UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE QUÍMICO FARMACOBIOLOGÍA

CONCENTRACIÓN DE ANIONES EN LA RELACIÓN CALCIO/MAGNESIO EN EL CULTIVO PROTEGIDO DE Capsicum annum

TESIS

PARA OBTENER EL TÍTULO PROFESIONAL DE

QUÍMICA FARMACOBIÓLOGA

PRESENTA: ROSA ISELA MORA PÉREZ

ASESOR DE TESIS: DOCTOR RAFAEL ORTIZ ALVARADO

MORELIA, MICHOACÁN

ABR**ABR 2017**

Agradecimientos

A mi asesor:

El Doctor Rafael Ortiz Alvarado, lo que más le agradezco sobre todo a trabajar en el laboratorio sin miedo a equivocarse lo cual si sucede no hay problema lo vuelves a intentar hasta que lo logres. También la seguridad para presentar los proyectos en público y preparnos para esta exposición de tesis.

A mis sinodales:

MTE. Lucía Matilde Nava Barrios.

M.C. María del Rocío Lara Madrigal.

D.C. Rubén Chávez Rivera.

M.C. Luis Rafael Zambrano Escutia.

D.C. Lucía Santibáñez Mondragón.

Por el tiempo dedicado para revisar este trabajo, así como las críticas constructivas para complementarlo.

A mis profesores:

A cada uno de ellos en mi formación académica, desde que comenzó, hasta ahora.

A mis amigos:

A mis amigos quienes ha sido parte importante en mi formación y me han acompañado en el camino de la vida. Makay mi mejor amigo, Bianca mi amiga la nerd que siempre estuvo conmigo para apoyarme cuando más lo necesitaba, a Fer que compartimos muy de cerca este proyecto, Alex que me ayudo con las fotos para mi tesis, a Marlene mi amiga la que compartimos muchas experiencias juntas, Trini el enojón. A Johani que hemos sido amigas de toda la vida. A Fátima mi amiga desde bebés, es como mi hermana.

Dedicatoria

La dedicatoria especial. A mi familia, mi Madre Rosa Pérez Ascencio, mi Padre José Jesús Mora Enríquez, a mis hermanos, Julio Cesar Mora Pérez y Jesús Eduardo Mora Pérez los cuales son las persona más importantes en mi vida las que más admiro son mi ejemplo a seguir ellos son los que han estado a cada momento conmigo y gracias a ellos he llegado a donde estoy. Las únicas personas que puedo y debo dedicar este logro.

Índice

Agradecimientos	II
Dedicatoria	III
Glosario	V
Abreviaturas	VII
Resumen	1
Abstract	2
Introducción	3
Antecedentes	5
Justificación	7
Hipótesis	8
Objetivo General	8
Objetivo específicos	8
Definición de Inocuidad Alimentaria	9
Normas de calidad del agua	10
Para los fines del Codex Alimentario	11
El Agua	16
Condiciones de desarrollo social y cultural basados en la disponibilidad del agua	18
Concepto de Huella Hídrica	19
Cuantificación de la HH	25
Huella hídrica en México	27
¿Quién es el autor del concepto?	27
Enfermedades por Transmisión Alimentaria (ETA)	29
Parametros fisicoquímicos	35
Componentes no deseables	38
Parámetros de la calidad del agua para consumo humano	39
Caracteristicas de las aguas potables	41
Capsicum annum	45
Metodología	48
Resultados	50
Discusión	54
Conclusión	57
Referencias	58

GLOSARIO

Angström Unidad de longitud empleada principalmente para expresar

longitudes de onda, distancias moleculares y atómicas, etc. Esta medida

equivale a la diez millonésima parte de un metro 1x 10⁻¹⁰. En un centímetro

caben 100 millones de angstroms.

Capsicum annum: Planta herbácea anual, de origen americano, de la familia de

las solanáceas, con fruto en baya hueca, de color verde, rojo o amarillo y forma

más o menos cónica.

Fenología: Estudio de los fenómenos biológicos en relación con el clima, particu-

larmente en los cambios estacionales.

Huella hídrica: La huella hídrica (HH) es un indicador de toda el agua que

utilizamos en nuestra vida diaria; la que utilizamos para producir nuestra comida,

en procesos industriales y generación de energía, así como la que ensuciamos y

contaminamos a través de esos mismos procesos.

Inocuidad: Que no hace daño.

Inocuidad agroalimentaria: La inocuidad agroalimentaria es un proceso que

asegura la calidad en la producción de los productos alimenticios del campo.

Ion: Atomo o agrupación de átomos que por pérdida o ganancia de

uno o más electrones adquiere carga eléctrica.

Organoléptico: Características físicas que tiene la materia en general y se

pueden percibir por los sentidos por ejemplo su sabor, textura, olor, color. Su

estudio es importante en las ramas de la ciencia en que es habitual evaluar

inicialmente las características de la materia sin la ayuda de instrumentos

científicos.

Supranacional: Relativo a un organismo, que está por encima del ámbito de los gobiernos e instituciones nacionales y que actúa con independencia de ellos.

Traza: El elemento traza o micronutriente; en bioquímica, es un compuesto químico que es necesario en cantidades ínfimas para el crecimiento, desarrollo y fisiología de un organismo en el orden de 1X 10⁻⁹ g.

ABREVIATURAS

Å: Angström.

BID: Banco Interamericano de Desarrollo.

BM: Banco Mundial.

FAO: Organización de las Naciones Unidas para la Alimentación y la Agricultura.

HH: Huella Hídrica.

ISO: La Organización Internacional de Normalización (del nombre original en inglés, International Organization for Standardization, conocida por las siglas ISO.

NMX: Normas Mexicanas.

NOM: Normas Oficiales Mexicanas.

OCDE: Organización para la Cooperación y el Desarrollo Económicos.

ODM: Objetivos de Desarrollo del Milenio.

PIB: Producto Interno Bruto.

ppb: Partes por billón.

ppm: Partes por millón.

UNESCO: La Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (en inglés United Nations Educational, Scientific and Cultural Organization.

Resumen

El aseguramiento de la calidad e inocuidad del agua utilizada en el cultivo por invernaderos de C. annum, mediante la determinación de la concentración de iones en el agua, como calcio, magnesio, manganeso, hierro, potasio, sodio, zinc, nitratos, nitritos, fosfato, carbonatos, cloro, flúor, y sulfatos. Estos mismos iones absorbidos por las plantas cultivadas en invernadero, son determinantes para el desarrollo de productos agroalimentarios que no representen riesgos al cultivo y a la inocuidad alimentaria. Se colectaron muestras de agua usadas para la producción de C. annum en condiciones controladas, realizando determinaciones de iones en solución, como control de calidad de la nutrición e inocuidad del agua como son calcio (Ca⁺²), magnesio (Mg⁺²), manganeso (Mn⁺²), hierro (Fe^{+2,+3}), potasio (K), sodio (Na⁺²), zinc (Zn⁺²), nitratos (NO₃⁻), nitritos (NO₂⁻), fosfatos (PO₄-3), carbonatos (CO₃), cloro total (Cl⁻), fluoruros (F-), sulfatos (SO₄⁻²),estos parámetros inorgánicos en el agua determinan las fórmulas de nutrición a utilizar por los productores de C. annum en invernaderos y en algunos casos son indicadores de la inocuidad del agua. Los valores muestran que la concentración de nitritos (NO2) es alta, mayor a 2 ppm, donde se puede interpretar, que la muestra de agua está sometida a algún proceso de contaminación químico o biológico, esto debido a que el ion nitrato (N0₃) se reduce a ion (NO₂) por la actividad microbiana preferentemente de la familia Enterobacteriaceae, por lo tanto este valor es indicador de la actividad microbiana y por ende de la inocuidad del producto agroalimentario, que puede comprometer la calidad del agua y las mezclas de nutrientes a utilizar en la mezcla inicial para uso vegetal en condiciones controladas en el invernadero y esto puede comprometer la calidad del fruto C. annum. Las Determinaciones inorgánicas son fundamentales para poder predecir el comportamiento dentro de los cultivos de Capsicum annum también así como determinar las condiciones de inocuidad en el sistema producto, en condiciones controladas de cultivo. Estos iones electronegativos anteriormente mencionados precipitan el calcio y magnesio reduciendo su disponibilidad, afectando calidad de C. la annum.

Palabras Clave: Inocuidad agroalimentaria, *Capsicum annum*, Huella hídrica, ion.

Abstract

The assurance of the quality and safety of the water used in the cultivation by C. annum greenhouses by determining the concentration of ions in the water, such as calcium, magnesium, manganese, iron, potassium, sodium, zinc, nitrates, nitrites, Phosphate, carbonates, chlorine, fluorine, and sulfates. These same ions absorbed by plants grown in greenhouses, are determinants for the development of agri-food products that do not represent risks to the crop and to the food safety. Water samples were collected for the production of C. annum under controlled conditions, making ion determinations in solution, such as quality control of nutrition and water safety, such as calcium (Ca + 2), magnesium (Mg + 2), Potassium (K), sodium (Na + 2), zinc (Zn + 2), nitrates (NO3-), nitrites (NO2-), phosphates (PO4-3), carbonates (CO3), total chlorine (CI-), fluorides (F-), sulfates (SO4-2), these inorganic parameters in water determine the nutrition formulas to be used by C. Annum in greenhouses and in some cases are indicators of the safety of water. The values show that the concentration of nitrites (NO2-) is high, higher than 2 ppm, where it can be interpreted that the water sample is subjected to some chemical or biological contamination, due to the nitrate ion (N03 -) is reduced to ion (NO2-) by the microbial activity preferably of the Enterobacteriaceae family, therefore this value is indicative of the microbial activity and therefore of the safety of the agri-food product, which can compromise the quality of the water and the Mixtures of nutrients to be used in the initial mixture for plant use under controlled conditions in the greenhouse and this may compromise the quality of C. annum fruit. The inorganic Determinations are fundamental to be able to predict the behavior within the cultures of Capsicum annum as well as to determine the safety conditions in the product system under controlled conditions of culture. These electronegative ions mentioned above precipitate calcium and magnesium reducing their availability, affecting the quality of C. annum.

Introducción

En la actualidad existe una fuerte presión mundial para conseguir y diversificar las fuentes de alimentos, por ello el modelo económico actual, pone énfasis como hace 500 años, en la explotación de los recursos naturales de los países o economías emergentes, en donde México como nación, no escapa a esta tendencia mundial. Para poner en contexto lo anterior cabe mencionar que la economía Mexicana es parte de la OCDE, (Organización para la Cooperación y el Desarrollo Económico), es necesario manifestar que el actual presidente de esta organización supranacional, es el Dr. en Economía José Ángel Gurría (Mexicano), esto marca la pauta actualmente para indicar que la economía mexicana sigue siendo importante y particularmente dentro del ámbito agroalimentario. Por ejemplo, el territorio conocido como la Mesoamérica, fue origen de varios alimentos que son referentes mundiales y que adicionalmente han originado grandes industrias trasnacionales, como son los casos de las materias primas cacao (Theobroma cacao), chile (Capsicum spp.), tomate (Solanum lycopersicum), maíz (Zea mays), aguacate (Persea americana), vainilla (Vanilla planifolia), entre los casos más connotados. Lo anteriormente mencionado, permite dar un recapitulativo sobre la importancia pasada, presente y futura sobre nuestro país en términos de diversidad biológica y su impacto en el sector agroalimentario. Esto y otras industrias han colocado a México, en el lugar número 14, por el tamaño de economía a nivel mundial, el cual se reporta en términos del Producto Interno Bruto (PIB), además la organización política de México, marca una República por entidades federativas, en donde cada estado participa a la economía Nacional; en el caso del estado de Michoacán de Ocampo, es un estado que ha tenido de manera permanente una vocación agrícola, la que en la actualidad se ha proyectado a nivel internacional, donde se pueden citar referentes mundiales, como son los casos de éxito del aguacate (Persea americana) y la implantación y adaptación de las denominadas frutillas rojas como son el arándano (Vaccinium myrtillus), frambuesa (Rubus idaeus), fresa (Fragaria vesca) y la zarzamora (Rubus fruticosus). Más sin embargo, todas estas especies biológicas que se explotan de manera sistematizada e industrializada, son cultivos a cielo abierto y

han logrado un éxito relativo a las condiciones geográficas y climáticas que imperan en el territorio mexicano. Estas condiciones climáticas han permitido tener microclimas o zonas geográficas delimitadas, que son estables en cuanto a la disposición de recursos hídricos, de suelo y las condiciones de luminosidad, temperatura y viento estables. Todas estas variables geográficas y climáticas, pueden verse comprometidas por dos aspectos fundamentales:

- a) el aumento de los núcleos urbanos en detrimento de los recursos bióticos y
- b) el cambio climático.

