Greek subscripts are multi-
indices in Dirac, color and flavor space. This must be determined consistently
with the truncation of the gap equation.

• And again, S(q±) is the dressed quark propagator.
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Figure 3.5: Bethe-Salpeter equation.

The kinematics for the BSA can be inferred from Figure 3.5. The amplitude depends
on two independent momenta, the quark momenta p+ and p−, or equivalently the total
meson momentum P and relative quark momentum p which are related by

p± = p± P

2
⇔

P = p+ − p−

p = p++p−
2

}
⇒ p± = p2 +

P 2

4
± p · P . (3.14)

The analogous relations hold for the momenta inside the momentum loop, i.e., q± =

q ± P/2. The total meson momentum is on-shell, i.e., P 2 = −m2
M , where mM is the

mass of the meson M.

The BSA ΓM(p,Q) has a Dirac, flavor and color part:

ΓM(p,Q) = Spin⊗ Flavor ⊗ Color . (3.15)

Specifically, we use the notations Γ5 for pseudoscalars (PS), Γµ for vectors (V), Γ1 for
scalars, and Γ5µ for pseudovectors or axial-vectors (AV), each representing different
meson types with distinct transformation properties corresponding to their respective
quantum numbers. The tensor structure of the BSA is thus dependent on the meson
type, reflecting these diverse characteristics.

Consider, for instance, the pion, a PS meson with quantum numbers JPC = 0−+. In
this case, the spin part of the Bethe-Salpeter amplitude (BSA) is represented by a
matrix in Dirac space, relying on four linearly independent Dirac tensors (f1 + f2i /P +

f3(p · P )i/p + f4[/p, /P ]). These are associated with corresponding dressing functions
fi(p

2, z, P 2 = −m2
M). The complete BSA for a PS meson is expressed as follows:

Γab5 (p, P ) = γ5[iE5(p, P ) + γ · PF5(p, P ) + γ · p p · PG5(p, P ) + pασαβPβH5(p, P )] .

(3.16)



Chapter III. The Schwinger-Dyson and Bethe-Salpeter Approaches 40

Similarly, the corresponding antimeson possesses a BSA given by:

Γ̄ba5 (p, P ) = [C−1Γab5 (−p, P )C]T . (3.17)

The issue of normalizing the Bethe-Salpeter wave function is also worth mentioning.
A well-defined normalization condition has been elegantly derived by Lurié et al. [65],
and in a covariant form the canonical normalization condition is [66]:

2Pµ =
∂

∂Pµ

{∫
dq4

2π4
trCD

[
Γ̄baM(q,−K)Sa(q+)Γ

ab
M(q,K)Sb(q−)

]}
+

∂

∂Pµ

[∫
dq4

2π4

∫
dk4

2π4
trCD

(
[χ̄baM(k,−K)]βα[K]αγ,δβ[χ

ab
M(q,K)]δγ

)]
, (3.18)

where K2 = P 2 = −m2
M. This condition ensures that the Bethe-Salpeter amplitude

accurately describes a meson with unit probability.

To solve the Bethe-Salpeter equation (BSE), one must possess knowledge of the quark-
antiquark kernel K. This kernel encompasses the sum of all conceivable qq̄ interactions
between quarks. When formulating such a kernel, it is crucial to exercise caution and
ensure that fundamental properties, such as the Ward-Takahashi Identities (WTI) [67],
are satisfied, and that the model remains consistent with the gap equation.

In the subsequent section, we will introduce a well-established truncation scheme that
addresses these concerns.

3.3 Truncation scheme

As mentioned earlier, the quark-gluon vertex and the gluon propagator are governed
by their own SDE, forming an infinite set of coupled equations that require a feasible
treatment. To manage this complexity, a practical approach is to truncate the equations
systematically by introducing an Ansatz for the quark-gluon vertex and the gluon
propagator, effectively decoupling the infinite tower.
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First, considering the gluon propagator, for convenience we work in Landau gauge [68,
69] (ξ = 0), where the gluon propagator is given by

Dµν(k) = (δµν −
kµkν
k2

)
Z(k2)

k2
, (3.19)

and Z(k2) is the gluon dressing function, which serves to model the non-perturbative
behavior of the propagator at small k2 values while preserving the perturbative be-
havior at large k2 values. The Landau gauge serves as the fixed point within the
renormalization group [68, 69]. Additionally, it effectively removes any corrections to
the longitudinal component of the gluon propagator at all orders. Besides, it allows one
to model the quark-gluon vertex without adding an explicit dependence on the gauge
parameter.

Several models have been proposed for the gluon propagator in the infrared region [70],
and significant progress has been made in our understanding of it [71–73]. The dressing
function is bounded and exhibits a maximum at k2 = 0, gradually decreasing along the
space-like axis. Just like quarks, gluons dynamically acquire mass in the infrared, with
this mass falling in the range of hundreds of MeVs.

Conversely, the quark-gluon vertex necessitates a tensor structure comprising 12 compo-
nents. Researchers worldwide have made extensive efforts to construct this quark-gluon
vertex [74–77]. A crucial requirement is that it accurately reproduces all perturbative
predictions in the ultraviolet regime and adheres to constraints in the infrared region.

Considering these crucial considerations, the “Rainbow-Ladder truncation” emerges as
a plausible Ansatz that consistently truncates both the gap equation and the Bethe-
Salpeter equation.

Rainbow-Ladder truncation

We consider the “rainbow-ladder” approximation, where the dressed quark-gluon vertex
is assumed to be bare:

Γν(l, k) = f(k2)γν , (3.20)
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where the dressing function f(k2) depends on the gluon momentum only, which is

α(k2) =
g2

4π

Z1f

Z2
2

Z(k2)f(k2) . (3.21)

Subsequently, we have the Maris-Tandy (MT) model [66, 78] for the coupling constant
α(k2) given by:

α(k2) = πη7x2e−η
2x +

2πγm

(
1− e−k

2/Λ2
t

)
ln
[
e2 − 1 +

(
1 + k2/Λ2

QCD

)2] , x =
k2

Λ2
. (3.22)

Here, we set specific parameters for the two terms: for the ultraviolet part, Λt = 1

GeV, ΛQCD = 0.234 GeV, and γm = 12/25; whereas for the infrared part, Λ = 0.72

GeV and η = 1.8.

The MT model offers a commendable description of the properties of PS and V mesons.
However, it has certain limitations. An alternative model that possesses the advan-
tageous features of the MT model while avoiding its disadvantages is the Qin-Chang
(QC) model. However, within the scope of the particular objectives of this study, there
is no need to explore this more sophisticated alternative model. Consequently, we can
proceed with confidence to address the gap and BSE equation using the MT model.

3.4 Numerical results

3.4.1 Solving the quark SDE

To solve the gap equation, we incorporate our truncation scheme and the general equa-
tion of the quark propagator, Eq. (3.10), into the quark SDE, Eq. (3.4). Subsequently,
we multiply and divide the left-hand side of the equation by the complex conjugate of
A(q2)iγ · q +B(q2) to facilitate the application of the trace operation, resulting in:

B(p2) = Z2Zmm+
4

3
Z2

2

∫
d4q

(4π)4
4πα(k2)

k2
3B(q2)

[A(q2)q2 +B2(q2)]
. (3.23)
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Alternatively, prior to applying the trace operation, we can multiply by i/p to simplify
the calculations and obtain:

A(p2) = Z2 +
4

3
Z2

2

∫
d4q

(4π)4
4πα(k2)

p2k2
A(q2)q2

[A(q2)q2 +B2(q2)]

[
q · p+ 2

k2
(p · k)(q · k)

]
.

(3.24)

On the other hand, the integral is given by∫
d4q

(4π)4
=

1

2

∫ L2

0

dq2
q2

(2π)4

∫ 1

−1

dz
√
1− z2

∫ 1

−1

dy

∫ 2π

0

dϕ . (3.25)

Here, L represents the cutoff in the system, and we employ hyperspherical variables:

qµ =
√
q2


√
1− z2

√
1− y2sinϕ

√
1− z2

√
1− y2cosϕ

√
1− z2y

z

 , pµ =
√
p2


0

0

0

1

 . (3.26)

Notably, the only Lorentz invariants in the system are p2, q2, and p · q =
√
p2
√
q2z,

resulting in the two integrations over the variables y and ϕ becoming trivial. Hence,
only the integrations over q2 and z remain. Additionally, the squared gluon momentum
is expressed as:

k2 = p2 + q2 − 2p · q = p2 + q2 − 2pqz , (3.27)

where q =
√
q2 and p =

√
p2.

The self-energy integrals are logarithmically UV-divergent when the cutoff L is sent to
infinity, necessitating renormalization. Therefore, we impose the following conditions:

A(µ2) = 1, B(µ2) = mq . (3.28)
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Here, mq denotes the renormalized current-quark mass at some arbitrary renormaliza-
tion point p2 = µ2. Evaluating Eqs. (3.23) and (3.24) at µ2, we can derive:

Z2 =
−1 +

√
1 + 4

∑
A(µ2)

2
∑
A(µ2)

, (3.29)

Zm =
mq − Z2

2

∑
B(µ2)

Z2mq

, (3.30)

where,
∑
A(µ2) is the self-energy of the Eq. (3.24) evaluated in µ2 and the same for∑

B(µ2) respect the Eq. (3.23).

Integration method

To solve the quark SDE as described above and determine A(p2) and B(p2) as M(p2) =

B(p2)/A(p2) we used Gaussian quadrature which tells us that we can solve the integrals
using an approximation by sums like∫ b

a

g(x)f(x)dx ≈
n∑
i=1

wif(xi) , (3.31)

where wi is the weight. The function g(x) appears only on the left-hand side. It allows
to make the quadrature exact for polynomials up to order 2n − 1 times the function
g(x). The values of the positions xi and of the weights wi depend on the choice of g(x).
For example, for g(x) = 1 it is called a Gauss-Legendre quadrature since it is based on
Legendre polynomials. This implies that the choice of g(x) also determines the values
of the limits, a and b. For Gauss-Legendre they are set to a = −1 and b = 1. Therefore,
an integral with different limits must be transformed to this interval. In principle, any
transformation of an interval z ∈ [a, b] that transforms this interval into x ∈ [−1, 1] is
possible.

For the integrals that we need to solve it is necessary to take for q the Gauss-Legendre
quadrature and for the integration in z a Gauss-Chebyshev quadrature.
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For integrands for which the integration variable stretches over several orders of mag-
nitude a logarithmic transformation is advantageous. Then, the change (x ∈ [−1, 1]

and z ∈ [a, b]):

z =
(b− a)x+ a+ b

2
⇒ dz =

(b− a)

2
x , (3.32)

allows to have a general integral as∫ b

a

dzf(z) =
(b− a)

2

n∑
i

wif(zi) , zi = z(xi) , (3.33)

where the Jacobian can be taken into account directly in the weights. Therefore, we
can take

x = A+B ln z , (3.34)

z = e(z−A)/B , (3.35)

where the coefficients A and B are determined by the conditions x(a) = −1 and
x(b) = 1 and the Jacobian:

dz =
1

B
e(z−A)/Bdx . (3.36)

Now, we can continue with the mass function.

Mass function

Initially, we solved Eqs. (3.23) and (3.24) by considering only the first term of Eq. (3.22),
which corresponds to the infrared part without the ultraviolet component. In this
approach, renormalization was unnecessary, leading to Z2 = Zm = 1. Subsequently,
using the quark masses provided in Table 3.1, we obtained the left panel of Figure 3.6.

Next, we extended the calculation to include both terms of Eq.( 3.22), and we evaluated
Eqs. (3.29) and (3.30) at µ = 19 GeV. The resulting values were used to construct the
right panel of Figure 3.6, where, once again, we employed the current quark masses
from Table 3.1.
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Up Down Strange Charm Bottom Top
Current Mass [GeV] (mq) 0.0023 0.0048 0.095 1.275 4.18 173.07

Table 3.1: Current Masses of the quarks

Figure 3.6: Quark mass function for different flavors as a function of the momentum
P 2. The current masses of table 3.1 were used. Right panel- Mass function using the
ultraviolet and infrared part in the Maris-Tandy model. Left panel- Mass function

using only the infrared part in Maris-Tandy model.

Scalar and vector sigma fits

From Eq. (3.10) we observe that the quark propagator can be expressed in a scalar
term and other vector term, where

σv =
A(p2)

A2(p2)p2 +B2(p2)
, σs =

B(p2)

A2(p2)p2 +B2(p2)
. (3.37)

These terms were extracted from the program as shown in Figure 3.7, where we also
made a fit of the data whit the complex plane.
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Figure 3.7: Right panel- σs(p2). Left panel- σv(p2).
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We can observe that the use of only the infrared part in the Maris-Tandy model is
a very good approximation since in effect we can see how the quarks acquire mass
dynamically, which is thanks to the DCSB. However, for greater precision in the mass
function and in specific the chiral limit where mq = 0 is required to take into account
the ultraviolet part as well.

3.4.2 Solving the BS equation

Resuming the BSE:

[ΓabM(p, P )]αβ =

∫
d4q

(2π)4
[K]αγ,δβ[χ

ab
M(q, P )]γδ , (3.38)

χabM(q, P ) = Sa(q+)Γ
ab
M(q, P )Sb(q−) . (3.39)

It is necessary to mention that the interaction kernel’s dependence on the truncation
scheme is established through the following relation:

[
Σ(p+)γ5 + γ5Σ(p−)

]
=

∫
d4q

(2π)4
[K]αγ,δβ [γ5S(q−) + S(q+)γ5] , (3.40)

which is a corollary of the axial-vector WTI [67]. This guarantees that, in the chiral
limit, the ground state PS mesons remain massless, despite the considerable enhance-
ment of quark mass functions in the infrared (i.e. pions are the Goldstone bosons).
In the case of explicit chiral symmetry breaking, it also establishes a precise connec-
tion between the PS meson mass, weak decay constant, current quark masses and the
residue at the PS meson pole in the PS vertex [66].

Now, considering our focus on pions in the calculations of the BSE, the rainbow-ladder
truncation satisfies the following constraints for the kernel in the BSE:

Kαγ,δβ = Z2
2

4πα(k2)

k2
(ta)AC(ta)DB(iγ

µ)αγT
µν
k (iγν)δβ . (3.41)

Here, Z2 denotes the quark renormalization constant, while kµ represents the gluon
momentum. Working in Landau gauge, the transverse projector Tµν = δµν − kµkν/k2

is utilized. Additionally, the generators of SU(3)c in the fundamental representation
are denoted as ta = λa/2, where the λa correspond to the eight Gell-Mann matrices as
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previously discussed in Chapter 1. The MT model, represented by α(k2), is defined in
a previous section, as seen in Eq. (3.22).

Regarding the flavor aspect in Eq. (3.15), it is worth noting that the rainbow-ladder
kernel is flavor-independent and, taking advantage of our focus on pions, we can capi-
talize on isospin symmetry for the flavor part. Therefore, the flavor matrices for pions
remain the same on both sides of the BSE, we can conveniently omit them.

On the other hand, concerning the color part in Eq. (3.15), as the pion is a color singlet,
its color matrix becomes δAB/

√
3. To conveniently maintain color normalization of 1,

we include a factor of 1/3. Thus, the color factors of the BSE can be combined, resulting
in:

(ta)AC(ta)DB
δCD√
3

=
1√
3

8∑
a=1

(t2a)AB =
4

3

δAB√
3
. (3.42)

In summary, the Dirac part of the BSE becomes:

Γπ(p, P ) = −4

3

∫
d4q

(2π)4
Z2

2

4πα(k2)

k2
T µνk γµS(q+)Γπ(q, P )S(q−)γ

ν . (3.43)

Similarly, as in the quark SDE, the integral measure is given∫
d4q

(4π)4
=

1

2

∫ L2

0

dq2
q2

(2π)4

∫ 1

−1

dz′
√
1− z′2

∫ 1

−1

dy

∫ 2π

0

dϕ , (3.44)

where L serves as the cutoff in the system, and we use the hyperspherical variables:

P µ = imπ


0

0

0

1

 , qµ =
√
q2


√
1− z′2

√
1− y2sinϕ

√
1− z′2

√
1− y2cosϕ

√
1− z′2y

z′

 , pµ =
√
p2


0

0
√
1− z2

z

 . (3.45)

The only Lorentz invariants in the system are P 2 = −m2
M , p2, q2, p · P ∝ z, q · P ∝ z′

and p · q ∝ y, so the integration over ϕ become trivial and we can set ϕ = 0 right away.

