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Resumen

Se propone calcular el momento anómalo dipolar cromomagnético en el Modelo Estándar
inducido a partir de la fluctuación cuántica a nivel de un lazo de cuatro cuerpos. En general,
los dipolos cromoelectromagnéticos son correcciones radiativas computadas t́ıpicamente a
partir de la interacción de tres cuerpos, q̄qg, similar al caso abeliano de electrodinámica
cuántica. Sin embargo, en cromodinámica cuántica la naturaleza no abeliana del tensor
de intensidad del campo gluónico, presente en el lagrangiano efectivo de los cromodipo-
los, también predice su inducción por interacción de cuatro cuerpos, a saber, mediante el
vértice de dos quarks con dos gluones, q̄qgg. Este último caso no ha sido estudiado en la
literatura.
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Abstract

It is proposed to calculate the anomalous chromomagnetic dipole moment in the
Standard Model induced by quantum fluctuation at the four-body loop level. In general,

chromoelectromagnetic dipoles are radiative corrections typically computed from
three-body interactions q̄qg , similar to the abelian case of quantum electrodynamics.
However, in quantum chromodynamics, the non-abelian nature of the gluonic field

strength tensor, present in the effective Lagrangian of chromodipoles, also predicts their
induction by four-body interaction, namely, through the vertex of two quarks with two

gluons q̄qgg. This latter case has not been studied in the literature.
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Caṕıtulo 1

Introducción

En el Modelo Estándar el momento dipolar cromomagnético anomalo (CMDM), µ̂q, es
inducido a un lazo mediados por part́ıculas virtuales de cromodinamica cuántica (QCD),
el sector electodébil (EW) y el sector de Yukawa (YK) [1, 5].En la literatura esta estable-
cido que el µ̂q es una observable desde que es una invariante de gauge, con divergencias
ultravioletas e infrarrojas finitas. Solamente te tienen resultados derivados de estudios a
un lazo a un vértice gqq̄ del CMDM, por otro lado el lagrangiano efectivo de 5 dimensiones
que caracteriza al operador âq y al cromodimolo electrico (CEDM), d̂q , establece que es
proporcional tanto para la interacción a un vértice de 3 cuerpos gqq̄ y a un vértice de 4
cuerpos ggqq̄ [6]. Es de gran interes obtener y analizar la observable para el acoplamiento
ggqq̄ y luego compararlo con el resultado para el vértice gqq̄, esto permite porner a prueba
el alcance del Modelo Estándar.
Recientemente, por primera vez, la medición exacta de un momento anómalo dipolar cro-
momagnético ha sido reportada. La Colaboración CMS del LHC (Gran Colisionador de
Hadrones), mediante colisión protón–protón con una enerǵıa de centro de masa de 13 TeV
y luminosidad de 35.9 fb−1 [7], midió el dipolo cromomagnético del quark top

µ̂Exp
t = −0,024+0,013

−0,009(stat)
+0,016
−0,011(syst), (1.1)

y para el momento dipolar cromoeléctrico estableció la cota

|d̂ Exp
t | < 0,03, (1.2)

a un nivel de confianza de 95%.

Por otro lado, la predicción teórica del dipolo cromomagnético del quark top, µ̂t, en
el Modelo Estándar (ME) debido a corrección radiativa del vértice de tres cuerpos q̄qg a
nivel de un lazo (ver figura 1.1a), evaluado a la escala de enerǵıa referencia de la masa del
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bosón de norma Z [9, 15], es

µ̂t(−m2
Z) = −0,0224− 0,000925i evaluación espacialoide,

µ̂t(+m
2
Z) = −0,0133− 0,0267i evaluación temporaloide. (1.3)

Destaca que Re µ̂t(−m2
Z) coincide muy bien con el valor experimental, mientras que Im µ̂t(−m2

Z)
se debe a la contribución de cambio de sabor de corrientes cargadas. Contrastando valores
absolutos

∣∣µ̂t(−m2
Z)
∣∣ = 0,0224,

∣∣µ̂t(m
2
Z)
∣∣ = 0,0298 y

∣∣µ̂Exp
t

∣∣ = 0,024, la evaluación espa-
cialoide continúa siendo la más compatible con el valor experimental. En śıntesis, teoŕıa y
experimento concuerdan notablemente, sin embargo, teóricamente aún puede haber más.

El lagrangiano efectivo de los momentos dipolares cromoelectromagnéticos (MDCEM)
es [6, 18]

Leff = −1

2
q̄Aσ

µν
(
µq + idqγ

5
)
qBG

a
µνT

a
AB, (1.4)

con el tensor de intensidad del campo gluónico

Ga
µν = ∂µg

a
ν − ∂νg

a
µ − gsfabcg

b
µg

c
ν , (1.5)

donde σµν ≡ i
2
[γµ, γν ], q̄A y qB son los spinores con los ı́ndices de color A y B, gaµ es

el campo del gluon con a = 1, ..., 8, T a
AB es el generador de color y fabc es la constante de

estructura del grupo SU(3)C ; gs =
√
4παs es la constante de acoplamiento del grupo de

QCD, donde αs(m
2
Z) = 0,1179 es la constante de estructura fuerte establecida para el valor

de la masa del boson de gauge . µq es el momento dipolar cromomagnético (MDCM) que
conserva CP, dq es el momento dipolar cromoeléctrico (MDCE) que viola CP.

El MDCM a tres cuerpos abeliano del vértice gqq̄ es análogo al momento dipolar
magnético anomalo de cromodinamica cuántica (QED), caracterizado por operadores efec-
tivos de 5 dimensiones [21, 23], este caso fue calculado por Schwinger en 1948 para correc-
ciones radiativas a un lazo el cual obtuvo el famoso resultado de ae = α/2π [24, 25]. En este
trabajo se obtuvo el µq del vértice a cuatro cuerpos no abeliano en el modelo estándar para
el quark top, el cual, numéricamente corresponde al caso abeliano del vértice a 3 cuerpos,
con dq = 0 en ambos casos.
Del la ecuación (1.4) se extraen las reglas de Feynman de las interacciones cromodipolares
gqq̄ y ggqq̄:

Γµ
3b = T a

ABσ
µνqν(µq + idqγ

5) (1.6)

Γµ
4b = igsfabcT

c
ABσ

µν(µq + idqγ
5) (1.7)
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(a)

(b)

Figura 1.1: Momentos anómalos dipolares cromoelectromagnéticos: (a) vértice generado por
interacción de tres cuerpos q̄qg, y (b) vértice generado por interacción de cuatro cuerpos q̄qgg.

donde qν es el momento del gluon transferido y también cabe mencionar que para el vértice
ggqq̄ se concidero la estad́ıstica de Bose para los gluones. De acuerdo con la literatura y
los datos experimentales reportados, es conveniente definir a los cromodipolos de manera
adimensional:

µ̂q ≡
mq

gs
µq , d̂q ≡

mq

gs
dq. (1.8)

los términos ∂µg
a
ν −∂νgaµ generan en Leff la interacción de tres cuerpos q̄qg (figura 1.1a),

en tanto que el término −gsfabcgbµgcν da lugar a la interacción de cuatro cuerpos q̄qgg (figu-
ra 1.1b), siendo ambas interacciones proporcionales tanto al MDCM como al MDCE. Debe
destacarse que no existen estudios en la literatura concernientes a los MDCEM generados
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Caṕıtulo 2

El Modelo Estándar

El ME describe todo lo que sabemos acerca de las fuerzas fundamentales en la natu-
raleza, a saber, la interacción electromagnética, aśı mismo la interacción fuerte y débil,
excluyendo a la gravedad. El ME es una teoŕıa cuántica relativista que contiene los prin-
cipios básicos de mecánica cuántica y relatividad especial. Al igual que la electrodinámica
cuántica (QED por sus siglas en inglés), el ME también es una teoŕıa de gauge bajo el grupo
no abeliano SUC(3)⊗ SUL(2)⊗UY (1), en donde los fotones son bosones de gauge que son
responsables de la interacción electromagnética, los bosones W y Z de la interacción débil
y los gluones las interacciones fuertes. Las teoŕıas de gauge pueden existir en diferentes
espacios fases, por ejemplo, en el espacio fase de Coulomb con bosones de gauge sin masa,
también en el espacio fase de Higgs con un rompimiento espontáneo de la simetŕıa con
bosones de gauge masivos [31].

El grupo SUC(3)
1 caracteriza las interacciones fuertes, mientras que el grupo SUL(2)×

UY (1) define las interacciones electrodébiles. Esta teoŕıa de campo cuántica-relativista es
consistente, renormalizable y está libre de anomaĺıas. El ME posee un conjunto de cam-
pos de norma asociados al grupo SUC(3) × SUL(2) × UY (1), el cual se puede dividir en
tres conjuntos: 8 asociados a SUC(3), 3 para SUL(2) y finalmente uno para UY (1). Las
part́ıculas elementales están clasificadas en dos bloques: de materia, llamados fermiones, y
de mediadores de las interacciones, llamados bosones; 12 fermiones y 5 bosones en el con-
texto del ME. Los fermiones obedecen el principio de exclusión de Pauli, en pocas palabras,
no pueden 2 de estos ocupar el mismo estado cuántico al mismo tiempo. Los bosones al
contrario, no obedecen este principio, esto quiere decir que 2 o más bosones pueden ocupar
el mismo estado cuántico. Cada part́ıcula elemental tiene asociado un numero cuántico

1El sub́ındice C indica que las transformaciones sólo actuán sobre las part́ıculas con carga de color,
el sub́ındice L (proviene de Left) hace referencia a que la interación débil viola paridad y por lo tanto,
únicamente los fermiones izquierdos pertenecen a la representación fundamental del grupo SUL(2). Por
último, el súbindice Y denota la hipercarga.

5
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llamado esṕın, los fermiones del ME tienen esṕın 1/2 y los bosones del ME tienen esṕın
entero [32].

Los fermiones elementales se pueden dividir en dos grandes grupos, los quarks y los
leptones. A diferencia de los leptones, los quarks no se encuentran en la naturaleza de
forma libre, sino en dobletes quark-antiquark, que forman part́ıculas como los mesones
(piones y los kaones), o tripletes de quarks, formando part́ıculas llamadas bariones (como
el protón y el neutrón), etc. Los quarks sienten las cuatro interacciones fundamentales de
la naturaleza, mientras que los leptones sienten todas excepto la interacción nuclear fuerte.
El ME propone que los bloques fundamentales con los que se construye toda la materia
son 6 quarks y 6 leptones, con sus correspondientes antipart́ıculas. Todas estas part́ıculas
se agrupan en tres familias, estando cada una formada por una pareja de quarks (uno con
carga +2/3e y el otro con carga -1/3e), y una pareja de leptones, uno con carga negativa y
el otro con carga neutra. Los leptones neutros del doblete de leptones de cada familia son
justamente los neutrinos. A los distintos tipos de quarks se les denomina de distinto sabor,
y por lo tanto existen seis sabores posibles de quarks: u, d, c, s, t y b. Además de la carga
eléctrica, los quarks tienen una propiedad llamada carga de color, que es la responsable de
que respondan a la interacción nuclear fuerte. Existen tres direfentes cargas de color: rojo,
verde y azul, y las combinaciones de quarks que forman los diferentes hadrones (mesones y
bariones), pueden darse ya sea entre quarks de tres colores distintos, o bien entre un quark
y un antiquark. A estas combinaciones de colores se les llamda combinaciones incoloras, es
decir, que las part́ıculas compuestas por quarks tienen carga de color neutra. La primera
familia consta del par de quarks u y d (up y down), cada uno pudiendo tener carga de color
rojo, verde o azul. Los leptones por su parte, se agrupan en dobletes de una part́ıcula de
carga negativa y un neutrino; a cada tipo de neutrino se le da el nombre del leptón cargado
asociado con él: νe, o neutrino del electrón, νµ o neutrino del muón, y ντ , o neutrino del
tau. A cada tipo de neutrino también se le asocia un sabor; lo mismo sucede con su leptón
cargado asociado. Los fermiones del ME forman toda la materia que se encuentra en la
Tierra y a lo largo de casi todo el universo inmediato. En particular, el protón está hecho
del triplete de quarks uud, y el neutrón del triplete udd, siendo cada uno de los quarks en
cada triplete de un color distinto.