Ante este panorama complicado referente a la predicción de las condiciones climáticas, que afectan el rendimiento de estas especies biológicas explotadas a cielo abierto, es que se han desarrollado a través de la confluencia de diferentes tecnologías, los cultivos protegidos y controlados en lo referente a los parámetros físicos (luz, temperatura, humedad relativa), químicos (fertilizantes y agroquímicos en general), y biológicos (fitopatógeno y patógenos humanos). De esta forma las tecnologías que se utilizan en los denominados invernaderos están encaminadas a asegurar la calidad, rendimiento y la inocuidad de las especies biológicas que se explotan. De todos los parámetros físicos, químicos, y biológicos que determinan el éxito de una especie cultivada en condiciones controladas, el agua es un factor fundamental, que asegura, la calidad, el rendimiento y desde luego enfatiza la inocuidad de los sistemas producto agroalimentarios explotados bajo este esquema de producción controlada.

Por lo tanto es necesario mostrar que el presente trabajo presentara un contexto social y económico de México a nivel mundial en términos de la agricultura y la alimentación humana, haciendo un exposición sobre la importancia del agua y su calidad en la producción de alimentos y como el concepto de huella hídrica es un disruptor en términos de producción alimentaria, así como los iones que participan en la producción agroalimentaria y como el presente trabajo contribuirá a asegurar la sustentabilidad en la producción de los alimentos, a través de la viabilidad del agua.

Antecedentes

A nivel global, el uso del recurso hídrico y su administración han sido un rubro esencial para elevar la productividad de la agricultura y permitir una producción previsible. El agua es por lo tanto esencial para aprovechar el potencial de la tierra y para permitir que las variedades mejoradas tanto de plantas como de animales utilicen plenamente los demás factores de producción que elevan los rendimientos. Al incrementar la productividad, la gestión sostenible del agua (especialmente si va unida a una gestión adecuada del suelo) contribuye a asegurar una producción mejor tanto para el consumo directo como para el comercio, favoreciendo así la producción de los excedentes económicos necesarios para elevar las economías rurales. FAO, (2002).

Desde los años sesenta del siglo XX, la producción mundial de alimentos ha mantenido el paso del crecimiento demográfico mundial, suministrando más alimentos per cápita a precios cada vez más bajos en general, pero a costa de los recursos hídricos. Al final del siglo XX, la agricultura empleaba por término medio el 70 por ciento de toda el agua utilizada en el mundo, y la FAO estima que el agua destinada al riego aumentará un 14 por ciento para 2030. Aunque este aumento es muy inferior al registrado en los años noventa, según las proyecciones, la escasez de agua será cada vez mayor en algunos lugares y, en algunos casos, en algunas regiones, lo que limitará la producción local de alimentos. La mejora en la utilización del agua tanto en la agricultura a cielo abierto, como en la de regadío será fundamental para afrontar las situaciones previstas de escasez de agua. La mejora de la utilización o de la productividad del agua se entiende frecuentemente en términos de obtener la mayor cantidad de cultivos posible por volumen de agua: "más cultivos por gota". Es posible que los agricultores prudentes con respecto al dinero prefieran fijarse como objetivo el máximo de ingresos por unidad de agua: "más dólares por gota", mientras que los dirigentes de las comunidades y los responsables de las políticas podrán tratar de conseguir el máximo empleo y los máximos ingresos en todo el sector agrícola: "más puestos de trabajo por gota". Por consiguiente, en un sentido

amplio, el incremento de la productividad en la agricultura puede dar lugar a mayores beneficios por cada unidad de agua tomada de los recursos hídricos naturales. Sin embargo, los cambios que ello provocaría en la utilización del agua en la agricultura exigen respuestas de los gobiernos para asegurar la productividad y la utilización sostenible de los recursos de tierras y aguas de los que depende la agricultura. FAO, (2002).

Justificación

La población a nivel mundial, actualmente, requiere una cantidad ingente de alimentos que sean producidos bajo estándares de sustentabilidad, esto de acuerdo a los Objetivos de Desarrollo del Milenio (ODM). Así mismo organizaciones como la Organización para la Alimentación y la Agricultura (FAO), hacen énfasis en no solo el uso adecuado del agua, si no que se pronuncian a favor de que el agua deba ser reutilizada, para su sustentabilidad. De este modo la supervivencia del H. sapiens está íntimamente ligada a la viabilidad del agua, en donde el cultivo de sistema producto, como es el caso de los productos de Capsicum spp. y su demanda a nivel global, exige una gran cantidad de agua con calidad e inocuidad que permitan asegurar la producción alimentaria. Así la producción de alimentos bajo condiciones controladas requiere que se realice la cuantificación de los iones para asegurar la nutrición completa del cultivo, los análisis actuales no consideran la cuantificación de los iones flúor, nitratos y nitritos, por lo que en el presente trabajo se recomienda ampliar los estudios de iones en el agua, para la correcta nutrición de las plantas y de esta manera aprovechar el volumen de agua y de agroquímicos que se utilizan en los cultivos bajo control, asegurando la sustentabilidad de la moderna agricultura.

Hipótesis

La presencia de aniones como el flúor, nitratos y nitritos, que no se cuantifican en los análisis del agua que se utiliza para el cultivo de *C. annum* interfieren con la absorción de cationes como el calcio y el magnesio, los cuales son necesarios para el desarrollo del fruto, en condiciones de cultivo controlado.

Objetivo General

Aseguramiento de la calidad e inocuidad del agua utilizada en el cultivo por invernaderos de *C. annum*.

Objetivo específicos

- a) Determinar la concentración de iones en agua utilizada en invernaderos de los cultivos de *C. annum*, como calcio, magnesio, manganeso, hierro, potasio, sodio, zinc, nitratos, nitritos, fosfato, carbonatos, cloro, flúor, y. sulfatos.
- b) Determinar la concentración de iones como calcio, magnesio, manganeso, hierro, potasio, sodio, zinc, nitratos, nitritos, fosfato, carbonatos, cloro, flúor, y sulfatos absorbidos por las plantas cultivadas en invernadero.

Definición de Inocuidad Alimentaria

La palabra **inocuidad** es ampliamente utilizada por profesionales del área de alimentos en (producción, distribución y procesamiento) y particularmente en contextos como: La denominada "*Inocuidad de los alimentos*". Etimológicamente esta palabra está formada con el sufijo-dad sobre la palabra *innocuus*, que significa que no hace daño. *Innocuus* está formado del prefijo latino de negación in, más la palabra *nocuus* (dañino), es decir, sin producir daño, es por tanto su aceptación más usada que ligada al termino alimentario forma su interpretación referente a la producción, distribución y procesamiento de los alimentos en términos de que estos no produzcan daño o comprometan la salud humana. Dyck, Exner, & Kramer, (2007).

Entre las principales definiciones de lo que es la inocuidad alimentaria se puede encontrar aquella que la refiere como la reducción del riesgo para la salud humana de microorganismos (virus, bacterias, hogos-levaduras, parásitos) toxinas y residuos químicos y de esta forma los alimentos pueden convertirse en vectores de la propagación de enfermedades de tipo infeccioso o de tipo toxicológico. Brambilla, D'Hollander, Oliaei, Stahl, & Weber, (2015).

Normas de calidad del agua

Norma Oficial Mexicana NOM-127-SSA1-1994. "Salud ambiental, agua para uso y consumo humano límites permisibles de calidad y tratamientos que debe someterse el agua para su potabilización". Olaiz Fernando G., (1994)

Norma Oficial Mexicana NOM-201-SSA1-2002. Productos y servicios, agua y hielo para consumo humano, envasados y a granel especificaciones sanitarias. Enríquez Rubio E., (2002).

Norma Oficial Mexicana NOM-041-SSA1-1993. Bienes y servicios, agua purificada envasada especificaciones sanitarias. Meljem Moctezuma J., (1993).

Norma Oficial Mexicana. NOM-014-SSA1-1993. "Procedimientos sanitarios para el muestreo de agua para uso y consumo humano en sistemas de abastecimiento de agua, públicos y privados" (Pérez Duarte F).

Norma Oficial Mexicana NOM-117-SSA1-1994. Bienes y servicios. Método de prueba para la determinación de cadmio, arsénico, plomo, estaño, cobre, hierro, zinc y mercurio en alimentos, agua potable y agua purificada por espectrometría de absorción atómica. Meljem Moctezuma J. (1995).

Norma Oficial Mexicana NOM-181-SSA1-1998. Salud ambiental. Agua para uso y consumo humano requisitos sanitarios que deben cumplir las sustancias germicidas para tratamiento de agua, de tipo doméstico. Castellanos Coutiño J., (1999).

Norma ISO14046:2014 Gestión ambiental. Huella hídrica principios, requisitos y directrices. «ISO 14046», (2017).

Norma Oficial Mexicana NOM-003-CNA-1996. Requisitos durante la construcción de pozos de extracción de agua para prevenir la contaminación de acuíferos. Guerrero Villalobos G., (1997).

Para los fines del Codex Alimentario

Se entiende por alimento toda sustancia, elaborada, semielaborada o bruta, que se destina al consumo humano, incluidas las bebidas, el chile y cualesquiera otras sustancias que se utilicen en la fabricación, preparación o tratamiento de los alimentos, pero no incluye los cosméticos ni el tabaco ni las sustancias utilizadas solamente como medicamentos. Murphy, Yates, Atkinson, Barr, & Dwyer, (2016).

La higiene de los alimentos comprende las condiciones y medidas necesarias para la producción, elaboración, almacenamiento y distribución de los alimentos destinadas a garantizar un producto inocuo, en buen estado y comestible, apto para el consumo humano. Debucquet, Cornet, Adam, & Cardinal, (2012).

La oferta de nuevos alimentos que reportan algún beneficio para la salud aparece por primera vez en la década del 60 del siglo pasado. Desde entonces surge en el mercado un nuevo tipo de alimentos diseñados para ser incluidos en dietas muy estrictas exentas de gluten, bajas en sodio, pobres en calorías, etc. Además, estos alimentos comienzan a recibir nombres tan variados que surge la necesidad de uniformar la terminología empleada. Los términos más empleados son:

a) Alimento funcional.

Cualquier alimento en forma natural o procesada, que además de sus componentes nutritivos contiene componentes adicionales que favorecen a la salud, la capacidad física y el estado mental de una persona. El calificativo de funcional se relaciona con el concepto bromatológico de "propiedad funcional", es decir la característica de un alimento, en virtud de sus componentes químicos y de los sistemas fisicoquímicos de su entorno, sin referencia a su valor nutritivo. En Europa se define alimento funcional a "aquel que satisfactoriamente ha demostrado afectar benéficamente una o más funciones específicas en el cuerpo, más allá de los efectos nutricionales adecuados en una forma que resulta relevante para el estado de bienestar y salud o la reducción de riesgo de una enfermedad".