We have all the necessary components to solve Eq. (3.43). By expressing Eq. (3.15) as

Γπ(p, P ) =
4∑
i=1

fi(p
1, z)ti(p, P ) , (3.46)
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and substituting this into the BSE, we can project out the fi on the left-hand side by
contracting the equation with the charge-conjugate basis elements t̄i. Since the ti are
not orthonormal, we have

Hij(p
2, z) =

1

4
Tr {t̄i(p, P )tj(p, P )} ≠ δij . (3.47)

As a result, the BSE transforms into

Hij(p
2, z)fj(p

2, z) =

∫
q

Kijfj(q
2, z′) , (3.48)

Kij = Z2
2

16π

3

α(k2)

k2
T µνk

1

4
Tr {t̄i(p, P )γµS(q+)tj(q, P )S(−q−)γν} . (3.49)

The matrices H and K are known, leading to a homogeneous linear integral equation
for the fi.

This approach allows us to numerically solve the quark SDE and the BSE, generating
grids of numerical estimates for the quantities A, B, Eπ, Fπ, and Gπ of the Eqs. (3.24,
3.23, 3.16). Within this scheme, Hπ is usually neglected as it does not significantly
contribute. However, these numerical grids might not be well-suited for future non-
perturbative calculations of hadronic functions. To address this, parameterizations
have been developed that enable interpolation within these grids for both the quark
propagator and the BSAs.

3.5 Analytic parametrizations

These parameterizations are commonly referred as Perturbation Theory Integral Rep-
resentations (PTIR) [79–82], as they exhibit similarities to expressions found in per-
turbation loop computations.

For the quark propagator, a typical parameterization involves the utilization of complex
conjugate poles:

S(q) =
N∑
j=1

(
zj

iγ · q +mj

+
z∗j

iγ · q +m∗
j

)
, (3.50)
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where mj and zj are parameters determined from the numerical solutions. It is es-
sential that at least one parameter mj possesses a nonzero imaginary part, ensuring
that the propagator avoids having poles on the real axis and maintains confinement
characteristics.

Specifically, the dress functions are given by:

σv(q) =
N∑
j=1

(
zj

q2 +m2
j

+
z∗j

q2 +m2
j

)
, σs(q) =

N∑
j=1

(
zjmj

q2 +m2
j

+
z∗jm

∗
j

q2 +m2
j

)
, (3.51)

wich meets that S(q) = −iγ · qσv(q2) + σs(q
2), and it exhibits good fits for N ≥ 2.

An appealing feature of this approach is that, by considering space-like moments, it
prevents the generation of on-shell quarks.

For parameterizing the BSAs, one effective technique is employing the Nakanishi inte-
gral representation (NIR) [83] or a similar form. This method involves expressing the
BSAs as a functional form resembling the tree-level quark propagator, integrated over
a spectral density as follows:

FM(p, P ) = F IR(p, P ) + FUV (p, P ) , (3.52)

Fk(p, P ) =

∫ 1

−1

dzρ(z)

∫ ∞

0

dΛ(Λ− Λc)
1

(p2 + zp · P + Λ2)n
, (k = IR, UV ) ,(3.53)

where, FM(p, P ) is the meson BSA, Fk(p, P ) are the infrared or ultraviolet BSAs, ρ(z)
is the spectral density, Λc is a mass scale, and n is some suitable power.

Utilizing the Nakanishi representation, we can construct an illuminating Algebraic
Model (AM) for both the quark propagator and the Bethe-Salpeter amplitude, as we
will explore further. However, before delving into that, let’s consider a model based on
a vector × vector treatment of the SDEs named Contact Interaction (CI). This model
not only incorporates confinement but also ensures the satisfaction of the axial vector
WTI and at low energy the Goldberger-Treiman relations [84].

Both models offer the advantage of significant algebraic simplicity, enabling for ex-
ample, straightforward calculations of EFFs even at high virtualities of the squared
probe photon’s momentum. This feature makes them valuable tools for the analysis
of hadrons. In the upcoming sections, we will delve into the broader applications and
scope of both models.
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3.6 Contact Interaction model

We already mentioned that CI is a symmetry-preserving vector × vector interaction
based on a gluon propagator that does not depend on momentum. CI describes four
quarks interacting at a single point and was initially proposed in [84] for calculating
the pion EFF. Since then, CI has been extensively utilized in various studies, including
the investigation of EFFs and TFFs of mesons in Refs. [85–89].

One significant observation is that EFFs obtained from CI tend to be harder com-
pared to those derived from full QCD predictions. Nevertheless, the results serve as a
benchmark for comparison with more sophisticated QCD-based SDE results and the
AM, providing insights into the correct pattern of DCSB and the large Q2 evolution of
the EFFs, which emerges from asymptotic QCD where Q2 greatly exceeds any other
relevant mass scale in the problem.

Then in CI, it is assumed that quarks interact not through massless vector-boson
exchange but via the CI approach, where the gluon propagator is frozen in a manner
consistent with the infrared properties of QCD. Therefore, the gluon propagator looks
like

g2Dµν(k) = 4πα̂IRδµν , (3.54)

where δµν is the Kronecker delta. The parameter α̂IR is defines as α̂IR = αIR/m
2
g, with

the scale mg added for dimensional reasons and it is interpreted as the infrared gluon
mass scale generated dynamically within QCD [84, 90, 91]. The current accepted value
for mg is 500,MeV [92–95]. In the CI gap equation, the effective coupling that appears
is α̂IR instead of αIR.

Here, αIR/π is chosen to be 0.36 to ensure α̂IR retains the same value as in all re-
lated previous works [84, 91, 96, 97]. In addition, the interaction vertex remains bare,
represented by Γν(q, p) = γν .
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3.6.1 Gap equation

To calculate the gap equation in the CI treatment, we can use the Ansätze recently
shown in Eqs. (3.4) and (3.5) and choosing Z1f = Z2 = 1 we will have

S−1(p) = (iγ · p+m0) +
1

3π2m2
g

∫ Λ

q

γµS(q)γµ , (3.55)

where we have made the notation change
∫

d4q
4π2 →

∫ Λ

q
. Then substituting the Eq. (3.9)

and multiplying by γ · p we will obtain:

ip2

F (p2)
+
M(p2)

F (p2)
γ · p = ip2 +m0γ · p+ 1

3π2m2
g

[∫ Λ

q

γµ
−iγ · pγ · qF (q2)
q2 +M2(q2)

γµ

+

∫ Λ

q

γµ
γ · pM(q2)

q2 +M2(q2)
γµ

]
. (3.56)

Upon performing the substitution q → −q, it becomes apparent that the first integral
becomes an odd function, prompting us to set it equal to zero. Furthermore, when we
take the trace of the resulting equation, it becomes evident that F (p2) simplifies to 1.
Consequently, this allows us to determine the function M(p2) through

Tr
[
M(p2)

]
= Tr

[
m0 +

1

3π2m2
g

∫ Λ

q

γ · pM(q2)

q2 +M2(q2)
γµγµ

]
. (3.57)

Considering that d4q = q3dq sin2 θ dθ sinϕ dϕ dψ with θ, ϕ = [0, π] and ψ = [0, 2π],
therefore ∫

d4q =

∫ ∞

0

dqq3
∫ π

0

sin2 θdθ

∫ π

0

sinϕdϕ

∫ 2π

0

dψ

=
1

2

∫ ∞

0

dq2q2
(π
2

)
(2) (2π)

= π2

∫ ∞

0

dq2q2 . (3.58)

Utilizing the above integral and introducing the change of variable s = q2, with the
awareness that M(p2) =Mq constitutes a solution to the gap equation, we arrive at:

Mq = m0 +
Mq

3π2m2
g

∫ ∞

0

ds
s

s+M2
q

. (3.59)
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Subsequently, we proceed with the regularization of proper time, for which:∫ b

a

dxe−x(s+Mq) =
e−a(s+Mq) − e−b(s+Mq)

s+M2
q

. (3.60)

Then,

1

s+M2
q

=

∫ ∞

0

dτe−τ(s+M
2
q ) =⇒

∫ τ2IR

τ2UV

dτe−τ(s+M
2
q ) =

F (s)

s+M2
q

, (3.61)

where τ 2UV = 1/Λ2
UV , τ 2IR = 1/Λ2

IR are the infrared and ultraviolet regulators. Thus,

F (s) = e−(s+M2
q )r

2
UV − e−(s+M2

q )r
2
IR , (3.62)

and substituting the Eq. (3.61) in Eq. (3.59) we see that

Mq = m0 +
Mq

3π2m2
g

∫ ∞

0

ds
s

s+M2
q

[
e−(s+M2

q )r
2
UV − e−(s+M2

q )r
2
IR

]
. (3.63)

Now, making the change of variable s + M2
q = s′ we will have the integral in the

following form∫ ∞

0

ds
s

s+M2
q

[
e−(s+M2

q )r
2
UV − e−(s+M2

q )r
2
IR

]
=

∫ ∞

M2
q

ds′
s′ −M2

q

s′

[
e−s

′r2UV − e−s
′r2IR

]
=

∫ ∞

M2
q

ds′
[
e−s

′r2UV − e−s
′r2IR

]
−M2

q

[∫ ∞

M2
q

ds′
1

s′
e−s

′r2UV −
∫ ∞

M2
q

ds′
1

s′
e−s

′r2IR

]
.(3.64)

Performing again another change of variable s′r2UV = t we would have that the first
integral would result:∫ ∞

M2
q

ds′
[
e−s

′r2UV − e−s
′r2IR

]
=

∫ ∞

M2
q r

2
UV

dtr−2
UV e

−t −
∫ ∞

M2
q r

2
IR

dtr−2
IRe

−t

=
1

r2UV
e−M

2
q r

2
UV − 1

r2IR
e−M

2
q r

2
IR , (3.65)

the second integral:

−M2
q

∫ ∞

M2
q

ds′
1

s′
e−s

′r2UV = −M2
q

∫ ∞

M2
q r

2
UV

dt

t
e−t

= −M2
q Γ(0,M

2
q r

2
UV ) , (3.66)
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and the third integral:

M2
q

∫ ∞

M2
q

ds′
1

s′
e−s

′r2IR =M2
q

∫ ∞

M2
q r

2
IR

dt

t
e−t

=M2
q Γ(0,M

2
q r

2
IR) . (3.67)

We have taken into account the incomplete gamma-function:

Γ(α, y) =

∫ ∞

y

dttα−1e−t . (3.68)

Subsequently, naming the complete integral Eq. (3.64) as C(M2, τ 2IR, r
2
UV ) we will have

C(M2
q , τ

2
IR, r

2
UV ) =

1

r2UV
e−M

2
q r

2
UV − 1

r2IR
e−M

2
q r

2
IR −M2

q Γ(0,M
2
q r

2
UV ) +M2

q Γ(0,M
2
q r

2
IR) ,

(3.69)

Thus, the Eq. (3.63) would end up as:

Mq = m0 +
Mq

3π2m2
g

C(M2
q , τ

2
IR, r

2
UV ) . (3.70)

From this equation, it becomes evident that we can once again deduce the outcomes
of dynamic mass generation from the mass function derived through the CI approach.
Table 3.2 provides an overview of the generated masses Mq from the current masses
mq as given in Eq. (3.70). For more details on these results, see [28].

Table 3.2: Current (mq) and dressed (Mq) masses for quarks in GeV.

mu = 0.007 ms = 0.17 mc = 1.08 mb = 3.92

Mu = 0.367 Ms = 0.53 Mc = 1.52 Mb = 4.75

We report results for PS mesons using the parameter values listed in Tables 3.3, 3.2,
whose variation with quark mass was dubbed as heavy parameters in Ref. [91]. In this
approach, the coupling constant and the ultraviolet regulator vary as a function of the
quark mass. This behavior was first suggested in Ref. [98] and later adopted in several
subsequent works [85, 91, 97, 99, 100].
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Table 3.3: Ultraviolet regulator and coupling constant for different combinations
of quarks in PS mesons. α̂IR = α̂IRL/ZH , where α̂IRL = 4.57 is extracted from the

best-fit to data as explained in Ref. [85]. ΛIR = 0.24 GeV is a fixed parameter.

quarks ZH ΛUV [GeV] α̂IR

u, d, s 1 0.905 4.57
c, u, s 3.034 1.322 1.50
c 13.122 2.305 0.35
b, u 11.273 3.222 0.41
b, s 17.537 3.574 0.26
b, c 30.537 3.886 0.15
b 129.513 7.159 0.035

3.6.2 BSE in the CI treatment

We once again examine Eq. (3.12) corresponding to the BSE governing a bound state,
and regarding, the BSA for PS mesons that is described by Eq.(3.16). Within the
framework of the CI model, the general decomposition of the BSA for PS and scalar
(S) mesons (qh̄) takes the following form:

ΓPS(P ) = iγ5EPS(P ) +
1

2MR

γ5γ · P FPS(P ) ,

ΓS(P ) = ID ES(P ) . (3.71)

Observe that Ei(P ) and Fi(P ), where i = PS, S, represent the BSAs for the respective
meson being examined. Here, P signifies the total momentum of the meson, ID stands
for the identity matrix, and MR =MqMh̄/[Mq +Mh̄] denotes the reduced mass of the
system. The labels q and h̄ which denote the valence quark and antiquark flavors are
in general different but might also be the same.

Among the Ansätze of the CI model, a kernel that fulfills all the requisite symmetric
properties to accurately describe the interaction between quarks and antiquarks in
QCD is

K =
4

3m2
g

γµγνδµν . (3.72)
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From here, this approach also facilitates the numerical solution of the BSE, yielding
grids of numerical estimates for the scalar functions Ei(P ) and Fi(P ), integral compo-
nents essential for EFF calculations. Nevertheless, these grids might prove inadequate
for other non-perturbative function computations. Hence, the development of param-
eterizations to interpolate within these grids becomes necessary.

3.6.3 The quark-photon vertex for the CI treatment

The quark-photon vertex (QPV), denoted by Γγµ(k+, k−,Mf1), is related to the quark
propagator through the following vector Ward-Takahashi identity:

iPµΓ
γ
µ(k+, k−,Mf1) = S−1(k+,Mf1)− S−1(k−,Mf1) . (3.73)

Without loss of generality, we have made the change from q to f1 to avoid confusing
notations of quarks.

This identity is crucial for a sensible study of a bound-state’s EFF. It is determined
through the following inhomogeneous BSE,

Γγµ(Q,Mf1) = γµ −
16πα̂IR

3

∫
d4q

(2π)4
γαχµ(q+, q,Mf1)γα , (3.74)

where χµ(q+, q,Mf1) = S(q + P,Mf1)Γµ(Q)S(q,Mf1).

Owing to the momentum-independent nature of the interaction kernel, the general form
of the solution is

Γγµ(Q,Mf1) = fγLµ (Q)PL(Q
2,Mf1) + γTµ (Q)PT (Q

2,Mf1),

(3.75)

where γLµ + γTµ = γµ and

γTµ (Q) = γµ −
γ ·Q
Q2

Qµ . (3.76)

Inserting this general form into Eq. (3.74), one readily obtains (on simplifying notation)

PL = 1 , PT =
1

1 +Kγ(Q2,Mf1)
, (3.77)
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Figure 3.8: Dressing function of the transverse quark-photon vertex, PT (Q2),
in Eq. (3.77). The dashed lines are only representations of the axes zero and one.

Kγ(Q
2,Mf1) =

4α̂IR

3π

∫ 1

0

dαα(1− α)Q2 C̄1(ω) , (3.78)

where

C̄1(z) = − d

dz
C(z) = Γ(0, z τ 2UV)− Γ(0, z τ 2IR) (3.79)

and

ω = ω(M2
f1
, α,Q2) =M2

f1
+ α(1− α)Q2 . (3.80)

One can clearly observe from Figure 3.8 that PT (Q2) → 1 when Q2 → ∞, yielding the
perturbative bare vertex γµ as expected.

