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Diagrama de Fase de la QCD

con

Masas de Quarks Constantes

Tesis presentada al

Instituto de F́ısica y Matemáticas
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Resumen

En esta tesis estudiamos el diagrama de fase de la cromodinámica cuántica (QCD por sus siglas
en inglés) en el plano de temperatura T y potencial qúımico µ en el marco de las ecuaciones
de Schwinger-Dyson (SDE) implementando truncamientos que involucran masas de los quarks
constantes. Truncamos la ecuación de brecha para el propagador del fermión de tres maneras
diferentes. Primero, consideramos la aproximación de masa constante (CMA por sus siglas en
inglés), donde consideramos un acoplamiento efectivo que depende del momentum y la temper-
atura y un propagador del gluón inspirado por recientes resultados de lattice dentro del llamado
escenario refinado de confinamiento de Gribov-Zwanziger, pero truncamos la ecuación de brecha
de modo que la renormalización de la función de onda se mantenga trivial y entonces obten-
emos una masa dinámica independiente del momentum; Segundo, consideramos una variante
del modelo de Nambu–Jona-Lasinio, regularizado dentro de un esquema de tiempo propio que
en la literatura se ha llamado modelo de interacción de contacto (CI por sus siglas en inglés),
donde el acoplamiento, el propagador del gluón y la masa dinámica de los quarks se toman
como independientes del momentum. Finalmente, mejoramos el modelo de CI (refiriéndonos
a éste como ICI por sus siglas en inglés), donde ajustamos nuestras predicciones a los resulta-
dos de lattice para el condensado de quark-antiquark. La temperatura cŕıticua a µ cero para
la transición de rompimiento a restauración de la simetŕıa quiral se obtiene de la posición del
máximo del gradiente térmico del condensado quiral en los tres casos. Para la transición de fase
de confinamiento a desconfinamiento, considerando la CMA, usamos parámetros relacionados
a la violación del axioma de reflexión de positividad del propagador del quark (derivados del
“propagador del quark promediado espacialmente”) y para la interacción de contacto usamos
el condensado dual de quarks y la escala de longitud de confinamiento. Extendemos nuestros
cálculos a T finita incluyendo el potencial qúımico µ y esbozamos el diagrama de fase en todos
los casos. Las transiciones son un cross-over en presencia de una masa de corriente para los
quarks y son de segundo orden en el ĺımite quiral hasta que se alcanza el punto cŕıtico final.
Este punto se define como el punto en el plano T −µ donde las transiciones de fase continuas se
vuelven de primer orden. El punto cŕıtico final para el truncamiento de la CMA se encuentra en
(µE/Tc = 0.42, TE/Tc = 0.8), para la CI en (µE/Tc = 1.68, TE/Tc = 0.4) con masa de corriente
y en el ĺımite quiral, (µE/Tc = 1.5, TE/Tc = 0.54). Para el modelo de ICI el punto cŕıtico final
se localiza en (µE/Tc = 2.3, TE/Tc = 0.5).
Estudiamos el efecto de un campo magnético externo eB en las temperaturas de transición de
ruptura-restauración de simetŕıa quiral y confinamiento-desconfinamiento usando un modelo
de CI confinante para quarks. En la aproximación de campo medio, observamos el fenómeno
de catálisis magnética, caracterizado por un comportamiento creciente de las temperaturas
pseudocŕıticas para las transiciones al crecer eB. Considerando un acomplamiento que corre
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inspirado por lattice, cuyo comportamiento es monotónicamente decreciente con eB, la catálisis
magnética inversa toma lugar en nuestro modelo. Nuestros resultados están de acuerdo con
predicciones de otros modelos de interacciones fuertes y estudios de lattice.

PALABRAS CLAVE: Cromodinámica cu’antica, diagrama de fase, ecuaciones de Schwinger-
Dyson, simetŕıa quiral, confinamiento.
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Abstract

In this dissertation we study the quantum chromodynamics (QCD) phase diagram in the tem-
perature T and chemical potential µ plane from the Schwinger-Dyson equations (SDE) frame-
work implementing truncations that invoke constant quark masses. We truncate the gap equa-
tion for the fermion propagator in three different manners. First, we consider the constant
mass approximation (CMA), where we use a momentum and temperature dependent effective
coupling and gluon propagator inspired by recent lattice results within the so-called refined
Gribov-Zwanziger scenario for confinement, but truncate the gap equation so as to render
wavefunction renormalization trivial and have a dynamical quark mass independent of the mo-
mentum; Second, we consider a variant of the Nambu–Jona-Lasinio model, regularized within a
proper time approach which in literature has been referred to as the the contact interaction (CI)
model, where the strong coupling, gluon propagator and the dynamical quark mass are inde-
pendent of momentum; Finally we improve the CI model, that we named ICI model, where we
match our predictions for the quark-antiquark condensate with the lattice results. The critical
temperature for the chiral symmetry breaking-restoration transition is obtained from the posi-
tion of the maximum of the thermal gradient of the chiral condensate for all the three cases. For
the confinement-deconfinement phase transition in the truncation of CMA, we use parameters
related to the violation of the axiom of reflection positivity of the quark propagator (derived
from the “spatially averaged quark propagator”) and for the CI and ICI, we use the dual quark
condensate and the confining length scale. The critical temperatures at zero µ for the chiral
symmetry breaking-restoration and confinement-deconfinement transitions are coincidental for
all the three cases, also in agreement with lattice. We extend our finite T calculations by in-
cluding chemical potential µ and chart out the phase diagram in all cases. The transitions are
cross-over in the presence of current quark mass and are of second-order in the chiral limit until
the critical end point is reached. This point is defined as the point in the T −µ plane where the
continuous phase transitions become of first-order. The critical end point for the truncation of
CMA is located at (µE/Tc = 0.42, TE/Tc = 0.8), for CI at (µE/Tc = 1.68, TE/Tc = 0.4) with
current quark mass and in the chiral limit at (µE/Tc = 1.5, TE/Tc = 0.54). For ICI model with
current quark mass, the critical end point is located at (µE/Tc = 2.3, TE/Tc = 0.5).

We study the effect of an external magnetic field eB on the chiral symmetry breaking-
restoration and the confinement-deconfinement transition temperatures by using a confining
CI model for quarks. In the mean field approximation, we observe the magnetic catalysis phe-
nomenon, characterised by a rising behavior of the pseudo-critical transition temperatures with
growing eB. Considering a lattice inspired running coupling which monotonically decreases
with eB, inverse magnetic catalysis takes place in our model. Our findings are in agreement
with predictions from other models of strong interaction and lattice predictions.
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Chapter 1

Introduction

Quantum chromodynamics (QCD) is the theory of the strong color force among the quarks
and gluons. It was developed by H. Fritzch and M. Gell-Mann in the 1970s. In 1973, a major
breakthrough came, when the phenomenon of asymptotic freedom of non-Abelian gauge theory
was discovered by G. ‘t Hooft, D. J. Gross, H. D. Politzer and F. Wilczek. For the discovery
of asymptotic freedom in QCD, D. J. Gross, H. D. Politzer and F. Wilczek were awarded the
2004 Nobel Prize in Physics. Asymptotic freedom allows a perturbative treatment of strong
interactions at high energies or short distances. It is successful in predicting the phenomena
involving large momentum transfer by an electron on a proton target, where the coupling is
small and the Feynman diagram-based perturbation theory becomes a reliable tool. This is
what we call the perturbative QCD. Perturbation theory fails in the large distance domain,
where the coupling becomes large. The theory does not provide answers to some key questions,
for example, if like photons, the gluons are also massless, as they are assumed to be in QCD,
why long-range strong interactions have never been detected? If the strong interaction is color
dependent, why are only color singlets observed? This is the famous outstanding problem of the
color confinement and hence the subject of non-perturbative QCD. Many methods have been
devised to deal with this aspect of strong interactions, among which one of the most promising
consists on the continuum approach i.e., the Schwinger-Dyson equations (SDE). Lattice gauge
theory, introduced by K.G Wilson in 1974, on the other hand, describes strong interactions in
a framework in which the continuum space-time is descretized.

Another important issue of non-perturbative QCD is the origin of the mass of the visible
universe, roughly speaking, of protons and neutrons. Consider the mass of proton which is
made up of three light quarks, two u and one d. It is around 1 GeV, and each quark mass
is around 3 − 10 MeV, according to the Higgs mechanism in the Standard Model of Particle
Physics, which led to the discovery of Higgs particle in 2013 at CERN. The sum of all the three
current quark masses inside the proton is approximately 99% less than the resultant mass of
the proton. The question is now here, where does this mass come from? The answer is provided

13
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in non-perturbative QCD through the phenomenon of “dynamical chiral symmetry breaking”.
QCD at finite temperature and density plays an important role to understand transitions

that took place in the early universe, after a few microseconds from the Big Bang. As it
is known, the observable degrees of freedom of QCD at low temperature are the color-singlet
hadrons, while at high temperature, the interaction between quarks and gluons becomes weaker,
causing hadrons to split up in a new phase1 where the dominant degrees of freedom are the
quarks and gluons. This type of phase transition is referred to as confinement-deconfinement
transition. The vanishing of dynamically generated quark mass at high temperature T and/or
chemical potential µ corresponds to another type of transition i.e., chiral symmetry restoration,
while at zero T and µ, chiral symmetry is broken. Thus, when the strength of the QCD
interaction diminishes with increasing T and µ, only the current quark masses survive when
these parameters exceed a set of critical values. This is the chiral symmetry breaking-restoration
phase transition. As for experiment is concerned, implications of chiral symmetry breaking for
the elastic and transition form factors of mesons and baryons form an integral part of the
planned program at the 12 GeV upgrade of the Thomas Jefferson National Accelerator Facility
in Virginia [?]. There are other experiments around the world that might help to understand
the confinement and chiral transitions like RHIC in Brookhaven, LHC at CERN, and future
experiment proposals like CBM at FAIR, in Germany.

The chart of the QCD phase diagram is shown in Fig. ??. At T = 0 and µ = 0, chiral
symmetry is broken and quarks and gluons are confined inside hadrons (baryons and mesons),
bound states and resonances. At sufficiently high T and µ, the hadronic matter undergoes a
transition from the chiral symmetry broken phase to chiral symmetry restoration and from a
confining to a deconfined phase, where the quarks and gluons exist freely in a state named
quark-gluon plasma. The sketch also indicates the existence of other possible states (neutron
stars and color super conducting phase) at low T = 0 and high µ. Perturbation theory fails
to access to the description of these transitions and hence a non-perturbative treatment is
necessary. Our aim in this thesis is to study these phase transitions using a non-perturabtive
approach to QCD.

We use the SDE framework to study the above mentioned phase transitions from first
principles. Though there is not enough experimental data available at finite T and µ, we
consider the lattice results (which are only available at finite T and µ = 0) as a guide and then
consider a finite density situation to explore the phase diagram at finite T and µ. We consider
two-flavors with physical up and down current quark masses assuming isospin symmetry and
within the rainbow-ladder approximation and in Landau gauge through out this work. Chapter
2 is devoted to explore the QCD phase diagram from an effective kernel of the QCD gap
equation based on the constant mass approximation (CMA), where the gap equation solution
is independent of momentum. In Chapter 3, we study this chart through the confining vector-

1Here the word ‘phase’ mean to characterize regions with different dominant degrees of freedom.
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Figure 1.1: Chart of the QCD phase diagram sketched by Guido Cossu Post-doc researcher at
KEK, Tsukuba.

vector contact interaction model (CI) for quarks and also it improved form i.e., ICI. In the
past few years, the effect of an external magnetic field on the QCD phase transitions has
opened an interesting area of research where phenomena such as Magnetic Catalysis (MC) and
Inverse Magnetic Catalysis (IMC) could take place and modify the behavior of hadron matter.
Experimental motivation behind this fact comes from peripheral heavy-ion collisions, since not
all the nucleons are participants in the reaction, because they are electric charges in motion,
they produce in the interaction region a very strong magnetic field which quickly weakens, but
whose effects can be measured in experiments. Thus, our Chapter 4 is based on the study of the
effect of external magnetic filed on the QCD phase transitions through CI model. We discuss
our findings and conclude in Chapter 5. For complementarity, we added three appendices of
some calculational details.

From this dissertation the following papers were published:

• E. Gutiérrez, A. Ahmad, A. Ayala, A. Bashir and A. Raya, J. Phys. G 41, 075002 (2014),

• F. Márquez, A. Ahmad, M. Buballa and A. Raya, Phys. Lett. B 747, 529 (2015),

along with the following proceedings:

• A. Ahmad and A. Raya, J. Phys.: Conf. Ser. 418, 012009 (2013),
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• A. Ahmad, A. Ayala, A. Bashir, E. Gutiérrez and A. Raya, J. Phys.: Conf. Ser. 651,
012018 (2015).

The work

• A. Ahmad, A. Raya, Inverse Magnetic Catalysis within a Confining Contact Interaction
Model for Quarks

is under consideration and the following manuscripts

• A. Ahmad, et. al., QCD phase diagram from Constant Mass Approximation,

• A. Ahmad, et. al., QCD phase diagram from vector-vector Contact Interaction Model of
Quarks,

are in progress.