Aunque el término alimentos funcionales no es una categoría de alimento legalmente reconocida por la Administración de Alimentos y Drogas (FDA) de los Estados Unidos, recientemente sucedieron algunos cambios legislativos acerca de la información que deben contener las etiquetas de los productos relacionados con beneficios funcionales de los alimentos. Las regulaciones de la NLEA (Ley de Etiquetado y Regulación Nutricional) y de la DSHEA (Ley de Suplementos Dietéticos Salud y Educación) se encaminan a preparar el camino legal en que se debe fundamentar el uso de estos productos. La posición oficial de la U.S. Food & Drugs Administration (FDA) es: "Las sustancias específicas de los alimentos pueden favorecer la salud como parte de una dieta variada". La asociación respalda la investigación de los beneficios y riesgos de estas sustancias, los profesionales de la dietética seguirán trabajando con la industria alimentaria, y el gobierno para asegurar que el público tenga suficiente información científica precisa en este campo en surgimiento. Por su parte, la Asociación Americana de Dietistas (ADA), reconoce el papel potencialmente benéfico de los alimentos funcionales al enfatizar que estos alimentos "deben ser consumidos como parte de una dieta variada, en una forma regular y a niveles efectivos", definición que lo delimita definitivamente del término alimento nutracéutico como se verá posteriormente. Finalmente, en México, aunque el término de alimentos funcionales se utiliza familiarmente entre la comunidad científica a la fecha no hay leyes que reglamenten específicamente el uso de estos alimentos.

b) Producto nutracéutico.

Cualquier producto que pueda tener la consideración de alimento, parte de un alimento, capaz de proporcionar beneficios saludables, incluidos la prevención y el tratamiento de enfermedades. El concepto de alimento nutracéutico ha sido recientemente reconocido como "aquel suplemento dietético que proporciona una forma concentrada de un agente presumiblemente bioactivo de un alimento, presentado en una matriz no alimenticia y utilizado para incrementar la salud en dosis que exceden aquellas que pudieran ser obtenidas del alimento normal".

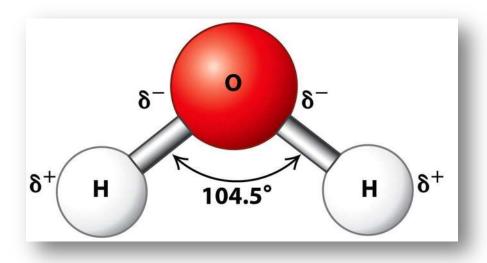
c) Alimento diseñado.

Alimento procesado, que es suplementado con ingredientes naturales ricos en sustancias capaces de prevenir enfermedades. Este término se utiliza frecuentemente como sinónimo de alimento funcional.

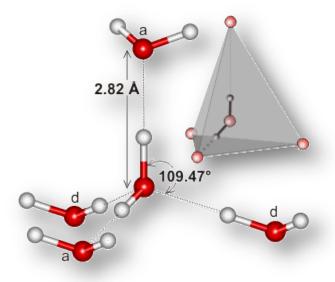
d) Productos fotoquímicos.

Sustancias que se encuentran en verduras y frutas, que pueden ser ingeridas diariamente con la dieta en cantidades de gramos y muestran un potencial capaz de modular el metabolismo humano. Ya que los alimentos funcionales generalmente son de origen vegetal, se utilizaban indistintamente ambos términos, sin embargo actualmente se consideran como alimentos funcionales también a los microorganismos probióticos y en este concepto no estarían incluidos. Hay otros términos que alguna vez se utilizaron como sinónimos de alimentos funcionales; por ejemplo, los agentes quimiopreventivos son aquellos componentes alimentarios, nutritivos o no que científicamente son investigados para la prevención primaria y secundaria del cáncer, en cuanto a ser potenciales inhibidores de la carcinogénesis. Los farmalimentos (Pharma food) son los alimentos o nutrientes, que ofrecen beneficios saludables, entre ellos la prevención y el tratamiento de enfermedades. También se pueden considerar alimentos funcionales a los llamados alimentos modificados, fortificados y enriquecidos. Se considera como alimento modificado a todo alimento o producto alimenticio con variación en su composición original (con adición de algunos nutrientes, especialmente vitaminas y minerales) para restaurar o aumentar su valor nutricional o para satisfacer las necesidades específicas de alimentación de un determinado grupo de la población. Productos fortificados son aquellos que tienen suplementos en su contenido natural de nutrientes esenciales. Se fortifican generalmente alimentos a los que se puede agregar valor con poco costo adicional. El término fortificación, es aplicado en aquellas situaciones en las que se añade un determinado nutriente a un alimento que originalmente carecía de él. La adición de yodo a la sal de mesa sería un buen ejemplo de fortificación otros ejemplos son: panificados, cereales para desayuno, lácteos, galletas y pastas. Los productos enriquecidos son los alimentos a los que se les ha adicionado nutrientes esenciales a fin de resolver deficiencias de alimentación que se traducen en fenómenos de carencia colectiva, mediante el enriquecimiento se restauran o se superan los niveles iniciales de los nutrientes perdidos durante la manipulación del alimento.

Causas del auge de los alimentos funcionales


Como se describió anteriormente, el auge sorprendente de la industria de los alimentos funcionales surgió en la década de los 90's. Las causas que originaron esta revolución son diversas, sugiere las siguientes: el público que se preocupa más por su salud y compra alimentos con valor agregado al nutricional, las organizaciones encargadas de legislar en materia de alimentos están reconociendo los beneficios de los alimentos funcionales a la salud pública, el gobierno está poniendo atención en este renglón ya que prevé el potencial económico de estos productos como parte de las estrategias de prevención de la salud pública. Otros factores que también contribuyen en el "boom" de los alimentos funcionales incluyen los grandes avances tecnológicos, entre ellos la biotecnología, así como la investigación científica que documenta los beneficios para la salud de estos alimentos. Es un hecho que los consumidores han comenzado a ver la dieta como parte esencial para la prevención de las enfermedades crónicas como el cáncer, las enfermedades cardiovasculares, la osteoporosis entre otras. De esta manera es que se presenta un fenómeno denominado de auto-cuidado (self-care) que es el factor principal que motiva a decidir comprar alimentos saludables; este factor es el que regirá el crecimiento de la industria de los alimentos funcionales. En la industria alimenticia se reconoce un grupo poblacional denominado los "baby boomers" que son personas nacidas después de la segunda guerra mundial, entre 1946 y 1963, tienen alrededor de 50 años y buscan mantener la salud a través de la alimentación (aunque carecen de información fidedigna al respecto), y lo más importante para la industria alimenticia, tienen un poder económico muy fuerte, este es el mercado que hará florecer la industria de los alimentos funcionales. En relación a las organizaciones encargadas de legislar en materia de alimentos, éstas deben encontrar soporte científico que avale los beneficios a la salud de los supuestos alimentos funcionales. En ese sentido ya se describieron anteriormente los esfuerzos realizados alrededor del mundo, encabezados por Japón con la legislación FOSHU, y Estados Unidos de América con las modificaciones a la Ley de Etiquetado y Educación Nutricional (NLEA) y la Ley de Suplementos Dietarios, Salud y Educación (DSHEA).

Alimentos en el mundo


Actualmente existen muchos alimentos funcionales en el mundo. Siendo Estados Unidos uno de los países que tiene muy claro el objetivo de los alimentos funcionales para llegar a prevenir enfermedades en la población, por ejemplo, resulta fácil encontrar barras de cereales destinadas a mujeres de mediana edad, suplementadas con calcio para prevenir la osteoporosis, o por proteína de soya para reducir el riesgo de cáncer de mama y con ácido fólico, para un corazón más sano, panecillos energizantes y galletas adicionadas con proteínas, zinc y antioxidantes. En Europa se utilizan rótulos que indican "Valor aumentado", así como en Alemania se comercializan golosinas adicionadas con vitamina Q10 y vitamina E. En Italia las góndolas de los supermercados ofrecen yogures con omega 3 y vitaminas y Francia ofrece azúcar adicionada con fructo-oligosacaridos para fomentar el desarrollo de la flora benéfica intestinal.

El Agua

El agua es uno de los recursos que condicionan el éxito en permitir el desarrollo de estructuras celulares funcionales, en varias de sus formas, como son en este caso las células bacterianas, las células fúngicas y desde luego las células que permiten la actividad fotosintética. Ahora bien, desde el punto de vista del estado de agregación se debe mencionar que es mayoritariamente líquida, esto se debe a la particular forma de la molécula del agua. (Arney et al., 2016). Figura No. 1

Figura No. 1 Estructura de la molécula del agua y sus momentos de dipolo, mostrando el ángulo entre los enlaces de hidrógeno y el oxígeno. (Arney et al., 2016).

Figura No. 2. Enlaces de puente de hidrógeno y la estructura fundamental referente al comportamiento y estado de agregación del agua en las condiciones fisicoquímicas estándares, separación entre las moléculas de agua hace referencia a 2.82 Angström. Arney et al., (2016).

Esta configuración permite la formación de puentes de Hidrogeno Figura No. 2, lo cual permite que el agua pueda existir a una temperatura de ebullición de 100°C a una presión de 760 mm/Hg o una atmosfera de presión, lo cual normalmente se consigue a los 0 metros sobre el nivel del mar (msnm). De otra forma, se ha calculado que de no existir los puentes de hidrógeno y las fuerza Van der Waals el agua no podría existir como líquida una temperatura mayor a los 36°C, de esta manera las estructuras moleculares del agua, así como su ubicuidad en la superficie del planeta Tierra han favorecido el desarrollo de lo que se conoce como vida o formas de vida, así como su evolución a lo largo de millones de años y de esta manera se condicionaría el desarrollo de las estructuras celulares en el planeta Tierra. Arney et al., (2016).

Condiciones de desarrollo social y cultural basados en la disponibilidad del agua.

Todas las culturas humanas para su desarrollo han favorecido a la agricultura, de esta manera la disposición de alimentos para la especie humana (H. sapiens) siempre ha estado condicionado a la disposición de agua de calidad para el desarrollo de la agricultura, como ejemplos relevantes a lo largo del tiempo, geografía, diversidad de culturas humanas y su punto en común, en cuanto a la agricultura y el agua podemos citar por ejemplo a las culturas del río Éufrates (Asia Menor) como Mesopotamia 7000 años antes de Cristo, Las culturas que se desarrollaron en el Delta del río Nilo (África), Egipto 5000 años antes de Cristo, el río Amarillo (Asia) en las dinastías Chinas del Imperio chino 4000 años antes de Cristo, río Tíber (Europa), Imperio romano 2500 años antes de Cristo. Delile, Blichert-Toft, Goiran, Keay, & Albarède, (2014). y los asentamientos de las culturas Prehispánicas que florecieron a los largo del continente Americano, así el grado de sofisticación estuvo marcado por la agricultura y esta a su vez por el acceso a afluentes de agua de calidad, como la cultura Madre conocida como los Olmecas que se asentaron en el caudaloso territorio que se conoce como Tabasco, así como el asentamiento reciente de la ciudad de Tenochtitlán, al mismo tiempo la falta de agua por su sobre explotación en diferentes espacios temporales y culturas han condicionado su desaparición como fueron lo que se conoce como Teotihuacán y el Imperio maya, los cuales entraron en decadencia por la falta de suministros de alimentos, y esto se sabe ahora por la falta de agua de calidad. Douglas et al., (2015). Estos ejemplos de culturas con diferentes grados culturales de sofisticación desarrollaron la agricultura y una sociedad en todos los acaso basada en la estratificación social (dominantes, gobernantes, sacerdotes, militares) y una clase trabajadora especializada que se encargaba de operar y asegurar la calidad del agua y de los alimentos, este patrón de desarrollo social y cultural no ha variado en los últimos 10,000 años de la historia humana. Por lo que el agua de calidad, así como su gestión es una asignatura que seguirá marcando la pauta para viabilidad de la especie homínida. Por lo tanto se han creado recientemente diferentes criterios de clasificación, cuidado y gestión de los

recursos hídricos. En donde se pueden citar ejemplos como Normas Internacionales (ISO), Nacionales de Carácter Obligatorio (NOM) y de carácter deseable, más no obligatorias, como las Normas Mexicanas (NMX) y un caso que merece ser referido de manera especial es la "Huella Hídrica". Douglas et al., (2015).

Concepto de Huella Hídrica

La huella hídrica (HH) es un indicador de toda el agua que utilizamos en nuestra vida diaria; para producir nuestra comida, en procesos industriales y generación de energía, así como la que ensuciamos y contaminamos a través de esos mismos procesos. «Huella - Infografía Huella Hídrica.pdf», (2002).