Las antipart́ıculas tienen carga eléctrica opuesta a las part́ıculas y también carga de
color opuesta, es decir, antirrojo, antiverde y antiazul. De esta forma, una combinación
de carga de color color-anticolor, resulta incolora. Con excepción de los neutrinos, hay
evidencia experimental de que las part́ıculas de la segunda familia son más masivas que
las de la primera y las de la tercera familia son más masivas que las de la segunda. Las
part́ıculas de la segunda y tercera familia son tambien inestables y tienden a decaer en
fracciones de segundo hacia las de la primera familia mediante procesos débiles. Algunas
de estas part́ıculas masivas son creadas en el interior de las estrellas o en los centros de
las galaxias, otras en los aceleradores de altas enerǵıas o a unos 30 km de altura sobre la
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Tierra por la colisión de rayos cósmicos con las moléculas de la atmósfera.

2.1. Lagrangiano del Modelo estándar

El modelo estándar esta basado en el grupo de gauge G = SU(3) × SU(2) × U(1).
El factor SU(3) (QCD) tiene acoplamientos de gauge gs y 8 bosones de gauge (gluones)
Gi, i = 1..,8. Este grupo no es quiral y actúa con los ı́ndices de color en contraste con
QCD, la interacción electrodébil SU(2)×U(1) es un factor con quiralidad. El grupo SU(2)
tiene acomplamientos de gauge g, bosones de gauge W i = 1, 2, 3, y actúa solamente con
ı́ndices de sabor de los fermiones con quiralidad izquierda. El factor abeliano U(1) tiene
acoplamientos g′ y bosones de gauge B, también es quiral, actúa tanto en fermiones con
quiralidad izquierda(L) como derecha (R) pero con diferentes cargas. Después de un rom-
pimiento espontáneo de la simetŕıa (SSB), SU(2)×U(1) se rompe en U(1)Q, incorporando
QED con el fotón en una combinación lineal de W 0 y B. La combinación ortogonal (Z),
asi como W± adquiere masa. G también se escribe como SU(3)c × SU(2)L × U(1)Y . Los
sub́ındices no indican nuevas teoŕıas de grupos, solamente hacen referencia a la aplicación
f́ısica, es decir, c se refiere al color, L significa que el acoplamiento SU(2) tiene quiralidad
izquierda y Y es el numero cuántico de la hiper-carga débil.
La densidad lagrangiana del modelo entandar es

L = Lgauge + Lf + LY , (2.1)

Los cuales se refieren a los sectores de la teoŕıa de gauge, de fermiones , de Higgs y de
Yukawua respectivamente. También se agregan términos ghots y se fija la norma los cuales
entran en la cuantización. Los términos de gauge son:

Lgauge = −1

4
Gi

µνG
µνi − 1

4
W i

µνW
µνi − 1

4
BµνB

µν (2.2)

donde el tensor de campo para SU(3), SU(2) y U(1) son respectivamente:

Gi
µν = ∂µG

i
ν − ∂νG

i
µ − gsfijkG

j
µG

k
ν , i, j, k = 1..,8 (2.3)

W i
µν = ∂µW

i
ν − ∂νW

i
µ − gϵijkW

j
µW

k
ν , i, j, k = 1..,3 (2.4)

Bµν = ∂µBν − ∂νBµ. (2.5)

(2.6)

Estas incluyen los términos de la enerǵıa cinética del boson de gauge aśı como las auto
interacciones de cuatro puntos para Gi y W i. El grupo abeliano U(1) del boson de gauge
no tiene auto interacciones.
El término fermionico del modelo estándar involucra 3 familias de quarks (F=3) y de
leptones. Cada familia consiste en:
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L− dobletes : q0mL =

(
u0m
d0m

)
L

, l0mL =

(
v0m
e−0
m

)
L

R− singletes : u0mR, d
0
mR, e

−0
mR, v

0
mR,

en los cuales los campos de quiralidad-L (quiralidad izquierda) son los dobletes de SU(2) y
los campos de quiralidad-R (quiralidad derecha) corresponden a los singuletes, esto conduce
al rompimiento en SU(2). Los sub́ındices 0 se refieren al hecho de que estos campos son
eigenestados débiles, es decir, tienen propiedades de transformación de gauge bien definidas,
con los elementos de cada doblete hacia cada otro bajo SU(2), y m1, 2, 3, etiqueta las
familias. Después de un rompimiento espontáneo de la simetŕıa, estos se convertirán en
mezclas de eigenestados de campos de masa. Los términos u0 y d0 que serán identificados
(después de SSB) con carga eléctrica 2/3 y -1/3 respectivamente. Existen 2F = 6 sabores
de quarks (u0 y d0 para cada familia ). Cada una lleva un ı́ndice de color u0mL,Rα o d0mL,Rα,
es decir, existen 3 dobletes de quarks por familia. El SU(2) y SU(3) conmutan, entonces
las interacciones en QCD no cambian de sabor y viceversa. v0 y e−0 son los leptones.
Ellos tienen singuletes de color y tienen carga eléctrica 0 y -1 respectivamente. Todos estos
campos a excepción de v0mR son portadores de la hypercargas débil Y , que esta definida
como:

Y = Q− T 3
L, (2.7)

donde T 3
L es el tercer generador de SU(2)L y Q es la carga eléctrica. U(1)Y conmuta

con SU(3)c y SU(2), además tiene el mismo valor de todos los miembros multipletes de
SU(3)× SU(2).
L es invariante bajo una simetŕıa global de U(3)6 en el cual las 3 familias de q0mL,l

0
mL,

u0mR , d0mR, e
−0
mR y v0mR transforma de una hacia la otra.La existencia de las 3 familias es

emṕırica y en cualquier caso la mayoŕıa de los generadores se obtienen de un rompimiento
de las interacciones de Yukawua(Los que no se obtienen por rompimiento son los vectores
generadores del numero barionico y leptonico).
Ahora en el término fermionico, el SU(2)L y U(1)Y son representaciones quirales, entonces
términos de masa en este sector no son permitidos. Lf consiste enteramente en términos
de enerǵıa cinética covariante de gauge,

Lf = i
F∑

m=1

(q̄0mLi /Dq
0
mL + l̄0mLi /Dl

0
mL

+ ū0mRi /Du
0
mR + d̄0mRi /Dd

0
mR + ē−0

mRi /De
−0
mR + v̄−0

mRi /Dv
−0
mR), (2.8)
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donde hemos permitido un número arbitrario de familias de fermiones F. El primer término
de (2.8) es

q̄0mLi /Dq
0
mL = i

3∑
α,β=1

(ū0αmLd̄
0α
mL)γ

µ

×
[(
∂µI +

ig

2
τ⃗ .W⃗µ +

ig′

6
IBµ

)
δαβ +

igs
2
λ⃗αβ.G⃗µI

](
u0mLβ

d0mLβ

)
L

, (2.9)

donde I es la matriz identidad 2 × 2 de SU(2), con la ecuación (2.9) es claro ver que
SU(3)c y SU(2)L × U(1)Y son grupos que conmutan. A continuación se simplificara la
notación suprimiendo los ı́ndices de color en el campo de los quarks, entonces las derivadas
covariantes del fermión de gauge son:

Dµq
0
mL =

(
∂µ +

ig
2
τ⃗ .W⃗µ +

ig′

6
Bµ

)
q0mL, Dµu

0
mR =

(
∂µ +

2ig′

3
Bµ

)
u0mR,

Dµl
0
mL =

(
∂µ +

ig
2
τ⃗ .W⃗µ − ig′

2
Bµ

)
l0mL, Dµd

0
mR =

(
∂µ − ig′

3
Bµ

)
d0mR,

Dµe
0
mR = (∂µ − ig′Bµ) e

0
mR,

Dµν
0
mR = ∂µν

0
mR,

donde se entiende que también existen acomplamientos de gluones para q0mL, u
0
mR y d0mR.

Las interacciones para los fermiones de gauge se pueden ver el la ecuación (2.8)
El sector de Higgs para L es

Lϕ(D
µϕ)†Dµϕ− V (ϕ) (2.10)

donde ϕ =

(
ϕ+

ϕ0

)
es un complejo escalar de Higgs y con ϕ† =

(
ϕ−

ϕ0†

)
. La derivada

covariante de gauge es

Dµϕ =

(
∂µ +

ig

2
τ⃗ .W⃗µ +

ig′

2
Bµ

)
ϕ. (2.11)

V (ϕ) es el potencial de Higgs. Con el grupo SU(2)×U(1) y considerando las restricciones
de invarianza y la renormalizabilidad V toma la forma

V (ϕ) = µ2ϕ†ϕ+ λ(ϕ†ϕ)2 (2.12)

para µ2 < 0 se obtendrá un rompimiento espontáneo de la simetŕıa, el término λ describe
una auto interacción cuadrática λ(ϕ−ϕ+ + ϕ0†ϕ0)2 entre el campo de Higgs. La estabilidad
en el vaćıo requiere que λ > 0.
El ultimo término de (2.1) representa los acoplamientos de Yukawua entre los dobletes de
Higgs y los fermiones, los cuales son necesarios para generar fermiones masivos a través
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de un rompimiento espontáneo de la simetŕıa quiral de gauge. Siendo F las familias de
fermiones entonces toma la forma:

LY uk = −
F∑

m,n=1

[
Γu
mnq̄

0
mLϕ̃u

0
nR + Γd

mnq̄
0
mLϕd

0
nR + Γe

mnℓ̄
0
mLϕe

0
nR + Γν

mnℓ̄
0
mLϕ̃ν

0
nR

]
+ h.c.,

(2.13)

donde ϕ =

(
ϕ+

ϕ0

)
, ϕ̃ ≡ iτ 2ϕ† =

(
ϕ0†

−ϕ−

)
,

es el doblete de Higgs y su conjugado respectivamente. Γu, Γd, Γe son matrices F × F
arbitrarias quien finalmente determinan las masas y mezclas de los fermiones, estos no
tienen que ser Herminianos, simétricos, diagonales o reales, estos son los aspectos mas
arbitrarias en el modelo estándar. Un ejemplo para el término Γd es:

Γd
mnq̄

0
mLϕd

0
nR = Γd

mn

[
ū0mLϕ

+d0nR + d̄0mLϕ
0d0nR

]
(2.14)

y su conjugado hermitiano:

Γd†
mnd̄

0
nRϕ

†q0mL = Γd∗
mn

[
d̄0nRϕ

−u0mL + d̄0nRϕ
0†d0mL

]
, (2.15)

La carga eléctrica es conservada en los vértices generados (garantizado desde que Q esta
dentro de G), mientras que la quiralidad se invierte, el cual es una caracteŕıstica de los
vértices de Yukawua.