Chapter 2

QCD Phase Diagram from Constant
Mass Approximation

In this Chapter we study the QCD phase diagram through the quark gap equation. Starting
with Nf = 2 fermion flavors, we begin our discussion at zero temperature and solve the gap
equation (in Landau gauge) with a kernel that includes a momentum dependent coupling [?]
and a gluon propagator model [?] as discussed in [?], though here we use the flavor dependent
version of RGZ model i.e., flavor dependent (FRGZ) [?]. We promote the same truncation
at finite temperature and density. We introduce the Constant Mass Approximation (CMA)
to the gap equation and study the QCD phase diagram. The CMA has been motivated in
the field of magnetic catalysis of dynamical chiral symmetry breaking [?]. It is based on the
observation that the kernel of the gap equation yields only significant contribution in the small
momentum region, where the mass function is roughly constant. We use this idea to solve the
gap equation. We use the rainbow-ladder truncation (bare vertex) through out in this work.
At finite temperature we take available lattice results [?] for the quark-antiquark condensate
as a guide, and fit our CMA based gap equation kernel quark-antiquark condensate at finite
temperature. In order to identify the pseudo-critical temperature for the chiral transition,
we use the thermal gradient of the quark condensate and confinement is explored through the
parameters invoking of the axiom of reflection positivity. At the end, we introduce the chemical
potential to sketch the QCD phase diagram. Part of this Chapter is based on our work [?].

2.1 Gap equation at zero temperature

SDEs form an infinite set of coupled integral relations among the Green functions and are the
equations of motion of a given quantum field theory (QFT). The two point function is related to
the three point function, the three point function is related also to the four point function and
so on. In pictorial form the SDEs for the quark propagator, gluon propagator and quark-gluon

17
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vertex respectively, are shown in Figs. ?? - ??. Mathematically, the quark gap equation is given

Figure 2.1: SDE for the quark propagator.

Figure 2.2: SDE for the gluon propagator.

Figure 2.3: SDE for the quark-gluon vertex.

by

S(p)−1 = iγ · p+mc + Σ(p), (2.1.1)

where S(p)−1 is the full (inverse) quark propagator, mc the current quark mass and

Σ(p) =

∫
d4k

(2π)4
g2Dµν(q

2)
λa

2
γµS(k)

λa

2
Γν(k, p) (2.1.2)

is the self energy, which involves Γν(k, p), the dressed quark-gluon interaction vertex, q = k− p
is the gluon momentum and Dµν(q

2), the dressed gluon propagator, which can be modeled or
takes a form given by solving the coupled equations between gluon and ghost propagators or
by parametrizing the data from lattice QCD simulations. g is the coupling constant and λas
are the Gell-Mann matrices of the color group SU(3)c. According to the Lorentz covariance of
QCD, the inverse quark propagator decomposes as

S(p)−1 = iγ · pA(p2) +B(p2), (2.1.3)
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and the quark propagator can be also be expressed

S(p) = iγ · pσv(p2) + σs(p
2), (2.1.4)

where A(p2) and B(p2) are scalar functions, which can be written as

F (p2) =
1

A(p2)
, M(p2) =

B(p2)

A(p2)
, (2.1.5)

with M(p2) representing the quark mass function, F (p2) the quark wavefunction renormaliza-
tion function. Furthermore,

σs(p
2) =

F (p2)M(p2)

p2 +M2(p2)
, σv(p

2) =
F (p2)

p2 +M2(p2)
. (2.1.6)

We can write the gap equation in the form of a coupled system of equations for A(p2) and
B(p2), that is, from Eq. (??) and Eq. (??), we have

iγ · pA(p2) +B(p2) = iγ · p+mc

+

∫
d4k

(2π)4

[
g2Dµν(q

2)
λa

2
γµ

1

iγ · kA(k2) +B(k2)

λa

2
Γν(k, p)

]
.(2.1.7)

Here
∑
λaλa = 16

3
I, where I is the identity in color space. The gluon propagator in Landau

gauge takes the form,

Dµν(q
2) = D(q2)

(
δµν −

qµqν
q2

)
, (2.1.8)

and in the rainbow-ladder truncation, we consider

Γν(k, p) = γν . (2.1.9)

Inserting Eq. (??) and Eq. (??) in Eq. (??), we have

iγ · pA(p2) +B(p2) = iγ · p+mc (2.1.10)

+
1

12π4

∫
d4k

[
g2D(q2)

(
δµν −

qµqν
q2

)
γµ
(
−iγ · kA(k2) +B(k2)

k2A2(k2) +B2(k2)

)
γν

]
.

The equation for A(p2) is obtained by multiplying −iγ · p on both sides of Eq. (??) and taking
the trace, which yields

4p2A(p2) = 4p2 − 1

12π4

∫
d4k

[
g2D(q2)

(
δµν −

qµqν
q2

)

×Tr [pαγαγµγβkβA(k2)γν + pαγµγαB(k2)γν ]

k2A2(k2) +B2(k2)

]
. (2.1.11)
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Since

Tr[γαγµγβγν ] = 4[δαµδβν − δαβδµν + δανδµβ], T r[γαγµγν ] = 0,(
δµν −

qµqν
q2

)
Tr[γαpαγµγβkβγν ] = −4

[
(p · k) + 2

(p · q)(q · k)

q2

]
, (2.1.12)

Eq. (??) becomes

A(p2) = 1 +
1

12p2π4

∫
d4k[g2D(q2)]

A(k2)

k2A2(k2) +B2(k2)

[
(p · k) + 2

(p · q)(q · k)

q2

]
,

= 1 +
1

12p2π4

∫
d4k[g2D(q2)]σv(k

2)

[
(p · k) + 2

(p · q)(q · k)

q2

]
. (2.1.13)

Next, multiplying identity matrix I by Eq. (??) and taking the trace, we have

4B(p2) = 4mc

+
1

12π4

∫
d4kg2D(q2)

(
δµν −

qµqν
q2

)
Tr[−iγµγβkβA(k2)γν + γµB(k2)γν ]

k2A2(k2) +B2(k2)
,(2.1.14)

or

4B(p2) = 4mc +
1

12π4

∫
d4kg2D(q2)

(
δµν −

qµqν
q2

)
Tr[γµγν ]B(k2)

k2A2(k2) +B2(k2)
. (2.1.15)

As

Tr[γµγν ] = 4δµν ,

(
δµν −

qµqν
q2

)
δµν = 3,

we have

4B(p2) = 4mc +
4

4π4

∫
d4k[g2D(q2)]

B(k2)

k2A2(k2) +B2(k2)
, (2.1.16)

or

B(p2) = mc +
1

4π4

∫
d4k[g2D(q2)]σs(k

2). (2.1.17)

A non trivial solution of Eq. (??) reveals dynamical chiral symmetry breaking (DCSB). Different
models for g2D(q2) have been tested in [?] to study the DCSB.
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2.2 Gap equation kernel at zero temperature T = 0

In Ref. [?] we studied the gap equation with the so-called Refined Gribov-Zwanziger (RGZ)
gluon propagator model [?] and used a momentum dependent effective interaction proposed in
Ref. [?]. We further tune the support of the kernel to obtain the physical condensate in chiral
limit and with current quark masses, which are approximated with well known phenomenolog-
ical model of Maris-Tandy in Ref. [?]. We use the flavor dependent form of the RGZ gluon
propagator (FRGZ) given in [?],

D(k2) =
k2 +M2

1

k4 + k2(M2
1 −

13g2
1<A

2
1>

24
) +M2

1m
2
0

, (2.2.1)

where the parameters in this dressing function are the following: M1 = 4.85 GeV2 is related
to the condensate of auxiliary fields emerging when incorporating the horizon condition to the
action, g2

1 < A2
1 >= 0.474(16.406−Nf ) GeV2 is related to the dimension-two gluon condensate

and m0 = 1.011(9.161−Nf )
−1/2 GeV2. A plot of the dressing function in Eq. (??) for Nf = 2

is shown in Fig. ??, left panel. We complete our kernel with the effective interaction g2
eff (k

2) =

N f =2
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Figure 2.4: Left panel: FRGZ gluon propagator [?] as a function of momentum, Eq. (??). Right
panel: Effective coupling [?], Eq. (??), as a function of momentum.

4πa2ν(k2) where ν(k2) is given by

ν(k2) =

[
a+ b

(
k
Λ

)2

1 + c
(
k
Λ

)2
+ d

(
k
Λ

)4
+ o
(
k
Λ

)6
+ πγ

log [e+( kΛ)
2
]

]
, (2.2.2)

with a = 1.47, b = 0.881, c = 0.314, d = 0.00986, o = 0.00168, γ = 12/25, Λ = 0.234, ν(k2)
is shown in Fig. ??, right panel, and a2 = 0.7 is the parameter introduced in [?] to match the
chiral condensate obtained from MT model [?].
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Figure 2.5: Mass function M(p2) = B(p2)/A(p2) as a function of momentum.
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Figure 2.6: Wave function renormalization F (p2) = 1/A(p2) as a function of momentum.

2.2.1 Chiral condensate

The order parameter for the dynamical chiral symmetry breaking is the chiral condensate
(see Appendix A). It corresponds to the vacuum expectation value of the composite quark-
antiquark operator. In the chiral limit (where the current quark mass is equal to zero), when
the expectation value of this parameter is zero, then there is chiral symmetry, and if the value
of this parameter is finite, then chiral symmetry is broken and quarks acquire masses. In the
presence of current quark mass, it is an approximate order parameter. The chiral condensate
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Figure 2.7: Confinement test.

is the trace of the propagator at the origin of the position co-ordinates (see Appendix A), that
is

−〈ψ̄ψ〉 = Tr[S(x = 0)] = NcTr

∫
d4p

(2π)4
[S(p2)],

= 4Nc

∫
d4p

(2π)4

F (p2)M(p2)

p2 +M2(p2)
, (2.2.3)

where Nc = 3 is the numbers of colors.

2.2.2 Reflection positivity and confinement

Consider the “spatially averaged Schwinger function” (See Appendix A Chapter 6)

∆(t)v,s =
1

2π

∫
dp4e

−ip4tσv,s(p4,~0) =
1

π

∫
dp4cos(p4t)σv,s(p4,~0) > 0. (2.2.4)

Thus, for the stable (free particle) ∆(t) ≥ 0, while for confined particle ∆(t) < 0 . In general,
the fermion propagator in a quantum field theory has real poles and pairs of complex conjugate
poles. In principle we could search for confinement by locating the poles of the propagator in
the complex p2 − plane. For real poles, ∆(t)v,s decays exponentially,

∆(t)v,s ∼ e−Mt, (2.2.5)

and is positive definite. It corresponds to a stable asymptotic state. For complex conjugate pairs
of poles: the dynamical masses develop an imaginary part “M = a ± ib”. The corresponding
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propagator could describe a short lived excitation which decays exponentially at large time-like
distances as

∆(t)v,s ∼ e−atcos(bt+ δ), (2.2.6)

describes a confined particle due to the complex conjugate poles, which lead to the violation of
the reflection positivity.

2.2.3 Solution of the gap equation at T = 0

With a particular choice of the mentioned kernel gap equation, we obtained the chiral con-
densate −〈ψ̄ψ〉1/3 ∼ 0.26 GeV. The quark mass function M(p2) with current quark mass
(mc = 3)MeV and quark wave function renormalization function are shown in Fig. ?? and
Fig. ??, respectively. From Fig. ??, it is obvious that their is confinement in the FRGZ model.
It should be noted that we use Nf = 2 throughout this work. In the next section we study the
gap equation at finite temperature and density.

2.3 Gap equation at finite temperature T and density µ

We use the imaginary time formalism [?], in which the temporal co-ordinate gets discretized.
Fermions obey the anti-periodic boundary condition:

ψ(~x, τ = 0) = −ψ(~x, τ = β), (2.3.1)

where β = 1/T . Bosons obey the periodic boundary condition:

φ(~x, τ = 0) = φ(~x, τ = β). (2.3.2)

This difference causes fermions and bosons to have a different behavior in their Matsubara
frequencies i.e., fermion Matsubara frequencies are given by ωn = (2n + 1)πT and boson
Matusbara frequencies, Ωn = 2nπT . It is obvious that the Lorentz symmetry O(4) of the
theory is lost because the temporal dimension gets discretized and thus at finite temperature
(and or chemical potential) the theory has only O(3) symmetry, that corresponds to spatial
rotations. In the Matsubara formalism, we adopt the prescription∫

d4k

(2π)4
→ T

∑
n

∫
d3k

(2π)3
, (2.3.3)

the fermion four-momentum splits into

pµ → Pµ = (~p, ωn), (2.3.4)
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and the boson four-momentum as

qµ → Qµ = (~q,Ωn). (2.3.5)

The inverse dressed quark propagator at finite temperature and density is given by

S−1(~p, ω̃n) = (i~γ · ~p)A(~p2, ω̃2
n) + iγ0ω̃nC(~p2, ω̃2

n) +B(~p2, ω̃2
n), (2.3.6)

and quark propagator can be written as

S(~p, ω̃n) = (i~γ · ~p)σA(~p2, ω̃2
n) + iγ0ω̃nσC(~p2, ω̃2

n)− σB(~p2, ω̃2
n), (2.3.7)

where ω̃n = ωn + iµ, µ is the chemical potential. Here A(~p2, ω̃2
n), C(~p2, ω̃2

n) and B(~p2, ω̃2
n) are

complex scalar functions, which satisfy:

A(~p2, ω̃2
n)∗ = A(~p2, ω̃2

−n−1),

B(~p2, ω̃2
n)∗ = B(~p2, ω̃2

−n−1),

C(~p2, ω̃2
n)∗ = C(~p2, ω̃2

−n−1). (2.3.8)

With these conditions, complex functions yield the solution of gap equation equal in pairs for
each −n− 1 and n Matsubara frequencies i.e. the solution for -1 is paired with 0, -2 is paired
with 1, and so on (see Appendix B), and hence yield a real value for the condensate at zero
and finite chemical potential.