Posiblemente nunca nos hemos preguntado cuánta agua se necesita para generar la carne que comemos o mantener limpia la ropa, lo cual puede ser debido a la creencia de que vivimos en un país con gran abundancia de agua. Sin embargo, debido al crecimiento y desarrollo tecnológico, industrial y de servicios, cada vez incrementa más la demanda de mayores volúmenes de recursos naturales, incluyendo el agua. «Huella - Infografía Huella Hídrica.pdf», (2002).

Este indicador nos permite conocer la cantidad de agua que aprovecha una persona, un grupo, una región, un país o toda la humanidad.

Las personas utilizan una gran cantidad de agua para beber, cocinar y lavar. Pero utilizan todavía más en la producción de bienes tales como alimentos, papel, prendas de algodón, etc. La huella hídrica es un indicador del uso de agua que tiene en cuenta tanto el uso directo como indirecto por parte de un consumidor o productor. La huella hídrica de un individuo, comunidad o comercio se define como el volumen total de agua dulce que se utiliza para producir los bienes y servicios consumidos por el individuo o comunidad así como los producidos por los comercios.

La HH considera el lugar de donde proviene el agua y, en función de ello, la clasifica en 3 tipos o colores: azul, verde y gris Figura No. 3:

Figura No. 3 Clasificación del agua y la huella hídrica. «Huella - Infografía Huella Hídrica.pdf», (2002).

Agua azul Se denomina así a la que se encuentra en los cuerpos de agua superficial (ríos, lagos, esteros, etc.) y subterráneos. La huella hídrica azul se refiere al consumo de agua superficial y subterránea de determinada cuenca, entendiendo consumo como extracción. Es decir, si el agua utilizada regresa intacta al mismo lugar del que se tomó dentro de un tiempo breve, no se toma en cuenta como HH. «Huella - Infografía Huella Hídrica.pdf», (2002).

La huella de agua azul es el volumen de agua dulce consumida de los recursos hídricos del planeta (aguas superficiales y subterráneas).

Figura No. 4 Agua azul huella hídrica. «Huella - Infografía Huella Hídrica.pdf», (2002).

Agua verde Es el agua de lluvia almacenada en el suelo como humedad, siempre y cuando no se convierta en escorrentía. Igualmente, la huella hídrica verde se concentra en el uso de agua de lluvia, específicamente en el flujo de la evapotranspiración del suelo que se utiliza en agricultura y producción forestal. «Huella - Infografía Huella Hídrica.pdf» (2002).

La huella del agua verde es el volumen de agua evaporada de los recursos hídricos del planeta (agua de lluvia almacenada en el suelo como humedad).

Figura No. 5. Agua verde huella hídrica. «Huella - Infografía Huella Hídrica.pdf», (2002).

Agua gris Es toda el agua contaminada por un proceso. Sin embargo, la huella hídrica gris no es un indicador de la cantidad de agua contaminada, sino de la cantidad de agua dulce necesaria para asimilar la carga de contaminantes dadas las concentraciones naturales conocidas de éstos y los estándares locales de calidad del agua vigentes. «Huella - Infografía Huella Hídrica.pdf» (2002).

La huella de agua gris es el volumen de agua contaminada que se asocia con la producción de los bienes y servicios. Este último puede ser estimado como el volumen de agua que se requiere para diluir los contaminantes hasta el punto de que la calidad del agua se mantiene en o por encima de las normas acordadas de calidad del agua.

Figura No. 6 Agua gris huella hídrica. «Huella - Infografía Huella Hídrica.pdf», (2002)

La suma del agua verde, el agua azul y el agua gris que requiere un producto o servicio dentro de todo el proceso de elaboración será su huella hídrica.

La HH considera únicamente el agua dulce y se conforma de 4 componentes básicos:

- Volumen
- Color/clasificación del agua
- •Lugar de origen del agua
- Momento de extracción del agua
- «Huella Infografía Huella Hídrica.pdf» (2002).

Identificar estos datos permite analizar la huella hídrica, sin embargo es necesario tomar en cuenta aspectos locales para dar un contexto real y útil al concepto.

Por ejemplo:

- Impactos en tiempo y espacio de la extracción del agua y su retorno como agua residual o tratada.
- Nivel de productividad del agua en la zona.
- Condiciones de escasez o estrés hídrico.
- Usos locales del agua y el acceso de la población al recurso.
- •Impactos en la cuenca baja.
- Demás factores que puedan incidir en el mantenimiento del equilibrio en cada cuenca hidrológica. «Huella Infografía Huella Hídrica.pdf» (2002).

Cuantificación de la HH

La HH se calcula como el consumo doméstico de los recursos hídricos, menos las exportaciones de agua virtual, más las importaciones de agua virtual.

Para un producto, es el contenido total de agua azul, verde y gris involucrada en toda la cadena de procesos de elaboración del mismo.

- La HH de una persona se obtiene de sumar la HH de todos los productos, bienes y servicios que consume y utiliza.
- La HH de producción de un país se obtiene de sumar el agua verde, azul y gris en todos sus procesos productivos agropecuarios, así como el agua azul y gris de los industriales y domésticos.
- La HH de consumo de un país es lo que produce para consumir (quitando las exportaciones), y lo que importa para consumo.
- La HH externa es la proporción del consumo de un país que fue producido en otro país.
- Transferencias de Agua Virtual: El contenido de agua virtual transferido a otros países mediante el comercio de productos. «Huella Infografía Huella Hídrica.pdf» (2002).

Referente al concepto de Huella Hídrica, se considera que cada tipo de alimento de origen agrícola o procesado industrialmente utiliza una cantidad de agua determinada, por lo tanto en el concepto de la Huella Hídrica, producto alimenticio y producto tecnológico, que es parte del modo de vida humano tiene por tanto una mayor y menor consumo del recurso hídrico, como se ve en la siguiente Tabla No. 1, relación peso volumen.

Tabla No.1 Huella hídrica de algunos alimentos y algunos objetos.

Producto	Peso	Volumen de agua consumida
Papa	100 g	25 L
Manzana	100g	70 L
Jitomate	70g	13 L
Naranja	100g	50 L
Rebana de pan	30g	40 L
Rebanada de pan con queso	30g +´10g	90 L
Huevo	40g	135 L
Bolsa de papas fritas	200g	185 L
Hamburguesa	150g	2 mil 400 L
Vaso de cerveza	250g	75 L
Vaso de leche	200ml	200L
Taza de Té	250ml	35 L
Copa de vino	125ml	120L
Vaso de jugo de manzana	200ml	190L
Vaso de jugo de naranja	200ml	170L
Par de zapatos(piel de bovino)		8 mil L
1 hoja de papel	80g	10 L
1 microchip	2g	32 L

[«]Huella - Infografía Huella Hídrica.pdf» (2002).

Huella hídrica en México

México es un importador neto de agua virtual. En el año 2006 importó 29,859 hm3, con una tendencia creciente a partir del año 2000. («huella - Infografía Huella Hídrica.pdf», s. f.). Los tres productos con los que más agua virtual exportó México en 2006 son los frutos comestibles, las legumbres y hortalizas y las carnes, que representan el 43% del total de agua virtual exportada. «Huella - Infografía Huella Hídrica.pdf» (2002).

Los principales productos que México importa son los cereales, las carnes, los frutos y las semillas, lo cual significa el 83% del total de las importaciones de agua virtual de México. La HH de consumo en México es la octava mayor en el mundo, principalmente debido al tamaño de la población (11º país más poblado). El total del consumo, únicamente 2.7% es industrial y 5.3% es doméstico. A nivel nacional, México tiene una HH de 197,425 mil Hm³. «Huella - Infografía Huella Hídrica.pdf», (2002).

El 86% de la HH de un mexicano consiste en productos alimentarios y bebidas, 6% otros productos agropecuarios (pieles y algodón principalmente), 5% consumo doméstico y 3% productos industriales. («Huella - Infografía Huella Hídrica.pdf»,

¿Quién es el autor del concepto?

Arjen Hoekstra (1967) es profesor en la gestión del agua en la Universidad de Twente, Países Bajos, y profesor visitante en el Kuan Escuela de Políticas Públicas Lee Yew de la Universidad Nacional de Singapur. Tiene un título de maestría con honores, en Ingeniería Civil y un doctorado en Análisis de Políticas, ambos de la Universidad de Tecnología de Delft. Hoekstra ha vivido en Europa, Asia y África y tiene una amplia red internacional. Ha dirigido diversos proyectos interdisciplinarios de investigación y gobiernos aconsejados, las organizaciones de la sociedad civil, las empresas y las instituciones multilaterales como la UNESCO y el Banco Mundial. Hoekstra Arjen Y (2016).

Hoekstra fue el primero en cuantificar los volúmenes de agua prácticamente incrustados en el comercio, lo que demuestra la importancia de una perspectiva global sobre el uso del agua y la escasez. Como creador del concepto de huella hídrica, Hoekstra introdujo el pensamiento de la cadena de suministro en la gestión del agua. Con el desarrollo de la evaluación de la huella de agua que sentó las bases de un nuevo campo de investigación interdisciplinario, frente a las relaciones entre la gestión del agua, el consumo y el comercio. Hoekstra es fundador de la Water Footprint Network, fue el primer director científico de la organización y ahora es presidente del consejo de vigilancia. Hoekstra Arjen Y. (2016)

Hoekstra y sus publicaciones científicas abarcan una amplia gama de temas relacionados con la gestión del agua e incluyen un gran número de artículos muy citados y capítulos de libros. Sus libros fueron traducidos a varios idiomas. Desde abril de 2016, Hoekstra es jefe y editor del departamento de agua, en una revista internacional e interdisciplinaria de acceso abierto que cubre todos los aspectos del agua, incluidas las ciencias del agua, la tecnología, la gestión y la gobernabilidad. Hoekstra Arjen Y (2016)

Hoekstra ha enseñado en una variedad de temas, incluyendo: gestión de los recursos hídricos, la gestión de las cuencas hidrográficas, la hidrología y la calidad del agua, evaluación de la huella del agua, el desarrollo sostenible, la valoración de los recursos naturales, análisis de sistemas del medio ambiente, y el análisis de políticas. Desarrolló diversas herramientas educativas, incluyendo el juego de la cuenca del río y la globalización de agua. Hoekstra Arjen Y (2016)

Enfermedades por Transmisión Alimentaria (ETA) Géneros microbianos importantes en los alimentos

Los microorganismos se encuentran en todos los ambientes que componen la biosfera y en estrecha interacción con todos sus componentes. Los seres vivos proporcionan los alimentos que el hombre necesita; para que éste sea aprovechado necesita ser manipulado o transformado con el fin de hacerlo apto para la dieta humana. Komaroff, (2017).

Las técnicas de conservación buscan reducir al mínimo la interacción alimentoorganismo, garantizando su calidad al asegurar que no es tóxico y si apto para consumir. A continuación encontramos una tabla donde se presentan los nombres de bacterias, hongos y levaduras que se encuentran en alimentos (Tabla No.2).

Los hongos son organismos multicelulares, filamentosos, detectables en los alimentos porque al crecer le dan un aspecto aterciopelado o algodonoso, o porque lo colorea de blanco, gris u otros colores en las zonas donde se desarrollan. Estos pueden ser útiles como en el caso de producción de quesos madurados (quesos azules, Roquefort, Camembert, Brie, Gammelost y otros), alimentos o en la elaboración de amilasa y ácidos cítricos entre otros. También son causa de contaminaciones tóxicas de los alimentos como micotoxinas. Ghosh et al., (2016).

Las levaduras son difíciles de definir. Se consideran como hongos ya que son plantas sin raíces, tallos, hojas sin clorofila; se dividen en dos grupos: las que forman ascosporas o levaduras verdaderas porque se producen sexualmente y las que no lo hacen llamándose levaduras falsas u hongos imperfectos. Se utilizan en el proceso de fabricación de productos como el pan, cerveza, vino y vinagre entre otros o causan alteración en zumos de frutas, almíbares, melazas, miel, jaleas, carnes, vinos y otros.

La levaduras pueden ser oxidativas, fermentativas o ambas a la vez; si son oxidativas, se desarrollan sobre la superficie de los líquidos formando una película superficial, mientras que las fermentativas crecen en todo el líquido. Krogerus, Magalhães, Vidgren, & Gibson, (2017).