2.2. Teoŕıa Electrodébil

La interacción débil, tambien llamada fuerza débil o fuerza nuclear débil, es una de las
cuatro fuerzas fundamentales del ME. La palabra débil deriva del hecho de que su intensi-
dad de fuerza es 1013 veces menor que la interacción nuclear fuerte, sin embargo, esta fuerza
débil es más fuerte que la fuerza de gravedad a cortas distancias. En el ME, la fuerza débil
se considera una consecuencia del intercambio de bosones W y Z, que son muy masivos,
y de acuerdo con el principio de incertidumbre de Heisenberg, son de corta vida, lo cual
explica por qué el escaso alcanze de este tipo de fuerzas. La interacción débil es un tipo
de interacción entre part́ıculas fundamentales, responsable de fenómenos naturales como la
desintegración beta. La interacción débil afecta a todo leptón con quiralidad izquierda y a
los quarks. Es la unica fuerza que afecta a los neutrinos y es la única interacción capaz de
cambiar su sabor; viola la simetŕıa de paridad (simetŕıa CP). Por otro lado, la interacción
electromagnética es la que describe la interacción que ocurre entre las part́ıculas con carga
eléctrica. Existe una sola simetŕıa de gauge asociada al electromagnetismo, y por lo tanto,
un único tipo de carga eléctrica. Esta simetŕıa de gauge está relacionada con la invariancia
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de las propiedades observables de una part́ıcula ante el cambio local de fase de su campo
cuántico asociado. Esta simetŕıa es válida sólo si la part́ıcula tiene masa cero. Una conse-
cuencia de que la masa de la part́ıcula mediadora de la interacción electromagnética sea cero
es que el alcance de la misma es infinito, pues esta propiedad es inversamente proporcional
a la masa de su bosón intermediario. Entonces, las part́ıculas fundamentales interactúan
electromagneticamente mediante el intercambio de fotones, donde su lagrangiano está da-
do por: L = −1

4
FµνF

µν ; siendo Fµν = ∂µAν − ∂νAµ. El modelo electrodébil es una teoŕıa
que unifica la interacción débil y la electromagnética. Este modelo fue desarrollado en la
década de los sesentas del siglo pasado por Sheldon Lee Glahsow, Abdus Salam y Steven
Weinberg. La medición experimental de interacciones nucleares débiles mediadas por las
corrientes cargadas (W±) les llevo a postular la existencia de las corrientes neutras, que
fueron descubiertas en 1973; estos 3 investigadores recibieron el Premio Nobel de la F́ısica
en 1979. La formulación matemática de la teoŕıa electrodébil consiste en una teoŕıa de
campos de gauge en donde el campo electrodébil es tratado como un campo de Yang-Mills;
en esta teoŕıa los fermiones son descritos mediante un lagrangiano de Dirac generalizado el
cual es invariante bajo un grupo de gauge. De la evidencia experimental se dedujo que el
grupo de simetŕıa de gauge mı́nimo capaz de acomodar las corrientes cargadas es el grupo
SU(2). La observación emṕırica ha permitido constatar que las interacciones electrodébiles
actúan de manera distinta sobre los fermiones dextrógiros (helicidad positiva) y los fermio-
nes levógiros (helicidad negativa). La aparición de esta simetŕıa a partir de un lagrangiano
tipo Yang-Mills es explicada formalmente por el mecanismo de rompimiento espontáneo
de la simetŕıa (RES). Aśı, las corrientes cargadas de Yang-Mills incluyen solamente fer-
miones levógiros y no se conocen neutrinos dextrógiros (sin evidencia experimental). Es
por ello que los campos fermiónicos levógiros son agrupados en dobletes, mientras que los
campos dextrógiros son singletes del grupo SU(2) con simetŕıa de isosṕın. Para describir
interacciones débiles necesitamos una estructura más elaborada, con muchos sabores de
fermiones y diferentes propiedades de los campos izquierdos y derechos. Los fermiones iz-
quierdos aparecen en dobletes y se obtienen bosones de gauge masivos como los W± y el
Z. El grupo de gauge mı́nimo con el cual se pueden representar los dobletes es el grupo
SU(2), sin embargo, es necesario mantener después del RES un bosón sin masa neutro,
por lo tanto, necesitamos incluir al grupo U(1), por consiguiente, se considera el grupo
G ≡ SU(2)L × U(1)Y como la base de la teoŕıa electrodébil. En este sentido, se pide que
las familias de quarks queden representadas de la siguiente manera:(

u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

, uR, dR, cR, sR, tR, bR.

Mientras que para leptones se tiene la siguiente asignación:(
νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

, eR, νR, τR.
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Por simplicidad usaremos indistintamente la siguiente notación:

ψ1(x) =

(
u
d

)
L

, ψ2(x) = uR, ψ3(x) = dR,

o

ψ1(x) =

(
νe
e

)
L

, ψ2(x) = νeR, ψ3(x) = eR.

De este modo, al considerar la lagragiana para una part́ıcula libre [33]:

L0 =
3∑

j=1

iψ̄j(x)γ
µ∂µψj(x), (2.16)

L0 es invariante global bajo las siguientes tranformaciones:

ψ1(x)
G→ ψ′

1(x) ≡ exp{iy1β}ULψ1(x),

ψ2(x)
G→ ψ′

2(x) ≡ exp{iy2β}ψ2(x), (2.17)

ψ3(x)
G→ ψ′

3(x) ≡ exp{iy3β}ψ3(x),

donde la transformación de SUL(2) es:

UL ≡ exp{iσj
2
αi}, (j = 1, 2, 3), (2.18)

la cual sólo actúa sobre el campo ψ1. En cuanto al grupo UY (1) se refiere, su transformación
asociada es análoga a la de QED, donde los parámetros yj son llamados hypercargas. La
matriz de transformación de UL es no abeliana como en cromodinámica cuántica (QCD
por sus siglas en inglés). Debe señalarse que en la lagrangiana no se están considerando
términos de masa. En espećıfico para la teoŕıa electrodébil, se requiere que la lagrangiana
sea invariante bajo la transformacion del grupo local de gauge SU(2)L × U(1)Y , es decir,
cuando αi = αi(x) y β = β(x). Para conservar la simetŕıa se necesitan cambiar los fermiones
por objetos covariantes; dado que tenemos 4 parámetros de gauge, αi(x) y β(x), se requieren
4 diferentes bosones de gauge [33]:

Dµψ1(x) ≡ [ ∂µ − igW̃µ(x)− ig′y1Bµ(x)] ψ1(x),

Dµψ2(x) ≡ [ ∂µ − ig′y2Bµ(x)] ψ2(x), (2.19)

Dµψ3(x) ≡ [ ∂µ − ig′y3Bµ(x)] ψ3(x),
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donde

W̃µ(x) ≡
σi
2
W i

µ(x), (2.20)

denota a la matriz de campos SUL(2). En este sentido, es necesario que Dµψj(x) se tras-
forme de la misma manera como lo hace el campo ψj(x) (ver ecuación (2.17)). Por lo que

ante transformaciones de norma en los campos Bµ(x) y W̃µ(x):

Bµ(x)
G→ B′

µ(x) ≡ Bµ(x) +
1

g′
∂µβ(x), (2.21)

W̃µ(x)
G→ W̃ ′

µ(x) ≡ UL(x)W̃µ(x)U
†
L(x)−

i

g
∂µUL(x)U

†
L(x), (2.22)

donde UL(x) ≡ exp{iσj

2
αj(x)}, la lagrangiana

L =
3∑

j=1

iψ̄j(x)γ
µDµψj(x) (2.23)

es invariante bajo transfomaciones locales del grupo de simetŕıa G [33]. Con un procedi-
miento similar se puede construir en principio la simetŕıa de gauge referente al grupo G para
la teoŕıa electrodébil completa; los principales detalles y resultados de este procedimiento
se presentan a continuación.

2.2.1. Rompimiento espontáneo de la simetŕıa (SSB)

Considere la densidad lagrangiana

L =
1

2
(∂µϕ)

2 − V (ϕ) (2.24)

para un escalar hermitiano, donde el potencial es

V (ϕ) =
µ2ϕ2

2
+
λϕ4

4
. (2.25)

L tiene una simetŕıa bajo la transformación ϕ → −ϕ. La ecuación de movimiento para ϕ
es (

∂2

∂t2
− ∇⃗2

)
ϕ = −∂V

∂ϕ
= −[ µ2 + λϕ2] ϕ. (2.26)

El primer término es la solución para un campo clásico ϕ. La enerǵıa mı́nima clásica se
puede interpretar a través del valor de expectación en el vaćıo para ϕ, esto es < 0|ϕ|0 >≡
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< ϕ >. Ahora para la expresión de la densidad Hamiltoniana la solución para la enerǵıa
mas baja ϕ = constante, con un valor < ϕ > que minimiza el potencial:

∂V

∂ϕ

∣∣∣∣∣
ϕ

= 0,
∂2V

∂ϕ2

∣∣∣∣∣
ϕ

> 0. (2.27)

donde la primera condición garantiza un extremo, y la segunda garantiza un mı́nimo (so-
lución estable), donde se debe de elegir λ > 0 y el signo de µ es arbitrario. La forma para
V (ϕ) se muestra en la siguiente figura.

En la figura anterior el mı́nimo ocurre cuando < ϕ >= 0 , µ es la masa de la part́ıcula
escalar y su simetŕıa aun es conservada.
Para µ2 < 0 hay tres extremos, en ϕ = 0 y para ±ν = ±

√
−µ2/λ. El extremo ϕ = 0 es un

máximo inestable,
d2ϕ

dx2
∼ −µ2ϕ ≥ 0 (2.28)

los otros dos extremos son mı́nimos y el potencial se puede escribir de la siguiente forma

V (ϕ) =
λ

4
(ϕ2 − ν2)2 − λν4

4
. (2.29)

Entonces existen dos posibles estados degenerados, con < ϕ >= ±ν, para la solución
positiva podemos escribir:

ϕ = ν + ϕ′, (2.30)

donde ϕ′ es un campo cuántico con < ϕ >= 0, sustituyendo esto en la densidad lagrangiana
se obtiene

L(ϕ) = L(ν + ϕ′) =
1

2
(∂µϕ

′)2 − V (ϕ′) (2.31)
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con

V (ϕ′) =
µ4

4λ
− µ2ϕ′2 + λνϕ′3 +

λ

4
ϕ′4, (2.32)

donde la simetŕıa bajo la transformación ϕ→ −ϕ esta rota. El primer término es constante
(el cual es irrelevante hasta que se considera la gravedad), el segundo término muestra que
el campo ϕ′ corresponde a una part́ıcula con masa cuadrática µ2

ϕ′ = −2µ2 > 0 , el tercer
término es una auto interacción cubica para ϕ′ inducida por el rompimiento espontáneo de
la simetŕıa y el cuarto término es una auto interacción cuadrática en el campo(este término
no fue afectado por el rompimiento espontáneo).
Otra forma es perturbando el potencial (2.25) con términos lineales o cúbicos que rompen
expĺıcitamente la simetŕıa, se considerara el operador −aϕ con a > 0,

V (ϕ) =
µ2ϕ2

2
− aϕ+

λϕ4

4
. (2.33)

Entonces inmediatamente la simetŕıa es violada en el estado base, es decir < ϕ > ̸= 0.
Para µ > 0 el valor de expectación en el vaćıo es inducido por el rompimiento explicito,
ν =< ϕ >= a/µ2 + O(a3), la mas importante consecuencia de esto es el término cúbico
(pequeño) para ϕ′ = ϕ− ν;

V (ϕ) =
µ2ϕ′2

2
+ λνϕ′3 +

λϕ′4

4
, (2.34)

para µ2 < 0 el potencial se desplaza y el mı́nimo global esta en

ν = ν0 +
a

2ν20
+O(a2), (2.35)

donde ν0 =
√

−µ2/λ es el mı́nimo que no fue afectado por la perturbación.

2.2.2. Sector de Higgs

Simetŕıas ocultas

Al considerarse una teoŕıa de campos gobernada por el grupo G y un subgrupo H de
G (pueden ser grupos unitarios, SU(N), grupos ortogonales SO(N) o seudo ortogonales,
SO(1, N)), en donde los campos ΦA forman una representación de G de tal suerte que la
lagrangiana del sistema, L = L(ΦA, ∂AΦB), sea invariante bajo transformaciones del grupo
G, tiene sentido realizar un mapeo de punto (dado que H ⊂ G) [34]

ΦA 7−→ {φa},
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donde el conjunto de campos {φa} forman representaciones de H y su número coincide con
el número de componentes de ΦA, entonces, se puede establecer el mapeo [34]

G 7−→ H,

ΦA 7−→ {φa},

siendo ΦA y {φa} objetos covariantes de G y de H respectivamente. Por lo tanto, la
lagrangiana es ahora una función de los campos {φa} y sus primeras derivadas. En esta
base, la simetŕıa H es manifiesta en L = L(φa, ∂aφb), sin embargo, la simetŕıa en G no
se ha perdido, simplemente está oculta, ya que se puede regresar a la simetŕıa manifiesta
bajo G mediante la transformación inversa.

El teorema de Goldstone y rompimiento espontáneo de la simetŕıa

A manera de visualizar la versatilidad del teorema de Goldstone, en esta sección se
presenta dicho teorema en el contexto del grupo especial de rotaciones SO(3).

