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Resumen

Consideramos gravedad en el formalismo de primer orden en tres y cuatro dimensiones. En par-
ticular, consideramos formulaciones donde las variables fundamentales son una triada y tétrada e,
y conexiones SO(2,1) and SO(3,1), ω , para tres y cuatro dimensiones respectivamente. Conside-
ramos espacios tiempo que incluyen una frontera en infinito, que satisface condiciones de frontera
asintóticamente planas y/o una frontera interna que satisface condiciones de frontera de horizontes
aislados. Para nuestro análisis empleamos el formalismo hamiltoniano covariante donde el espacio
fase Γ está dado por soluciones a las escuaciones de movimiento, y para el caso en tres dimensiones
también utilizamos dos descomposiciones 2+1. Proponemos una acción de Palatini bien definida
y manifiestamente invariante de Lorentz bajo condiciones asintóticamente planas. Usando el for-
malismo covariante y canónico encontramos sus correspondientes expresiones para la energía.
También estudiamos el principio de acción más general 4-dimensional compatible con la invar-
ianza bajo difeomorfismos. Esto implica, en particular, considerar adrmás del término estándar
de Einstein-Hilbert-Palatini, otros términos que o no modifican las ecuaciones de movimiento o
son topológicos. Tener un principio de acción bien definido implica la adición de términos de
frontera, cuya forma explícita puede depender de las condiciones de frontera en cuestión. Para
cada uno de los posibles términos de la acción mostramos que la acción está bien definida, su fini-
tud, su contribución a la estructura simpléctica, y las cargas hamilnonianas y de Noether. Más aún,
mostramos que los términos de frontera y topológicos no contribuyen a la estructura simpléctica, ni
tampoco a la carga hamiltoniana conservada. Las cargas conservadas de Noether, por el contrario,
sí dependen de la adición de tales términos.

Palabras clave: Principio de acción - Formulación hamiltoniana - Términos de frontera -
Configuraciones asintóticamente planas - Cantidades conservadas
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Abstract

We consider first order gravity in three and four dimensions. In particular, we consider formu-
lations where the fundamental variables are a triad and tetrad, e, and a SO(2,1) and SO(3,1)
connections, ω , for the three and four dimensional case respectively. We consider spacetimes that
include a boundary at infinity, satisfying asymptotically flat boundary conditions and/or an inter-
nal boundary satisfying isolated horizons boundary conditions. For our analysis we employ the
covariant Hamiltonian formalism where the phase space Γ is given by solutions to the equation of
motion, and for the three dimensional case we also employ two 2+1−decompositions. We propose
a three dimensional manifestly Lorentz invariant well posed Palatini action under asymptotically
flat boundary conditions. By using a covariant analysis and two different 2+ 1−decompositions
we found the corresponding expressions for the energy. Also we study the most general four
dimensional action principle compatible with diffeomorphism invariance. This implies, in particu-
lar, considering besides the standard Einstein-Hilbert-Palatini term, other terms that either do not
change the equations of motion, or are topological in nature. Having a well defined action principle
also implies adding additional boundary terms, whose detailed form may depend on the particular
boundary conditions at hand. For each of the possible terms contributing to the action we study
the well posedness of the action, its finiteness, the contribution to the symplectic structure, and the
Hamiltonian and Noether charges. Furthermore, we show that the boundary and topological terms
do not contribute to the symplectic structure, nor the Hamiltonian conserved charges. The Noether
conserved charges, on the other hand, do depend on such additional terms.

Keywords: Action principle - Hamiltonian formulation - Boundary terms - Asymptotically
flat configurations - Conserved charges
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Chapter 1

Introduction

“One cannot escape the feeling that these mathematical formulae have

an independent existence and an intelligence of their own, that they are

wiser than we are, wiser even than their discoverers, that we get more out

of them than was originally put into them.”

—Heinrich Hertz writing about Maxwell’s equations.

Our quest to understand nature may have begun hundreds of thousands years ago with the first
humans, when they imagine divine or magic explanations for what happen around them, with time
and observation they could predict the seasons and then they were able to implement agriculture
and thus the beginnings of civilization as we know it today. Although it was until some few hundred
years ago that we begin to use mathematics to describe nature. It was until Sir Isaac Newton
(1643-1727) in his Principia1, where he formulated the laws of motion and universal gravitation,
that for the first time in history, someone was able to unify our view that the motion of objects
on Earth (described so far by Galileo’s mechanics) and of celestial bodies (Kepler laws) could be
described by the same principles. Newton was only the beginning of a long path in trying to unify
our understanding of the laws of nature. In 1865 James Clerk Maxwell (1831-1879) published
his equations, that show that electricity, magnetism and optics were manifestations of the same
phenomena, the electromagnetic field. Unifying, in this way, branches of physics that seemed
unrelated until that moment. One of the predictions of his equations was that the electromagnetic
field could be propagated in wave form with constant velocity, in fact equal to the light velocity
measured up to that time. This would be explained later by Albert Einstein (1879-1955) that in
1905 formulated his special theory of relativity, that could unify Galileo’s relativity with classical

1PhilosophiæNaturalis Principia Mathematica, Latin for "Mathematical Principles of Natural Philosophy", often
referred to as simply the Principia. we can consult Newton’s annotated and personal first edition at http://cudl.
lib.cam.ac.uk/view/PR-ADV-B-00039-00001/1
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electrodynamics. Almost a decade later, in 1916, Einstein published his general theory of relativity,
which could unify his special theory of relativity with Newton’s universal law of gravitation. With
all this success in unifying our understanding of the laws of nature, Einstein embarked himself
in a monumental quest: Trying to unify his general theory of relativity with the electrodynamics.
His idea was trying to express electrodynamics in the same geometric footing of general relativity,
unfortunately he died in 1955 without seen his dream come true. Some decades later, Eintein’s
dream would be partially realized, when in 1986 Abhay Ashtekar showed that general relativity
could be formulated as a SU(2) connection theory [4].

In this quest of trying to unify our understanding of nature, the natural next big challenge
is to try to put together the two pillars of modern physics, say quantum mechanics and general
relativity. Both of them shocked and reshape our vision of the world we had at the beginning
of the past century, but they describe nature at very different scales and are founded on seemingly
contradictory postulates. We have not been able to fully bring them together to describe phenomena
that include both, as in the origins of the universe or black holes for instance.

Although we do not have a complete quantum description of the gravitational field we have
some very promising candidates as loop quantum gravity (LQG). Ashtekar’s ideas of rewriting
canonical general relativity in terms of SU(2) connections, led to the loop representation of quan-
tum general relativity and then into loop quantum gravity [61]. This missing complete quantum
description is beyond the scope of this thesis, though it serves as motivation for the many issues
studied here. This thesis is focused in the classical aspects of general relativity in the first order
formulation in spacetimes with boundaries.

One of the main lessons from the general theory of relativity is that one can formulate theories
that, in their Lagrangian description, are diffeomorphism invariant. This means that one can per-
form generic diffeomorphism on the spacetime manifold and the theory remains invariant. In most
instances diffeo invariance is achieved by formulating the theory as an action principle where the
Lagrangian density is defined without the use of background structures; it is only the dynamical
fields that appear in the action. In this manner one incorporates the ‘stage’, the gravitational field,
as one of the dynamical fields that one can describe. The fact that one can write a term that cap-
tures the dynamics of the gravitational field is interesting by itself. It is then worth exploring all
the freedom available in the definition of an action principle for general relativity. This is one of
the main tasks that we shall undertake in this thesis. Note that we shall restrict ourselves to general
relativity and shall not consider generalizations such as scalar-tensor theories nor massive gravity
in our analysis.

The first question that we shall address is that of having a well posed variational principle. This
particularly ‘tame’ requirement seems, however, to be sometimes overlooked in the literature. It
is natural to ask why we need to have a well posed action principle if, at the end of the day, we

2



already ‘know’ what the field equations are. While this is certainly true, one should not forget that
the classical theory is only a (very useful indeed!) approximation to a deeper underlying theory
that must be quantum in nature. If, for instance, we think of a quantum theory defined by some
path integral, in order for this to be well defined, we need to be able to write a meaningful action
for the whole space of histories, and not only for the space of classical solutions. This observation
becomes particularly vexing when the physical situation under consideration involves a spacetime
region with boundaries. One must be particularly careful to extend the formalism in order to
incorporate such boundary terms.

In order to explore some properties of the theories defined by an action principle, the covari-
ant Hamiltonian formalism seems to be particularly appropriate (See, e.g. [6], [29] and [42]). In
this formalism, one can introduce the standard Hamiltonian structures such as a phase space, sym-
plectic structure, canonical transformations etc, without the need of a 3+ 1 decomposition of the
theory. All the relevant objects are covariant. The most attractive feature of this formalism is that
one can find all these structures in a unique fashion given the action principle. Furthermore one
can, in a ‘canonical’ way, find conserved quantities. On the one hand one can derive Hamiltonian
generators of canonical transformations and, on the other hand, Noetherian conserved quantities
associated to symmetries. One important and interesting issue is to understand the precise relation
between these two sets of quantities.

The study of field theories with boundaries in the Hamiltonian approach has received certain
attention in the literature. Most of these studies have focused on the standard formalism where
a decomposition is involved and constraints are present. One recent example is [14], that con-
siders linear gauge systems in the presence of boundaries, both in the Hamiltonian and covariant
Hamiltonian frameworks, with an emphasis on the geometric approach and the functional analytic
aspects of the problem (see the references there for previous studies). However, a detail study of a
diffeomorphism invariant theory from this perspective is, in our opinion, still lacking.

Another equally important issue in the definition of a physical theory is that of the choice
of fundamental variables, specially when gauge symmetries are present. Again, even when the
space of solutions might coincide for two formulations, the corresponding actions will in general
be different and that will certainly have an effect in the path integral formulation of the quantum
theory. In the case of general relativity, the better known formulation is of course in terms of
a metric tensor gab, satisfying second order (Einstein) equations. But there are other choices of
variables that yield alternative descriptions. Here we shall consider one of those possibilities. In
particular, the choice we shall make is motivated by writing the theory as a local gauge theory
under the Lorentz group.

It is well known that one can either obtain Einstein equations of motion by means of the Ein-
stein Hilbert action or in terms of the so called Palatini action, a first order action in terms of

3



tetrads eI
a and a connection ω I

a valued on a Lie Algebra of SO(3,1) in the four dimensional case or
SO(2,1) in the three dimensional one (see. e.g. [60] and [56])1.

Once we choose our fundamental variables, in this case we choose to work in the so called
first order general relativity, where the fundamental variables are the tetrad of triad and connection
valued in the SO(3,1) or SO(2,1) respectively if we are in four or three dimensions. We are
ready to explain, which are the questions addressed in this thesis and how we cope with them.
In order to understand first order gravity with boundaries in the Hamiltonian approach, we shall
restrict ourselves to the three and four dimensional cases, as well as asymptotically flat and isolated
horizons boundary conditions.

In four dimensions is known that we can have a generalization of this action by adding a term,
the Holst term, that still gives us the same equations of motion and also allows us to express the
theory in terms of real SU(2) connections in its canonical description (see. e.g. [35] and [16]). This
action, known as the Holst action, is the starting point of loop quantum gravity and some spin foam
models. In the same first order scheme one can look for the most general diffeomorphism invariant
first order action that classically describes general relativity, which can be written as the Palatini
action (including the Holst term) plus topological contributions, namely, the Pontryagin, Euler
and Nieh-Yan terms (see for instance [30] for early references). Furthermore, if the spacetime
region we are considering possesses boundaries one might have to add extra terms (apart from the
topological terms that can also be seen as boundary terms) to the action principle2.

Thus, the most general first order action for gravity has the form,

S[e,ω] = SPalatini +SHolstTerm +SPontryagin +SEuler +SNieh−Yan +SBoundary. (1.1)

It is noteworthy to emphasize that in the standard textbook treatment of Hamiltonian systems
one usually considers compact spaces without boundary, so there is no need to worry about the
boundary terms that come from the integration by parts in the variational principle. But if one is
interested in spacetimes with boundaries we can no longer neglect these boundary terms and it is
mandatory to analyze them carefully. In order to properly study this action in the whole space-
time with boundaries, we need the action principle to be well posed, i.e. we want the action to
be differentiable and finite under the appropriate boundary conditions, and under the most general
variations compatible with the boundary conditions.

1One should recall that the original Palatini action was written in terms of the metric gab and an affine connection
Γa

bc [1; 55]. The action we are considering here, in the so called “vielbein" formalism, was developed in [40; 62; 64]
and in [31] in the canonical formulation.

2We should clarify our use of the name ‘topological term’. For us a term is topological if it can be written as a
total derivative. This in turn implies that it does not contribute to the equations of motion. There are other possible
terms that do not contribute to the equations of motion but that can not be written as a total derivative (such as the so
called Holst term). For us, this term is not topological.
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It has been shown that under appropriate boundary conditions1, the Palatini action plus a
boundary term provides a well posed action principle, that is, it is differentiable and finite. Fur-
thermore, in [25] the analysis for asymptotically flat boundary conditions was extended to include
the Holst term. Here we will refer to this well posed Holst action as the generalized Holst action
(GHA).

This thesis is structured as follows:
In chapter 2 we give a brief review of the key basic material needed to dive in the rest of the

thesis. Although it is a review, in sections 2.4 and 2.5 we discuss some aspects there are no so
widely known, and that they have not been presented altogether in a coherent and systematic way
in the literature. The chapter is structured as follows: In section 2.1 we introduce the geometrical
concepts to make a n+1 decomposition in the cases when we have and have not defined a metric.
We discuss the definition of hypersurface, globally hyperbolic spacetimes, foliations, projectors,
time evolution and adapted coordinates. This concepts are independent of the theory to which
are applied. In section 2.2 we review, in the four dimensional case, the fundamental variables
of the first order formulations, that is, we introduced and give the geometrical interpretation of
tetrads and connections. In Section 2.4 we review what it means for an action principle to be well
posed, which is when it is finite and differentiable. In Section 2.5 we use some results discussed
in the previous section, to review the covariant Hamiltonian formalism taking enough care in the
cases when the spacetime has boundaries. We begin by defining the covariant phase space and
its relation with the canonical phase space. Then we introduce the symplectic structure with its
ambiguities and its dependence on boundary terms in the action. Finally we define the symplectic
current structure, and the Hamiltonian and Noether charges.

In chapter 3 we begin with a simpler yet interesting enough model. That is, we shall consider
three dimensional first order gravity only with an outer boundary corresponding to asymptotically
flat configurations that are known for a while in the metric variables [11; 47].

For this example, in section 3.1 we derive the asymptotically flat conditions for the first order
variables. Then in section 3.2 we prove that the 3-dimensional Palatini action with boundary term2,
which give us the same equations of motion that the 3-dimensional Einstein-Hilbert action, has a
well posed action principle, is finite and differentiable under the asymptotically flat boundary con-
ditions. Moreover if we introduce an additional boundary term to the action to make it explicitly
Lorentz invariant we find that the resulting action is equivalent to the Einstein-Hilbert action with
Gibbons-Hawking term. In section 3.3 we prove that the energy is bounded from below and above,
through the covariant hamiltonian formalism (CHF) of first order gravity with this this fall-off
conditions. Agreeing with previous results in the metric variables via Regge-Teitelboim methods

1See e.g. [7], [8], [9] and references therein for the asymptotically flat, isolated horizons and asymptotically AdS
spacetimes respectively

2In analogy to the four dimensional case [7] and as previously introduced in the literature.
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[11]. Although CHF provides an elegant and short derivation for the energy (and other relevant
symmetries as discussed in [27]), this quantity is determined up to a constant, that shifts the region
in which the energy is bounded. We also prove in section 3.4 that the energy is bounded bounded
from below and above with the Canonical formalism (following two different 2+ 1 decomposi-
tions), but in contrast with the CHF, here there is no ambiguity in the election of the constant, the
energy is given directly from the hamiltonian. Our results agree with those of [47].And finally
in section 3.5 propose a Chern-Simons action with boundary term valued on the Lie algebra of
ISO(2,1) that lead us to the well posed manifestly Lorentz invariant Palatini action previously in-
troduced. And at each stage we prove that we obtain all the same relevant quantities, in particular
the energy. This action may served to further study some topological aspects of the theory. But we
shall leave it to forthcoming works.

In chapter 4 we have three main goals. The first one is to explore the well-posedness of the
action principle with generic boundary terms. For that we shall study two sets of boundary con-
ditions that are physically interesting; as outer boundary we shall consider configurations that are
asymptotically flat, and in an inner boundary, those histories that satisfy isolated horizon boundary
conditions. The second objective is to explore the most basic structures in the covariant phase
space formulation. More precisely, we shall study the existence of the symplectic structure as a
finite quantity and its dependence on the various topological and boundary terms. Finally, the last
goal is to explore the different conserved quantities that can be defined. Concretely, we shall con-
sider Hamiltonian conserved charges both at infinity and at the horizon. Finally we shall construct
the associated Noetherian conserved current and charges. In both cases we shall study in detail how
these quantities depend on the existence of the boundary terms that make the action well defined.
As we shall show, while the Hamiltonian charges are insensitive to those quantities, the Noether
charges do depend on the form of the boundary terms added. While some of these results are not
new and have appeared somewhere else, we have several new results and clarifications of several
issues. Equally important is the fact that in no publication have all the results available been put in
a coherent and systematic fashion.

The structure of the chapter is as follows: In Section 4.1 we use the covariant Hamiltonian
formalism to study the action of Eq. (1.1). We find the generic boundary terms that appear when
we vary the different components of the action. In Section 4.2 we consider particular choices of
boundary conditions in the action principle. In particular we study spacetimes with boundaries:
Asymptotically flatness at the outer boundaries, and an isolated horizon as an internal one. In
Section 4.3 we study symmetries and their generators for both sets of boundary conditions. In
particular we first compute the Hamiltonian conserved charges, and in the second part, the cor-
responding Noetherian quantities are found. We comment on the difference between them. We
summarize and provide some discussion in the final Section 4.4.
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I want to apologize the experienced reader for some ‘very basic’ comments here and there. I
write them for ‘my younger self’.
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Chapter 2

Preliminaries

“It is important to do everything with enthusiasm, it embellishes life enor-

mously.”

—Lev Landau.

In this chapter we briefly review some of the ‘basic concepts’ used along this thesis. It is based
on several readings and notes1 taken during my PhD years. I hope to give proper credit to all the
sources.

2.1 n+1 decomposition

We refer to a 3+ 1 decomposition by a way of slicing an n dimensional manifold M into 3 di-
mensional surfaces (hypersurfaces), but we do not necessarily assume the existence of a metric. In
contrast to the standard 3+1 formalism where we ask these hypersurfaces to be spacelike, so that
the metric induced on them by the Lorentzian spacetime metric [signature(−,+, ...,+)] is Rieman-
nian [signature(+, ...+)]. So a n+1 decomposition is a generalization of the n+1 formalism that
includes the cases where we have and do not have a metric defined on the manifold, as we shall
see in the 2+1 and 3+1 examples studied on this thesis.

All the machinery reviewed in this section was originaly developed in the context of the 3+1
formulation, which in the late 1950’s and 1960’s received impulse by providing the foundation of
Hamiltonian formulations of general relativity by Paul A.M. Dirac [32; 33], and Richard Arnowitt,
Stanley Deser and Charles W. Misner (ADM) [1]. It was also during this time that John A. Wheeler
put forward the concept of geometrodynamics and coined the names of lapse and shift [66].

We want to emphasize that the concepts presented in this section are independent of the dy-

1Specially the ones given by Alejandro Corichi and Juan Daniel Reyes.
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namics, that is, they are valid independently of the theory to which they are aplied, and whether
this theory depends on a metric or not.

Some of the material presented in this section is based on [12; 19; 34; 57].

2.1.1 Hypersurfaces

2.1.1.1 Definition

A hypersurface M of M is the image of a n−1 dimensional manifold M̂ by an embeding1 ι : M̂→
M (see Fig.): M = ι(M̂).

Locally we can define a hypersurface as the set of points for which a global function t̂ is
constant, that is,

∀p ∈M, p ∈M⇔ t̂(p) = t, with t = const. (2.1)

We can introduce locally a coordinate system of M, x̃a = (t,xā) with a = (0,1, ...,n) and ā =

(0,1, ...,n−1), such that t spans R and xā are Cartesian coordinates spanning Rn−1. M is defined
by the condition t̂ = t. So the embeding takes the form,

ι : M̂ −→ M

(xā) 7−→ (t0,xā).
(2.2)

Figure 2.1: Embedding ι of the n−1 dimensional manifold M̂ into the n dimensional manifold M,
defining the hypersurface M = ι(M̂).

Note that the embeding ι maps curves in M̂ to curves in M. Also it maps vectors on TpM̂

to vectors on TpM by the push-forward mapping, ι∗. Conversely the embedding ι induces the
pull-back mapping, ι∗, that maps linear forms on TpM̂ to linear forms on TpM in the following
way,

(2.3)

From now we identify M̂ and M since they are related by M = ι(M̂). So we shall refer to a
hypersurface on M by M.

1An embeding ι : M̂→M is a isomorphism, a one-to-one mapping such that both ι and ι−1 are continuous, which
guarantees that M does not ‘intersect itself’.
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A very important application of the pull-back operation is that by knowing the bilinear form g

(the spacetime metric), we can define another bilinear form, q, the induced metric on M by,

q := ι
∗g. (2.4)

2.1.1.2 Normal vector

Given a global function t on M, such that the hypersurface M is defined as a level surface of t, the
gradient 1-form dt is normal to M, in the sense that for every vector v tangent to M, < dt,v >= 0.

The metric dual to dt, i.e. the vector ~∇t (whose components are ∇at = gab∇bt = gab(dt)b) is a
vector normal to M and satisfies that,

• ~∇t is timelike iff M is spacelike.

• ~∇t is spacelike iff M is timelike.

• ~∇t is null iff M is null.

The vector ~∇t defines the unique direction normal to M (see Fig. (2.1)). When M is not null
we normalize ~∇t to make it a unit vector,

n := (±~∇t ·~∇t)−1/2~∇t, (2.5)

such that,
n ·n =−1 if M is spacelike,

n ·n = 1 if M is timelike.
(2.6)

2.1.2 Globally hyperbolic spacetimes and foliations

In the previous subsections we have studied some aspects of the geometry of a hypersurface M

embedded in the manifold M. We have not assumed the existence of a metric neither a particular
topology of M. Now we shall restrict ourselves to a wide class of spacetimes so-called globally
hyperbolic spacetimes, where we can consider a continuous set of hypersurfaces (Mt)t∈R that
covers the manifold M. This type of spacetimes cover most of the astrophysical and cosmological
cases of interest.

2.1.2.1 Cauchy slice and globally hyperbolic spacetime

A Cauchy surface is a spacelike hyper surface M in M such that each causal (i.e. timelike or null)
curve without end point intersects M once and only once []. In other words M is a Cauchy hyper
surface iff its domain of dependence is the whole space-time M.
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A space-time (M,gab) that admits a Cauchy surface M is said to be globally hyperbolic.
The topology of a globally hyperbolic space-time M is necessarily M×R, where M is the

Cauchy surface entering in the definition of global hyperbolicity.

2.1.2.2 Foliations

Assume a globally hyperbolic spacetime M, by the definition given in the previous section, it can
be splitted of foliated by three dimensional spacelike hypersurfaces Mt ≈ M parametrized by a
global function t̂ : M→ R, that is they are level surfaces1 of t̂,

Mt = {p ∈M|t̂(p) = t, t = const}. (2.7)

We consider t̂ regular, so the hypersurfaces Mt are non-intersecting:

Mt ∩Mt ′ = /0 f or t 6= t ′. (2.8)

We shall call each hyper surface Mt a leaf or a slice of the foliation. We assume that all Mt’s
are spacelike and that the foliation covers M,

M=
⋃
t∈R

Mt . (2.9)

Figure 2.2: Foliation of spacetime M, by a family of hypersurfaces.

For general coordinates x̃a in M, a = 0,1,2,3, each Mt may be characterized by t̂(x̃a) = t,
but also the hypersurface M with coordinates xā, ā = 1,2,3, may be thought as embeded in M,
x̃a = x̃a(xā).

1In what follows we shall not make any distinction between t and t̂, we shall skip the ‘hat’ in the global functions.
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As an example1 consider spheres of radious r in 3 dimensional Euclidean space R3 embeded as

φ(x̃a) = (x̃1)2 +(x̃2)2 +(x̃3)2 = r2 = const (2.10)

then x̃a = x̃a(xā), with xā = (θ ,ϕ), is given by,

x̃1 = r cosθ sinϕ

x̃2 = r cosθ cosϕ

x̃3 = r sinϕ.

Assuming there is a metric gab defined on M, Mt has a normal vector, na (as defined in 2.1.1.2),
(future pointing) given by2:

gab(dt)b = gab
∂bt. (2.11)

Here we are assuming a regular foliation, global function t̂ is such that dt 6= 0.
In the case the normal is timelike, (for a spacelike surface) we normalize such that nana =

gabnanb =−1.
Mt inherit an “induced euclidean metric” qab (the pull-back of gab, q := ι∗g), which also can

be expressed in coordinates as,

qāb̄ = gab
∂ x̃a

∂xā
∂ x̃b

∂xb̄
. (2.12)

This coincides on each Mt with the induced metric:

qab := gab +nanb, (2.13)

characterized by, qabnb = 0, and when Sb is tangent to Mt (Sbnb = 0) then qabSb = gabSb.
Indeed the tangent space TpM can be decomposed into subspaces tangent and normal to Mt

TpM= TpMt⊕Span{na}. (2.14)

Vectors ea
ā := ∂ x̃a

∂xā give a basis for TpM (they are orthogonal to na, that is, ea
āna = 0).

Although the induced metric qab on Mt plays a fundamental role in canonical gravity. We
define it through the projection of a 4-tensor to Mt , a,b = 0,1,2,3 still are spacetime indices. But
we shall say a bit more about the projection in next subsection.

1Since for pedagogical reasons we are not foliating spacetime, just the Euclidean space into surfaces, we change
t→ φ .

2Obtained by ‘rising the index of the one-form gradient (dt)a.
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2.1.2.3 The projector

At this point we will assume that M is embedded in M. TpM can be decomposed at each point p

in M into subspaces tangent and normal to M. Here we will refer to normal a vector ma, a vector
that is not tangent to M, only in the case when there is a metric defined on M we can chose ma to
be arbitrary1 or to coincide with na the normal vector to M as defined in subsection (2.1.1.2).

We may decompose any vector va into its ‘spatial’ (tangent to M) and normal part.

va = vnormalma + vāea
ā (2.15)

where mava =:−vnormal is the projection of va along ma, which implies

va =−(vama)ma + vāeā (2.16)

Figure 2.3: TpM= TpMt⊕Span{na} and the action of the projector Pa
b .

With this at hand we can define the Projector, P : TpM→ TpM, as the linear map defined by

P : TpM −→ TpM

va 7−→ Pa
b vb = vāeā

= va + vbmbma

= (δ a
b +mamb)vb

(2.17)

1For the 3+ 1 formalims we chose it as arbitrary (independent from na) and it will be associated with temporal
evolution.
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Therefore the projector can be expressed as,

Pa
b = δ

a
b +mamb (2.18)

Note that in the case we have defined a metric on M, gab, this is just qa
b = gacqcb = gac(gcb+ncnb),

where qcb is the induced metric on M, and na the unit normal to M. The vector ṽa := qa
bvb and

convector w̃b := qa
bwa are always tangent to M, i.e. w̃bvb = waqa

bvb = waṽa ‘selects’ only the
tangent part of va.

In the case we have no metric, we ask the spacetime M to be topologically M×R and that there
exists a function t (with nowhere vanishing gradient (dt)a) such that each t = const surface Mt is
diffeomorphic to M. Also there exists a flow vector field ta satisfying ta(dt)a = 1, which allow
us to define “evolution”, although t does not necessarily have the interpretation of time, we can
defined the projector as,

ta
b := Pa

b = δ
a
b + ta(dt)b. (2.19)

Note that ma = ta, we ask ta not to be tangent to M, and also we are using the definition of the
gradient 1-form dt that is normal to M in the sense that < dt,v >= 0. This projector will be used
explicitly in the next chapter (section 3.4.1).

In general for a tensor T a1...an
b1...bn

its tangent component to M can be found by

T̃ a1...an
b1...bn

= Pa1
c1
· · ·Pan

cn
Pd1

b1
· · ·Pdn

bn
T a1...an

b1...bn
. (2.20)

2.1.2.4 Time evolution and adapted coordinates

To define time derivatives we need to define a direction for time evolution. We shall introduce a
congruence of curves transversal to the foliation or equivalently a ‘time evolution’ vector field ta

(not necessarily orthogonal to Mt nor time-like, we just ask ta not to be tangent to Mt). Such that t

is the affine parameter ta∇at = 1.
With respect to this ‘time evolution’ vector field ta, we define ‘time derivative’ of the tensor

T a1a2·an b1b2·bn as
Ṫ a1a2·an

b1b2·bn = £taT a1a2·an
b1b2·bn , (2.21)

with the Lie derivative of a tensor given by,

£taT a1a2·an
b1b2·bn = tc

∇cT a1a2·an
b1b2·bn−

n

∑
i=1

T a1·c·an
b1b2·bn∇ctai +

n

∑
i=1

T a1a2·an
b1·c·bn∇bit

c, (2.22)

where ∇c is any covariant derivative, in particular we can take coordinate derivative ∂c.
With this additional structure we can define adapted coordinates (t,xa) for the manifold that
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Figure 2.4: Time evolution vector field ta.

satisfies: ta∇axb = 0 and ta∇at = 1 that is xa is constant along integral curves of ta. In this
coordinates adapted to the foliation the time derivative takes the form, ∂/∂ t.

Conversely, coordinates (t,xa) adapted to the foliation define evolution vector field,

ta =
∂ x̃b

∂ t

∣∣
xa=const. (2.23)

We may decompose ta into tangential and normal parts [], for that we use the projector (2.18),

Pa
b tb = (δ a

b +nanb)tb = ta +na(nbtb), (2.24)

if we define the laps function,
N :=−nbtb, (2.25)

and the shift function,
Na := Pa

b tb. (2.26)

With this definitions we can write,
ta = Nna +Na . (2.27)

2.2 Tetrads and connections

As we already mention in the introduction, it is a very important issue the choice of our funda-
mental variables, specially when gauge symmetries are present. Also, since in this thesis we shall
restrict ourselves to the first order formulation, that is we choose as our fundamental variables
tetrads eIa and a connection ω I

a valued on a Lie Algebra of SO(3,1) in the four dimensional case
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or triads eIa and a connection ω I
a valued on a Lie Algebra of SO(2,1) in the three dimensional

one. We shall give a brief review of the geometrical meaning of the four dimensional variables,
the three dimensional case follows directly.

2.2.1 Tetrads

Consider a 4-dimensional manifold M, with a metric gab, with TpM and T ?
p M its tangent and

contangent spaces at a point p, respectively. The metric can be seen as a map,

gab : TpM→ T ?
p M

va 7→ gab(va) = vb, (2.28)

which is the well known fact that the metric (and its inverse) is used to “lower” (and “raise”)
indices. Moreover it allow us to define an interior product,

v ·w = gabvawb, (2.29)

so we can express the norm of vector v as |v|2 = v · v = gabvavb.

Figure 2.5: Manifold M with its tangent space TpM at a point p.

With this at hand we can define a space-time tetrad as a set of four vector fields ea
I labeled by
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an additional index I = 0,1,2,3 such that they provide an orthonormal basis at TpM ∀p ∈M,1

eI · eJ = gabea
I eb

J = ηIJ. (2.31)

We can define eaI := gabeb
I and eI

a := η IJeaJ , then,

ea
I eJ

a = ea
I η

JKeaK = ea
I η

JKgabeb
K = (gabea

I eb
J)η

JK = ηIKη
JK = δ

J
I (2.32)

This implies that ea
I is invertible, seen as a 4× 4 matrix, and its inverse is eI

a, this we call it the
co-tetrad. Since (M†)−1 = (M−1)† for any invertible matrix

ea
I eI

b = δ
a
b (2.33)

and from gabea
I eb

J = ηIJ ,
gabea

I eb
JeI

ceJ
d = ηIJeI

ceJ
d (2.34)

but
gabea

I eI
ceb

JeJ
d = gabδ

a
c δ

b
d = ηIJeI

ceJ
d (2.35)

which implies
gcd = ηIJeI

ceJ
d. (2.36)

This is consistent with the interpretation that the co-tetrad defines an invertible isomorphism be-
tween TpM and a Minkowski space Mp glued at each point p:

eJ
a : TpM→Mp

va 7−→ vI := eI
ava (2.37)

and

ηIJvIwJ = ηIJeI
avaeJ

bvb (2.38)

= (ηIJeI
aeJ

b)v
avb (2.39)

= gabvavb (2.40)

1You can think of them at TpM as
ea

0︸︷︷︸
timelike

ea
1,e

a
2,e

a
3︸ ︷︷ ︸

spacelike

. (2.30)
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and its inverse,

ea
J : Mp→ TpM

vI 7−→ va := ea
I vI (2.41)

Note that by reversing the steps,

gabvawb = gabea
I eb

JvJ = (gabea
I eb

J)v
IvJ = ηIJvIvJ, (2.42)

So we can associate a physical interpretation to this description: The cotetrad represents the in-
tertial reference frame attached to a free falling observer at p. That is, by contracting with eI

a

observers measure the tangent vector va
p as vI = eI

ava. The free falling observer uses a Minkowski
metric to measure magnitudes and angles, according to the equivalence principle,

v ·w = ηIJ(eI
ava)(eJ

bwb) = (ηIJeI
aeJ

b)v
awb := gabvawb (2.43)

thus defining a metric on each point of spacetime.
With this interpretation the internal indices are vector indices on Minkowski spacetime.
Indeed, any Lorentz transformation ΛI

J on Mp has no effect on the spacetime metric:

ηIJΛ
I

KeK
a Λ

J
LeL

b = Λ
I

KηIJΛ
J

LeK
a eL

b

= ηIJeK
a eL

b

= gab (2.44)

We just have new mappings ẽ = Λ◦ e : TpM→Mp, ẽI
a = ΛI

JeJ
a.

The inverse ẽ−1 = e−1 ◦Λ−1 : Mp→ TpM is

ẽa
I = (ΛI

JeJ
a)
−1 = (eJ

a)
−1(ΛI

J)
−1 = ea

J(Λ
I

J)
−1 =: ea

JΛI
J (2.45)

Indeed the new vectors ea
I also form an orthonormal set on TpM:

gabẽa
I ẽb

J = gabea
KΛI

Keb
LΛ

L
J (2.46)

= gabea
Keb

LΛI
K

ΛJ
L (2.47)

= ηKLΛI
K

ΛJ
L = ηIJ (2.48)

18



The tetrad ea
I , also defines a mapping

ea
I : T ∗p M→M ∗p

wa 7−→ wI := ea
I wa. (2.49)

With inverse,

eI
a : M∗p→ T ∗p M

wI 7−→ wa := eI
awI. (2.50)

2.2.1.1 Time gauge

If we have a foliation of space-time, the mapping

na 7−→ nI := ea
I na, (2.51)

or equivalently,
na 7−→ nI := eI

ana, (2.52)

define a “normal” or time-like vector on Minkowski space at each point. Changing the tetrad:
ẽI

a = ΛI
JeJ

a, ẽa
I = ea

JΛI
J , it changes or rotates the normal,

ñI = ẽa
I na = ΛI

Jea
Jna = ΛI

JnJ (2.53)

and
ñI = ẽI

ana = Λ
I

JeJ
ana = Λ

I
JnJ. (2.54)

We can choose ea
0 as the ‘timelik’e while ea

i , i = 1,2,3 as ‘spacelike’. But of course this does not
necessarily mean ea

i are tangent to the leaf M and ea
0 in the direction of na. See fig []

The time gauge precisely consists on “aligning” ea
0 with na,

ea
0 = na (2.55)

And consequently “putting ea
i inside M”.