To find the expression for sigmas (σA,B,C), we first take the product of Eq. (??) and Eq. (??),
i.e., S−1S. Multiplying the identity matrix I by S−1S and taking the trace, we have

Tr
[
S−1S

]
= Tr [(i~γ · ~pA+ iγ0ω̃nC +B)(i~γ · ~pσA + iγ0ω̃nσC − σB)]

4 = −4~p2AσA − 4ω̃2
nCσC − 4BσB

1 = −~p2AσA − ω̃2
nCσC −BσB. (2.3.9)

Now multiplying γ0 with S−1S and taking the trace,

Tr
[
γ0S

−1S
]

= Tr [γ0(i~γ · ~pA+ iγ0ω̃nC +B)(i~γ · ~pσA + iγ0ω̃nσC − σB)]

0 = −4iω̃nCσB + 4iω̃nBσC

⇒ CσB = BσC
B

C
=
σB
σC
. (2.3.10)

Finally, multiplying ~γ with S−1S and taking the trace gives

Tr
[
~γS−1S

]
= Tr [~γ(i~γ · ~pA+ iγ0ω̃nC +B)(i~γ · ~pσA + iγ0ω̃nσC − σB)]

0 = −4ipαAσB + 4ipαBσB

⇒ AσB = BσA
A

B
=
σA
σB
. (2.3.11)
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From Eq. (??) and Eq. (??), we have

A

C
=
σA
σC
. (2.3.12)

Using Eq. (??) and Eq. (??) in Eq. (??), we have

1 = −~p2AσA − ω̃2
nC

C

A
σA −B

B

A
σA. (2.3.13)

After simplifying,

σA(~p2, ω̃2
n) = − A(~p2, ω̃2

n)

~p2A2(~p2, ω̃2
n) + ω̃2

nC
2(~p2, ω̃2

n) +B2(~p2, ω̃2
n)
. (2.3.14)

Similarly,

σB(~p2, ω̃2
n) = − B(~p2, ω̃2

n)

~p2A2(~p2, ω̃2
n) + ω̃2

nC
2(~p2, ω̃2

n) +B2(~p2, ω̃2
n)
, (2.3.15)

and

σC(~p2, ω̃2
n) = − C(~p2, ω̃2

n)

~p2A2(~p2, ω̃2
n) + ω̃2

nC
2(~p2, ω̃2

n) +B2(~p2, ω̃2
n)
. (2.3.16)

The QCD gap equation at finite temperature and density reads

S−1(~p, ω̃n) = (i~γ · ~p) + iγ0ω̃n +mc + Σ(~p, ω̃n), (2.3.17)

where now

Σ(~p, ω̃n) = T
∞∑

l=−∞

∫
d3~k

(2π)3
g2Dµν(~p− ~k,Ωnl)

λa

2
γµS(~k, ω̃l)

λa

2
Γν(~k, ~p, ω̃l, ω̃n), (2.3.18)

with Ωnl = ω̃n − ω̃l. At finite temperature, the gluon propagator1 splits into transverse and
longitudinal components due to heat bath, which in the rest frame is specified by the four ve-
locity vµ = (1,~0). Longitudinal and transverse pieces of the gluon propagator are distinguished
by the Debye mass mD [?]. The propagator has the form

Dµν(~q
2,Ω2

nl) = P T
µνD

T (~q2,Ω2
nl) + PL

µνD
L(~q2,Ω2

nl,m
2
D), (2.3.19)

where m2
D = g2(4/3)T 2, a value that is obtained from the the lowest order hard thermal loop

(HTL) result with g = 1 [?]. The operators P T
µν and PL

µν are the transverse and longitudinal
projection operators, respectively, given as

PL
µν = δµν −

QµQν

Q2
− P T

µν ,

P T
44 = 0, P T

ij = δij −
~qi~qj
~q2

. (2.3.20)

1We use the Langau gauge (where the gauge parameter equal to zero) in this thesis.
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Re-writing Eq. (??) as

Σ(~p, ω̃n) =
4

3
T

∞∑
l=−∞

∫
d3~k

(2π)3
g2

[(
δµν −

QµQν

Q2

)
DL(~q2,Ω2

nl,m
2
D)

+P T
µν

(
DT (~q2,Ω2

nl)−DL(~q2,Ω2
nl,m

2
D)
) ]

×
[
γµ

(
i~γ · ~kσA(~k2, ω̃2

l ) + iγ0ω̃nσC(~k2, ω̃2
l )− σB(~k2, ω̃2

l )
)
γν

]
, (2.3.21)

we can find the self-consistent expression for B(~p2, ω̃2
n) and the rest of the unknown functions.

First, multiplying Eq. (??) by I and then taking the trace, we get

Tr[IΣ(~p, ω̃n)] =
4

3
T

∞∑
l=−∞

∫
d3~k

(2π)3
g2

[(
δµν −

QµQν

Q2

)
DL(~q2,Ω2

nl,m
2
D)

+P T
µν

(
DT (~q2,Ω2

nl)−DL(~q2,Ω2
nl,m

2
D)
) ]

×

[
− 4δµνσB(~k2, ω̃2

l )

]
. (2.3.22)

As
(
δµν − QµQν

Q2

)
δµν = 3 and P T

µνδµν = 2, Eq. (??) becomes

Tr[IΣ(~p, ω̃n)] = −16

3
T

∞∑
l=−∞

∫
d3k

(2π)3
g2σB(~k2, ω̃2

l )

×
[
DL(~q2,Ω2

nl,m
2
D) + 2DT (~q2,Ω2

nl)
]
. (2.3.23)

Also,

Tr[IΣ(~p, ω̃n)] = Tr[S−1(~p, ω̃n)− i~γ · ~p− iγ0ω̃n −mc]

= Tr[i~γ · ~pA+ iγ0ω̃nC +B −mc]

= 4B − 4mc. (2.3.24)

From Eq. (??) and Eq. (??), we have

B(~p2, ω̃2
n) = mc +

4

3
T

∞∑
l=−∞

∫
d3~k

(2π)3
g2 B(~k2, ω̃2

l )

~k2A2(~k2, ω̃2
l ) + ω̃2

l C
2(~k2, ω̃2

l ) +B2(~k2, ω̃2
l )

×
[
DL(~q2,Ω2

nl,m
2
D) + 2DT (~q2,Ω2

nl)
]
. (2.3.25)
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The corresponding expression for A(~p2, ω̃2
n) is obtained by multiplying −i~γ · ~p with Eq. (??)

and taking the trace. We have

Tr[−i~γ · ~pΣ(~p, ω̃n)] =
4

3
T

∞∑
l=−∞

∫
d3~k

(2π)3
g2

[(
δµν −

QµQν

Q2

)
DL(~q2,Ω2

nl,m
2
D)

+P T
µν(D

T (~q2,Ω2
nl)−DL(~q,Ω2

nl,m
2
D))

]

× Tr

[
− i~γ · ~pγµ

(
i~γ · ~kσA(~k2, ω̃2

l ) + iγ0ω̃lσC(~k2, ω̃2
l )− σB(~k2, ω̃2

l )
)
γν

]
.(2.3.26)

Simplifying Eq. (??), we have

Tr[−i~γ · ~pΣ(~p, ω̃n)] = −16

3
T

∞∑
l=−∞

∫
d3~k

(2π)3
g2

[[
σA(~k2, ω̃2

l )

{
(~p · ~k)

+
2(~p · ~q)(~q · ~k)

Q2
− 2(~p · ~q)(~q · ~k)

~q2

}

+
2Ω2

nl(~p · ~q)
Q2

ω̃lσC(~k2, ω̃2
l )

]
DL(~q2,Ω2

nl,m
2
D)

+2
(~p · ~q)(~q · ~k)

~q2
DT (~q2,Ω2

nl)σA(~k2, ω̃2
l )

]
. (2.3.27)

As

A(~p2, ω̃2
n) = 1 +

1

4~p2
Tr[−i~γ · ~pΣ(~p, ω̃n)], (2.3.28)

using Eq. (??) in Eq. (??), we have

A(~p2, ω̃2
n) = 1− 4T

3~p2

∞∑
l=−∞

∫
d3~k

(2π)3
g2

[[
σA(~k2, ω̃2

l )

{
(~p · ~k)

+
2(~p · ~q)(~q · ~k)

Q2
− 2(~p · ~q)(~q · ~k)

~q2

}

+
2Ωnl(~p · ~q)

Q2
ω̃lσC(~k2, ω̃2

l )

]
DL(~q2,Ω2

nl,m
2
D)

+2
(~p · ~q)(~q · ~k)

~q2
DT (~q2,Ω2

nl)σA(~k2, ω̃2
l )

]
. (2.3.29)
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The function A(~p2, ω̃2
n) corresponds to the spatial part of the quark wavefunction renormaliza-

tion function and A(~p2, ω̃2
n)→ 1 in the perturbative region. Next, multiplying −iγ0 by Eq. (??)

and taking trace,

Tr[−iγ0Σ(~p, ω̃n)] =
4

3
T

∞∑
l=−∞

∫
d3~k

(2π)3
g2

[(
δµν −

QµQν

Q2

)
DL(~q,Ω2

nl,m
2
D)

+P T
µν

(
DT (~q2,Ω2

nl)−DL(~q2,Ω2
nl,m

2
D)
) ]

×Tr

[
− iγ0γµ

(
i~γ · ~kσA(~k2, ω̃2

l ) + iγ0ω̃lσC(~k2, ω̃2
l )− σB(~k2, ω̃2

l )
)
γν

]
.(2.3.30)

On simplifying, we get

Tr[−iγ0Σ(~p, ω̃n)] = −16

3
T

∞∑
l=−∞

∫
d3~k

(2π)3

g2

Q2

[{
2σA(~k2, ω̃2

l )(~q · ~k)Ωnl

+
(
−Q2 + 2Ω2

nl

)
ω̃lσC(~k2, ω̃2

l )

}
DL(~q2,Ω2

nl,m
2
D)

+2Q2σC(~k2, ω̃2
l )ω̃lD

T (~q2,Ω2
nl)

]
. (2.3.31)

As

C(~p2, ω̃2
n) = 1 +

1

4ω̃n
Tr[−iγ0Σ(~p, ω̃n)], (2.3.32)

inserting Eq. (??) into Eq. (??), we have

C(~p2, ω̃2
n) = 1− 4

3ω̃n
T

∞∑
l=−∞

∫
d3~k

(2π)3

g2

Q2

[{
2σA(~k2, ω̃2

l )(~q · ~k)Ωnl +

(−Q2 + 2Ω2
nl)ω̃lσC(~k2, ω̃2

l )

}
DL(~q2,Ω2

nl,m
2
D)

+2Q2σC(~k2, ω̃2
l )ω̃lD

T (~q2,Ω2
nl)

]
. (2.3.33)

C(~p2, ω̃2
n) corresponds to the temporal part of the quark wavefunction renormalization function

and C(~p2, ω̃2
n)→ 1 at high momentum.
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At finite temperature and density, the chiral quark condensate is defined as

−〈ψ̄ψ〉 = NcTrT
∑
n

∫
d3p

(2π)3
[S(~p, ω̃n)],

= 4NcT
∑
n

∫
d3p

(2π)3
[−σB(~p2, ω̃2

n)]. (2.3.34)

Performing the angular integration,

−〈ψ̄ψ〉 =
2NcT

π2

∑
n

∫ ∞
0

dpp2[−σB(~p2, ω̃2
n)]. (2.3.35)

In the next section we use the constant mass approximation where we only take into account
the B equation Eq. (??) to study the QCD phase diagram.