Sea Φ(x) un triplete escalar real de SO(3) [34]

Φ(x) =

 λΦ1(x)
λΦ2(x)
λΦ3(x)

 , (2.36)

con componentes de campos reales Φi(x), entonces, bajo SO(3), donde Φ′ = φΦ y φ ∈
SO(3), es decir, Φ′

i = OijΦj, la siguiente lagrangiana es invariante bajo SO(3) [34]:

LPSH =
1

2
(∂µΦ)

†(∂µΦ)− V (Φ†,Φ), (2.37)

donde

V (Φ†,Φ) =
1

2
µ2(Φ†Φ) + λ(Φ†Φ)2, (2.38)

es el potencial escalar de tipo renormalizable, para λ > 0.
La relación entre el RES y el teorema de Goldstone se presenta al estudiar las posibles

configuraciones de campos para los cuales el potencial es mı́nimo. Estas condiciones se
encuentran dadas por:

∂V

∂Φi

= 0,
∂2V

∂Φi∂Φj

> 0.

Esto implica que

(µ2 + 4λ(Φ†Φ))Φj = 0, (2.39)

Φ2
1 + Φ2

2 + Φ2
3 ≥ 0.

Ante estas condiciones tenemos 2 escenarios compatibles:
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Escenario µ2 > 0
En este caso, el mı́nimo ocurre para Φ(x) = 0. F́ısicamente, esto corresponde a 3
campos escalares reales Φi de igual masa µ.

Escenario µ2 < 0
Aqúı, las condiciones de extremo pueden satisfacerse cuando Φ(x) = 0, siendo un
mı́nimo relativo (correspondiente al origen) o se consiguen también si

Φ†Φ =
−µ2

4λ
≡ v2,

v =

√
−µ2

4λ
> 0.

Nótese que Φ2
1 + Φ2

2 + Φ2
3 = v2 es la superficie (esfera) de mı́nima enerǵıa, el cual

presenta una degeneración infinita [34].

La simetŕıa SO(3) se rompe de manera espontánea cuando se elige un punto de la
esfera, a saber, Φ0. Esto implica que Φ†

0Φ0 = v2. Aśı, se elige la dirección de Φ0 tal
que sea posible romper espontánemente el grupo SO(3) al grupo SO(2), esto es, se
escoge Φ0 tal que SO(3) 7−→ SO(2). Cuando se habla del rompimiento espontáneo
de SO(3) a SO(2) significa elegir la dirección de Φ0 de tal forma que sea dejada
invariante por SO(2), es decir, UΦ0 = Φ0 donde U ∈ SO(2); esto implica que el
generador de SO(2) debe aniquilar a Φ0, es decir, TΦ0 = 0, cumpliéndose que

UΦ0 = Φ0,

eiαTΦ0 = Φ0,

siendo α un parámetro real.

El Teorema de Goldstone establece que por cada generador roto del grupo existe un
campo escalar de masa cero. En este caso:

T1Φ0 ̸= 0,

T2Φ0 ̸= 0,

T3Φ0 = 0,

para

Φ0 =

 0
0
v

 .
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Los objetos T1 y T2 son los generadores rotos y T3 es el generador de SO(2). Por lo
tanto, los campos de SO(2) (sus representaciones) son campos sin masa

φ ≡
(
φ1

φ2

)
,

y reciben el nombre de bosones de Goldstone. El campo H que está a lo largo de
Φ0, recibe el nombre de bosón de Higgs. Es importante mencionar que la teoŕıa sigue
siendo invariante bajo SO(3); lo que no es invariante bajo SO(3) es Φ0.

Mecanismo de Higgs

Si se asume que la teoŕıa es de norma, esto es, que el grupo SO(3) es local, implica que
la Lagrangiana invariantes es ahora

LH =
1

2
(DµΦ)

†(DµΦ)− V (Φ†,Φ)− 1

4
F a
µνF

aµν , (2.40)

donde

Dµ = ∂µ − igT aAa
µ, para a = 1, 2, 3.

Lo que en componentes se puede apreciar de la siguiente forma

Dab
µ Φb = (δab∂µ − gϵabcAc

µ)Φb, (2.41)

siendo

(T c)ab = −iϵabc,
F a
µν = ∂µA

a
µ − ∂νA

a
µ + gϵabcAb

µA
c
ν .

Para dotar de masa a los campos de norma se necesita mandar estos a campos de materia;
esto se logra con una translación de la siguiente forma:

Φ(x) → Φ0 + Φ(x). (2.42)

De este modo, el primer término en la ecuación (2.40):

1

2
(DµΦ)

†(DµΦ) =
1

2
[ (DµΦ0)

† + (DµΦ)
†][ (DµΦ0) + (DµΦ)]

=
1

2
(DµΦ)

†(DµΦ) +
1

2
[ (DµΦ0)

†(DµΦ) + (DµΦ)
†(DµΦ0)]

+
1

2
(DµΦ0)

†(DµΦ0),

es quien promueve la generación de masa en los bosones de norma realizándose las identi-
ficaciones pertinentes en la base de campos f́ısicos.
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2.2.3. Sector de Yang-Mills

En f́ısica, el primer ejemplo de una teoŕıa de Yang-Mills es la teoŕıa electromagnética de
Maxwell. En la famosa publicación de 1954, Yang y Mills propusieron una extensa teoŕıa
generalizada de campos clásicos inspirada en el elecromagnétismo conservando la simetŕıa
de gauge. Cuando la teoŕıa de Yang-Mills se cuantizó se convirtio en el pilar de la f́ısica
de part́ıculas en la segunda mitad del siglo XX. Esta teoŕıa ya cuantizada comprende la
electrodinámica cuántica, la teoŕıa electrodébil, el ME y teoŕıas de gran unificación (GUTs
por sus siglas en inglés), por citar algunos ejemplos. Se asume que las teoŕıas correctas
tienen que ser cuantizadas preservando la simetŕıa de Lorentz, lo cual en particular cumple
la teoŕıa de Yang-Mills. Esta es la razón por la cual el grupo SUC(3)× SUL(2)×UY (1) es
la base matemática del ME. El sector de Yang-Mills está construido en términos de una
teoŕıa de campos no abeliana junto con una parte abeliana, por tal razón, la lagrangiana
del campo de Yang-Mills se escribe de la siguiente manera

LYM = −1

4
W i

µνW
iµν − 1

4
BµνB

µν , para i = 1, 2, 3. (2.43)

SUL(2) → W i
µν = ∂µW

i
ν − ∂νW

i
µ + gϵijkW j

µW
k
µ , (2.44)

UY (1) → Bµν = ∂µBν − ∂νBµ.

Una vez identificados los campos f́ısicos (de masa):

W+
µ =

1√
2
(W 1

µ − iW 2
µ),

W−
µ =

1√
2
(W 1

µ + iW 2
µ),

Zµ = cWW
3
µ − sWBµ,

Aµ = sWW
3
µ + cWBµ,

es posible determinar los vértices trilineales y cuárticos que representan interacciones entre
los campos de gauge. Aqúı, cW y sW representan el coseno y el seno del ángulo de mezcla
débil respectivamente.

2.2.4. Sector de Yukawa

La interacción de Yukawa o el acoplamiento de Yukawa, llamado aśı por Hideki Yu-
kawa, es una interacción entre un campo escalar y dos campos de Dirac. En el ME los
acoplamientos de Yukawa describen las interacciones entre el campo de Higgs y los campos
de quarks o los leptones sin masa, es por eso que este sector se divide en dos partes, el
sector de quarks y el sector leptónico. Mediante el RES, estos fermiones adquieren una
masa proporcional al valor de expectación del vaćıo.
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Sector de Yukawa para leptones

La lagrangiana de Yukawa para leptones invariante bajo SUL(2)× UY (1) es [34]

Lℓ
Y = −Y ℓ

ijL̄
′
iΦℓ

′
Rj + h.c., (2.45)

donde Y ℓ
ij son los elementos de la matriz 3× 3 de Yukawa. Aqúı, Li tiene la forma

Li =

(
ϑℓi

ℓi

)
L

, con i = 1, 2, 3,

mientras que ℓR es un singulete de SUL(2). Al aplicar el RES, se tiene que

Φ =

(
0

v+H√
2

)
,

por consiguiente, la lagrangiana de Yukawa se puede reescribir como sigue

Lℓ
Y = −Y ℓ

ij(ϑ̄
′
ℓi, ℓ̄

′
iL)ℓ

′
Rj

(
0

v+H√
2

)
+ h.c.+ · · · ,

= −Y ℓ
ij ℓ̄

′
Liℓ

′
Rj

(
v +H√

2

)
+ h.c.+ · · · ,

= −
(
v +H√

2

)
Ē ′

LY
ℓE ′

R + h.c.+ · · · ,

donde la última ĺınea de la ecuación anterior ha sido escrita en el espacio de sabor, siendo

E ′
L,R =

 e′L,R
µ′
L,R

τ ′L,R

 ,

en el entendido de que Ē ′
L = V ℓ

LEL y Ē ′
R = V ℓ

RER, siendo V ℓ
L,R matrices de rotación

unitarias, entonces;

Lℓ
Y = −

(
1 +

H

v

)
Ē ′

LM
ℓE ′

R + h.c.+ · · · ,

donde M ℓ ≡ Y v√
2
es la matriz de masa. De este modo, Lℓ

Y queda expresada como se aprecia
a continuación

Lℓ
Y = −

(
1 +

H

v

)
ĒLV

ℓ†
L M

ℓV ℓ
RER + h.c.+ · · · ,

= −
(
1 +

H

v

)
ĒLMℓER + h.c.+ · · · ,
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con

Mℓ =

 me 0 0
0 mµ 0
0 0 mτ

 .

Esto implica que el sector de Yukawa para leptones conserva el sabor, es decir, el bosón de
Higgs se acopla a un mismo tipo de leptón cargado.

Sector de Yukawa para quarks

La lagrangiana de Yukawa para quarks más general invariante bajo SUL(2) × UY (1)
es [34]

Lq
Y = −Y u

ij Q̄
′
iΦ̃u

′
Rj − Y d

ijQ̄
′
iΦd

′
Rj + h.c., (2.46)

donde Q′
i =

(
u′i
d′i

)
para i = 1, 2, 3 y

Φ̃ = iσ2Φ∗ =

(
0 1
−1 0

)(
GW

v+H−iGZ√
2

)
=

( v+H−iGZ√
2

−GW

)
. (2.47)

Al adoptar la gauge unitaria o gauge f́ısica, se llega a que

Lq
Y = −

(
1 +

H

v

)
[ Ū ′

LM
uU ′

R + D̄′
LM

dD′
R] + h.c., (2.48)

siendo Mu = v√
2
Y u y Md = v√

2
Y d. Además, U ′ =

 u′

c′

t′

 y D′ =

 d′

s′

b′

. De acuerdo

con las siguientes transformaciones unitarias: U ′
L = V u

LUL, U
′
R = V u

RUR, D
′
L = V d

LDL,
D′

R = V d
RUR, la lagrangiana de Yukawa para quarks adquiere la siguiente forma

Lq
Y = −

(
1 +

gH

2mW

)
(ŪLV

U†
L MUV U

R UR + D̄LV
d†
L MdV d

RDR) + h.c.,

= −
(
1 +

gH

2Mw

)
(ŪLMUUR + D̄LMdDR) + h.c. (2.49)

Esto da lugar a las siguientes matrices de masa para quarks

Mv =

 mu 0 0
0 mc 0
0 0 mt

 , Md =

 md 0 0
0 ms 0
0 0 mb

 .

En la ecuación (2.49) también se puede apreciar que no está presente el cambio de sabor,
ya que el bosón de Higgs se acopla al mismo tipo de quark.
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2.2.5. Sector de corrientes

En el sector de corrientes aparece el término cinético de los fermiones, de donde surge
la ecuación de Dirac. Esta parte del ME se divide en los sectores de corrientes de Leptónes
y de Quarks.