Tabla No. 2. Géneros bacterianos, hongos y levaduras.

Bacterias Género	Hongos Género	Levaduras Género
Acetobacter	Alternaria	Brettanomyces
Acinetobacter	Aspergillus	Candida
Alcaligenes	Botrytis	Debaryomyces
Bacillus	Byssochalamy	Endomycopsis
Bacteroides	Cephalosporium	Hansenula
Citrobacter	Cladosporium	Kloeckera
Campylobacter	Colletotrichum	Mycoderma
Clostridium	Fusarium	Rhodotorula
Corynebacterium	Geotrichum	Saccharomyces
Enterobacter	Helminthosporium	Schizosaccharomyces
Erwinia	Mucor	Torulopsis
Escherichia	Rhizopus	Trichosporon
Flavobacterium	Sporotrichum	
Kurthia	Thamnidium	
Micrococcus	Trichothecium	
Pediococcus	Neurosporas	
Proteus	Penicillium	
Pseudomonas		
Salmonella		
Serratia		
Shigella		
Staphylococcus		
Streptococcus		
Streptomyces		
Flavobacterium		
Lactobacillus		
Leuconostoc		

Ghosh, Chowdhury, & Bhattacharya (2016). Fuentes de contaminación

Los contaminantes pueden partir de diferentes fuentes: vegetales, animales, humanas, suelo, agua y aire. Estas fuentes pueden considerarse como naturales llegando a contaminar el alimento antes de que sea obtenido, cosechado, durante la manipulación o tratamiento del mismo. Pero cuando se procesa o se fabrica un alimento el equipo empleado, los materiales y utensilios pueden ser otra fuente de contaminación; sin embargo, debe precisarse si estos han sido contaminados a partir de las principales fuentes señaladas. Zamfir (1978).

Contaminación a partir de vegetales (Fitopatógeno).

Entre los contaminantes de los vegetales se pueden señalar los siguientes géneros bacterianos: *Pseudomonas spp., Alcaligenes spp., Flavobacterium spp., Achromobacter spp., Micrococcus spp., Lactobacillus spp., Bacillus spp. y* bacterias coliformes. Igualmente no se debe olvidar que muchos hongos y levaduras proceden de los vegetales. El número y clase de microorganismos presentes en los vegetales depende de las características del vegetal y del medio en que se encuentren. Se hallan fundamentalmente en la superficie y sólo se presentan microorganismos al interior de los vegetales cuando ha sido lesionada su protección superficial. Las superficies externas de los vegetales se contaminan a partir del suelo, el agua, materias cloacales, aire y animales. Islam, Romić, Akber, & Romić, (2017).

Contaminación a partir de material cloacal

Si la fertilización de los suelos se hace con materia cloacal, sin tratamiento previo, se corre el riesgo de contaminación de microorganismos causantes de enfermedades gastrointestinales. loannou-Ttofa et al., (2017).

Contaminación a partir de agua

Las aguas no sólo contienen su flora microbiana natural sino aquellos microorganismos provenientes del suelo, del aire, de los animales e incluso del material cloacal.

Los principales géneros que se encuentran en las aguas son: Pseudomonas, Chromobacterium, Proteus, Achromobacter, Micrococcus, Bacillus, Streptococcus, Aerobacter y Escherichia.

Es interesante conocer la bacteriología del agua por dos aspectos; primero sanitario y segundo económico. Debe cumplir con las normas microbiológicas del agua potable usada para el consumo humano. El agua es más importante por la clase de microorganismos que puede contener, que por el número que posee de cada uno de ellos. Wu, Mi, Zhang, Chen, & Xie, (2014).

Las enfermedades transmitidas por alimentos pueden manifestarse a través de:

Infecciones

Intoxicaciones.

Son las ETA (Enfermedades de Transmisión Alimentaria) producidas por la ingestión de toxinas formadas en tejidos de plantas o animales, o de productos metabólicos de microorganismos en los alimentos, o por sustancias químicas que se incorporan a ellos de modo accidental, incidental o intencional desde su producción hasta su consumo. Ocurren cuando las toxinas o venenos de bacterias o hongos están presentes en el alimento ingerido. Estas toxinas generalmente no poseen olor o sabor y son capaces de causar enfermedades después que el microorganismo es eliminado. Algunas toxinas pueden estar presentes de manera natural en el alimento, como en el caso de ciertos hongos y animales como el pez globo. Ejemplos: botulismo, intoxicación estafilocócica o por toxinas producidas por hongos. López, Minnaard, Pérez, & Alippi, (2015).

Toxi-infecciones causadas por alimentos.

Es una enfermedad que resulta de la ingestión de alimentos con una cierta cantidad de microorganismos causantes de enfermedades, los cuales son capaces de producir o liberar toxinas una vez que son ingeridos. Ejemplo: el cólera.

Un brote de ETA sucede cuando dos o más personas sufren una enfermedad similar, después de ingerir un mismo alimento y los análisis epidemiológicos o de laboratorio lo señalan como el origen de ese malestar. Mientras que un caso de ETA se produce cuando una sola persona se ha enfermado después del consumo de alimentos contaminados según lo hayan determinado los análisis epidemiológicos o de laboratorio.

De acuerdo con la información sobre la ocurrencia de ETA en las Américas, los riesgos que rodean a la inocuidad alimentaria plantean una preocupación evidente para la salud pública, que además de afectar las condiciones de salud de la población general, tienen un impacto directo en actividades como el turismo y el comercio de alimentos, que se encuentran en expansión. Una acción a la que los países también deben comprometerse es la de mantener el esfuerzo para garantizar la inocuidad tanto de los alimentos que son destinados a la exportación, como aquellos que se asignan al consumo interno, con el firme objetivo de lograr la equidad de acceso a alimentos sanos y aptos para el consumo. Según datos, el lugar donde se originan más casos de ETA en las Américas, es en la vivienda. Por eso, el papel de las comunidades y especialmente el de cada persona, cobra un valor fundamental en la tarea de prevenir las enfermedades que son transmitidas por los alimentos. La Organización Mundial de la Salud ha desarrollado las 5 claves de la inocuidad de los alimentos cuya implementación constituye una accesible manera de evitar las ETA.

Las cinco claves en la prevención son:

- 1. Conservar la higiene.
- 2. Separar los alimentos crudos y cocinados.
- 3. Cocinar completamente los alimentos
- 4. Mantener los alimentos a las temperaturas seguras.
- 5. Usar agua potable y materias primas seguras.

PARAMETROS FISICOQUÍMICOS

La medida del pH es una de las pruebas más frecuentes utilizadas en el análisis químico del agua. Prácticamente en todas las fases el tratamiento del agua para suministro y residual como la neutralización ácido-base, suavizado, precipitación desinfección depende del pH. El pH se utiliza en las determinaciones de alcalinidad y dióxido de carbono. El valor del pH de una solución muy diluida es aproximadamente el mismo que el logaritmo de la concentración del ion Hidrógeno cambiado de signo. Las aguas naturales logaritmo de la concentración del ion Hidrógeno cambiado de signo. Las aguas naturales tienen valores de pH de entre 4 a 9 y la mayoría son ligeramente básicas debido a la presencia de carbonatos y bicarbonatos.

Principio

Medida del potencial eléctrico que se crea en la membrana de un electrodo de vidrio, que es función de la actividad de los iones hidrógeno a ambos lados de la membrana.

Iones

Es importante mencionar lo que es un ion, ya que a continuación se describirán a cada uno de ellos y su importancia en el agua. Un ion es un átomo o grupo de átomos cargado eléctricamente. Un ion positivo es un catión y un ion negativo es un anión. La formación de los iones a partir de los átomos es, en esencia, un proceso de pérdida o ganancia de electrones. Los iones son componentes esenciales de la materia tanto inerte como viva. Son partículas con carga eléctrica neta que participan en un buen número de fenómenos químicos. A la temperatura ambiente, los iones de signo opuesto se unen entre sí fuertemente siguiendo un esquema regular y ordenado que se manifiesta bajo la forma de un cristal. En disolución, son la base de procesos como la electrólisis y el fundamento de aplicaciones como las pilas.

Cloruros

El cloruro en forma de ion Cl⁻ es uno de los aniones inorgánicos principales en el agua. Es el ion que le da al agua su sabor salado. Serra Belenguer J., (1996).

Sulfatos

El sulfato SO₄⁼ se distribuye ampliamente en la naturaleza y se puede presentar en concentraciones que van desde unos pocos o varios miles de ppm/L. Serra Belenguer J., (1996).

Calcio

La presencia de calcio en los suministros de agua proviene del paso de esta a través de depósitos de caliza, dolomita, yeso y pizarras yesíferas. Sus concentraciones pueden variar entre 0 y varios centenares de ppm/L. Pequeñas concentraciones de carbonato de calcio evitan la corrosión de tuberías metálicas por depósitos de una capa protectora, pero cantidades apreciables de sales de calcio pueden formar incrustaciones al precipitar de forma abundante. El calcio contribuye a la dureza total del agua. Para reducir el calcio y la dureza asociada con él, se aplica un tratamiento de ablandamiento químico, ósmosis inversa o intercambio iónico. Serra Belenguer J., (1996)

Magnesio

Al igual que el calcio, el magnesio es un componente común en las aguas naturales. Las sales de magnesio contribuyen de forma importante a la dureza del agua. La concentración de magnesio puede variar desde 0 a varios cientos de ppm/L. Concentraciones superiores a 125 ppm pueden tener un efecto diurético en el organismo. Serra Belenguer J., (1996).

Hierro

Este elemento rara vez alcanza concentraciones superiores a 1ppm en aguas superficiales, pero por el contrario en aguas subterráneas pueden encontrarse concentraciones muy superiores. Algunas personas son capaces de detectar su presencia para niveles 1 ppm Este elemento puede estar como tal en forma coloidal o más frecuentemente en forma ferrosa o férrica. Serra Belenguer J., (1996).

Manganeso

A pesar del que el manganeso raramente sobrepasa 1ppm de agua, los bajos límites tolerados obedecen más al hecho de que produce manchas tenaces en la ropa e instalaciones sanitarias que a consideraciones toxicológicas. Su eliminación precisa de métodos especiales tales como precipitación química, variación del pH o sistemas de intercambio iónico.

Zinc

Es un elemento esencial y beneficioso para el crecimiento humano. La concentración de zinc en las aguas potables varía entre 0.006 y 7.0 ppm de agua. Concentraciones por encima de 5 ppm de agua pueden ser causantes de un gusto astringente amargo.

Fósforo total

El fósforo se encuentra en las aguas naturales casi exclusivamente en forma de fosfato. Su origen es muy variado, Puede proceder de aguas residuales puesto que determinados compuestos fosfatados se utilizan en muchos preparados comerciales para la limpieza. Los ortofosfatos aplicados como fertilizantes pueden ser arrastrados a las aguas superficiales por las lluvias. Los fosfatos orgánicos se forman principalmente en proceso biológicos. Los fosfatos pueden aparecer también en los sedimentos en fondos y cienos biológicos, tanto en formas inorgánicas precipitadas como incorporadas a compuestos orgánicos. Serra Belenguer J., (1996).

COMPONENTES NO DESEABLES

Inorgánicos con nitrógeno.

Por orden decreciente de su estado de oxidación, los compuestos del nitrógeno de mayor interés en las aguas naturales son el nitrato, nitrito y amoniaco. Todas estas formas del nitrógeno junto con el nitrógeno gaseoso N₂ son interconvertibles bioquímicamente y forman parte del ciclo del nitrógeno. Serra Belenguer J., (1996).

Nitratos

El nitrato se encuentra sólo en pequeñas cantidades en las aguas residuales domésticas y en las aguas de lixiviación de los campos de cultivo, donde pueden alcanzar concentraciones superiores a los 100 ppm Serra Belenguer J., (1996)

Nitritos

El nitrito es un estado intermedio de la oxidación del nitrógeno, tanto en la oxidación del amoniaco a nitrato como en la reducción del nitrato. Serra Belenguer J., (1996).

PARÁMETROS DE LA CALIDAD DEL AGUA PARA CONSUMO HUMANO.