Fixing this normal in Minkowski, defined by nI := eI
ana, so that eb

I nI = eb
I eI

ana = nb. This
implies that in the time gauge,

ea
0 = na = ea

I nI ⇒ nI = δ
I
0 = (1,0,0,0). (2.56)
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Also,
naea

i = gabnbea
i = gabea

i eb
0 = ηi0 = 0 (2.57)

this implies that ea
i are tangent to M, i.e. ea

i ∈ TpM. From the previous equation we can also see
that ni = naea

i = 0 is consisten with nI = ηIJnJ = (−1,0,0,0).
The time gauge condition, ea

0 = na, partially fixes the gauge as follows. We shall only allow
transformations ΛI

J that preserves the condition ea
0 = na = ea

I nI , this are transformations that fix
nI = (1,0,0,0):

nI = Λ
I

JnJ or ΛI
JnI = nJ (2.58)

where

Λ
I

J =


1 0 0 0
0
0 Ri

j

0

 and ΛI
J =


1 0 0 0
0
0 Ri

j

0

 . (2.59)

Indeed, ña = ẽa
I nI = ea

JΛI
JnI = ea

JnJ = ea
0 = na and also ẽa

0 = ea
I Λ0

J = ea
0Λ0

0 = ea
0. That is, trans-

formations that fix ea
0 and rotate ea

i , so the gauge group is SO(3).

2.3 Connections on vector bundles

Intuitively speaking we can think of a vector bundle E over M in the following way. Given a
manifold M (usually space-time or a hypersurface) we can construct a new manifold by ‘gluing’
together copies of some vector space V such that locally (for a neighbourhood U ⊂ E),

E =
⋃

p∈M

Vp and U ≈M×V (2.60)

Examples are the tangent space T M, cotangent space T ∗M and tensor bundles.
Another important concept is that of a section. Consider the bundle E = T M, a vector field

va is a function va : M→ T M such that va(p) ∈ TpM at each p ∈M (va is an abstract vector with
components in a certain basis).

Generalizing, sections of E are functions W I : M → E such that W I(p) ∈ Vp. In an internal
basis e(I), W =W Ie(I).

A connection D on E is a way to take ‘derivatives’ of sections W I in the direction of the vector
field va. D is a mapping (va,W I) 7−→ D(va,W I) such that:

i) D(v,αW ) = αD(v,W ) with α constant.

ii) D(v,W +W̃ ) = D(v,W )+D(v,W̃ ).
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iii) D(v, fW ) = (va∂a f )W + f D(v,W ), f is a function on M, f : M→ R.

iv) D(v+ ṽ,W ) = D(v,W )+D(ṽ,W ).

v) D( f v,W ) = f D(v,W ).

This mapping defines a “covariant derivative” DaW I of a section W I:

DaW I := D(•,W ). (2.61)

Properties iv) and v) implies that this is a one form on M taking values on E such that:

I) Da(αW I) = αDaW I .

II) Da(W I +W̃ I) = DaW I +DaW̃ I .

III) Da( fW I) = (∂a f )W I + f DaW I .

Note that this determines a covariant derivative on all tensor bundles constructed from tensor
products of V (covariant derivatives of T I1···In J1···Jn) if we require:

a) General Leibniz rule: Da(T T̃ ) = (DaT )T̃ +T DaT̃

b) Commutativity with contractions

Da
(
T I1···K···In

J1···K···Jn

)
= DaT I1···K···In

J1···K···Jn

Now a natural question arises, how does covariant derivative DaW I look in local coordinates?
(this will be useful for actual calculations).

1. Choose local coordinates xa on M, this implies we have a local coordinate bases ∂a on TpM,
then v = va∂a.

2. Choose local basis e(I) on E, then W =W Ie(I).

In particular, we can consider Dae(I), so we can define ω I
a J by:

Dae(I) = ω
I
a Je(I)︸ ︷︷ ︸

Linear combination

. (2.62)
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That is, if we know these coefficients, ω I
a J , then we know (locally) DaW I for all W I ,

DaW = Da(W Ie(I))

= (∂aW I)e(I)+W IDae(I) by III)

= (∂aW I)e(I)+W I
ω

J
a Ie(J)

=
(
∂aW I +ω

I
a JW J)e(I) (2.63)

So the component (I) of DaW is,

(DaW )I = ∂aW I +ω
I
a JW J. (2.64)

Usually physicist use the “sloppy” notation to define the covariant derivative,

DaW I = ∂aW I +ω
I
a JW J. (2.65)

More generally for associated tensor bundles,

DaT I1···In
J1···Jn = ∂aT I1···In

J1···Jn +∑
i

ω
Ii
a KT I1···K···In

J1···Jn−∑
i

ω
K
a JiT

I1···In
J1···K···Jn. (2.66)

Note that we have defined ω I
a J by Dae(I) = ω I

a Je(I), so they depend on coordinates xa on M and
basis e(i) on fibers of E but they also define more geometrical (coordinate independent) objects.
From the formula,

vaDaW I = va
∂aW I + va

ω
I
a JW J, (2.67)

we can see ω I
a J is a matrix-valued1 one-form,

va→ ω
I
a J → va

ω
I
a J, (2.68)

that is, at each point p ∈M “eats” a space-time vector and “spits out” a matrix in an f−linear way,
in this way is a one-form. But these matrices also define a linear transformation on each of the
fibers of E, the section W I ,

W I → va
ω

I
a J → W̃ I := va

ω
I
a JW J, (2.69)

that is, at each space-time point p ∈M “eats” a vector W I(p) ∈ Vp on the fiber over p and “spits
out” a new vector W̃ I . Although ω I

a J depend on coordinates but these linear transformations are

1Note that matrices are vectors so we can construct “matrix bundles” over M and think of ω I
a J as a (local) section

of these bundles.
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coordinate independent.
Locally ω I

a J determines the covariant derivative Da and therefore the connections D, usually
(we do it also in this thesis!) ω I

a J is ‘loosely’ referred as the connection.1

Example: In Yang-Mills gauge theories ω I
a J is called “vector potential” and is denoted by AI

a J . You may have
seen Ai

a instead of Aa or AI
a J that are matrix valued one-forms and since matrices are vector spaces, so we can choose

a “basis” of matrices τi and expand,
Aa = Ai

aτi.

In general, there are many different connections Da but if there is additional structure in the
bundle E there are also preferred connections. For instance:

• For tangent bundle T M there is the metric gab so we can choose as preferred connection the
Levi-Civita one, ∇a, that is a unique “torsion free” connection such that,

∇agbc = 0 (2.70)

is determined by the metric. In this case ω I
a J when I,J = b,c are indices in T M they are the

Christoffel symbols Γa
b

c.

• In the Minkowski bundle we constructed (suggested by the tetrad and co-tetrad eI
a)

E =
⋃

p∈M

M, (2.71)

where each finer is a copy of Minkowski space M). There is the metric ηIJ = diag(−1,1,1,1).
So we can choose the preferred connections

DaηIJ = 0, (2.72)

which implies,

DaηIJ = ∂aηIJ−ω
K
a IηKJ−ω

K
a JηIK =−ω

K
a IηKJ−ω

K
a JηIK = 0. (2.73)

If we define ωaIJ := ωK
a JηIK , the previous condition give us,

ωaIJ =−ωaJI . (2.74)

1ω I
a J is not a tensor in the internal indices, i.e. I,J does not transform as tensor indices. Also ω I

a J lives in a section
of linear transformations.

23



The matrix ωaIJ is anti-symmetric, which implies that ωaIJ is valued on the Lie algebra of the
Lorentz group SO(3,1). That is why ωaIJ is called a Lorentz connection1. But our bundle
has more structure, there is the co-tetrad eI

a that has mixed indices a is space-time, while I

is internal. This suggest that we can extend the covariant derivative2 Da by using ∇a (the
Levi-Civita connection) instead of ∂a,

DavI = ∇avI +ω
I
a JvJ. (2.84)

If we additionally require that,
DaeI

b = 0 (2.85)

or equivalently,
DaeI

b = ∇aeI
b +ω

I
a JeJ

b = 0. (2.86)

Solving for ω I
a J in terms of the tetrad and co-tetrad,

ω
I
a J = ebI

∇aebJ. (2.87)

1Note that is not unique, there are many of these.
2In general we can consider ∂a as any connection that we can choose appropriately depending on the system at

hand, as we shall see in chapter 3, we can express ω I
J completely in term of the tetrads and co-tetrads as,

deI +ω
I

J ∧ eJ = 0 (2.75)

we have
∂aeI

b−∂aeJ
b +ω

I
a JeJ

b−ω
I
b JeJ

b = 0 (2.76)

or equivalently
ω

I
a JeJ

b−ω
I
b JeJ

b =−2∂[aeI
b]. (2.77)

Multiplying by ecI and permitting spaciotemporal indices

ω
I
a JeJ

becI−ω
I
b JeJecI

b = −2ecI∂[aeI
b] (2.78)

ω
I
c JeJ

aebI−ω
I
a JeJebI

c = −2ebI∂[ceI
a] (2.79)

ω
I
b JeJ

ceaI−ω
I
c JeJeaI

b = −2eaI∂[beI
c] (2.80)

Then by summing (B.5) and (B.6), and subtracting (B.4),

ω
I
c JeJ

aebI = ecI∂[aeI
b]− ebI∂[ceI

a]− eaI∂[beI
c] (2.81)

multiplying by ea
KebL,

ω
L
c K = ea

KebLecI∂[aeI
b− ea

K∂[ceL
a]− ebL

∂[bec]K (2.82)

In the 3−dimensional case, by using ωM
c =− 1

2 εL
KMωL

c K and η̃abcεIJKeK
c = 2ee[aI eb]

J where η̃abc is the 3−dimensional
tensor density with weight one.

ω
M
c =−1

2

(
εL

KMea
KebLecI∂[aeI

b]− εL
KMea

K∂[ceL
a]− εL

KMebL
∂[bec]K

)
(2.83)
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This is what we called the spin connection. The spin Lorentz connection a connection that
satisfies both,

DaηIJ = 0 and DaeI
b = 0 . (2.88)

The requirement of having a Lorentz connection is also related to the fact that there is addi-
tional structure. The Lorentz group “acts” on each finer,

vI → Λ
I

JvJ
Λ

I
J ∈ SO(3,1). (2.89)

Also, local gauge transformations are,

vI(p)→ Λ
I

J(p)vJ(p). (2.90)

Our Minkowski bundle is an example of a SO(3,1)−bundle. We also want to relate vectors
obtained from Lorentz (gauge) transformations, and connections must transform accord-
ingly. If vI → ṽI := ΛI

JvJ then ω I
a J must transform ω I

a J → ω̃ I
a J such that,

D̃aṽI = D̃a(Λ
I

JvJ) = Λ
I

JD̃avJ. (2.91)

By demanding the previous relation, we shall see how ω I
a J transforms under Lorentz trans-

formations,

D̃aṽI = ∂aṽI + ω̃
I
a J ṽJ

= ∂a(Λ
I

JvJ)+ ω̃
I
a J(Λ

I
JvJ)

= Λ
I

J∂avJ +
(
∂aΛ

I
K + ω̃

I
a JΛ

J
K
)

vK

= Λ
I

J

∂avJ +ΛL
J (

∂aΛ
L

K + ω̃
L
a JΛ

J
K
)︸ ︷︷ ︸

ωJ
a K

vK

 (2.92)

where ΛL
J = Λ−1, which implies that ωJ

a K transform as,

ω
J
a K = ΛL

J
∂aΛ

L
K +ΛL

J
ω̃

L
a JΛ

J
K (2.93)

which can be written as,
ωa = Λ

−1
ω̃aΛ+Λ

−1
∂aΛ. (2.94)

A Lorentz transformation on ω can be written as,

ωa→ ω̃a = ΛωaΛ
−1 +Λ∂aΛ

−1 . (2.95)
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• In Yang-Mills theories we have a gauge Lie group G (some matrix group U(1), SU(2),
SU(2),... etc) acting on the fiber (gauge transformations),

φ(x)→ g(x)φ(x), (2.96)

so we have G−bundles. In this case we can choose as preferred connections the AI
a J that

take values on the Lie algebra of G and transforms as:

Aa→ Ãa = gAag−1 +g∂ag−1 (2.97)

so that,
Da(gφ) = gDaφ . (2.98)

2.4 Action principle

In this section we review the action principle that plays a fundamental role in the formulation of
physical theories. In order to do that we need to be precise about what it means to have a well
posed variational principle. In particular, there are two aspects to it. The first one is to define
the action by itself. This is done in the first part of this section. In the second part, we introduce
the variational principle that states that physical configurations will be those that make the action
stationary. In particular, we entertain the possibility that the spacetime region under consideration
has non-trivial boundaries and that the allowed field configurations are allowed to vary on these
boundaries. These new features require an extension of the standard, textbook, treatment. This
section is based on [27; 28]

2.4.1 The Action

In particle mechanics the dynamics is specified by some action, which is a function of the trajec-
tories of the particle. In turn, the action S is the time integral of the Lagriangian function L that
generically depends on the coordinates and velocities of the particles. In field theory the dynami-
cal variables, the fields, are geometrical objects defined on spacetime; now the Lagrangian has as
domain this function space. In both cases, this type of objects are known as functionals. In order to
properly define the action we will review what is a functional and some of its relevant properties.

A functional is a map from a normed space (a vector space with a non-negative real-valued
norm 1) into its underlying field, which in physical applications is the field of the real numbers.

1We need the concept of the norm of a functional to have a notion of closedness and therefore continuity and
differentiability, for more details see e.g. chapter 23 of [41].
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This vector space is normally a functional space, which is why sometimes a functional is consid-
ered as a function of a function.

A special class of functionals are the definite integrals that define an action by an expression of
the form,

S[φ ] =
∫
M
L(φ α ,∇φ

α , ...,∇n
φ

α)d4V, (2.99)

where φ α(x) are fields on spacetime, M̃, M ⊆ M̃ is a spacetime region, α is an abstract label for
spacetime and internal indices, ∇φ α their first derivatives, and ∇nφ α their nth derivatives, and d4V

a volume element on spacetime. This integral S[φ ] maps a field history φ α(x) into a real number
if the Lagrangian density L is real-valued.

Prior to checking the well posedness of this action, we will review what it means for an action to
be finite and differentiable. We say that an action is finite iff the integral that defines it is convergent
or has a finite value when evaluated in histories compatible with the boundary conditions.

2.4.2 Differentiability and the variational principle

As the minimum action principle states, the classical trajectories followed by the system are those
for which the action is a stationary point. This means that, to first order, the variations of the action
vanish. As is well known, the origin of this emphasis on extremal histories comes from the path
integral formalism where one can show that trajectories that extremise the action contribute the
most to the path integral. First, let us consider some definitions:

Let F be a normed space of function. A functional F : F→R is called differentiable if we can
write the finite change of the action, under the variation φ → φ +δφ , as

F [φ +δφ ]−F [φ ] = δF +R , (2.100)

where δφ ∈ F (we are assuming here that vectors δφ belong to the space F, so it is a linear space).
The quantity δF [φ ,δφ ] depends linearly on δφ , and R[φ ,δφ ] = O((δφ)2). The linear part of the
increment, δF , is called the variation of the funcional F (along δφ ). A stationary point φ̄ of a
differentiable funcional F [φ ] is a function φ̄ such that δF [φ̄ ,δφ ] = 0 for all δφ .

As is standard in theoretical physics, we begin with a basic assumption: The dynamics is
specified by an action. In most field theories the action depends only on the fundamental fields and
their first derivatives. Interestingly, this is not the case for the Einstein Hilbert action of general
relativity, but it is true for first order formulations of general relativity, which is the case that we
shall analyze in the present work.

In general, we can define an action on a spacetime region M depending on the fields, φ α and
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their first derivatives, ∇µφ α . Thus, we have

S[φ α ] =
∫
M
L
(
φ

α ,∇µφ
α
)

d4V . (2.101)

Its variation δS is the linear part of∫
M

[
L
(
φ
′α ,∇µφ

′α)−L
(
φ

α ,∇µφ
α
)]

d4V , (2.102)

where φ ′α = φ α +δφ α . It follows that

δS[φ α ] =
∫
M

[
∂L

∂φ α
−∇µ

∂L

∂ (∇µφ α)

]
δφ

α d4V +
∫
M

∇µ

(
∂L

∂ (∇µφ α)
δφ

α

)
d4V , (2.103)

where we have integrated by parts to obtain the second term. Let us denote the integrand of the
first term as: Eα := ∂L

∂φ α −∇µ

(
∂L

∂ (∇µ φ α )

)
. Note that the second term on the right hand side is a

divergence so we can write it as a boundary term using Stokes’ theorem,

∫
∂M

∂L

∂ (∇µφ α)
δφ

α dSµ =:
∫

∂M
θ(φ α ,∇µφ

α ,δφ
α) d3v , (2.104)

where we have introduced the quantity θ that will be relevant in sections to follow. Note that
the quantity δS[φ α ] can be interpeted as the directional derivative of the funtion(al) S along the
vector δφ . Let us introduce the simbol dd to denote the exterior derivative on the functional space
F. Then, we can write δS[φ ] = dd S(δφ) = δφ(S), where the last equality employs the standard
convention of representing the vector field, δφ , acting on the function S.

As we mentioned before, if we want to derive in a consistent way the equations of motion for
the system, the action must be differentiable. In particular, this means that we need the boundary
term (2.104) to be zero. To simply demand that δφ α |∂M = 0, as is usually done in introduc-
tory textbooks, becomes too restrictive if we want to allow all the variations δφ α which preserve
appropiate boundary conditions and not just variations of compact support. Thus, requiring the
action to be stationary with respect to all compatible variations should yield precisely the classical
equations of motion, with the respective boundary term vanishing on any allowed variation.

Let us now consider the case in which the spacetime region M, where the action is defined,
has a boundary ∂M. We are interesting in globally hyperbolic asymptotically flat spacetimes (so
that M̃ ≈ R×M, where M is a space-like non-compact hypersurface) possibly with an internal
boundary, as would be the case when there is a black hole present. We can foliate the asymptotic
region by time-like hyperboloids Hρ , corresponding to ρ = const., and introduce a family of
spacetime regions {Mρ}ρ∈I⊂R, with a boundary ∂Mρ = M1∪M2∪Hρ ∪∆, where ∆ is an inner
boundary (see Fig.2.7). This family satisfy Mρ ⊂M′ρ for ρ ′ > ρ and M = ∪ρMρ . Then, the
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integral over M in (2.101) is defined as

S[φ α ] = lim
ρ→∞

∫
Mρ

L
(
φ

α ,∇µφ
α
)

d4V . (2.105)

Figure 2.6: The region Mρ .

Now, given an action principle and boundary conditions on the fields, a natural question may
arise, on whether the action principle will be well posed. So far there is no general answer, but there
are examples where the introduction of a boundary term is needed to make the action principle well
defined, as we shall show in the examples below. Let us then keep the discussion open and consider
a generic action principle that we assume to be well defined in a region with boundaries, and with
possible contributions to the action by boundary terms. Therefore, the action of such a well posed
variational principle will look like,

S[φ α ] =
∫
M
L
(
φ

α ,∇µφ
α
)

d4V +
∫

∂M
ϕ(φ α ,∇µφ

α) d3v , (2.106)

where we have considered the possibility that there is contribution to the action coming from the
boundary ∂M. Thus, the variation of this extended action becomes,

δS[φ α ] =
∫
M

Eα δφ
α d4V +

∫
∂M

θ(φ α ,∇µφ
α ,δφ

α) d3v+
∫

∂M
δϕ(φ α ,∇µφ

α) d3v . (2.107)

The action principle will be well posed if the first term is finite and ϕ(φ α) is a boundary term that
makes the action well defined under appropriate boundary conditions. That is, when the action is
evaluated along histories that are compatible with the boundary conditions, the numerical value of
the integral should be finite, and in the variation (2.107), the contribution from the boundary terms
must vanish. Now, asking δS[φ α ] = 0, for arbitrary variations δφ of the fields, implies that the
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fields must satisfy
Eα = 0 ,

the Euler-Lagrange equations of motion.
Note that in the “standard approach”, i.e. when one simply considers variations, say, of com-

pact support such that δφ α |∂M = 0, we can always add a term of the form ∇µ χµ to the Lagrangian
density,

L→ L+∇µ χ
µ , (2.108)

with χ arbitrary. The relevant fact here is that this term will not modify the equations of motion
since the variation of the action becomes,

δS = δ

∫
M
L d4V +δ

∫
M

∇µ χ
µ d4V = δ

∫
M
L d4V +

∫
∂M

δ χ
µ dSµ , (2.109)

thus, by the boundary conditions, δφ α |∂M = 0, the second term of the right-hand side vanishes,
that is, δ χµ |∂M = 0. Therefore, it does not matter which boundary term we add to the action; it
will not modify the equations of motion.

On the contrary, when one considers variational principles of the form (2.106), consistent with
arbitrary (compatible) variations in spacetime regions with boundaries, we cannot just add arbitrary
total divergences/boundary term to the action, but only those that preserve the action principle well-
posedness, in the sense mentioned before. Adding to the action any other term that does not satisfy
this condition will spoil the differentiability properties of the action and, therefore, one would not
obtain the equations of motion in a consistent manner.

This concludes our review of the action principle. Let us now recall how one can get a consis-
tent covariant Hamiltonian formulation, once the action principle at hand is well posed.

2.5 Covariant Hamiltonian Formalism and conserved charges

In this section we give a self-contained review of the covariant Hamiltonian formalism (CHF)
taking special care of the cases where boundaries are present. It contains three parts. In the first
one, we introduce the relevant structure in the definition of the covariant phase space, starting
from the action principle. In particular, we see that boundary terms that appear in the ‘variation’
of the action are of particular relevance to the construction of the symplectic structure. We shall
pay special attention to the presence of boundary terms in the original action and how that gets
reflected in the Hamiltonian formulation. We prove the first result of this thesis. In the second part,
we recall the issue of symmetries of the theory. That is, when there are certain symmetries of the
underlying spacetime, these get reflected in the Hamiltonian formalism. Of particular relevance
is the construction of the corresponding conserved quantities, that are both conserved and play an
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important role of being the generators of such symmetries. In particular we focus our attention on
the symmetries generated by certain vector fields, closely related to the issue of diffeomorphism
invariance. In the third part we compare and contrast these Hamiltonian conserved quantities with
the so-called Noether symmetries and charges. We show how they are related and comment on
the fact that, contrary to the Hamiltonian charges, the corresponding ‘Noetherian’ quantities do

depend on the existence of boundary terms in the original action.

2.5.1 Covariant Phase Space

In this part we shall introduce the relevant objects that define the covariant phase space. If the
theory under study has a well posed initial value formulation, then, given the initial data we have
a unique solution to the equations of motion. In this way we have an isomorphism I between the
space of solutions to the equations of motion, Γ, and the space of all valid initial data, the ‘canonical
phase space’ Γ̃. In this even dimensional space we can construct a nondegenerate, closed 2−form
Ω̃, the symplectic form. Together, the phase space and the symplectic form constitute a symplectic
manifold (Γ̃,Ω̃).

We can bring the symplectic structure to the space of solutions, via the pullback I∗ of Ω̃ and
define a corresponding 2-form on Γ. In this way the space of solutions is equipped with a natural

symplectic form, Ω, since the mapping is independent of the reference Cauchy surface one is using
to define I. Together, the space of solutions and its symplectic structure (Γ,Ω) are known as the
covariant phase space (CPS).

However, most of the field theories of interest present gauge symmetries. This fact is reflected
on the symplectic form Ω, making it degenerate. When this is the case, Ω is only a pre-symplectic
form, to emphasize the degeneracy. It is only after one gets rid of this degeneracy, by means of an
appropriate quotient, that one recovers a physical non-degenerate symplectic structure. Let us now
see how one can arrive to such description from the action principle.

Before proceeding we shall make some remarks regarding notation. It has proved to be use-
ful to use differential forms to deal with certain diffeomorphism invariant theories, and we shall
do that here. However, when working with differential forms in field theories one has to distin-
guish between the exterior derivative dd in the infinite dimensional covariant phase space, and the
‘standard’ exterior derivative on the spacetime manifold, denoted by d. In this context, differential
forms in the CPS act on vectors tangent to the space of solutions Γ. We use δ or δφ to denote
these tangent vectors to , to be consistent with the standard notation used in the literature. We hope
that no confusion should arise by such a choice. Let us now recall some basic constructions on the
covariant phase space.
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Taking as starting point an action principle,

S[φ A] =
∫
M

L , (2.110)

where the Lagrangian density, L, is a 4−form, that depends on fields φ A and their derivatives. The
fields φ A are certain n−forms (with n ≤ 4) in the 4−dimensional spacetime manifold, M, with
boundary, ∂M, and A,B, . . . are internal indices. Then, the variation of the action can be written
as1,

ddS(δ ) = δS =
∫
M

EA∧δφ
A +

∫
M

dθ(δφ
A) , (2.111)

where EA are the Euler-Lagrange equations of motion forms and δφ A is an arbitrary vector on
the CPS, that can be thought to point ‘in the direction that φ A changes’. The 1-form (in CPS) θ

depends on φ A, δφ A and their derivatives, for simplicity we do not write it explicitly. Note that we
are using δφ A and δ , to denote the same object2. For simplicity in the notation, sometimes the φ A

part is dropped out. Here we wrote both for clarity. The second term of the RHS is obtained after
integration by parts, and using Stokes’ theorem it can be written as,

Θ(δφ
A) :=

∫
M

dθ(δφ
A) =

∫
∂M

θ(δφ
A) . (2.112)

This term can be seen as a 1−form in the covariant phase space, acting on vectors δφ A and return-
ing a real number. Also it can be seen as a potential for the symplectic structure, that we already
mentioned in the preamble of this section and shall define below. For such a reason, we will call
this term, Θ(δφ A) a symplectic potential associated to a boundary ∂M, and the integrand, θ(δφ A),
is the symplectic potential current3.

Note that from Eqs. (2.111) and (2.112), in the space of solutions EA = 0, ddS = Θ(δφ A).
If we want to derive in a consistent way the equations of motion for the system, the action must

be differentiable. In particular, this means that we need the boundary term (2.112) to be zero. To
simply demand that δφ A|∂M = 0, becomes too restrictive if we want to allow all the variations
which preserve appropriate boundary conditions and not just variations of compact support. Thus,

1This notation is a little bit unusual, so we shall clarify a little bit more. Here we are considering two spaces: the
space-time M and the infinite dimensional covariant phase space CPS, we can define exterior derivatives in both, d
and dd, and wedge products ∧ and ∧∧ respectively. In equation (2.111), S is a functional, when we applied dd , ddS it
becomes a 1-form in CPS, then when evaluated on a vector field in CPS, δ , ddS(δ ) is again a functional, also this is
equal to δS, the vector field acting on the functional, as it is standard: d f (X) = X f , where f is a function, X a vector
field and d the exterior derivative. In the right-hand side of eq. (2.111), δφ A is a vector on CPS, but since φ a are
certain n−forms (with n≤ 4) in the 4−dimensional space-time manifold, δφ A is also a n−form in the space-time, and
the wedge product is that of the space-time.

2

3Usually, a symplectic potential is defined as an integral of θ over a spatial slice M, see, for example, [? ]. Here,
we are extending this definition since, as we shall show, in order to construct a symplectic structure it is important to
consider the integral over the whole boundary ∂M.
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requiring the action to be stationary with respect to all compatible variations should yield precisely
the classical equations of motion, with the respective boundary term vanishing on any allowed
variation.

If the original action is not well defined, the introduction of a boundary term could be needed.
In that case the action becomes,

S[φ A] =
∫
M

L+
∫
M

dϕ , (2.113)

where the boundary term in general depends on fields, as well as of their derivatives, and is chosen
in such a way that the new action is differentiable and finite, for allowed field configurations, and
we have a well posed variational principle,

δS =
∫
M

EA∧δφ
A +

∫
M

d
[
θ(δφ

A)+δϕ

]
. (2.114)

When we have added a boundary term, the symplectic potential associated to this well posed action
changes as Θ→Θ+

∫
M dδϕ , equivalently we can consider,

Θ̃(δ ) :=
∫

∂M
[θ(δ )+δϕ] . (2.115)

From this equation we can see that besides the boundary term added to the action, to make it well
defined, we can always add a term, dY , to the symplectic potential current that will not change Θ̃.
Thus, the most general symplectic potential can be written as,

Θ̃(δ ) =
∫

∂M
[θ(δ )+δϕ +dY (δ )] =:

∫
∂M

θ̃(δ ) . (2.116)

Now, we take the exterior derivative of the symplectic potential, Θ̃, acting on tangent vectors
δ1 and δ2 at a point γ of the phase space,

ddΘ̃(δ1,δ2) = δ1Θ̃(δ2)−δ2Θ̃(δ1) = 2
∫

∂M
δ[1θ̃(δ2]) . (2.117)

From this expression we can define a spacetime 3−form, the symplectic current J̃(δ1,δ2), to be
the integrand of the RHS of (2.117),

J̃(δ1,δ2) := δ1θ̃(δ2)−δ2θ̃(δ1) . (2.118)

In particular, when we have added a boundary term to the action, and taking into account the
ambiguities, the symplectic current becomes,

J̃(δ1,δ2) = J(δ1,δ2)+2
(
δ[1δ2]ϕ +δ[1dY (δ2])

)
. (2.119)
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where
J(δ1,δ2) := δ1θ(δ2)−δ2θ(δ1) , (2.120)

is the symplectic current associated to the action (2.110).
Now, the term δ[1δ2]ϕ vanishes by antisymmetry, because δ1 and δ2 commute when acting on

functions. Note that the last term of the RHS of (2.119) can be written as dχ(δ1,δ2) = 2δ[1dY (δ2])

due to d and δi commuting. Since d and dd act on different spaces, the spacetime and the space of
fields, respectively, they are independent. In this way J̃(δ1,δ2) is determined as

J̃(δ1,δ2) = J(δ1,δ2)+dχ(δ1,δ2) . (2.121)

This ambiguity will appear explicitly in the examples that we shall consider below.
Therefore we conclude that, when we add a boundary term to the original action it will not

change the symplectic current, and this result holds independently of the specific boundary condi-
tions. This is the first result of this thesis.

Recall that in the space of solutions, ddS(δ ) = Θ̃(δ ), therefore from eqs. (2.117) and (2.118),

0 = dd 2S(δ1,δ2) = ddΘ̃(δ1,δ2) = 2
∫
M

δ[1dθ̃(δ2]) =
∫
M

dJ̃(δ1,δ2). (2.122)

Since we are integrating over any region M, we can conclude that J̃ is closed, i.e. dJ̃ = 0. Note
that dJ̃ = d(J +dχ) = dJ depends only on θ . Using Stokes’ theorem, and taking into account the
orientation of ∂M (see Fig. 2.7), we have

0 =
∫
M

dJ̃(δ1,δ2) =
∫
M

dJ(δ1,δ2) =
∮

∂M
J(δ1,δ2) =

(
−
∫

M1

+
∫

M2

−
∫

∆

+
∫
I

)
J, (2.123)

where M is bounded by ∂M = M1 ∪M2 ∪∆∪ I, M1 and M2 are space-like slices, ∆ is an inner
boundary and I an outer boundary.

S1

S2 M2

M1

I

S M

M
S

Figure 2.7: The region M.
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Now consider the following two possible scenarios: First, consider the case when there is no
internal boundary, only a boundary I at infinity. In some instances the asymptotic conditions ensure
that the integral

∫
I J vanishes, in which case from (2.123), one gets

∮
∂M

J(δ1,δ2) =

(
−
∫

M1

+
∫

M2

)
J = 0 , (2.124)

which implies that
∫

M J is independent of the Cauchy surface. This allows us to define a conserved

pre-symplectic form over an arbitrary space-like surface M,

Ω̄(δ1,δ2) =
∫

M
J(δ1,δ2) . (2.125)

Note that in (2.123) at the end we only have a contribution from J, not from the complete J̃, and
for that reason the pre-symplectic form does not depend on ϕ (the contribution of the topological,
total derivative, terms in the action) nor χ (the contribution of total derivative terms in J̃).

One should have special care in the case when the symplectic current is of the form J = J0+dα ,
as we shall now demonstrate. Our previous arguments, see (2.121) and (2.123), show that the dα

term does not appear in the symplectic structure. It follows then that, when J0 = 0, the symplectic
structure is trivial Ω̄ = 0, by construction, so that in the definition (2.125), it is only the J0 part of J

that contributes to Ω̄. It should be obvious that this conclusion is valid also in the case when there
is an internal boundary ∆. We shall further comment on this case below.

Let us now consider with more details the case when we have an internal boundary. Now, the
integral

∫
∆

J may no longer vanish under the boundary conditions, as is the case with the isolated
horizon boundary conditions (more about this below). The “next best thing” is that this integral is
“controllable”. Let us be more specific. If, after imposing boundary conditions, the integral takes
the form, ∫

∆

J =
∫

∆

d j =
∫

∂∆

j , (2.126)

we can still define a conserved pre-symplectic structure. From (2.123), and assuming the integral
over the outer boundary vanishes, we now have(

−
∫

M1

+
∫

M2

−
∫

∆

)
J =

(
−
∫

M1

+
∫

M2

)
J−
(∫

S1

−
∫

S2

)
j = 0 , (2.127)

where S1 and S2 are the intersections of space-like surfaces M1 and M2 with the inner boundary ∆,
respectively. Therefore we can define the conserved pre-symplectic structure as,

Ω̄ =
∫

M
J+

∫
S

j . (2.128)
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Note that by construction, the two form Ω̄ is closed, so it is justified to call it a (pre-)symplectic
structure.