3.7 An Algebraic model

Utilizing a suitable representation grounded in NIR, a profound algebraic model emerges
for both the quark propagator and the BSA. The strategy for the BSA of PS mesons
entails prioritizing the dominant term of Eq. (3.16), focusing on its diagonal element.
Concerning the quark propagators, the algebraic model uses one of the building blocks
of the parameterisation in Eq. (3.50) leveraging the effective quark mass.
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It’s important to note that, as elucidated earlier, a pivotal concept within QCD is
the dynamic generation of masses. Nonetheless, when working within the framework
of the algebraic model, our scope is restricted to the mass generated post DCSB, a
phenomenon occurring in the realm of lower momentum regimes.

Hence, the algebraic model derived from phenomenological considerations and char-
acterizing the quark propagator and the BSA of a pseudoscalar meson is expressed
as [27]:

Sq(h̄)(k) =
[
−iγ · k +Mq(h̄)

]
∆
(
k2;M2

q(h̄)

)
, (3.81)

nMΓM(k, p) = iγ5

∫ 1

−1

dw ρM(w)
[
∆̂
(
k2w; Λ

2
w

)]ν
. (3.82)

Herein, we have the expressions ∆(a, b) = (a + b)−1, ∆̂(a, b) = b∆(a, b), and kw =

k + (w/2)p. In this context, ν = 1+ δ serves as a parameter governing the asymptotic
behavior of the BSA, where δ represents an anomalous dimension. The constituent
mass scale for a given quark or antiquark flavor, q or h̄, is denoted by Mq(h̄), while nM

represents a normalization constant. Importantly, the function ρM(w) is regarded as a
spectral density, whose form determines the pointwise behavior of the BSA, having a
significant influence on meson observables. In the forthcoming chapter, we will delve
into the extraction of the spectral density function in the algebraic model. Lastly,
Λ2
w ≡ Λ2(w) is defined as follows:

Λ2
w≡M2

q −
1

4

(
1− w2

)
m2

M +
1

2
(1− w)

(
M2

h̄ −M2
q

)
.

(3.83)

In contrast to similar models [52–55, 101–106] that have been effectively employed to
compute an array of GPD-related distributions, we have introduced a modification by
advancing from Λ to Λw, thereby encompassing a w-dependence. Taking into account
the effectiveness of previous models, we highlight several significant differences that
lead to the simplification of pertinent integrals and the derivation of concise algebraic
expressions that connect diverse distributions:

• We retain the constant term inherited from the original models and set it to Mq.
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• A term linear in w is introduced, representing the sole term lacking symmetry
under w ↔ −w. This asymmetry enables the examination of mesons composed
of quarks with differing flavors and is accompanied by the multiplicative factor
of (Mh

2−M2
q ). For cases where quark-antiquark pairs share the same flavor, this

term, by its construction, does not contribute.

• Additionally, a quadratic term in w2 is incorporated, with its coefficient propor-
tionate to m2

M . The coefficients for each power of w are meticulously selected to
ensure the fulfillment of the following condition:

|Mh̄ −Mq| ≤ mM ≤Mh̄ +Mq (3.84)

as a prerequisite for the positivity of Λ2(w). This condition is underpinned by
the fact that the minimum of Eq. (3.83) corresponds to:

w0 =
M2

h̄
−M2

q

m2
M

, (3.85)

resulting in:

Λ2(w0) =
2
(
M2

h̄
−M2

q

)
m2

M −m4
M −

(
M2

h̄
−M2

q

)2
4m2

M
. (3.86)

Should quark and antiquark possess the same flavor, the left side of the inequality
Eq. (3.84) is inherently satisfied. We assume isospin symmetry, denoting Mu = Md.
However, for other instances, such as in the case of kaons or heavy-light mesons, careful
consideration is needed when establishing the ratio Mh̄/Mq, with realistic solutions of
the quark SDE often providing valuable reference points [107]. It is noteworthy that
mM < Mh̄ +Mq is consistently met for Nambu-Goldstone bosons. Suitable values for
the constituent masses can be chosen to ensure this inequality for ground state PS
mesons.
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3.7.1 BSE in the AM treatment

Combining Eqs. (3.13), (3.81), (3.82), the BSWF acquires the following Nakanishi
integral representation (NIR):

nMχM(k−, P )=Mq,h̄(k, P )

∫ 1

−1

dw ρ̃ νM(w)D ν
q,h̄(k, P ) , (3.87)

where the profile function, ρ̃ νM(w), has been defined in terms of the spectral density as

ρ̃ νM(w) ≡ ρM(w)Λ2ν
w . (3.88)

The function Mq,h̄(k = p + P, P ) characterizes χM(k, P ) having the entire tensor
structure of it. Then, Mq,h̄(k, P ) is defined as follows:

Mq,h̄(k, P )≡−γ5
[
Mqγ · P + γ · k(Mh̄ −Mq) + σµνkµPν − i (k · p+MqMh̄)

]
. (3.89)

Due to the trace over Dirac indices, cf. Eq. (4.1), the last two terms containing an
even number of γ-matrices in the above Eq. (3.89) do not contribute to the leading-
twist light-front wave function (LFWF) and, consequently, the PDA, that is that, they
do not contribute to the work of this thesis. The function D ν

q,h̄
(k, P ) is a product of

quadratic denominators,

D ν
q,h̄(k, P )≡∆

(
k2,M2

q

)
∆
(
k2w−1,Λ

2
w

)ν
∆
(
p2,M2

h̄

)
. (3.90)

Feynman parametrization enables us to combine the denominators in Eq. (3.90) into a
single one. Then a suitable change of variables and a subsequent rearrangement in the
order of integration yields the expression:

nMχM(k−, P ) = Mq,h̄(k, P )

∫ 1

0

dαFM(α, σν+2) , (3.91)

FM(α, σν+2) = ν(ν + 1)
[ ∫ 1−2α

−1

dw

∫ 1

2α
w−1

+1

dβ (3.92)

+

∫ 1

1−2α

dw

∫ 1

2α+(w−1)
w+1

dβ
](1− β)ν−1ρ̃ νM(w)

σν+2
,
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where σ = (k−αP )2+Λ2
1−2α, and α, β are Feynman parameters. Since only (1−β)ν−1

depends on β, integration over dβ can be performed directly, thus yielding

FM(α, σν+2) = 2ν(ν + 1)
[ ∫ 1−2α

−1

dw

(
α

1− w

)ν
+

∫ 1

1−2α

dw

(
1− α

1 + w

)ν ] ρ̃ νM(w)

σν+2
.

(3.93)

In the section 4.3, we will explain how this extra algebraic integration allows us to
completely derive ρ̃ νM(w) in terms of the PDA.

3.7.2 The quark-photon vertex for the AM treatment

The interaction of a quark with an electromagnetic probe is encoded in the fully-dressed
QPV, Γµ. It is convenient to express the latter in its unamputated version, which reads:

χqµ(kf , ki) = Sq(kf )Γµ(kf , ki)Sq(ki) . (3.94)

We thus adopt the following Ansatz for χqµ:

χqµ(kf , ki) = T (1)
µ ∆k2σv + T (2)

µ ∆σv + T (3)
µ ∆σs , (3.95)

T (1)
µ = γµ ,

T (2)
µ = ̸kfγµ ̸ki + αq (̸kfγµ ̸ki− ̸kiγµ ̸kf ) ,

T (3)
µ = i(̸kfγµ + γµ ̸ki)

+ iαq (̸kfγµ + γµ ̸ki− ̸kiγµ − γµ ̸kf ) ;

here ∆F = [F (k2f )− F (k2i )]/[k
2
f − k2i ] and σv,s are the quark propagator dressing func-

tions [108]:

σs(p
2) =M(p2)σv(p

2) =
Z(p2)M(p2)

p2 +M2(p2)
. (3.96)

In Ref. [109], αq ̸= 0 was introduced momentum redistribution factor owing to the
impossibility to simultaneously conserve the vector and axial-vector currents. As long
as αq is asymptotically damped, one will be able to recover the tree level vertex, Γµ →
γµ. In our case, this factor is expressed as

αq = α(0)
q exp[−Q2/(2m2

q)] . (3.97)
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It is worth mentioning that Ansatz has shown its robustness in the computation of the
pion EFF [110] and all two-photon TFFs involving ground-state neutral pseudoscalar
mesons, [109, 111–113]. Furthermore, having been derived from the so-called gauge-
technique [114], the construction in Eq. (3.95) fulfills crucial mathematical require-
ments [115, 116]: it is free of kinematic singularities, the free-field limit is properly
recover, and satisfies its corresponding Ward-Green-Takahashi identity.

The latter is a key point in the present approach, since it enable us to express the QPV
dressing functions in terms of those of the quark propagator. Thus, within the present
AM, the Eq. (3.95) can be expressed in a rather simple way:

χqµ(kf , ki) =

∑3
j=1 T

(j)
µ Xj

[k2f +m2
q][k

2
i +m2

q]
, (3.98)

with X1 = m2
q , X2 = −1 , X3 = −mq.

Finally, it is important to highlight that this construction of the QPV introduces an
extra parameter to determine, α(0)

q .

With these components at our disposal, we can conduct a variety of calculations. On
one hand, we can scrutinize the vertex corresponding to processes like MγM to access
the EFF or γMγ to access the TFF, something know by us as the triangle diagram ap-
proximation. Simultaneously, using the previous components, by projecting the BSWF
onto the light cone, we gain access to a diverse spectrum of non-perturbative functions
such as the Light-Front Wave Functions (LFWFs), GPDs, PDFs, and EFFs, among
others. This comprehensive suite of derived functions provides us with the necessary
tools to unveil a wealth of information, facilitating a deeper comprehension of the in-
ternal structure of PS mesons. The upcoming chapter will delve into the intricacies of
the light cone formalism, providing a more profound exploration of these concepts.



Chapter 4

Pseudo-scalar mesons through an AM
in the LC formalism

Most physical observables associated with mesons can be calculated by combining our
knowledge of their BSA and the quark propagator [117, 118]. In principle, this can be
achieved through a rigorous computation involving the quark propagator SDE and the
BSE in close connection with full QCD [58]. However, computing a multitude of exper-
imentally interesting quantities such as EFFs [109–112, 119–122], PDAs, PDFs [123–
129], and, especially, GPDs [54, 55, 103–105], remains a highly complex endeavor.

Nevertheless, our understanding of the intricate relationship between the quark prop-
agator and the meson BSA has allowed us to develop a simple and effective Algebraic
Model that can provide reliable predictions and facilitate algebraic manipulations. In
this chapter, we apply the previously introduced AM to pseudo-scalar mesons, express-
ing it in terms of a form-invariant spectral density. A notable feature of this AM is
that the spectral density is explicitly formulated in terms of the leading-twist PDA,
eliminating the need for ad hoc assumptions about the spectral density. In this chap-
ter, we will start then with the data-driven approach by proposing an Ansatz for the
quark propagator and the BSA in terms of a spectral density function that remains
invariant for all ground-state pseudo-scalar mesons. The BSWF can then be read-
ily constructed, and its projection onto the light front yields the sought-after LFWF.
Integrating this over the transverse momentum squared (k2⊥) provides access to the
valence-quark PDA. Leveraging our current comprehensive knowledge of the PDAs of
pseudo-scalar mesons [82, 127], we determine the model’s parameters. We employ the

63
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Figure 4.1: Potentialities through the overlap representation.

overlap representation of the LFWF [46] to compute the GPDs of pion, kaon, ηc, and ηb.
From this three-dimensional knowledge of these mesons, various limits and projections
allow us to deduce PDFs, FFs, and the GPDs impact parameter space (IPS-GPDs),
which are then compared to existing experimental data.

In summary, we will observe how the light-cone formalism allows us to establish
relationships between these functions, providing a comprehensive understanding of
hadrons, as depicted in the figure 4.1. We commence by describing the BSE using
our innovative AM.

4.1 Computing the LFWF and the PDA

For a quark q within a pseudo-scalar meson M, the leading twist (2 particle) light-front
wave function, ψqM, can be obtained via the light-front projection of the meson’s BSA
as:

ψqM
(
x, k2⊥

)
= tr

∫
dk∥

δxn(kM)γ5γ · nχM(k−, P ) , (4.1)

where δxn(kM) = δ(n · k − xn · P ); n is a light-like four-vector, such that n2 = 0 and
n ·P = −mM; a mentioned before, x corresponds to the light-front momentum fraction
carried by the quark. The trace is taken over color and Dirac indices. The notation
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∫
dk∥

≡
∫ d2k∥

π
has been employed and the 4-momentum integral is defined as usual:

∫
d4k

(2π)4
=

[
1

16π3

∫
d2k⊥

] [
1

π

∫
d2k∥

]
. (4.2)

The moments of the distribution are:

⟨xm⟩ψq

M
=

∫ 1

0

dx xm ψqM
(
x, k2⊥

)
= tr

1

n · P

∫
dk∥

[
n · k
n · P

]m
γ5γ · nχM(k−, P ) . (4.3)

From Eqs. (3.91)-(4.3), one arrives at

⟨xm⟩ψq

M
=

∫ 1

0

dααm
[
12

nM

YM(α, σν+1
⊥ )

ν + 1

]
, (4.4)

YM(α, σν+1
⊥ ) = FM(α, σν+1

⊥ )(αMh̄ + (1− α)Mq) ,

where σ⊥ = k2⊥+Λ2
1−2α. Uniqueness of the Mellin moments, Eqs. (4.3)-(4.4), implies the

connection between the Feynman parameter α and the momentum fraction x; therefore
one can identify the LFWF as

ψqM(x, k2⊥) =

[
12

nM

YM(x, σν+1
⊥ )

ν + 1

]
. (4.5)

Notice that the above expression resembles the one derived, for instance, in [103, 104,
106]. However, the crucial difference is the w-dependent definition of Λw, Eq. (3.83). As
mentioned before, its particular form enables additional simplicity and allows amicable
algebraic manipulation as will be evident shortly.

Integrating out the k⊥ dependence of ψqM(x, k⊥) yields the PDA,

fMϕ
q
M(x) =

1

16π3

∫
d2k⊥ψ

q
M

(
x, k2⊥

)
, (4.6)

where fM is the leptonic decay constant of the meson. From Eqs. (3.93) and (4.5), it
is seen that the only term in the above equation that depends on k⊥ is 1/σν+1

⊥ , then

1

16π3

∫
d2k⊥

1

σν+1
⊥

=
1

8π2

∫
dk⊥

k⊥
(k2⊥ + Λ2

1−2α)
ν+1

=
1

16π2

1

νΛ2ν
1−2α

. (4.7)
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Combining Eqs. (4.5)-(4.7) we arrive at the following algebraic relation between ψM(x, k2⊥)

and ϕM(x):

ψqM(x, k2⊥) = 16π2fM
νΛ2ν

1−2x

(k2⊥ + Λ2
1−2x)

ν+1
ϕqM(x) . (4.8)

The compact result above is a merit of the AM we have put forward. Throughout this
manuscript, we shall employ dimensionless and unit normalized PDAs,

∫ 1

0
dxϕqM(x) = 1.

The resulting PDA and LFWF are expressed in a quasiparticle basis at an intrinsic
scale, intuitively identified with some hadronic scale, ζH , for which the valence degrees
of freedom fully express the properties of the hadron under study. Most results herein
are quoted at ζH (unless specified otherwise). However, for the sake of simplicity, the
label ζH shall be omitted. It is worth reminding that the quark and antiquark PDA
are connected via momentum conservation,

ϕqM(x; ζH) = ϕh̄M(1− x; ζH) , (4.9)

a constricted and firm connection that prevails even after evolution [41, 130, 131].

Some practical corollaries of the AM and Eq. (4.8):

• Given a particular form of ϕqM(x), the ψqM(x, k2⊥) can be obtained quite straight-
forwardly.

• As long as we have reliable access to ϕqM(x), there is no actual need to construct
the profile function ρ̃ ν(w) (although it can be properly identified).

• It also works the other way around. A sensible choice of ρ̃νM(w) and model
parameters yields algebraic expressions for both ϕqM(x) and ψqM(x, k2⊥).

• In fact, the present AM can be reduced to the toy model employed in Refs. [53,
101, 102] with appropriate substitutions. It also faithfully reproduces the results
obtained from the more sophisticated Ansatz in Ref. [103–105].