La presente reglamentación tiene por objeto definir a efectos legales, lo que se entiende por aguas potables de consumo público y fijar, con carácter obligatorio, las normas técnico-sanitarias para el tratamiento, distribución y control de la calidad de estas aguas. Serra Belenguer J., (1996).

Esta reglamentación obliga a todas las empresas proveedoras y/o distribuidoras de aguas potables de consumo público. Se considerarán empresas proveedoras y/o distribuidoras de aguas potables de consumo público, aquellas personas, naturales o jurídicas, públicas o privadas, que, en uso de las autorizaciones concedidas por los organismos oficiales competentes, dedican su actividad a todas o alguna de las fases de, tratamiento, transporte y distribución de las aguas potables de consumo público definidas a continuación. Serra Belenguer J., (1996).

Aguas potables de consumo público.

Son aquellas utilizadas para este fin, cualquiera que sea su origen, bien en su estado natural o después de un tratamiento adecuado, ya sean aguas destinadas directamente al consumo o aguas utilizadas en la industria alimentaria de forma que pueda afectar a la salubridad del producto final. Serra Belenguer J., (1996).

Agua Potable.

Es el agua que reúne las características tolerables de acuerdo a las exigencias de la reglamentación. Serra Belenguer J., (1996).

Agua sanitariamente permisible.

Es aquella que no posee las características indicadas en la reglamentación pero que no obstante pueden ser utilizadas para el consumo humano. Serra Belenguer J., (1996).

Agua no potable.

Es aquella que no reúne las características exigidas en la reglamentación a las aguas potables o sanitariamente permisibles. Serra Belenguer J., (1996).

Agua tratada.

Es aquella que, habiendo sido sometida a un tratamiento adecuado, reúne las características propias de las aguas potables o sanitariamente permisibles. Serra Belenguer J., (1996).

Parámetros de calidad.

Son los correspondientes a una calidad deseable en el agua potable. Siempre que sea posible, para futuros abastecimientos, se elegirán aguas que cumplan estos caracteres. Serra Belenguer J., (1996).

Límites permisibles.

Corresponden a las concentraciones máximas aceptables para los distintos parámetros en el agua potable. No debe ser sobrepasado permanentemente en los abastecimientos de aguas potables. Serra Belenguer J., (1996).

CARACTERISTICAS DE LAS AGUAS POTABLES

El agua potable, es un recurso sumamente sensible a las variaciones en la concentración de diversos iones químicos en disolución, así como tener la gran capacidad de disolver diversos gases atmosféricos como el Oxígeno y el Bióxido de Carbono, lo cual convierte al agua potable en un sistema fisicoquímico extremadamente sensible que se traduce en variaciones en la percepción organoléptica y en un momento determinado puede el agua potable dejar de serlo, para ello se han elaborado diversas recomendaciones referentes a las características físicas-químicas y organolépticas del agua potable, los cuales son indicativos sobre la calidad de este valioso recurso el planeta y se presentan en las siguientes tablas.

Características organolépticas

Factores de calidad:

- a) Olor y sabor. Estarán desprovistos de olores y sabores extraños a las características propias de las aguas.
- b) Color en un electrodo de en Pt- Co. Hasta un (1) ppm.

Tolerables

- a) Olor y sabor. Se tolerará un ligero olor y/o sabor característico de los tratamientos empleados o de su procedencia natural.
- **b) Color en un electrodo de** Pt- Co. Hasta 20 ppm.

Tabla No.3. Características organolépticas del agua. Serra Belenguer J., (1996)

o Parámetros fisicoquímicos

Parámetros de calidad Límites permisibles

- a) pH. De siete enteros a ocho enteros.
- b) Conductividad (resistividad) a 20°C. Hasta 400 micro Siemens cm -1.
- c) Cloruros (en Cl^-). Hasta veinticinco (25) ppm.
- d) Sulfatos (en SO_4) Hasta veinticinco (25) ppm.
- e) Calcio (en Ca^{++}). Hasta cien (100) ppm.
- f) Magnesio (en Mg^{++}). Hasta treinta (30) ppm.
- g) Aluminio (en Al^{+++}). Hasta cincuenta (50) ppb.
- h) Dureza total mínima en aguas ablandadas ciento cincuenta (150) ppm de CO₃Ca.
- i) Minerales a 110°C (en ppm). Hasta setecientos cincuenta (750).
- j) Oxígeno disuelto (en O_2). Mínimo en cinco (5) ppm.

Límites permisibles

pH. De 6,5 a 9,5.

Conductividad (resistividad) a 20°C (en micro Siemens cm-1). La correspondiente a la mineralización de las aguas.

Cloruros (en Cl^-). Hasta trescientos cincuenta (350) ppm.

Sulfatos (en SO₄⁼). Hasta cuatrocientos (400) por ppm.

Calcio (en Ca^{++}). Hasta doscientos (200) ppm.

Magnesio (en Mg^{++}). Hasta cincuenta (50) ppm.

Aluminio (en Al^{+++}). Hasta dos cientos (200) ppm.

Minerales a 110°C. Hasta mil quinientos (1.500) ppm.

Tabla No.4. Parámetros fisicoquímicos determinados en el agua. Serra Belenguer J., (1996)

o Compuestos no permitidos y concentraciones límite.

Parámetros de calidad

- a) Nitratos 25 ppm.
- b) **Nitritos** Ausencia.
- c) Amoniaco (NH^{4+}). Hasta 5 centésimas (0,05).
- d) **Oxidabilidad** (MnO_4K) en (O_2) , hasta 2 ppm de O_2 de agua.
- e) Sustancias extraíbles por el cloroformo minerales hasta cien (100) ppb.
- f) **Hierro** (Fe). Hasta cincuenta (50) ppm.
- g) Manganeso (Mn). Hasta veinte (20) ppb.
- h) Cobre (Cu). Hasta cien (100) ppb.
- i) **Zinc** (Zn). Hasta (100) ppm.
- j) **Fósforo.** (P) Hasta ciento setenta (170) ppb. En (P₂O₅) hasta cuatrocientos (400) ppm.
- k) Materia en suspensión. Ausencia.

Límites permisibles

- a) **Nitratos** (NO^{3}) . Hasta 50 ppm.
- b) **Nitritos** (NO^2 -). Hasta 0.1 ppm.
- c) **Amoniaco** (NH⁴⁺). Hasta cinco décimas (0,5) ppm.
- d) **Oxidabilidad** (MnO_4K) en (O_2) , hasta cinco (5) ppm.
- e) Sulfuro de Hidrógeno. No detectable organolépticamente.
- f) **Fenoles** $(C_6H_5O_4)$. Hasta una (1) ppb.
- g) **Detergentes** (Tensoactivos que reaccionan con el azul de metileno (en lauril sulfato de sodio). Hasta una (1) ppm.
- h) **Hierro** (Fe). Hasta doscientos (200) ppm.
- i) Manganeso (Mn). Hasta cincuenta (50) ppm.
- j) Cobre (Cu). Hasta mil quinientas (1500) ppb.
- k) Zinc (Zn). Hasta cinco mil (5000) ppb.
- I) **Fosforo** (P). Hasta dos mil ciento cincuenta (2150) ppb. En (P_2O_5) hasta cinco mil (5000) ppb.
- m) Flúor (F). Hasta mil quinientos (1500) ppb.

Tabla No. 5. Parámetros de calidad en el agua. Serra Belenguer J., (1996)

- o Compuestos tóxicos no permitidos.
- a) **Arsénico** (As). Hasta cincuenta (50) ppb.
- b) Cadmio (Cd). Hasta cinco (5) ppb.
- c) Cianuro (CN). Hasta cincuenta (50) ppb.
- d) **Cromo** (Cr hexavalente). Hasta cincuenta (50) ppb.
- e) Mercurio (Hg). Hasta una (1) ppb.
- f) **Níquel** (Ni). Hasta cincuenta (50) ppb.
- g) **Plomo** (Pb). Hasta cincuenta (50) ppb.
- h) **Antimonio** (Sb). Hasta veinte (20) ppb.
- i) Selenio (Se). Hasta veinte (20) ppb.
- j) Plaguicidas y productos similares. Por compuesto individual hasta una décima
 (0.1) de ppb. En conjunto hasta cinco décimas (0.5) ppb.
- k) Hidrocarburos aromáticos. Hasta dos décimas (0.2) ppb.

Tabla No.6. Parámetros de calidad y límites permisibles determinados en el agua. Serra Belenguer J., (1996)

Capsicum annum

El chile es una de las hortalizas que mayor tradición y presencia dentro de la cultura culinaria, prehispánica y mestiza que posee México, de esta manera al formar parte de la dieta alimentaria de millones de mexicanos. Su cultivo, que se remonta a miles de años, ha trascendido hasta nuestros días, de tal forma, que hoy se produce en todos los estados de la república, diversas variedades y por lo tanto, se encuentra presente en casi todos los mercados nacionales, de esta manera la cocina Mexicana ha sido considerada como parte del Patrimonio Intangible de la Humanidad, según la UNESCO en el año de 2015 esto ha permitido proyectar los cultivos de las diversas especies y variedades del género Capsicum spp., de esta forma los mercados internacionales han marcado ahora las pautas dentro de la producción a nivel nacional para satisfacer los requerimientos o exigencias de los mercados internacionales que buscan consumir chile, pero sin las pungencia que normalmente se le asocia a los productos del genero Capsicum spp. Esto ha desarrollado en algunas regiones de México, una industria altamente demandante y especializada en la producción y distribución de un tipo de chile que se conoce como chile pimiento morrón, el cual tiene las siguientes características:

Capsicum annum. Se le conoce también como, Pimiento, chile morrón, ají o morrón, es la especie más conocida, extendida y cultivada del género *Capsicum spp*, de la familia *Solanaceae*. Todas las innumerables formas, tamaños, colores y sabores de sus frutos, descritos y nombrados en la cultura popular, corresponden en realidad a esta misma especie.

Etimología

Capsicum neologismo botánico moderno que deriva del vocablo latino capsula, ae, "caja" "capsula". En alusión al fruto, que es un envoltorio casi vacío. En realidad, el fruto es una baya y no una capsula en el sentido botánico del término.

annum: epíteto latino que significa "anual".

Distribución

Esta especie es originaria de Mesoamérica, donde fue domesticada hace más de 6000 años, y donde se encuentran aún variedades silvestres. En la actualidad, China es el mayor productor de este fruto y México se coloca en la segunda posición.

Composición nutrimental

Contiene capsaicina (alcaloide responsable del sabor picante de algunos cultivos de pimientos), carotenos, capsorrubina, luteína, cobre y vitamina C en cantidad apreciable.

El cultivo de pimiento morrón (*Capsicum annum L.*) es una de las actividades más importantes en el sector hortícola de México, pues en el año 2007 nuestro país ocupó el tercer lugar a escala mundial por superficie cultivada (93,000 ha) y el sexto lugar en rendimiento de fruto (18.1 t·ha-1), alcanzando una producción de 1´690,000 t (FAO, 2007). Este tipo de chile, también conocido como chile dulce o Bell, tiene importancia económica especialmente en los estados de Sinaloa, Sonora y Baja California Sur porque exportan su producción, mientras que al mercado nacional lo abastecen principalmente Sinaloa y Morelos; en el cierre de la temporada 2006-2007 se exportaron 214,476 t, con valor de 226,226,537 dólares americanos (CIDH, 2007).

Por todas estas cualidades nutrimentales y atributos es que este tipo de productos han llegado incluso a trascender las fronteras.

Figura No. 7. Capsicum annum, chile pimiento morrón, chile pimiento dulce.

METODOLOGÍA Descripción del Método

Muestras de agua analizadas (iones en disolución).

Se colectaron muestra de agua usada para la producción de *C. annum* en condiciones controladas (invernadero), realizando determinaciones de iones en solución, como control de calidad de la nutrición e inocuidad del agua como son: calcio (Ca⁺²), magnesio (Mg⁺²), (Mn⁺²) manganeso, hierro (Fe^{+2,+3}), (K) potasio, (Na⁺²) sodio, (Zn⁺²) zinc, nitratos (NO₃⁻¹), nitritos (NO₂⁻¹), fosfatos (PO₄⁻³), carbonatos, cloro total (Cl⁻¹), fluoruros (F-), sulfatos (SO₄⁻²).Los cuales fueron analizados por medio de espectrofotometría como en la siguiente fotografía lo muestra. Figura No.8.