Let us end this section by further commenting on the case when the symplectic current con-
tains a total derivative. In the literature, the symplectic structure is sometimes defined, from the
beginning, as an integral of J̃ over a spatial hypersurface M, but we have shown that this is correct
only if J̃ does not have a total derivative term, and the action does not have a boundary term. Let
us now describe the argument that one sometimes encounters in this context, in the simple case
where J = dα . In this case one could postulate the existence of a pre-symplectic structure Ω̃M as
follows. Let us define

Ω̃M(δ1,δ2) :=
∫

M
dα(δ1,δ2) , (2.129)

we have, from (2.123) that Ω̃M is independent on M only if
∫
I dα and

∫
∆

dα vanish. In this case
the object Ω̃M does define a conserved two-form that satisfies the definition of a pre-symplectic
structure. It should be stressed though that such an object does not follow from the systematic
derivation we followed, starting from an action principle. It can instead be viewed and a possible
freedom that exists in the covariant Hamiltonian formalism. It is indeed interesting to explore the
possible physical consequences of introducing the object Ω̃M. As we shall show in forthcoming
sections, there is one instance in which one can postulate such a two-form, that satisfies the condi-
tions for being conserved, but as we shall show in detail, one does run into inconsistencies when
postulating such object for topological terms.

To summarize, in this part we have developed in detail the covariant Hamiltonian formalism in
the presence of boundaries. As we have seen, there might be a contribution to the (pre-)symplectic
structure coming from the boundaries. Finally, we have shown that the addition of boundary terms
to the action does not modify the conserved (pre-)symplectic structure of the theory, independently
of the boundary conditions imposed. This is the first result of this note. As a remark, we have also
noted that under certain circumstances, one could introduce a conserved symplectic structure that
results from the existence of a total derivative term in the symplectic current.

2.5.2 Symmetries and conserved charges

Let us now explore how the covariant Hamiltonian formulation can deal with the existence of
symmetries, and their associated conserved quantities. Before that, let us recall the standard notion
of a Hamiltonian vector field (HVF) in Hamiltonian dynamics. A Hamiltonian vector field Z is
defined as a symmetry of the symplectic structure, namely

£ZΩ = 0. (2.130)
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From this condition and the fact that ddΩ = 0 we have,

£ZΩ = Z ·ddΩ+dd(Z ·Ω) = dd(Z ·Ω) = 0. (2.131)

where Z ·Ω ≡ iZΩ means the contraction of the 2-form Ω with the vector field Z. Note that
(Z ·Ω)(δ ) = Ω(Z,δ ) is a one-form on Γ acting on an arbitrary vector δ . We can denote it as
X(δ ) := Ω(Z,δ ). From the previous equation we can see that X = Z ·Ω is closed, ddX = 0. It
follows from (2.131) and from the Poincaré lemma that locally (on the CPS), there exists a function
H such that X = ddH. We call this function, H, the Hamiltonian, that generates the infinitesimal
canonical transformation defined by Z. Furthermore, and by its own definition, H is a conserved

quantity along the flow generated by Z.
Note that the directional derivative of the Hamiltonian H, along an arbitrary vector δ can be

written in several ways,
X(δ ) = ddH(δ ) = δH, (2.132)

some of which will be used in-distinctively in what follows.
So far this vector field Z is an arbitrary Hamiltonian vector field on Γ. Later on we will relate

it to certain space-time symmetries. For instance, for field theories that possess a symmetry group,
such as the Poincaré group for field theories on Minkowski spacetime, there will be corresponding
Hamiltonian vector fields associated to the generators of the symmetry group. In this thesis we are
interested in exploring gravity theories that are diffeomorphism invariant. That is, such that the
diffeomorphism group acts as a (kinematical) symmetry of the action. Of particular relevance
is then to understand the role that these symmetries have in the Hamiltonian formulation. In
particular, one expects that diffeomorphisms play the role of gauge symmetries of the theory.
However, the precise form in which diffeomorphisms can be regarded as gauge or not, depends on
the details of the theory, and is dictated by the properties of the corresponding Hamiltonian vector
fields. Another important issue is to separate those diffeomorphisms that are gauge from those
that represent truly physical canonical transformations that change the system. Those true motions
could then be associated to symmetries of the theory. For instance, in the case of asymptotically
flat spacetimes, some diffeomorphism are regarded as gauge, while others represent nontrivial
transformations at infinity and can be associated to the generators of the Poincaré group. In the
case when the vector field Z generates time evolution, one expects H to be related to the energy, the
ADM energy at infinity. Other conserved Hamiltonian charges can thus be found, and correspond
to the generators of the asymptotic symmetries of the theory. In what follows we shall explore the
aspects of the theory that allow us to separate the notion of gauge from standard symmetries of the
theory.
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2.5.2.1 Gauge and degeneracy of the symplectic structure

In the standard treatment of constrained systems, one starts out with the kinematical phase space
Γkin, and there exists a constrained surface Γ̄ consisting of points that satisfy the constraints present
in the theory. One then notices that the pullback of Ω, the symplectic structure to Γ̄ is degenerate
(for first class constraints). These degenerate directions represent the gauge directions where two
points are physically indistinguishable. In the covariant Hamiltonian formulation we are consid-
ering here, the starting point is the space Γ of solutions to all the equations of motion, where a
(pre-)symplectic structure is naturally defined, as we saw before. We call this a pre-symplectic
structure since it might be degenerate. We say that Ω̄ is degenerate if there exist vectors Zi such
that Ω̄(Zi,X) = 0 for all X . We call Zi a degenerate direction (or an element of the kernel of Ω̄).
If Ω̄ is degenerate we have a gauge system, with a gauge submanifold generated by the degenerate
directions Zi (it is immediate to see that they satisfy the local integrability conditions to generate a
submanifold).

Note that since we are on the space of solutions to the field equations, tangent vectors X to Γ

must be solutions to the linearized equations of motion. Since the degenerate directions Zi generate
infinitesimal gauge transformations, configurations φ ′ and φ on Γ, related by such transformations,
are physically indistinguishable. That is, φ ′ ∼ φ and, therefore, the quotient Γ̂ = Γ/∼ constitutes
the physical phase space of the system. It is only in the reduced phase space Γ̂ that one can define
a non-degenerate symplectic structure Ω.

In the next subsection we explain how vector fields are the infinitesimal generators of trans-
formations on the space-time in general. Then we will point out when these transformations are
diffeomorphisms and moreover, when these are also gauge symmetries of the system.

2.5.2.2 Diffeomorphisms and Gauge

Let us start by recalling the standard notion of a diffeomorphism on the manifold M. Later on, we
shall see how, for diffeomorphism invariant theories, the induced action on phase space of certain
diffeomorphisms becomes gauge transformations.

There is a one-to-one relation between vector fields on a manifold and families of transforma-
tions of the manifold onto itself. Let ϕ be a one-parameter group of transformations on M, the
map ϕτ : M→M, defined by ϕτ(x) = ϕ(x,τ), is a differentiable mapping. If ξ is the infinitesimal
generator of ϕ and f ∈ C∞(M), ϕ∗τ f = f ◦ϕτ also belongs to C∞(M); then the Lie derivative of
f along ξ , £ξ f = ξ ( f ), represents the rate of change of the function f under the family of trans-
formations ϕτ . That is, the vector field ξ is the generator of infinitesimal diffeomorphisms. Now,
given such a vector field, a natural question is whether there exists a vector field Zξ on the CPS
that represents the induced action of the infinitesimal diffeos? As one can easily see, the answer is
in the affirmative.
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In order to see that, let us go back a bit to Section 2.4. The action is defined on the space
of histories (the space of all possible configurations) and, after taking the variation, the vectors
δφ α lie on the tangent space to the space of histories. It is only after we restrict ourselves to the
space of solutions Γ, that ddS(δ ) = δS = Θ(δφ A). Now these δφ A represent any vector on Tφ AΓ

(tangent space to Γ at the point φ A). As we already mentioned, these δφ A can be seen as “small
changes” in the fields. What happens if we want the infinitesimal change of fields to be generated
by a particular group of transformations (e.g. spatial translations, boosts, rotations, etc)? There is
indeed a preferred tangent vector for the kind of theories we are considering. Given ξ , consider

δξ φ
A := £ξ φ

A . (2.133)

From the geometric perspective, this is the natural candidate vector field to represent the induced
action of infinitesimal diffeomorphisms on Γ. The first question is whether such objects are indeed
tangent vectors to Γ. It is easy to see that, for kinematical diffeomorphism invariant theories, Lie

derivatives satisfy the linearized equations of motion.1 Of course, in the presence of boundaries
such vectors must preserve the boundary conditions of the theory in order to be admissible (more
about this below). For instance, in the case of asymptotically flat boundary conditions, the allowed
vector fields should preserve the asymptotic conditions.

Let us suppose that we have prescribed the phase space and pre-symplectic structure Ω̄, and a
vector field δξ := £ξ φ A. The question we would like to pose is: when is such vector a degenerate
direction of Ω̄? The equation that such vector δξ must satisfy is then:

Ω̄(δξ ,δ ) = 0 , ∀ δ . (2.134)

This equation will, as we shall see in detail below once we consider specific boundary conditions,
impose some conditions on the behaviour of ξ on the boundaries. An important signature of diffeo-
morphism invariant theories is that Eq.(2.134) only has contributions from the boundaries. Thus,
the vanishing of such terms will depend on the behaviour of ξ there. In particular, if ξ = 0 on the
boundary, the corresponding vector field is guaranteed to be a degenerate direction and therefore
to generate gauge transformations. In some instances, non vanishing vectors at the boundary also
satisfy Eq. (2.134) and therefore define gauge directions.

Let us now consider the case when ξ is non vanishing on ∂M and Eq. (2.134) is not zero. In
that case, we should have

Ω̄(δ ,δξ ) = ddHξ (δ ) = δHξ , (2.135)

for some function Hξ . This function will be the generator of the symplectic transformation gener-

1 See, for instance [65]. When the theory is not diffeomorphism invariant, such Lie derivatives are admissible
vectors only when the defining vector field ξ is a symmetry of the background spacetime.
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ated by δξ . In other words, Hξ is the Hamiltonian conserved charge associated to the symmetry
generated by ξ .
Remark: One should make sure that Eq. (2.135) is indeed well defined, given the degeneracy of Ω̄.
In order to see that, note that one can add to δξ an arbitrary ‘gauge vector’ Z and the result in the
same: Ω̄(δξ +Z,δ ) = Ω̄(δξ ,δ ). Therefore, if such function Hξ exists (and we know that, locally,
it does), it is insensitive to the existence of the gauge directions so it must be constant along those
directions and, therefore, projectable to Γ̂. Thus, one can conclude that even when Hξ is defined
through a degenerate pre-symplectic structure, it is indeed a physical observable defined on the
reduced phase space.

This concludes our review of the covariant phase space methods and the definition of gauge
and Hamiltonian conserved charges for diffeomorphism invariant theories. In the next part we
shall revisit another aspect of symmetries on covariant theories, namely the existence of Noether
conserved quantities, which are also associated to symmetries of field theories.

2.5.3 Diffeomorphism invariance: Noether charge

Let us briefly review some results about the Noether current 3-form JN and its relation to the
symplectic current J. For that, we shall rely on [36]. We know that to any Lagrangian theory
invariant under diffeomorphisms we can associate a corresponding Noether current 3-form. Con-
sider infinitesimal diffeomorphism generated by a vector field ξ . These diffeomorphisms induce
the infinitesimal change of fields, given by δξ φ A := £ξ φ A. From (2.111) it follows that the corre-
sponding change in the lagrangian four-form is given by

£ξ L = EA∧£ξ φ
A +dθ(φ A,£ξ φ

A) . (2.136)

On the other hand, using Cartan’s formula, we obtain

£ξ L = ξ ·dL+d(ξ ·L) = d(ξ ·L) , (2.137)

since dL = 0, in a four-dimensional spacetime. Now, we can define a Noether current 3-form as

JN(δξ ) = θ(δξ )−ξ ·L , (2.138)

where we are using the simplified notation θ(δξ ) := θ(φ A,£ξ φ A). From the equations (2.136) and
(2.137) it follows that on the space of solutions, dJN(δξ ) = 0, so at least locally one can define a
corresponding Noether charge density 2-form Qξ relative to ξ as

JN(δξ ) = dQξ . (2.139)
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Following [? ], the integral of Qξ over some compact surface S is the Noether charge of S relative
to ξ . As we saw in the previous chapter there are ambiguities in the definition of θ (2.116) , that
produce ambiguities in Qξ . As we saw in the section 2.4.1, θ is defined up to an exact form:
θ → θ +dY (δ ). Also, the change in Lagrangian L→ L+dϕ produces the change θ → θ +δϕ .
These transformations affect the symplectic current in the following way

J(δ1,δ2)→ J(δ1,δ2)+d
(
δ2Y (δ1)−δ1Y (δ2)

)
. (2.140)

The contribution of ϕ vanishes, as before, and as we have shown in section 2.4.1. The above
transformation leaves invariant the symplectic structure. It is easy to see that the two changes,
generated by Y and ϕ contribute to the following change of Noether current 3-form

JN(δξ )→ JN(δξ )+dY (δξ )+δξ ϕ−ξ ·dϕ , (2.141)

and the corresponding Noether charge 2-form changes as

Qξ → Qξ +Y (δξ )+ξ ·ϕ +dZ . (2.142)

The last term in the previous expression is due to the ambiguity present in (2.139). This arbi-
trariness in Qξ was used in [? ] to show that the Noether charge form of a general theory of
gravity arising from a diffeomorphism invariant Lagrangian, in the second order formalism, can be
decomposed in a particular way.

Since dJN(δξ ) = 0 it follows, as in (2.123), that

0 =
∫
M

dJN(δξ ) =
∮

∂M
JN(δξ ) =

(
−
∫

M1

+
∫

M2

−
∫

∆

+
∫
I

)
JN(δξ ), (2.143)

and we see that if
∫

∆
JN(δξ ) =

∫
I JN(δξ ) = 0 then the previous expression implies the existence of

the conserved quantity (independent on the choice of M),∫
M

JN(δξ ) =
∫

∂M
Qξ . (2.144)

Note that the above results are valid only on shell.
In the covariant phase space, and for ξ arbitrary and fixed, we have [? ]

δJN(δξ ) = δθ(δξ )−ξ ·δL = δθ(δξ )−ξ ·dθ(δ ) . (2.145)

Since, ξ ·dθ = £ξ θ −d(ξ ·θ) and δθ(δξ )−£ξ θ(δ ) = J(δ ,δξ ) by the definition of the symplectic
current J (2.118), it follows that the relation between the symplectic current J and the Noether
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current 3-form JN is given by

J(δ ,δξ ) = δJN(δξ )−d(ξ ·θ(δ )) . (2.146)

We shall use this relation in the following sections, for the various actions that describe first order
general relativity, to clarify the relation between the Hamiltonian and Noether charges. We shall
see that, in general, a Noether charge does not correspond to a Hamiltonian charge generating
symmetries of the phase space.
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Chapter 3

Palatini action in a 3D asymptotically flat
space time

“The most beautiful experience we can have is the mysterious. It is the

fundamental emotion which stands at the cradle of true art and true sci-

ence.”

—Albert Einstein.

Idealized and reduced models have been useful in analyzing and studying, in a simplified arena,
some aspects of the (3+1) classical and quantum geneal relativity. To be more precise, we can
consider solutions to the Einstein equations that are invariant under certain symmetries. An out-
standing example is the (2+1)-dimensional case which, apart from being a lot more simpler than
the (3+1) one, has been solved in many different contexts and by different approaches, so we can
compare our results throughout these different paths and gain some insight.

In the context of Loop Quantum Gravity, the first order formulation of General Relativity allow
us to write the theory as a SU(2) connection theory (both the real or complex formulations, depend-
ing if the Barbero-Immirzi parameter is a real or complex parameter), becoming the starting point
of the canonical quantization. Also it is mandatory the use of the first order formulation of General
Relativity if we want to couple fermionic matter. Thus it becomes relevant to fully understand the
classical aspects of this formulation. Moreover, if we want stability conditions to be satisfied in the
quantum theory, we must check whether the classical hamiltonian is bounded from below. In the
second order metric formulation this boundeness has been proved [11; 47], we want to check and
compare it with the first order general relativity results obtained in the present work. This subject
also shed some light on the discussion about the energy of Minkowski space-time.

We point out the main results of this chapter, that will be reported on [26]:

• We derive the asymptotically flat conditions for the first order variables.
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• We prove that the 3-dimensional Palatini action with boundary term1, which give us the
same equations of motion that the 3-dimensional Einstein-Hilbert action, has a well posed
action principle, is finite and differentiable under the asymptotically flat boundary condi-
tions. Moreover if we introduce an additional boundary term to the action to make it explic-
itly Lorentz invariant we find that the resulting action is equivalent to the Einstein-Hilbert
action with Gibbons-Hawking term.

• We prove that the energy is bounded from below and above, through the covariant hamilto-
nian formalism (CHF) of first order gravity in an asymptotically 3-dimensional flat space-
time. Agreeing with previous results in the metric variables via Regge-Teitelboim methods
[11]. Although CHF provides an elegant and short derivation for the energy (and other rele-
vant symmetries as discussed in [27]), this quantity is determined up to a constant, that shifts
the region in which the energy is bounded.

• We also prove that the energy is bounded bounded from below and above with the Canonical
formalism (following two different 2+1 decompositions), but in contrast with the CHF, here
there is no ambiguity in the election of the constant, the energy is given directly from the
hamiltonian. Our results agree with those of [47].

• We propose a Chern-Simons action with boundary term valued on the Lie algebra of ISO(2,1)
that lead us to the well posed manifestly Lorentz invariant Palatini action previously intro-
duced. And at each stage we prove that we obtain all the same relevant quantities, in par-
ticular the energy. This action may served to further study some topological aspects of the
theory. But we shall leave it to forthcoming works.

3.1 Asymptotic structure: subtleties in 3 dimensions

Intuitively speaking, in (3+ 1) dimensions we can think of an asymptotically flat spacetime as
an spacetime with matter content in a bounded region outside of which the metric approaches
the Minkowski metric. In the formal definition we say a smooth space-time metric g on R is
weakly asymptotically flat at spatial infinity if there exist a Minkowski metric η such that, outside a
spatially compact world tube, (g−η) admits an asymptotic expansion2 to order 1 and limrm→∞(g−
η) = 0.

1In analogy to the four dimensional case [7] and as previously introduced in the literature ....
2The explicit form of the expansion depends on the coordinates. In 3-dimensions and cylindrical coordinates, as

we use through the present work, an asymptotic expansion to order m of a function f has the form,

f (r,θ) =
m

∑
n=0

n f (θ)
rn +o(r−m), (3.1)
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In a (2+1) spacetime the situation is a bit different, if we consider a mass distribution, say a
point particle at the origin, r = 0, outside this region, r > 0, the metric does not approach a flat
metric, it is flat. So, how can we define an asymptotically flat space-time?

In order to define an (2+1) asymptotically flat spacetime consider the ’closest thing’ to the
(3+1) picture. Consider the solution of a point particle of mass M at the origin,

ds2 =−dt2 + r−8GM(dr2 + r2dθ
2) for r > 0 (3.3)

where t,r,θ are the cylindrical coordinates, t ∈ (−∞,+∞), r∈ [0,∞), and θ ∈ [0,2π). This metric is
flat everywhere except at the origin. To see that, we can define ρ ≡ rα

α
, θ̄ ≡ αθ with α ≡ 1−4GM.

So the metric takes the form,
ds2 =−dt2 +dρ

2 +ρ
2dθ̄

2, (3.4)

from which the flatness of the metric is apparent. This is due to the fact that in a three-dimensional
manifold satisfying Einstein’s equations, whenever Tab = 0 the Riemann tensor is zero, i.e. the
spacetime is flat on those points1.

One can see that θ̄ ∈ [0,2πα) with (0 < α ≤ 1) so there is a deficit angle which, despite the
local flatness for r > 0, makes this spacetime not globally equivalent to Minkowski space (due to
the conic singulalrity).

We are looking for a metric that at spatial infinity approaches that of a point particle at the
origin (3.3). So we can define a 2+1 space-time to be asymptotically flat if the line element admits
an expansion of the form2 [47],

ds2 = −
(

1+O

(
1
r

))
dt2 + r−β

[(
1+O

(
1
r

))
dr2 + r2

(
1+O

(
1
r

))
dθ

2
]

+O(r−1−β/2)dtdθ , (3.5)

Note that in the asymptotic region (when r→ ∞) the previous line element approaches to the
background metric (in cartesian coordinates),

where r and θ are the coordinates on cylinders with r = const and the remainder o(r−m) has the property that

lim
r→∞

r o(r−m) = 0. (3.2)

1We know that the Riemann tensor can be split into its trace and trace-free part, the Ricci tensor and scalar, and
the Weyl tensor respectively. In 3-dimensions the Weyl tensor is identically zero, and by Einstein’s equations Tab = 0
implies that the Ricci tensor and scalar are also zero. Therefore the Riemann tensor is zero, so locally the space-time is
flat. Note also that here we are dealing with asymptotically flat space-time, in contrast to the conformally flat picture
where the vanishing of the Cotton tensor is equivalent the metric being conformally flat.

2A word on notation, O(r−m) means that those terms include a term proportional to r−m and terms that decay
faster, in contrast with o(r−m) that only includes terms that decay faster than r−m.
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η̄ab =

−1 0 0
0 r−β 0
0 0 r−β

 . (3.6)

We are approaching spatial infinity by some one-parameter family of boundaries of regions
Mρ ⊂M (cylinders throughout the present work, since they are more suited for hamiltonian meth-
ods, as we plan to use in the following sections, and also the use of hyperboloids in the 2+ 1
context is less natural than in the 4D case [7; 25; 27], due to the lack of asympototic Lorentz in-
variance, since, unless M = 0, the asymptotically flat spacetime previously defined is no globally
isometric to the three dimensional Minkowski space). {Mρ |ρ > 0} are an increasing family, i.e.
Mρ ⊂Mρ ′ whenever ρ < ρ ′ and such that they cover M (

⋃
ρ Mρ =M). This procedure of taking

a finite region Mρ represent a cut-off for space-time and then we remove it by the limiting process
ρ → ∞. We take ρ = r+O(r0). This is called a ‘cylindrical cut-off’ in [46].

3.2 The action and the boundary conditions of the first order
variables

We can consider the Palatini action in three dimensions, whose equations of motion are equivalent
to those given by the three dimensional Einstein-Hilbert action. Now the dynamical variables
instead of the metric are a triad e and a Lorentz connection ω , both valued on the Lie algebra of
SO(2,1). Additionally we add to the Palatini action a boundary term in order to have a well posed
action principle, that is, we want the action to be finite when evaluated on histories compatible
with the boundary conditions and also differentiable.1

As we have emphasized, we want to begin with a well posed action principle, we can begin
with the three dimensional analog of the four dimensional Palatini well posed action [7], that is,
the Standard Palatini action with boundary term (SPB),

SSPB[e,ω] =− 1
κ

∫
M

eI ∧FI −
1
κ

∫
∂M

eI ∧ωI. (3.7)

Now the natural question arises, is the boundary term Lorentz invariant? We can answer this in two
ways. The first is by noting that we can perform a Lorentz transformation on the internal indices
in (3.14), (3.15) and we still have an asymptotically flat configuration. So, in a sense, the internal
directions are ‘arbitrary’, therefore without a loss of generality we can fix on the boundary one of
the internal directions ∂anI = 0 as in the 4-dimensional case [7; 18], and the boundary term will
be invariant under the residual gauge transformations. On the other hand we can add the following

1For further explanation about what does it mean an action to be differentiable check out [27].
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term to the action,
α

∫
∂M

1
n ·n

ε
IKLeI ∧nKdnL (3.8)

with this addition, when α = 1, the boundary term in (3.7) becomes1,∫
∂M

eI ∧ωI +
∫

∂M

1
n ·n

ε
IKLeI ∧nKdnL =

∫
∂M

1
n ·n

ε
IKLeI ∧nKDnL. (3.10)

So instead of the action (3.7) we can begin with the manifestly Lorentz invariant well posed action

(LIP)2,

SLIP[e,ω] =− 1
κ

∫
M

eI ∧FI −
1
κ

∫
∂M

1
n ·n

ε
IKLeI ∧nKDnL. (3.11)

Note that the general Palatini action contains both the SPB and LIP cases, when α = 0 and α = 1
respectively, we shall use it to compare both actions,

SGP[e,ω] =− 1
κ

∫
M

eI ∧FI −
∫

∂M
eI ∧ωI−α

∫
∂M

1
n ·n

ε
IKLeI ∧nKdnL (3.12)

Moreover we can show that (3.8) is a constant when evaluated on asymptotically flat boundary
conditions (see Appendix 3.7 for the details on the derivation), so it does not spoil the finiteness
nor differentiability of the action. Therefore (3.11) is still a well posed action. Further, the term
(3.10) is related the Gibbons-Hawking term needed for the Einstein-Hilbert action to be well posed
and the action (3.11) is the same as the Einstein-Hilbert action with Gibbons-Hawking term [47].

As in the four dimensional case this is a first order action, we only have first derivatives on our
configuration variables, that is why we also refer to these variables as first order variables.

Some comments are in order. We are writing the action in a way that is independent of the Lie
group G on which is defined [60], which does not need the existence of a metric to be defined. In
the case of an arbitrary G, eaI can no longer be think of as the cotriad. The action (3.7) is then a
functional of an £G−valued connection one-form ω I

a and an £∗G−valued covector field eaI . Where
£G− stands out for the Lie algebra of G and £?G− its dual. When we chose G = SO(2,1) we re-
cover three-dimensional general relativity and we can think of eaI as a cotriad. This coincidence is
exclusive of the three-dimensional case.

1 ∫
∂M

1
n ·n

ε
IKLeI ∧nKDnL =

∫
∂M

1
n ·n

ε
IK

LeI ∧nK
(
dnK + ε

L
MNω

MnN)
=

∫
∂M

1
n ·n

ε
IKLeI ∧nKdnL +

∫
∂M

1
n ·n

ε
IKLeI ∧nKεLMNω

MnN (3.9)

2Note the global minus sign, this is introduced since the Einstein Hilbert action with Gibbons Hawking term is
equivalent to this action with minus sign (see appendix 3.8 for more details), so we can compare our results here with
those obtained in the second order formulation [11; 47].
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3.2.1 Fall-off conditions

To check that, in fact, the previous action is well posed we need to specify the boundary conditions
on the first order variables e and ω , in this case asymptotically flat boundary conditions.

From the line element (3.5),

ds2 = −
(

1+O

(
1
r

))
dt2 + r−β

[(
1+O

(
1
r

))
dr2 + r2

(
1+O

(
1
r

))
dθ

2
]

+O(r−1−β/2)dtdθ , (3.13)

we can find the fall-off conditions of gab as in [11; 47], with a,b,c = 0,1,2 spacetime indices, and
therefore remembering that gab = ηIJeI

aeJ
b where ηIJ = diag(−1,1,1) is the Minkowski metric, the

fall-off conditions of the first order variables.
We can assume the co-triads and the triads admit an asymptotic expansion of the form1

eI
a = δ

0
a

(
oēI

0 +
1ēI

0(θ)

r
+o(r−1)

)
+ r−β/2

(
oēI

ā +
1ēI

ā(θ)

r
+o(r−1)

)
δ

ā
a , (3.14)

and

ea
I = δ

a
0

(
oē0

I +
1ē0

I (θ)

r
+o(r−1)

)
+ rβ/2

(
oēā

I +
1ēā

I (θ)

r
+o(r−1)

)
δāa. (3.15)

We define,
0eI

a := 0ēI
0δ

0
a + r−β/2 0ēI

āδ
ā
a and 1eI

a :=
1ēI

0
r

δ
0
a + r−β/2

1ēI
ā

r
δ

ā
a (3.16)

such that η̄ab = ηIJ
0eI

a
0eJ

b given by (3.6), where ηIJ = diag(−1,1,1) is the Minkowski metric.
As for the triads, we assume that the connection ω I

a admit an expansion of the form,

ω
I
a =

o
ω̄

I
a +

1ω̄ I
a(θ)

r
+

2ω̄ I
a(θ)

r2 +o(r−2), (3.17)

Even though this expansion seems different from that of the triad, we can check that this expansion
is derived from that of the triad and co-triad by means of the condition, De = 0, to first order.

Now we have to remember that any connection D can be written as D = ˚̄D+ω , where ˚̄D
is any other connection. When there is a ‘preferred’ connection available, we can write all the
other connections as that one plus a vector potential ω . Since there is no canonical choice of this
standard flat connection, ˚̄D, within this particular problem it will be convenient to choose that

1A tensor field T a...b
c...d will be said to admit an asymptotic expansion to order m if all its component in the

Cartesian chart xa do so. Note that appart from the r−β factor in the spatial part of (3.5) the components in cartesian
coordinates admit an expansion of order 1 in analogy with the standard definition of an asymptotically flat spacetime
for 4 dimensional spacetimes [7; 25; 27], and also we assume that the first order variables, appart from a factor of
r−β/2, do so.
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˚̄Da
0ēI

b = 0. Using local coordinates and a local trivialization of E =UM×SO(2,1), where UM is
an open set on M, the components of the connection for the condition of the compatibility of the
triad with the connection, De = 0 will look like,

DaeI
b =

˚̄DaeI
b + ε

IJK
ωaJebK = 0. (3.18)

From (3.18) is a standar calculation to see that the spin connection can be written in terms of
the triad as1,

ω
M
c =−1

2

(
εL

KMea
KebLecI

˚̄D[aeI
b]− εL

KMea
K

˚̄D[ceL
a]− εL

KMebL ˚̄D[bec]K

)
. (3.19)

The leading term of the spin connection can be found from the previous equation considering
the leading terms of the triad and cotriad,

Leading
ω

M
c =−1

2

(
εL

KM 0ea
K

0ebL 0ecI
˚̄D[a

0eI
b]− εL

KM 0ea
K

˚̄D[c
0eL

a]− εL
KM 0ebL ˚̄D[b

0ec]K

)
. (3.20)

where ˚̄Db
0ēI

a = 0. Note that from (3.14),

˚̄Db
0eI

a =
˚̄Db(

0ēI
0δ

0
a )+

˚̄Db(r−β/2 0ēI
āδ

ā
a ) =

˚̄Db(r−β/2)0ēI
āδ

ā
a = (∂br−β/2)0ēI

āδ
ā
a (3.21)

but ∂br−β/2 =−1
2β r−1−β/2∂br. Therefore,

˚̄Db
0eI

a = (−1
2

β r−1−β/2
∂br)0ēI

āδ
ā
a = (−1

2
β r−1

∂br)0eI
āδ

ā
a (3.22)

Taking into account the previous equation and the fall-off conditions (3.14) and (3.15), equation
(3.20) becomes (using that ∂0r = 0),

Leading
ω

M
c =

β

2r
εL

KM 0ēā
K

0ēL
c̄ δ

c̄
c , (3.23)

then by considering the expansion (4.37) we can see that,

1
ω̄

M
c =

β

2
∂ārεL

KM 0ēā
K

0ēL
c̄ δ

c̄
c . (3.24)

Which implies that
1ω̄M

c
r is the leading term of ωM

c and also 0ωM
c = 0 as well as 1ωM

0 = 0.

1See Appendix B for the derivation.
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3.2.2 Well posedness of the action

As we already mentioned, beginning with a well posed action principle under asymptotically flat
boundary conditions, we want to find an expression for the energy under various approaches. We
want to analyse whether this results coincide with those in the second order formalism [11; 47]
and also the relation and differences among the different paths we take: the covariant hamiltonian
formalism (CHF), and the canonical one, but taking two different 2+1−decompositions.

But first we have to check that the action principle we are working with is well posed, i.e. finite
and differentiable under asymptotically flat boundary conditions. With the fall-off conditions of
the first order variables found in section 3.2.1 we are ready to undertake this task.

3.2.2.1 Finiteness

Since the term (3.8) is a finite constant when evaluated on the boundary1, it does not spoil finite-
ness, then is only necessary to cheek that the action (3.7) is finite, so the manifestly gauge invariant
action (3.11) is finite. The action (3.7) can be rewritten as,

S[e,ω] = − 1
κ

∫
M

eI ∧FI −
1
κ

∫
∂M

eI ∧ωI

= − 1
κ

∫
M

(
eI ∧dωI +

1
2

εI
JKeI ∧ωJ ∧ωK

)
− 1

2κ

∫
∂M

eI ∧ωI (3.25)

since FI = dωI +
1
2εI

JKωJ ∧ωK and,

d(eI ∧ωI) = deI ∧ωI− eI ∧dωI ⇒ eI ∧dωI = deI ∧ωI−d(eI ∧ωI). (3.26)

Therefore,

S[e,ω] = − 1
κ

∫
M

(
deI ∧ωI +

1
2

εI
JKeI ∧ωJ ∧ωK−d(eI ∧ωI)

)
− 1

κ

∫
∂M

eI ∧ωI

= − 1
κ

∫
M

(
deI ∧ωI +

1
2

εI
JKeI ∧ωJ ∧ωK

)
. (3.27)

The leading term of the previous equation is,

0S[e,ω] =− 1
κ

∫
M

(
d 0eI ∧ 1

ωI +
1
2

εI
JK 0eI ∧ 1

ωJ ∧ 1
ωK

)
, (3.28)

but we already used the compatibility condition with the triad to first order to obtain the fall-off

1See appendix 3.7 for the details.
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conditions on ω , (3.18), which also can be written as,

d 0eI− ε
I

JK
1
ω

K ∧ 0eJ = 0 (3.29)

therefore, we can rewrite (3.28) as,

0S[e,ω] = − 1
κ

∫
M

(
d 0eI ∧ 1

ωI−
1
2

εI
JK 0eI ∧ 1

ωJ ∧ 1
ωK

)
= − 1

κ

∫
M

d 0eI ∧ 1
ωI−

1
2

d 0eI ∧ 1
ωI =−

1
κ

∫
M

1
2

d 0eI ∧ 1
ωI. (3.30)

Now, using (3.22) and (3.24) the leading term is,

1
4κ

∫
M

˚̄Da
0eI

b
1
ω

K
c ε̃

abcd3x = 0, (3.31)

since1 1ωK
0 = 0, ˚̄D0

0eI
ā = 0 and ˚̄Da

0eI
0 = 0. On the other hand note that we could have chosen to

write (3.27), also using De = 0 to first order, as,

0S[e,ω] =− 1
4κ

∫
M

ε
I

JK
0eI ∧ 1

ω
J ∧ 1

ω
K =− 1

4κ

∫
M

ε
I

JK
0eI

a
1
ω

J
b

1
ω

K
c ε̃

abcd3x. (3.32)

In the previous equation, using (3.16) and (3.24), the only nonvanishing term is

0S[e,ω] =− 1
4κ

∫
M

ε
I

JK
0ēI

0

1ω̄J
b̄

r

1ω̄K
c̄

r
ε

0b̄c̄rdrdθdt =
∫
M
O(r−1)dr. (3.33)

Our region of integration M is bounded by ∂M= M1∪M2∪ I with its corresponding orienta-
tion. In order to check finiteness it is enough to check that the integral over a spatial hypersurface
is finite. This is true since we are integrating over a finite time interval where the Cauchy surfaces
M1 and M2 are asymptotically time-translated with respect to each other. Such spacetimes M are
referred to as cylindrical slabs [7] or as cylindrical temporal cut-off [? ].

Note that on a Cauchy slice the only dependency on r of the previous equation is due to 1ωK
c =

O(r−1), so the integral over r goes as
∫
O(r−1)dr that may logarithmically diverge in the limit

r→∞, but we already proved on (3.31) that this term is zero. Then the next to leading terms decay
faster on r so in the limit r→ ∞ they go to zero. Therefore the integral is finite even off shell.