Sector de corrientes para leptones

El lagrangiano que representa al sector corrientes para leptones se encuentra dado por

Lℓ
c = iL̄′

i
/DL′

i + iℓ̄′Ri
/Dℓ′Ri, (2.50)

debido a la ausencia de neutrinos derechos. A partir del lagrangiano anterior se puede
probar que los acoplamientos entre dos leptones y bosones neutros conservan sabor. En
esta dirección, en la base de masas, dicho lagrangiano se puede reescribir como

LC
q = iĒγµ∂µE + iν̄γµ∂µνL +

g2√
2
(W+

µ J
−µ + J+

µ W
−µ) +

g2
2cW

ZµJ
µ
Z + eAµJ

µ
A, (2.51)

donde se han introducido las corrientes cargadas, J−µ, y neutras, Jµ
Z y Jµ

A, las cuales están
dadas como:

J−µ = ν̄Lγ
µEL,

Jµ
Z = ν̄γµ(gνV + gνγ5)ν + Ēγµ(gEV + gEAγ

5)E,

Jµ
A = ν̄Lγ

µνL + ĒγµE.

Aqúı, gliV y gliA ((li = ν, E)) son constantes de acoplamiento que representan la intensidad
con la cual se acoplan los leptones al bosón Z. En este caso, debido a la ausencia de
neutrinos derechos, las corrientes cargadas y neutras conservan el sabor a todo orden en
la serie perturbativa. Es importante señalar la ausencia de interacciones entre leptones de
diferentes familias mediadas por el bosón débil cargado.

Sector de corrientes para quarks

El lagrangiano de corrientes para quarks, en términos de los campos de gauge, conserva
el sabor y está dado por

LC
q = iQ̄′

iLγ
µDµQ

′
iL + iū′iRγ

µDµu
′
iR + id̄′iRγ

µDµd
′
iR, (2.52)

el cual, una vez expresado en términos de los campos de masa, toma la siguiente forma

LC
q = iŪγµ∂µU + iD̄γµ∂µD +

g2√
2
(W+

µ J
−µ + J+

µ W
−µ) +

g2
2cW

ZµJ
µ
Z + eAµJ

µ
A, (2.53)
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donde las corrientes cargadas J−µ y neutras Jµ
Z y Jµ

A están definidas de la siguiente manera:

J−µ = ŪLγ
5KDL,

Jµ
Z = Ūγµ(guV + guAγ

5)U + D̄γµ(gdV + gdAγ
5)D,

Jµ
A = ŪγµU + D̄γµD,

siendo K = V u
L V

d
L
†
la matriz de Cabbibo-Kobayashi-Maskawa (CKM), mientras que gu,dV y

gu,dA son constantes de acoplamiento que representan la intesidad de interacción entre dos
quarks y el bosón Z. Puesto que las matrices V u,d

L,R son unitarias, en el ME las corrientes
neutras conservan el sabor, sin embargo, en las corrientes cargadas se dan transiciones
entre distintas familias a través de la matriz CKM. La presencia de corrientes cargadas con
cambio de sabor a nivel árbol da lugar a la aparición de FCNC a nivel de lazos.
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Caṕıtulo 3

Más allá del Modelo Estándar

Problemas con el Modelo Estándar

Por conveniencia comencemos por la densidad lagrangiana después del rompimiento
espontáneo de la simetŕıa:

L = Lgauge + Lϕ +
∑
r

ψ̄r

(
i/∂ −mr −

mrH

ν

)
ψr

− g

2
√
2

(
Jµ
WW

−
µ + Jµ†

WW
+
µ

)
− eJµ

QAµ −
g

2cos(θW )
Jµ
ZZµ, (3.1)

El ME electrodébil es matemáticamente consistente y una teoŕıa de campos renormalizable
el cual predice o tiene consistencia con los factores experimentales. Esta predice satisfac-
toriamente la existencia de corrientes neutras débiles, la existencia de las masas de los
bosones W y Z, aśı como la masa del quark charm con la ayuda del mecanismo de GIM.
Las interacciones a través de corrientes cargadas débiles están descritas por la teoŕıa gene-
ralizada de Fermi, la cual esta incorporada en la electrodinámica cuántica. La consistencia
entre la teoŕıa y la experimentación predicen indirectamente la masa del quark top a través
de correcciones radiativas y renormalización. Lamentablemente esta formulación no predice
información sobre la masa de los neutrinos [40].

El problema de la simetŕıa de gauge

El ME es un producto directo de 3 subgrupos, SU(3)×SU(2)×U(1) y no hay explicación
porque solamente la parte electrodébil es quiral (hay violación de paridad). Similarmente
el ME incorpora la cuantización de la carga pero no explica porque todas las part́ıculas
tienen cargas que son solamente múltiplos de e/3, esto es importante porque permite la
neutralidad eléctrica de los átomos (|qp| = |qe|). La cuantización de la carga se puede
explicar con teoŕıas de gran unificación y supercuerdas, pero los valores ”erróneos” para la
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carga surgen debido a diferentes incorporaciones de la hipercarga o valores no canónicos
para Y (en algunas construcciones emergen part́ıculas exóticas con cargas de e/2).

Problema del la Gravedad

La gravedad no se encuentra unificada con las interacciones del ME, dicho de otra for-
ma, la relatividad general no es una teoŕıa cuántica. Hay una posible solución a través
de teoŕıas de Kaluza-Klein y supergravedad, estas teoŕıas conectan la gravedad con otras
interacciones pero no dan lugar a ser renormalizables o cuantizar la gravedad. Además del
hecho de que la gravedad no está unificada ni cuantizada hay otra dificultadad, llamada
la constante cosmológica, esta constante puede ser tratada como la enerǵıa en el vaćıo, y
considerando que un rompimiento espontáneo en SU(2) × U(1) genera el valor de espec-
tacion < 0|V (ν)|0 >= −µ4/4ν para el potencial mı́nimo de Higgs. Esta constante (c) no
tiene significancia en las interacciones fundamentales, pero toma gran importancia cuando
se quiere acoplar la teoŕıa con la gravedad, ya que esta contribuye, entonces la constante
cosmológica se convierte

Λcoms = Λbare + ΛSSB, (3.2)

donde Λbare = 8πGNV (0) la cual puede ser tomado como la enerǵıa mı́nima en el vaćıo con
la ausencia del rompimiento espontáneo de la simetŕıa (SSB).

|ΛSSB| = 8πGN |< 0|V (0)|0 >| ∼ 1056Λobs. (3.3)

El cual es 1056 mas grande que la magnitud observada Λobs = (0,0024eV )4/8πGN (asumien-
do que la enerǵıa oscura es debido a la constante cosmológica) y es claramente inaceptable.

3.0.1. Modelo SU(2)× U(1)× U ′(1)

Muchas extensiones del ME involucran al grupo U ′(1) y bosones de gauge asociados
(Z ′). Este modelo es usado por teoŕıas de supercuerdas, teoŕıas de gran unificación, y mu-
chos modelos que involucran nueva f́ısica a escala de TeVs, como rompimiento espontáneo
dinamico y modelos de little Higgs. Un ejemplo de por qué es útil el grupo U ′(1): con-
sidérese SU(m) roto por el adjunto real del higgs, ϕi, definase la matriz m×m ϕ ≡ ϕiL

i
m, el

valor de expectación en el vaćıo (VEV) puede ser diagonalizable bajo una transformación
en SU(m) e inmediatamente se vuelve claro que el subgrupo es U(1)m.

Las masas de los bosones de gauge extra pueden ser extremadamente masivos, sin ma-
sa, con masas muy ligeras o cualquier intermedio de ellas. Es aqúı donde se considera la
escala electrodébil (TeVs) para Z ′. Incluso algunos modelos que involucran dimensiones
extra en el espacio permiten que el boson Z y otros bosones de gauge del ME se propaguen
en el lazo, mediante excitaciones de Kaluza-Klein.
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Las interacciones de gauge de U(1)′

Considérese el caso de un solo factor de U(1)′, con una familia universal de acopla-
mientos y (inicialmente) sin mezclas cinéticas. El acoplamiento del ME para tres bosones
neutrales de gauge con fermiones esta expresada de forma generalizada como:

−LNC = gJµ
3W

3
µ + g′Jµ

YBµ + g2J
µ
QZ

0
2µ = eJµ

QAµ + g1J
µ
1 Z

0
1µ + g2J

µ
2 Z

0
2µ, (3.4)

donde Z0
2µ es el nuevo bosón de gauge, Jµ

2 es la corriente de U(1)′, y g2 el acoplamiento de
gauge. Si se desea trabajar en términos de W 3, B y Z0

2 entonces es necesario un SSB y se
obtendŕıa matrices de bosones de gauge masivas de 3× 3, esto se puede evadir (siempre y
cuando no se esta rota la simetŕıa en la carga eléctrica) si transformamos a A en Z0

1 = Z,
el cual esta relacionado con W 3 y B con las ecuaciones

Z ≡ =
−g′Bµ + gW 3

µ√
g2 + g′2

= −sinθWB + cosθWW
3, (3.5)

A = cosθWB + senθWW
3. (3.6)

Similarmente, Jµ
Z ≡ Zµ

Z/2, donde J
µ
Z es la corriente del ME definida como

Jµ
Z =

∑
r

ψ̄0
rγ

µ[ t3rL(1− γ5)− 2qrsin
2θW ] ψ0

r

=
∑
r

t3rLψ̄
0
rγ

µ(1− γ5)ψ0
r − 2sen2θWJ

µ
Q, (3.7)

y g1 ≡ (g2+g′2)
1
2 = gz, esta segunda forma es especialmente conveniente en perturbaciones.

La corriente Jµ
α , α = 1, 2 es

Jµ
α =

∑
r

ψ̄rγ
µ[ ϵαL(r)PL + ϵαR(r)PR] ψr =

1

2

∑
r

ψ̄rγ
µ[ gαV (r)− gαA(r)γ

5] ψr, (3.8)

donde ϵ1L,R son acoplamientos del ME,

ϵL(r) = t3rL − sen2θW qr, ϵR(r) = −sen2θW qr,

grV = t3rL − 2sen2θW qr, grA = t3rL, (3.9)

y ϵ2L,R depende del modelo que se elija para U(1)′. Cuando se trabaja con términos de
campos de fermiones con quiralidad izquierda, es conveniente definir las cargas como

Qαf = ϵαL(f), Qαfc = −ϵαR(f), (3.10)
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para fermiones fL y su conjugado de la carga f c. También se define las cargas Qαi para
complejos escalares ϕi con Q1i = t3i − sen2θW qi. En la parte de la corriente neutra la
derivada covariante de gauge es

Dµϕi =

(
∂µ + ieqiAµ + i

2∑
α=1

gαQαiZ
0
αµ

)
ϕi, (3.11)

donde todos los miembros de SU(2) deben de tener la misma Q2 desde que se asume que
los grupos conmutan.

Bosones masivos de gauge y mezclas de masas

Cuando un escalar adquiere valor de expectación en el vaćıo genera masas para bosones
de gauge neutrales (y cargados). Asumiendo que la simetŕıa de la carga eléctrica no esta
rota, es decir, qi = 0 para todos los escalares que cumplan < ϕi >, encontramos de la
ec (4.17) que de un fotón Aµ permanece sin masa, mientras Z0

1,2 desarrolla una matriz de
masa cuadrada

M2
Z−Z′ =

(
2g21
∑

i t
2
3i|< ϕi >|2 2g1g2

∑
i t3iQi|< ϕi >|2

2g1g2
∑

i t3iQi|< ϕ >|2 2g22
∑

iQ
2
i |< ϕi >|2

)
≡
(
M2

Z0 ∆2

∆2 M2
Z′

)
,

donde Qi ≡ Q2i . MZ0 es la masa de Z en la ausencia de la mezcla. Si los campos de Higgs
se encuentran todos bajo SU(2) tanto dobletes como singuletes, se obtiene

M2
Z0 =

M2
W

cos2θW
=
g2Z
4

∑
ti=

1
2

|ν|2 ≡ g2Z
4
ν2, (3.12)

donde νi =
√
2 < ϕi > y ν ∼ 246 GeV, en el ME. Los eigenestados de masa correspondientes

a (3.0.1) son (
Z1

Z2

)
= U

(
Z0

1

Z0
2

)
, U

(
cosθ senθ
−senθ cosθ

)
,

con eigenvalores

M2
1,2 =

1

2

[
M2

Z0 +M2
Z′ ∓

√
(M2

Z0 −M2
Z′)2 + 4∆4

]
, (3.13)

y el ángulo de mezcla esta dado por

θ = −1

2
arctan

(
2∆2

M2
Z′ −M2

Z0

)
, tan2θ =

M2
Z0 −M2

1

M2
2 −M2

Z0

, (3.14)
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Un ĺımite importante es MZ′ ≫ (MZ0 , |∆|), el cual ocurre t́ıpicamente en el campo S del
singulete de SU(2) el cual tiene un valor de expectación en el vaćıo mucho mayor que ν y
por lo tanto solamente contribuye MZ′ . Entonces se obtiene

M2
1 ∼M2

Z0 −
∆4

M2
Z′

≪M2
2 , M2

2 ∼M2
Z′ (3.15)

y

θ ∼ − ∆2

M2
Z′

∼ C
g2
g1

M2
1

M2
2

con C = −
∑

i t3iQi|< ϕ >|2∑
i t

2
3iQi|< ϕ >|2

. (3.16)

C depende del modelo, pero t́ıpicamente |C| ≤ O(1). De las ecuaciones (3.14) y (3.16) se
puede observar que |θ| esta en ordenes de M2

1/M
2
2 .