2.4 CMA and QCD Phase diagram

CMA is compatible with the observation that the kernel of the gap equation at finite temper-
ature and density yields only a significant contribution from the small momentum region for
every Matsubara frequency, where the scalar functions A, B and C are roughly constants. Fur-
thermore, because the kernel is strongly suppressed at high momentum, we can approximate
the solution to the gap equation by momentum independent functions for every ω̃n. Recalling
that the mass function for the quark is

M(~p2, ω̃2
n) =

B(~p2, ω̃2
n)

A(~p2, ω̃2
n)
, (2.4.1)

our starting point is Eq. (??),

B(~p2, ω̃2
n) = mc +

4

3
T

∞∑
l=−∞

∫
d3~k

(2π)3

B(~k2, ω̃2
l )

~k2A2(~k2, ω̃2
l ) + ω̃2

l C
2(~k2, ω̃2

l ) +B2(~k2, ω̃2
l )

×
[
g2DL(~q2,Ω2

nl,m
2
D) + 2g2DT (~q2,Ω2

nl)
]
. (2.4.2)

The CMA consists of several steps, which we enlist below:

Step-1: We set A(~k2, ω̃2
l ) = C(~k2, ω̃2

l ) = 1 and B(~p2, ω̃2
n) = M(~p2, ω̃2

n). Thus

M(~p2, ω̃2
n) = mc +

4

3
T

∞∑
l=−∞

∫
d3~k

(2π)3

M(~k2, ω̃2
l )

~k2 + ω̃2
l +M2(~k2, ω̃2

l )

×
[
g2DL(~q2,Ω2

nl,m
2
D) + 2g2DT (~q2,Ω2

nl)
]
. (2.4.3)
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Step-2: We take ~p = 0, and in the kernel we also take M(~k2, ω̃2
l ) = M(0, ω̃2

l ). Then, replacing
M(0, ω̃2

n) = M(w̃2
n), we have the following tower of relations of constant masses for every

Matsubara frequency

M(ω̃2
n) = mc +

4

3
T

∞∑
l=−∞

∫
d3~k

(2π)3

M(ω̃2
l )

~k2 + ω̃2
l +M2(ω̃2

l )

×
[
g2DL(~k2,Ω2

nl,m
2
D) + 2g2DT (~k2,Ω2

nl)
]
. (2.4.4)

Performing the angular integration, we have

M(ω̃2
n) = mc +

2T

π2

∞∑
l=−∞

∫ Λ2

0

dk~k2 M(ω̃2
l )

~k2 + ω̃2
l +M2(ω̃2

l )

×
[
g2DL(~k2,Ω2

nl,m
2
D) + 2g2DT (~k2,Ω2

nl)
]
. (2.4.5)

Step-3: We calculate the condensate, which in this case can be written as

−〈ψ̄ψ〉 =
2NcT

π2

∞∑
l=−∞

∫ Λ2

0

dk~k2 M(ω̃2
l )

~k2 + ω̃2
l +M2(ω̃2

l )
. (2.4.6)

In all the above, Λ is the ultraviolet cut-off. We use Λ = 1 GeV throughout of our calculation
in this Chapter.

2.4.1 CMA gap equation kernel at finite T

We promote the same gap equation kernel (of Section 2.2) at finite temperature T . The only
difference is the that the gluon propagator has now transverse and longitudinal parts due to
the heat bath, which are given by

[g2DT (~k2,Ω2
nl)]Γν(

~k, ω̃l, ω̃n) = ζ(T )g2
eff (

~k2,Ω2
nl)D

T (~k2,Ω2
nl)γν ,

[g2DL(~k2,Ω2
nl)]Γν(

~k, ω̃l, ω̃n) = ζ(T )g2
eff (

~k2,Ω2
nl)D

L(~k2,Ω2
nl,m

2
D)γν . (2.4.7)

The parameter ζ(T ) is deduced so as to reproduce the lattice results for the temperature
dependent quark-antiquark condensate quoted by Bazavov et. al., Ref. [?]. The self-consistent
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solution of the coupled equations with a current quark mass mc = 3.5 MeV, subsequently yields
the quark propagator with the form of the function ζ(T ),

ζ(T ) =
a1 + b1T + c1T

2

1 + d1T + e1T 2 + f1T 3
, (2.4.8)

where a1 = 0.355, b1 = −2.83, c1 = 6.627, d1 = −6.74, e1 = 4.45 and f1 = 43.35 with appro-
priate mass dimensions in GeV. Lattice data is sufficiently well reproduced at zero chemical
potential as shown in Fig. ??, left panel. From the behavior of the condensate, one can draw the
curve corresponding thermal gradient of the condensate −∂T 〈ψ̄ψ〉1/3, for which its maximum
yields a pseudo-critical temperature of Tc ≈ 0.164 GeV, see Fig. ??, right panel (compare it
with Tc = 0.154 GeV reported in Ref. [?] and also reported in [?].
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Figure 2.8: Left panel: Chiral condensate from CMA (solid black curve) fitted with the lattice
data [?] (red dots). Right panel: Thermal gradient of the condensate -∂T 〈ψ̄ψ〉1/3 calculated from
the CMA for ζ(T ) given by Eq. (??) as a function of temperature. Its maximum is located at
Tc ∼ 0.164 GeV.

2.4.2 Finite temperature and density

Her we promote the gap equation at finite T and µ, it should be noted that we just taking
into introduced chemical potential in the definition of the Debye mass in the longitudinal part
of the gluon propagator i.e., m2

D = g2 ((4/3)T 2 + µ2/π2), and leave the function ζ(T ) and
the vertex as an independent of µ. It is due to lack of information about the µ -dependent
vertex in the literature. Though in the quark propagator the chemical potentail is included
through the definition of Matsubara frequencies ω̃n = (2n + 1)πT + iµ. With the above
mentioned assumption the gap equation solved numerically at finite T and µ. The chiral
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condensate at finite temperature T and chemical potential µ is shown in Fig. ??, left panel.
When the chemical potential µ increases, a discontinuity starts around the region where the
pseudo-critical temperature is located. The slope of the curve drops dramatically near chemical
potential µ = 70.5 MeV, as shown in Fig. ?? left panel–. This is an likely indicator of a physical
effect. The thermal gradient of chiral condensate for different values of µ to locate the critical
end point is plotted in Fig. ??, right panel. It is obvious from Fig. ??, right panel, that plots
become narrower for increasing µ and suddenly tend to infinity approximately at µ = 0.705
GeV. We identify the chemical potential corresponding to the position of the critical end point
at µE = 0.0705 GeV, and the corresponding critical end point temperature is TE = 0.124 GeV .
The transition is a cross-over before and after this point becomes first-order. The phase diagram
plotted in µ−T plane is shown in Fig. ??, left panel and a zoom is plotted Fig. ??, right panel.
We again used Tc(µ) = Tc(0) +aµ2 fit near the µ = 0 axis. In this case, our numerical accuracy
allows us to extract results only until around µ =0.08-0.1 GeV. An extrapolation of our fit for
intermediate values of µ to T ∼ 0 region yields µE ∼ 0.14 GeV for chiral symmetry restoration.
We again extrapolated the dots to achieve the Clausius-Clapeyron condition as already done
in our previous Chapter.

0.05 0.10 0.15 0.20 0.25

0.10

0.15

0.20

0.25

T @GeVD

<
Ψ-

Ψ
>

1�
3

CM-Μ=0.0705 GeV
CM-Μ=0.07 GeV
CM-Μ=0.05 GeV
CM-Μ=0
Lattice

0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19
0

5

10

15

20

25

T @GeVD

-
¶

T
<

Ψ-

Ψ
>

1�
3

CM-Μ=0.07 GeV

CM-Μ=0.05 GeV

CM-Μ=0.03 GeV

CM-Μ=0

Figure 2.9: Left panel: Condensate for different values of µ as a function of temperature.
For large µ, the curve develops a discontinuity which becomes more and more marked for
increasing values of µ. Right panel: -∂T 〈ψ̄ψ〉1/3 as a function of temperature for different values
of µ. The peak gives the critical point (µE, TE). Note that the height of this thermodynamic
variable shoots up to infinity for a sufficiently large µ, indicating a change in the order of phase
transition.
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Figure 2.10: Left panel: QCD phase diagram for chiral symmetry breaking/restoration and
confinement/deconfinement indicating the critical end point which corresponds to µE ≈ 0.0705
GeV and TE ≈ 0.124 GeV. Near µ = 0, the curve corresponding to chiral symmetry restora-
tion/deconfinement can be fitted with a quadratic expression Tc(µ) = Tc(0) + aµ2, with
Tc(0) = 0.164 GeV and a = −8.133 GeV−1. Right panel: Behavior of transition parame-
ters as a function of the chemical potential µ that shows where the different transitions occur.
From µ = 0 to the vertical black-dashed line at µE ≈ 0.0705 GeV, the transition is a cross-over.
After the black-dashed line, phase transition is of first order. Chiral symmetry broken and
confinement continues above µE ≈ 0.0705 GeV and appears to be restored at µ ≈ 0.14 GeV,
represented by a vertical blue-dot-dashed line.

2.5 Confinement

A special case of Schwinger function to test confinement (see Appendix A) with constant masses
was considered in Ref. [?]. It is given by

∆(τ) = T
∑
n

e−iω̃nτ
M(ω̃2

n)

ω̃2
n +M2(ω̃2

n)
. (2.5.1)

According to the axiom of reflection positivity, if ∆(τ) is positive for all τ i.e., ∆(τ) ≥ 0, then
the particle is stable, otherwise is confined. We use the above Schwinger function to define
an order parameter for the confinement phase transition, which has been discussed in detail in
Ref. [?]. ∆(τ) as a function of τ at different T and µ = 0 is shown in Fig. ??, left panel. At low
T , it oscillates with high amplitude, which is a signal of confinement, while with growing T , the
amplitude becomes smaller and goes to zero approaching Tc, hence signalling deconfinement.
The amplitude of ∆(τ) at τ = 0, that is |∆(0)|, at different T and µ = 0 is plotted in Fig. ??,
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right panel. We observe the pseudo-critical temperature for the confinement-deconfinement
phase transition around Tc ∼ 0.16 GeV (which coincides with the chiral symmetry breaking
temperature) by taking the thermal gradient ∂T |∆(0)|. The inverse of the value of τ at which
the first crossing occurs in ∆(τ) from positive to negative value has been taken as the order
parameter for confinement in Ref. [?]. The parameter we introduced here implies that the CMA
gives a propagator with an analytic structure compatible with chiral symmetry breaking and
confinement. Similar behavior of this parameter is valid for µ 6= 0, and thus the phase diagram
is basically the same as for chiral symmetry breaking as shown in Fig. ??, left panel.
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Figure 2.11: Left panel: ∆(τ) at different temperatures T as a function of τ . At low T , it
oscillates with high amplitude and hence signals confinement, while at high T , the amplitude
becomes smaller and goes to zero, which implies deconfinement. Right panel: Amplitude of the
∆(0) as a function of T : At T > Tc ≈ 0.160 GeV, the amplitude goes to zero.

2.6 Discussion

In this Chapter we used the CMA to study the QCD phase diagram. In this approximation,
we took into account only the B-equation which is related to the quark mass function for
the propagator and set ~p = 0. Our kernel includes a thermal effective coupling and a flavor
(Nf = 2) dependent thermal gluon propagator. The idea behind this approximation is to
understand how the temperature and chemical potential affect the dynamical quark mass at zero
momentum. We used the lattice results at finite temperature and fitted the quark-antiquark
condensate accordingly [?]. We then took the thermal gradient of the chiral condensate to obtain
the pseudo-critical temperature for the chiral symmetry breaking-restoration transition and it
came out to be Tc = 164 MeV. The critical temperature for the confinement-deconfinement
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phase transition was obtained from the “spatially averaged Schwinger function”, where we
took the thermal gradient of the amplitude of the oscillations of the said function at different
temperatures, which coincides with the one we obtained for the chiral symmetry breaking-
restoration phase transition. We included the chemical potential and observed that at µ = 70.5
MeV, the chiral condensate shoot up to infinity where the first order phase transition started
and finally sketched the phase diagram. The critical end point (from cross-over to first order)
in this case is located at (µE/Tc = 0.42, TE/Tc = 0.8). Since along the µ = 0 axis lattice
results are regarded as a reliable representation of a theory in the continuum, it is natural
to make comparisons between lattice and SDE approaches. Since our results agree with the
lattice at µ = 0-axis and as a consequence our CMA, TE/Tc = 0.8 agrees with SDE–Maris-
Tandy prediction [?, ?] where I participated as co-author. At finite µ, (µE/Tc = 0.42) is two
times less than SDE prediction [?] and three times less than [?]. This may be due to the the
fact our function ζ(T ) in Eq. (??) and the full quark-gluon vertex Γν(~q, w̃l, ~p, w̃n) were taken
to be independent of µ, but they surely depend on this parameter and a different choice of
these quantities may change the position of the critical end point. On the other hand, the C
equation Eq. (??) may be effect the position of the critical end point. An important feature
of the CMA is that we are dealing with static (in momentum) quarks, but the virtual gluons
are momentum and temperature dependent. Thus the thermal fluctuations dress the valence
quarks and make them behave as massive and confined inside the hadrons.

In the next Chapter we use the confining vector-vector contact interaction model [?, ?],
which is based on the proper-time regularization [?] of the Nambu–Jona-Lasinio (NJL) model
to study the gap equation at zero and finite temperature and density. The gluon dressing
function and the coupling are taken to be independent of momentum, which ensures that the
gap equation solution exhibits this feature too. We use the dual quark condensate [?] and the
confining scale to test the confinement-deconfinement phase transition.



Chapter 3

QCD Phase Diagram from Contact
Interaction Model for quarks

In this Chapter, we use a confining variant of the NJL model regularized within a proper-time
scheme [?] to study QCD phase transitions at finite temperature and density. This vector-
vector contact interaction (CI) model has been successfully used to reproduce hadronic static
properties of pions and other low energy mesons and baryons in vacuum [?, ?]. Extensions of
this model at finite temperature [?] or density [?] have already been considered. We proceed
to embed this interaction in a rainbow-ladder truncation of the gap equation with two consid-
erations: in a first case, we use the ratio of the coupling constant to the gluon mass scale as
independent of the temperature, and in a second case, as a function of T . Confinement in this
model is implemented through a proper-time regularization with two cut-offs, infra-red and
ultra-violet. This procedure ensures the absence of real as well as complex poles in the quark
propagator. The infra-red cut-off corresponds to the confinement scale whereas the ultra-violet
cut-off plays a dynamical role due to the non-renormalizability of the model. The pole-less
structure of the quark propagator corresponds to the absence of quark production thresholds
and it is another analytic form consistent with quark confinement [?]; an excitation described
by a pole-less propagator would never reach its mass-shell.
We use the thermal gradient of the chiral condensate to observe the transition temperature for
chiral symmetry breaking-restoration. For the confinement-deconfinement phase transition, we
use the dual condensate [?], which is the Fourier transform of the conventional chiral quark
condensate evaluated at a dual angle (see discussion below) and the confining length scale,
which we consider as temperature dependent and slightly different to the one proposed in [?].
We solve the gap equation with a temperature dependent effective coupling and infra-red cut-
off. In previous Chapters we discussed only the single and stable solution of the gap equation
which supports dynamical chiral symmetry breaking. Here we also discuss multiple solutions
to the gap equation [?, ?], though we focus on the stable one to explore the chiral symmetry

37



38

breaking-restoration and confinement-deconfinement phase transitions. At the end we discuss
the QCD phase diagram. Part of this Chapter is based on our work published in Ref. [?]. The
rest will be presented elsewhere [?].