Figura No.8. Espectrofotómetros, marca HANNA específico para cada ion determinado.

Estos parámetros inorgánicos en el agua determinan las fórmulas de nutrición a utilizar por los productores de *C. annum* en los invernaderos y en algunos casos son indicadores de la inocuidad del agua. Como es el caso de los iones nitritos (NO₂⁻), nitratos (NO₃⁻), los que son indicadores de actividad microbiana sobre la capacidad de reducción de los compuestos nitrogenados como son los aminoácidos, esta actividad microbiana puede ser debido a la presencia de organismos pertenecientes a la familia *Enterobacteriaceae*, por lo que se utiliza estos iones como indicadores de inocuidad alimentaria.

Determinación de iones electronegativos.

Los iones electronegativos como flúor (F⁻) y cloro (Cl⁻) son indicadores de la calidad del agua referente a la presencia de compuestos fluorados o clorados en disolución, y permiten establecer parámetros de precipitación con iones electropositivos como el calcio, magnesio y hierro, los cuales son iones necesarios para el desarrollo del chile pimiento morrón, con la perspectiva de que estos iones en disolución son establecidos dentro de las formulaciones como soluciones nutritivas para el cultivo en condiciones controladas como son las de invernadero.

Todas las determinaciones de iones en disolución se realizaron a través de técnicas espectrofotométricas, con los reactivos específicos y los equipos correspondientes a *Hanna Instruments*, referentes a la determinación de iones en disolución modelo HI83208.

Resultados

(Riego A)

Propietario:	Origen:	Muestra:	Uso:
Clara Marisol	Laguna Larga de Cortés/Mpo.	Soluciones de Riego	Agroalimentario
Álvarez Juanillo	De Pénjamo, Guanajuato.	(A/R)	

Parámetro	Resultado
рН	5.39
Conductividad en mV	94
Conductividad Eléctrica en µS/cm (mS/cm)	2297(2.3)
Concentración de Sólidos Totales	1146

Determinaciones inorgánicas, iones de disolución.

	Aniones			
Aniones (-)	ppm (mg/L)	Meq/L	Mmol	
Nitratos (NO ₃) Nitritos(NO ₂)	725 1.00	11.69 0.014	11.69 0.014	
Fosfatos	2.50	0.078	0.026	
Carbonatos (<i>CO_{3,}HCO₃</i>)	57.0	9.20	4.60	
Cloruros	0.12	0.330	0.33	
Fluoruros	1.34	0.070	0.0705	
Sulfatos	257	3.2	1.6	
□ de aniones		23.6		

Cationes			
Cationes (+)	Ppm (mg/L)	Meq/L	Mmol
Calcio (Ca ⁺²)	109	9.0	4.5
Magnesio (Mg^{+2})	22.9	0.188	0.094
Manganeso (Mn ⁺²)	3.4	0.120	0.061
Hierro (Fe ⁺²)	1.28	0.044	0.022
Potasio (K+)	825	5.0	5.0
Sodio(Na ⁺)	68.50	7.4	7.4
Zinc $(\mathbf{Z}\mathbf{n}^{+2})$	1.1	0.033	0.0168
□ de Cationes		21.785	·

(Drenado A)

Propietario:	Origen:	Muestra:	Uso:
Clara Marisol	Laguna Larga de Cortés/Mpo.	Soluciones de Riego	Agroalimentario
Álvarez Juanillo	De Pénjamo, Guanajuato.	(B/R)	

Parámetro	Resultado
рН	5.40
Conductividad en mV	93
Conductividad Eléctrica en µS/cm (mS/cm)	2297(2.3)
Concentración de Sólidos Totales	1146

Aniones			
Aniones (-)	ppm (mg/L)	Meq/L	Mmol
Nitratos (<i>NO</i> ₃) Nitritos(<i>NO</i> ₂)	725 1.00	11.69 0.014	11.69 0.014
Fosfatos	2.50	0.078	0.026
Carbonatos (CO _{3,} HCO ₃)	57.0	9.20	4.60
Cloruros	0.12	0.330	0.33
Fluoruros	1.34	0.070	0.0705
Sulfatos	257	3.2	1.6
□ de aniones		23.6	

Cationes			
Cationes (+)	Ppm (mg/L)	Meq/L	Mmol
Calcio (Ca ⁺²)	109	9.0	4.5
Magnesio (Mg^{+2})	22.9	0.188	0.094
Manganeso (Mn^{+2})	3.4	0.120	0.061
Hierro (Fe^{+2})	1.28	0.044	0.022
Potasio (K+)	825	5.0	5.0
Sodio(Na ⁺)	68.50	7.4	7.4
Zinc $(\mathbf{Z}\mathbf{n}^{+2})$	1.1	0.033	0.0168
□ de Cationes		21.785	

(Riego B)

Propietario:	Origen:	Muestra:	Uso:
Clara Marisol	Laguna Larga de Cortés/Mpo.	Soluciones de Riego	Agroalimentario
Álvarez Juanillo	De Pénjamo, Guanajuato.	(A/D)	

Parámetro	Resultado
рН	5.70
Conductividad en mV	75
Conductividad Eléctrica en µS/cm (mS/cm)	2.8
Concentración de Sólidos Totales	1398

Aniones				
Aniones (-)	ppm (mg/L)	Meq/L	Mmol	
Nitratos (<i>N0</i> ₃)⁻ Nitritos(<i>N</i> 0 ₂)⁻	914 4.07	14.84 0.056	14.64 0.056	
Fosfatos	1.69	0.051	0.017	
Carbonatos (CO _{3,} HCO ₃)	35.12	5.67	2.83	
Cloruros	0.08	0.22	0.22	
Fluoruros	1.98	0.104	0.104	
Sulfatos	421	5.25	2.62	
□ de aniones		26.561		

Cationes				
Cationes (+)	ppm (mg/L)	Meq/L	Mmol	
Calcio (Ca ⁺²)	180	16.76	8.43	
Magnesio (Mg^{+2})	55.3	4.36	2.180	
Manganeso (Mn^{+2})	2.4	0.08	0.04	
Hierro (Fe ⁺²)	2.05	0.07	0.036	
Potasio (K ⁺)	651	3.94	3.94	
Sodio(Na ⁺)	54.1	5.60	2.92	
Zinc (Zn^{+2})	1.5	0.045	0.022	
□ de Cationes		30.85		

(Drenado B)

Propietario:	Origen:	Muestra:	Uso:
Clara Marisol Álvarez Juanillo	Laguna Larga de Cortés/Mpo. De Pénjamo, Guanajuato.	Soluciones de Riego (A/D)	Agroalimentario

Parámetro	Resultado
рН	5.73
Conductividad en mV	74
Conductividad Eléctrica en µS/cm (mS/cm)	2.9
Concentración de Sólidos Totales	1447

Aniones				
Aniones (-)	ppm (mg/L)	Meq/L	Mmol	
Nitratos (<i>NO</i> ₃) Nitritos(<i>NO</i> ₂)	905 3.20	14.49 0.04	14.64 0.04	
Fosfatos	1.90	0.057	0.019	
Carbonatos (CO _{3,} HCO ₃)	38.3	5.98	2.99	
Cloruros	0.06	0.16	0.16	
Fluoruros	2.0	0.105	0.105	
Sulfatos	418	5.21	2.60	
□ de aniones		26.042		

Cationes				
Cationes (+)	ppm (mg/L)	Meq/L	Mmol	
Calcio (Ca ⁺²)	176.1	16.50	8.25	
Magnesio (Mg^{+2})	51.8	4.21	2.10	
Manganeso (Mn ⁺²)	2.7	0.09	0.045	
Hierro (Fe ⁺²)	2.05	0.07	0.036	
Potasio (K ⁺)	528	3.20	3.20	
Sodio(Na ⁺)	48.6	5.28	2.64	
Zinc $(\mathbf{Z}\mathbf{n}^{+2})$	1.58	0.047	0.023	
□ de Cationes		29.39		

Equipo utilizado Hanna. Técnicas Calorimétricas, Potenciométricas, Electroquímicas.

Discusión

El agua, es un recurso indispensable, para las actividades humanas, entre ellas la que permite el desarrollo de las ahora complejas actividades económicas son la producción de alimentos, agricultura con base tecnológica (Von Wangenheim, Goh, Dietrich, & Bennett, 2017). Esto ha sido desarrollado a lo largo de los últimos 10,000 años, lo que ha variado es la base de tecnología y rendimiento por unidad de superficie y ahora por unidad de volumen. En cualquier caso para poder sostener la actividad agrícola actual para la población mundial se requiere una mayor especialización en la administración de los recursos hídricos, así como su calidad (Fischer et al., 2017). Por ello es necesario que se haga un énfasis en el análisis de iones que se encuentran disueltos en los cuerpos de agua que se utilizan para el riego de los diferentes tipos de especies que se explotan como alimento. Ahora bien, la presión demográfica y la presión económica, plantean requerimientos de producción por unidad de volumen, en donde se debe de cuidar el aspecto de iones en disolución. De tal forma que la agroindustria actual bajo condiciones controladas (invernaderos) requiere la cuantificación y dosificación de cada uno de los elementos en disolución que se aporta a cada planta en producción, esto con la finalidad de obtener un mayor rendimiento, en el menor tiempo posible y disminuir los riesgos alimentario (Poikane et al., 2017). De esta manera, las especies explotadas comercialmente como lo es Capsicum annum, pueden presentar problemas como la pudrición apical o favorecer el desarrollo de procesos infecciosos por fitopatógeno, comprometiendo la inocuidad del producto y por lo tanto la producción alimentaria de este sistema producto (Eddens et al., 2017). Estos problemas como son la pudrición y los procesos infecciosos se han identificado como causa primaria a la deficiencia de calcio y magnesio en la solución nutritiva que se utiliza en el riego de esta especie C. annum. Aun cuando se administren cantidades adecuadas de las sales de calcio y magnesio, a través del sistema de riego, pueden presentarse los problemas de deficiencia de calcio y magnesio en la absorción por parte de la planta (Rapant, Cvečková, Fajčíková, Sedláková, & Stehlíková, 2017). Con este trabajo de investigación se identificó que en el agua existe una presencia de iones electronegativos, de entre los que

normalmente se cuantifican está el nitrito y nitrato de manera rutinaria en el agua, más sin embargo realizando una búsqueda más amplia, se ha logrado situar que los análisis de agua no consideran al flúor como un elemento que se cuantifique de manera rutinaria en los análisis de agua para riego (Guissouma, Hakami, Al-Rajab, & Tarhouni, 2017). Ahora bien se tiene mapas sobre la concentración de flúor en el Bajío Mexicano (Molina-Frechero et al., 2017), donde es la zona productora de *C. annum*, para el mercado de exportación. Los acuíferos de esta zona son los que se utilizan para el riego del sistema producto C. annum y al presentar una concentración de 1.0 a 2.0 ppm para el flúor, se tiene una acumulación de flúor en el sistema de riego y en la planta C, annum; lo cual por el volumen de riego que se tiene por planta, por unidad de tiempo se tiene una acumulación considerable del anión flúor, por planta lo que en esta investigación arroja una concentración de 2.27 a 4.54 ppm en 9 horas de riego. La concentración de este anión (F-) con esta cantidad por unidad de tiempo, interfiere o entra en competencia con los iones electropositivos como son el calcio y el magnesio, lo cual repercute en la biodisponibilidad de estos iones para el desarrollo fenológico de la planta. Lo cual en el campo de producción se compensa aumentando la concentración cationes en disolución, por lo tanto incrementa el consumo de agroquímicos utilizados como fertilizantes. Esta práctica no es deseable desde el punto de vista de viabilidad económica, porque incrementa los costos de operación. Por lo tanto lo que se plantea en el presente trabajo de investigación, es acoplar el análisis del agua que se utilizará para el riego, pero ampliando los iones que se cuantifican, realizando un énfasis en la búsqueda de iones electronegativos, particularmente los que exhiben una mayor electronegatividad como lo es el flúor, se debe recordar que este elemento en disolución es el que exhibe este comportamiento químico, adicionalmente, se plantea el tratamiento del agua para riego a través, de columnas de intercambio aniónico esto con la finalidad de bajar la concentración de estos iones electronegativos en favor de los iones electropositivos como son el calcio y el magnesio, los cuales son necesarios para el desarrollo de la planta. Se debe mencionar que los iones en disolución presentan una diferencia significativa entre las capacidades de electronegatividad y electropositividad, esto queda de manifiesto en las cargas que exhiben los cationes como el calcio (Ca⁺²), el magnesio (Mg⁺²), los cuales.