1 1ωK
0 = 0 is zero from the fall off conditions on ω , ˚̄Da

0eI
0 = 0 because 0eI

0 = 0ēI
0 and ˚̄D0

0eI
ā = 0 because we

ask the condition of the compatibility of the triad with the connection to be satisfied to first order to find the fall-off
conditions on ω ,

D0
0eI

b =
˚̄D0

0eI
b + ε

IJK 1
ω0J

0ebK = 0.

since 1ωK
0 = 0 then ˚̄D0

0eI
b = 0.
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3.2.2.2 Differentiability

In order an action to be differentiable the variation of the action needs to take the form,

δS[e,ω] =
∫
M
[Ee∧δe+Eω ∧δω]+

∫
∂M

θ̃(eI,ω I,δeI,δω
I), (3.34)

and in order Ee and Eω to be the Euler-Lagrange equations of motion, the boundary term needs
to be zero when evaluated on solutions compatible with the boundary conditions . Since the term
(3.8) is constant when evaluated on those solutions, its variation is zero so it does not spoil differ-
entiability. Therefore we only need to check if the action (3.7) is differentiable.

The variation of the 3-dimensional Palatini action with boundary term (3.7) is,

δS[e,ω] =− 1
κ

∫
M

[
δeI ∧FI + eI ∧δFI

]
− 1

κ

∫
∂M

[
δeI ∧ωI + eI ∧δωI

]
, (3.35)

but
δFI = dδωI +

1
2

εI
JK

δωJ ∧ωK +
1
2

εI
JK

ωJ ∧δωK = dδωI + εI
JK

δωJ ∧ωK (3.36)

then, the variation becomes,

δS[e,ω] =− 1
κ

∫
M

δeI ∧FI−
1
κ

∫
M

(
deJ + ε

JIKeI ∧ωK
)
∧δωJ−

1
κ

∫
∂M

δeI ∧ωI. (3.37)

If the boundary term is zero under the boundary conditions, the action is said to be differentiable
and the equations of motion are,

FI = 0 and DeJ = deJ + ε
JIKeI ∧ωK = 0. (3.38)

Then the boundary term is,

− 1
κ

∫
∂M

δeI ∧ωI =−
1
κ

(
−
∫

M1

+
∫

M2

+
∫
I

)
δeI ∧ωI (3.39)

where we are considering that our integration region M is bounded by ∂M= M1∪M2∪ I with its
corresponding orientation. We are taking, as usual, δeI = δωI = 0 on the space-like surfaces M1

and M2. We are left only with the integral on the time-like boundary I. Remember that we are
approaching spatial infinity by a family of cylinders, Cr with r = const, in the limit when r→ ∞.
To check differentiability we have to prove that

lim
r→∞

∫
Cr

δeI ∧ωI = 0, (3.40)

when evaluated on histories compatible with the asymptotically flat boundary conditions. It is
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enough to check the behaviour of the leading term (the next to leading terms decay ‘faster’ as r

goes to infinity). The leading term of (3.40) in components is,

lim
r→∞

∫
Cr

δ
0eI

a

1ωbI

r
ε

abrdθdt = lim
r→∞

∫
Cr

(
δ

0eI
0

1
ωb̄I−δ

0eI
b̄

1
ω0I
)

ε
0b̄dθdt = 0. (3.41)

We have used that 1ω̄ I
0 = 0 and δ 0eI

0 = 0 (since 0eI
0 =

0ēI
0 and 0ēI

a is our fixed flat frame at the
asymptotic region). The next to leading terms decay faster, since 1eI

a =O(r−1) and 1ωK
c =O(r−1),

they are proportional to

lim
r→∞

∫
Cr

(
1
r
+O(r−2)

)
dθdt = 0. (3.42)

Therefore the action is also differentiable under asymptotically flat boundary conditions.

3.3 Covariant analysis

In this section we shall follow covariant hamiltonian formalism developed in section 2.5 [27].
From the variation of the action (3.37), we can identify the symplectic potential,

Θ̃(eI,ω I,δeI,δω
I) :=

∫
∂M

θ̃(eI,ω I,δeI,δω
I) =− 1

κ

∫
∂M

δeI ∧ωI, (3.43)

and its associated symplectic current,

J(δ1,δ2) := 2δ[1θ̃(δ2]) =−
1
κ

(
δ2eI ∧δ1ωI−δ1eI ∧δ2ωI

)
. (3.44)

Since J is closed over any region M,

0 =
∫
M

dJ(δ1,δ2) =
∮

∂M
J(δ1,δ2) =

[
−
∫

M1

+
∫

M2

+
∫
I

]
J(δ1,δ2) (3.45)

here we are considering the region M is bounded by ∂M = M1∪M2∪ I, M1 and M2 are space-like
slices and I an outer boundary, in particular we shall consider configurations that are asymptotically
flat. We are assuming no internal boundary.

In order to have a conserved symplectic current and therefore a conserved pre-symplectic form,
independent of the Cauchy surface, we have to check that

∫
I J = 0, that is there is no current

leakage’ at infinity.
Taking into account the asymptotically flat boundary conditions previously derived, we can see

that the leading terms of
∫
I J are,

∫
I

0J(δ1,δ2) =−
1
κ

lim
r→∞

∫
Cr

(
δ2

0eI ∧δ1
1
ωI−δ1

0eI ∧δ2
1
ωI
)
. (3.46)
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Following the same arguments as in (3.41), that is using 1ω̄ I
0 = 0 and δ 0eI

0 = 0, and noticing
that the previous equation becomes,∫

I

0J(δ1,δ2) =−
1
κ

lim
r→∞

∫
Cr

(
δ2

0eI
0δ1

1
ωāI−δ2

0eI
āδ1

1
ω0I−δ1

0eI
0δ2

1
ωāI +δ1

0eI
āδ2

1
ω0I
)

ε̃
0ā,

(3.47)
we can see that ∫

I

0J(δ1,δ2) = 0. (3.48)

But on the other hand note that∫
I

0J(δ1,δ2) =−
1
κ

lim
r→∞

∫
Cr

(
δ2

0eI
aδ1

1ω̄bI

r
−δ1

0eI
a∧δ2

1ω̄bI

r

)
ε

abrdθdt (3.49)

is independent of r. Therefore the next to leading terms goes as,∫
I
J(δ1,δ2) =−

1
κ

lim
r→∞

∫
Cr

O(r−1)εabdθdt = 0. (3.50)

Then the symplectic current is conserved.
Now we can define a conserved pre-symplectic form over an arbitrary space-like surface M,

Ω̃(δ1,δ2) =
∫

M
J(δ1,δ2) =−

1
κ

∫
M

δ2eI ∧δ1ωI−δ1eI ∧δ2ωI (3.51)

Once we have Ω̃(δ1,δ2), we can analyse the symmetries of the theory and their associated
conserved charges. In particular we are interested in the conserved charge associated with the
asymptotic time translations, i.e. the ADM energy.

Since one of our goals is to compare the resulting expression for the energy through the co-
variant and canonical formalism, we need to be sure that the conventions in both schemes are in
agreement. We discuss this point in the next section.

3.3.0.3 Link between covariant and canonical approaches

The symplectic structure is essential in order to have a hamiltonian description. In a coordinate
basis asscociated with the configuration variables, the fields φ A, the symplectic form can also may
be difined by

Ω̄ = dΠA∧dφ
A, (3.52)

where ΠA is the momenta canonically conjugated to φ A. This Ω̄ is consistent with all our deriva-
tions in the covariant phase space. But up to now we haven’t said ‘who are’ our φ A and ΠA.

It is well known that in the first order formulation of General Relativity one of our configuration
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variables is the canonically conjugated to the other. For instance, in the connection approach, ω

is chosen to be the configuration variable and it turns out that e will be its canonical momenta. Or
the other way around if we chose the geometrodynamics picture.

To compare with the results obtained by the canonical formalism, first we have to chose if we
want to work in the connection or geometrodynamics approach. We chose the first one, that is
φ A = ω I and ΠA = eI . From (3.51),

Ω̃(δ1,δ2) =−
1

2κ

∫
M

δ2 eI︸︷︷︸
ΠA

∧δ1 ωI︸︷︷︸
φ A

−δ1eI ∧δ2ωI =−Ω̄ (3.53)

In order to compare our expressions for the energy, through all the approaches we have to use
Ω̄ =−Ω̃.

3.3.1 The hamiltonian and the energy

Consider infinitesimal diffeomorphisms generated by a vector field ξ , these diffeomorphisms in-
duce an infinitesimal change in the fields given by δξ := (£ξ e,£ξ ω).

We said ξ is a hamiltonian vector field iff Ω̄(δ ,δξ ) is closed, ddΩ = 0, and the Hamiltonian Hξ

is defined by,
Ω̄(δ ,δξ ) = δHξ = ddH. (3.54)

Where dd is the exterior derivative on the covariant phase space1, which is different from the
exterior derivative on spacetime d.

So Hξ is a conserved quantity along the flow generated by ξ . And when we consider the case
when ξ generates asymptotic time translations of the space-time, which induces time evolution on
the covariant phase space generated by the vector field δξ := (£ξ e,£ξ ω). Hξ is the energy.

3.3.1.1 The energy

From eq. (3.51),

Ω̄(δ ,δξ ) = −Ω̃(δ ,δξ ) =
1
κ

∫
M

δξ eI ∧δωI−δeI ∧δξ ωI (3.55)

=
1
κ

∫
M

£ξ eI ∧δωI−δeI ∧£ξ ωI (3.56)

by using £ξ φ A = ξ ·dφ A +d(ξ ·φ A)

Ω̄(δ ,δξ ) =
1
κ

∫
M

[
(ξ ·deI)∧δωI +d(ξ · eI)∧δωI−δeI ∧ (ξ ·dωI)−δeI ∧d(ξ ·ωI)

]
. (3.57)

1see [27] for further details and definitions.
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Now we have to use that at infinity ξ should approach a time-translation Killing vector field of the
asymptotic flat spacetime. In particular this means that in the asymptotic region ξ a is orthogonal
to the spacelike surface. Therefore ξ · eI = eI

0, ξ ·ωI = ω0I but for the leading term we have seen
1ω̄0I = 0, also ˚̄Da

0eI
b only has spatial components so ξ · d 0eI = 0. With this at hand we can see

that1,

Ω̄(δ ,δξ ) =
1
κ

∫
M

d(ξ · eI)∧δωI (3.58)

=
1
κ

∫
M

d
[
(ξ · eI)δωI

]
− (ξ · eI)dδωI (3.59)

Note that the second term of the previous equation in components becomes,

−
∫

M

0ēI
0

˚̄D[b̄|δω|c̄]Iε
b̄c̄rdrdθ (3.60)

but
˚̄D[b̄|δω

M
|c̄] = δβ

[
r−2

∂[b̄|r∂ār+ r−1
∂[b̄|∂ār

]
εLK

M 0ēK
d̄

0ēL
|c̄]η

ād̄, (3.61)

so
0ēI

0
˚̄D[b̄|δω|c̄]Iε

b̄c̄ = δβ

[
r−2

∂[b̄|r∂ār+ r−1
∂[b̄|∂ār

]
εLKI

0ēK
d̄

0ēL
|c̄]

0ēI
0︸ ︷︷ ︸

ēε|c̄]d̄0

η
ād̄

ε
b̄c̄︸︷︷︸

ε0b̄c̄

, (3.62)

here ē =
√
−η = 1 where ηab is the Minkowski metric associated with the fixed frame ēa

I at the
asymptotic region, also ε|c̄]d̄0ε0b̄c̄ = −2δ b̄

|d̄]. Thus by antisymmetry in the space-time indices this
term vanishes.

From (3.58) and the previous argument the presymplectic form is,

Ω̄(δ ,δξ ) =
1
κ

∫
M

d
[
(ξ · eI)δωI

]
=

1
κ

∫
∂M

(ξ · eI)δωI

= lim
r→∞

[
1
κ

∫
∂M

0eI
0δ

1ωc̄I

r
ε̃

0c̄ +
∫

∂M
O(r−1)dθ

]
, (3.63)

with

δ

( 1ωM
c̄

r

)
=

1
2r

δβ∂ārεLK
M 0ēK

d̄
0ēL

c̄ η
ād̄. (3.64)

Then, by (3.54), the variation of the hamiltonian, and therefore of its corresponding associated

1This is the only non-vanishing term to first order.
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conserved quantity, the energy, is

δHξ = Ω̄(δ ,δξ ) =
1

2κ
lim
r→∞

∫
∂M

0ēI
0

(
δβ r−1

∂ārεLKI
0ēK

d̄
0ēL

c̄ η
ād̄
)

ε̃
c̄

=
1

2κ

∫
∂M

1
r

δβ
(
εLKI

0ēI
0

0ēK
d̄

0ēL
c̄
)︸ ︷︷ ︸

ēεc̄d̄0

η
ād̄

∂ār ε̃
c̄︸︷︷︸

ε̃0c̄

(3.65)

here we are using the identity εLKI
0ēI

0
0ēK

d̄
0ēL

c̄ = ēε̃0c̄d̄ where ē =
√
−η = 1 with η the determinant

of ηab, the Minkowski metric associated with the fixed frame ēa
I at the asymptotic region. Also

∂ ār =: rā can be seen as the normal to the cylinders r = const. On the other hand η ād̄∂ārε̃0c̄ =

rd̄ ε̃0c̄, so we can use ε̃abcrc = ε̃ab. With all this we can see that the previous equation (3.65) is,

δHξ =
1

2κ

∫
∂M

1
r

δβ ēε̃c̄d̄0rd̄
ε̃

0c̄ =
1

2κ

∫
∂M

1
r

δβ ēε0c̄ε
0c̄︸ ︷︷ ︸

1

rdθ =
1

2κ
δβ

∫
∂M

dθ (3.66)

Also note that ∂M =Ct , M a space like slice at “time” t, and Ct a circle with radius r at time t. We
can write the energy,

δHξ =
δβ

2κ

∫
Ct

dθ (3.67)

taking κ = 8πG,

δHξ =
δβ

2(8πG)
2π =

δβ

8G
. (3.68)

Since the previous expression only gives the variation, the energy will always be determined up to
a constant,

E =
β

16G
+ const (3.69)

Following [11; 47], β ∈ [0,2), we can choose this constant to be zero for the energy of Minkowski
space-time to be zero,

E ∈
[

0,
1

4G

]
. (3.70)

which coincides with the result obtained in [11] throughout Regge-Teitelboim method. Al-
though CHF is elegant only provide us with the variation of the energy, so we have and indeter-
minacy in the election of the constant that may shift the region in which the energy is bounded.
Thats why we shall also analyse this action through the canonical analysis, where the hamiltonian
is completely determined by the Legendre transformation.
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3.4 Canonical analysis

In the case of theories that can be formulated without the need of a metric, we have two choices for
a 2+1 decompoisition. The first one, we shall refere to it as the Witten approach1, it does not need
the existence of a metric, we only ask the spacetime M to be topologically Σ×R and that there
exists a function t (with nowhere vanishing gradient (dt)a) such that each t = const surface Mt is
diffeomorphic to Σ. Also there exists a flow vector field ta satisfying ta(dt)a = 1, which allow us
to define “evolution”, although t does not necessarily have the interpretation of time2.

The second one, we shall refere to it as Ashtekar-Barbero-Varadarajan approach3. In this
approach, following closely the 3+1 decomposition of the first order variables, besides the ingre-
dients of the Witten approach we are assuming the existence of a metric gab and therefore a unit
normal to the Cauchy surfaces. This introduce additional information to that in Witten’s decompo-
sition. In particular, we can decompose any tensor into its normal and tangential part, in particular
ta can be decomposed as ta = Nna+Na, where N and Na are the laps and shift functions. Now we
have additional information, the freedom of choosing any foliation and any vector field ta, that is
coded in the laps and shift functions.

A comment in notation, in what follows we use ε̃abc as the Levi-Civita tensor density of weight
+1 instead of η̃abc, more commonly used in the 3− dimensional case, this to avoid confusion with
the flat metric η̄ab (3.6), or with the Minkowki metric (either with internal or spacetime indices).
Also we refer to a Cauchy slice as M following the notation in [27].

3.4.1 Witten’s approach

In order to make the canonical analysis (a la Witten) of the 3-dimensional Palatini action, we write
action (3.11) it in components

SPB[e,ω] = − 1
2κ

∫
M

ε̃
abceaIF I

bc−
1
κ

∫
∂M

eaIω
I
bε̃

ab− α

κ

∫
∂M

1
n ·n

ε
IKLeaInK

˚̄DbnLε̃
ab(3.71)

= − 1
2κ

∫
M

ε̃
abceaIF I

bc−
1
κ

∫
∂M

eaIω
I
bε̃

ab +
α

κ

∫
∂M

1√
n ·n

ε
ILeaI

˚̄DbnLε̃
ab (3.72)

For this decomposition we shall follow the analysis in [60], taking enough care of the boundary
term, the ones coming from the Palatini action and the boundary terms in (3.71). Using that

1Following [15] refering to Witten’s paper [67], for more details on the analysis in the case where there is no
boundary see [60].

2Since the 2+ 1 Palatini action based on an arbitrary Lie group G (3.7) is a theory independent of a spacetime
metric, we can still define evolution from one t = const surface to the next using the Lie derivative along ta.

3In [15] the authors discuss the differences in the canonical analysis, particularly in the constraints, following
Witten’s vs Ashtekar’s approaches. Thats whay we call it Ashtekar-Barbero-Varadarajan approach.
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ε̃abc = 3t [aε̃bc]dt and ε̃ab = 2t [aε̃b]dt

SPB[e,ω] = − 1
2κ

∫
dt
∫

M
(ta

ε̃
bc + tb

ε̃
ca + tc

ε̃
ab)eaIF I

bc−
1
κ

∫
dt
∫

Ct

(ta
ε̃

b− tb
ε̃

a)eaIω
I
b

+
α

κ

∫
dt
∫

Ct

(ta
ε̃

b− tb
ε̃

a)
1√
n ·n

ε
ILeaI

˚̄DbnL (3.73)

= − 1
κ

∫
dt
∫

M

1
2
(taeaI)︸ ︷︷ ︸
(t·e)I

F I
bcε̃

bc + tb
ε̃

caeaIF I
bc


− 1

κ

∫
dt
∫

Ct

(taeaI)︸ ︷︷ ︸
(t·e)I

ω
I
bε̃

b− (tb
ω

I
b)︸ ︷︷ ︸

(t·ω)I

eaI ε̃
a

 (3.74)

+
α

κ

∫
dt
∫

Ct

1√
n ·n

ε
IL
[
(taeaI)

˚̄DbnLε̃
b− (tb ˚̄DbnL)eaI ε̃

a
]

(3.75)

Taking into account the following standard relations,

F I
bc = 2∂[bω

I
c]+[ωb,ωc]

I = ∂bωc−∂cωb +[ωb,ωc]
I (3.76)

Dbω
I
c = ∂bω

I
c +[ωb,ωc]

I (3.77)

tbF I
bc = £~tω

I
c−Dc(t ·ω)I (3.78)

the second term of the bulk part can be written as,

ε̃
caeaItbF I

bc = (£~tω
I
c)ε̃

caeaI−Dc(ω · t)I
ε̃

caeaI (3.79)

= (£~tω
I
c)ε̃

caeaI−Dc[(ω · t)I
ε̃

caeI
aI]+ (ω · t)IDc(ε̃

caeaI). (3.80)
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Then the action takes the form,

SPB[e,ω] = − 1
κ

∫
dt
∫

M

1
2
(taeaI)︸ ︷︷ ︸
(t·e)I

F I
bcε̃

bc +(£~tω
I
c)ε̃

caeaI−Dc[(ω · t)I
ε̃

caeaI]+ (ω · t)IDc(ε̃
caeaI)


− 1

κ

∫
dt
∫

Ct

(taeaI)︸ ︷︷ ︸
(t·e)I

ω
I
bε̃

b− (tb
ω

I
b)︸ ︷︷ ︸

(t·ω)I

eaI ε̃
a

 (3.81)

+
α

κ

∫
dt
∫

Ct

1√
n ·n

ε
IL
[
(taeaI)

˚̄DbnLε̃
b− (tb ˚̄DbnL)eaI ε̃

a
]

(3.82)

= − 1
κ

∫
dt
∫

M

1
2
(taeaI)︸ ︷︷ ︸
(t·e)I

F I
bcε̃

bc +(£~tω
I
c)ε̃

caeaI +(ω · t)IDc(ε̃
caeaI)


+

1
κ

∫
dt
∫

M
Dc[(ω · t)I

ε̃
caeaI]−

1
κ

∫
dt
∫

Ct

(taeaI)︸ ︷︷ ︸
(t·e)I

ω
I
bε̃

b− (tb
ω

I
b)︸ ︷︷ ︸

(t·ω)I

eaI ε̃
a

 (3.83)

+
α

κ

∫
dt
∫

Ct

1√
n ·n

ε
IL
[
(taeaI)

˚̄DbnLε̃
b− (tb ˚̄DbnL)eaI ε̃

a
]
. (3.84)

Strictly speaking we begin with an action valid for any Lie group (e is not related to the met-
ric unless we identify the group with SO(2,1) so this action can be defined without the need of
a metric), more over in Witten’s decomposition we are not assuming the existence of a metric.
Therefore we can not use the Stokes theorem that needs the normal to the surface. So we left the
term

∫
M Dc[(ω · t)I ε̃caeaI] indicated.

In order to proceed to the Legendre transformation we need to calculate the momenta,

Π
c
I =

δL

δ (£~tω I
c)

=
1
κ

ε̃
caeaI, (3.85)
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then the canonical Hamiltonian is1,

H[e,ω] =
∫

M

[
(£~tω

I
c)Π

c
I −L

]
= +

1
κ

∫
M

1
2
(taeaI)︸ ︷︷ ︸
(t·e)I

F I
bcε̃

bc +(ω · t)IDc(ε̃
caeaI)


− 1

κ

∫
M
Dc[(ω · t)I

ε̃
caeaI]+

1
κ

∫
Ct

(taeaI)︸ ︷︷ ︸
(t·e)I

ω
I
bε̃

b− (tb
ω

I
b)︸ ︷︷ ︸

(t·ω)I

eaI ε̃
a


−α

κ

∫
Ct

1√
n ·n

ε
IL
[
(taeaI)

˚̄DbnLε̃
b− (tb ˚̄DbnL)eaI ε̃

a
]
. (3.86)

We can see that the following contraints

F I
bcε̃

bc ≈ 0 and Dc(ε̃
caeaI)≈ 0, (3.87)

are first class, and also they are the pull-back to M with ε̃ab of the equations of motion (3.38).
On the constraint surface,

H[e,ω] = − 1
κ

∫
M
Dc[(ω · t)I

ε̃
caeaI]+

1
κ

∫
Ct

(taeaI)︸ ︷︷ ︸
(t·e)I

ω
I
bε̃

b− (tb
ω

I
b)︸ ︷︷ ︸

(t·ω)I

eaI ε̃
a


−α

κ

∫
Ct

ε
IL
[
(taeaI)

˚̄Db
nL√
n ·n

ε̃
b−
(

tb ˚̄Db
nL√
n ·n

)
eaI ε̃

a
]
. (3.88)

that is, the boundary terms are the only non-vanishing terms.
Now if we take into account the asymptotically flat boundary conditions, the leading term of

(ω · t)I is zero and also tb ˚̄Db(rc 0ecL) = 0. In the timelike boundary as well as in the boundary of
M (circles for each time t, Ct) the normal to the surface is ra, then nL/

√
n ·n = rcecL. So the only

non-vanishing leading term comes from,

H[e,ω] =
1
κ

∫
Ct

(t · e)Iω
I
bε̃

b− α

κ

∫
Ct

ε
IL(taeaI)

˚̄Db(rcecL)︸ ︷︷ ︸
rc ˚̄DbecL+ecL

˚̄Dbrc

ε̃
b. (3.89)

As in the covariant case, if we want this hamiltonian to generate asympotic time translations
and therefore its conserved quantity to be the energy, ta has to approach a time-translation Killing
vector field of the asymptotic flat spacetime, which also translates in t being orthogonal to M.

1Note that the bulk part of this hamiltonian coincides with that given in [60].
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Using this and the fall-off conditions (3.14) and (3.24), the hamiltonian is given by1,

H[e,ω] = lim
r→∞

∫
Ct

 1
κ

0e0I

1ω I
b̄

r
ε̃

b̄︸ ︷︷ ︸
H1

−α

κ

∫
Ct

ε
IL 0e0I

(
0ecL

˚̄Dbrc
)

ε̃
b︸ ︷︷ ︸

H2

+O(r−β/2)

 (3.91)

For the first term of the right hand side of previous equation, since the volume element associated
to Ct goes as rdθ , the leading term of the previous equation does not depend on r, and the next to
leading terms go as O(r−1) so in the limit they vanish leaving us just with the leading term,

H1 =
1
κ

lim
r→∞

∫
Ct

0e0I

1ω̄ I
b̄

r
ε̃

b̄ =
1

2κ
lim
r→∞

∫
Ct

0e0I
1
r

β∂ārεL
KI 0ēā

K
0ēL

b̄ ε̃
b̄ (3.92)

Note that appart from δβ ↔ β this expression is the same as (3.65). Using the same steps we can
see that (taking κ = 8πG),

H1 =
β

2κ

∫
Ct

dθ =
β

2(8πG)
2π =

β

8G
. (3.93)

1The term (that comes from eq. (3.89)),

Leading lim
r→∞
−α

κ

∫
Ct

ε
IL(taeaI)rc ˚̄DbecLε̃

b = lim
r→∞

[
−α

κ

∫
Ct

ε
IL 0e0Irc(− β

2r
r−β/2

∂br 0ēc̄Lδ
c̄
c )ε̃

0b +O(r−1)

]

= lim
r→∞

αβ

2κ

∫
Ct

ε
IL 0e0I

0ēc̄L︸ ︷︷ ︸
ēε̃0c̄

1
r

r−β/2rc̄
∂brε̃

0b +O(r−1)


= lim

r→∞

αβ

2κ

∫
Ct

1
r

r−β/2rc̄
∂br ε̃0c̄ε̃

0b︸ ︷︷ ︸
δ b

c̄

rdθ +O(r−1)


= lim

r→∞

[
αβ

2κ

∫
Ct

r−β/2(+1)dθ +O(r−1)

]
= lim

r→∞

[
αβ

2κ
r−β/22π +O(r−1)

]
= lim

r→∞

[
O(r−β/2)+O(r−1)

]
= 0 i f f β > 0

(3.90)
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For the second term of the right hand side,

H2 = lim
r→∞

[
−α

κ

∫
Ct

ε
IL 0e0I

(
0ecL

˚̄Dbrc
)

ε̃
b
]

= −α

κ
lim
r→∞

∫
Ct

ε
IL 0e0I

0ecL︸ ︷︷ ︸
ēε̃0b

˚̄Dbrc︸︷︷︸
∂brc

ε̃
0c

= −α

κ
lim
r→∞

∫
Ct

ε̃
0b

ε̃
0c︸ ︷︷ ︸

δ b
c

(∂brc)rdθ

= −α

κ
lim
r→∞

∫
Ct

(∂crc)︸ ︷︷ ︸
1/r

rdθ =− α

2κ

∫
Ct

2dθ (3.94)

Using (3.92) and (3.94), we can see that the hamiltonian (3.91) is given by,

H = H1 +H2 =
β

2κ

∫
Ct

dθ − α

2κ

∫
Ct

2dθ =− 1
2κ

∫
Ct

(2α−β )dθ . (3.95)

When α = 1 we recover the results of [47],

H =− 1
2κ

∫
Ct

(2−β )dθ (3.96)

Following [11; 47], β ∈ [0,2), we can see that energy is bounded from below and above by,

E ∈
[
− 1

4G
,0
]
. (3.97)

Otherwise when α = 0 we recover that of [11], that is the same as the covariant case considered
in this work when considering the indetermination constant as zero.

In both cases, our analysis here and that given in [47] the starting point is a well posed action,
the Palatini action with boundary term and the Einstein-Hilbert action with Gibbons-Hawking
term. Also note that the addition of the boundary term (3.8) is essential in order to first order
action, in this case LIP, to be equivalent to the Einstein-Hilbert action with Gibbons-Hawking term
and therefore lead to the same expression for the energy.

Even though both actions, SPB and LIP, lead to the same classical equations of motion, the
Einstein’s equations of motion, they do not completely agree at the hamiltonian level, they differ
up to a constant.

We should emphasize the difference between this result where the hamiltonian and therefore
the energy is completely determined by the Legendre transform, in contrast with the covariant
formalism where we only get the variation of the hamiltonian, so the energy it is always determined
up to a constant (3.166).
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3.4.2 Barbero-Varadarajan’s approach

As in the Witten’s decomposition, we begin with the well posed manifestly Lorentz invariant Pala-
tini action,

SLIP[e,ω] =− 1
2κ

∫
M

ε̃
abceaIF I

bc−
1
κ

∫
∂M

eaIω
I
bε̃

ab− α

κ

∫
∂M

1
n ·n

ε
IKLeaInK

˚̄DbnLε̃
ab (3.98)

Using ε̃abcεIJKeK
c = 2ee[aI eb]

J , which implies eεLKMea
Leb

K = ε̃abceM
c . The well posed Palatini

action can be written,

SLIP[e,ω] =− 1
2κ

∫
M

eε
LKIeb

Lec
KFbcI−

1
κ

∫
∂M

eaIω
I
bε̃

ab− α

κ

∫
∂M

1
n ·n

ε
IKLeaInK

˚̄DbnLε̃
ab (3.99)

As we already mention, to make a standard 2+ 1 decomposition, we assume the existence of a
metric and thus we can introduce a projector qb

a = δ b
a +nanb which projects down all the fields in

their spacelike and normal components respectively. In particular we can decompose ta = naN +

Na.
To begin with, we have to use qb

a to project all the dinamical variables appearing in the action.
First we shall decompose the integrand of the bulk term of the previous equation,

eε
LKIeb

Lec
KFbcI = eε

LKIea
Led

Kδ
b
a δ

c
d FbcI = eε

LKIea
Led

K(q
b
a−nanb)(qc

d−ndnc)FbcI (3.100)

with qab the induced metric and na the normal to the 2−dimensional Cauchy slices. Now using
na = (ta−Na)/N, also EI

a = qb
aeI

b and FI
ab = qc

aqd
bF I

cd are the projections of e and F to the Cauchy
slice, and nK := naeaK , then the integrand of the bulk term becomes,

eε
LKIeb

Lec
KFbcI = eε

LKI
[
Eb

LE
c
KFbcI−

2
N
Eb

LnKtcFbcI +
2
N
Eb

LnKNcFbcI

]
. (3.101)

which implies that the decomposed bulk term is,

− 1
2κ

∫
M

eε
LKIeb

Lec
KFbcI =−

1
2κ

∫
M

eε
LKI
[
Eb

LE
c
KFbcI−

2
N
Eb

LnKtcFbcI +
2
N
Eb

LnKNcFbcI

]
.