3.1 Gap equation and CI at zero temperature

It has been shown in a series of articles at zero temperature that the static properties of low
energy mesons and baryons can be faithfully reproduced by assuming that quarks interact not
via massless vector-boson exchange but instead through the following contact interaction [?, ?]
as shown in Fig.??:

Figure 3.1: Left side: One gluon exchange four fermion interaction. Right side: Four fermion
contact interaction.

Mathematically,

g2∆µν(q) = δµν
4παIR

m2
G

≡ δµναeff(0), (3.1.1)

where mG = 800 MeV is a gluon mass scale which is in fact generated dynamically in QCD [?]
and αIR = 0.93π specifies the interaction strength in the infra-red. We then proceed to embed
this interaction in a rainbow-ladder truncation of the gap equation, Eq. (??), and solve it
consistently through the simultaneous equations

B(p2) = mc +
16αeff(0)

3

∫
d4k

(2π)4

B(k2)

k2A2(k2) +B2(k2)
(3.1.2)

and

A(p2) = 1 +
4αeff(0)

3p2

∫
d4k

(2π)4

(p · k)A(k2)

k2A2(k2) +B2(k2)
. (3.1.3)

Performing the angular integration,∫
d4k =

1

2

∫ ∞
0

k2dk2

∫ 2π

0

dψ(= 2π)

∫ π

0

dθsin2θ

∫ π

0

dφsinφ(= 2) (3.1.4)

= 2π

∫ Λ2

0

k2dk2

∫ π

0

dθsin2θ, (3.1.5)
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we notice that ∫
d4k(p · k) = 0. (3.1.6)

Thus, the wavefunction renormalization A(p2) = 1, and the quark mass function become mo-
mentum independent, i.e., B(p2) = M , a constant which we determine self-consistently through

M = mc +
αeff(0)M

3π2

∫ ∞
0

ds
s

s+M2
, (3.1.7)

with s = k2. We now exponentiate the denominator inside the integral and employ the confining
proper-time regularization,

1

s+M2
=

∫ ∞
0

dτe−τ(s+M2) →
∫ τ2

ir

τ2
uv

dτe−τ(s+M2) =
e−τ

2
uv(s+M2) − e−τ

2
ir(s+M

2)

s+M2
. (3.1.8)

Here, τ−1
ir,uv = Λir,uv are respectively, the infra-red and ultra-violet regulators. This procedure

ensures the absence of real as well as complex poles in the quark propagator. The gap equation
can now be written as

M = mc +
M3αeff(0)

3π2

[
Γ(−1,M2τ 2

uv)− Γ(−1,M2τ 2
ir)
]
, (3.1.9)

where

Γ(α, x) =

∫ ∞
x

tα−1e−tdt

is the incomplete Gamma function. We use the parameters of Ref. [?], namely,

αeff(0) = 5.739× 10−5 MeV−2 , (3.1.10)

τir = (240 MeV)−1 , (3.1.11)

τuv = (905 MeV)−1 , (3.1.12)

which have been fitted to vacuum properties in the pion and rho-meson sector. With these
parameters, considering a current quark mass mc = 7 MeV, the constituent quark mass and
the chiral condensate per flavor are calculated to be M = 367 MeV and 〈ūu〉1/3 = 〈d̄d〉1/3 =
−243 MeV, respectively.
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3.2 Finite temperature

At finite temperature, the gap equation in the CI-model becomes1

M = m+
16αeff(0)

3
T

∞∑
l=−∞

∫
d3~k

(2π)3

M

~k2 + ω2
l +M2

, (3.2.1)

where ωl = (2l+ 1)πT are the fermionic Matsubara frequencies. This equation and some of its
variants have been discussed in several works [?]. For our purposes, we regularize the integrals
by exponentiating the denominator for each ωl, i.e.,

1

~k2 + ω2
l +M2

−→
∫ τ2

ir

τ2
uv

dτe−τ(~k2+ω2
l +M2). (3.2.2)

Inserting Eq.(??) in Eq.(??) and performing the angular integrations, we have

M = mc +
8Mαeff(0)

3π2
T

∞∑
l=−∞

∫ τ2
ir

τ2
uv

dτ

∫ ∞
0

d~k~k2e−τ(~k2+ω2
l +M2). (3.2.3)

We use that ∫ ∞
0

d~k~k2e−τ
~k2

=

√
π

4τ 3/2
,

∞∑
l=−∞

e−τω
2
l = Θ2(0, e−4π2τT 2

). (3.2.4)

We introduce a temperature dependent infra-red cut-off (confinig length scale) in the gap equa-
tion in the form

M = mc +
2Mαeff (0)T

3π3/2

∫ τ̃ir

τ2
uv

dτ
e−M

2τΘ2(0, e−4π2T 2τ )

τ 3/2
, (3.2.5)

where

τ̃ir = τir(T ) = τir
M(0)

M(T )
, (3.2.6)

with M(0) the dynamical mass at T = 0, and M(T ) the dynamical mass at finite temperature.
In the chiral limit, at the critical temperature Tc, M(T ) = 0 and τ̃ir → ∞. This ensures that

1The self-consistent solution of the gap equation yields A = 1 (odd integrand) and C = 1 after proper

time regularization when
∑∞
l=−∞ ωle

−τω2
l = −1

2τ Θ′2(0, e−4π
2τT 2

) = 0. Here Θ2(x, y) is the second Jacobi theta
function. The prime on it represent the first derivative w.r.t. y.
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the chiral symmetry restoration and deconfinement take place at the same Tc. Once the quark
propagator is known, one can calculate the order parameter for dynamical chiral symmetry
breaking, namely, the quark-antiquark condensate that comes from the trace of the quark
propagator,

−〈ψψ̄〉 =
3MT

2π3/2

∫ τ̃ir

τ2
uv

dτ
e−M

2τΘ2(0, e−4π2T 2τ )

τ 3/2
. (3.2.7)

In the next sections we the solve gap equation, Eq. (??), and derive the condensate, Eq. (??)
numerically.

3.3 Chiral symmetry breaking-restoration

In previous Chapters, we only referred to the stable solutions of the gap equation to find
the critical temperature for the chiral symmetry breaking-restoration transition. Here we also
discuss some other solutions of the gap equation at finite temperature. In literature [?], these
solutions have been named positive Nambu mode N+, negative Nambu mode N− and Wigner
mode W . The multiple solutions of the gap equation Eq. (??) at finite T are shown in Fig. ??,
left panel, in chiral the limit and in Fig.??, right panel, with a current quark mass mc = 7 MeV.
The quark-antiquark condensate 〈ψ̄ψ〉1/3N+ in the chiral limit is shown in Fig. ??, left panel,

and its thermal gradient −∂T 〈ψ̄ψ〉1/3N+ is depicted in Fig. ??, right panel. The temperature at
which the thermal gradient of the chiral condensate diverges is the critical temperature for the
chiral symmetry restoration, which occurs at Tc ≈ 216 MeV. At low temperatures, the quark
condensate has a finite value for both positive-mode N+ and negative-mode N− solutions, which
are related to the chiral symmetry breaking. For the W -mode solution, that corresponds to
chirally symmetric phase, the chiral condensate has zero value from low to high temperatures.
All the three solutions vanish at the temperature Tc ≈ 216 MeV, and the phase transition in
this case is of second order.

However, for a finite light bare quark mass mc = 7 MeV, the second order phase transition
changes to a smooth cross-over as depicted in Fig. ??, left panel. Current quark mass causes
to break explicitly the chiral symmetry, which can be viewed from the W -mode solution; it
is now negative as compared to case of the chiral limit. The W and N− solutions combine
at T ≈ 197 MeV and then merge to N+ to become a single solution. The temperature at
which all the three modes merge to one can be obtained through the thermal gradient of the
chiral condensate −∂T 〈ψ̄ψ〉1/3N+ as shown in Fig. ??, right panel, which peaks at Tc ≈ 225 MeV,
pointing out the critical temperature for the chiral symmetry restoration in agreement with
Ref. [?].

Though this value is about 30% higher than the one reported by the lattice-regularized
QCD studies [?], it is easily understandable because we work with a constant interaction
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Figure 3.2: Left panel: Solutions of the gap equation Eq. (??) for the dynamical mass in the
chiral limit. Right panel: With a current quark mass mc = 7 MeV.
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Figure 3.3: Left panel: Multiple-modes of the chiral condensate Eq.(??) 〈ψ̄ψ〉1/3N+,N−,W in the

chiral limit. Right panel: Thermal gradient of the condensate −∂T 〈ψ̄ψ〉1/3N+ , which diverges at
Tc ≈ 216 MeV.

strength αIR and gluon mass scale mG. In fact, as the temperature increases, interactions
are screened, a phenomenon which effectively presents itself as a decrease in αIR and increase
in mG with temperature. This deficiency of the model can be remedied by a simple proposal
for the temperature dependence of αIR/m

2
G as we shall see in a subsequent section. For the the

confinement-deconfimenet phase transition, we use the confining length scale as a function of
temperature and the dual condensate or dressed Polykov loop, which we discuss next.
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Figure 3.4: Left panel: 〈ψ̄ψ〉1/3N+,N−,W with a current quark mass mc = 7 MeV. Right panel:

Thermal gradient −∂T 〈ψ̄ψ〉1/3N+ , which peaks at T ≈ 225 MeV.

3.4 Confinement-deconfinement: Infra-red cut-off as a

function of temperature

The confining length scale τ̃−1
ir for different temperatures is shown in Fig. ??, left panel and

its thermal gradient ∂T τ̃
−1
ir is depicted in Fig. ??, right panel, respectively, in chiral limit. The

temperature at which M(T ) → 0 (i.e., when chiral symmetry is restored), τ̃ir diverges (or
τ̃−1
ir → 0), is the critical temperature Tc = 216 MeV, for the confinement-deconfinement phase

transition.2 When a finite quark mass mc = 7 MeV is considered into the gap equation, the
critical temperature for the confinement-deconfinement phase transition can be obtained by the
maximum of ∂T τ̃

−1
ir which is located at Tc ≈ 220 MeV as shown in Fig. ??, right panel. The

confining length scale τ̃−1
ir with a current quark mass is depicted in Fig. ??, left panel.

3.5 Confinement-deconfinement: The dual condensate

or dressed Polyakov loop

Analytical properties of the quark propagator have been studied in literature at zero and
finite temperature to determine whether such propagator supports confinement. The formal
statement comes from the axiomatic field theory, particularly the axiom of reflection positivity
which states that for any field correlator in coordinate space to be a part of the Hilbert space
of physically realizable states, the Fourier transform to momentum space of the said correlator

2A different temperature dependent infra-red cut-off was considered in Ref. [?], and used as an order param-
eter for the deconfinement phase transition.
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Figure 3.5: Left panel: Confining length scale τ̃−1
ir Eq. (??) in the chiral limit. Right panel:

Thermal gradient of the confining length scale ∂T τ̃
−1
ir in the chiral limit, which diverges at

T ≈ 216 MeV.
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Figure 3.6: Left panel: Confining length scale τ̃−1
ir , with a current quark mass mc = 7 MeV.

Right panel: Thermal gradient of the confining length scale ∂T τ̃
−1
ir , whose maximum is located

at T ≈ 220 MeV.

should be positive definite [?]. Thus, violation of this axiom is verified on the basis of a non
trivial momentum dependence of the quark mass function and as such, it cannot be implemented
in our present model. At zero temperature, it is constructed such that the quark propagator
has neither real nor complex poles. The implementation of quark confinement is through the
lack of quark production thresholds.