• The degree of factorizability of the LFWF is clearly exposed through Eqs. (3.83)
and (4.8).
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Regarding the last point let us consider the chiral limit (mM = 0, Mq = Mh̄), then
Λ2

1−2x =M2
q and

ψqM(x, k2⊥) =

[
16π2fM

νM2ν
q

(k2⊥ +M2
q )
ν+1

]
ϕqM(x) . (4.10)

The bracketed term no longer depends on x; hence, the x and k⊥ dependence of
ψM(x, k2⊥) has been completely factorized. Conversely, as captured by Eq. (4.8), a
non-zero meson mass and quark/antiquark flavor asymmetry, namely m2

M ̸= 0 and
(M2

h̄
−M2

q ) ̸= 0, yield a LFWF which correlates x and k2⊥. So one should expect an
increasingly dominant role of x and k2⊥ correlations in heavy-quarkonia and heavy-light
systems. Notably, a soft Q2-dependence might also be introduced in the definition of
the PDA [132, 133], Eq. (4.6), producing the following compact expression:

ϕ(x;Q2) =

(
1−

Λ2ν
1−2x[

Q2 + Λ2
1−2x

]ν
)
ϕ(x) (4.11)

ν=1→
(

Q2

Q2 + Λ2
1−2x

)
ϕ(x) .

Clearly, ϕ(x;Q2 → ∞) = ϕ(x), which is the limit we take for the sake of the discussion.

4.2 Extracting the spectral density

From Eqs. (3.93), (4.4)-(4.6), it is possible to derive the relation between the PDA and
the spectral density ρM :

φ(y) =
1

2νFN

[∫ y

−1

dw

(
1− y

1− w

)ν
+

∫ 1

y

dw

(
1 + y

1 + w

)ν]
ρ̃ νM(w)

× [(1 + y)Mq + (1− y)Mh̄]

Λ2ν
y

, (4.12)

where the variable y = 1 − 2x has been introduced and we have used the definitions
φ(y) ≡ ϕqM(1

2
(1−y)) and FN = 4

3
π2fMnM. The above integral equation can be inverted

to a differential equation by differentiating three times, with respect to y, and summing
up the resulting equations. This procedure yields an expression for ρM in terms of
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derivatives of φ:

ηN ρM(y) = λ(2)ν (y)φ′′(y) + λ(1)ν (y)φ′(y) + λ(0)ν (y)φ(y) , (4.13)

where ηN is a normalization factor such that
∫ 1

−1
ρM(y)dy = 1. While the other quan-

tities are

λ(2)ν (y) = −1− y2

χ+

, (4.14)

λ(1)ν (y) = 2
νy

χ+

− 2
χ−

χ2
+

+
νχ−

Λ2
y

, (4.15)

λ(0)ν (y) =
{
2νχ2

+Λ
2
y

(
χ2
+ − 2

(
1 + (1− ν)y2 + ν

)
Λ2
y

)
+4y(1− ν)

(
2Λ2

y − νχ2
+

)
Λ2
yχ+χ−

−
(
ν(1− ν)χ4

+ + 2νχ2
+Λ

2
y − 8Λ4

y

)
χ2
−
}
/Θy , (4.16)

with the definitions χ± = (1 − y)Mh̄ ± (1 + y)Mq and Θy = −4 (1− y2)χ3
+Λ

4
y. By

setting ν = 1, λ(1,0)ν are reduced to

λ
(1)
1 (y) = 2

y

χ+

− 2
χ−

χ2
+

+
χ−

Λ2
y

, (4.17)

λ
(0)
1 (y) = −

(
χ2
+ − 4Λ2

y

) (
χ2
+ − χ2

−
)

2 (1− y2)χ3
+Λ

2
y

. (4.18)

Furthermore, in the chiral limit:

λ
(2)
1 = −(1− y2)

2Mq

, λ
(1)
1 = λ

(0)
1 = 0 , (4.19)

ensuring that our model recovers known result [110]:

ϕqM(x) = ϕasy(x) = 6x(1− x) (4.20)

⇐⇒ ρM(w) = ρasy(w) :=
3

4
(1− w2) .

Beyond the chiral limit, but still keeping the most natural choice ν = 1, the corre-
sponding pion and kaon spectral densities are plotted in Figura 4.2. The input PDAs,
parametrized according to Eqs. (4.51), are displayed in the upper panel of Figura 4.8.

Though for the purposes of this work (namely computing LFWFs, GPDs and distri-
butions derived therefrom) the determination of ρM is not required at all, it is worth
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stressing that the AM we have introduced enables a straightforward derivation of the
spectral density from the prior knowledge of the PDA, thus avoiding the need of assum-
ing a particular ad hoc representation for ρM. This shall be useful for future explorations
that require the explicit knowledge of the BSWF, and hence of the spectral density.
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���

���

���

���

���

���

���

���
ρasy (y)

ρπ (y)

ρK (y)

Figure 4.2: Spectral density for the pion (dashed-blue line), the kaon (dashed-cyan
line) and the one produced by ϕasy(x) in the chiral limit. We fix ν = 1 for the three

cases. The parameters chosen correspond to the ones in Table 4.1.

In the next section, we shall exploit the virtues of Eq. (4.8) to compute the pseudo-
scalar meson GPDs in the overlap representation.

4.3 Sketching the pseudo-scalar mesons 3D structure

4.3.1 GPDs

Remembering the Eq. (2.26) in Chapter 2, the valence quark GPD can be obtained
from the overlap representation of the LFWF [48]:

Hq
M(x, ξ, t)=

∫
d2k⊥
16π3

ψq∗M
(
x−, (k−

⊥)
2
)
ψqM
(
x+, (k+

⊥)
2
)
,

x± =
x± ξ

1± ξ
, k±

⊥ = k⊥ ∓ ∆⊥

2

1− x

1± ξ
. (4.21)
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We now work out the expression for the valence quark GPD in detail by substituting
Eq. (4.8) in Eq. (2.26) remembering all the kinematic in the DGLAP region

Hq
M(x, ξ, t) = (16π2fMν)

2ϕqM(x+)ϕqM(x−)Λ2ν
1−2x+Λ

2ν
1−2x−

×
∫
d2k⊥
16π3

1

((k−
⊥)

2 + Λ2
1−2x−)

ν+1

1

((k+
⊥)

2 + Λ2
1−2x+)

ν+1
. (4.22)

As usual, integration on k⊥ can be performed by introducing Feynman parametrization
and a suitable change of variables, such that the integral in Eq. (4.22) becomes

2π

16π3

Γ(2ν + 2)

Γ2(ν + 1)

∫ 1

0

duuν(1− u)ν
∫ ∞

0

dk⊥
k⊥

(k2⊥ + M2(u))2ν+2

=
1

16π2

Γ(2ν + 1)

Γ2(ν + 1)

∫ 1

0

du
uν(1− u)ν

[M2(u)]2ν+1
, (4.23)

where the function M2(u) depends on the model parameters, as well as the kinematic
variables x, ξ, t. It acquires the form M2(u) = c2u

2 + c1u+ c0, where

c2 =
(1− x)2

(1− ξ2)2
t ,

c1 = − (1− x)2

(1− ξ2)2
t+ Λ2

1−2x+ − Λ2
1−2x− ,

c0 = Λ2
1−2x− . (4.24)

Thus the GPD can be conveniently expressed as

Hq
M(x, ξ, t) = NϕqM(x+)ϕqM(x−)Λ2ν

1−2x+Λ
2ν
1−2x−

Γ(2ν + 2)

Γ2(ν + 1)

∫ 1

0

du
uν(1− u)ν

[M2(u)]2ν+1
. (4.25)

Notice that, in the chiral limit, M2(u) reduces to

M2(u) = −t u(1− u)
(1− x)2

(1− ξ2)2
+M2

q , (4.26)

and so the integration on du in Eq. (4.25) can be carried out algebraically for specific
values of ν > −1. In particular, ν = 1 recovers the results in [53–55, 101, 102]. Beyond
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the chiral limit, an algebraic expression is found for t = 0:

Hq
M(x, ξ, 0) = NϕqM(x+)ϕqM(x−)

Λ2ν
1−2x+

Λ2ν
1−2x−

Γ(2ν + 2)

Λ2
1−2x−

(4.27)

× 2F̃1

(
1 + ν, 1 + 2ν, 2ν + 2, 1−

Λ2
1−2x+

Λ2
1−2x−

)
,

where pF̃q(u, v, w, z) is the regularized hypergeometric function. Conversely, taking
ξ = 0, an expansion of M2(u) around −t ≈ 0 yields an algebraic solution for Eq. (4.25):

Hq
M(x, 0, t)

t→0
≈ N [ϕqM(x)]2

Λ2
1−2x

[
1− c(1)ν (1− x)2

(
−t

Λ2
1−2x

)
+ ...

]
, (4.28)

c(1)ν =
(1 + ν)(1 + 2ν)

2(3 + 2ν)
, N =

[∫ 1

0

dx
ϕ2

M(x)

Λ2
1−2x

]−1

.

In the next section we will focus on the forward limit of the GPD (t = 0, ξ = 0)
which defines the valence quark PDF. For the time being, we can make an insightful
connection with light-front holographic QCD (LFHQCD) approach Ref. [134, 135],
recalling the following representation for the zero-skewness valence quark GPD therein:

Hq
M(x, 0, t) = qM(x) exp[tf̂ qM(x)] , (4.29)

where f̂ qM is some profile function to be determined. An expansion around −t ≈ 0 of
this expression, and a subsequent comparison with Eq. (4.28), enable us to identify

f̂ qM(x) =
c
(1)
ν (1− x)2

Λ2
1−2x

. (4.30)

The parametric representation of the GPD in Eq. (4.29) provides a fair approximation
of the zero-skewness GPD in Eq. (4.25) except for intermediate values of momentum
transfer. It is also useful in extracting insights concerning the IPS-GPDs, as will be
addressed below.

We now proceed to discuss the derivation of PDFs, FFs and IPS-GPDs, as inferred
from the knowledge of the GPDs in the DGLAP kinematic region.
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Figure 4.3: Valence quark PDFs at ζH . Left panel- The solid (blue) line corresponds
to valence quark PDF of pion and the dotted (cyan) line corresponds to the valence
light-quark PDF in kaon. Right panel- The dot-dashed (red) line corresponds to
the valence quark PDF of ηc, the dotted (purple) line corresponds to valence quark
PDF of ηb, again the solid (blue) line corresponds to the valence quark PDF of pion.
For all these panels, the dashed (black) line corresponds to the parton like profile

qsf (x) = 30x2(1− x)2.

4.3.2 PDFs

The first term of the Taylor expansion in Eq. (4.28) corresponds to the valence quark
PDF, namely

qM(x) ≡ Hq
M(x, 0, 0) = N [ϕqM(x)]2

Λ2
1−2x

, (4.31)

where qM(x) is unit normalized. Recalling that the distributions have been derived at
ζH , the corresponding antiquark PDF is simply obtained as

h̄M(x; ζH) = qM(1− x; ζH) . (4.32)

Furthermore, the factorization properties of the LFWF in the chiral limit yields the
simple relation:

qM(x; ζH) =
[ϕqM(x; ζH)]

2∫ 1

0
dx [ϕqM(x; ζH)]2

, (4.33)

thus stressing that the degree of factorizability of the AM is manifest via the quantity
Λ2

1−2x. As long as we have m2
M ≈ 0 and also (M2

h̄
− M2

q ) ≈ 0, a factorized LFWF
will produce sensible results. This is the case of the SDE results from Refs. [126, 127],
in which Eq. (4.33) was employed to compute the kaon PDF from its PDA. For the
purpose of this work, factorizability will not be assumed and we shall consider the more
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Figure 4.4: Evolved PDFs at ζ5 := 5.2 GeV. Left panel- The plots correspond to
the evolved pion PDF. The solid blue line corresponds to the u valence-quark, the
dashed cyan line corresponds to the gluon contribution and the dot-dashed red line
corresponds to sea contribution. The data from [136], is rescaled according to the
ASV analysis in [137]. Right panel- The dotted cyan line corresponds to u-in-K
valence-quark PDF, the dot-dashed blue line is the analogous for the s̄ quark and
the solid purple line corresponds to the u valence-quark in the pion. The error bands

account for the variation of the initial scale, ζH = 0.33 (1± 0.1) GeV.

general case, Eq. (4.31). The set of relations described in this Section also shows that
if the input PDA behaves like ϕ(x → 1) ∼ (1− x) (as prescribed by QCD, [130]), the
PDF will exhibit the large-x behavior qM(x; ζH) ∼ (1−x)2. Finally, it is worth recalling
that neither Eq. (4.33) nor Eq. (4.32) remain valid for ζ > ζH , due to the evolution
equations obeyed by the PDFs [42, 43, 138, 139].

All distributions described so far have been obtained from the LFWF at the hadron
scale, ζH ; as described before, at this low-energy scale, the fully dressed quasiparticles
(valence-quarks) express all hadron properties. This is also the case of the valence-
quark PDF which, computed at ζH , entails that all the hadron’s momentum is carried
by the fully-dressed valence quarks. From the experimental point of view, the access
and interpretation of PDFs and GPDs at ζH imply certain technical and conceptual
complications [140]; only above certain energies, typically the mass of the proton,
parton distributions can be properly extracted. In particular, experimental data for
the case of the pion is only available at ζ = ζ5 := 5.2 GeV [137, 141] (the same
for the uK(x)/uπ(x) ratio [142]), whereas ζ = ζ2 := 2 GeV is a typical scale for
lattice QCD and phenomenological fits [143–145]. To produce a consistent picture when
evolving the hadronic scale PDF, we shall follow the all orders scheme introduced in
Refs. [124–127, 146] for pion and kaon PDFs, extended to their GPDs in Ref. [103,
104], and employed recently in the calculation of the proton PDFs as well [147]. This
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scheme is based upon the assumption that an effective charge α̂ allows all beyond
leading-order effects to be absorbed within it, thus arriving at a leading-order-like
DGLAP evolution equation. Notably, if the evolution is performed via the computation
of several Mellin moments, it is not necessary to specify the pointwise behavior of
the effective charge [104] (assuming its existence would be sufficient). To evolve the
distributions directly, the exercise we carry out in this section, we take α̂ from Ref. [127],
which implies setting ζH = 0.33(1±0.1) GeV. In Section V, we present numerical results
for evolved pion and kaon PDFs for specific model inputs described therein.

Figure 4.5: Pion and kaon electromagnetic FFs. Left panel- The (purple) band
represents our pion results with the model parameters described in Section V. The
band width accounts for a 5% variation of the benchmark charge radius in Table
1. Dashed (black) line is the SDE result for the pion [110]. Right panel- It shows
analogous results for the kaon FF. Diamonds, rectangles and circles represent the
experimental data from Refs. [11, 13, 14]. Lower (gray) band is the SDE result for

the kaon [148].