(3.102)
Now we shall decompose the boundary term,

− 1
κ

∫
∂M

eaIω
I
bε̃

ab− α

κ

∫
∂M

1
n ·n

ε
IKLeaInK

˚̄DbnLε̃
ab. (3.103)

We begin with the integrand of the standard boundary term, eaIω
I
bε̃ab,

eaIω
I
bε̃

ab = δ
c
a δ

d
b ε̃

abecIω
I
d = (qc

a−nanc)(qd
b−nbnd)ecIω

I
d ε̃

ab (3.104)
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but ε̃ab = 2Nn[aε̃b]dt, then

eaIω
I
bε̃

ab = N
[
qc

aqd
becIω

I
d(n

a
ε̃

b−nb
ε̃

a)−qc
anbndecIω

I
d(n

a
ε̃

b−nb
ε̃

a)

−qd
bnancecIω

I
d(n

a
ε̃

b−nb
ε̃

a)+nancnbndecIω
I
d(n

a
ε̃

b−nb
ε̃

a)
]

dt. (3.105)

Note that most of the terms vanishes due to qc
ana = 0 or by antisymmetry of the indices, the non

vanishing terms are,

eaIω
I
bε̃

ab =−N
[
qc

anbndnb
ε̃

a−qd
bnancna

ε̃
b
]

ecIω
I
ddt. (3.106)

Since na is the normal to the spacelike surfaces M (and the splitting in the boundary is compatible
with the spacetime one), nana = −1. Also we use na = (ta−Na)/N, EI

a = qb
aeI

b and WI
a = qb

aω I
b,

the integrand of the boundary term becomes,

eaIω
I
bε̃

ab = −N
[
EaI

1
N
(td−Nd)(nbnb)ω I

d ε̃
a− 1

N
(tc−Nc)ω I

decI(nana)ε̃b
]

dt

= −(nbnb)
[
td

ω
I
dEaI ε̃

a−Nd
ω

I
dEaI ε̃

a + tcecIW
I
d ε̃

d−NcecIW
I
d ε̃

d
]

dt (3.107)

which implies that the decomposed standard boundary term is,

− 1
κ

∫
∂M

eaIω
I
bε̃

ab =− 1
κ

∫
∂M

[
td

ω
I
dEaI ε̃

a−Nd
ω

I
dEaI ε̃

a + tcecIW
I
d ε̃

d−NcecIW
I
d ε̃

d
]

dt (3.108)
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Now we decompose the integrand of the additional boundary term (3.8), 1
n·nε IKLeaInK

˚̄DbnLε̃ab,

1
n ·n

ε
IKLeaInK

˚̄DbnLε̃
ab =

1
n ·n

ε
IKLecIδ

c
a nKδ

d
b

˚̄DdnLε̃
ab

=
1

n ·n
ε

IKLecInK
˚̄DdnL(qc

a−nanc)(qd
b−nbnd)ε̃ab

= − 1√
n ·n

ε
ILecI

˚̄DdnL(qc
a−nanc)(qd

b−nbnd)(na
ε̃

b−nb
ε̃

a)dt

=
N√
n ·n

ε
ILecI

˚̄DdnL

qc
a (nbnb)︸ ︷︷ ︸
−1

nd
ε̃

a +qd
b (nana)︸ ︷︷ ︸
−1

nc
ε̃

b

dt

= − N√
n ·n

ε
ILecI

˚̄DdnL

(
qc

and
ε̃

a +qd
bnc

ε̃
b
)

dt

= − N√
n ·n

ε
ILecI

˚̄DdnLqc
a

(
td−Nd

N

)
ε̃

a

+
N√
n ·n

ε
ILecI

˚̄DdnLqd
b

(
tc−Nc

N

)
ε̃

bdt

= − 1√
n ·n

ε
ILEaI

˚̄DdnL

(
td−Nd

)
ε̃

a

+
1√
n ·n

ε
ILecI

˚̄DbnL (tc−Nc) ε̃
bdt

= − 1√
n ·n

ε
IL
[(

EaItd ˚̄DdnL−EaINd ˚̄DdnL

)
ε̃

a

+
(

tcecI
˚̄DbnL−NcEcI

˚̄DbnL

)
ε̃

b
]

dt (3.109)

for the previous equation we used nc = 1
N (t

c−Nc), na is normal to a spacelike surface so nana =

−1, ˚̄Dd is spatial so qd
b

˚̄Dd = ˚̄Dd , and EI
a = qb

aeI
b. Thus the decomposed boundary term ((3.8)) is,

−α

κ

∫
∂M

1
n ·n

ε
IKLeaInK

˚̄DbnLε̃
ab =

α

κ

∫
∂M

1√
n ·n

ε
IL
[(

EaItd ˚̄DdnL−EaINd ˚̄DdnL

)
ε̃

a

+
(

tcecI
˚̄DbnL−NcEcI

˚̄DbnL

)
ε̃

b
]

dt (3.110)

Using (3.102), (3.108), (3.110) and e =
√
−g = N

√
|q| = NE with q the determinant of the

induced metric qab on M and E the determinant of Ea
I , we can rewrite the action (3.71) as,
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SPB[e,ω] = − 1
2κ

∫
dt
∫

M
NEε

LKI
[
Eb

LE
c
KFbcI−

2
N
Eb

LnKtcFbcI +
2
N
Eb

LnKNcFbcI

]
− 1

κ

∫
dt
∫

∂M

[
td

ω
I
dEaIε

a−Nd
ω

I
dEaIε

a + tcecIW
I
dε

d−NcecIW
I
dε

d
]

+
α

κ

∫
dt
∫

∂M

1
n ·n

ε
IL
[(

EaItd ˚̄DdnL−EaINd ˚̄DdnL

)
ε̃

a

+
(

tcecI
˚̄DbnL−NcEcI

˚̄DbnL

)
ε̃

b
]

(3.111)

As in the Witten decomposition, we use (3.78) to rewrite the second term of the bulk part of
the action,

NEε
LKI(

2
N
Eb

LnKtcF I
cb) = Eε

LKI2Eb
LnK£~tω

I
b−Eε

LKI2Eb
LnKDb(t ·ω)I

= 2Eε
LKI
[
Eb

LnK£~tω
I
b +Db

(
Eb

LnK

)
(t ·ω)I

]
−Db

[
Eε

LKI2Eb
LnK(t ·ω)I

]
(3.112)

Then the action can be written,

SPB[e,ω] = − 1
2κ

∫
dt
∫

M

[
NEε

LKIEb
LE

c
KFbcI +2Eε

LKI
(
Eb

LnK£~tω
I
b +Db

(
Eb

LnK

)
(t ·ω)I

+Eb
LnKNcFbcI

)]
+

1
2κ

∫
dt
∫

M
Db

[
Eε

LKI2Eb
LnK(t ·ω)I

]
− 1

κ

∫
dt
∫

∂M

[
td

ω
I
dEaIε

a−Nd
ω

I
dEaIε

a + tcecIW
I
dε

d−NcecIW
I
dε

d
]

+
α

κ

∫
dt
∫

∂M

1
n ·n

ε
IL
[(

EaItd ˚̄DdnL−EaINd ˚̄DdnL

)
ε̃

a

+
(

tcecI
˚̄DbnL−NcEcI

˚̄DbnL

)
ε̃

b
]

(3.113)

To find the hamiltonian we need to calculate the momenta to perform the Legendre transfor-
mation,

Π
b
I =

δL

δ (£~tω
I
b)

=
1
κ
Eε

LKIEb
LnK (3.114)
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Then,

H[e,ω] =
∫

M

[
(£~tω

I
c)Π

c
I −L

]
= +

1
2κ

∫
M

[
NEε

LKIEb
LE

c
KFbcI +2Eε

LKI
[
Db

(
Eb

LnK

)
(t ·ω)I +Eb

LnKNcFbcI

]]
− 1

2κ

∫
M
Db

[
Eε

LKI2Eb
LnK(t ·ω)I

]
+

1
κ

∫
∂M

[
td

ω
I
dEaIε

a−Nd
ω

I
dEaIε

a + tcecIW
I
dε

d−NcecIW
I
dε

d
]

−α

κ

∫
∂M

1
n ·n

ε
IL
[(

EaItd ˚̄DdnL−EaINd ˚̄DdnL

)
ε̃

a

+
(

tcecI
˚̄DbnL−NcEcI

˚̄DbnL

)
ε̃

b
]

(3.115)

Note that within this decomposition we have ‘more structure’, now we have three constraints

ε
LKIEb

LE
c
KFbcI ≈ 0, ε

LKIDb

(
Eb

LnK

)
≈ 0 and Eb

LnKFbcI ≈ 0, (3.116)

instead of the two found by the Witten approach (3.87).
On the constraint surface we are left only with the boundary term,

H = − 1
2κ

∫
M
Db

[
Eε

LKI2Eb
LnK(t ·ω)I

]
+

1
κ

∫
∂M

[
td

ω
I
dEaIε

a−Nd
ω

I
dEaIε

a + tcecIW
I
dε

d−NcecIW
I
dε

d
]

−α

κ

∫
∂M

1
n ·n

ε
IL
[(

EaItd ˚̄DdnL−EaINd ˚̄DdnL

)
ε̃

a

+
(

tcecI
˚̄DbnL−NcEcI

˚̄DbnL

)
ε̃

b
]

(3.117)

Now considering the asymptotically flat boundary conditions, the leading term of (t ·ω)I = 0
and also since ˚̄Dd is spatial td ˚̄DdnL = 0 . So we are left with

H = lim
r→∞

{
− 1

κ

∫
∂M

[
N d̄ 1WI

d̄
0EāIε

ā− tc 0ecI
1WI

d̄ε
d̄ +N c̄ 0Ec̄I

1WI
d̄ε

d̄
]

− α

κ

∫
∂M

1
n ·n

ε
IL
[
−0EaINd ˚̄DdnLε̃

a +
(

tc 0ecI
˚̄DbnL−Nc 0EcI

˚̄DbnL

)
ε̃

b
]

+O(r−1)
}

(3.118)

In addition to the fall-off conditions on e and ω , now we have to take into account the the behaviour
of the laps N and shift Na functions on the asymptotic region for time-translations (following
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[11; 47]),

N = 1+O(r−1) (3.119)

Na = O(r−1−β ), (3.120)

Note that in the asymptotic region the projections EI
a = qb

aeI
b and WI

a = qb
aω I

b coincide with eI
ā

and ω I
ā. With conditions (3.119),(3.120) and considering the order of leading terms of e and ω:

1ω I
d̄ = O(r−1) = 1WI

d̄ , 0ec̄I = O(r−β/2) = 0EāI , and that ε d̄ = O(r). Note that to first order the
first and third terms in (3.118) decay as,

lim
r→∞

1
2κ

∫
∂M

N d̄ 1
ω

I
d̄

0EāIε
ā = lim

r→∞

1
2κ

∫
∂M

O(r−1−β )O(r−1)O(r−β/2)O(r) (3.121)

= lim
r→∞

1
2κ

∫
∂M

O(r−1−3β/2) = 0 (3.122)

and

lim
r→∞

1
2κ

∫
∂M

N c̄ 0Ec̄I
1WI

d̄ε
d̄ = lim

r→∞

1
2κ

∫
∂M

O(r−1−β )O(r−β/2)O(r−1)O(r) (3.123)

= lim
r→∞

1
2κ

∫
∂M

O(r−1−3β/2) = 0, (3.124)

respectively. And the fourth and sixth terms decay as,

lim
r→∞

α

κ

∫
∂M

1
n ·n

ε
IL
[

0EaINd ˚̄DdnLε̃
a
]

= lim
r→∞

1
2κ

∫
∂M

O(r−β/2)O(r−1−β )O(r−1−β/2)O(r)

= lim
r→∞

1
2κ

∫
∂M

O(r−1−2β ) = 0 (3.125)

and

lim
r→∞

α

κ

∫
∂M

1
n ·n

ε
IL
[
Nc 0EcI

˚̄DbnLε̃
b
]

= lim
r→∞

1
2κ

∫
∂M

O(r−1−β )O(r−β/2)O(r−1−β/2)O(r)

= lim
r→∞

1
2κ

∫
∂M

O(r−1−2β ) = 0. (3.126)

Therefore, H can be written as,

H = lim
r→∞

{
− 1

κ

∫
∂M

[
−tc 0ecI

1WI
d̄ε

d̄
]
− α

κ

∫
∂M

1
n ·n

ε
IL
[
tc 0ecI

˚̄DbnLε̃
b
]
+O(r−1)

}
As in the previous sections, if we want this hamiltonian to generate asympotic time translations

and therefore its conserved quantity to be the energy, ta has to approach a time-translation Killing
vector field of the asymptotic flat spacetime, which also translates in t being orthogonal to M. In
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that case the previous expression coincides with (3.89) from
Therefore, H can be written as,

H = lim
r→∞

{
− 1

κ

∫
∂M

[
−tc 0ecI

1WI
d̄ε

d̄
]
− α

κ

∫
∂M

1
n ·n

ε
IL
[
tc 0ecI

˚̄DbnLε̃
b
]
+O(r−1)

}
= lim

r→∞

{
1
κ

∫
∂M

0e0I

1ω̄ I
d̄

r
ε

d̄− α

κ

∫
Ct

1√
n ·n

ε
IL 0e0I

(
0ecL

˚̄Dbrc
)

ε̃
b

}
. (3.127)

Which is exactly the same term as (3.91), the one found by the Witten’s decomposition. Therefore
the hamiltonian is the same as (??),

H =− 1
2κ

∫
Ct

(2α−β )dθ (3.128)

Following [11; 47], β ∈ [0,2), we can see, when α = 1, that energy is bounded from below and
above by,

E ∈
[
− 1

4G
,0
]
. (3.129)

Note that at the end of the day, the result for the energy is the same in both decompositions as
expected, this is due to the fact that at the asymptotic region the direction of ta coincides with na,
and also the laps y shift functions decay in such a way. This may not be true for other conserved
quantities as the angular momentum, but we shall leave the discussion to forthcoming works.

3.5 Chern-Simons

Now we shall analyse the Chern-Simons theory based on the Poincaré group ISO(2,1) which, as
pointed out in [60], at the action level is equivalent up to a boundary term to the 2+ 1 Palatini
theory based on SO(2,1). A natural question would be whether this boundary term coincides
with the one we add to the Palatini action to make it well posed, or what would be needed to
recover, from Chern-Simons action, the Lorentz invariant well posed Palatini action we previously
introduced.

As we show below, beginning from standard Chern-Simons action, by taking Ai
a := (eaI,ω

I
a),

we obtain Palatini action plus a boundary term that is proportional to that in (3.7), although it does
not have the correct relative factors, so we do not have a well posed Palatini action. A posible
solution is to see whether we can add some additional boundary term to the Chern-Simons action.
We explore that possibility in what follows.
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3.5.1 The action

On one hand we can remember that for any Lie Group G, the Palatini action based on G, (3.71), is
defined in terms of ω I

a and eaI which are £G− and £?G− valued 1-forms. Therefore we can construct
the inhomogeneous Lie algebra £IG associated with G and define a £IG−valued connection 1-form
Ai

a by,
Ai

a := (eaI,ω
I
a) = (ea,ωa)

i. (3.130)

With this connection Ai
a we can formulate the standard Chern-Simons theory plus the addition of

a boundary term,

IGSCSB[A] = − 1
2κ

∫
M

ε̃
abcki j

(
Ai

a∂bA j
c +

1
3

Ai
a [Ab,Ac]

j
)

︸ ︷︷ ︸
IGSCS[A]

+
ᾱ1

κ

∫
∂M

ki jAi
a f j

b ε̃
ab︸ ︷︷ ︸

IGSB[A]

(3.131)

= IGSCS[A]+ IGSB[A] (3.132)

where f j
b is a spacetime 1-form and an arbitrary internal function/vector valued in £IG, in particular

we can choose f j
b := (ebJ,

ᾱ2
n·nnKdbnLεJKL) with ᾱ1 and ᾱ2 are constants to be determined.

Using that ki j(α,v)i(β ,w) j = αIwI + βIvI , where ki j is the Killing Cartan metric on the Lie
algebra, and the Lie bracket on £IG is given by [(α,v),(β ,w)]i :=

(
−{v,β}+{w,α}, [v,w]i

)
which

implies,

[Ab,Ac]
j = [(eb,ωb),(ec,ωc)]

j =
(
−{ωb,ec}I +{ωc,eb}I, [ωb,ωc]

I) . (3.133)

Then the Chern-Simons action can be written,

IGSCS[A] =−
1

2κ

∫
M

ε̃
abc
{

eaI∂bω
I
c +ω

I
a∂becI +

1
3
(
eaI[ωb,ωc]

I +ω
I
a (−{ωb,ec}I +{ωc,eb}I)

)}
.

(3.134)
Now using that,

[v,w]I :=CI
JKvJwK and {v,β}I :=CK

JIvJ
βK, (3.135)

are the Lie bracket and coadjoint bracket associated with £G and CI
JK are the structure constants,

ω
I
a (−{ωb,ec}I +{ωc,eb}I) = −ω

I
aCK

JIω
J
b ecK +ω

I
aCK

JIω
J
c ebK

= −[ωb,ωa]
KecK +[ωc,ωa]

KebK (3.136)
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thus,

IGSCS[A] =−
1

2κ

∫
M

ε̃
abc
{

eaI∂bω
I
c +ω

I
a∂becI +

1
3
(
eaI[ωb,ωc]

I− [ωb,ωa]
KecK +[ωc,ωa]

KebK
)}

.

(3.137)
renaming indices and integrating by parts the second term of the RHS,

IGSCS[A] = − 1
2κ

∫
M

ε̃
abc [eaI(2∂bω

I
c)+ eaI[ωb,ωc]

I +∂b(ω
I
aecI)

]
= − 1

2κ

∫
M

ε̃
abc [eaIF I

bc +∂b(ω
I
aecI)

]
. (3.138)

Note that even though we recover Palatini action with a boundary term, this action is not well
posed as (3.71), so we can see what is the effect of the boundary term introduced in (3.131),

IGSB[A] =
ᾱ1

κ

∫
∂M

ki jAi
a f j

b ε̃
ab. (3.139)

Considering Ai
a := (eaI,ω

I
a) and f j

b := (ebJ,
ᾱ2
n·nnKdbnLεJKL), ki j(α,v)i(β ,w) j = αIwI + βIvI , we

can see that,

IGSB[A] =
ᾱ1

κ

∫
∂M

ki jAi
a f j

b ε̃
ab (3.140)

=
ᾱ1

κ

∫
∂M

(
eaI

ᾱ2

n ·n
nKdbnLε

IKL +ω
I
aebI

)
ε̃

ab. (3.141)

Now we can determine the constants ᾱ1 and ᾱ2, from

IGSCSB[A] = IGSCS[A]+ IGSB[A]

= − 1
2κ

∫
M

ε̃
abc [eaIF I

bc +∂b(ω
I
aecI)

]
+

ᾱ1

κ

∫
∂M

(
eaI

ᾱ2

n ·n
nKdbnLε

IKL +ω
I
aebI

)
ε̃

ab

= − 1
2κ

∫
M

ε̃
abceaIF I

bc−
1

2κ

∫
M

ε̃
abc

∂b(ω
I
aecI)+

ᾱ1

κ

∫
∂M

ω
I
aebI ε̃

ab

+
ᾱ1

κ

∫
∂M

eaI
ᾱ2

n ·n
nKdbnLε

IKL

= − 1
2κ

∫
M

ε̃
abceaIF I

bc +
1

2κ

∫
∂M

ω
I
aebI ε̃

ab +
ᾱ1

κ

∫
∂M

ω
I
aebI ε̃

ab

+
ᾱ1

κ

∫
∂M

eaI
ᾱ2

n ·n
nKdbnLε

IKL

= − 1
2κ

∫
M

ε̃
abceaIF I

bc +
1
κ

∫
∂M

[
1
2
+ ᾱ1

]
ω

I
aebI ε̃

ab +
ᾱ1ᾱ2

κ

∫
∂M

eaI
1

n ·n
nKdbnLε

IKL

In order to recover the well posed Lorentz invariant Palatini action, SLIP (3.71), the constants
ᾱ1 and ᾱ2 must satisfy, 1

2 + ᾱ1 = 1 which implies ᾱ1 = 1
2 on the other hand ᾱ1ᾱ2 = −α thus
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ᾱ2 = −2α , where as in previous sections α is a switch, when α = 1 we recover SLIP, for α = 0
we recover the usual SSPB.

3.5.2 Fall-off conditions and finiteness

For the asymptotic conditions of Ai
a note that when we define the Chern-Simons theory in terms of

connections valued on the inhomogeneous Lie algebra of SO(2,1), and then split the connection
into £G⊗ £?G, the splitting is only on the internal indices and since the asymptotic conditions are
defined over the spacetime (they are defined up to a transformation in the internal space) we can
choose that Ai

a = (eaI,ω
I
a) decay according to (3.14) and (4.37).

Now we have to see whether with this asymptotic conditions we have a well posed action
principle, that is finite and differentiable.

Since we know the Palatini SO(2,1) action is finite under these asymptotic conditions, by
reversing steps in the previous section on the relation between IGSCS and GSP, we can see that
the finiteness of the former is equivalent to the finitenes of the later. And we already proved
in (3.2.2.1) that the Palatini action with boundary term, the same as (3.138), is finite under the
boundary conditions.

It is left to check if IGSCS is differentiable under these asymptotically flat boundary conditions.

3.5.3 Differentiability

Taking the variation of the Chern-Simons action valued on the Lie algebra of ISO(2,1),

δ
IGSCS[A] = δ

[
1
2

∫
M

ε̃
abcki j

(
Ai

a∂bA j
c +

1
3

Ai
a [Ab,Ac]

j
)]

=
1
2

∫
M

ε̃
abcki j

(δAi
a)∂bA j

c + Ai
a∂bδA j

c︸ ︷︷ ︸
∂b(Ai

aδA j
c)−δA j

c∂bAi
a

+
1
3

δ
(
Ai

a[Ab,Ac]
j)
 (3.142)

but, using that [Ab,Ac]
j :=C j

mnAm
b An

c , ki jC j
mn =Cimn and Cimn =C[imn],

δ

3

(
ε̃

abcki jAi
a[Ab,Ac]

j
)

=
δ

3

(
ε̃

abcki jAi
aC j

mnAm
b An

c

)
=

ε̃abcki jC j
mn

3
(
δAi

aAm
b An

c +Ai
aδAm

b An
c +Ai

aAm
b δAn

c
)

= ε̃
abcCimnδAi

aAm
b An

c = ε̃
abcki jδAi

a[Ab,Ac]
j (3.143)

73



Then,

δ
IGSCS[A] =

1
2

∫
M

ε̃
abcki j

δAi
a

(
2∂bA j

c +[Ab,Ac]
j
)

︸ ︷︷ ︸
=:F j

bc

+∂b(Ai
aδA j

c)

 (3.144)

To obtain the Euler-Lagrange equations of motion, we need the action principle to be stationary
under the appropiate boundary conditions, in this case asymptotically flat boundary condiions. But
the fall-off conditions on e and ω are different, so we have to split the connection Ai

a := (eaI,ω
I
a) =

(ea,ωa)
i. Rembering that A is valued on the Lie algebra of ISO(2,1), the Lie Algebra is a vector

space and because δ and ∂ act linearly we can take,

∂bAi
c = (∂becI,∂bω

I
c) and δAi

c = (δecI,δω
I
c). (3.145)

For the integrand in the bulk we use F j
bc := 2∂[bA j

c]+[Ab,Ac]
j and (3.133),

F j
bc = 2∂[b

(
ec],ωc]

) j
+(−{ωb,ec}+{ωc,eb}, [ωb,ωc])

j (3.146)

which implies,

ε̃
abcki jδAi

aF j
bc = ε̃

abcki j

[
2(∂bec,∂bωc)

j (δec,δωc)
i +(−{ωb,ec}+{ωc,eb}, [ωb,ωc])

j (δec,δωc)
i
]

(3.147)
using ki j(α,v)i(β ,w) j = αIwI +βIvI ,

ε̃
abcki jδAi

aF j
bc = ε̃

abc (2(∂becIδω
I
a +∂bωcδeaI)+2{ωc,eb}Iδω

I
a +δeaI[ωb,ωc]

I)
= ε̃

abc [2(∂becI +{ωc,eb}I)δω
I
a +
(
2∂bω

I
c +[ωb,ωc]

I)
δeaI

]
(3.148)

but ε̃abc{ωc,eb}I = ε̃abcCK
JIω

J
c ebK =−ε̃abcCJ

IKωK
c ebJ = ε̃abcCJ

IKωK
b ecJ , and DbecI +εJ

IKωK
b ecJ ,

and CJ
IK = εJ

IK since they are the structure constants of SO(2,1). Then,

ε̃
abcki jδAi

aF j
bc = ε̃

abc [2DbecIδω
I
a +F I

bcδeaI
]

(3.149)

which are the Einstein equations of motion when the action principle is stationary under the bound-
ary conditions.

Now we shall analyze the variations on the boundary from the Chern-Simons action (3.144)
and from the additional boundary term IGSB[A] in (3.131),
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δ
IGSCSB[A]

∣∣∣
Boundary

= − 1
2κ

∫
∂M

ε̃
abcki j∂b(Ai

aδA j
c)

+
ᾱ1

κ

∫
∂M

ki jδAi
a f j

b ε̃
ab +

ᾱ1

κ

∫
∂M

ki jAi
aδ f j

b ε̃
ab

=
1

2κ

∫
∂M

ε̃
abki j

[
Ai

aδA j
b +2ᾱ1

(
Ai

aδ f j
b +δAi

a f j
b

)]
=

1
2κ

∫
∂M

ε̃
abki j

[
Ai

a

(
δA j

b +2ᾱ1δ f j
b

)
+2ᾱ1δAi

a f j
b

]
(3.150)

To see whether this boundary term vanishes under asymptotically flat boundary conditions, leading
to a differentiable action, we have to decompose Ai

a := (eaI,ω
I
a) and f j

b := (ebJ,
ᾱ2
n·nnKdbnLεJKL).

Thus since the variation acts linearly δ f j
b :=

(
δebJ,δ

[
ᾱ2
n·nnKdbnLεJKL

])
. Hence

δ
IGSCSB[A]

∣∣∣
Boundary

=
1

2κ

∫
∂M

ε̃
abki j

[(
eaI,ω

I
a
)(

δebJ +2ᾱ1δebJ,δω
J
b +δ

[
ᾱ2

n ·n
nKdbnLε

JKL
])

+ 2ᾱ1
(
δeaI,δω

I
a
)(

ebJ,
ᾱ2

n ·n
nKdbnLε

JKL
)]

=
1

2κ

∫
∂M

ε̃
ab
[
(eaI−2ᾱ1eaI)δω

I
b +δ

(
2ᾱ1ᾱ2

n ·n
eaInKdbnLε

JKL
)

+ ω
I
aδ (ebI +2ᾱ1ebI)

]
. (3.151)

Taking into account the value of the constants ᾱ1 =
1
2 , ᾱ2 =−2α ,

δ
IGSCSB[A]

∣∣∣
Boundary

=
1

2κ

∫
∂M

ε̃
ab

δ

(
−α

n ·n
eaInKdbnLε

JKL
)

︸ ︷︷ ︸
δ (const.)=0

+2ω
I
aδebI︸ ︷︷ ︸
−ω I

bδeaI


= − 1

κ

∫
∂M

ε̃
ab

ω
I
bδeaI (3.152)

Note that the first term of the right hand side of the previous equation is the variation of the
additional boundary term (3.8) add it to the Palatini action to make manifestly Lorentz invariant.
But in appendix 3.7 we prove that this term is constant when evaluated on solutions compatible
with the boundary conditions, then its variation vanishes on the boundary.

Summarizing,
Then the variation of the Chern-Simons action with the decomposition in Ai

a := (eaI,ω
I
a) =

75



(ea,ωa)
i leads, as expected, to a differentiable action with the Palatini equations of motion as LIP,

δ
IGSCS[A] =

1
2

∫
M

ε̃
abcki j

δAi
a

(
2∂bA j

c +[Ab,Ac]
j
)

︸ ︷︷ ︸
=:F j

bc

+∂b(Ai
aδA j

c)

 (3.153)

3.5.4 Covariant analysis

The symplectic potential can be read from the boundary contribution of the variation of Chern-
Simons action with boundary term IGSCSB[A] (3.150)

Θ :=
1

2κ

∫
∂M

ε̃
abki j

[
Ai

a

(
δA j

b +2ᾱ1δ f j
b

)
+2ᾱ1δAi

a f j
b

]
(3.154)

=
1

2κ

∫
∂M

ε̃
abki j

[
Ai

aδA j
b +δ

(
2ᾱ1Ai

a f j
b

)]
(3.155)

=
∫

∂M
θ̃ (3.156)

Thus we can define the symplectic structure as,

J(δ1,δ2) := δ1θ̃(δ2)−δ2θ̃(δ1)

=
ε̃abki j

2κ

[
δ1Ai

aδ2A j
b−δ2Ai

aδ1A j
b +δ1δ2(Ai

a f j
b )−δ1δ2(Ai

a f j
b )
]

=
ε̃abki j

2κ

[
δ1Ai

aδ2A j
b−δ2Ai

aδ1A j
b

]
=

ε̃abki j

κ
δ1Ai

aδ2A j
b (3.157)

Note that, as expected from [27], the contribution to the symplectic current is only due to the
Chern-Simons action, it is insensitive to the addition of an additional boundary term. In order to
define a conserved pre-symplectic structure Ω̃ we have to check that

∫
I J(δ1,δ2) = 0. But before

that, note that if we decompose the symplectic current (3.157) into Ai
a := (eaI,ω

I
a),

J(δ1,δ2) =
ε̃abki j

κ
δ1Ai

aδ2A j
b (3.158)

=
ε̃abki j

κ
(δ1ea,δ1ωa)

i(δ2eb,δ2ωb)
j (3.159)

=
ε̃ab

κ

[
δ1eaIδ2ω

I
b +δ1ω

I
aδ2ebI

]
(3.160)

= − ε̃ab

κ

[
δ2eaIδ1ω

I
b−δ1eaIδ2ω

I
b
]

(3.161)
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Note that this exactly the same expression as (3.44). But we already prove on section 3.3, that∫
I J(δ1,δ2)= 0 when evaluated on boundary conditions, so we can define a conserved pre-symplectic

current Ω̃.

Ω̃(δ1,δ2) =
∫

M

ε̃abki j

κ
δ1Ai

aδ2A j
b (3.162)

As discussed in subsection 3.3.0.3 if we want to compare results between the covariant and
canonical schemes, we have to be sure we are working either with geometrodynamical o connec-
tion variables (in the first case the triad is the field variable and ω its canonical conjugate momenta
and in the connection approach the other way around). Since in the canonical approach we chose
the connection variables, and by the definition of the symplectic form Ω̄ = dΠA∧dφ A, we can see
that the presymplectic form we are interested in is Ω̄ =−Ω̃.

Once we define the symplectic structure we can find the hamiltonian and the energy. As seen
in section 3.3.1, the energy Hξ can be found through the expression,

Ω̄(δ ,δξ ) =: δHξ (3.163)

where δξ := δξ Ai
a = £ξ Ai

a = (£ξ ea,£ξ ωa)
i and ξ generates asymptotic time translations of the

space-time, which induces time evolution on the covariant phase space. Thus the variation of the
energy Hξ is,

δHξ = Ω̄(δ ,δξ ) =−Ω̃(δ ,δξ )

= −
∫

M

ε̃abki j

κ
δAi

a£ξ A j
b

= −
∫

M

ε̃abki j

κ
(δea,δωa)

i(£ξ eb,£ξ ωb)
j

= −
∫

M

ε̃ab

κ

[
δeaI£ξ ω

I
b +δω

I
a£ξ ebI

]
= −

∫
M

ε̃ab

κ

[
δω

I
b£ξ eaI−δeaI£ξ ω

I
b
]

(3.164)

Note that this is the same expression as (3.55), therefore when evaluated on the asymptotically flat
boundary conditions (3.14) and (4.37) the energy will be the same as in section 3.3.1.1, that is,

δHξ =
δβ

2(8πG)
2π =

δβ

8G
. (3.165)

Since the previous expression only gives the variation, the energy will always be determined up to
a constant,

E =
β

16G
+ const (3.166)
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Following [11; 47], β ∈ [0,2), so we can choose this constant to be zero for the energy of Minkowski
space-time to be zero,

E ∈
[

0,
1

4G

]
. (3.167)

3.5.5 Infinitesimal transformations

What happens to Chern-Simons action without boundary term, when we perform an infinitesimal
transformation of the form Ã = A+δA?

We begin with the Chern-Simons action without boundary term,

IGSCS[A] =−
1

2κ

∫
M

ε̃
abcki j

(
Ai

a∂bA j
c +

1
3

Ai
a [Ab,Ac]

j
)
. (3.168)

After an infinitesimal transformation, Ã = A+δA, it becomes,

IGSCS[Ã] = − 1
2κ

∫
M

ε̃
abcki j

{(
Ai

a +δAi
a
)

∂b
(
A j

c +δA j
c
)
+

1
3
(
Ai

a +δAi
a
)
[(Ab +δAb) ,(Ac +δAc)]

j
}

= − 1
2κ

∫
M

ε̃
abcki j

{
Ai

a∂bA j
c +Ai

a∂bδA j
c +δAi

a∂bA j
c +δAi

a∂bδA j
c

+
1
3

Ai
a [(Ab +δAb) ,(Ac +δAc)]

j +
1
3

δAi
a [(Ab +δAb) ,(Ac +δAc)]

j
}
, (3.169)

but

[(Ab +δAb) ,(Ac +δAc)]
j = [Ab,Ac]

j +[Ab,δAc]
j +[δAb,Ac]

j +[δAb,δAc]
j . (3.170)

Then

IGSCS[Ã] = − 1
2κ

∫
M

ε̃
abcki j

{
Ai

a∂bA j
c +Ai

a∂bδA j
c +δAi

a∂bA j
c +δAi

a∂bδA j
c

+
1
3

Ai
a

(
[Ab,Ac]

j +[Ab,δAc]
j +[δAb,Ac]

j +[δAb,δAc]
j
)

+
1
3

δAi
a

(
[Ab,Ac]

j +[Ab,δAc]
j +[δAb,Ac]

j +[δAb,δAc]
j
)}

. (3.171)

To first order in δA, the quadratic terms in δA and higher powers will vanish since we are consid-
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ering infinitesimal transformations, so the Chern-Simons action can be written,

IGSCS[Ã] = − 1
2κ

∫
M

{
ε̃

abcki j

(
Ai

a∂bA j
c +

1
3

Ai
a [Ab,Ac]

j
)
+ ∂b

(
ε̃

abcki jAi
aδA j

c

)
+ε̃

abcki j

(
−∂bAi

aδA j
c +δAi

a∂bA j
c +

1
3

Ai
a

(
[Ab,δAc]

j +[δAb,Ac]
j
))

+
1
3

δAi
a [Ab,Ac]

j
}

= − 1
2κ

∫
M

{
ε̃

abcki j

(
Ai

a∂bA j
c +

1
3

Ai
a [Ab,Ac]

j
)
+ ∂b

(
ε̃

abcki jAi
aδA j

c

)
+ε̃

abcki jδAi
a

(
∂bA j

c +[Ab,Ac]
j
)}

= IGSCS[A]−
1

2κ

∫
M

∂b

(
ε̃

abcki jAi
aδA j

c

)
− 1

2κ

∫
M

ε̃
abcki jδAi

aF j
bc (3.172)

Note that the Chern-Simons action would be invariant under infinitesimal transformations (modulo
equations of motion) if either the space-time does not have boundaries or that somehow we find a
way to cancel the boundary term in the previous equation. The answer to this questions is work in
progress.

3.6 Discussion and remarks

In this chapter we have proposed a three dimensional manifestly Lorentz invariant Palatini action
that is well posed under asymptotically flat boundary conditions. Note that the analog of the well
posed Palatini action [7], that we called SSPB, is not manifestly Lorentz invariant although it has
a well posed action principle under the asymptotically flat boundary conditions. One can make a
partial gauge fixing in the boundary to make it invariant under the residual gauge transformations.
Although, introducing an extra appropriate boundary term 3.8, we can make the action manifestly
Lorentz invariant and more over this action coincide with the three dimensional Einstein-Hilbert
action with Gibbons Hawking term. We derive the asymptotically flat boundary conditions for
the first order variables, and with these conditions we show that in fact the proposed action has a
well posed action principle, i.e. finite and differentiable. Then using the covariant and canonical
approaches we obtain an expression for the energy. In the first case, when we use the covariant
formalism, our results coincide with those in [11] where they use Regge-Teitelboim method for the
second order metric variables. In the second case using canonical formalism, our results coincide
with those in [47] where they begin with the Einstein-Hilbert action with Gibbons-Hawking term,
that is well posed under asymptotically flat boundary conditions. So the addition on the term 3.8, is
crucial to recover the energy found by means of the metric variables, otherwise our results coincide
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up to a constant. We also propose a ISO(2,1) valued Chern-Simons action with boundary term
that reproduces exactly the manifestly Lorentz invariant Palatini action.

3.7 Appendix: On the new boundary term

As we commented on previous sections, particularly in section 3.2, the addition of the term (3.8),∫
∂M

1
n ·n

ε
IKLeI ∧nKdnL (3.173)

has many advantages: its necessary for the action to be manifestly Lorentz invariant, it has a con-
stant value when evaluated on solutions compatible with the asymptotically flat boundary condi-
tions, so it does not spoil finiteness nor differentiability, the resulting well posed manifestly Lorentz
invariant action is equivalent to the Einstein Hilbert action so we can fully recover previous results
obtained by means of the metric formulation.

Here nK is a spacetime scalar that is an internal vector. We can define it by nK /
√

n ·n := RaeaK

where Ra is the spacetime unit normal to the boundary1, that can either be na for the unit normal
to the spacelike surfaces or ra for the unit normal to the timeline boundary, we have introduced a
normalization factor 1

n·n to allow freedom in rescaling nK , so we can use any multiple of nK and
the results will remain the same. Since nK is a spacetime scalar dnL is a one form as well as eI then
the previous boundary term is the integral of a two form over a two dimensional boundary.

For the more general case, when the boundary might become null we need to use densitized
internal normals as discussed in [18], such that the expressions do not diverge. In the case treated
here it is enough and more intuitive to use just the nK .