Se incorporó un análisis de iones y su repercusión en la relación calcio/magnesio. Los resultados fueron expresados en ppm: Nitratos 725, Nitritos 1, Fosfatos 2.5, Carbonatos 57, Cloruros 0.12, Fluoruros 1.34, Sulfatos 257. Calcio 109, Magnesio 22.9, Manganeso 3.4, Hierro 1.28, Potasio 825, Sodio 68.50, Zinc 1.1. Estos resultados mostraron que la cuantificación de Flúor, Cloro y Nitrito son necesarias para mantener la relación de Calcio/Magnesio 3:1, lo que no se observó (relación Calcio/Magnesio, 4.75:1).

Conclusión

Las determinaciones inorgánicas son fundamentales para poder predecir el comportamiento dentro de los cultivos de *Capsicum annum* y poder determinar las condiciones de inocuidad en el sistema producto, en condiciones controladas de cultivo.

Se concluye que estos iones electronegativos precipitan el calcio y magnesio reduciendo su disponibilidad, afectando la calidad de *C. annum*.

REFERENCIAS

- Arney, G., Domagal-Goldman, S. D., Meadows, V. S., Wolf, E. T., Schwieterman, E., Charnay, B., ... Trainer, M. G. (2016). The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth. *Astrobiology*, *16*(11), 873-899. https://doi.org/10.1089/ast.2015.1422
- Brambilla, G., D'Hollander, W., Oliaei, F., Stahl, T., & Weber, R. (2015). Pathways and factors for food safety and food security at PFOS contaminated sites within a problem based learning approach. *Chemosphere*, *129*, 192-202. https://doi.org/10.1016/j.chemosphere.2014.09.050
- Castellanos Coutiño J. (1999). NOM- 181-SSA1-1998. Recuperado 29 de marzo de 2017, a partir de

 http://www.salud.gob.mx/unidades/cdi/nom/181ssa18.html
- Debucquet, G., Cornet, J., Adam, I., & Cardinal, M. (2012). Perception of oyster-based products by French consumers. The effect of processing and role of social representations. *Appetite*, *59*(3), 844-852.

 https://doi.org/10.1016/j.appet.2012.08.020
- Delile, H., Blichert-Toft, J., Goiran, J.-P., Keay, S., & Albarède, F. (2014). Lead in ancient Rome's city waters. *Proceedings of the National Academy of Sciences of the United States of America*, *111*(18), 6594-6599. https://doi.org/10.1073/pnas.1400097111
- Douglas, P. M. J., Pagani, M., Canuto, M. A., Brenner, M., Hodell, D. A., Eglinton, T. I., & Curtis, J. H. (2015). Drought, agricultural adaptation, and sociopolitical collapse in the Maya Lowlands. *Proceedings of the National*

- Academy of Sciences of the United States of America, 112(18), 5607-5612. https://doi.org/10.1073/pnas.1419133112
- Dyck, A., Exner, M., & Kramer, A. (2007). Experimental based experiences with the introduction of a water safety plan for a multi-located university clinic and its efficacy according to WHO recommendations. *BMC Public Health*, 7, 34. https://doi.org/10.1186/1471-2458-7-34
- Eddens, L., Browne, S., Stevenson, E. J., Sanderson, B., van Someren, K., & Howatson, G. (2017). The efficacy of protein supplementation during recovery from muscle-damaging concurrent exercise. *Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition Et Metabolisme*. https://doi.org/10.1139/apnm-2016-0626
- Enriquez Rubio E. (2002, diciembre 1). NORMA Oficial Mexicana NOM.

 Recuperado 25 de febrero de 2017, a partir de

 http://www.salud.gob.mx/unidades/cdi/nom/201ssa12.html
- FAO. (2002). El agua y la agricultura. Recuperado 18 de abril de 2017, a partir de http://www.fao.org/WorldFoodSummit/sideevents/papers/Y6899S.htm
- Fischer, A., Ter Laak, T., Bronders, J., Desmet, N., Christoffels, E., van Wezel, A., & van der Hoek, J. P. (2017). Decision support for water quality management of contaminants of emerging concern. *Journal of Environmental Management*, 193, 360-372. https://doi.org/10.1016/j.jenvman.2017.02.002
- Ghosh, S., Chowdhury, R., & Bhattacharya, P. (2016). Mixed consortia in bioprocesses: role of microbial interactions. *Applied Microbiology and*

- Biotechnology, 100(10), 4283-4295. https://doi.org/10.1007/s00253-016-7448-1
- Guerrero Villalobos G. (1997). NOM-003-CNA-1996. Recuperado 29 de marzo de 2017, a partir de http://www.dof.gob.mx/nota_detalle.php?codigo=4866103&fecha=03/02/199
- Guissouma, W., Hakami, O., Al-Rajab, A. J., & Tarhouni, J. (2017). Risk assessment of fluoride exposure in drinking water of Tunisia. *Chemosphere*, 177, 102-108. https://doi.org/10.1016/j.chemosphere.2017.03.011
- Hoekstra Arjen Y. (s. f.). Arjen Y. Hoekstra Biography. Recuperado 27 de febrero de 2017, a partir de http://www.ayhoekstra.nl/biography/
- huella Infografía Huella Hídrica.pdf. (s. f.). Recuperado a partir de

 http://www.conagua.gob.mx/CONAGUA07/Contenido/Documentos/Infograf

 %C3%ADa%20Huella%20H%C3%ADdrica.pdf
- Ioannou-Ttofa, L., Michael-Kordatou, I., Fattas, S. C., Eusebio, A., Ribeiro, B., Rusan, M., ... Fatta-Kassinos, D. (2017). Treatment efficiency and economic feasibility of biological oxidation, membrane filtration and separation processes, and advanced oxidation for the purification and valorization of olive mill wastewater. *Water Research*, *114*, 1-13. https://doi.org/10.1016/j.watres.2017.02.020
- Islam, M. A., Romić, D., Akber, M. A., & Romić, M. (2017). Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh. *Environmental Geochemistry and Health*. https://doi.org/10.1007/s10653-017-9907-8

- ISO 14046:2014 Environmental management -- Water footprint -- Principles, requirements and guidelines. (2017, febrero 25). Recuperado 25 de febrero de 2017, a partir de

 http://www.iso.org/iso/catalogue_detail?csnumber=43263
- Komaroff, A. L. (2017). The Microbiome and Risk for Obesity and Diabetes. *JAMA*, 317(4), 355-356. https://doi.org/10.1001/jama.2016.20099
- Krogerus, K., Magalhães, F., Vidgren, V., & Gibson, B. (2017). Novel brewing yeast hybrids: creation and application. *Applied Microbiology and Biotechnology*, *101*(1), 65-78. https://doi.org/10.1007/s00253-016-8007-5
- López, A. C., Minnaard, J., Pérez, P. F., & Alippi, A. M. (2015). A case of intoxication due to a highly cytotoxic Bacillus cereus strain isolated from cooked chicken. *Food Microbiology*, *46*, 195-199. https://doi.org/10.1016/j.fm.2014.08.005
- Meljem Moctezuma J. (1993, diciembre 1). 03-24-95 NORMA Oficial Mexicana

 NOM-041-SSA1-1993, Bienes y servicios. Recuperado 25 de febrero de

 2017, a partir de http://www.salud.gob.mx/unidades/cdi/nom/041ssa13.html
- Meljem Moctezuma J. (1995, junio). NORMA Oficial Mexicana NOM-117-SSA1-1994, Bienes y servicios. Recuperado 17 de abril de 2017, a partir de http://www.salud.gob.mx/unidades/cdi/nom/117ssa14.html
- Molina-Frechero, N., Nevarez-Rascón, M., Nevarez-Rascón, A., González-González, R., Irigoyen-Camacho, M. E., Sánchez-Pérez, L., ... Bologna-Molina, R. (2017). Impact of Dental Fluorosis, Socioeconomic Status and Self-Perception in Adolescents Exposed to a High Level of Fluoride in

- Water. International Journal of Environmental Research and Public Health, 14(1). https://doi.org/10.3390/ijerph14010073
- Murphy, S. P., Yates, A. A., Atkinson, S. A., Barr, S. I., & Dwyer, J. (2016). History of Nutrition: The Long Road Leading to the Dietary Reference Intakes for the United States and Canada. *Advances in Nutrition (Bethesda, Md.)*, 7(1), 157-168.
- Olaiz Fernando G. (1994). NOM-127-SSA1-1994. Recuperado 29 de marzo de 2017, a partir de http://www.salud.gob.mx/unidades/cdi/nom/127ssa14.html
- Pérez Duarte F. (s. f.). NOM-014-SSA1-1993. Recuperado 25 de febrero de 2017, a partir de http://www.salud.gob.mx/unidades/cdi/nom/014ssa13.html
- Poikane, S., Ritterbusch, D., Argillier, C., Białokoz, W., Blabolil, P., Breine, J., ...

 Virbickas, T. (2017). Response of fish communities to multiple pressures:

 Development of a total anthropogenic pressure intensity index. *The Science of the Total Environment*, *586*, 502-511.

 https://doi.org/10.1016/j.scitotenv.2017.01.211
- Rapant, S., Cvečková, V., Fajčíková, K., Sedláková, D., & Stehlíková, B. (2017).

 Impact of Calcium and Magnesium in Groundwater and Drinking Water on the Health of Inhabitants of the Slovak Republic. *International Journal of Environmental Research and Public Health*, 14(3).

 https://doi.org/10.3390/ijerph14030278
- Serra Belenguer J. (1996). Analisis y control de calidad de los alimentos.

 Recuperado 27 de marzo de 2017, a partir de

 http://polibuscador.upv.es/primo_library/libweb/action/search.do;jsessionid=

 EA8DDDC421AC6ABEBA22FC7764B3AF41?srt=date&cs=frb&ct=frb&frbq=

22953032&fctN=facet_frbrgroupid&fctV=22953032&doc=aleph000151559&l astPag=&lastPagIndx=&rfnGrp=frbr&frbrSrt=date&frbrRecordsSource=Prim o+Local&frbrJtitleDisplay=&frbrIssnDisplay=&frbrEissnDisplay=&frbrSourcei dDisplay=aleph&fn=search&indx=1&vl(53498269UI0)=creator&dscnt=0&scp .scps=scope%3A(H)%2Cscope%3A(aleph)&vl(1UIStartWith0)=exact&vid=bi bupv&mode=Basic&ct=suggestedSearch&tab=bibliotecas&vl(95000579UI1) =all_items&vl(freeText0)=Serra%20Belenguer%2C%20Juan%20Antonio&d stmp=1490658467023&origsort=clasificar%20por:relevanciaOr%20hit%20E nter%20to%20replace%20sort%20method

- von Wangenheim, D., Goh, T., Dietrich, D., & Bennett, M. J. (2017). Plant Biology:

 Building Barriers... in Roots. *Current Biology: CB*, *27*(5), R172-R174.

 https://doi.org/10.1016/j.cub.2017.01.060
- Wu, H. T., Mi, Z. L., Zhang, J. X., Chen, C., & Xie, S. G. (2014). Bacterial communities associated with an occurrence of colored water in an urban drinking water distribution system. *Biomedical and Environmental Sciences:* BES, 27(8), 646-650. https://doi.org/10.3967/bes2014.099
- Zamfir, G. (1978). [Relations between environmental pollution and public health].

 Revista Medico-Chirurgicala a Societatii De Medici Si Naturalisti Din Iasi,
 82(2), 203-207.