Therefore, we resort to the dressed Polyakov loop (dPl) to explore confinement in our model.
Recall that for infinitely massive quarks, the Polyakov loop (Pl) [?] is an order parameter for the
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center symmetry3 breaking and hence confinement in pure SU(3) gauge theory. In the past few
years, another order parameter, i.e., the dPl or the dual quark condensate has been suggested to
be associated with the confinement-deconfinement phase transition in lattice [?], SDE studies
[?, ?, ?] and in variants of NJL model [?] (see Refs. [?, ?, ?]). It generalizes the ordinary Pl
by considering spatial fluctuations. Both Pl and dPl correspond to the same equivalence class
regarding the winding properties of the respective loops. It reduces to the Pl in the infinite
quark mass limit. This fact is what motivates the consideration of dual condensate or dressed
polykov loop dPl as an order parameter for the deconfinement phase transition, which has been
explored within the SDE formalism extensively Refs. [?, ?, ?]. Starting point is the generalized
quark condensate 〈ψ̄ψ〉φ, which is the analogue of the usual quark condensate, but evaluated
for quark fields with twisted boundary conditions

ψ(1/T, ~x) = e−iφψ(0, ~x), (3.5.1)

in the imaginary time direction, where φ ∈ [0, 2π]. When φ = π, we recover the standard
anti-periodic boundary condition for the quark field. These U(1)-valued boundary conditions
in momentum space correspond to generalized φ- dependent Matsubara frequencies that can
be obtained from a slight modification of the usual fermionic Matsubara frequencies ωn =
(2n+ 1)πT , as

ωn → ωφn =

(
2n+

φ

π

)
πT, (3.5.2)

The φ-dependent condensate can be obtained from the φ-dependent quark propagator as

〈ψ̄ψ〉φ = Nc

∑
n

∫
d3~k

(2π)3
Tr[S(~k, ωφn)] (3.5.3)

The conventional condensate 〈ψ̄ψ〉 is obtained for the special case when φ = π. The dual
condensate Σñ is then defined as the Fourier-transform of the 〈ψ̄ψ〉φ with respect φ, is given
by

Σñ = −
∫ 2π

0

dφ

2π
e−iñφ〈ψ̄ψ〉φ, (3.5.4)

where ñ is an integer and Σñ is the projection of 〈ψ̄ψ〉φ onto the loops ñ-times around the
temporal direction. In lattice representation this can be written as a sum of Wilson loops
winding ñ times around the temporal boundary [?]. In particular, since the PL is the shortest
loop with winding number 1, the case ñ = 1 may be viewed as a collection of generalized

3Is the symmetry of the pure SU(3) gauge theory, whose gauge group correspond to Z(N) (the Abelian group
of the Nth-roots of unity) is the center of the group, namely, the subgroup whose elements commute with all
group elements.
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Polyakov loops with spatial fluctuations, and has been termed “dressed Polyakov loop” [?],

Σ1 = −
∫ 2π

0

dφ

2π
e−iφ〈ψ̄ψ〉φ. (3.5.5)

Dressed Polyakov loop Σ1 and the ordinary (thin) PL transform in the same manner under
center transformations, which motivates the consideration of Σ1 as an order parameter for
the deconfinement phase transition. Moreover, since the spatial fluctuations are suppressed
for infinite quark masses, Σ1 reduces to the thin PL in this limit. On the other hand, as
seen from its definition, it is also related to the quark condensate, albeit with unphysical
boundary conditions. This hints for a possible connection between chiral and deconfinement
phase transition, explaining why both transitions occur in the same temperature region [?, ?].
Another important feature of Σ1 is that it could be calculated directly lattice and SDE studies.
This view has been challenged in Refs. [?, ?, ?] and [?]. The latter reference is particularly
interesting because the dPl has been explored in three-dimensional quantum electrodynamics, a
confining theory which, however, possesses a trivial center symmetry. Although the behavior is
qualitatively the same as reported in [?] for QCD, it cannot be directly linked to the confinement
transition. In our work [?] we extend on these lines in what follows.
Generalizing the Matsubara frequencies is formally equivalent to considering a theory with a
purely imaginary chemical potential µI = φT . This can be seen from the observation that
〈ψ̄ψ〉φ is symmetric around φ = π, i.e., 〈ψ̄ψ〉φ−π = 〈ψ̄ψ〉φ+π, where 〈ψ̄ψ〉φ=π corresponds to the
conventional quark condensate. Then, we prefer to write Eq. (??) as

Σ1 = −
∫ π

0

dϕ

π
cos(ϕ)〈ψ̄ψ〉ϕ+π. (3.5.6)

We now define the normalized ϕ-dependent dual quark condensate as σ = 〈ψ̄ψ〉ϕ+π,T/〈ψ̄ψ〉0,
where 〈ψ̄ψ〉0 is the conventional chiral condensate at zero temperature. We plot σ in the chiral
limit in Fig. ??, left panel, as a function of dual angle ϕ at different temperatures. At low
temperatures, σ behaves practically as a constant for varying ϕ. As we approach the critical
temperature, the variation becomes more pronounced and approaches a second order phase
transition at Tc ≈ 216 MeV. In the presence of a finite current quark mass mc = 7 MeV, the
plot of σ as a function of the dual angle ϕ at different temperatures is shown in Fig. ??, right
panel. Because of a finite current quark mass, no derivative singularity appears. The pseudo-
critical temperature in this case is Tc ≈ 220 MeV. Our plots compare well with the ones shown
in [?].

The normalized dPl Σ1(T )/〈ψ̄ψ〉(0) is shown in Fig.??, left panel, in chiral limit and the right
panel, corresponds to a finite current quark mass. Note that the chiral symmetry restoration
curve as well as the deconfinement curve cross each other at the same temperature T = Tc
illustrating the simultaneity of both the transitions. Now the question is whether the dual
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Figure 3.7: Normalized chiral condensate as a function of the dual angle ϕ for the CI.
Left panel: Chiral limit. Right panel: With a finite current quark mass mc = 7 MeV.
Here, σ = 〈ψ̄ψ〉ϕ+π,T/〈ψ̄ψ〉0. Chiral symmetry breaking-restoration transition takes place at
Tc ≈ 216 MeV and Tc ≈ 220 MeV, respectively for the chirally symmetric and asymmetric
cases.
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quark condensate is the true parameter for the confinement-deconfinement phase transition?
The answer is given in Ref. [?], where we studied some other confining nonlocal NJL models
and concluded that the dPl is not a clear order parameter for the confinement-deconfinement
phase transition because it has the same behavior in both confining and non-confining theories
and it cannot be linked to center symmetry in these models. In the next section we use the
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infra-red cut-off in as a function of temperature which is related to the QCD confining length
to study the confinement-deconfinement phase transition.

3.6 Improved Contact Interaction (ICI) Model

That the simple CI model of Eq. (??), constructed primarily for the zero temperature de-
scription of QCD and hadron physics, cannot be the complete story at finite temperature. As
temperature increases from its zero value, due to screening effects, the coupling αIR decreases
and the gluon mass scale mG increases and thus the ratio of these two, the effective coupling
αeff(0) Eq. (??), decreases. We can effectively mimic this behavior by assuming a temperature
dependent αeff i.e.,

αeff(0) ⇒ αeff(T ). (3.6.1)

Following the lead from modern computations of the gluon propagator at finite temperature [?]
and the temperature dependence of the quark-antiquark condensate for two light degenerate
quark flavors [?], we can model this temperature dependence as plotted in Fig. ??, left panel.
It can be parametrized as the following Padé approximation

αeff(T ) =

(
1 + aT + bT 2

c+ dT + eT 2 + fT 3

)2

, (3.6.2)

where a = −14.1 GeV, c = 60.8 GeV2, c = 0.132 GeV, d = −1.86 GeV−1, e = 7.6 GeV−2

and f = 3.24 GeV−3. We now repeat our calculation for the explicit chiral symmetry breaking
case, solving for the gap equation with the temperature dependent cut-off in Eq. (??) and then
evaluating the quark-antiquark condensate, plotted in Fig. ??, right panel, which reproduces
lattice data at high temperature. Avoiding repeating the calculational details, we present the
plot for the multiple-mode dynamical quark condensate in Fig. ??, left panel. Its inflection
point, calculated through the thermal gradient of the chiral condensate is shown in Fig. ??
right panel, which now reveals the pseudo-critical temperature Tc ≈ 165 MeV in accordance
with lattice results [?]. This should be compared with our previous result of Tc ≈ 220 MeV
computed for a temperature independent effective coupling αeff(0). The temperature dependent
confining length scale τ−1

ir is plotted in Fig. ??, left panel, and its thermal gradient is shown in
Fig. ??, right panel. Within the numerical accuracy available, we find that the chiral symmetry
restoration and confinement-deconfinement phase transitions are coincidental at T χ,cc ≈ 165
MeV. Thus T χ,cc ≈ 165 MeV obtained from the ICI model agrees with lattice QCD [?].
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Figure 3.10: Left panel: Multiple-modes of chiral quark condensate with a current quark mass
mc = 7 MeV for with a temperature dependent infra-red cut-off τ̃ir and temperature depen-
dent effective coupling αeff(T ). Right panel: Thermal gradient of the chiral quark condensate
−∂T 〈ψ̄ψ〉 which peaks at Tc ≈ 165 MeV in the N+-mode.

3.7 Finite temperature and density: QCD phase dia-

gram

The gap equation at finite temperature and density can be obtained by shifting ωn → ωn + iµ
in Eq. (??), and is of the form4

M = mc +
Mαeff (0)

3π2

∫ τ̃ir,µ

τ2
uv

dτ
e−M

2τΘ3(πT+iµ
2T

, e−
1

4T2τ )

τ 2
, (3.7.1)

4At T = 0 and T 6= 0, A = C = 1. In case of finite quark chemical potential µ, A = 1 but C 6= 1 and can
be considered as a renormalization of µ [?], though we perform the calculation assuming A = C = 1 at finite T
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Figure 3.11: Left panel: Confining length scale τ̃−1
ir from the ICI- model with a current quark

mass mc = 7 MeV. Right panel: Thermal gradient of the confining length scale −∂T τ̃−1
ir in the

N+-mode, which peaks at T ≈ 165 MeV.

where Θ3(x, y) is the third Jacobi theta function and

τ̃ir,µ = τir(T ) = τir
M(0)

M(T, µ)
, (3.7.2)

with µ is the chemical potential. The chiral quark condensate is given by

−〈ψψ̄〉 =
3M

4π2

∫ τ̃ir,µ

τ2
uv

dτ
e−M

2τΘ3(πT+iµ
2T

, e−
1

4T2τ )

τ 2
. (3.7.3)

We solve the gap equation numerically at finite T and µ in the chiral limit and with a finite
current quark mass mc = 7 MeV with the CI-model and ICI-model. The critical temperatures
for chiral symmetry breaking-restoration and confinement-deconfinement phase transitions are
obtained by the thermal gradients −∂T 〈ψ̄ψ〉 and −∂T τ̃−1

ir for different µ. Finally, we plot the
QCD phase diagram in T − µ-plane with the CI-model in the chiral limit in Fig. ??, left panel,
and with a current quark mass in Fig. ??, right panel. We again used a Tc(µ) = Tc(0)+aµ2 fit as
in the previous Chapters, near the µ = 0 axis, where for the CI-model, a = −0.94 in the chiral
limit and with a quark current mass a = −0.93 and for the ICI-model, a = −0.59. The critical
end point with the CI-model in the chiral limit is located at (µE/Tc = 1.5, TE/Tc = 0.54).
The critical end point for the CI-model with a current quark mass mc = 7 MeV is located at
(µE/Tc = 1.68, TE/Tc = 0.4). The phase diagram for the ICI-model with current quark mass
mc = 7 MeV is shown in Fig. ??, the critical end point is located at (µE/Tc = 2, TE/Tc = 0.5).

and µ.
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Figure 3.12: QCD phase diagram from the CI-model: Left panel, in the chiral limit. Right
panel, with a current quark mass mc = 7 MeV.

3.8 Discussion

In this Chapter we studied the gap equation at finite temperature with a confining vector-vector
CI model for quarks. We discussed multiple solutions of the gap equation namely, positive-mode
(N+), negative-mode (N−) and Wigner-mode (W ). In the chiral limit, the critical temperature
T χc ≈ 216 MeV for chiral symmetry restoration is obtained by taking the thermal gradient of the
chiral condensate in N+-mode. For a finite current quark mass mc = 7 MeV, we obtained the
pseudo-critical temperature through the thermal gradient of the chiral condensate peaked at
T χ,mc ≈ 225 MeV in N+-mode. We used an infra-red cut-off as temperature dependent i.e, τ̃ir,
and solve the gap equation. The thermal gradient ∂T τ̃

−1
ir diverges where the chiral symmetry

is restored in the chiral limit at Tc ≈ 216 MeV and hence deconfinement takes place, while for
a finite current quark mass, the position of its maximum gives as the pseudo-critical tempera-
ture T c,mc ≈ 220 MeV in the N+-mode. Next, we used the dual quark condensate to calculate
the critical temperature for the confinement-deconfinement phase transition in the standard
N+-mode in chiral limit as well as with a finite current quark mass and obtained the critical
temperature through its thermal gradient. The pseudo-critical temperature for this case comes
out exactly the same as we obtained through the gradient of the confining length scale. The
pseudo-critical temperature for the confinement-deconfinement transition is similar to that for
chiral symmetry breaking-restoration T χ,0c = T c,0c ≈ 216 MeV, in the chiral limit as well as with
a finite current quark mass i.e., T χ,mc = T c,mc ≈ 220 MeV. Thus the chiral symmetry breaking-
restoration and confinement-deconfinement phase transitions take place simultaneously in the
CI-model. As the critical temperatures in this case are higher than the lattice results [?],
we took step forward to take the effective coupling as a temperature dependent αeff(T ), the
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Figure 3.13: QCD phase diagram from the ICI-model with a current quark mass mc = 7 MeV.