Un ejemplo es considerar un campo S singulete y complejo en SU(2) y dos dobletes ϕu,d

en SU(2) o sus conjugados hu,d. Los dobletes se encuentran definidos como

ϕd =

(
ϕ+
d

ϕ0
d

)
, ϕu

(
ϕ0
u

ϕ−
u

)
,

hu =

(
h+u
h0u

)
≡ −ϕ̃u, hd

(
h0d
h−d

)
≡ ϕ̃d ,

luego

M2
Z0 =

1

4
g21(|νu|2 + |νd|2), ∆2 =

1

2
g1g2(Qu|νu|2 −Qd|νd|2)

M2
Z′ = g22(Q

2
u|νu|2 +Q2

d|νd|2 +Q2
S|S|2), (3.17)

con Qu,d ≡ Qhu,hd
y S =

√
2 < S >. El potencial para S , h0u y h0d es entonces V =

VF + VD + Vsoft

VF = λ2S(|h0u|2|h0d|2 + |S|2|h0u|2 + |S|2|h0d|2),

VD =
g21
8
(|h0u|2 − |h0d|2) +

g22
2
(Qu|h0u|2 +Qd|h0d|2 +QS|S|2)2, (3.18)

Vsoft = m2
hu
|h0u|2 +m2

hd
|h0d|2 +m2

S|S|2 − (λSASSh
0
uh

0
d + h.c.).
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Caṕıtulo 4

Cromodinamica Cuantica

En la actualidad en el modelo de interación quark.quark en la teoria de gauge SU(3)
con cualquier grado de libertad, es llamdo ”color”. Esta provado que la cromodinamica
cuántica (QCD por sus siglas en ingles) describe correctamente las caracteŕısticas de las
interaciones de quark-quarks, por ejemplo, la masas corectas de los hadrones.

4.0.1. Modelo estándar: Teoŕıa de Gauge

El modelo estándar considera la interacción electromagnética. El fotón es descrito por
el siguiente lagrangiano libre de campos externos:

L0 = −1

4
FµνF

µν , Fµν = ∂µAν − ∂νAµ (4.1)

y su acoplamiento a través de un término de interacción

Lint = Ψ̄(p̂µ − eAµ)γ
νΨ (4.2)

y los Lagrangianos (4.1) y (4.2) son invariantes bajo las siguientes transformaciones:

Aν(x) → A′
ν(x) = Aν(x) + ∂νθ(x) (4.3)

Ψ(x) → Ψ′(x) = eieθ(x)Ψ(x) (4.4)

De la simetŕıa de gauge de la electrodinámica cuántica (QED) directamente se obtiene el
grupo general de gauge reemplazando las funciones complejas Aν por funciones matriciales.
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Si λ̂j, j = 1, 2, ..., N son bases elegidas en espacio de matrices, entonces:

Aν(x) → Â(x) :=
∑
j

λ̂j

2
Aj

ν(x) (4.5)

θ(x) → θ̂(x) :=
∑
j

λ̂j

2
θj(x) (4.6)

La elección especifica de matrices determina la simetŕıa del grupo. Si se elige, por ejemplo,
matrices Hermitianas de 3x3 con traza nula, entonces la transformación queda como:

e−ig
∑

j
λ̂j

2
θj(x) (4.7)

no es otra cosa mas que la representación tridimensional de la transformación de SU(3),
donde se reemplaza la constante de acomplamiento del electrón−e por la cosnstante general
g. Las matrices λ̂ no conmutan en general, entonces las ecuaciones sufren un cambio.

L0 = −1

4
F̂ a
µνF̂

aµν = −1

2
tr(F̂µνF̂

µν) (4.8)

F̂µν = ∂µÂν − ∂νÂµ − ig[Âµ, Âν ] (4.9)

Lint = Ψ̄(p̂µ − gAµ)γ
νΨ (4.10)

Âν(x) → Â′
ν(x) = e−igθ̂(x)(Âν(x) +

i

g
∂ν)e

igθ̂(x) (4.11)

Ψ(x) → Ψ′(x) = e−igθ̂(x)Ψ(x) (4.12)

4.0.2. Formulación geométrica de simetŕıas de gauge

Por simplicidad consideremos un conjunto de campos de spinores Ψi(x), i = 1, 2, ..., N ,
combinados como un vector

Ψ =


Ψ1(x)
Ψ2(x)

...
ΨN(x)

 (4.13)

Además se asume la siguiente simetŕıa local

Ψ′(x) = eigθ̂(x)Ψ (4.14)
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el cual es equivalente a Ψ(x). De esta forma queda análogo al vector contravariante de las
trannsformaciones de Lorentz:

V ν(x), V ′ν = Λµ
ν (x)V

ν(x). (4.15)

Las transformaciones de Lorentz Λ(x) corresponden al caso de las transformaciones de

gauge e−igθ̂(x). La evaluación para la diferencia de coeficientes

V µ(x+ h)− V µ(x)

h
(4.16)

produce terminos adicionales debido a la dependencia del tensor métrico gµν(x). Este pro-
blema da lugar a la derivada covariante

V µ
ν := ∂νV

µΓ µ
ανV

α (4.17)

donde Γ µ
αν son los śımbolos de Christoffel,

Γ µ
αν = −1

2
gµσ(∂νgασ + ∂αgσν − ∂σgνα) (4.18)

el cual representa la posición dependiente de la métrica, el cual es, el sistema local de
coordenadas. La derivada covariante (4.17) en este sentido es invariante bajo las transfor-
maciones de Lorentz.
De manera análoga podemos escribir (4.17) para spinores del campo Ψ:

DµΨ(x) := ∂µΨ(x) → (∂µ + Γ̂µ(x))Ψ(x) (4.19)
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Caṕıtulo 5

Planteamiento del problema

Para distinguir el Cromodipolo electromagnetico derivado de correcciones radiativas de
vértice a 4 cuerpos lo vamos a denotar por µ̂4b

t y d̂4bt con la finalidad de compararlo con
el vértice a 3 cuerpos denotado por µ̂3b

t y d̂3bt . Como adelanto, resulta que d̂4bt = 0 en el
Modelo Estándar, justo como pasa en el caso d̂3bt = 0, por tal razón nos enfocaremos en µ̂4b

t .

Para el calculo de µ̂3b
t (s) a un vértice de 3 cuerpos con la configuración gaµ(q)t(p)t̄(p

′)
(con la cinemática q + p = p′ , q2 = (p′ − p)2 ≡ s que caracteriza la dependencia de la
escala de enerǵıa ). En este caso, q2 coincide con el vértice de invariante de Lorentz s. El
invariante de Lorentz s no debe ser estático, este debe ser diferente de cero para evitar di-
vergencias infrarrojas, es la razón por la cual el gluón fuera de la capa de masa s ≡ q2 ̸= 0;
este es el comportamiento originado por el diagrama de un lazo de Feynman que incluye
auto interacciones del vértice no abeliano ggg [3].

Por otro lado en la figura 1.1 se coloca la configuración gaµ(q)g
b
ν(q

′)t(p)t̄(p′) para el
vértice a 4 cuerpos con la cinemática q + q′ + p = p′, q2 = q′2 = 0 y p2 = p′2 = m2

t . La
topoloǵıa de ggtt̄ genera varias configuraciones de momentos de transferencia invariantes
de Lorentz, (q + q′)2 = (p − p′)2, (q + p)2 = (p′ − q′)2 y (p + q′)2 = (p′ − q)2, donde se
asume la misma escala de enerǵıa s. Si s = 0 el término µ̂4b

t (0) como el µ̂3b
t (0) devuelven

divergencias infrarrojas[3].

En este proyecto de tesis doctoral se propone calcular los MDCEM, µ̂q y d̂q, inducidos
por la fluctuación cuántica de cuatro cuerpos q̄qgg, cuya existencia, según el lagrangiano
efectivo dado en la ecuación (1.4), no debe ser exclusiva del caso de tres cuerpos q̄qg. La
meta principal de este proyecto es calcular el MDCM de cuatro cuerpos, aśı como también
explorar la posibilidad de que el MDCE se manifieste debido a cuatro cuerpos, pues, éste
no se genera por tres cuerpos en el ME.

35
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Las siguientes figuras muestran el conjunto completo de 85 diagramas contribuyentes
a la corrección radiativa del vértice de cuatro cuerpos en el ME, en la norma de Feyn-
man’t Hooft ξ = 1, obtenidos en FeynArts. Tales diagramas aportarán contribuciones al
término fabcT

a
ABσ

µν proporcional al MDCM, y, probablemente, también aporten al término
fabcT

a
ABσ

µνγ5 proporcional al MDCE.

Conjunto de diagramas de cuatro cuerpos q̄qgg



5. Planteamiento del problema 37



38



5. Planteamiento del problema 39



40

La amplitud invariante del vértice puede ser expresada como:

M = Mµνϵaµ(q⃗)ϵ
b
ν(q⃗

′)

donde ϵaµ(q⃗) y ϵ
b
ν(q⃗

′) son vectores de polarización de los gluones, siendo asi el tensor de la
amplitud como:

M = ū(p′)Γµνu(p)

donde, ū(p′) y u(p) son los espinores asociados y Γµν es la estructura de Lorentz de todo
el vértice de donde se va a extraer los términos de interés dados en la ecuación (1.1).
La amplitud se puede escribir en 5 diferentes contribuciones caracterizados por diferentes
bosones virtuales; g,γ,Z,W ,H:

M = M(g) +M(γ) +M(Z) +M(W ) +M(H) (5.1)

donde solamente los términos γµγν y γµγνγ5, proporcional a fabcT
c, entonces el tensor

de amplitud de interés es:

Mµν = ū(p′)fabcT c(f1γ
µγν + f2γ

µγνγ5 + ...)u(p) (5.2)

= ū(p′)fabcT c(−if1σµν − if2σ
µνγ5 + ...)u(p) (5.3)

donde se uso que γµγν = gµν − iσµν de {γµ, γν} = 2gµν y con las propiedades del generador
[T x, T y] = ifxyzT

z y de esta manera se obtiene:

Γµν
4b = igsf

abcT aσµν

(
− 1

gs
f1 + i

i

gs
f2γ

5

)
(5.4)

= igsf
abcT aσµν

(
µt + idtγ

5
)

(5.5)

entonces

µ̂t = −mt

g2s
f1 d̂t =

imt

g2s
f2 = 0 (5.6)

de la ecuación para M se puede obtener el CMDM en términos de las part́ıculas virtuales
contribuyentes:

µ̂4b
t (s) = µ̂t(g) + µ̂t(γ) + µ̂t(Z) + µ̂t(W ) + µ̂t(H) (5.7)

donde el momento del invariante de Lorentz del vértice ggtt̄ debe de obedecer s ̸= 0.