3.7.1 New boundary term evaluated on Asymptotically flat boundary con-
ditions

In this subsection we shall prove that the term (3.8) is constant when evaluated on the boundary
conditions. On the boundary and in components, the term (3.8) can be written as,∫

∂M

1
n ·n

ε
IKLeI ∧nKdnL =

∫
∂M

1
n ·n

ε
IKLeaInK

˚̄DbnLε̃
ab (3.174)

=

[
−
∫

M1

+
∫

M2

+
∫
I

]
1

n ·n
ε

IKLeaInK
˚̄DbnLε̃

ab (3.175)

1Note that we have expanded the usual definition of nK = naeaK for the Cauchy surfaces in the first order formalism
to nk /

√
n ·n := RaeaK that allows, in principle, nK to be rescaled, and now is extended also to include the timelike

boundary.
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Where we are considering the region M as bounded by ∂M=M1∪M2∪I, M1 and M2 are space-
like slices and I an outer boundary. Remember we choose the torsion free flat connection ˚̄Db, such
that D = ˚̄D+ω and ˚̄Db

0ēI
a = 0 and also that nk /

√
n ·n := RaeaK where Ra is the spacetime unit

normal to the boundary, that can either be na for the unit normal to the spacelike surfaces or ra for
the unit normal to the timeline boundary. For the timelike part,

∫
I

1
n ·n

ε
IKLnKeI ∧dnL =

∫
I
(ε IKL nK√

n ·n
)︸ ︷︷ ︸

−ε IL

eaI
˚̄Db

(
nL√
n ·n

)
︸ ︷︷ ︸

raeaK

ε̃
ab (3.176)

= −
∫
I
ε

ILeaI

(
rc ˚̄DbecL + ecL

˚̄Dbrc
)

ε̃
ab (3.177)

= −
∫
I
ε

ILeaIrc ˚̄DbecL︸ ︷︷ ︸
B1

−
∫
I
ε

ILeaIecL
˚̄Dbrc

ε̃
ab︸ ︷︷ ︸

B2

. (3.178)

From the previous equation we have two terms, B1 and B2. We shall analyze first B1, when
evaluated on the boundary the term becomes,

B1 = lim
r→∞

[
−α

κ

∫
I
ε

IL 0eaIrc(− β

2r
r−β/2

∂br 0ēc̄Lδ
c̄
c )ε̃

ab +O(r−1)

]
(3.179)

= lim
r→∞

αβ

2κ

∫
I
ε

IL 0ēaI
0ēc̄L︸ ︷︷ ︸

ēε̃ac̄

1
r

r−β/2rc̄
∂brε̃

ab +O(r−1)


= lim

r→∞

αβ

2κ

∫
I

1
r

r−β/2rc̄
∂br ε̃ac̄ε̃

ab︸ ︷︷ ︸
δ b

c̄

rdθdt +O(r−1)


= lim

r→∞

[
αβ

2κ

∫
I
r−β/2(+1)dθdt +O(r−1)

]
= lim

r→∞

[
αβ

2κ
r−β/22π +O(r−1)

]
= lim

r→∞

[
O(r−β/2)+O(r−1)

]
= 0 i f f β > 0

(3.180)
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and B2 becomes,

B2 = lim
r→∞

[
−α

κ

∫
I
ε

IL 0e0I

(
0ecL

˚̄Dbrc
)

ε̃
b
]

(3.181)

= −α

κ
lim
r→∞

∫
I
ε

IL 0e0I
0ecL︸ ︷︷ ︸

ēε̃0b

˚̄Dbrc︸︷︷︸
∂brc

ε̃
0c

= −α

κ
lim
r→∞

∫
I
ε̃

0b
ε̃

0c︸ ︷︷ ︸
δ b

c

(∂brc)rdθdt

= −α

κ
lim
r→∞

∫
I
(∂crc)︸ ︷︷ ︸

1/r

rdθdt =− α

2κ

∫
I
2dθdt (3.182)

Therefore the value of the boundary term (3.8) when evaluated in the timelike boundary and
on the boundary conditions becomes,∫

I

1
n ·n

ε
IKLnKeI ∧dnL = B1 +B2 (3.183)

= lim
r→∞

[
O(r−β/2)+O(r−1)

]
− α

2κ

∫
I
2dθ (3.184)

= − α

2κ

∫
I
2dθdt. (3.185)

Since we are integrating over a finite time interval with M1 and M2 asymptotically time-translated
with respect to each other, the previous integral take a finite constant value.

Analogously, we can follow the same steps but for Ra = na and check that the boundary term
corresponding to the spacelike surfaces is also constant. Thus, the whole boundary term is constant
when evaluated on the boundary conditions.

3.8 Appendix: On the equivalence between Einstein-Hilbert
action with Gibbons Hawking term and the Palatini action
with boundary term.

It has been shown for the three dimensional Einstein-Hilbert action that the Gibbons-Hawking
term is the only term needed to make the variational principle well posed [47]. Taking κ = 8πG,
the Einstein-Hilbert action with Gibbons-Hawking term is,

SEH−GH [g] =
1

2κ

∫
M

√
−gR+2

∫
∂M

√
−hK (3.186)
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with R the Ricci scalar, g the determinant of the spacetime metric gab, h the determinant of the
induced metric on the boundary ∂M and K the extrinsic curvature of the boudary.

We shall prove, on the other hand, that the Lorentz invariant well posed Palatini action with
boundary term,

SLIP[e,ω] =− 1
κ

∫
M

eI ∧FI −
1
κ

∫
∂M

1
n ·n

ε
IKLeI ∧nKDnL. (3.187)

is in fact equivalent to the Einstein-Hilbert action with Gibbons-Hawking term.
We study first the Einstein-Hilbert term, 1

2κ

∫
M

√
−gR, considering that gab = η IJea

I eb
J ,
√
−g =

e, 2ee[a|I e|c]J = η̃ac f εIJKeK
f , F IJ

ab = ecIedJRacbd and FJK
ab = FL

abεKJ
L. The bulk term,

1
2κ

∫
M

√
−gR =

1
2κ

∫
M

√
−g︸ ︷︷ ︸
e

gab︸︷︷︸
η IJea

I eb
J

Rab︸︷︷︸
Racbdgcd

=
1

2κ

∫
M

ee[a|I ebIRacbde|c]J edJ

=
1

2κ

∫
M

1
2

2ee[a|I e|c]J︸ ︷︷ ︸
η̃ac f εIJKeK

f

ebIedJRacbd

=
1

2κ

∫
M

1
2

ε̃
ac f

εIJKeK
f ebIedJRacbd︸ ︷︷ ︸

F IJ
ac

=
1

2κ

∫
M

1
2

ε̃
ac f

εIJKeI
f FJK

ac︸︷︷︸
FL

acεKJ L

=
1

2κ

∫
M

1
2

ε̃
ac f

εIJKε
KJ

L︸ ︷︷ ︸
−2δ L

I

eI
f FL

ac

= − 1
2κ

∫
M

ε̃
ac f eI

f FacI (3.188)

= − 1
κ

∫
M

eI ∧FI (3.189)

Note the change in sign when we write down the Palatini action defined over an arbitrary Lie group
(see e.g. [60]).

Now we shall see the relation between the Lorentz invariant boundary term (3.10) introduced
in section 3.2 and the Gibbons Hawking term. We begin with the Lorentz invariant boundary term,

∫
∂M

1
n ·n

ε
IKLeI ∧nKDnL =

[
−
∫

M1

+
∫

M2

+
∫
I

]
1

n ·n
ε

IKLeI ∧nKDnL (3.190)

where our integration region M is bounded by ∂M = M1∪M2∪ I, M1 and M2 are space-like slices
and I a family of timelike cylinders we used to approach spatial infinity.
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For the timelike boundary consider nL/
√

n ·n := raeaL, ra the normal to the cylinder, Dcra =

∇cra where ∇ is the Levy Civita connection, e=
√

γ where γab is the induced metric on the timelike
boundary and that ε IKLebIedKeaL = eε̃bda. The term on the timelike boundary is,

∫
I

1
n ·n

ε
IKLeI ∧nKDnL =

∫
I
ε

IKLebI
nK√
n ·n

Dc

(
nL√
n ·n

)
ε̃

bc

=
∫
I
ε

IKLebI
nK√
n ·n

Dc(raeaL)ε̃
bc

=
∫
I
ε

IKLebI
nK√
n ·n

ra DceaL︸ ︷︷ ︸
=0 by EOM

+eaLDcra

 ε̃
bc

=
∫
I
ε

IKLebI(rdedK)eaLDcra
ε̃

bc

=
∫
I
ε

IKLebIedKeaLrd
∇cra

ε̃
bc

=
∫
I
e(ε̃bdard)︸ ︷︷ ︸
−ε̃ab

∇cra
ε̃

bc

=
∫
I

√
−γ∇cra (−ε̃abε̃

bc)︸ ︷︷ ︸
−δ c

a

= −
∫
I

√
−γ∇ara. (3.191)

Now we can rememeber that we define the extrinsic curvature, K, of a surface (in this case the
timelike cylinder) as the trace of Kb

a = ∇arb where rb is the normal to the surface, then K =

γabKab =Ka
a = ∇ara. With this at hand we can see that, in fact,∫

I

1
n ·n

ε
IKLeI ∧nKDnL =−

∫
I

√
−γ∇ara =−

∫
I

√
−γK, (3.192)

where K is the extrinsic curvature of the timelike boundary. Following an analogous derivation for
the spacelike surfaces M1 and M2, we can easily see that,∫

M1,2

1
n ·n

ε
IKLeI ∧nKDnL =−

∫
M1,2

√
q∇ana =−

∫
M1,2

√
qk, (3.193)

again, with q the determinant of the induced metric on M1,2, na and k its normal vector and extrinsic
curvature respectively. With this at hand we can see that,

∫
∂M

1
n ·n

ε
IKLeI ∧nKDnL =−

[
−
∫

M1

+
∫

M2

]
√

qk−
∫
I

√
−γK=−

∫
∂M

√
−hK. (3.194)
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From (3.10) in the section 3.2, we can see that,

1
κ

∫
∂M

√
−hK = − 1

κ

∫
∂M

1
n ·n

ε
IKLeI ∧nKDnL (3.195)

= − 1
κ

∫
∂M

eI ∧ωI−
1
κ

∫
∂M

1
n ·n

ε
IKLeI ∧nKdnL (3.196)

This result coincides, appart from the second term of the right hand side of the last equation,
with that given in [49] when the cosmological constant is zero. In [49] are used the Gaussian
(normal) coordinates and also there are considered particular internal directions for the spin con-
nection, this "fixing" of the internal directions is reflected in the fact that the second term of the
RHS in (3.195) is not present in their action.

3.9 Appendix: Some consequences of the fall-off conditions

δ
0eI

a = δ

(
0ēI

0δ
0
a + r−β/2 0ēI

āδ
ā
a

)
= δ (r−β/2)0ēI

āδ
ā
a (3.197)

but

δ

(
r−β/2

)
=

∂

(
r−β/2

)
∂ r

δ r+
∂

(
r−β/2

)
∂β

δβ

= −β

2
r−β/2−1

δ r− r−β/2

2
log(r)δβ . (3.198)

Also,

δ
0
ω

M
c = δ

(
1
2

β r−1
∂ārεL

KM 0ēā
K

0ēL
c̄ δ

c̄
c

)
=

(
1
2

δβ r−1
∂ar+

1
2

βδ (r−1
∂ar)

)
εL

KM 0ēā
K

0ēL
c̄ δ

c̄
c (3.199)

In the timeline boundary δ r = 0 so,

δ

(
r−β/2

)
= −r−β/2

2
log(r)δβ (3.200)

δ
0
ω

M
c =

(
1
2

δβ r−1
∂ar
)

εL
KM 0ēā

K
0ēL

c̄ δ
c̄
c (3.201)

δ
0eI

a = −r−β/2

2
log(r)δβ

0ēI
āδ

ā
a (3.202)
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Chapter 4

Covariant analysis of the Generalized Holst
action with topological in 4D terms

“The joy of discovery is certainly the liveliest that the mind of man can

ever feel.”

—Claude Bernard (1813-78) French physiologist.

This chapter is based on [27; 28]

4.1 The action for gravity in the first order formalism

As already mentioned in the introduction, we shall consider the most general action for four-
dimensional gravity in the first order formalism. The choice of basic variables is the following: A
pair of co-tetrads eI

a and a Lorentz SO(3,1) connection ωaIJ on the spacetime M, possibly with a
boundary. In order for the action to be physically relevant, it should reproduce the equations of
motion for general relativity and be: 1) differentiable, 2) finite on the configurations with a given
asymptotic behaviour and 3) invariant under diffeomorphisms and local internal Lorentz transfor-
mations. The most general action that gives the desired equations of motion and is compatible with
the symmetries of the theory is given by the combination of Palatini action, SP, Holst term, SH, and
three topological terms, Pontryagin, SPo, Euler, SE, and Nieh-Yan, SNY, invariants. As we shall
see, the Palatini term contains the information of the ordinary Einstein-Hilbert 2nd order action, so
it represents the backbone of the formalism. Since we are considering a spacetime region M with
boundaries, one should pay special attention to boundary conditions. For instance, it turns out that
the Palatini action, as well as Holst and Nieh-Yan terms are not differentiable for asymptotically
flat spacetimes, and appropriate boundary terms should be provided. This section has four parts.
In those subsections we are going to analyze, one by one, all of the terms of the action. We shall
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take the corresponding variation of the terms and identify both their contributions to the equations
of motion and to the symplectic current. Since we are not considering yet any particular boundary
conditions, the results of this section are generic.

4.1.1 Palatini action

Let us start by considering the Palatini action with boundary term is given by [7],

SPB =− 1
2κ

∫
M

Σ
IJ ∧FIJ +

1
2κ

∫
∂M

Σ
IJ ∧ωIJ . (4.1)

where κ = 8πG, ΣIJ = ?(eI∧eJ) := 1
2ε IJ

JKeJ∧eK , FIJ = dωIJ+ωIK∧ωK
J is a curvature two-form

of the connection ω and, as before, ∂M = M1∪M2∪∆∪ I. The boundary term is not manifestly
gauge invariant, but, as pointed out in [7], it is effectively gauge invariant on the spacelike surfaces
M1 and M2 and also in the asymptotic region I. This is due to the fact that the only allowed gauge
transformations that preserve the asymptotic conditions are such that the boundary terms remain
invariant. Let us consider first the behaviour of this boundary term on M1 (or M2). First we ask
that the compatibility condition between the co-tetrad and connection should be satisfied on the
boundary. Then, we partially fix the gauge on M, by fixing the internal time-like tetrad nI , such
that ∂anI = 0 and we restrict field configurations such that na = ea

I nI is the unit normal to M1 and
M2. Under these conditions it has been shown in [7] that on M, ΣIJ ∧ωIJ = 2Kd3V , where K is the
trace of the extrinsic curvature of M. Note that this is the Gibbons-Hawking surface term that is
needed in the Einstein-Hilbert action, with the constant boundary term equals to zero. On the other
hand, at spatial infinity, I, we fix the co-tetrads and only permit gauge transformations that reduce
to identity at infinity. Under these conditions the boundary term is gauge invariant at M1, M2 and
I. We shall show later that it is also invariant under the residual local Lorentz transformations at a
weakly isolated horizon, when such a boundary exists.

It turns out that at spatial infinity this boundary term does not reduce to Gibbons-Hawking
surface term, the later one is divergent for asymptotically flat spacetimes, as shown in [7]. Let
us mention that there have been other proposals for boundary terms for Palatini action, as for
example in [54] and [18], that are equivalent to Gibbons-Hawking action and are obtained without
imposing the time gauge condition. They are manifestly gauge invariant and well defined for finite
boundaries, but they are not well defined for asymptotically flat spacetimes. In time gauge they
reduce to (4.1).

The variation of (4.1) is,

δSPB =− 1
2κ

∫
M

[
ε

IJ
KLδeK ∧ eL∧FIJ−DΣIJ ∧δω

IJ−d(δΣ
IJ ∧ωIJ)

]
, (4.2)
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where
DΣIJ = dΣIJ−ωI

K ∧ΣKJ +ωJ
K ∧ΣKI . (4.3)

We shall show later that the contribution of boundary term δΣIJ ∧ωIJ vanishes at I and ∆, so that
from (4.2) we obtain the following equations of motion

εIJKLeJ ∧FKL = 0 , (4.4)

εIJKLeK ∧DeL = 0 , (4.5)

where T L := DeL = deL +ωL
K ∧ eK is a torsion two-form. From (4.5) it follows that T L = 0, and

this is the condition of the compatibility of ωIJ and eI , that implies

ωaIJ = eb
[I∂aebJ]+Γ

c
abec[Ie

b
J] , (4.6)

where Γc
ab are the Christoffel symbols of the metric gab = ηIJeI

aeJ
b. Now, the equations (4.4) are

equivalent to Einstein’s equations Gab = 0.
From equations (2.115) and (4.2), the symplectic potential for SPB is given by

ΘPB(δ ) =
1

2κ

∫
∂M

δΣ
IJ ∧ωIJ . (4.7)

Therefore from (2.119) and (4.92) the corresponding symplectic current is,

JP(δ1,δ2) =−
1

2κ

(
δ1Σ

IJ ∧δ2ωIJ−δ2Σ
IJ ∧δ1ωIJ

)
. (4.8)

Note that the symplectic current is insensitive to the boundary term, as we discussed in Sec. 2.5.
As we shall discuss in the following sections, the Palatini action, in the asymptotically flat

case, is not well defined, but it can be made differentiable and finite after the addition of the
corresponding boundary term already discussed [7]. Furthermore, we shall also show that in the
case when the spacetime has as internal boundary an isolated horizon, the contribution at the
horizon to the variation of the Palatini action, either with a boundary term [24] or without it [8],
vanishes.

4.1.2 Holst term

The first additional term to the gravitational action that we shall consider is the so called Holst term
[35], first introduced with the aim of having a variational principle whose 3+ 1 decomposition
yielded general relativity in the Ashtekar-Barbero (real) variables [13]. It turns out that the Holst
term, when added to the Palatini action, does not change the equations of motion (although it is not
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a topological term), so that in the Hamiltonian formalism its addition corresponds to a canonical
transformation. This transformation leads to the Ashtekar-Barbero variables that are the basic
ingredients in the loop quantum gravity approach. As we shall show in the next chapter, the Holst
term is finite but not differentiable for asymptotically flat spacetimes, so an appropriate boundary
term should be added in order to make it well defined. The result is [25],

SHB =− 1
2κγ

∫
M

Σ
IJ ∧?FIJ +

1
2κγ

∫
∂M

Σ
IJ ∧?ωIJ , (4.9)

where γ is the Barbero-Immirzi parameter. The variation of the Holst term, with its boundary term,
is given by

δSHB =− 1
2κγ

∫
M

2FIJ ∧ eI ∧δeJ +DΣ
IJ ∧?(δωIJ)−d(δΣ

IJ ∧?ωIJ) , (4.10)

and it leads to the following equations of motion in the bulk: DΣIJ = 0 and eI∧FIJ = 0. The second
one is just the Bianchi identity, and we see that the Holst term does not modify the equations of
motion of the Palatini action. The contribution of the boundary term (that appears in the variation)
should vanish at I and ∆, in order to have a well posed variational principle. In the following
section we shall see that this is indeed the case.

On the other hand we should also examine the gauge invariance of the boundary term in (4.9).
Under the same assumptions as in the case of the Palatini boundary term we obtain that [25]∫

M1

Σ
IJ ∧?ωIJ = 2

∫
M1

ε
abceJ

b∂ceaJd3x =
∫

M1

eI ∧deI , (4.11)

and this term is not gauge invariant at M1 or M2. As we shall see in the following section, at
the asymptotic region it is gauge invariant, and also at ∆. In the analysis of differentiability of
the action and the construction of the symplectic structure and conserved quantities there is no
contribution from the spacial surfaces M1 and M2, and we can argue that the non-invariance of the
boundary term in (4.9) is not important, but it would be desirable to have a boundary term that
is compatible with all the symmetries of the theory. As we shall see later, the combination of the
Holst and Neih-Yan terms is differentiable and gauge invariant.

It is easy to see that the symplectic potential for SHB is given by [25]

ΘHB(δ ) =
1

2κγ

∫
∂M

δΣ
IJ ∧?ωIJ =

1
κγ

∫
∂M

δeI ∧deI , (4.12)

where in the second line we used the equation of motion DeI = 0. The symplectic current is given
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by

JHB(δ1,δ2) =
1

κγ
d(δ1eI ∧δ2eI) . (4.13)

As we have seen in the subsection 2.5.1, when the symplectic current is a total derivative, the
covariant Hamiltonian formalism indicates that the corresponding (pre)-symplectic structure van-
ishes. As we also remarked one could postulate a conserved two form Ω̃ if

∫
I JH = 0 and

∫
∆

JH = 0,
in which case this term defines a conserved symplectic structure. We shall, for completeness, con-
sider this possibility in Sec. 4.3, after the appropiate boundary conditions have been introduced.
There we shall also show that the Holst term modifies the Noether charge associated to diffeomor-
phisms.

4.1.3 Topological terms

In four dimensions there are three topological invariants constructed from eI , FIJ and DeI , consis-
tent with diffeomorphism and local Lorentz invariance. They are exact forms and do not contribute
to the equations of motion, but in order to be well defined they should be finite, and their variation
on the boundary of the spacetime region M should vanish. The first two terms, the Pontryagin and
Euler terms are constructed from the curvature FIJ and its dual (in the internal space) ?FIJ , while
the third one, the Neih-Yan invariant, is related to torsion DeI .

These topological invariants can be thought of as 4-dimensional density lagrangians defined on
a manifold M, that additionally are exact forms, but they can also be seen as terms living on ∂M.
In that case it is obvious that they do not contribute to the equations of motion in the bulk. But
a natural question may arise. If we take the lagrangian density in the bulk and take the variation,
what are the corresponding equations of motion in the bulk? One can check that, for Pontryagin
and Euler, the resulting equations of motion are trivial in the sense that one only gets the Bianchi
identities, while for the Nieh-Yan term they vanish identically. Let us now see how each of this
terms contribute to the variation of the action.

4.1.3.1 Pontryagin and Euler terms

The action corresponding to the Pontryagin term is given by,

SPo =
∫
M

F IJ ∧FIJ = 2
∫

∂M

(
ωIJ ∧dω

IJ +
2
3

ωIJ ∧ω
IK ∧ωK

J
)
. (4.14)

The boundary term is the Chern-Simons Lagrangian density, LCS . We can either view the Pon-
tryagin term as a bulk term or as a boundary term and the derivation of the symplectic structure in
either case should render equivalent descriptions. The variation of SPo, calculated from the LHS
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expression in (4.14), is

δSPo =−2
∫
M

DF IJ ∧δωIJ +2
∫

∂M
F IJ ∧δωIJ , (4.15)

so it does not contribute to the equations of motion in the bulk, due to the Bianchi identity DF IJ = 0,
and additionally the surface integral in (4.144) should vanish for the variational principle to be
well defined. We will show later that this is indeed the case for boundary conditions of interest
to us, namely asymptotically flat spacetimes possibly with an isolated horizon. In this case, the
corresponding symplectic current is

Jbulk
Po (δ1,δ2) = 2(δ1F IJ ∧δ2ωIJ−δ2F IJ ∧δ1ωIJ) . (4.16)

On the other hand, if we calculate the variation of the Pontryagin term directly from the RHS
of (4.14), we obtain

δSPo = 2
∫

∂M
δLCS . (4.17)

The two expressions for δSPo are, of course, identical since F IJ ∧ δωIJ = δLCS + d(ω IJ ∧ δωIJ).
The first one (4.144) is more convenient for the analysis of the differentiability of the Pontryagin
term, but the second one (4.103) is more suitable for the definition of the symplectic current, which
vanishes identically for any boundary contribution to the action, since

Jbound
Po (δ1,δ2) = 4δ[2δ1]LCS = 0 . (4.18)

So, at first sight it would seem that there is an ambiguity in the definition of the symplectic current
that could lead to different symplectic structures. Since the relation between them is given by

Jbulk
Po (δ1,δ2) = Jbound

Po (δ1,δ2)+4d(δ2ω
IJ ∧δ1ωIJ) , (4.19)

it follows that Jbulk
Po (δ1,δ2) is a total derivative, that does not contribute in (2.123), and from the

systematic derivation of the symplectic structure described in 2.5.1, we have to conclude that it
does not contribute to the symplectic structure. This is consistent with the fact that Jbound

Po and
Jbulk

Po correspond to the same action. As we have remarked in Sec. 2.5, a total derivative term in J,
under some circumstances, could be seen as generating a non-trivial symplectic structure Ω̃ on the
boundary of M. But the important thing to note here is that one would run into an inconsistency if
one choose to introduce that non-trivial Ω̃. Thus, consistency of the formalism requires that Ω̃ = 0.

Let us now consider the action for the Euler term, which is given by,

SE =
∫
M

F IJ ∧?FIJ = 2
∫

∂M

(
?ωIJ ∧dω

IJ +
2
3
?ωIJ ∧ω

IK ∧ωK
J
)
, (4.20)
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with variation, calculated from the expression in the bulk, given by

δSE =−2
∫
M
?DF IJ ∧δωIJ +2

∫
∂M

?F IJ ∧δωIJ . (4.21)

Again, the action will only be well defined if the boundary contribution to the variation (4.21)
vanishes. In the following section we shall see that it indeed vanishes for our boundary conditions.
Let us denote by LCSE the boundary term on the RHS of (4.20), then we can calculate the variation
of SE from this term directly as

δSE = 2
∫

∂M
δLCSE . (4.22)

Finally, as before, the corresponding contribution to the symplectic current vanishes.

4.1.3.2 Nieh-Yan term

The Nieh-Yan topological invariant is of a different nature from the two previous terms. It is related
to torsion and its contribution to the action is [51; 52],

SNY =
∫
M

(
DeI ∧DeI−Σ

IJ ∧?FIJ
)
=
∫

∂M
DeI ∧ eI . (4.23)

Note that the Nieh-Yan term can be written as

SNY = 2κγSH +
∫
M

DeI ∧DeI , (4.24)

where SH is the Holst term (4.9) without boundary term. The variation of the term SNY is given by

δSNY =
∫

∂M
2DeI ∧δeI− eI ∧ eJ ∧δωIJ . (4.25)

Contrary to what happens to the Euler and Pontryagin terms, the Nieh-Yan term has a different
asymptotic behavior. In the next chapter we will show that the Nieh-Yan term is finite, but not
differentiable, for asymptotically flat spacetimes. Thus, even when it is by itself a boundary term,
it has to be supplemented with an appropriate boundary term to make the variational principle well
defined. We shall see that this boundary term coincides precisely with the boundary term in (4.9)
(up to a multiplicative constant), and the resulting well defined Neih-Yan action is given by

SNYB = SNY +
∫

∂M
Σ

IJ ∧?ωIJ . (4.26)

It is straightforward to see that the symplectic potential and symplectic current for this action are
the same as for (4.9) (up to a factor 2κγ).

This relation between SH and SNY points to another proposal for a boundary term for the Holst
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action, different from that in (4.9), that has the advantage of being manifestly gauge invariant.
Namely, for asymptotically flat spacetimes, we can see that the surface term in the variation of
Neih-Yan term cancels the surface term in the variation of the Holst term, and the action SHNY :=
SH− 1

2κγ
SNY, given by

SHNY =− 1
2κγ

∫
M

Σ
IJ ∧?FIJ−

1
2κγ

∫
∂M

DeI ∧ eI =−
1

2κγ

∫
M

DeI ∧DeI , (4.27)

is well defined. This combination was proposed in [18], but since they were interested in fi-
nite boundaries the boundary conditions that they considered are different from the ones we use,
namely they impose δhab ≡ δ (eI

aebI) = 0 (hab is the metric induced on the boundary) and leave
δωIJ arbitrary, which is not compatible with our condition DeI = 0 on the boundary (and is not
compatible with isolated horizons boundary conditions either).

To end this part, let us also comment that in the presence of fermions one has to generalize the
Holst action to spacetimes with torsion, that naturaly leads to Neih-Yan topological term, instead
of the Holst term, as shown in [48]. But, as we saw the Neih-Yan term is not well defined for our
boundary conditions and should be modified as in (4.26).

4.1.4 The complete action

So far in this section we have introduced all the ingredients for the “most general” first order
diffeomorphism invariant action that classically describes general relativity.

As we have already mentioned and we shall prove in the following section, both Pontryagin and
Euler terms, SPo and SE respectively, are well defined in the case of asymptotically flat spacetimes
with a weakly isolated horizon. This means that we can add them to the Palatini action with its
boundary term, SPB, and the resulting action will be again well defined. As we foresaw in the
previous section, the addition of the Nieh-Yan term, SNY, could lead to different possibilities for
the construction of a well defined action. Therefore the complete action can be written as,

S[e,ω] = SPB +SH +α1SPo +α2SE +α3SNY +α4SBH . (4.28)

Here α1, ...,α4 are coupling constants. The coupling constants α1 and α2, are not fixed by our
boundary conditions, while different choices for the Holst-Nieh-Yan sector of the theory, discussed
in the previous part, imply particular combinations of α3 and α4. To see that, consider SBH that
represents the boundary term that we need to add to Holst term in order to make it well defined.
As we have seen in the previous analysis, if α3 = − 1

2κγ
then the combination of the Holst and

Nieh-Yan terms is well defined and no additional boundary term is needed, so α4 = 0 in that case.
For every other value of α3 we need to add a boundary term, and in that case α4 =

1
2κγ

+α3. Other
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than these cases, there is no important relation between the different coupling constants.
This has to be contrasted with other asymptotic conditions studied in the literature (that we

shall, however, not consider here). It turns out that the Palatini action with the negative cosmolog-
ical constant term is not well defined for asymptotically anti-de Sitter (AAdS) spacetimes, but it
can be made differentiable after the addition of an appropriate boundary term. In [9] it is shown
that it can be the same boundary term as in the asymptotically flat case, with an appropriately
modified coupling constant. On the other hand, as shown in [3] and [2], one can choose the Euler
topological term as a boundary term and that choice fixes the value of α2. In that case α2 ∼ 1

Λ
,

and the asymptotically flat case cannot be obtained in the limit Λ→ 0. The differentiability of
Nieh-Yan term has been analyzed in [63]. The result is that this term is well defined, for AAdS
space-times, only after the addition of the Pontryagin term, with an appropriate coupling constant.
Let us also comment that the details of the asymptotic behaviour in [9] are different than in the
other mentioned papers.

4.2 Boundary conditions

We have considered the most general action for general relativity in the first order formalism,
including boundaries, in order to have a well defined action principle and covariant Hamiltonian
formalism. We have left, until now, the boundary conditions unspecified, other that assuming
that there is an outer and a possible inner boundary to the region M under consideration. In
this section we shall consider specific boundary conditions that are physically motivated. For the
outer boundary we will specify asymptotically flat boundary conditions that capture the notion of
isolated systems. For the inner boundary we will consider isolated horizons boundary conditions.
In this way, we allow for the possibility of spacetimes that contain a black hole. This section
has two parts. In the first one, we consider the outer boundary conditions and in the second
part, the inner horizon boundary condition. In each case, we study the finiteness of the action,
its variation and its differentiability. Since this manuscript is to be self-contained, we include a
detailed discussion of the boundary conditions before analysing the different contributions to the
action.

4.2.1 Asymptotically flat spacetimes

We are interested in spacetimes that at infinity look like a flat spacetime, in other words, whose
metric approaches a Minkowski metric at infinity (in some appropriately chosen coordinates). Here
we will follow the standard definition of asymptotically flat spacetimes in the first order formalism
(see e.g. [7], [25] and for a nice and pedagogical introduction in the metric formulation [6] and
[65]). Here we give a brief introduction into asymptotically flat spacetimes, following closely [7].
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In order to describe the behaviour of the metric at spatial infinity, we will focus on the region R,
that is the region outside the light cone of some point p. We define a 4−dimensional radial coordi-
nate ρ given by ρ2 = ηabxaxb, where xa are the Cartesian coordinates of the Minkowski metric η

on R4 with origin at p. We will foliate the asymptotic region by timelike hyperboloids, H, given by
ρ = const, that lie in R. Spatial infinity I corresponds to a limiting hyperboloid when ρ→ ∞. The
standard angular coordinates on a hyperboloid are denoted by Φi = (χ,θ ,φ), and the relation be-
tween Cartesian and hyperbolic coordinates is given by: x(ρ,χ,θ ,φ)= ρ cosh χ sinθ cosφ , y(ρ,χ,θ ,φ)=

ρ cosh χ sinθ sinφ , z(ρ,χ,θ ,φ) = ρ cosh χ cosθ , t(ρ,χ,θ ,φ) = ρ sinh χ .
We shall consider functions f that admit an asymptotic expansion to order m of the form,

f (ρ,Φ) =
m

∑
n=0

n f (Φ)

ρn +o(ρ−m), (4.29)

where the remainder o(ρ−m) has the property that

lim
ρ→∞

ρ o(ρ−m) = 0. (4.30)

A tensor field T a1...an b1...bm will be said to admit an asymptotic expansion to order m if all its
component in the Cartesian chart xa do so. Its derivatives ∂cT a1...an b1...bm admit an expansion of
order m+1.

Figure 4.1: 2D visualization of slices at constant χ and t respectively.

With these ingredients at hand we can now define an asymptotically flat spacetime in terms
of its metric: a smooth spacetime metric g on R is weakly asymptotically flat at spatial infinity if
there exist a Minkowski metric η such that outside a spatially compact world tube (g−η) admits
an asymptotic expansion to order 1 and limρ→∞(g−η) = 0.
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In such a space-time the metric in the region R takes the form,

gabdxadxb =

(
1+

2σ

ρ

)
dρ

2 +2ρ
αi

ρ
dρ dΦ

i +ρ
2
(

hi j +
1hi j

ρ

)
dΦ

idΦ
j +o(ρ−1) (4.31)

where σ , αi and 1hi j only depend on the angles Φi and hi j is the metric on the unit time-like
hyperboloid in Minkowski spacetime:

hi jdΦ
idΦ

j =−dχ
2 + cosh2

χ(dθ
2 + sin2

θdφ
2) . (4.32)

Note that also we could have expanded the metric in a chart (r,Φ), associated with a timelike
cylinder, or any other chart. But we chose the chart (ρ,Φ) because it is well adapted to the geom-
etry of the problem and will lead to several simplifications. In the case of a 3+1−decomposition
a cylindrical chart could be a better choice.

For this kind of space-times, one can always find another Minkowski metric such that its off-
diagonal terms αi vanish in leading order. In [7] it is shown with details that the asymptotically
flat metric can be written as

ds2 =

(
1+

2σ

ρ

)
dρ

2 +ρ
2 hi j

(
1− 2σ

ρ

)
dΦ

idΦ
j +o(ρ−1), (4.33)

with σ(−χ,π − θ ,φ +π) = σ(χ,θ ,φ). We also see that 1hi j = −2σhi j. These two conditions
restrict the asymptotic behaviour of the metric, but are necessary in order to reduce the asymptotic
symmetries to a Poincaré group, as demonstrated in [7].

From the previous discussion and the form of the metric one can obtain the fall-off conditions
for tetrads. As shown in [7] in order to have a well defined Lorentz angular momentum one needs
to admit an expansion of order 2, therefore we assume that in Cartesian coordinates we have the
following behaviour

eI
a =

oeI
a +

1eI
a(Φ)

ρ
+

2eI
a(Φ)

ρ2 +o(ρ−2), (4.34)

where 0eI is a fixed co-frame such that g0
ab = ηIJ

oeI
a

oeI
b is flat and ∂a

oeI
b = 0.