4.3.3 EFFs

The contribution of the q quark to the meson’s elastic electromagnetic form factor
(EFF) is obtained from the zeroth moment of the GPD:

F q
M(t) =

∫ 1

−1

dx Hq
M(x, ξ, t), (4.34)

an analogous expression holds for the antiquark h̄, such that the complete meson EFF
reads

FM(t) = eqF
q
M(t) + eh̄F

h̄
M(t) , (4.35)
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Figure 4.6: ηc and ηb electromagnetic FFs. Left panel- The purple band represents
our ηc results with the model parameters described in Section V. The band width
accounts for a 5% variation of the benchmark charge radius in Table 1. Right panel-
Analogous results for ηb. For comparison, we have included lattice QCD results from
Refs. [149, 150], as well as SDE-driven predictions in the contact interaction (CI)

model and a former algebraic model for heavy quarkonia [85, 99].

where eq,h̄ are the valence-constituent quarks electric charges in units of the positron
charge. Due to polynomiality properties of the GPD, the EFF does not depend on ξ,
therefore one can simply take ξ → 0:

F q
M(t) =

∫ 1

0

dx Hq
M(x, 0, t) . (4.36)

A Taylor expansion around t ≈ 0 yields to the Eq. (2.13)

F q
M(t)

t→0
≈ 1− (rqM)2

6
(−t) + ... , (4.37)

(rqM)2 = −6
dF q

M(t)

dt

∣∣∣∣
t=0

, (4.38)

where rqM denotes the contribution of the quark q to the meson charge radius, rM.
Comparing the above equations with the integration of Eq. (4.28) on x, one obtains a
semi-analytical expression for rqM:

(rqM)2 = 6

∫ 1

0

dx f̂ qM(x)qM(x) , (4.39)

showing the charge radius is tightly connected with the hadronic scale PDF (and thus
with the corresponding PDA). The antiquark result is obtained analogously. This
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contribution to rM reads:

(rh̄M)2 = 6

∫ 1

0

dx f̂ h̄M(x)qM(1− x) , (4.40)

where f̂ h̄M(x) is defined in analogy to its quark counterpart in Eq. (4.30),

f̂ h̄M(x) =
c
(1)
ν (1− x)2

Λ2
2x−1

. (4.41)

Summing up the quark and antiquark contributions, the meson charge radius reads:

r2M = eq(r
q
M)2 + eh̄(r

h̄
M)2 . (4.42)

Clearly, in the isospin symmetric limit, eq+eh̄ = 1 yields FM(t) = F q
M(t) and so rM = rqM

. For the neutral pseudo-scalars, in the isospin symmetric limit, eq + eh̄ = 0 implies
FM would be strictly zero, producing rM = 0; thereby we focus only on the individual
flavor contribution (FM → F q

M) in such cases (e.g. heavy quarkonia). Finally, note that
if the charge radius is known, then Eqs. (4.39- 4.42) can be employed to fix the model
parameters.

4.3.4 Impact parameter space GPD

The IPS-GPD can be obtained straightforwardly by carrying out the Fourier transform
of the zero-skewness GPD, Hq

M(x, 0, t):

uM(x, b2⊥) =

∫ ∞

0

d∆

2π
∆J0(b⊥∆)Hu

M(x, 0, t), (4.43)

where J0 is the cylindrical Bessel function. This distribution is interpreted as the
probability density of finding a parton with momentum fraction x at a transverse
distance b⊥ from the centre of transverse momentum of the meson under study. It is
extracted in its totality by the GPD’s properties in the DGLAP region. Exploiting the
representation of the GPD from Eq. (4.29), we can obtain an analytic expression:

uqM(x, b2⊥) =
qM(x)

4πf̂ qM(x)
exp

[
− b2⊥

4f̂ qM(x)

]
. (4.44)
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Figure 4.7: Impact parameter space GPDs. The quark lies in the x > 0 domain,
while the antiquark in x < 0. Left panel- pion results using the inputs from Section
V. Right panel- analogous results for the kaon. The conspicuous asymmetry in this
case is due to the larger s-quark mass: the s-quark plays a larger role in determining

the center of transverse momentum.

Containing an explicit dependence on the PDF, Eq. (4.44) reveals a clear interrelation
between the momentum and spatial distributions. In fact, the PDF is recovered from

qM(x) = 2π

∫ ∞

0

db⊥ b⊥q(x, b⊥) . (4.45)

Furthermore, considering the mean-squared transverse extent (MSTE),

< b2⊥(x) >
q
M =

1

rM

∫ ∞

0

db⊥ bqM(x, b⊥) b
2
⊥ , (4.46)

bqM(x, b⊥) := 2πrMb⊥u
q
M(x, b⊥) . (4.47)

the IPS-GPD defined in Eq. (4.44) yields the plain relation:

< b2⊥(x) >
q
M= 4

∫ 1

0

dx f̂ qM(x)qM(x) . (4.48)

Integrating over x, and comparing with Eq. (4.42), one is left with a compact expression
for the expectation value:

< b2⊥ >
q
M=

2

3
r2M

[
(rqM)2

eq(r
q
M)2 + eh̄(r

h̄
M)2

]
; (4.49)
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Figure 4.8: Left panel- pion and kaon PDAs at ζH . Right panel- the corresponding
ones for ηc and ηb. The distributions were obtained within the SDE formalism in
Refs. [82, 127], and parameterized according to Eqs. (4.51). For comparison, the

asymptotic distribution, ϕasy(x) = 6x(1− x), is also shown.

i.e. the expectation value of the MSTE of the valence quark is directly correlated
with the meson charge radius. In the isospin symmetric limit, the following expected
result [103, 104] is recovered:

< b2⊥ >
q
M=

2

3
r2M . (4.50)

Interestingly, in the chiral limit, all the algebraic expressions form this Section, valid
only at ζH , become plainly analogous to those from the factorized Gaussian model
in [103, 104].

In the following section we shall provide a collection of results for the distributions
discussed so far, using SDE predictions as model inputs.

4.4 Computed distributions

Now that we have shown a variety of algebraic results for different distributions of
partons (and some other quantities), we will particularize the inputs of the AM. The
starting point is Eq. (4.8), which directly relates the leading-twist LFWF with the PDA
such that, with the prior knowledge of ϕqM(x), the LFWF is derived straightforwardly;
the produced physical picture would be valid at ζH . Given the robustness of the
SDE formalism to compute PDAs, we shall employ predictions obtained within this
framework as model inputs [82, 127]. The specific set of PDAs we consider is the
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following (x̄ = 1− x):

ϕuπ(x) = 20.226xx̄ [1− 2.509
√
xx̄+ 2.025xx̄] ,

ϕuK(x) = 18.04xx̄ [1 + 5x0.032x̄0.024 − 5.97x0.064x̄0.048] ,

ϕcηc(x) = 9.222xx̄ exp [−2.89(1− 4xx̄)] ,

ϕbηb(x) = 12.264xx̄ exp[−6.25(1− 4xx̄)] . (4.51)

The expressions above properly capture our contemporary knowledge of such distri-

Figure 4.9: LFWFs of the pion, kaon, ηc and ηb obtained from Eq. (4.8)
and the inputs described in Section V. Herein we have depicted ψM(x, k2⊥) →

ψM(x, k2⊥)/(16π
2fM). Mass units in GeV.

butions, namely, the soft endpoint behavior and the dilation/compression with respect
to the asymptotic distribution [130]:

ϕasy(x) = 6x(1− x) . (4.52)

As can be seen in Fig. 4.8, pion and kaon PDAs are dilated with respect to ϕasy(x), while
those containing heavy quarks are narrower. As noted for the kaon, the asymmetry
between the s and u-quark masses produces a skewed distribution, while the rest of the
PDAs are symmetrical.
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The remaining ingredients are the parameter ν and the constituent masses Mq. Re-
garding the former, ν = 1 is a natural choice since it yields the correct asymptotic
behavior of the BSWF [117]. Concerning the values of the constituent masses, we shall
employ available experimental [151], SDE [110, 120–122, 152] and lattice QCD [149,
150] results on the charge radii as benchmarks, and determine Mq via Eq. (4.42). Ta-
ble 4.1 collects the constituent quark masses that define our AM and the corresponding
charge radii.

Figure 4.10: Zero-skewness valence quark GPDs for pion (left) and kaon (right),
employing the model inputs described in Section 4.4. Upper panel- A comparison
between the GPDs obtained directly from Eq. (4.25) (solid lines) and those produced
by the algebraic representation in Eq. (4.29) (dashed lines). Lower panel- Equivalent

three-dimensional picture, resulting from Eq. (4.25). Mass units in GeV.

Table 4.1: Model inputs: meson and quark masses (in GeV). Mq values are fixed via
Eq. (4.42) using the quoted charge radii. In the case of ηc and ηb, we quote rqM = rh̄M
rather than rM, which is strictly zero. The list of distribution amplitudes entering

the relevant equations are found in Eq. (4.51).

Meson mM rM (in fm) Quark Mq

π+ 0.14 0.659 [110, 151] u 0.317
K+ 0.49 0.600 [120–122] s 0.574
ηc 2.98 0.255 [149, 150] c 1.65
ηb 9.39 0.088 [152] b 5.09
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Figure 4.11: Valence quark GPDs obtained from Eq. (4.25) for ξ = 0 employing
the model inputs described in Section 4.4. Left panel- ηc GPD. Right panel- ηb GPD.

Mass units in GeV.

With the AM fully determined, the produced LFWFs are shown in Fig. 4.9. It is clear
that the heavier mesons exhibit a much slower damping as k2⊥ increases. Furthermore,
just as the PDAs, the LFWFs as a function of x are found to be more compressed in
this case.

The valence-quark GPDs are then obtained appealing to the overlap representation of
the LFWF, Eqs. (2.26,4.25). Pion and kaon results are shown in the bottom panel of
Figure 4.10, while those of ηc and ηb can be found in Figure 4.11. The GPDs for the
heavier mesons naturally have a narrower profile along the x-axis and are harder along
the −t-axis. Moreover, the upper panel of Figure 4.10 also displays a comparison be-
tween the GPDs obtained directly from Eq. (4.25) and the approximate representation
of (4.29). The derived valence quark PDFs are found in Figure 4.3. As one would
expect from Eq. (4.31), the characteristic features exhibited by the PDAs, of dilation
and narrowness, are filtered into PDFs. To emphasize it, we notice that the plots in
the above mentioned figure display the scale-free parton-like profile

qsf (x) = 30x2(1− x)2 . (4.53)

Given our preferred value Ms ≈ 1.8Mu, the s-in-K momentum fraction at the hadronic
scale is < x; ζH >s

K= 0.55, about 4% larger than typical values [126, 127]. The pion
and kaon PDFs are then evolved from the hadronic scale, ζH = 0.33(1 ± 0.1) GeV,
to the experimentally accessible scale of ζ5 := 5.2 GeV. The evolution procedure is
detailed, for instance, in Refs. [104, 146]. Fig. 4.4 displays the outcome. In the top
panel of this figure, the valence quark as well as gluon and sea quark pion PDFs are
shown. At the evolved scale, we find typical values of momentum fraction distribution in
pion [126, 127]: < x; ζH >val

π = 0.41(4), < x; ζH >sea
π = 0.14(2), < x; ζH >glue

π = 0.45(3).
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The bottom panel of Fig. 4.4 compares the valence quark PDFs in pion and kaon.
Then again, our choice of Ms produces a slightly larger momentum fraction for the
s valence-quark at such scale, < x; ζ5 >

s
K= 0.25, and a smaller one for the u quark,

< x; ζ5 >
u
K= 0.17. Concerning the large-x exponents of the valence quark distributions,

we find that
uπ,K(x→ 1; ζ5) ∼ (1− x)βeff , βeff ≈ 2.8, (4.54)

where βeff must be interpreted as an effective exponent rather than that obtained
from the known evolution equations of β(ζH) [127, 153]. Moreover, the x-domain of
applicability and interpretation of β(ζH) is not without its ambiguities and requires
special care [154]. The electromagnetic FFs are displayed in Figs. (4.5, 4.6). As can
be noted therein, pion and kaon FFs agree with the available experimental data [11,
13, 14] and previous SDE calculations [110, 148]. The ηc FF is compared with lattice
QCD [149, 150] and SDE results in the contact interaction (CI) model [99]. Similarly,
the ηb result is contrasted with CI model results and with previous determinations
with an AM for heavy quarkonia [85]. Both ηc and ηb form factors show a satisfactory
compatibility with earlier reliable predictions.

The IPS-GPDs are derived from the approximate LFHQCD-inspired parametrization
of the GPD, introduced in [135] and quoted in Eq. (4.29). For illustrative purposes,
we have considered the convenient representation of Eq. (4.47), which produces the
pion and kaon results shown in Fig. 4.7. The quark region is identified with x > 0,
while the antiquark lies in the x < 0 domain. The symmetry in the pion case is a
natural consequence of the isospin symmetry, whereas the contraction on the s-in-K
distribution is a result of Ms being larger than Mu. In fact, as the constituent quark
mass becomes larger, it is expected that the quark plays an increasingly major role in
determining the center of transverse momentum; furthermore, the distributions become
narrower and the maximums become larger. Given the compact representation of the
IPS-GPDs, the values (xmax, bmax

⊥ )qM where bqM(x, b⊥) acquires its global maximum, can
be readily identified:

bmax
⊥ =

√
2f̂ qM(xmax) , (4.55)

and xmax is the real-valued solution of

qM(x)f ′(x)− 2q′M(x)f(x) = 0 . (4.56)

It is thus clear that a constant PDF yields the point particle limit (|xmax|, bmax
⊥ )qM →
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(1, 0). The location of the maximum and its value are reported in Table 4.2 for dif-
ferent mesons. Finally, according to Eq. (4.49) and our model inputs, we report the
expectation values of the MSTE for the kaon:

< b2⊥ >
u
M= 0.76 r2K , < b2⊥ >

s
M= 0.47 r2K ; (4.57)

while for the heavy quarkonia and pion in isospin symmetric case we can infer the result
from Eq. (4.50).

Table 4.2: Global maximum IqM := max[bqM (x, b⊥)] and its location
(xmax, bmax

⊥ /rM).

Meson (xmax, bmax
⊥ /rM)qM IqM (xmax, bmax

⊥ /rM)h̄M I h̄M
π (0.90, 0.10) 3.19 (-0.90, 0.10) 3.19
K (0.76, 0.18) 2.03 (-0.88, 0.14) 4.79
ηc (0.53, 0.56) 3.99 (-0.53, 0.56) 3.99
ηb (0.52, 0.60) 4.90 (-0.52, 0.60) 4.90

For the pion and kaon, one can visually verify these tabulated results in Fig. (4.7).
This completes the presentation of computed results.





Chapter 5

The triangle diagram approximation

The calculation of the EFF and TFF of scalar and pseudoscalar mesons can also be
developed by using the triangle diagram approximation, which requires the knowledge
of some ingredients previously seen in Chapter 3 such as the dressed quark propagator,
the Bethe-Salpeter amplitude and the quark-photon vertex. Once these elements are
known, the standard application of Feynman rules to the MγM−vertex is implemented
in order to compute EFF and γMγ for the determination of TFF. First, we perform the
calculation using CI and then compare using the AM.

5.1 The EFFs in the triangle diagram approach

Figure 5.1: Triangle diagram of the EFF in an impulse approximation of a MγM

vertex.

85
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Considering the previous ingredients, we can now proceed to the analytic computation
of the EFF and TFF in the AM. In order to compute the EFF of a meson we consider
the diagram in Figure 5.1 which represents the interaction between a meson and a
photon.

Accordingly, the contribution of the direct interaction between the photon and the
quark q to the EFF is given by

KµF
q
M(Q2) = Nc tr

∫
d4k

(2π)4
χqµ(k + pf , k + pi)ΓM(ki, pi)Sh̄ (k)ΓM(kf , pf ) , (5.1)

where Q is the incoming photon momentum and the remaining trace is over spinor
indices. Furtheremore, the incoming and outgoing meson momentum are denoted by
pf,i = K ± Q/2, while the relative moments of the quark-meson-antiquark vertex are
kf,i = k+ pf,i/2, such that K ·Q = 0 and p2f(i) = K2 +Q2/2 = −m2

M . Hence, the total
EFF of the meson would be,

FM(Q2) = eqF
q
M(Q2) + eh̄F

h̄
M(Q2) , (5.2)

where, eq(h̄) is the quark(antiquark) electric charge 1.

5.2 The TFFs in the triangle diagram approach

Figure 5.2: Triangular diagram for TFF of pseudoscalar mesons in the AM.

The other important observable in hadron physics is TFF. Additionally, in order to
constraint the parameter space of the AM, it is important to compute analytically

1For neutral mesons composed of same flavored quarks, the total EFF is simply FM = F q
M.
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the γMγ vertex in our approach. The interaction vertex that describes the γγ∗ → M

transition, depicted in Figure 5.2, is described by a single form factor, GM,

Tµν(k1, k2) = Tµν(k1, k2) + Tνµ(k2, k1)

=
e2

4π2
ϵµναβk1αk2βGM(k21, k

2
2, k1 · k2) , (5.3)

where the momentum of the meson is P = k1+k2, with k1 and k2 the incoming photon
momenta. It is worth mentioning that in this work we only calculate the TFFs of the
mesons: π, ηc and ηb; In this sense, and considering the isospin symmetry for pion and
the equal flavors of the valence quarks of ηc and ηb, we have a single TFF instead of two
as for the EFF equation. On the other hand, the matrix element obtained by standard
Feynman rules of Figure 5.2 is,

Tµν(k1, k2) = tr
∫
l

iQχµ(l, l + k1)Γπ(l + k1, l − k2)S(l − k2)iQΓν(l − k2, l) , (5.4)

where Q = diag[eq, eh]. Also, the momentum of the real and virtual photons are
k21 = Q2, k22 = 0, where it must be fulfilled that 2k1 · k2 = −(m2

M +Q2).