Diagramas a un lazo en la norma de Feynman-t Hooft ξ = 1, que son inducidos por
CMDM del vértice no abeliano, donde en total son 73 diagramas debido a la simetŕıa de
Bose para gluones externos, donde Gz y Gw son pseudo bosones de Goldstone de los bo-
sones de gauge Z y W respectivamente. Cabe resaltar que cuando se establece que s = 0
entonces µ̂4b

t (0) se obtiene divergencias infrarrojas, este comportamiento proviene exclusi-
vamente de los diagramas (6) y (7), los cuales involucran auto interacciones no abelianas
de los vértices ggg y gggg respectivamente.
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Figura 5.1
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Cabe destacar que µ̂t(g) genera divergencias infrarrojas incluso cuando s ̸= 0 para las
PaVes generadas por los diagramas 3 y 6 de la figura anterior, a pesar de esto los polos
1/ϵIR y 1/ϵ2IR son cancelados después de sumar todas las contribuciones. A continuación se
presentan expĺıcitamente las 5 diferentes conjuntos de contribuciones virtuales de part́ıcu-
las para µ̂4b

t (s).

5.0.1. La contribucion g

La contribución µ̂4b
t (g) se compone de los primeros 7 diagramas de la figura 5.1, donde

en realidad son 13 diagramas ya que se esta considerando la simetŕıa de Bose para gluones
externos; la simetŕıa se obtiene intercambiando (a, µ, q) ⇔ (b, ν, q′) ya que los gluones son
part́ıculas de entrada indistinguibles en diferentes diagramas de punto. Esta contribución es
el caso mas complicado, se tuvo que construir cada diagrama de un lazo y fue corroborado
usando diferentes herramientas de Mathematica 11: la integral a un lazo fue resuelto por
FeynCalc 8.2 [56] en cuatro dimensiones y las funciones de Passarino Veltman (PaVes)
fueron resueltos anaĺıticamente y numéricamente con Package-X 2.1.1 [57]. Adicionalmente,
se generaron los diagramas mediante la herramienta de FeynArts [22] donde para verificar
su exactitud fueron corroboradas por integrales de lazo generados a 4 dimensiones resueltas
por FeynCalc 8.2 y por integrales de lazo en D dimensiones y resuelta por FeynCalc 10. Los
términos generados fueron resueltos numéricamente mediante una reducción con funciones
escalares de PaVes con Package-X. Entonces la contribución µ̂t(g) con s ̸= 0 de FeynCalc
8.2 en 4 dimensiones es:

µ̂t(g) =
αsm

2
t

24π(4m2
t − s)

[
− 34

(5m2
t − 2s)(10m4

t − 18m2
t s+ 5s2)

(m2
t − s)(9m4

t − 16m2
t s+ 4s2)

Bg
0(1) + 72Bg

0(2)

+ 34
(4m2

t − s)(12m4
t − 23m2

t s+ 8s2)

(m2
t − s)(9m4

t − 16m2
t s+ 4s2)

Bg
0(3) − 4Bg

0(4) − 72
(2m2

t − 3s)(4m2
t − s)

9m4
t − 16m2

t s+ 4s2
Bg

0(5)

+ 4
(4m2

t − s)(2m2
t − 3s)

9m4
t − 16m2

t s+ 4s2
Bg

0(6) + 18(2m2
t − s)Cg

0(1) − 4(m2
t − s)C2

0(2) + 2(m2
t − s)Cg

0(3)

− 9(2m2
t − s)Cg

0(4) + 36sCg
0(5) + 2(4m2

t − s)Cg
0(6) + 9

14m6
t − 79m4

t s+ 100m2
t s

2 − 20s3

9m4
t − 16m2

t s+ 4s2
Cg

0(7)

− 2
31m6

t − 61m4
t s+ 23m2

t s
2 − 2s3

9m4
t − 16m2

t s+ 4s2
Cg

0(8) + 9s(2m2
t − s)Dg

0(1)

+ 2(m2
t − s)(4m2

t − s)Dg
0(2)

]
,

(5.8)
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donde las funciones escalares Passarino-Veltman (PaVes) estan escritas de acuerdo a la
notación de Package -X:

Bg
0(1) ≡ B0(m

2
t ; 0,mt),

Bg
0(2) ≡ B0(s; 0, 0),

Bg
0(3) ≡ B0(s; 0,m

2
t ),

Bg
0(4) ≡ B0(s;mt,mt),

Bg
0(5) ≡ B0(−2m2

t + 3s; 0, 0),

Bg
0(6) ≡ B0(−2m2

t + 3s;mt,mt),

Cg
0(1) ≡ C0(0, s,−2m2

t + 3s; 0, 0, 0),

Cg
0(2) ≡ C0(0, s,−2m2

t + 3s;mt,mt,mt),

Cg
0(3) ≡ C0(m

2
t , 0, s; 0,mt,mt),

Cg
0(4) ≡ C0(m

2
t , 0; s,mt, 0, 0),

Cg
0(5) ≡ C0(m

2
t ,m

2
t , s; 0,mt, 0),

Cg
0(6) ≡ C0(m

2
t ,m

2
t , s;mt, 0,mt),

Cg
0(7) ≡ C0(m

2
t , s,−2m2

t + 3s; 0,mt, 0),

Cg
0(8) ≡ C0(m

2
t , s,−2m2

t + 3s;mt, 0,mt),

Dg
0(1) ≡ D0(m

2
t ,m

2
t , 0;−2m2

t + 3s, s, s; 0,mt, 0, 0),

Dg
0(2) ≡ D0(m

2
t ,m

2
t , 0;−2m2

t + 3s, s, s;mt, 0,mt,mt),

Hay enfatizar que la contribución µ̂t(g) es libre de divergencias ultravioletas e infra-
rrojas a pesar de que s ̸= 0. Con la herramienta de Package-X se puede apreciar que la
funciones B0´s cancelan cada una de las divergencias. Algunas funciones de PaVes (Cg

0(1,4,6)

y Dg
0(1,2)) tienen divergencias infrarrojas incluso si s ̸= 0. Estas divergencias infrarrojas son

generadas por los diagramas (3) y (6) de la figura 5.1, pero los polos 1
ϵIR

y 1
ϵ2IR

son cancelados

sumando todas las contribuciones. El resto de los PaVes fueron evaluados numéricamente
con Package-X.
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5.0.2. La contribución γ

La contribución del fotón esta formado por 6 diagramas del conjunto (8)-(10) debido a
la BS, donde resulta:

µ̂t(γ) =
αQ2

t

2π

m2
t

4m2
t − s

[
− (5m2

t − 2s)(10m4
t − 18m2

t s+ 5s2)

(m2
t − s)(9m4

t − 16m2
t s+ 4s2)

Bγ
0(1)

+ 4
(4m2

t − s)(12m4
t − 23m2

t s+ 8s2)

(m2
t − s)(9m4

t − 16m2
t s+ 4s2)

Bγ
0(3) + 2Bγ

0(4)

− 2(2m2
t − 3s)(4m2

t − s)

9m4
t − 16m2

t s+ 4s2
Bγ

0(6) + 2(m2
t − s)Cγ

0(2) + (s−m2
t )C

γ
0(3)

+ (s− 4m2
t )C

γ
0(6) +

31m6
t − 61m4

t s+ 23m2
t s

2 − 2s3

9m4
t − 16m2

t s+ 4s2
Cγ

0(8)

− (m2
t − s)(4m2

t − s)Dγ
0(2)

]
(5.9)

con PaVes estan etiquetados como el caso del gluón. Notar que las funciones Cγ
0(6) y D

γ
0(2)

tienen divergencias infrarrojas, pero los polos 1
ϵIR

se cancela una a la otra, para apreciar esto
podemos desarrollar las partes con divergencias y corroborar que entre ellas se cancelan
como se muestra a continuación:

Cγ
0(6) + (m2

t − s)Dγ
0(2) =

−1

4m2
t − 1

(
∆IR + ln

µ2

m2
t

)
R1

s
ln
2m2

t − s+R1

2m2
t

+ (m2
t − s)

[
1

(m2
t − s)(4m2

t − s)

(
∆IR + ln

µ2

m2
t

+
µ2

m2
t

)
R1

s
ln
2m2

t − s+R1

2m2
t

]
= 0

por lo tanto µ̂t(γ) es finito.

5.0.3. La contribución Z

La contribución virtual del bosón de gauge Z esta formado por 12 diagramas del con-
junto (11)-(13) de la figura 5.1 Y debido a la norma de Feynman´t Hoof ξ = 1 aparecen
pseudo bosones de Goldstone GZ . El tensor completo para la contribución para el bosón
Z se expresa como:
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µ̂t(Z)) =
α

8πc2W s
2
W

m2
t

4m2
t − s

{(gtV )2m2
Z + (gtA)

2(m2
Z − 2m2

t )

m2
Z

[
− (5m2

t − 2s)(10m4
t − 18m2

t s+ 5s2)

(m2
t − s)(9m4

t − 16m2
t s+ 4s2)

BZ
0(1)

+ 2BZ
0(2) +

(4m2
t − s)(12m4

t − 23m2
t s+ 8s2)

(m2
t − s)(9m4

t − 16m2
t s+ 4s2)

BZ
0(3) −

2(2m2
t − 3s)(4m2

t − s)

9m4
t − 16m2

t s+ 4s2
BZ

0(4)

]
+ 2(m2

t − s)CZ
0(1) + [(gtV )

2(s−m2
t ) + (gtA)

2m
2
t (10m

2
t −m2

Z − 4s) +m2
Zs

m2
Z

]CZ
0(2)

+
[
(gtV )

2(−4m2
t + 2m2

Z + s) + (gtA)
2(−8m2

t + 2m2
Z + s)

]
CZ

0(3)[
(gtV )

231m
6
t −m4

t (16m
2
Z + 61s) +m2

t s(28m
2
Z + 23s)− 2s2(3m2

Z + s)

9m4
t − 16m2

t s+ 4s2

+ (gtA)
2
(m2

t

m2
Z

10m6
t + 3m4

t (21m
2
Z − 8s) +m2

t (−16m4
Z − 117m2

Zs+ 18s2)

9m4
t − 16m2

t s+ 4s2

+s(28m4
Z + 35m2

Zs− 4s2)− 2s2(3m2
Z + 2)

9m4
t − 16m2

t s+ 4s2

)]
CZ

0(4) − (m2
t − s)

[
(gtV )

2(4m2
t − 2m2

Z − s)

+ (gtA)
2(8m2

t − 2m2
Z − s)

]
DZ

0(1)

}
(5.10)

con

BZ
0(1) ≡ B0(m

2
t ;mt,mZ),

BZ
0(2) ≡ B0(s;mt,mt),

BZ
0(3) ≡ B0(s;mt,mZ),

BZ
0(4) ≡ B0(−2m2

t + 3s;mt,mt),

CZ
0(1) ≡ C0(0, s,−2m2

t + 3s;mt,mt,mt),

CZ
0(2) ≡ C0(m

2
t , 0, s;mZ ,mt,mt),

CZ
0(3) ≡ C0(m

2
t ,m

2
t , s;mt,mZ ,mt),

CZ
0(4) ≡ C0(m

2
t , s,−2m2

t + 3s;mt,mZ ,mt),

DZ
0(1) ≡ D0(m

2
t ,m

2
t , 0,−2m2

t + 3s, s, s;mt,mZ ,mt,mt)

Todos los términos C0´s y D0´s son finitos y son evaluados en Package-X, el mismo pro-
cedimiento es aplicado para las contribuciones de W y H.