The sub-leading term 1eI
a can be obtained from (4.33) and is given by [7],

1eI
a = σ(Φ)(2ρaρ

I− oeI
a) (4.35)

where
ρa = ∂aρ and ρ

I = oeaI
ρa. (4.36)

The asymptotic expansion for connection can be obtained from the requirement that the con-
nection be compatible with tetrad on I, to appropriate leading order. This leads to the asymptotic
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expansion of order 3 for the connection,

ω
IJ
a = o

ω
IJ
a +

1ω IJ
a

ρ
+

2ω IJ
a

ρ2 +
3ω IJ

a
ρ3 +o(ρ−3) . (4.37)

We require that DeI vanishes, to an appropriate order, more precisely, we ask that the term of
order 0 in DeI vanishes

d oeI + o
ω

I
K ∧ oeK = 0 , (4.38)

and since d oeI = 0 it follows that oω IK = 0. The term of order 1 should also vanish leading to
1ω IK = 0. We also ask that the term of order 2 in DeI vanishes, and we obtain

d
( 1eI

ρ

)
=−

2ω I
K

ρ2 ∧
oeK , (4.39)

and we shall demand compatibility between e and ω only based on this condition. As a result, we
obtain

2
ω

IJ
a (Φ) = 2ρ

2
∂
[J(ρ−1 1eI]

a ) (4.40)

= 2ρ (2ρ
[I

ρa∂
J]

σ − oe[Ia ∂
J]

σ −ρ
−1 oe[Ia ρ

J]
σ) . (4.41)

Note that although ρ appears explicitly in the previous expression, it is independent of ρ .
Therefore, in the asymptotic region we have DeI = O(ρ−3). This condition has its repercus-

sions on the behaviour of the Holst and Neih-Yan terms, as we will show in what follows.

4.2.1.1 Palatini action with boundary term

Now we have all necessary elements in order to prove the finiteness of the Palatini action with
boundary term, given by (4.1). This expression can be re-written as,

SPB(e,ω) =
1

2κ

∫
M

(
dΣ

IJ ∧ωIJ−Σ
IJ ∧ωI

K ∧ωKJ
)

(4.42)

or in components

SPB(e,ω) =
1

2κ

∫
M

(
∂aΣ

IJ
bcωdIJ−Σ

IJ
abωcI

K
ωdKJ

)
ε

abcd (4.43)

where εabcd is the metric compatible 4-form on M. This volume element is related by εabcd =
√

gεabcd d4x, to the Levi-Civita tensor density of weight +1, εabcd . We will prove that taking into
account the boundary conditions (4.34) and (4.37), the integrand falls off as ρ−4, while the volume
element on any Cauchy slice in asymptotic region goes as ρ2, so the action is manifestly finite
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always (even off-shell), if the two Cauchy surfaces are asymptotically time-translated with respect
to each other.

From (4.32) and (4.33), we see that the volume element in the asymptotic region takes the form
ρ3 cosh2

χ sinθ dρ dχ dθ dφ . In order to prove finiteness we will consider the region bounded by
Cauchy slices t = const instead of χ = const, since in the second case for ρ → ∞ the volumen of
the region does not need to converge (see Fig. 4.1). Since t(ρ,χ,θ ,φ) = ρ sinh χ at the surface
with constant t we have ρ dχ = − tanh χdρ . Substituting this into the metric we can see that the
volume element is ρ2 cosh χ sinθ dρ dθ dφ . As ρ → ∞, the angle χ → 0 so cosh χ → 1. It follows
that in the limit ρ → ∞ the volume of the region M behaves as ρ2.

Now, we need to deduce the asymptotic behavior of dΣIJ ∧ωIJ = εIJKLdeK ∧ eL∧ω IJ . Since
d(oeI) = 0 it follows that

deK =
1
ρ

d[1eK(Φ)]+O(ρ−2) . (4.44)

The partial derivative, with respect to cartesian coordinates, of any function f (Φ) is proportional
to ρ−1,

∂a f (Φ) =
∂Φi

∂xa
∂ f
∂Φi =

1
ρ

Ai
a(Φ)

∂ f
∂Φi , (4.45)

where the explicit expression for Ai
a(Φ) can be obtained from the relation between Cartesian and

hyperbolic coordinates. As a consequence deK = O(ρ−2), and since ωIJ = O(ρ−2) it follows that
dΣIJ ∧ωIJ falls off as ρ−4, and the Palatini action with boundary term is finite.

Now let us prove the differentiability of the action (4.1). As we have commented after (4.2), this
action is differentiable if the boundary term that appears in the variation vanishes. This boundary
term is

1
2κ

∫
∂M

δΣ
IJ ∧ωIJ =

1
2κ

(
−
∫

M1

+
∫

M2

+
∫
I
−
∫

∆

)
δΣ

IJ ∧ωIJ , (4.46)

where we decomposed the boundary as ∂M= M1∪M2∪I∪∆, as in Fig.2.7. On the Cauchy slices,
M1 and M2, we assume δeI

a = 0 so the integrals vanish, and in the following section we will prove
that over ∆ this integral also vanishes. Here we will focus on the contribution of the asymptotic
region I.

On a time-like hyperboloid H, ρ = const, so that its volume element is ρ3 cosh2
χ sinθ dχ dθ dφ =

ρ3d3Φ and the boundary term can be written as,

1
2κ

∫
I
δΣ

IJ ∧ωIJ =
1

2κ
lim

ρ→∞

∫
H

δΣ
IJ
ab ωcIJ ε

abc
ρ

3d3
Φ , (4.47)

Now we can use that,

δΣabIJ = ρ
−1

εIJKL
oeK

a δσ(Φ)
(
2ρbρ

L− oeL
b
)
+O(ρ−2) . (4.48)
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Since ρ is constant on a hyperboloid, it follows that ρa is orthogonal to it and ρaεabc = 0. Then,
we obtain

δΣ
IJ
ab ωcIJ ε

abc =
2

ρ3 δσ εIJKL
oeK

a
oeL

b
oeI

c(ρ ∂
J
σ +ρ

J
σ)εabc +O(ρ−4) . (4.49)

In this expression the term with a derivative of σ is proportional to ∂ρσ = 0, so that the variation
(4.47) reduces to

1
2κ

∫
I
δΣ

IJ ∧ωIJ =
3

2κ
δ (
∫
H1

σ
2d3

Φ) , (4.50)

where H1 is the unit hyperboloid. So we see that the Palatini action with the boundary term is dif-
ferentiable when we restrict to configurations that satisfy asymptotically flat boundary conditions,
such that Cσ :=

∫
H1

σ2d3Φ has the same (arbitrary) value for all of them. In that case, the above
expression (4.50) vanishes. This last condition is not an additional restriction to the permissible
configurations, because every one of them (compatible with our boundary conditions) corresponds
to some fixed value of Cσ .

Here we want to emphasize the importance of the boundary term added to the action given that,
without it, the action fails to be differentiable. The contribution from the asymptotic region to the
variation of the Palatini action is,

1
2κ

∫
I
Σ

IJ ∧δωIJ =
1

2κ
lim

ρ→∞

∫
H

Σ
IJ
ab δωcIJ ε

abc
ρ

3d3
Φ . (4.51)

Our boundary conditions imply that ΣIJ
abδωcIJ = O(ρ−2), so that the integral behaves as

∫
Iρ d3Φ,

and in the limit ρ → ∞ is explicitly divergent.

4.2.1.2 Holst term

As we have seen earlier, in the asymptotic region we have DeI = O(ρ−3). Furthermore, as
D(DeI) = F IK∧eK , we have that F IK∧eK = O(ρ−4). We can see that explicitly by calculating the
term of order 3 in this expression

F IK ∧ eK = d
( 2ω I

K

ρ2

)
∧ oeK +O(ρ−4) . (4.52)

The first term in the previous expression vanishes since d
( 2ω I

K
ρ2

)
∧ oeK = d

( 2ω I
K

ρ2 ∧ oeK)= 0, due
to (4.39). So, we see that the Holst term

SH =− 1
2κγ

∫
M

eI ∧ eJ ∧FIJ , (4.53)
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is finite under these asymptotic conditions, since eI ∧ eJ ∧FIJ goes as ρ−4, while the volume ele-
ment on every Cauchy surface goes as ρ2dρ d2Ω.

The variation of the Holst term is well defined if the boundary term, obtained as a result of
variation, vanishes. We will analyze the contribution of this term

1
2κγ

∫
∂M

eI ∧ eJ ∧δωIJ . (4.54)

Let us examine the term of order 2 of the integrand, it is

oeI ∧ oeJ ∧ δ (2ωIJ)

ρ2 = d
[oeI ∧ δ (1eI)

ρ

]
, (4.55)

due to (4.39) and d oeI = δ oeI = 0, and this term does not contribute to (4.54). So, the leading
term in eI∧eJ∧δωIJ is of order 3, and it does not vanish, since it depends also on 3ωIJ(Φ), which
is not fixed by our boundary conditions. Since the volume element on a hyperboloid H goes as
ρ3d3Φ, it follows that the boundary term (4.54) does not vanish at I (though it is finite).

As our analysis shows we should provide a boundary term for the Holst term, in order to make
it differentiable. It turns out that this term should be [25]

SBH =
1

2κγ

∫
∂M

eI ∧ eJ ∧ωIJ . (4.56)

Let us show first that this term is finite and for that we should prove that its term of order 2 vanishes.
This term is

oeI ∧ oeJ ∧
2ωIJ

ρ2 = d
(oeI ∧

1eI

ρ

)
, (4.57)

due to the same arguments as in (4.55), and we see that it does not contribute to the boundary term
(4.56). So, the leading term of the integrand is of order 3, and since the volume element at H goes
as ρ3d3Φ, it follows that (4.56) is finite.

The Holst term with its boundary term (4.9) can be written as

SHB =− 1
2κγ

∫
M

eI ∧ eJ ∧FIJ +
1

2κγ

∫
∂M

eI ∧ eJ ∧ωIJ , (4.58)

and also as an integral over M

SHB =− 1
2κγ

∫
M

2deI ∧ eJ ∧ωIJ− eI ∧ eJ ∧ωIK ∧ω
K

J . (4.59)

As we have seen in (4.10), the variation of the Holst term with its boundary term is well defined
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provided that the following boundary contribution

1
2κγ

∫
∂M

δΣ
IJ ∧?ωIJ =

1
2κγ

(
−
∫

M1

+
∫

M2

+
∫
I
−
∫

∆

)
δΣ

IJ ∧?ωIJ , (4.60)

vanishes. We first note that ω IJ
a and ?ω IJ

a have the expansion of the same order, the leading term
is O(ρ−2). Using (4.48), the fact that ρa is orthogonal to I and ηabεabc = 0, one can see that the
leading term in the integrand vanishes in the asymptotic region, so that δΣIJ ∧?ωIJ = O(ρ−4) and
the integral over I vanishes. In the next section we will prove that the integral over ∆ vanishes, so
that Holst action with boundary term is well defined.

4.2.1.3 Pontryagin and Euler terms

Since we are interested in a generalization of the first order action of general relativity, that includes
topological terms, we need to study their asymptotic behaviour. We begin with Pontryagin and
Euler terms, that turn out to be well defined.

It is straightforward to see that the Pontryagin term (4.14) is finite for asymptotically flat bound-
ary conditions. Since

SPo[e,ω] =
∫
M

F IJ
ab ∧FcdIJε

abcd , (4.61)

the finiteness of this expression depends on the asymptotic behavior of FIJ . Taking into account
(4.37), we can see that the leading term of FabIJ falls off as ρ−3. Since the volume of any Cauchy
slice is ρ2 sinθdρdθdφ , in the limit when ρ → ∞ the integral goes to zero. As a result, the
Pontryagin term is finite even off-shell. The same result holds for the Euler term (4.20), since the
leading term in the asymptotic form of ?FIJ is of the same order as of FIJ .

Now we want to prove that both terms are differentiable. As we have showed in (4.144), the
variation of the Pontryagin term is,

δSPo = 2
∫

∂M
F IJ ∧δωIJ = 2

(
−
∫

M1

+
∫

M2

+
∫
I
−
∫

∆

)
F IJ ∧δωIJ . (4.62)

In the following subsection we prove that on ∆ the integral vanishes. For I, we need to prove that
the integral ∫

I
F IJ ∧δωIJ = 2 lim

ρ→∞

∫
H

F IJ
ab δωcIJε

abc
ρ

3d3
Φ , (4.63)

vanishes. Taking into account (4.37) we can see that the leading term of FabIJωc
IJ goes as ρ−5.

Therefore the integral falls off as ρ−2 which in the limit ρ → ∞ goes to zero. The same holds for
the Euler term.
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4.2.1.4 Nieh-Yan term

The Neih-Yan topological term is given by

SNY =
∫

∂M
DeI ∧ eI . (4.64)

and it is finite since the integrand is of order 3, and the volume element on H is ρ3d3Φ, so the
contribution at I is finite. The variation of SNY is

δSNY =
∫

∂M
2DeI ∧δeI− eI ∧ eJ ∧δωIJ , (4.65)

and we see that the first term vanishes, but the second one is exactly as in (4.54) and we have seen
that it does not vanish, so we need to add a boundary term to the Nieh-Yan action in order to make
it differentiable.

As we have seen in (4.1.3.2) the difference between the Nieh-Yan and Holst terms is given by
an expression quadratic in torsion ST,

ST =
∫
M

DeI ∧DeI , (4.66)

and we will analyze this term here. As we have seen before, our asymptotic boundary conditions
imply that DeI = O(ρ−3) and since the volume element on every Cauchy surface goes as ρ2, it
follows that ST is finite off-shell.

The variation of ST is given by

δST = 2
∫
M

δeI ∧FIK ∧ eK +δω
I
K ∧ eK ∧DeI +2

∫
∂M

DeI ∧δeI , (4.67)

and it is easy to see that it is well defined. Namely, the surface term vanishes since we demand
DeI = 0 on an isolated horizon ∆, while at the spatial infinity the integrand behaves as O(ρ−5) and
the volume element goes as ρ3d3Φ, and in the limit ρ → ∞ the contribution of this term vanishes.

From (4.24) we see that the Neih-Yan term is not well defined due to the behaviour of the Holst
term, so one need to provide a corresponding boundary term in order to make it well defined. The
resulting action is given in (4.26), or equivalently

SNYB = 2κγSHB +ST . (4.68)

4.2.2 Internal boundary: Isolated horizons

We shall consider the contribution to the variation of the action at the internal boundary, in this
case a weakly isolated horizon. A weakly isolated horizon is a non-expanding null 3-dimensional
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hypersurface, with an additional condition that implies that surface gravity is constant on a horizon.
Let us specify with some details its definition and basic properties [8].

Let ∆ be a 3-dimensional null surface of (M,gab), equipped with future directed null normal
l. Let qab =̂gab←−

be the (degenerate) induced metric on ∆ (we denote by =̂ an equality which holds
only on ∆ and the arrow under a covariant index denotes the pullback of a corresponding form
to ∆). A tensor qab that satisfies qabqacqbd =̂qcd , is called an inverse of qab. The expansion of a
null normal l is defined by θ(l) = qab∇alb, where ∇a is a covariant derivative compatible with the
metric gab.

The null hypersurface ∆ is called a non-expanding horizon if it satisfies the following condi-
tions: (i) ∆ is topologically S2×R, (ii) θ(l) = 0 for any null normal l and (iii) all equations of
motion hold at ∆ and −Tablb is future directed and causal for any l, where Tab is matter stress-
energy tensor at ∆. The second condition implies that the area of the horizon is constant ’in time’,
so that the horizon is isolated.

We need one additional condition in order to satisfy the zeroth law of black hole dynamics.
In order to introduce it let us first specify some details of the geometry of the isolated horizon.
It is convenient to use null-tetrads (l,n,m, m̄), where a real, future directed null vector field n is
transverse to ∆ and a complex vector field m is tangential to ∆, such that l ·n =−1, m · m̄ = 1 and
all the other scalar products vanish.

Since l is a null normal to ∆ it is geodesic and its twist vanishes. We define surface gravity κ(l)

as the acceleration of la

la
∇alb =̂κ(l)l

b . (4.69)

We note that κ(l) is associated to a specific null normal l, if we replace l by l′ = f l the acceleration
changes κ(l′) = f κ(l)+£l f .

The Raychaudhuri and Einstein’s equations together with the condition on the stress-energy
tensor imply that every l is also shear free and since its expansion and twist vanish there exists a
one-form ωa such that [23]

∇ a←−
lb =̂ωalb . (4.70)

Under the rescaling of the null normal l→ l′ = f l, ω transforms like a connection ω → ω ′ =

ω + d(ln f ) (we see that ω is invariant under constant rescaling). It is also easy to see that the
horizon is ‘time’ invariant, in the sense that £lqab =̂0. Furthermore, the area two-form on the
cross-sections of ∆, 2ε := im∧ m̄ is also preserved in ‘time’, £l

2ε =̂0.
Since l can be rescaled by an arbitrary positive function, in general κ(l) is not constant on ∆.

If we want to establish the zeroth law of black hole dynamics dκ(l) =̂0 we need one additional
condition, the ‘time’ invariance of ω ,

£lω =̂0 . (4.71)
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Now, if we restrict to constant rescaling of l, l→ l′ = cl that leaves ω invariant, then the zeroth law
of black hole dynamics follows, for every null normal l related to each other by constant rescaling.

All null normals related to each other by a constant rescaling form an equivalence class [l].
Now, we can define a weakly isolated horizon (WIH) (∆, [l]) as a non-expanding horizon equipped
with an equivalence class [l], such that £lω =̂0, for all l ∈ [l].

In order to analyze the contribution to the variation of the action over the internal boundary,
which is a WIH ∆, we equip ∆ with a fixed class of null normals [l] and fix an internal null
tetrads (lI,nI,mI, m̄I) on ∆, such that their derivative with respect to flat derivative operator ∂a

vanishes.The permissible histories at ∆ should satisfy two conditions: (i) the vector field la := ea
I lI

should belong to the fixed equivalence class [l] (this is a condition on tetrads) and (ii) the tedrads
and connection should be such that (∆, [l]) constitute a WIH.

The expression for tetrads on ∆ is given by [24]

eI
a =̂ − lIna + m̄Ima +mIm̄a , (4.72)

so that
Σ

IJ =̂2l[InJ] 2
ε +2in∧ (ml[Im̄J]− m̄ l[ImJ]) . (4.73)

The expression for the connection on ∆ is given by [24]

ωIJ =̂ −2ω l[InJ]+2U l[Im̄J]+2Ū l[ImJ]+2V m[Im̄J] , (4.74)

where we have introduced two new one-forms, a complex one U and purely imaginary one V . In
[24] the expression for these one forms is given in terms of Newman-Penrose (NP) spin coefficients
and null tetrads. First we have

ωa =−(ε + ε̄)na +(ᾱ +β )m̄a +(α + β̄ )ma , (4.75)

where α , β and ε are NP spin coefficients. In what follows we do not need their explicit form,
we will just write down the expression for ε since this coefficient will be of special importance,
ε = 1

2(m̄
alb∇bma−nalb∇bla). Since κ(l) = laωa it follows that κ(l) = ε + ε̄ .

Also, it can be shown that [8]
dω =̂G2

ε , (4.76)

where G = 2Im [Ψ2] =, with Ψ2 = Cabcdlambm̄cnd , and Cabcd are the components of the Weyl
tensor. Now, it is easy to see that the condition £lω =̂0 leads to d(Reε)=̂0.

On the other hand we have

Ua =̂ − π̄na + µ̄ma + λ̄ m̄a , (4.77)
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and
Va =̂ − (ε− ε̄)na +(β − ᾱ)m̄a +(α− β̄ )ma , (4.78)

where π , µ and λ are additional NP spin coefficients. It has been also shown that

dV =̂F 2
ε , (4.79)

where F is a function of the Riemann curvature and Weyl tensor. Then, we can calculate £lV ,

£lV = l ·dV +d(l ·V ) = 2d(Imε) . (4.80)

We shall also need the expression for the pull-back of the curvature two-form on the weakly iso-
lated non-rotating horizon (the details are given in [44])

F IJ =̂ −2iR2
ε m[I m̄J]+2FKLnL l[I(mJ]mK + m̄J]m̄K) , (4.81)

where R is the scalar curvature of the cross-section of ∆.
Now we have all necessary elements in order to calculate the contribution of the variation of

the Palatini action, the Holst term and topological terms at isolated horizon. Before that, let us first
examine the gauge invariance of the boundary terms of Palatini action and Holst term, given in
(4.1) and (4.9), on a weakly isolated horizon ∆. The residual Lorentz transformations, compatible
with the definition of ∆ can be divided in two groups: ones that preserve the direction of a vector l

and rotate m

l→ cl , n→ 1
c

n , m→ eiθ m , (4.82)

and ones that leave l invariant, but change n and m

l→ l , n→ n−um− ūm̄+uūl , m→ m− ūl . (4.83)

Note that c= const, since l ∈ [l]. We shall also partially fixed θ by the condition la∇aθ =−2(Imε).
We will see below that this condition implies that Imε = 0 and then from (4.80) it follows that
£lV = 0. There are no restrictions on u.

The Palatini boundary term on the horizon reduces to

1
2κ

∫
∆

ΣIJ ∧ω
IJ =

1
κ

∫
∆

2
ε ∧ω . (4.84)

It was shown in [17] that ω is invariant under both classes of transformations. Two-form 2ε =

im∧ m̄ is invariant under (4.82), and also under (4.83) since this transformation implies ma→ ma,
due to la =̂0.
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Similarly, the Holst boundary term on the horizon is

1
2κγ

∫
∆

ΣIJ ∧?ω
IJ =

i
κ

∫
∆

2
ε ∧V . (4.85)

It turns out that V is invariant under (4.83), and under (4.82) it transforms as V →V − idθ . Due to
the restriction on θ , we have that ∇aθ =̂wma + w̄m̄a, where w is arbitrary, so that 2ε ∧dθ =̂0. As
a consequence 2ε ∧V is also invariant under gauge transformations on ∆.

4.2.2.1 Palatini action and isolated horizons

In this part we will analyze the variation of the Palatini action with boundary term (4.1), on an
isolated horizon ∆

δSPB|∆ =
1

2κ

∫
∆

εIJKLω
IJ ∧ eK ∧δeL =

1
2κ

∫
∆

ω ∧δ
2
ε . (4.86)

Since ∆ is a non-expanding horizon, £l
2ε =̂0. Any other permissible configuration of tetrads,

(ea
I )
′, should also satisfy £l′

2ε ′ =̂0, where l′a ∈ [l] and 2ε ′ = 2ε + δ 2ε . For the null normals in the
equivalence class [l], £l′

2ε ′ = c£l
2ε ′ =̂0, and it follows that £l δ 2ε =̂0. In the variational principle

all fields are fixed on initial and final Cauchy surfaces, M1 and M2, in particular δ 2ε = 0 on two-
spheres at the intersection of the initial and final Cauchy surface with the WIH, S1,2 := M1,2 ∩∆

(see Fig. 1). Furthermore, δ 2ε does not change along any null normal l, so that δ 2ε =̂0 on the
entire horizon (comprised between the two Cauchy surfaces) and the integral (4.86) vanishes. We
should remark that, in the following parts, we will use the same argument whenever we have some
field configuration whose Lie derivative along l vanishes on the horizon, to prove that its variation
is zero on the horizon.

We note that the variation of the Palatini action, without boundary term, at ∆ is

δSP|∆ =− 1
2κ

∫
∆

εIJKLδω
IJ ∧ eK ∧ eL =− 1

2κ

∫
∆

δω ∧ 2
ε . (4.87)

In this case, one can argue that the term on the RHS vanishes, because from £lω =̂0 it follows
that δω =̂0 (a similar, but slightly different, argument was used in [8]). We see that the variational
principle for the Palatini action is well defined even without boundary terms on the horizon. Nev-
ertheless, for the reasons already mentioned in the previous chapter we shall keep the boundary
terms in (4.1) on the whole boundary, including the internal one.
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4.2.2.2 Holst term and isolated horizon

Let us now consider the contributions coming from the Holst term in the presence of an isolated
horizon. The variation of the Holst term, with its boundary term, on an isolated horizon is given
by

δSHB|∆ =
1

2κγ

∫
∆

ω
IJ ∧ eI ∧δeJ =

i
2κγ

∫
∆

V ∧δ
2
ε , (4.88)

and for the same reasons that we used before, after the equation (4.86), since £l
2ε =̂0, it follows

that δ 2ε =̂0 and the variation (4.88) vanishes.
On the other hand, the variation of the Holst term, without a boundary term, is also well defined

on a horizon, since

δSH|∆ =− 1
2κγ

∫
∆

δω
IJ ∧ eI ∧ eJ =−

i
2κγ

∫
∆

δV ∧ 2
ε . (4.89)

Now we can not use the same argument as in the case of Palatini action since the Lie derivative of
V does not vanish on ∆, as shown in (4.80), £lV =̂2d(Imε). As we commented earlier, we have a
freedom to perform local Lorentz transformations in order to make ε a real function. Namely, the
rotation in the (m, m̄) plane, given by m→ eiθ m, where θ is an arbitrary function, generates the
following transformation of the NP spin coefficient ε [23]: ε → ε + i

2 la∇aθ . So, ε can be made
real after the appropriate rotation that satisfies the condition la∇aθ =−2(Imε). Due to this gauge
freedom we can always choose a real ε , and as a result £lV = 0. When we change the configuration
of fields this condition could be violated, but then again one can perform a gauge transformation
to obtain £l′V ′ = 0. Then, using the same arguments as before we can conclude that δV =̂0, in
the variational principle and (4.89) also vanishes. Note that this argument is simpler and departs
significantly from that in [24].

4.2.2.3 Topological terms and isolated horizon

Let us now consider the possible contributions coming from the topological terms. That is, we
shall see whether the above conditions are sufficient to make the variation of the topological terms
well defined at ∆. The variation of the Pontryagin term on the horizon is

δSPo|∆ = 2
∫

∆

F IJ ∧δωIJ = 4i
∫

∆

R2
ε ∧δV , (4.90)

where we have used the expresions for the curvature at the horizon (4.81) and for the connection
(4.74). The argument just presented in the previous part implies that δV =̂0, so that the variation
δSPo vanishes at the horizon.

The variation of the Euler term on the horizon is
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δSE|∆ = 2
∫

∆

?F IJ ∧δωIJ = 4
∫

∆

R2
ε ∧δω , (4.91)

and it vanishes since δω =̂0.
Note that the variational principle for the Neih-Yan term is also well defined, since it reduces

to the variation of the Holst term plus an additional term, given in (4.67), that vanishes at ∆ since
part of the boundary conditions defining an isolated horizon require that the equation of motion
DeI = 0, should also hold on ∆.

We can then conclude that the inclusion of the topological terms to the action is compatible with
a well defined action principle, without the need of adding new boundary terms at the horizon.

4.3 Conserved charges

In this section we shall consider some of the information that comes from the covariant Hamil-
tonian formulation. In particular, we shall see how one can define conserved quantities. As we
have discussed in Secs. 2.5.2 and 2.5.3 there are two classes of quantities, namely those that are
generators of Hamiltonian symmetries and the so called Noether charges. We shall then analyze
the relation between Hamiltonian and Noether charges for the most general first order gravitational
action, focusing on the role that the boundary terms play. As one might anticipate, the fact that the
boundary terms do not modify the symplectic structure implies that the Hamiltonian charges are
insensitive to the existence of extra boundary terms. However, as we shall see in detail, the Noethe-
rian quantities do depend on the boundary terms. Specifically, we are interested in the relation of
the Noether charge with the energy at the asymptotic region and the energy of the horizon.

4.3.1 Hamiltonian charges

From equations (2.115) and (4.1), the symplectic potential for the well posed Palatini action SPB is
given by

ΘPB(δ ) =
1

2κ

∫
∂M

δΣ
IJ ∧ωIJ . (4.92)

Therefore from (2.119) and (4.92) the corresponding symplectic current is,

JP(δ1,δ2) =−
1

2κ

(
δ1Σ

IJ ∧δ2ωIJ−δ2Σ
IJ ∧δ1ωIJ

)
. (4.93)

Note that the symplectic current is insensitive to the boundary term, as we discussed in Sec. 2.5.1.
From the equation (2.123) one can obtain a conserved pre-symplectic structure, as an integral
of JP over a spatial surface, if the integral of the symplectic current over the asymptotic region
vanishes and if the integral over an isolated horizon behaves appropriately. As shown in [7], for
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asymptotically flat spacetimes,
∫
I JP = 0, and on a WIH we have JP =̂d j, [8]. As a result, the

conserved pre-symplectic structure for the Palatini action, for asymptotically flat spacetimes with
weakly isolated horizon, takes the form [8]

Ω̄P(δ1,δ2) =−
1

2κ

∫
M

(
δ1Σ

IJ ∧δ2ωIJ−δ2Σ
IJ ∧δ1ωIJ

)
− 1

κ

∫
S∆

δ1ψ δ2(
2
ε)−δ2ψ δ1(

2
ε) , (4.94)

where S∆ is a 2-sphere at the intersection of a Cauchy surface M with a horizon and ψ is a potential
defined as

£lψ = κ(l) , ψ = 0 on S1∆ , (4.95)

with S1∆ = M1 ∩ ∆. We see that the existence of an isolated horizon modifies the symplectic
structure of the theory.

Let us now see what is the contribution of the well posed Holst term, SHB. In this case the
symplectic potential is given by [25]

ΘHB(δ ) =
1

2κγ

∫
∂M

δΣ
IJ ∧?ωIJ =

1
κγ

∫
∂M

δeI ∧deI , (4.96)

where in the second line we used the equation of motion DeI = 0. The symplectic current in this
case is a total derivative and is given by

JH(δ1,δ2) =
1

κγ
d(δ1eI ∧δ2eI) . (4.97)

As we have seen in the Sec. 2.4, when the symplectic current is a total derivative, the covariant
Hamiltonian formalism indicates that the corresponding (pre)-symplectic structure vanishes.

As we also remarked in Sec. 2.4, one could postulate a conserved two form Ω̃ if
∫
I JH = 0 and∫

∆
JH = 0, in which case this term defines a conserved symplectic structure. Let us, for complete-

ness, consider this possibility. In [25] it has been shown that the integral at I vanishes, so here we
shall focus on the integral over ∆∫

∆

JH =
1

κγ

∫
∂∆

δ1eI ∧δ2eI =
1

κγ

∫
∂∆

δ1m∧δ2m̄+δ1m̄∧δ2m . (4.98)

We can perform an appropriate Lorentz transformation at the horizon in order to get a foliation of
∆ spanned by m and m̄, that is Lie dragged along l [8], that implies £lma =̂0. At the other hand,
∂∆ = S∆1∪S∆2, so it is sufficient to show that the integrand in (4.98) is Lie dragged along l. The
variations in (4.98) are tangential to S∆, hence we have £lδ1m = δ1£lm = 0, so that the integrals
over S∆1 and S∆2 are equal and

∫
∆

JHB = 0. So we can define a conserved pre-symplectic structure
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corresponding to the Holst term

Ω̃H(δ1,δ2) =
1

κγ

∫
∂M

δ1eI ∧δ2eI , (4.99)

where the integration is performed over ∂M = S∞ ∪ S∆. As shown in [25], the integral over S∞

vanishes, due to asymptotic conditions, and the only contribution comes from S∆. Finally, we see
that the quantity

Ω̃H(δ1,δ2) =
1

κγ

∫
S∆

δ1eI ∧δ2eI . (4.100)

defines a conserved two-form. Note that this is precisely the symplectic structure for the Holst
term defined in [45], though there the authors did not explicitly show that it is independent of M

(this result depends on the details of the boundary conditions).
As we have seen in (2.119) the boundary terms in the action (that is, the topological terms) do

not contribute to the symplectic current J, so that the only contributions in our case come from the
Palatini action and possibly, as we have just seen, from the Holst term1. In order to illustrate how
some possible inconsistencies arise when one postulates the existence of a symplectic structure for
the topological terms, let us see, with some detail, what happens in the case of the Pontryagin term
(as suggested, for instance, in [50]. Similar results follow for the other topological terms.) Recall
that this term can be written as a total derivative, which means that we can either view it as a bulk
term or as a boundary term. Considering the derivation of the symplectic structure in either case
should render equivalent descriptions. Let us consider the variation of SPo, calculated from the
LHS (bulk expression) in (4.14), is

δSPo =−2
∫
M

DF IJ ∧δωIJ +2
∫

∂M
F IJ ∧δωIJ , (4.101)

so it does not contribute to the equations of motion in the bulk, due to the Bianchi identity DF IJ = 0.
In this case, the corresponding symplectic current is

Jbulk
Po (δ1,δ2) = 2(δ1F IJ ∧δ2ωIJ−δ2F IJ ∧δ1ωIJ) . (4.102)

On the other hand, if we calculate the variation of the Pontryagin term directly from the RHS
(boundary expression) of (4.14), we obtain

δSPo = 2
∫

∂M
δLCS . (4.103)

The two expressions for δSPo are, of course, identical since F IJ ∧ δωIJ = δLCS + d(ω IJ ∧ δωIJ).

1Note that there have been some statements in the literature claiming that the topological terms do contribute to
the symplectic structure when there are boundaries present [43; 50; 59].
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The corresponding symplectic current in this case is

Jbound
Po (δ1,δ2) = 4δ[2δ1]LCS = 0 , (4.104)

as we have obtained in the Sec. 2.4. So, at first sight it would seem that there is an ambiguity in
the definition of the symplectic current that could lead to different symplectic structures. Since the
relation between them is given by

Jbulk
Po (δ1,δ2) = Jbound

Po (δ1,δ2)+4d(δ2ω
IJ ∧δ1ωIJ) , (4.105)

it follows that Jbulk
Po (δ1,δ2) is a total derivative, that does not contribute in (2.123), and from the

systematic derivation of the symplectic structure described in Sec. 2.4, we have to conclude that
it does not contribute to the symplectic structure. This is consistent with the fact that Jbound

Po and
Jbulk

Po correspond to the same action. As we have remarked in Sec. 2.4, a total derivative term in J,
under some circumstances, could be seen as generating a non-trivial symplectic structure Ω̃ on the
boundary of M. But the important thing to note here is that one would run into an inconsistency if
one choose to introduce that non-trivial Ω̃. Thus, consistency of the formalism requires that Ω̃ = 0.

Let us now construct the conserved charges for this theory, and from the previous reasons we
shall only consider the Palatini and Holst terms in this part. We shall consider the Hamiltonian
Hξ that is a conserved quantity corresponding to asymptotic symmetries and symmetries on the
horizon of a spacetime. Our asymptotic conditions are chosen in such a way that the asymptotic
symmetry group be the Poincaré group. The corresponding conserved quantities, for the well
posed Palatini action, energy-momentum and relativistic angular momentum, are constructed in
[7]. The contribution to the energy from a weakly isolated horizon has been analyzed in [8], where
the first law of mechanics of non-rotating black holes was deduced. Rotating isolated horizons
have been the topic of [5], where the contribution from the angular momentum of a horizon has
been included. In this section we restrict our attention to energy and give a review of the principal
results presented in [8].