5.3 EFFs of scalar and pseudo-scalar mesons in a CI

treatment

To carry out the following calculations, the Contact Interaction model will be used.

5.3.1 Scalar mesons

Recall that an S meson is a 0++ state. It can be considered as the chiral partner of
the PS meson Figure 5.3. We work under the assumption that all states are purely
quark-antiquark states. Then, for example, the states π and σ get transformed into
each other through the following chiral transformation:

q → e−iγ5
τ
2
·θq . (5.5)

The explicit expression for the EFFs for S mesons with mass MM constituted from a
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Figure 5.3: The S meson, e.g., σ is viewed as the parity partner of the pion π. Note
that the scalars in this thesis only refer to their quark-antiquark content.

Table 5.1: Ultraviolet regulator and the coupling constant for different combi-
nations of quarks in S mesons. As before, α̂IR = α̂IRL/ZH , where α̂IRL = 4.57 is

extracted from a best-fit to data as explained in Ref. [85]. ΛIR = 0.24 GeV.

quarks ZH ΛUV [GeV] α̂IR

u, d, s 1 0.905 4.57
c, u 3.034 1.322 1.50
c, s 3.034 2.222 1.50
c 13.122 2.305 0.35
b, u 18.473 10.670 0.25
b, s 29.537 11.064 0.15
b, c 34.216 14.328 0.13
b 127.013 26.873 0.036

quark q and an antiquark h̄ is given by Eq. (5.2) with

F S,q = PT (Q
2)E2

ST
S
EE(Q

2) , (5.6)

where

T SEE(Q
2) = − 3

4π2

[ ∫ 1

0

dα C1(ω1) + 2

∫ 1

0

dα dβ αAS
EE C2(ω2)

]
, (5.7)

with

AS
EE = αMq − 2(1− α)MqMh̄ + (α− 2)M2

h̄ + αM2
M . (5.8)

Note the close resemblance between T SEE and T PSEE . As expected, there are only sign
differences between the two due to the presence, or absence, of the γ5 matrix. In
Table 5.1, we present the parameters used for S mesons in order to compute the masses,
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Table 5.2: Computed values of the S mesons masses and BSAs in the CI model,
see [91] for comparison, using the parameters listed in Tables 3.2 and 5.1.

Mass [GeV] ES mexp
S [GeV] error [%]

ud̄ 1.22 0.66 – –
us̄ 1.38 0.65 – –
ss̄ 1.46 0.64 – –
cū 2.31 0.39 2.30 0.19
cs̄ 2.42 0.42 2.32 3.54
ub̄ 5.30 1.53 – –
sb̄ 5.64 0.26 – –
cb̄ 6.36 1.23 6.71 5.26
cc̄ 3.33 0.16 3.42 2.73
bb̄ 9.57 0.69 9.86 2.95
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Figure 5.4: EFFs for S mesons in the CI model. Left panel: electrically charges
mesons composed of quarks of different flavors. Central panel: quarkonia including a
hypothetical ground state strangeonium (ss̄). Right panel: electrically neutral mesons
composed of quarks of different flavors. EFFs of electrically neutral but flavored

mesons have been normalized to FS(0) = 0.

amplitudes and charge radii. We enlist the masses and BSAs of S mesons in Table 5.2
while the EFFs are depicted in Figure 5.4. On the right and central panels we present
the results for neutral mesons while the left panel displays the EFFs of charged mesons.



Chapter V. The triangle diagram approximation 90

Table 5.4: Parameters for the fit in Eq. (5.9) for S mesons.

aS bS cS dS

ud̄ 0.286 0.003 1.543 0.617
us̄ 0.266 0.002 1.486 0.629
ss̄ 0.217 0.001 1.271 0.542
cū 0.759 −0.005 0.680 0.641
cs̄ 0.004 0.001 0.783 0.047
ub̄ 0.984 0.001 1.619 0.087
sb̄ 0.210 0.001 0.175 0.115
cb̄ 0.289 0.001 0.743 0.026
cc̄ 0.217 0.001 0.860 0.673
bb̄ 0.269 0.000 1.607 0.020

We emphasize that for electrically neutral but flavored S mesons, we normalize the
EFFs to zero at Q2 = 0, while for flavorless mesons, the normalization is F S(0) = 1

to be consistent with the definition employed in Eq. (5.2). We again perform a fit in
the range Q2 ∈ [0, 8M2

M ], where MM is the mass of the S meson. All the curves are
faithfully reproduced by the following choice:

F S(Q2) =
eM + aS Q

2 + bS Q
4

1 + cS Q2 + dS Q4
, (5.9)

where eM := F S(Q2 = 0) is the electric charge of the meson and aS, bS, cS, dS are the
parameters of the fit. These values for S mesons are listed in Table 5.4. Based on these
numbers, we can immediately infer the large Q2 behavior of these EFFs. The coefficient
bS ≈ 0 for all S mesons under consideration. Therefore, the EFFs for S mesons fall as
1/Q2 for large Q2.

We present the numerical values of the charge radii for S mesons in Table 5.5. We must
reiterate that for the S mesons there are no reported measurements of their charge radii.
Theoretical results are also scarce for any direct and meaningful comparison. It is worth
mentioning again that the internal structure of scalar mesons is not well-established.
Our results are based on considering them as effective quark-antiquark states.

We would like to remind the reader that we again allow for a 5% variation in the
charge radii of S mesons. However, in Figure 5.4, we present the EFFs only for their
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Table 5.5: The charge radii for S mesons. All quantities are reported in fm.

ud̄ us̄ ss̄ cū cs̄ ub̄ sb̄ cb̄ cc̄ bb̄

Our Result 0.55 0.54 0.50 0.47 0.44 0.42 0.41 0.40 0.43 0.39

0 2 4 6 8 10
Q2[GeV2]

0.0

0.2

0.4

0.6

0.8

1.0
Fem

(Q
2 )

Figure 5.5: EFF for σ-meson. The central curve is obtained using the ΛUV value
from Table 5.1 while the band represents a 5% variation in the charge radius.

central values for visual clarity, refraining from showing the corresponding band to
avoid possible overlapping. However, in Figure 5.5, we depict a representative plot
with a 5% variation in the charge radius for the lightest scalar meson, σ, alone. Other
mesons have similar bands. Finally, in Figure 5.6, we plot the charge radii, extracted
from the EFFs, as a function of the S meson mass. In general, the charge radii decrease
when the S meson masses increase just as we observed for the PS mesons.
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Figure 5.7: EFFs of PS mesons in a CI model. Left panel: electrically charged
mesons composed of quarks of different flavors. Central panel: quarkonia including a
hypothetical ground state strangeonium (ss̄). Right panel: electrically neutral mesons

composed of quarks of different flavors.
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Figure 5.6: Charge radii of S mesons.
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5.3.2 Pseudo-scalar mesons

We start with a detailed discussion and results on the ground state PS mesons. These
are negative parity, zero angular momentum 0−+ states and occupy a special role in
hadron physics. Simultaneously these are the simplest bound states of a quark and
antiquark and also emerge as Goldstone bosons associated with DCSB. Pions are the
lightest hadrons and are produced copiously in collider machines at all energies. The
pion cloud effect substantially contributes to several static and dynamical hadron prop-
erties. Therefore, understanding their internal structure has been of great interest both
for experimenters and theoreticians. The study of PS mesons is crucial in understanding
the capabilities and limitations of the CI model employed in this work to reproduce and
predict phenomenological results. Being the Goldstone bosons associated with DCSB,
their analysis requires care in treating the associated subtleties. From Eqs. (3.71), we
can see that the BSA of PS mesons is the only one to be composed of two terms, neces-
sary to ensure the axial vector Ward-Takahashi identity and the Goldberger-Treiman
relations are exactly satisfied. In this thesis, we extend and expand the work presented
in [84, 85, 99] and compute the EFFs of a larger number of PS mesons composed of
qq, qQ and QQ quarks. With straightforward algebraic manipulations:

F PS,q = PT (Q
2)

[
E2
PST

PS
EE (Q

2) + EPSFPST
PS
EF (Q

2) + F 2
PST

PS
FF (Q

2)

]
, (5.10)

where

T PSEE (Q
2) =

3

4π2

[ ∫ 1

0

dα C1(ω1) + 2

∫ 1

0

dα dβ αAPS
EE C2(ω2)

]
,

T PSEF (Q
2) = − 3

2π2

1

MR

∫ 1

0

dα dβ α

[
A(1)
EF C1(ω2) + (A(2)

EF − ω2A(1)
EF ) C2(ω2)

]
,

T PSFF (Q
2) =

3

4π2

1

M2
R

∫ 1

0

dα dβ α

[
A(1)
FF C1(ω2) + (A(2)

FF − ω2A(1)
FF ) C2(ω2)

]
, (5.11)

and

ω1 = ω1(Mq, α,Q
2) =M2

q + αQ2(1− α) ,

ω2 = ω2(Mq,Mh̄, α, β,MM)

= αM2
q + (1− α)M2

h̄ − α(1− α)M2
M + α2 β (1− β)Q2 ,

C̄2(z) = (exp(−z τuv)− exp(−z τir))/(2z) . (5.12)
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The coefficients Ai are given by the following expressions:

APS
EE = α(M2

q+M
2
M) + 2(1− α)MqMh̄ + (α− 2)M2

h̄ ,

A(1)
EF =Mq +Mh̄ ,

A(2)
EF = 2M2

qMh̄ − αMq(4(α− 1)M2
M + αQ2)

+Mq̄(2(α− 1)2M2
M + αQ2(2α(β − 1)β+α− 1)) ,

A(1)
FF = (3α− 2)M2

M + αQ2 ,

A(2)
FF = 2α((α− 1)2M4

M + αM2
MQ

2(3αβ2 − 3αβ + α− 2β2 + 2β − 1))

+2αM2
MM

2
q − 2MqMh̄(2(α− 1)M2

M + αQ2) .

The resulting EFFs for charged as well as neutral mesons are shown in Figure 5.7. For
the practical utility and intuitive understanding of their low and large Q2 behavior, we
perform an interpolation for PS mesons EFF in the range Q2 ∈ [0, 8M2

M ]. We adopt
the following functional form:

F PS(Q2) =
eM + aPS Q

2 + bPS Q
4

1 + cPS Q2 + dPS Q4
, (5.13)

where eM := F PS(Q2 = 0) is the electric charge of the meson and aPS, bPS, cPS, dPS

are the fitted coefficients. The best fit corresponds to the values listed in Table 5.6.
The fit of Eq. (5.13) resonates with our observation that the EFFs of PS mesons tend
to constant values for large Q2 when it becomes by far the largest energy scale in the
problem. It is a straightforward consequence of CI treatment, and it is characteristic
of a point-like interaction which leads to harder EFF. However, the heavy as well as
heavy-light mesons approach a constant value much slower than the light ones. This
comparative large Q2 behavior of EFFs owes itself to the fact that Q2 becomes larger
than all other energy scales at much higher values.

Once again, the behavior of the form factors at the other extreme, Q2 ≃ 0 allows
us to extract charge radii, Eq (2.13). For cū and sb̄ states, which are normalized to
FM(0) = 0, we define r2M with a positive sign in the above equation. The charge radii
set the trend for the subsequent evolution of the form factors as a function of Q2,
specially for its small and intermediate values. Figure 5.8 depicts charge radii for all
the PS mesons studied, allowing for a 5% variation around the central value. With this
permitted spread in the charge radii, one can obtain a band for the Q2 evolution of the
EFFs. To avoid over-crowding, we have avoided depicting such a band for each EFF.
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Table 5.6: Parameters from the fit of Eq. (5.13) for PS mesons

aPS bPS cPS dPS

ud̄ 0.330 0.029 1.190 0.068
us̄ 0.335 0.029 1.092 0.065
ss̄ 0.328 0.040 0.874 0.092
cū 0.616 −0.001 1.370 0.109
cs̄ 0.615 0.028 0.897 0.111
ub̄ 1.143 0.033 1.921 0.146
sb̄ 0.218 0.000 0.840 0.009
cb̄ 0.333 0.003 0.493 0.021
cc̄ 1.778 0.057 1.994 0.334
bb̄ 0.099 0.000 0.127 0.002

However, the right Figure 5.9 shows a representative plot for the pion permitting a 5%
variation in its charge radius in conjunction with the available experimental results.

Finally we list the central values of all ground state PS mesons charge radii in Table 5.7,
along with a direct comparison with available experimental observations, lattice results
and the SDE findings. Moreover, we also report the transition charge radii of light PS
mesons and flavorless neutral heavy PS mesons to two photons invoking the following
analytical parameter fit [112]:

rtM =
r0

1 + (MM/mt) ln(1 +MM/mt)
, (5.14)

where r0 = 0.67 fm and mt = 1.01 GeV. It also yields reasonable results for the π
point (mass = 0.139 GeV) and the K point (mass = 0.493 GeV) as they are made of
light quarks. But we cannot expect it to serve exactly as it is for mesons with vastly
off-balanced quark masses. However, if CI results were to follow this formula, we would
only need to assign r0 = 0.458 fm. The last row of Table 5.7 lists the resulting values
which we denote as rtM(CI). Let us now summarize our findings and make explicit
comparisons with related works:

• As desired, pion EFF and its charge radius agree with the first results employing
the CI [84]. As an add-on, in this thesis we allow for a 5% variation of the
pion charge radius to see its effect on the evolution of the EFF as a function
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Figure 5.8: Charge radii of ground state PS mesons in the CI.
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Figure 5.9: Left panel. EFF for π-meson. The central curve is obtained using the
τUV value from the Table 3.3. The filled band allows for a 5% variation in the charge
radius. Dots represent the experimental data from Refs. [11, 13, 14]. Right panel.
EFF for K-meson. The central curve of the (blue) band is obtained by using the ΛUV

value from Table 3.3. The filled (blue) band allows for a 5% variation in the charge
radius. The experimental data is from Ref. [11].

of Q2, Figure 5.9. A small variation of the initial slope of the curve Q2 ≃ 0

opens a noticeable spread for large Q2 but keeps the qualitative and quantitative
behaviour fully intact.
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Figure 5.10: EFF for ηc-meson. The lower (green) solid curve is the lattice result,
Ref. [150]. The central curve of the (blue) band is obtained using the ΛUV value from

Table 3.3. The filled (blue) band allows for a 5% variation in the charge radius.

• In the right panel of Figure 5.9, we draw kaon EFF over the range of Q2 values
where (relatively poor) experimental observations are available. Although large
error bars prevent us from commenting decisively on the validity of the CI but
we expect it will yield harder results as compared to precise experimental mea-
surements whenever these results will become available. Our reported value of
its charge radius is an indication of this behavior.

• As depicted in Table 5.7, pion and kaon charge radii [121, 149, 155–158] are known
experimentally and through lattice and SDE studies. As CI EFFs come out to
be harder than full QCD predictions, we expect our PS mesons charge radii to
undershoot the exact results. This is precisely what we observe for the pion and
the kaon. The percentage relative difference between the experimental value and
our calculation for the pion charge radius is approximately 32%, while for the
kaon charge radius is slightly less, 25%. Similar difference between the SDE and
the CI results for heavy quarkonia is observed: For ηc, it is 20% while for ηb is
is 22%, not too dissimilar. This comparatively analogous behavior augments our
expectation that we will be in the same ballpark for the PS mesons whose charge
radii are neither known experimentally as yet nor lattice offers any results.