5.0.4. La contribución W

La contribución del bosón de gauge W esta formado por 12 diagramas del conjunto
(14)-(16) de la figura 5.1, se presenta también el pseudo bosón de Goldstone GW como
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en el caso del Z. El resultado completo implica la suma de la part́ıcula virtual W mas la
contribución Gw es:

µ̂t(W )) =
α

16π

m2
t

m2
W

3∑
j=1

|Vtqj |2
m2

t +m2
qj
− 2m2

W

4m2
t − s

[(5m2
t − 2s)(10m4

t − 18m2
t s+ 5s2)

(m2
t − s)(9m4

t − 16m2
t s+ 4s2)

BW
0(1)

− 2BW
0(2) −

(4m2
t − s)(12m4

t − 23m2
t s+ 8s2)

(m2
t − s)(9m4

t − 16m2
t s+ 4s2)

BW
0(3) +

2(2m2
t − 3s)(4m2

t − s)

9m4
t − 16m2

t s+ 4s2
BW

0(4)

− 2(m2
t − s)CW

0(1) +
m4

t +m2
t (9m

2
qj
− 2m2

W − s)− 3m2
qj
s+ 2m2

W s

m2
t +m2

qj
− 2m2

W

CW
0(2)

+
2m4

t −m2
t (4m

2
qj
+ 6m2

W + s) + 2m4
qj
+ 2m2

qj
(s− 6m2

W ) + 2m2
W (2m2

W + s)

m2
t +m2

qj
− 2m2

W

CW
0(3)

+
1

4

{−9m4
t +m2

t [23m
2
qj
+ 2(9m2

w + s)]− 2s(3m2
qj
+ 2m2

W )

m2
t +m2

qj
− 2m2

W

21m6
t +m4

t (−64m2
qj
+ 64m2

W − 30s) + (m2
qj
−m2

W )(112m2
t s− 24s2)

9m4
t − 16m2

t s+ 4s2

}
CW

0(4)

+
(m2

t − s)[m2
t (2m

2
t − 4m2

qj
− 6m2

W − s) +mq2j (2m
2
qj
+s−6m2

W )+2m2
W (2m2

W+s)]

m2
t +m2

qj
− 2m2

W

DW
0(1)

]
(5.11)

con

BW
0(1) ≡ B0(m

2
t ;mqj ,mW ),

BW
0(2) ≡ B0(s;mqj ,mqj),

BW
0(3) ≡ B0(s;mqj ,mW ),

BW
0(4) ≡ B0(−2m2

t + 3s;mqj ,mqj),

CW
0(1) ≡ C0(0, s,−2m2

t + 3s;mqj ,mqj ,mqj),

CW
0(2) ≡ C0(m

2
t , 0, s;mW ,mqj ,mqj),

CW
0(3) ≡ C0(m

2
t ,m

2
t , s;mqj ,mW ,mqj),

CW
0(4) ≡ C0(m

2
t , s,−2m2

t + 3s;mqj ,mW ,mqj),

DW
0(1) ≡ D0(m

2
t ,m

2
t , 0,−2m2

t + 3s, s, s;mqj ,mW ,mqj ,mqj).
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5.0.5. La contribución H

La contribución del bosón de Higgs esta formado por 6 diagramas del conjunto (17)-(19)
debido a BS, conduciendo al término:

µ̂t(H) =
α

16π

m4
t

m2
W (4m2

t − s)

[
− (5m2

t − 2s)(10m4
t − 18m2

t s+ 5s2)

(m2
t − s)(9m4

t − 16m2
t s+ 4s2)

BH
0(1)

− 2BH
0(2) − 4

(4m2
t − s)(12m4

t − 23m2
t s+ 8s2)

(m2
t − s)(9m4

t − 16m2
t s+ 4s2)

BH
0(3)

+
2(2m2

t − 3s)(4m2
t − s)

9m4
t − 16m2

t s+ 4s2
BH

0(4) + 2(m2
t − s)CH

0(1) +−3m2
tC

H
0(2) + 2(4m2

t −m2
H − s)CH

0(3)

+
−67m6

t + 2m4
t (8m

2
H + 67s)−m2

t s(28m
2
H + 55s) + 6s2(m2

H + s)

9m4
t − 16m2

t s+ 4s2
CH

0(4)

+ 2(m2
t − s)(4m2

t −m2
H − s)DH

0(1)

]
, (5.12)

donde los PaVes son análogos al caso Z pero reemplazando mZ → mH .

5.0.6. Valores de entrada

Para los cálculos se utiliza la carga del electrón e =
√
4πα y la constante de acoplamiento

fuerte del grupo de QCD es gs =
√
4παs . Se utilizaron los datos reportados del PDG 2020

y 2021 [48]: la constante de acoplamiento fuerte es entonces αs(m
2
Z) = 0,1179 y el ángulo

débil sW ≡ sinθW (m2
Z) =

√
0,23121, los bosones se consideraron con las masas mW =

80,379GeV , mZ = 91,1876GeV y mH = 125,25GeV .La matriz de Cabibbo Kobayashi
Maskawa es:

VCKM =

|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 =

0,9737 0,2245 0,003382
0,221 0,987 0,041
0,008 0,0388 1,013

 (5.13)

Las cargas eléctricas de los quarks esta definido como Qt = 2/3 y los acoplamientos débiles
gtV = 1/2− 4/3s2W y gtA = 1/2. La constante de estructura fina α(m2

Z) = 1/129 obtenidos
de [51]. Se consideró también que la constante αs y la masas de los quarks son dependientes
de la enerǵıa. Para la contribución µ̂t(W ) participan los quarks d, s y b donde los valores
fueron obtenidos del PDG los cuales dependen de la escala de enerǵıa de donde se obtuvo
que md(2GeV ) = 0,00467GeV , ms(2GeV ) = 0,093GeV , mb(mb) = 4,18GeV y la masa del
quark top mt = 172,5GeV . A la escala de altas enerǵıas, por ejemplo, a la escala de enerǵıa
de la masa del bosón de gauge Z las masas de los quarks son md(mZ) = 0,00266GeV ,
ms(mZ) = 0,0530GeV y mb(mZ) = 2,863GeV . En el caso del quark top se consideró la
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evolucion de la masa a partir de mt(E > 2mt), por ejemplo mt(1000GeV ) = 152,9GeV
cuando αs(1000GeV ) = 0,0884.
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Resultados

Para poder analizar la fenomenoloǵıa del CMDM del quark top µ̂4b
t de un vértice no

abeliano a cuatro cuerpos ggq̄q se va a comparar con el ya conocido comportamiento para
el vértice abeliano a 3 cuerpos gq̄q. La variable s invariante de Lorentz será evaluada para
s = −E2 (spacelike) y s = E (timelike) con el rango de enerǵıa E = [10, 1000] GeV con
E = mZ estando en particular interés en el caso E = −m2

Z . Mas aún, en este trabajo
se estudio la evolución del CMDM anómalo del quark top, donde se considerará a αs

dependiente de la enerǵıa cuando E > 2mt [13], para desarrolar este procedimiento se
utilizará RunDec.

En la literatura para el estudio de la fenomenoloǵıa de f́ısica a altas enerǵıas en el
Modelo Estándar es por convención usar α(m2

Z) [8], calculado para el régimen espacialoide
y lo mismo para sW (m2

Z) a la escala de la masa del bosón de gauge Z en QCD perturvativo.
En la siguiente figura esta graficado µ̂3b

t a tres cuerpos y µ̂4b
t a cuatro cuerpos en s = −E2,

con E = [10, 1000] GeV, donde la ĺınea roja corresponde al valor central µ̂Exp
t = −0,024 y

la ĺınea azul indica E = mZ . Es importante recalcar que las partes imaginarias provienen
únicamente de la µ̂4b

t (W ), donde la corriente cambia de sabor, justo como sucede en el caso
para 3 cuerpos µ̂3b

t (W ).

49
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Figura 6.1: El CMDM anomalo del quark Top en el régimen espacialoide para el vértice 3
y 4 cuerpos. La ĺınea azul vertical indica E = mZ y de ĺınea roja es el valor experimental
µ̂Exp
t = −0,024+0,013

−0,009(stat)
+0,016
−0,011(syst).

La parte real de las curvas para los dipolos µ̂3b
t y µ̂4b

t pasas extremadamente cerca una
de la otra, esencialmente las mismas en el rango de enerǵıa E = [10, 290] GeV, después de
290 GeV ambas contribuciones se separan muy poco y de manera suave. Por el contrario
las partes imaginarias poseen signo distinto.
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En la tabla (6.2) la evaluación µ̂t(−m2
Z) esta listado por contribuciones por cada part́ıcu-

la virtual. Es importante destacar que las partes imaginarias provienen de la parte µ̂4b
t (W )

justo como ocurre en el vértice de 3 cuerpos µ̂3b
t (W ). También hay que resaltar que la

Re µ̂4b
t (−m2

Z) = −0,025 es muy cercano al valor experimental µ̂Exp
t = −0,024 como

µ̂3b
t (−m2

Z) = −0,0224. De otra forma contrastando los valores absolutos |µ̂3b
t | = 0,0224 y

|µ̂4b
t | = 0,0253, ambos resultados son compatibles con el valor experimental |µ̂Exp

t | = 0,0224.
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Figura 6.2: CMDM anómalo del quark top, evaluación spacelike s = −m2
Z . (a) las contribuciones

de forma individual. (b) contribuciones por sectores. Los valores absolutos |µ̂3b
t | = 0,0224 y

|µ̂4b
t | = 0,0253. El valor experimental es µ̂Exp

t = −0,024
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Figura 6.3: El CMDM anomalo del quark Top en el régimen temporaloide para el vértice 3
y 4 cuerpos. La ĺınea azul vertical indica E = mZ y de ĺınea roja es el valor experimental
µ̂Exp
t = −0,024+0,013

−0,009(stat)
+0,016
−0,011(syst).

En lo que respecta para la evaluación en el régimen s = E2, µ̂3b
t (s) resulta un com-

portamiento irregular. Este tipo de comportamiento irregular es debido a la constante fina
de estructura.[16]. Contrastando los valores absolutos |µ̂3b

t | = 0,0298 y |µ̂4b
t | = 0,0335 in-

dica que este régimen es desfavorable para la predicción del valor experimental central
|µ̂Exp

t | = 0,0224.
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Figura 6.4: CMDM anómalo del quark top, evaluación timelike s = m2
Z
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Fenomenológicamente, se evaluó los cromodipolos para el quark top, puesto que es el
único caso que experimentalmente cuenta con una medición exacta reportada por primera
vez, y es menester establecer completas las evaluaciones teóricas debidas a tres y cuatro
cuerpos.

De manera secundaria, pero no por ello menos importante, se llevará a cabo las co-
rrespondientes predicciones fenomenológicas para el resto de quarks pequeños, a saber, el
quark up, down, strange, charm y bottom.

Se va analizar la fenomenoloǵıa del CMDM para los quarks bottom, strange, down, up y
charm de manera análoga a la del quark top, se comparará el comportamiento ya conocido
para el vértie abeliano a 3 cuerpos gq̄q con el vértice a 4 cuerpos no abeliano ggq̄q.

Quark up
La variable s invariante de Lorentz será evaluada para s = ±E2 , con E = mZ con el rango
de enerǵıa E = [0, 100] GeV

Figura 6.5: CMDM anómalo del quark up, evaluación spacelike s = −m2
Z
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Quark charm

Figura 6.6: CMDM anómalo del quark charm, evaluación spacelike s = −m2
Z

Quark down

Figura 6.7: CMDM anómalo del quark down, evaluación spacelike s = −m2
Z
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Quark strange

Figura 6.8: CMDM anómalo del quark strange, evaluación spacelike s = −m2
Z

Quark bottom

Figura 6.9: CMDM anómalo del quark bottom, evaluación spacelike s = −m2
Z
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Caṕıtulo 7

Conclusiones

Se presentó un nuevo enfoque para abordar el calculo fuera de masa del CMDM del
quark top, up, charm, down, bottom y strange en el contexto de ME, donde las contribu-
ciones de esta observable fueron extráıdas a través de correcciones radiativas a un lazo a
un vértice de 4 cuerpos del acoplamientos efectivos ggtt̄ como proceso independiente, que
contemplan lazos tipo triángulo y caja.
Basándonos en la literatura y en nuestros resultados, parece que nuestra predicción pa-
ra el régimen temporaloide (timelike) fuera de capa de masa del CMDM del quark top
no es consistente con los resultados actuales experimentales, hasta ahora. La mas im-
portante predicción de nuestro trabajo es la evaluación del CMDM del quark top en el
régimen espacialoide (s = −E2) donde E = [10, 1000]GeV es buena predicción. De ma-
nera particular, a la escala de enerǵıa de la masa del bosón de gauge Z la predicción es
µ̂4b
t (−mZ) = −0,0224−0,00384i, donde la parte real coincide muy cercanamente al reciente

resultado experimental reportado µ̂Exp = 0,024+0,013
−0,009(stat)

+0,016
−0,011(syst), mientras que la can-

tidad imaginaria obtenida en nuestro estudio es un efecto inducido por el boson de gauge
W. Con base a la literatura y nuestros resultados, todo indica que el régimen espacialoide
del CMDM del quark top es consistente con los actuales resultados experimentales.
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