ICI-model, from which we reproduced lattice results [?] for the chiral condensate. The critical
temperature for the chiral symmetry breaking restoration and confinement-confinement tran-
sitions remain the same i.e., T χ,mc = T c,mc ≈ 165 MeV. In Ref. [?], we checked whether the
dual condensate is a true order parameter for confinement-deconfinement phase transition in
local and non local versions of the NJL model. We conclude that it has the same behavior in
confining and non-confining theories, which gives us no clear picture about the deconfinement
phase transitions when it is not connected directly to center symmetry.
Finally, we included a finite chemical potential in the gap equation and drawn the phase di-
agrams for the CI-model (where the we took constant effective coupling but our infra-red
cut-off as T and µ dependent) in chiral limit and with a current quark mass mc = 7 MeV
and for the ICI-model with a current quark mass mc = 7 MeV. The critical end points for
the CI-model in the chiral limit and with a current quark mass mc = 7 MeV are located at
(µE/Tc = 1.5, TE/Tc = 0.54) and (µE/Tc = 1.68, TE/Tc = 0.4), respectively. We improved our
CI model with effective coupling as a function of temperature but not a function of chemical po-
tential i.e. αeff (T ) that we named ICI-model, with a current quark mass mc = 7 MeV. Though
our results at zero density are agree with CMA (Chapter 2), SDE [?] and with Lattice[?], at
finite density the position of the critical end point is (µE/Tc = 2, TE/Tc = 0.5) higher than that
of CMA (Chapter 2), SDE [?]. This may be due to the fact in this case we are not taking into
account the effective coupling as a function of density or the C-equation (Eq. (??) of Chapter
2) with renoramlized chemical potential. Work in this regard is in progress.

In the next Chapter, we use the CI model under the influence of external magnetic field
to understand how the magnetic field affects the critical temperature for the chiral symmetry
breaking-restoration and confinement-deconfinement phase transitions.



Chapter 4

Inverse magnetic catalysis from CI
model for the quarks

In the previous Chapter, we studied the gap equation for the CI model at zero and finite tem-
perature, where entanglement between dynamical chiral symmetry breaking and confinement
is expressed through an explicit temperature dependent infra-red regulator. We studied two
cases; the simple CI model, where αeff is temperature independent and the ICI model, with a
temperature dependent αeff(T ). In this Chapter, based on Ref. [?], we study the effect of a
magnetic filed on the chiral condensate and the confining scale, in both CI and ICI models. It is
well known that strong magnetic fields have a tremendous impact in various physical systems.
A typical example in astrophysics is a magnetar, in which the magnetic field might reaches
intensities of the order of B ∼ 1010 Tesla [?]. In the early universe, it has been estimated
that there could have been magnetic fields as strong as B ∼ 1014 and B ∼ 1019 Tesla [?, ?]
during the QCD and electroweak phase transitions, respectively. On more terrestrial grounds,
in non-central heavy ion collisions at RHIC and LHC, the generated magnetic fields are ap-
proximately of the order of B ∼ 1014 to 1016 Tesla [?] in intensity. A number of interesting
effects are triggered by strong magnetic fields in QCD. Among others, the chiral magnetic ef-
fect [?] has attracted attention to explore topological features of vacuum and the strong CP
problem. Moreover, intense magnetic fields are of direct relevance to understand the chiral
and confinement phase transitions, because in one hand a strong magnetic field catalizes the
formation of chiral condensate, the so-called magnetic catalysis effect (see [?] and references
therein), hence increasing the pseudo-critical transition temperatures as the strength of the
magnetic field grows bigger [?]. At the same time, such a field produces a screening effect on
gluon interactions in the infra-red, as can be accounted for from lattice [?] and suggested by
effective model calculations [?, ?, ?, ?]. This phenomenon has been dubbed as inverse magnetic
catalysis and is responsible for a decreasing behavior of T χ,cc with stronger magnetic fields. We
use lattice [?] as guide to study the effect of magnetic field on the critical temperature of the
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QCD phase transitions.

4.1 Gap equation in a magnetic field

We consider a background homogeneous magnetic field directed along the z-axis, with magni-
tude B and defined through the symmetric gauge vector potential

Aextµ =

(
0,−By

2
,
Bx

2
, 0

)
. (4.1.1)

Within the Schwinger proper-time framework, the representation of the quark propagator in a
magnetic field and in Euclidean space is of the form

S(k) =

∫ ∞
0

dτ
e
−τ(k2

‖+k
2
⊥

tanh(|qfBτ |)
|qfBτ |

+M2)

cosh(|qfBτ |)

[(
cosh(|qfBτ |)− iγ1γ2sinh(|qfBτ |)

)
×(M − /k‖)−

/k⊥
cosh(|qfBτ |)

]
, (4.1.2)

where k2
‖ = k2

0 + k2
3 and k2

⊥ = k2
0 + k2

3, respectively, are parallel and transverse splitting of the

quark momenta, in reference to the magnetic field direction, as usual, and qf = (+2e/3,−e/3)
refers to the electric charges of up and down quarks. With these ingredients, adopting the regu-
larization procedure of the previous Chapter, the corresponding gap equation for the dynamical
mass at zero temperature under the influence of magnetic field (see Appendix C) becomes

M = mc +
αeff(0)

6π2

∑
f=u,d

|qfB|
∫ τ2

ir

τ2
uv

dτ
Me−M

2τ

τtanh(|qfB|τ)
, (4.1.3)

and the chiral condensate at zero temperature under the influence of magnetic field is given by

−
〈
ψ̄ψ
〉

=
3

8π2

∑
f=u,d

|qfB|
∫ τ2

ir

τ2
uv

dτ
Me−M

2τ

τtanh(|qfB|τ)
. (4.1.4)

The numerical solution of the gap equation and the chiral condensate are shown in Fig. ??, left
panel, and right panel, respectively. The dynamical mass and chiral quark condensate increase
with the increase of the magnetic field strength.
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Figure 4.1: Left panel : Dynamical quark mass at zero temperature as a function of the magnetic
field strength eB, with a current quark mass mc = 7 MeV; Right panel : Chiral condensate as
a function of eB.

4.2 Finite temperature T and Magnetic field B

The Schwinger propagator at finite temperature and in the presence of external magnetic field
B is

S(k) =

∫ ∞
0

dτ
e
−τ(ω2

n+k2
3+k2

⊥
tanh(|qfBτ |)
|qfBτ |

+M2)

cosh(|qfBτ |)

[(
cosh(|qfBτ |)− iγ1γ2sinh(|qfBτ |)

)
×(M − /k‖)−

/k⊥
cosh(|qfBτ |)

]
, (4.2.1)

where ωn stands for the fermion Matsubara frequencies. Using the above Eq. (??) in the gap
equation, performing the momentum integration and summing over Matsubara frequencies, we
reach at the following form of the gap equation for the dynamical mass (see Appendix C) at
finite temperature T and magnetic field B

M = mc +
Mαeff(0)T

3π3/2

∑
f=u,d

|qfB|
∫ τ̄2

ir

τ2
uv

dτ
e−M

2τΘ2(0, e−4π2T 2τ2
)

τ 1/2 tanh(|qfB|τ)
. (4.2.2)

Here τ̄ir = τirM(0, 0)/M(T, eB). The chiral quark condensate at finite temperature and in the
presence of magnetic field is

−
〈
ψ̄ψ
〉

=
3TM

4π3/2

∑
f=u,d

|qfB|
∫ τ̄2

ir

τ2
uv

dτ
e−M

2τΘ2(0, e−4π2T 2τ2
)

τ 1/2 tanh(|qfB|τ)
. (4.2.3)
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Figure 4.2: Dynamical quark mass M for CI-model as a function of temperature and magnetic
field strength with a current quark mass mc = 7 MeV.

The numerical solution to the above gap equation with the CI-model is shown in Fig. ??.
The chiral quark condensate 〈ψ̄ψ〉1/3 and the confining scale τ̄−1

ir are depicted in Fig. ?? and
Fig. ??, respectively. Dynamical mass for the quarks M , chiral quark condensate −〈ψ̄ψ〉1/3 and
confining scale τ̄−1

ir at finite temperature increase with the magnetic field strength. The criti-
cal temperatures for the chiral symmetry breaking-restoration and confinement-deconfinement
phase transitions can be obtained by the position of the maximum of the peaks of thermal gra-
dients of the chiral quark condensate −∂T 〈ψ̄ψ〉1/3 and the confining length scale −∂T τ̄−1

ir . The
maximum of the thermal gradients −∂T 〈ψ̄ψ〉1/3 and −∂T τ̄−1

ir are shown in Fig. ??, left panel
and right panel, respectively. The peaks shift toward the high temperature region with the
increase of eB. We specify the temperature at which the maximum of the peaks of −∂T 〈ψ̄ψ〉1/3
by T χc,B to be the critical temperature for the chiral symmetry breaking-restoration and for the
confinement-deconfinement by T cc,B. Our scheme ensures that T χc,B ' T cc,B ≡ Tc,B. In the next
section we discuss the gap equation ICI-model at finite temperature and in the presence of
magnetic field. We also draw the phase digram in the T -eB plane for both the CI and ICI
models.

4.3 Improved contact interaction model and the mag-

netic field

In the previous section, we discussed the CI-model at finite temperature and in external mag-
netic field. We observed that the critical temperatures for the chiral symmetry breaking-
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Figure 4.3: Chiral condensate for CI-model as a function of temperature and magnetic field
strength.

Figure 4.4: Confining scale τ̄ir for CI-model, as a function of temperature and magnetic field
strength for a current quark mass mc = 7 MeV.

restoration and confinement-deconfinement transitions increase with the increase of eB. Here
we want to discuss the effect of external magnetic field with the ICI-model, in which αeff(0)⇒
αeff(T ) is defined in Eq.(??). The chiral quark condensate is shown in Fig. ?? as a function
of temperature and magnetic field and the confining scale is depicted in Fig. ??. Thermal
gradients −∂T 〈ψ̄ψ〉1/3 and −∂T τ̄−1

ir , respectively are shown in Fig. ??. The phase diagram in
T -eB plane is depicted in Fig. ?? for both CI and ICI models. The normalized critical temper-
atures for both the models are plotted in Fig. ??, which support the magnetic catalysis of the
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Figure 4.5: Left panel : Thermal gradient of the chiral condensate −∂T 〈ψ̄ψ〉1/3 at finite temper-
ature and magnetic filed eB for CI-model. Right panel : Thermal gradient of the confining scale
−∂T τ̄−1

ir for the CI-model. From the above plots, it is obvious that the critical temperature
for the chiral phase transitions increase when the magnetic field strength gets stronger, which
supports the phenomenon of magnetic catalysis.

Figure 4.6: Chiral condensate as a function of temperature and magnetic field strength for a
current quark mass mc = 7 MeV for the ICI-model.

dynamical symmetry breaking-restoration and confinement-deconfinement transitions. In the
next section we use the model for αeff as a function of the magnetic field strength in the gap
equation and check its effect in the transition temperatures.
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Figure 4.7: Confining length scale for the ICI-model as a function of temperature and magnetic
field strength with a current quark mass mc = 7 MeV.
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Figure 4.8: Left panel : Thermal gradient of the chiral condensate −∂T 〈ψ̄ψ〉1/3 at finite tem-
perature and magnetic filed for the ICI-model. Right panel : Thermal gradient of the confining
scale ∂T τ̄

−1
ir for the ICI-model.

4.4 Inverse Magnetic Catalysis (IMC)

In the previous section, we observed the phenomenon of magnetic catalysis (MC) i.e., the chiral
quark condensate and pseudo-critical temperature for the chiral symmetry breaking-restoration
and confinement-deconfinement transitions become enhanced as we increase the magnetic field
strength eB, which also has been observed in low-energy effective models and NJL-type mod-
els [?]. This is due to the opening of the gap between the Landau states which leads to low
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Figure 4.9: Effective phase diagram in the T − eB plane. Dashed curve corresponds to the CI-
model, whereas the solid curve is obtained with the ICI-model. From the above plot, it is obvious
that the critical temperatures for the chiral symmetry restoration and deconfinement phase
transitions increase with the increase of magnetic field strength, which support the phenomenon
of magnetic catalysis.

energy contributions in the formation of chiral condensate. Recent lattice studies [?] and some
effective model based approaches [?, ?, ?, ?, ?, ?] show that the chiral condensate and the
pseudo-critical temperature decrease with the increase of magnetic field i.e., Inverse magnetic
catalysis (IMC). It has been argued in [?, ?] that the phenomenon of IMC is due to the partial
restoration of chiral symmetry. In the low momentum domain, where the chiral symmetry is
broken, there is a strong screening effect of the gluon interactions, which suppresses the forma-
tion of the chiral quark condensate. In this zone, a gluon mass mG ∝

√
Nfαs | eB | [?] develops,

which is due to fact that gluon fields couple to a quark-antiquark interacting state. Thus mG

increases and the strong coupling αs decreases with increasing eB as αs = b ln(|eB|/Λ2
QCD)−1

with b = (11Nc − 2Nf )/6π [?, ?]. Therefore the effect of external magnetic field is that it in-
creases the gluon mass and decreases the coupling between the quarks and as a result, the chiral
condensate is damped, which causes to decrease the pseudo-critical temperature. In Ref. [?]
the effect of external magnetic field is taken into account in the effective coupling in NJL and
PNJL models and fitted to the lattice data [?] for the case of Nf = 2 + 1, where IMC has been
observed. In Ref. [?], the vacuum one-loop quark-gluon vertex correction at zero temperature
in the presence of a magnetic field studied where inverse magnetic catalysis from the properties
of the QCD coupling in a magnetic field discussed.