• There are no experimental or lattice (to the best of our knowledge) results avail-
able for cū, cs̄, ub̄, sb̄ and cb̄mesons for comparison. However, the general trend of
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Table 5.7: The charge radii of PS meson systems, calculated with the CI model,
refined SDE studies, lattice QCD and extraction from data, in a hybrid model (HM),
light-front framework (LFF) and a QCD potential model (PM). In the two rows after
the experimental results, we also provide the best fit results for the transition charge
radii of PS mesons to γγ∗, Eq. (5.14) and the same fit adapted to the CI. All results

are presented in fm.

ud̄ us̄ ss̄ cū cs̄

Our Result 0.45 0.42 0.36 0.36 0.26
SDE [121, 155] 0.676± 0.002 0.593± 0.002 - - -

Lattice [149, 156, 157] 0.648± 0.141 0.566 (extracted) - - -
Exp. [158] 0.659± 0.004 0.560± 0.031 - - -
rtM [112] 0.658 0.568 - - -
rtM(CI) 0.45 0.38 0.33 - -

HM [159] 0.66 0.65 - 0.47 0.50
LFF [160] 0.66 0.58 - 0.55 0.35
PM [161] - - - 0.67 0.46

ub̄ sb̄ cb̄ cc̄ bb̄

Our Result 0.34 0.24 0.17 0.20 0.07
SDE [121, 155] - - - 0.24 0.09

Lattice [149, 156, 157] - - - 0.25 -
rtM [112] - - - 0.13 0.03
rtM(CI) - - - 0.09 0.02

LFF [160] 0.61 0.34 0.20 - -
PM [161] 0.73 0.46 - - -

decreasing charge radii with increasing constituent quark mass seems reassuring,
e.g., the following hierarchies are noticeable:

rud̄ > rus̄ > rcū > rub̄ ,

rus̄ > rss̄ > rcs̄ > rsb̄ ,

rcū > rcs̄ > rcc̄ > rcb̄ ,

ruū > rss̄ > rcc̄ > rbb̄ .

We must emphasize that the CI is only a simple model. Refined QCD calculations
are required to confirm or refute these findings.

This concludes our detailed analysis of all the ground state PS heavy (QQ̄), heavy-light
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(Qq̄) as well as light (qq̄) mesons. We now turn our attention to a similar analysis of
the scalar mesons.

5.4 EFFs and TFFs of Goldstone bosons and heavy

pseudo-scalar meson in an AM treatment

To carry out the following calculations, the Algebrac Model will be used.

5.4.1 Computing the EFFs using the AM

In order to find individual contributions of constituent quarks, F q
M, we contract Eq.

(5.1) with the Kµ and taking the quark-photon vertex and the Ansätze of the AM, we
find,

K2F q
M(Q2) = 2Nc

∫
k

∫ 1

−1

2∏
i=1

dwiρ(wi)Λ
2νi
wi

Mq,h̄(k,K)Dν1,2
q,h̄

(k,K) , (5.15)

where the numerator Mq,h̄ has the form,

Mq,h̄(k,K)≡ −2(K · k)[2k2 + 4m2
qm

2
h̄ − 2m2

q − 2m2
M ]

+ (4m2
M +Q2)[2t2 + 2mqmh̄] , (5.16)

and Dν1,2
q,h̄

(k,K) contains the product of all denominators

Dν1,2
q,h̄

(k,K) = ∆(k2(1+w1),i
,Λ2

w1
)ν1∆(k2(1−w2),f

,Λ2
w1
)ν2

× ∆((k + pf )
2,m2

q)∆((k + pi)
2,m2

q)∆(k2,m2
h̄) , (5.17)

with, k(1±w),i = k + (1± w)pi/2.

To compute the integration on k in Eq. (5.15), we introduce Feynman parameterizations
and applying a suitable change of variables. In this sense, we find that the denominator
can be reduced to [k2 + Ω2]ν1+ν2+3 where Ω2 has the following form,

Ω2 =
1

4
Q2c0 +

1

2
(m2

q −m2
h̄)c1 +

1

4
m2

Mc2 +m2
h̄ , (5.18)
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with, c0,1,2 given in terms of Feynman parameters. Considering that we are computing
an elastic scattering, it is clear that the initial meson is the same as the final meson,
thus without loss of generality we choose ν = ν1 = ν2. Hence, the integral in Eq. (5.15)
becomes, ∫

k

Mq,h̄(k,K)

[t2 + Ω2]2ν+3
=

∫
k

k2A+ B
[k2 + Ω2]2ν+3

= α
A

[Ω2]2ν
+ β

B
[Ω2]2ν+1

, (5.19)

where,

A = 3[u1(1 + w1) + u2(1− w2) + 2u3 + 2u4]− 8 ,

B = −1

2
m2

M[u1(1 + w1) + u2(1− w2) + 2(u3 + u4 − 1)]2

× [u1(1 + w1) + u2(1− w2) + 2(u3 + u4)]

+ 4m2
qm

2
h̄[u1(1 + w1) + u2(1− w2) + 2(u3 + u4 − 1)]

− 1

2
Q2[u1(1 + w1) + 2u4][u2(1− w2) + 2u3]

× [u1(1 + w1) + u2(1− w2) + 2(u3 + u4 − 2)] , (5.20)

with u1, u2, u3 the Feynman parameters, and α and β are the constants:

α =
1

(4π)2
1

2ν(2ν2 + 3ν + 1)
,

β = να . (5.21)

Thus, the EFF can be expressed as follows

F q
M(Q2) = 2Nc

Γ[2ν + 3]

Γ[ν]2

∫ 1

−1

2∏
i=1

dwiρ(wi)Λ
2ν
wi

∫ 1

0

du1

∫ 1−u1

0

du2 · · ·
∫ 1−u1−u2−u3

0

du4

× (u1 u2)
ν−1

[
αA
Ω2(2ν)

+
βB

Ω2(2ν+1)

]
. (5.22)

Finally, this Eq. (5.22) can be computed numerically and with the definition given in
Eq. (5.2) and using the spectral density extracted in Chapter 4, we can proceed to the
analysis of the EFFs of pseudoscalar mesons.
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5.4.2 Computing the TFFs

According to the AM, i.e., from the Eqs. (3.81), (3.82) and (3.98), we obtained the
following form to the TFF,

GM(k21, k
2
2, k1 · k2) =

4π2

e2
ϵµνλρk1λk2ρ

ϵµνλρk1λk2ρϵµναβk1αk2β

∫
l

∫ 1

−1

dwρ(w)Λ2ν
w M′(l, Q)D′(l, Q) ,

where M′(l, Q) is the numerator that contains all the matrix information and D′(l, Q)

corresponds to the product of all denominators as,

D′(l, Q) = ∆((l − k2)
2,m2

q)∆((l + k1)
2,m2

q)∆(l2,m2
q)∆(k2(w−1),Λ

2
w)

ν . (5.23)

Again, introducing Feynman parametrization and reducing the denominator with a
suitable change of variable, the above equation can be solved. Furthermore, since the
photon can interact with the quark or the anti-quark, we could define the total TFF
as, similarly to Eq. (5.2),

GM(Q2) = eqG
q
M(Q2) + eh̄G

h̄
M(Q2) . (5.24)

However, taking into account equal masses for the quark and antiquark, the TFF is
reduced to GM(Q2) = Gq

M(Q2). Finally, with Eq. (5.2) and Eq. (5.24), we proceed to
analyse the viability of the model in the next section.

5.4.3 Results

In this section we present the results for the EFF and TFF of pseudoscalar mesons; in
particular, pion, kaon, ηc and ηb. In addition, we analyze the impact of our predictions
in future experimental studies.

The determination of the parameters of the algebraic model were found by the imple-
mentation of a global χ2 with experimental data and phenomenological inputs of EFFs
and TFFs of pseudoscalar mesons. The standard χ2 statistical test, for a set with N

number of data points, is given by,

χ2 =
N∑
i=1

(Ei − Ti)
2

δE2
i

, (5.25)
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Figure 5.11: Pion EFF and TFF. Left panel- Pion EFF. Our pion results are rep-
resented with the light blue band. The purple band corresponds to the AM previous
results from the overlap representation presented in [27]. Dashed black line is the
SDE result for the pion [110, 148] and the SDE-driven predictions in the contact
interaction (CI) model is represented by the dotted dark red line [28]. Diamonds,
rectangles, triangles and circles represent the experimental data from Refs. [11–15].
Right panel- Pion TFF. The blue light band corresponds to our TFFs results of pion.
The light red dashed line is the asymptotic limit. The black solid line corresponds to

the SDEs results from [109] and the experimental results are taken from [16–19].

where Ei represents the i-th experimental data to fit, Ti the theoretical predicted i-th
value for a given point and δEi is the estimated error associated to the i-th fitted data.
We therefore implemented the statistical analysis for the experimental data coming
from the references shown in Table 5.8, in order to minimize the χ2.

Meson EFF TFF
π Refs. [11–15] Ref. [16–19]
K Ref. [162, 163] —
ηc — Ref. [164]

Table 5.8: Experimental data fitted in our global analysis of EFFs and TFFs of
pseudoscalar mesons.

It is important to highlight that experimental measurement of TFF for kaons are not
available for this process. On the other hand, experimental inputs for ηc are only
reported for TFF and for EFF we use the predictions coming from SDEs of the charge
radii [165]. In the case of ηb, there are only theoretical predictions from SDEs [111] to
analyze for TFF and in the case of EFF we use the expected charge radii of ηb from
Ref. [166] as a value to fit.
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5.4.3.1 The Pion case

We start our analysis with the lightest mesons, pions. Since pions are copiously pro-
duced in the high energy collision environment, we take the advantage of the largest
amount of data points for both soft and hard processes to constrain the parameters
of the AM using the experimental data. It is important to highlight that in order to
reduce the complexity in the calculation we assume isospin symmetry between u and d
quarks, such that mu = md, and we allow variations around 0.3 GeV < mu < 0.5 GeV.
In order to find the best phenomenological fitted values, we allow variations for the
pion mass respecting the experimental data coming from the PDG [167]. Therefore,
experimental data from Refs. [11–19] shall constraint the dimensionless parameters νπ
and αu and the masses. In Tab. 5.9 we present the obtained best parameters for the
χ2.

mu mπ νπ α
(0)
u

0.3135 0.1395 0.8428 0.1964

Table 5.9: Best fitted values for the pion meson in the AM. The reported values
for pion correspond to the u−quark since isospin symmetry between u and d quarks

is considered. Masses are given in GeV.

Results extracted from the fit allow us to determine the charge radii of pions from EEF,
rπ, obtaining,

rfitπ = 0.67 fm, (5.26)

which presents small deviations from the experimental measurements of about 1.17 %
[158].

In Tab. 5.10 we report the corresponding χ2 per data sets for pions. We can distinguish
that the global fit has a χ2/d.o.f. ∼ 1.93 confirming that the predictions are in agree-
ment with experimental data except for the BaBar data of the TFFs at large Q2 in the
TFFs. This fact is manifest in Figure 5.11. The error bands reported in Figure 5.11
were obtained by allowing a variation of 5% on the charge radii of the EFF only; the
obtained parameters were used for pion TFF results.

It is important to recall that the phenomenological agreement is achieved when νπ

tends to unity and a small value for α(0)
u . This fact is due to the expected behaviour
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experiment # data in fit χ2

NA7[11] 45 48.42
DESY[12] 2 2.50

JLab Fπ-1[13] 4 1.16
JLab Fπ-2[14, 15] 4 2.56

CELLO[16] 5 83.55
CLEO[17] 15 15.44
Belle[19] 15 21.72
BaBar[18] 17 30.95
TOTAL: 107 206.3

Table 5.10: Data sets used in our global analysis for pions, the individual χ2 values,
and the total χ2 of the fit.

of large Q2 regime where the EFF and TFF are expected to decreased as Q−2 and
the almost point-like interaction of the photon with the u−quark is raised. Therefore,
these deviations could be understood as a first approximation of the complete theory.

With the previous results, we can analyze the expected theoretical predictions of the
AM for EFF of pions for expected center of mass energies of the EIC and JLab. In
Figure 5.12 we present the insight given by the AM and a comparison with other results
from the SDEs and the monopole form from [110]. We point out that the predictions
given by the global fit of pions are in accordance with the previous results of the SDEs
and in turn have the expected behavior by the projected EIC [21] and JLab at 12 GeV
and 22 GeV [25].

Figure 5.12: Predictions of the AM for the pion EFF at Q2 up to 40 GeV. Projected
EIC and JLab at 22 GeV and 12 GeV [21–25] are shown in here.
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Figure 5.13: Kaon EFF. Our result is represented with the light blue band. The
purple band corresponds to the AM previous results from the overlap representation
presented in [27]. Circles, diamonds, rectangles and triangles represent the experi-
mental data from Refs. [162, 163, 168]. For comparison, we have included the lower
gray band that corresponds to the SDE result for the kaon [120, 169] as well as SDE-
driven predictions in the contact interaction (CI) model (dotted dark red line) [28].

5.4.3.2 The Kaon case

We now turn to the study of kaon pseudoscalar mesons. The understanding of kaons
as pions is of paramount importance. Since these are the only “massless” systems
in QCD known as Nambu-Goldstone (NG) bosons, which are responsible for holding
protons and neutrons together in the atomic nucleus. For this reason, they differ from
all other hadrons that have nuclear-sized masses far in excess of anything that can
directly be tied to the Higgs boson. Particularly, unlike the pion, the kaon is formed
by quarks of different flavors (up and strange), which implies the need for a greater
effort when seeking a complete understanding of its dynamics and internal structure,
but this understanding would help in the comprehension of the mass hadrons origins
and the distribution of it within them. However, the information obtained from pions,
in particular those related to the u quark shall be an input for the fit. Regardless all
efforts to tightly constraint the parameters of the s quark and the kaon mass, we posses
only the experimental values of EFF of kaons. These values were fitted, within pion
parameters, providing the best parameters shown in Tab. 5.11. Large uncertainties
on the determination of the experimental data allow us to have νK = 0.913 close to 1.
Furthermore, we maintain between the kaon mass error of the PDG data [170] which
gives a good hint on the determination of the properties of kaon mesons. In addition,



Chapter V. The triangle diagram approximation 106

ms mK νK α
(0)
s

0.5274 0.4936 0.913 –

Table 5.11: Best fitted values for kaon mesons in the AM. Kaon parameters corre-
spond to s quark since the values of the u quark is taken from Tab. 5.9. Masses are

given in GeV.

we compute the charge radii of kaons, rK of,

rfitK = 0.64 fm , (5.27)

which have a small deviation from the experimental result ∼ 0.58 ± 0.2 fm [171]. Be-
sides, in Tab. 5.12 we report the χ2 corresponding to the experimental data of kaon
EFF which reports a χ2/d.o.f. ∼ 0.705. We present our results of the EFFs for the

experiment # data in fit χ2

Amendolia [162] 15 5.2822
Dally [163] 10 17.8976

Carmignotto JLab [168] 5 1.3620
JLab E12-09-011 6 0.8444

TOTAL: 36 25.3864

Table 5.12: Data sets used in our global analysis for kaons, the individual χ2 values,
and the total χ2 of the fit.

fit of the kaon parameters in the AM on the left-hand side of Figure 5.13. Similarly
to pion EFF, we report error bands of around 5% of the charge radii in kaon results.
In addition, we explore on the right-hand side of Figure 5.13 the impact of our results
and other references on the expected predictions given in Refs. [162, 163, 168] which
are increasing the range of Q2 up to 6 GeV in JLab experiments.

5.4.3.3 The ηc case

We now continue to the analysis of heavy pseudoscalar mesons such as quarkonia
mesons. These are characterized by having large quark masses while having small
relative moments. However, just like the SDEs the AM does not make any assumptions
about the strength of the interaction between the quarks involved, so it is also possible
for us to analyze systems wich probe different energy scales simultaneously.
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Figure 5.14: ηc EFF and TFF. Left panel- ηc EFF. The blue band represents
our results with the parameters of Table 5.13. For comparison, we have included
the following results: The light purple band that represents the ηc previous AM
results from the overlap representation presented in [27], the dashed black line that
corresponds to the lattice QCD results from Refs. [149, 150], and the SDE-driven
predictions in the contact interaction (CI) model (dotted dark red line) [28]. Right
panel- ηc TFF. The blue light band corresponds to our TFFs results. The black
solid line corresponds to the SDEs results [111]. The green dotted line corresponds
to the NLO nrQCD predictions [172]. The experimental data corresponds to BaBar

collaboration from [164].