Let us consider a case when ξ is the infinitesimal generator of asymptotic time translations
of the spacetime. It induces time evolution on the covariant phase space, generated by a vector
field δξ := (£ξ e,£ξ ω). At infinity ξ should approach a time-translation Killing vector field of
the asymptotically flat spacetime. On the other hand, if we have a non-rotating horizon ∆, then
ξ , at the horizon, should belong to the equivalence class [l]. In order that δξ represents a phase
space symmetry the condition £δξ

Ω̄ = 0 should be satisfied. As we have seen in Sec. 2.4.2, δξ is a
Hamiltonian vector field iff the one-form

Xξ (δ ) = Ω̄(δ ,δξ ) , (4.106)
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is closed, and the Hamiltonian Hξ is defined as

Xξ (δ ) = δHξ . (4.107)

In the presence of the isolated horizon, the symplectic structure (4.94) has two contributions, one
from the Cauchy surface M and the other one from the two-sphere S∆. This second term does not
appear in Ω̄P(δ ,δξ ), it is equal to

− c
κ

∫
S∆

δl
2
ε δψ−δ

2
ε δlψ , (4.108)

since ξ = cl at ∆. We will show that this integral vanishes. When acting on fields δl = £l , so
that δl

2ε = £l
2ε =̂0. On the other hand, as pointed out in [5], ψ is a potential, a given function of

the basic variables. If we define δlψ = £lψ , as in the case of our basic fields, then the boundary
condition in (4.95) cannot be fulfilled. So we need to define δlψ more carefully. Let ψ ′ denote a
potential that corresponds to a null vector l′ = cl in the sense that £l′ψ

′ = κ(l′). Since κ(l′) = cκ(l),
it follows that £lψ

′ = κ(l). We define δlψ = ψ ′−ψ , then

£l(δlψ) = 0 . (4.109)

We ask ψ to be fixed at S1∆, as a result δlψ =̂0. Then, it follows that the integral (4.108) vanishes
and the only contribution to Ω̄P(δ ,δξ ) comes from the integral over the Cauchy surface M in
(4.94).

On the other hand, the symplectic structure for the Holst term Ω̃H (4.100) is restricted to S∆,
but it turns out that

Ω̃H(δ ,δξ ) =
c

κγ

∫
S∆

δm∧£lm̄+δ m̄∧£lm = 0 . (4.110)

As a result δHξ := Ω̄(δ ,δξ ) = Ω̄P(δ ,δξ ) only has a contribution from the Palatini action

δHξ =− 1
2κ

∫
∂M

(ξ ·ω IJ)δΣIJ− (ξ ·ΣIJ)∧δω
IJ , (4.111)

where the integration is over the boundaries of the Cauchy surface M, the two-spheres S∞ and S∆,
since the integrand in Ω̄P(δ ,δξ ) is a total derivative, as shown in [8].

The asymptotic symmetry group is the quotient of the group of spacetime diffeomorphisms
which preserve the boundary conditions by its subgroup consisting of asymptotically identity dif-
feomorphisms. In our case this is the Poincaré group and its action generates canonical transfor-
mations on the covariant phase space whose generating function is H∞

ξ
. The situation is similar at

the horizon ∆ and infinitesimal diffeomorphisms need not be in the kernel of the symplectic struc-
ture unless they vanish on ∆ and the horizon symmetry group is the quotient of the Lie group of
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all infinitesimal spacetime diffeomorphisms which preserve the horizon structure by its subgroup
consisting of elements which are identity on the horizon [5].

The surface term at infinity in the expression (4.111) defines the gravitational energy at the
asymptotic region, whose variation is given by

δEξ
∞ :=− 1

2κ

∫
S∞

(ξ ·ω IJ)δΣIJ− (ξ ·ΣIJ)∧δω
IJ =

1
2κ

∫
S∞

(ξ ·ΣIJ)∧δω
IJ , (4.112)

since, due to the asymptotic behaviour of the tetrad and connection, the first term in the above
expression vanishes. As shown in [7], after inserting the asymptotic form of the tetrad (4.34) and
connection (4.37), this integral represents the variation of the ADM energy, δEξ

ADM, associated
with the asymptotic time-translation defined by ξ

Eξ
∞ = Eξ

ADM =
2
κ

∫
S∞

σ d2So , (4.113)

where d2So is the area element of the unit 2-sphere.
On the other hand, the surface term at the horizon in the expression (4.111) represents the

horizon energy defined by the time translation ξ , whose variation is given by

δEξ

∆
:=

1
2κ

∫
S∆

(ξ ·ω IJ)δΣIJ− (ξ ·ΣIJ)∧δω
IJ =

1
2κ

∫
S∆

(ξ ·ω IJ)δΣIJ , (4.114)

since the second term in the above expression vanishes at the horizon. The remaining term is of
the form

δEξ

∆
=

1
κ

κ(ξ )δa∆ , (4.115)

where a∆ is the area of the horizon.
Now we see that the expression (4.111) encodes the first law of mechanics for non-rotating

black holes, since it follows that

δHξ = δEξ

ADM−
1
κ

κ(ξ )δa∆ . (4.116)

We see that the necessary condition for the existence of Hξ is that surface gravity, κ(ξ ), be a
function only of a horizon area a∆. In that case

Hξ = Eξ

ADM−Eξ

∆
. (4.117)

In the following section we want to calculate the Noether charge that corresponds to time
translation for every term of the action (4.28). We have just seen that δHξ is an integral over
a Cauchy surface of the symplectic current J(δ ,δξ ). In section 2.5.3 we displayed the relation
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between the symplectic and Noether currents, given in (2.146), and using the definition of Noether
charge Qξ (2.139), we obtain the following relation

δHξ =
∫

M
J(δ ,δξ ) =

∫
∂M

δQξ −ξ ·θ(δ ) . (4.118)

There are two contributions to the above expression, one at S∞ and the other one at S∆. As before,
δEξ

∞, is the integral at the RHS of (4.118) calculated over S∞, and δEξ

∆
the same integral calculated

over S∆. Note that the necessary and sufficient condition for the existence of Hξ is the existence of
the form B such that ∫

∂M
ξ ·θ(δ ) = δ

∫
∂M

ξ ·B . (4.119)

Let us now consider how the different terms appearing in the action contribute to the Noether
charges.

4.3.2 Noether charges

In this part we consider the Noether charges that appear as conserved quantities associated to
diffeomorphisms generated by vector fields ξ . There are two parts. In the first one we consider
in detail the consistent Palatini action with a boundary term, and compare it to the case without a
boundary term. In the second part we consider the Holst and topological terms.

4.3.2.1 Palatini action

Let us start by considering the case of Palatini action with boundary term. We have seen in the
section 4.3.1 that the symplectic potential current in this case is given by

θPB(δ ) =
1

2κ
δΣ

IJ ∧ωIJ . (4.120)

In order to calculate the Noether current 3-form (2.138), JN(δξ ) = θ(δξ )− ξ ·L, we need the
following two expressions

θPB(δξ ) =
1

2κ
£ξ Σ

IJ ∧ωIJ =
1

2κ
[d(ξ ·ΣIJ)+ξ ·dΣ

IJ]∧ωIJ , (4.121)

and
ξ ·LPB =− 1

2κ
[ξ · (ΣIJ ∧FIJ)−ξ ·d(ΣIJ ∧ωIJ)] . (4.122)

From these expressions we obtain the following result for the Noether current 3-form

JNPB(δξ ) =
1

2κ
{(ξ ·ΣIJ)∧FIJ +(ξ ·ωIJ)DΣ

IJ +d[(ξ ·ΣIJ)∧ωIJ]} . (4.123)
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We see that on-shell (eI ∧FIJ = 0 and DΣIJ = 0), we have JN(δξ ) = dQξ , where the corresponding
Noether charge is given by

Qξ PB =
1

2κ
(ξ ·ΣIJ)∧ωIJ . (4.124)

We shall show that the contribution of the second term in (4.118) over S∞ vanishes. Namely,∫
S∞

ξ ·θPB(δ ) =
1

2κ

∫
S∞

ξ · (δΣ
IJ ∧ωIJ) = 0 , (4.125)

since δΣ = O(ρ−1), ω = O(ρ−2) and the volume element goes as ρ2. It follows that B = 0 on S∞

and the Hamiltonian at infinity exists. The remaining term at infinity in (4.118) is

δ

∫
S∞

Qξ PB =
1

2κ
δ

∫
S∞

(ξ ·ΣIJ)∧ωIJ , (4.126)

and since
∫

S∞
δ (ξ ·ΣIJ)∧ωIJ = 0, due to asymptotic behaviour of the fields, the above expression

is equal to δEξ
∞ given in (4.112), so in this case

Eξ

ADM =
∫

S∞

Qξ PB , (4.127)

up to an additive constant that we choose to be zero. Note that a similar result is obtained in the
second order formalism for the Einstein-Hilbert action with the Gibbons-Hawking term, as shown
in [58].

On the other hand, at the horizon the situation is different. In fact,∫
S∆

Qξ PB =
1

2κ

∫
S∆

(ξ ·ΣIJ)∧ωIJ = 0 , (4.128)

because ξ a = cla on the horizon, and due to the expressions for Σ (4.73) and ω (4.74) at the
horizon. Then, δE∆ is determined by the remaining term∫

S∆

ξ ·θPB(δ ) =
1

2κ

∫
S∆

[(ξ ·δΣ
IJ)∧ωIJ +δΣ

IJ(ξ ·ωIJ)] . (4.129)

The first term vanishes since on ∆ we have (ξ · δΣIJ)∧ωIJ =̂2c(l · 2ε)∧ω =̂0, because l · 2ε =̂0.
We are then left with the expression given in (4.114), and the necessary condition for the existence
of E∆ is that the surface gravity κ(ξ ) depends only on the area of the horizon [8]. It follows also
that there exists a form B such that (4.119) is satisfied.

We see that in this case

δE∞ = δ

∫
S∞

Qξ PB , δE∆ =
∫

S∆

ξ ·θPB(δ ) . (4.130)
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In globally stationary spacetimes, £ξ e = £ξ ω = 0, so that δHξ = Ω̄(δ ,δξ ) = 0, and from the first
law (4.116) it follows δE∞ = δE∆. For Palatini action with boundary term this implies that

δ

∫
S∞

Qξ PB =
∫

S∆

ξ ·θPB(δ ) . (4.131)

This result depends on the particular form of the action, and it is sensitive to the presence of
boundary terms.

Let us briefly comment the case of Palatini action without boundary term. We know that this
action is not well defined, its symplectic potential ΘP(δ ) diverges, but we can formally calculate
its Noether charge and compare it to the previous example. As we showed in the sections 2.5.1
and 2.5.3, the addition of the total derivative to the action changes its Noether charge (2.142), but
leaves the symplectic structure (2.119) unaltered. In the previous example the ADM energy was
determined completely by the integral of the Noether charge over the two-sphere at infinity. Now,
the situation is different and both terms in (4.118) contribute to δE∞. We first note that

θP(δ ) =−
1

2κ
Σ

IJ ∧δωIJ , Qξ P =− 1
2κ

Σ
IJ(ξ ·ωIJ) , (4.132)

where θP and Qξ P denote the corresponding quantities for Palatini action (without boundary term).
It turns out that ∫

S∞

ξ ·θP(δ ) =−
1

2κ
δ

∫
S∞

ξ · (ΣIJ ∧ωIJ) , (4.133)

since
∫

S∞
ξ · (δΣIJ ∧ωIJ) = 0 due to our asymptotic conditions. On the other hand,

∫
S∞

δQξ P =− 1
2κ

δ

∫
S∞

(ξ ·ωIJ)Σ
IJ =− 1

2κ

∫
S∞

δ (ξ ·ωIJ)Σ
IJ , (4.134)

and the combination of the above expressions, as in (4.118) gives the previous expression for δEξ
∞

(4.112). Thus, we see that the Hamiltonian generator at infinity is not given by the integral of the
Noether charge, as in the case of the Palatini action with boundary term.

At the horizon both terms contribute, again. The results are∫
S∆

ξ ·θP(δ ) =−
1
κ

δκ(ξ )a∆ , (4.135)

where we used the fact that l · 2ε = 0 and ξ ·δω = δ (ξ ·ω) = δκ(ξ ). We see again, that in order to
satisfy the condition (4.119), κ(ξ ) should be a function of a∆ only. We also obtain

δ

∫
S∆

Qξ P =
1
κ

δ (κ(ξ )a∆) , (4.136)
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and the combination of the above expressions, as in (4.118) gives the previous result for δEξ

∆

(4.114).
Finally, let us compare these results for the Noether charge with the results of [36], and to that

end we shall recall one of the principal results in [36], referring to the variations of a stationary
black hole solution, that states that in diffeomorphism invariant theories, in the second order for-
malism, the Noether charge relative to a bifurcate Killing horizon Σ0 is proportional to the entropy
of a black hole S. The result is the following

δ

∫
Σ0

Qξ0
=

κ(ξ0)

2π
δS , (4.137)

where ξ0 is the Killing field that vanishes on Σ0 and at infinity tends to a stationary time-like
Killing vector field with unit norm and κ(ξ0) is the corresponding surface gravity of a stationary
black hole. In the proof of this result it is assumed that δκ(ξ0) = 0. Furthermore, it has been
shown that in the case of stationary variations the integral is independent of the choice of horizon
cross-section. Our analysis, based on the IH formalism [7] and [8], is different in various aspects:
(1) we consider the first order formalism; (2) in our case the existence of the internal boundary is
consistently treated, as, for example, in the expression for δH that involves integration over the
whole boundary, not only over the asymptotic region, as in [36]; (3) our results are valid also for
nonstationary configurations, and; (4) in our approach the integration is performed over an arbitrary
2-sphere cross section of a weakly isolated horizon, and not restricted to a preferred bifurcation
surface.

Taking this into account let us now see whether, in our approach, the Noether charge can be
related to the black hole energy (or entropy). We already know that in general this is not the case,
since neither the Holst term nor the topological terms contribute to the energy of the black hole,
though they modify the Noether charge.

We can formally compare the expression (4.137) with our result (4.136), taking into account all
differences between the two approaches. We see that, if we impose that δκ(ξ ) = 0, then the result
in (4.136) would look like (4.137). But this restriction is not consistent with the result of [8] that
shows that, as we saw in the previous subsection, the surface gravity is a function of the area of
the horizon, and that this is a necessary condition to have a well defined Hamiltonian. As we have
seen in this subsection, in neither of the cases, namely Palatini action with or without surface term,
is the variation of a corresponding Noether charge relative to an isolated horizon proportional to
(κ(ξ )δa∆).1 Note that this fact poses a challenge to the generality of the result relating Noether
charge and energy (or entropy) derived in [36].

1nor to δa∆, for that matter.
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4.3.2.2 Holst and topological terms

To end this section, let us calculate the Noether charges for the Holst term and the topological
terms. We shall see that in all of these cases the integrals of the corresponding Noether charge
2-form over S∞ vanish. For S∆, there is one case where the charge is non vanishing. Let us first
consider the Holst term with its boundary term SHB, given by (4.9). We know that this term does
not contribute to the energy. As we have seen in section 4.1.2, the symplectic potential current of
SHB is given by

θHB(δ ) =
1

2κγ
δΣ

IJ ∧?ωIJ =
1

κγ
δeI ∧deI , (4.138)

where in the second line we used the equation of motion DeI = 0. The corresponding Noether
charge 2-form is given by

Qξ HB =
1

κγ
(ξ ·ΣIJ)∧?ωIJ =

1
κγ

(ξ · eI)deI . (4.139)

Now, one can show that ∫
S∞

Qξ HB = 0 . (4.140)

Namely ∫
S∞

(ξ · eI)deI =
∫

S∞

(ξ · oeI)d
( 1eI

ρ

)
=
∫

S∞

d
[
(ξ · oeI)

1eI

ρ

]
= 0 , (4.141)

since ξ is constant on S∞ and d oeI = 0. On the other hand, it is also easy to show that∫
S∆

Qξ HB = 0 . (4.142)

since ∫
S∆

(ξ · eI)eJ ∧ωIJ =
∫

S∆

clI(eJ ∧ωIJ) = 0 , (4.143)

due to the expressions for the tetrad (4.73) and connection (4.74) on the horizon.
The variation of SPo, calculated from the LHS expression in (4.14), is

δSPo =−2
∫
M

DF IJ ∧δωIJ +2
∫

∂M
F IJ ∧δωIJ , (4.144)

so it does not contribute to the equations of motion in the bulk, due to the Bianchi identity DF IJ = 0,
and additionally the surface integral in (4.144) should vanish for the variational principle to be well
defined. We will show later that this is indeed the case for boundary conditions of interest to us,
namely asymptotically flat spacetimes possibly with an isolated horizon.

The symplectic potential current and the corresponding Noether charge 2-form for the Pontrya-
gin term SPo, calculated from the LHS expression in (4.14) is
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θPo(δ ) = 2F IJ ∧δωIJ , Qξ Po = 2(ξ ·ωIJ)F IJ . (4.145)

We will show that the integrals of the Noether charge 2-form Qξ Po over S∞ and S∆ vanish. For the
first one we have ∫

S∞

Qξ Po = 2
∫

S∞

(ξ ·ωIJ)F IJ = 0 . (4.146)

since ωIJ = O(ρ−2), F IJ = O(ρ−3) and the volume element goes as ρ2.
Since the pull-back of the connection on S∆ is given by (??), we obtain that the integral of the

Noether 2-form over S∆ is ∫
S∆

Qξ Po = 4ic
∫

S∆

(l ·V )R2
ε = 0 , (4.147)

where we have used the form of the connection on the horizon given by (4.74), and since we can
use the remaining gauge transformation to fix l ·V =̂0, as shown in [27].

At the other hand, we can calculate the symplectic potential current and the Noether charge
2-form from the RHS of (4.14), and obtain θ̃Po(δ ) = θPo(δ )− 2d(ω IJ ∧ δωIJ) and, as we have
seen in (2.142), this produces a following change in the Noether charge 2-form

Q̃ξ Po = Qξ Po−2ω
IJ ∧£ξ ωIJ . (4.148)

It is easy to see that the integrals of the last term in the above equation over S∞ and S∆ vanish, due
to our boundary conditions, hence the Noether charges remain invariant.

Similarly, for the Euler term, from the variation of the LHS of (4.20), we obtain

θE(δ ) = 2?F IJ ∧δωIJ , Qξ E = 2(ξ ·ωIJ)?F IJ . (4.149)

Then, as in case of the Pontryagin term it is easy to see that∫
S∞

Qξ E = 2
∫

S∞

(ξ ·ωIJ)?F IJ = 0 , (4.150)

due to the asymptotic behaviour of the fields.
At the horizon the situation is different since the dual of the pull-back (??) is given by

?F IJ|S∆
=−2R2

ε l[InJ] , (4.151)

the corresponding Noether charge is non vanishing∫
S∆

Qξ E = 4c
∫

S∆

(l ·ω)R2
ε = 16πcκ(l) (4.152)

since l ·ω = κ(l) is constant on the horizon and the remaining integral is a topological invariant.
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This result is consistent with the expression for the entropy of the Euler term in [37], obtained in the
second order formalism for stationary black holes. Though the Noether charge of the Euler term
over a WIH is non-zero, the corresponding contribution to the Hamiltonian energy is nonetheless
vanishing. As we have seen previously, in Section 4.3.1, the variation of the energy at the horizon
is

δHξ

∆
=
∫

S∆

δQξ −ξ ·θ(δ ) , (4.153)

with ξ = cl. For the Euler term we obtain∫
S∆

cl ·θE(δ ) = 4c
∫

S∆

l · (2
ε ∧δω)R= 16πcδκ(l) , (4.154)

since l · 2ε =̂0 and l · δω = δκ(l). We see that this term cancels the variation of (4.152) in the
expression for the energy at the horizon.

Similarly as for the Pontryagin term, the variation of the RHS of (4.20), leads to a change in the
symplectic potential current and the Noether charge 2-form, but the Noether charges stay invariant.

Finally, we have seen in Section 4.1.3 that the variation of the Neih-Yan term on shell is pro-
portional to the variation of the Holst term, so all the results for the Noether charge of the Holst
term apply directly here. Namely, for the Neih-Yan term, with its boundary term, given in (4.26),
we obtain that its Noether charge 2-form is

Qξ NYB = 2κγQξ HB , (4.155)

so that its integrals over S∞ and S∆ vanish as well.
Let us end this section with a remark. One should note that the Noether charges at infinity of

all the topological terms vanish for asymptotically flat boundary conditions, but this is not the case
for locally asymptotically anti-de Sitter (AAdS) space-times. In [3] and [2], AAdS asymptotic
conditions are considered and the Noether charge at infinity of the Palatini action with negative
cosmological constant term turns out to be divergent. In that case the Euler term is added in order
to make the action well defined and finite. With this modification, the non vanishing (infinite)
Noether charge becomes finite for the well defined action. This illustrates that, in several respects,
asymptotic AdS and asymptotically flat gravity behave in qualitatively different manners.

4.4 Discussion and remarks

Let us start by summarizing the main results that we have here presented.

1. We have analyzed whether the most general first order action for general relativity in four
dimensions has a well posed variational principle in spacetimes with boundaries. We showed
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that it is necessary to introduce additional boundary terms in order to have a differentiable ac-
tion, which is finite for the field configurations that satisfy our boundary conditions: asymp-
totically flat spacetimes with an isolated horizon as an internal boundary.

2. We discussed the impact of the topological terms and boundary terms needed to have a well
defined variational principle for any well posed field theory, on the symplectic structure and
the conserved Hamiltonian and Noether charges of the theory. We showed, in particular, that
for generic theories, no boundary term can modify the symplectic structure.

3. In the case of first order gravity, we showed that the topological terms do not modify the
symplectic structure. In the case of the Holst term (that is not topological), there is a par-
ticular instance in which it could modify the symplectic structure. Thus, the Hamiltonian
structure of the theory remains unaffected by the introduction of boundary and topological
terms. In particular, all Hamiltonian conserved quantities, that are generators of asymptotic
symmetries, remain unaffected by such terms. We have also shown that for our boundary
conditions the contribution from the Holst term to the Hamiltonian charges is always trivial.
It is important to note that this simple result proves incorrect several assertions that have
repeatedly appeared in the literature.

4. We have shown that even when the Hamiltonian conserved charges remain insensitive to
the addition of boundary and topological terms, the corresponding Noetherian charges do

depend on such choices. This has as a consequence that the identification of Noether charges
with, say, energy depends on the details of the boundary terms one has added. For instance,
if one focuses on the asymptotic region, then it is only for the well defined Palatini with
boundary action (of [7]) that the Noether charge coincides with the Hamiltonian (ADM)
energy. Any other choice, including Palatini without a boundary term, would yield a different
conserved quantity. Furthermore, if one only had an internal boundary (and no asymptotic
region), several possibilities for the action are consistent (compare [8] and [27]), and the
relation between energy and Noether charge depends on such choices. We have also made
some comments regarding the relation between our analysis and others based on Noether
charges for stationary spacetimes [36].

In this chapter, our focus was on first order gravity, but our analysis can be taken over to more
general diffeomorphism invariant theories. Our results indicate that there is an interesting interplay
between symmetries and conserved quantities that depends on the formalism used; Hamiltonian
and Noether charges that have very different interpretations within the theory, in general do not co-
incide. As we have seen, for the boundary conditions we considered most of the Noether charges
associated to topological terms vanished – while the Noether currents were non-vanishing–, but
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for generic boundary conditions this might not be the case (such as in AADS asymptotics, for
instance), indicating that generically these two sets of charges do not coincide. A deeper under-
standing of this issue is certainly called for.

Our analysis was done using the covariant Hamiltonian formalism, that has proved to be eco-
nomical and powerful to unravel the Hamiltonian structure of classical gauge field theories. It
should be interesting to see whether a parallel analysis, using a 3+1 decomposition of spacetime
and taking special care on the effects of boundaries, yields similar results. This work is in progress.
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Chapter 5

Conclusions

In this thesis we analyzed first order gravity in spacetimes with boundaries. We begin by defining
what it means to have a well posed action principle, that is finite and differentiable, and discussing
what is the effect of adding additional boundary terms to the action. Then we discuss the covariant
hamiltonian formalism taking enough care when boundaries are present. In particular we found
that when we add a boundary term to the original action it will not change the symplectic current
nor the symplectic structure. Also within the covariant formalism we study symmetries and con-
served charges; in particular we discuss the relation between the Hamiltonian and Noether charges,
while the former is insensible to the addition of boundary terms, the latter depends on the bound-
ary terms. So far our results are generic and can be applied to a variety of theories. In particular,
we use these results to analyze first order gravity in three and four dimensions in spacetimes with
boundaries.

In the three dimensional case we propose a manifestly Lorentz invariant well posed Palatini
action. We find the fall-off conditions for the first order variables and with these conditions we
prove that in fact the action is well posed, that is finite and differentiable. Moreover we follow the
covariant formalism and we find an expression for the energy, this expression coincide with that
obtained by Regge Teitelboim methods in the second order formulation in the metric variables,
that is the expression for the energy is determined up to a constant. Then taking two different
2+ 1 decompositions we find an expression for the energy, this is completely determined by the
canonical hamiltonian. This results coincide with those in the second order formalism, but this time
beginning with the Einstein-Hilbert action with Gibbons-Hawking term that is well posed under
asymptotically flat boundary conditions, and the expression for the energy is given by the canonical
hamiltonian. This also proves that the proposed action is the one corresponding to the Einstein-
Hilbert with Gibbons-Hawking. From this we can see that even though the covariant formalism
is powerful and economical, it only determines the conserved quantities up to a constant. In the
case of the energy this constant may shift the region in which the energy is bounded and pass from
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positive to negative values for the energy. Contrary, the hamiltonian method determines completely
the value of the energy.

In the four dimensional case we have analyzed whether the most general first order action
for general relativity in four dimensions has a well posed variational principle in spacetimes with
boundaries. We showed that it is necessary to introduce additional boundary terms in order to
have a differentiable action, which is finite for the field configurations that satisfy our bound-
ary conditions: asymptotically flat spacetimes with an isolated horizon as an internal boundary.
We discussed the impact of the topological terms and boundary terms added in order to have a
well defined variational principle, to the symplectic structure and the conserved Hamiltonian and
Noether charges of the theory. We showed that the topological terms do not modify the symplectic
structure. In the case of the Holst term (that is not topological), there is a particular instance in
which it could modify the symplectic structure. We have also shown that for our boundary condi-
tions the contribution from the Holst term to the Hamiltonian charges is always trivial. Thus, the
Hamiltonian structure of the theory remains unaffected by the introduction of boundary and topo-
logical terms. It is important to note that this result proves incorrect several assertions that have
repeatedly appeared in the literature. We have shown that even when the Hamiltonian conserved
charges remain insensitive to the addition of boundary and topological terms, the corresponding
Noetherian charges do depend on such choices. This has as a consequence that the identification
of Noether charges with, say, energy depends on the details of the boundary terms one has added.
For instance, if one only had an internal boundary (and no asymptotic region), several possibil-
ities for the action are consistent, and the relation between energy and Noether charge depends
on such choices. We have also seen that one particular topological terms, namely the Euler term,
contributes non-trivially to the Noether charge at the horizon. Our analysis was done using the
covariant Hamiltonian formalism, that has proved to be economical and powerful to unravel the
Hamiltonian structure of classical gauge field theories. It should be interesting to perform a similar
analysis using a 3+1 decomposition of spacetime and taking special care on the effects of bound-
aries, extending the analysis of [38; 39], where the boundaries were ignored. A natural question
is whether the two Hamiltonian approaches to treat this system are equivalent and, if not, under-
stand the underlying reasons for that discrepancy. This work is in progress and will be reported
elsewhere.
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Chapter 6

Perspectives and forthcoming work

“Never make a calculation until you know the answer: make an estimate

before every calculation, try a simple physical argument (symmetry! in-

variance! conservation!) before every derivation, guess the answer to

every puzzle. Courage: no one else needs to know what the guess is.

Therefore make it quickly, by instinct. A right guess reinforces this in-

stinct. A wrong guess brings the refreshment of surprise. In either case

life as a spacetime expert, however long, is more fun!”

—Wheeler, John A. and Edwin F. Taylor. Spacetime Physics, Freeman,
1966. Page 60.

There is almost an endless chain of questions, but following Wheeler’s counselling, there are
some few immediate questions I want to address:

• Inspired by the success of the three dimensional manifestly Lorentz invariant well posed
Palatini action. We want to extend this results and see how this works in the four dimen-
sional case and compare it with the already known results [7]. Using both the covariant and
canonical formalisms, we want to find the ADM energy.

• We can think of adding matter to the four dimensional Palatini action and see what happens
if we consider spacetimes that include a boundary at infinity and/or an internal boundary
satisfying isolated horizons boundary conditions. In particular if we add Skyrme field the
fall-off conditions at infinity are quasi-asymptotically flat [20], so instead of the ADM mass
we expect to recover the Sudarsky-Nucamendi mass [53]. We want to extend the results also
for isolated horizons boundary conditions. (This work is in collaboration with Alejandro
Corichi and Ulises Nucamendi).

• Also I have a proposal for a n−dimensional manifestly Lorentz invariant Palatini action, that
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can be seen as an n−dimensional BF theory with boundary. I want to see whether this action
will be well posed under asymptotically flat boundary conditions [10].

• We want to understand the effects of the addition of boundary terms to a well posed action,
in the context of a complete or pure hamiltonian analysis. How the canonical pair corre-
sponding to the original action relates with the canonical pair of the action with the added
boundary terms. How this boundary terms affects the structure of constraints. We want to
begin with a manageable example to begin with: Maxwell plus Pontryagin and/or BF plus
Pontryagin. The goal is to fully understand the action 1.1 in this canonical context.

I would love to extend many of this results to isolated horizons, asymptotically AdS, and null
infinity contexts. And the rest is history...
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Appendix A

Tensor densities and the volume element

Although tensors have such an irresistible beauty, sometimes is necessary to consider non-tensorial
objects. Take for example the Levi-Civita symbol defined as,

εa1a2···an =


+1 if a1a2 · · ·an is an even permutation of 01 · · ·(n−1),
−1 if a1a2 · · ·an is an odd permutation of 01 · · ·(n−1),
0 otherwise.

(A.1)

This definition is for any coordinate system (right-handed coordinate system, otherwise we have
an overall minus sign). That is what we call it symbol, because it is not a tensor and it is defined
not to change under coordinate transformations, so we use it as a constant. We are only able to
treat it as a tensor in flat inertial reference frames since the Lorentz transformations will leave it
unchanged. If we want to allow its components to change in a ‘nice’ way under any coordinate
transformations in an arbitrary geometry we have to extend our notion of tensor. We shall define
a tensor density πa1a2···an b1b2···bn of weight n ∈ R as an object on a differentiable manifold whose
components transform under changes of coordinates xa 7→ x′a

′
by

π
′′a′1a′2···a′n

b′1b′2···b′n =

∣∣∣∣det
(

∂xc

∂x′c
′

)∣∣∣∣n π
a1a2···an

b1b2···bn

∂x′a
′
1

∂xa1
· · · ∂x′a

′
k

∂xak

∂xb1

∂x′c
′
1
· · · ∂xbl

∂x′c
′
l

(A.2)

Also we can extend the covariant derivative for tensor to tensor densities,

∇aπ
a1a2···an

b1b2···bn = |detg|n/2
∇a

(
|detg|n/2

π
a1a2···an

b1b2···bn

)
= ∂aπ

a1a2···an
b1b2···bn +Γ

a1
acπ

ca2···an
b1b2···bn + · · ·+Γ

an
acπ

a1a2···an−1c
b1b2···bn

−Γ
c
ab1

π
a1a2···an

cb2···bn−·· ·−Γ
c
abn

π
a1a2···an

b1b2···c

−nΓ
b
baπ

a1a2···an
b1b2···bn (A.3)
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for a tensor density πa1a2···an b1b2···bn of weight n. The last term arises from ∂a logsetg = 2Γb
ba. In

a similar fashion we can extend this results to the Lie derivative. See e.g. [19; 22] for further
explanation and derivations.

In physics tensor densities arises naturally in canonical formulations of field theories where
the space-time metric is considered one of the physical fields. To make a Legendre transform, a
Liouville term of the form

∫
φ̇ pφ d3x is needed, but on the other hand we need this term to include

a measure factor to have coordinate independent integrations. We can not insert
√
|g| because in

that case φ and pφ will not longer be a canonical pair. This is fixed by requiring the momenta be a
density of weight one. As we can see in a particular example in 3.4.

A.1 Some properties

• Taking ε̃ as the Levi-Civita tensor density and ε the Levi-Civita permutation symbol,

ε̃a1a2···an =
1√
|g|

εa1a2···an (A.4)

ε̃
a1a2···an =

√
|g|εa1a2···an (A.5)

• When we have internal indices additionally to the space-time indices we have the following
relations,

– Takinking εI1,··· ,In as the Levi-Civita permutation symbol on the internal indices, ε̃b1b2a3...an

the Levi-Civita tensor density, and (ne) =
√
|g| with |g| the n−dimensional metric,

εI1,··· ,IneI1
a1
· · ·eIn

an
= (ne)ε̃a1,··· ,an (A.6)

– From the previous equation by contracting both sides with two eai
Ji

we have,

1
(n−2)!

εJ1J2I3...In ε̃
b1b2a3...aneI3

a3
· · ·eIn

an
= 2(ne)e[b1

J1
eb2]

J2
(A.7)

In three and four dimensions this expression becomes

εIJK ε̃
abceK

c = 2(3e)e[aI eb]
J (A.8)

and
εIJKLε̃

abcdeK
c eL

d = 4(4e)e[aI eb]
J (A.9)

respectively.
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Appendix B

Appendix: On the derivation of the spin
connection

From the compatibility condition of the connection with the tetrad, which makes the Lorentz con-
nection a spin connection,

deI +ω
I

J ∧ eJ = 0 (B.1)

we have
∂aeI

b−∂aeJ
b +ω

I
a JeJ

b−ω
I
b JeJ

b = 0 (B.2)

or equivalently
ω

I
a JeJ

b−ω
I
b JeJ

b =−2∂[aeI
b]. (B.3)

Multiplying by ecI and permitting spaciotemporal indices

ω
I
a JeJ

becI−ω
I
b JeJecI

b = −2ecI∂[aeI
b] (B.4)

ω
I
c JeJ

aebI−ω
I
a JeJebI

c = −2ebI∂[ceI
a] (B.5)

ω
I
b JeJ

ceaI−ω
I
c JeJeaI

b = −2eaI∂[beI
c] (B.6)

Then by summing (B.5) and (B.6), and subtracting (B.4),

ω
I
c JeJ

aebI = ecI∂[aeI
b]− ebI∂[ceI

a]− eaI∂[beI
c] (B.7)

multiplying by ea
KebL,

ω
L
c K = ea

KebLecI∂[aeI
b− ea

K∂[ceL
a]− ebL

∂[bec]K (B.8)
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In the 3−dimensional case, by using ωM
c = −1

2εL
KMωL

c K and η̃abcεIJKeK
c = 2ee[aI eb]

J where η̃abc

is the 3−dimensional tensor density with weight one.

ω
M
c =−1

2

(
εL

KMea
KebLecI∂[aeI

b]− εL
KMea

K∂[ceL
a]− εL

KMebL
∂[bec]K

)
(B.9)
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