Therefore, the next simple pseudoscalar meson to analyze is the formed with the c
quark, ηc. In this case, we have the charm mass, the ηc mass and the dimensionless
parameters νηc and αc to determine from the fit. For ηc, we have only the experimental
data coming from BaBar for TFF which shall help us to constraint the parameter space.
On the other hand, we have constraints of EFF for ηc mesons coming the expected
SDE prediction of the charge radii [166], rηc = 0.219. We present in Tab. 5.13 the
best parameters which describe the data from BaBar and SDEs phenomenology. We
find similar deviations of νηc from unity as in the pion scenario and, in addition, the
preferred mass of ηc meson deviates from Ref. [166] of around 4.9%.

mc mηc νηc α
(0)
c

1.7364 3.1307 0.8021 0.2669

Table 5.13: Best fitted values for ηc mesons in the AM. Masses are given in GeV.

We present in Tab. 5.14 the obtained χ2 of our analysis of ηc pseudoscalar mesons. It is
remarkable that in this case χ2/d.o.f ∼ 0.36 which means that the fit is almost perfect.
On the other hand, with the values reported in Tab. 5.14 we are able to predict a
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experiment # data in fit χ2

rηc [166] 1 0.67
BaBar [164] 11 3.97
TOTAL: 12 4.64

Table 5.14: Data sets used in our global analysis for ηc, the individual χ2 values,
and the total χ2 of the fit.

charge radii for ηc mesons, rfitηc , of

rfitηc = 1.04 rηc . (5.28)

in the context of the AM.

In Figure 5.14 we depicted the obtained results for EFF and TFF for ηc. We plot in
the left-hand side, our findings of ηc EFF and the predictions within Lattice, a Contact
Interaction (CI) model and the AM in the overlap representation. Likewise pions and
kaons, we reported error bands related of 5% variation in rηc ; this variation is also
reported in the TFF depicted in the right-hand side. In the case of TFF we show,
on the right-hand side, the results of our study, the prediction of the SDEs and NLO
nrQCD. In this particular scenario, we can distinguish that our results also agree with
BaBar measurements and SDEs predictions.

5.4.3.4 The ηb case

The heaviest constituent quark in a meson is the b quark, therefore, we proceed with
the study the dynamics of the b quark, through the EFF and TFF of ηb.

In the case of ηb mesons there are no experimental data to perform a data-driven
global fit. Hence, in order to study EFF and TFF we proceed with phenomenological
inputs. In particular, we use the expected charge radii for the ηb EFF from Ref. [166],
which reports that the rηb = 0.086 fm. On the other hand, for TFF of ηb mesons,
we used predictions coming from SDEs and, similar to ηc we compared our results
with the NNLO nrQCD predictions. We allow estimated errors around 5% of the
central value determined by SDEs. Then, we present in Tab. 5.15 the results of the
phenomelogical fit of ηb TFF and EFF. We find a tendency slightly far from unity of νηb
around 27% and almost no deviation from the reported mass in Ref. [173]. The values
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Figure 5.15: ηb EFF and TFF. Left panel- ηb EFF. The blue band represents our
results with the parameters of Table 5.15. For comparison, we have included the
following results: The light purple band that represents the ηb previous AM results
from the overlap representation presented in [27]; the SDE-driven predictions in the
contact interaction (CI) model (dotted dark red line) [28]. Right panel- ηb TFF; the
blue light band corresponds to our TFFs results; the (black) dashed line corresponds
to the SDEs results [111]; the light green band corresponds to NNLO nrQCD result
for ηb (the band width expresses the sensitivity to the factorisation scale) from [172].

mb mηb νηb α
(0)
b

5.3443 9.3886 1.2743 0.1004

Table 5.15: Best fitted values for ηb meson in the AM. Masses are in GeV.

presented previously hits an almost perfect agreement between the phenomenological
values and AM predictions. This can be appreciated in Tab. 5.16 were we reported a
χ2/d.o.f. ∼ 10−3. The almost perfect agreement is depicted in Figure 5.15, where EFF

experiment # data in fit χ2

rηb [166] 1 0.006
SDEs [111] 12 0.004
TOTAL: 11 0.01

Table 5.16: Data sets used in our global analysis for ηb, the individual χ2 values,
and the total χ2 of the fit.

and TFF of ηb are plotted. We recall that the reported bands correspond to a variation
of rηb of around 5%; this result is directly plotted in the TFF prediction. In the case
of EFF, we find that,

rfitηb = 0.99 rηb (5.29)
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in perfect accordance. Regarding TFF, we present in the right hand side of Figure 5.15
our results, SDEs and NNLO nrQCD projections which all agree almost perfect.



Chapter 6

Discussion of results and conclusions

This chapter outlines the findings and conclusions of the study, as well as the practical
implications that can be drawn from the results.

6.1 Summary and discussion

In this thesis, we put forward a fairly general AM for the pseudoscalar meson BSWF,
which preserves its primary attractive feature of guaranteeing most calculations con-
tinue to be analytic. And, in addition we compare some of the results using a previous
CI treatment.

For systematic and visual clarity, we italicize its main features and our key results in
the following.

First corresponding to our AM:

• The key functions of the model are the spectral density ρM(w) and Λ(w), which
play the defining role for the dominant BSA, Eq. (3.82), of the pseudo-scalar
mesons we study.

• The function Λ(w), defined through Eq. (3.83), is quadratic in w which is as high
as we can go in the power of this polynomial while still preserving the analytic
nature of the calculations involved. In all previous models, Λ(w) was merely
taken as a constant mass scale Λ.

111
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• Allowing Λ to become a function of the variable w allows us to connect LFWF
with PDA algebraically, Eq. (4.8), without having the need to rather arbitrarily
concoct the spectral density.

• Despite having emphasized the previous point, the fact remains that the spectral
density can be extracted unequivocally through the knowledge of the PDA.

• Given the most up to date pseudo-scalar meson PDAs, we merely need to fix ν
and Mq,h̄. As ν = 1 is a natural choice, we can safely say that the quark mass is
the only free parameter to fix the model.

Corresponding the chapter 4 regarding the light-cone formalism:

• Crucially, the measure of factorizability of x and k⊥ in the LFWF is evident
through Eqs. (3.83) and (4.8). An immediate consequence is the hadronic scale
relation between the PDA and the PDF, Eq. (4.31). This factorization is com-
pletely reinstated in the chiral limit, thus reproducing known results [53–55, 101,
102] as a particular case.

• With the exception of the leading-twist PDAs (which are external inputs) and the
charge radii (used as benchmarks to set the values of the constituent masses, Mq),
the rest of the distributions and other quantities derived herein are predictions.

On the other hand, according to the Chapter 5, we have presented the calculation of
EFFs and TFFs of mesons by solving the interaction vertex MγM and γMγ∗ respectively,
what we know as triangle diagrams. We used the CI model to solve the respective scalar
and pseudoscalar EFFs and the AM to solve the EFFs and the TFFs of pseudoscalar
mesons.

The principal insights are the following.

• First, we present an exhaustive computation of EFFs employing the CI model for
twenty ground state PS and S mesons. Note that the CI findings for light mesons
and heavy quarkonia are already found in the literature as mentioned before [84,
85, 98, 99]. We include these results for the sake of completeness and as a guide
to pin down the best parameters in order to explore heavy-light systems. We
thus report first results on the latter mesons within this model/formalism. We
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expect these new EFFs to be harder than the exact QCD predictions, especially
for the PS mesons due to the necessary inclusion of the F -amplitude. We also
anticipate the charge radii to be in the ballpark of a (20-25)% error in light of
the results where comparison with realistic studies and/or experiment has been
possible.

• Concerning the CI model we also, analyze the sensitivity of the evolution of the
EFFs by a change in appropriate parameters to allow for a 5% variation in the
charge radii of the corresponding mesons. The evolution band has been shown
explicitly for π,K, σ and ηc alone to avoid over-crowding in other collective plots.
However, it is worth mentioning that the corresponding bands in other EFFs
are almost identical. Interpolations have also been provided in Eqs. (5.13, 5.9)
and Tables 5.6 and 5.4 which allow for a convenient algebraic analysis of the
behavior of the EFFs in the momentum range that we mentioned above and for
any application the reader may deem useful.

• Concerning the AM we carried out a global phenomenological analysis. Using
experimental data and phenomenological contributions, we resorted to the mini-
mization of χ2 to obtain our best parameters: mq, mM, νM and α(0)

q . In addition,
we added error bands obtained by allowing a variation of the 5% on the charge
radii of the EFF only.

• For all the mesons, in the AM we obtained a χ2/d.o.f. small, the largest being
1.93 corresponding to the pion given the large number of data found for this
meson and the difference with BaBar data of the TFFs at large Q2. Besides, in
the case of the pion, we observe that our predictions of the EFFs at large energy
scales are in agreement with the results of the SDEs and in turn have the behavior
expected by the projected EIC and JLab at 12 GeV and 22 GeV. On the other
hand, in the case of the kaon, we have that our predictions are again in good
agreement with those obtained by the SDEs even at a higher energy scale than
those normally reported, unlike CI. In turn, they are in almost perfect agreement
with the new JLab experimental data which go up to a Q2 of 5.5 GeV.

• Now, regarding the quarkonia mesons, we first have that the only experimental
data corresponds to the BaBar Collaboration for the ηc TFFs, which our predic-
tions are in complete agreement. However, our results for ηc differ to a greater
extent with the CI predictions, to a small extent with the nrQCD predictions,
and to an even lesser extent with those obtained by SDEs at large energy scales.
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• Finally, for the ηb meson we do not have experimental data with which we can
compare. However, our theoretical predictions are in complete agreement with
those obtained by the SDEs, the previous AM and NNLO nrQCD.

6.2 Conclusions

Notably, our naive model faithfully reproduces previously known results concerning
pions [103–105]. Our findings for the kaon are slightly different from those reported
therein but can readily and correctly be attributed to the larger strange quark mass
favored by this model. However, the description of pion and kaon is compatible with
our experimental understanding of these mesons. It is worth mentioning that our pion
valence-quark PDF is also compatible with the results from Ref. [174], in which the
authors also obtain a NIR for the BSWF, but through the resolution of the corre-
sponding BSE (modeling some of the ingredients that go into the latter). Novel results
employing sophisticated mathematical techniques also validate the NIR approach [175].
The distributions reported for ηc and ηb, and other related quantities, are a completely
novel feature of our study. In general, when a comparison is possible, our results also
show agreement with other theoretical treatments such as SDEs, lattice QCD, as well as
with experimental results. The structure of π0, ηc and ηb is currently being investigated
within this model, via two photon transition form factors.

In the study of the EFFs and TFFs by solving the respective vertex of interaction we
conclude for our AM that except for BaBar data of the TFFs at large Q2, our results
compare favorably with all the available data, as well as with the SDEs. Moreover,
the used AM has allowed us to calculate and extract EFFs and TFFs of pseudoscalar
mesons, obtaining results that are close to reality, and being a first approximation of
the complete theory, something that is further from the range of contact interaction,
which was expected. However, it is of great help to visualize the effects that different
approaches can have on a process. For this reason, we intend to continue exploiting
the AM to extract all the theoretical information that it can provide us for example
now for baryons.



Appendix A

General conventions

The conventions used in this thesis are the following:

• Dirac Matrices

{γµ, γν} = 2ηµν , (A.1)

γµγµ = 4I4 , (A.2)

{γ5, γν} = 0 , (A.3)

(γ5)2 = 1 , (A.4)

γµ =

(
0 σ̄µ

σµ 0

)
, (A.5)

σµ = (1, σ⃗) , σ̄µ = (1,−σ⃗) , (A.6)

where σi are the Pauli matrices. And the σµν tensor is defined as:

σµν =
i

2
[γµ, γν ] . (A.7)

• Gamma Matrix Traces

Tr[γµ] = Tr[γ5] = Tr[γ5γµ] = Tr[γµ1γµ2 . . . γµ2n+1 ] = 0 , (A.8)

Tr[γµγν ] = 4ηµν , (A.9)

Tr[γµγνγαγβ] = 4[ηµνηαβ + ηµβηνα − ηµαηνβ] , (A.10)

(A.11)
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• Euclidean time vs. Minkowskian time

The Schwinger-Dyson equations (SDEs) are typically solved in Euclidean space,
allowing us to employ a Wick rotation to transform the problem from Minkowski
space to Euclidean space. To effect this change of spaces, we introduce momentum
variables in Euclidean space (k1, k2, k3, k4) through the variable transformation:

k4 = ik0 , kE = kM , (A.12)

where the subscripts E and M denote Euclidean and Minkowski spaces, respec-
tively, for any vector in configuration or momentum space. This implies that to
study inner products, an effective set of rules is used.

Minkowski Euclideano∫
M
d4k → i

∫
E
d4k

̸p → −iγ · p

k · p → −k · p

pµ → −ipµ

gµν → δµν

γµ → γµ

Where δµν is the Kronecker delta, and the Dirac matrices satisfy that

{γµ , γν} = 2δµν , γ†µ = γµ , γ5 = −γ1γ2γ3γ4 , (A.13)

• Light cone variables

The lightcone variables associated with a four-vector:

zµ = (z+, z⊥, z
−) = (z+, z1, z2, z−) , (A.14)

are established as:

z± =
(z0 ± z3)√

2
, z⊥ = (z1, z2) . (A.15)



Appendix B

Feynman parameterization and
Momentum integrals

In this appendix, we introduce a crucial integration technique known as Feynman
parametrization, which simplifies integrals involving high powers in the denominator.
Furthermore, we provide an explanation of our approach for resolving the moment
integrals encountered.

First, it can be shown that the Feynman parameterization for n non-repeated denom-
inators and also, different exponents for a Re[νj] > 0 and 1 < j < n would be:

1

Aν11 A
ν1
2 · · ·Aνnn

=
Γ(ν1 + . . . νn)

Γ(ν1)· · ·Γ(νn)

∫ 1

0

du1· · ·
∫ 1

0

dun
δ[1−

∑n
j=1 uj]u

ν1−1
1 · · ·uνn−1

[
∑n

j=1 ujAj]
∑n

j=1 νj
.

(B.1)

where Γ is the Gamma function.

In this thesis, we typically encounter more intricate integrals due to the specific struc-
ture of the A’s terms, often of the form:

N∏
i=1

fi(t; pi, bi, wi) ∼
1

(t2 + 2b1 · p1 + w1)β1
×· · · × 1

(t2 + 2bN · pN + wN)βN
. (B.2)
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Using Feynman parametrization, the denominators can take form: [u1A1 + u2A2 +

. . . (1− u1 − . . . un)An]
∑n

j=1 νj , and according to the Feynman parameters and the mo-
ments the integrating became as:

N∏
i=1

fi(t; pi, ai, m̃) ∼ 1

{t2 + 2t · [a1(x̃p1) + . . .+ aN(x̃pN)] + m̃2(x̃, wi)}β1+...βN
, (B.3)

where ai(x̃) and m̃2(x̃, wi) are constants that depend on the Feynman parameters and
the wi. Thus, if we consider the following:

c = a1(x̃)p1 + . . .+ aN(x̃) ,

Ω = m̃2 − c2 ,

β = β1 + . . .+ βN . (B.4)

And, take the change of variable t→ t− c we would arrive to:

N∏
i=1

fi(t; pi,Ω) ∼
1

(t2 + Ω2)β
. (B.5)

Finally, we can analitycally solve the momentum integral using:∫
d4t

(2π)4
(t2)α

[t2 + a2]β
=

1

(4π)2
Γ[β − α− 2]Γ[α + 2]

Γ[β]Γ[2]
(a2)α−β+2 . (B.6)

for α− β + 2 > 0.



Appendix C

Acronyms

QCD: Quantum Chromodynamics
DCSB: Dynamical Chiral Symmetry Breaking
DIS: Deep inelastic scattering
EFFs: Electromagnetic Form Factors
PDFs: Parton Distribution Functions
GPDs: Generalized Parton Distribution Functions
DVCS: Deeply virtual Compton scattering
TFFs: Transition Form Factors
SDEs: Swchiger-Dyson Equations
BSE: Bethe-Salpeter Equation
BSA: Bethe-Salpeter Amplitude
BSWF: Bethe-Salpeter Wave Function
CI: Contact Interaction
AM: Algebraic Model
PDA: Parton Distribution Amplitude
LC: Light-Cone
LFWF: Light Front Wave Function
WTI: Ward Takahashi Identities
PS: Pseudo-scalars
V: Vectors
AV: Axial-Vectors
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