Since our approach is based on the contact interaction similar to the NJL, so in this case
particularly, as an initial step, we follow Ref.[?, ?] as a guide to improve our mean field result
by considering the functional form of the magnetic field dependent coupling by fitting the nor-
malized critical temperature of our model to the normalized critical temperature as a function
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Figure 4.10: Effective coupling αeff(κ) in Eq. (??) normalized to the constant value of αeff(0)
in Eq. (??).

of eB of lattice [?] of the form

αeff(κ) = αeff(0)

(
1 + aκ2 + bκ3

1 + cκ2 + dκ4

)
, (4.4.1)

with κ = eB/Λ2
QCD, a = 0.002, b = −8.06 × 10−6, c = 0.004 × 10−4, d = 0.06 × 10−4 and

we take ΛQCD = 240 MeV. It should be noted that our coupling fit is taken at T = 0. The
behavior of the magnetic effective coupling Eq. (??), normalized by αeff(0), Eq. (??), is depicted
in Fig. ??. The corresponding chiral condensate is shown in Fig. ??. Again, we identify T χ,cc,B

from the thermal gradient of the condensate and the confining length scale respectively. The
corresponding phase diagram is shown in Fig. ??.

Pseudo-critical temperature obtained with αeff (0) increases as eB grows bigger, whereas
for αeff(κ), Tc,B monotonically decreases for higher magnetic fields. This behavior strongly
resembles lattice [?] and other effective models approaches [?, ?, ?, ?] with no “turn over”
effect at intermediate eB [?].

4.5 Discussion

We have studied the effective QCD phase diagram in the T − eB plane within a CI model.
Such a model differs from the standard NJL theory by considering an infra-red cut-off which
in addition to the dynamical ultra-violet scale, renders the quark propagator pole-less, hence
supporting confinement. At finite temperature, we regularize the gap equation ensuring the
coincidence of the chiral and confinement transitions at the same pseudo-critical temperature
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Figure 4.11: Chiral condensate as a function of temperature and magnetic field strength eB.
Plot is generated with αeff(κ) in Eq. (??).
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Figure 4.12: Thermal gradient of the chiral condensate −∂T 〈ψ̄ψ〉1/3. The pseudo-critical tem-
perature decreases with the increase of the magnetic field strength eB.

T χc ' T cc ≡ Tc ≈ 225 MeV. We then include the influence of a uniform magnetic field in the
Schwinger proper-time formalism.
In the mean field limit, our effective phase diagram shows an increasing of Tc,B for strong
magnetic fields. This picture is in agreement with the appearance of magnetic catalysis in our
model. The rising of Tc,eB might be understood because a constant αeff (0) is fully oblivious
to any reminiscent back reaction effect of gluon interacting with magnetic fields which later
would have been integrated out to define in our model. On the contrary, the magnetic field
dependent coupling αeff(κ) of Eq. (??) mimics the screening of gluon interactions in the infra-red
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Figure 4.13: Effective phase diagram in the T − eB plane IMC: Solid curve corresponds to the
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that occurs in QCD and triggers the appearance of the inverse magnetic catalysis effect. Our
findings provide support to models in which the effective coupling, which may be considered
proportional to the running coupling of QCD, behave as monotonically decreasing functions of
the strength of the external magnetic field [?]. The running coupling model that we used in this
Chapter must be improved by including the effect of the temperature and eventually the baryon
chemical potential for the more realistic description of the phase diagram. Furthermore, the
entanglement between the chiral and confinement pseudo-critical temperatures already hints
that the back reaction effect also modifies the mechanism for confinement in a non trivial way
still worth to explore in further detail.
In the next Chapter we present the final remarks and conclusions of the thesis.



Chapter 5

Final remarks and conclusion

Schwinger-Dyson equations (SDE) is one of the prominent tool to understand non-perturbative
aspects of QCD. SDE at finite temperature and density play and important role to explore
phase transitions that took place a few microsecond after the Big-Bang. This thesis is based on
the SDE for the quark propagator at finite temperature and density. We studied different kernel
models of the gap equation in Landau gauge and used the bare-vertex approximation to explore
the QCD phase diagram in T − µ plane under extreme conditions of temperature and density.
Lattice QCD provides reliable results at finite T and µ = 0. According to this framework,
the transitions from chiral symmetry breaking-restoration and confinement-deconfinement are
cross-over for finite current quark masses. The critical temperature is Tc = 155 ± 15 MeV
for Nf = 2 quark flavors. At finite µ, lattice simulations suffer of the so-called sign problem
and hence are unable to provide satisfactory results beyond the µ ' 0 region. SDE have
the advantage of not exhibiting the sign problem. In parallel, SDE and some other effective
models of QCD have shown that at large µ and at T = 0, the transitions we are discussing
are of first-order. When both finite T and µ are taken into account, a point in the middle
of the phase diagram should be reached where the cross-over (with finite current quark mass)
or second-order (in the chiral limit) phase transitions end and the first-order phase transition
starts. According to the Clasious-Clapeyron condition, the first-order line in the phase diagram
hits vertically the µ-axis and at finite µ when T → 0. Similarly, at small µ, the phase diagram
hits the vertical axis with a very small inclination. Though the exact location of the critical end
point is less known as for as the experiment and lattice is concerned, other non-perturbative
approaches provide the coordinates of such a point in the vicinity of (µE/Tc ≈ 1,TE/Tc ≈ 1).
We took a step in this regard and studied three distinct ( CMA, ICI and CI ) kernel models of
the gap equation from which we observed the existence of the critical end point in the phase
diagram. Our results agree with lattice for finite T and full momentum dependent SDE-MT [?],
at µ = 0 as well as with experimental prediction in Heavy Ion Collision [?]. Our findings are
summarized in Fig. ??.
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Figure 5.1: QCD phase diagram: The critical end points from cross-over to first-order for all
the phase diagrams i.e., the SDE-MT [?] with mc = 3 MeV, the CMA with mc = 3.5 MeV, the
CI with mc = 7 MeV, the ICI with mc = 7 MeV and from second-order to first-order for CI
model in the chiral limit.

We notice that 3(µE/Tc)CMA ' (µE/Tc)SDE, while (TE/Tc)CMA ≈ (TE/Tc)SDE. We in-
terpret this in the following terms: At µ = 0, the phase transitions are purely due to the
thermal fluctuations of sea quarks and gluons, that equally effect the static and the dynamical
valence quarks. When a finite chemical is taken into account, it affects on the phase transitions,
three times stronger on the static quarks (CMA) than on dynamical quarks (full momentum
dependent SDE-MT [?]). Although the transitions that we are studying in this thesis took
place in the early universe, their consequences leave prints in experimental signals of heavy
ion collisions, for instance. In these experiments, the strongest magnetic field in the universe
are created for a brief instant of time. Nevertheless, its effect on the chiral and deconfine-
ment transitions have called the attention of a sector of the high energy physics community.
In this connection, within the CI model, we consider the effect of an external magnetic field
on the T χ,cc . Magnetic catalysis appears in our model when the coupling does not include the
influence of the magnetic field. But considering that the magnetic field brings quarks closer
together as its strength increases, rendering quarks faster into the asymptotically free domain,
by considering coupling [?] that runs weaker with an increasing magnetic field, which is also
introduced in slightly different form in [?, ?], we found the phenomenon of inverse magnetic
catalysis [?], which agrees well with recent lattice results [?] and some effective models i.e.,
NJL-PNJL models [?] linear sigma model [?] and other predictions.

In the future, we pretend to extend our work with a more refined kernel of the QCD gap
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equation to explore other areas of current interest such as Roberge Wiess-periodicity, the effect
of magnetic field on the QCD phase diagram at finite density with full momentum dependent
SDE, CMA and CI. We are also planing to extend this work to study neutron stars and the
color-flavor-locked phase (CFL) of the QCD phase diagram.



Appendix A

QCD Essentials

A.1 QCD Lagrangian

The QCD Lagrangian density is given by

LQCD = −1

4
F s
µνF

sµν +
3∑

a=1

Nf∑
A=1

ψ̄Aa (iγµDµ −mA)ψAa . (A.1.1)

The first term in Eq. (??) is the gauge field part and the second term represents the Dirac part.
ψ and ψ̄ are the quark and an antiquark filed, respectively, and mf is the current quark mass
corresponding to each flavor. Here,

F s
µν = ∂µG

s
ν − ∂νGs

µ − gsfstuGt
µG

u
ν (A.1.2)

is the gauge filed strength tensor,

Dµψ
A
b = ∂µψ

A
a +

igs
2
Gt
µ(λt)abψ

A
b (A.1.3)

is the covariant derivative of the fermionic field and gs is the strong coupling. The matrices λα

are the Gell-Mann matrices with s, t, u = 1, ..., 8 as an internal symmetry index, that satisfy
the SU(3) Lie algebra

[λs, λt] = 2ifstuλu. (A.1.4)

The fstu are the SU(3) structure constant. There are 8 gluon fields Gt
µ and Nf = 6 flavors of

quarks in the present world. Each quark exist in three color states (red, green, blue) that is
the reason the index a = 1, 2, 3 stands for the colors in the Lagrangian density. Gluons are bi-
colored (color and anti-color) object. The QCD Lagrangian posses all the flavor symmetries of
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a free quark model, which are only broken by a lack of degeneracy in the quark masses. It also
have the well-known strong interaction symmetries, such as invariance under charge conjugation
and space inversion. The Lagrangian contains Nf + 1 parameters: the quark masses, one for
each flavor, plus one dimensionless coupling constant, gs. There is another parameter hidden, a
vacuum angle related to the possibility of strong CP violation, which is however experimentally
found consistent with zero.

The quark-gluon coupling contained in the Dirac part of Eq. (??) is given by

Lqgc =
gs
2
γµψ̄G

µ
t λtψ, (A.1.5)

which contribute
∫
d4xLqgc to the action, which leads to the quark-gluon vertex

gs
2
γµ(λt)abδAB. (A.1.6)

The quark propagator that can be obtained from the free Dirac part of Eq. (??) is of the form

S(p) =
iδabδAB

/p−mA

, (A.1.7)

with /p = γµp
µ. Gluon propagator can be obtained from the pure gauge sector (from the first

term of Eq. (??)) and is given by

iDab
µν(q) =

iδab

q2

(
δµν − (1− ξ)qµqν

q2

)
, (A.1.8)

where ξ is the gauge parameter. In Landau gauge ξ = 0, the gluon propagator is of the form

iDab
µν(q) =

iδab

q2

(
δµν −

qµqν
q2

)
, (A.1.9)

whereas in Feynman gauge ξ = 1, it is of the form

iDab
µν(q) =

iδabδµν
q2

. (A.1.10)

The above mentioned propagators are free or bare.

A.2 QCD running coupling

The interaction among the quarks and gluons can also be represented by the running coupling
constant. In QCD the gauge coupling constant gs of the local SU(3)c appears, playing the
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role similar to e, electric charge in QED. The “strong” fine structure constant is defined as
αs = g2

s/4π and momentum dependence is given by [?]

αs(|q2|) =
αs(µ

2)

1 + αs(µ2)
12π

(11Nc − 2Nf ) ln(|q2|/µ2)
, (A.2.1)

where Nf = 6 represents the number of quark flavors and Nc = 3 is the number of colors.
Since 11Nc > 2Nf , as a result, the strength of αs(|q2|) decreases at small distances or high
energies (αs(|q2|) → 0 as |q2| → ∞). This property of QCD is called “asymptotic freedom”.
The parameter µ, with the dimensions of mass, remains as a relic of the renormalization. At
sufficiently low |q2|, the effective coupling becomes large. It is customary to denote the |q2|
scale at which this happens by Λ2

QCD, namely

Λ2
QCD = µ2 exp

[
−12π

(11Nc − 2Nf )αs(µ2)

]
. (A.2.2)

Thus Eq. (??) implies that

αs(|q2|) =
12π

(11Nc − 2Nf ) ln(|q2|/Λ2
QCD)

. (A.2.3)

For |q2| � Λ2, the effective coupling αs(|q2|) is small and hence quarks and gluons interact
weakly, and therefore a perturbative description makes sense. For |q2| ≤ Λ2

QCD, the quarks
and gluons will arrange themselves into strongly bound, clusters, namely hadrons and a non-
perturbative treatment is necessary. ΛQCD is a free parameter, whose value is determined from
the experiment. It is found to be in the range of 0.1 GeV to 0.5 GeV.

A.3 Confinement

In QCD, the strong coupling vanishes (αs(|q2|) → 0) asymptotically at infinitely high energy
(|q2| → ∞) and quarks are non interacting and free inside hadrons. On the other hand, at
low energy (|q2| ≤ Λ2

QCD) and for sufficiently large αs(|q2|), quarks interact strongly and are
confined inside the hadrons. Thus, QCD exhibits confinement of color. The only finite-energy
asymptotic states of QCD are color-singlets. If one attempts to separate a color-singlet state into
its color constituents, for instance by breaking a meson into a quark and an antiquark, a tube
of gluons would form between these two color sources. With sufficiently strong coupling, this
tube has fixed radius. So the energy cost of separating color sources would grow proportionally
with the separation distance, i.e.,

V (r) = −αs
r

+ σr. (A.3.1)
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When r → 0, the first term dominates and hence quarks behave as free particles, while for
r →∞, the second term plays a leading role and hence quarks are strongly confined inside the
hadrons.

A.4 Chirality

A chiral (Greek word for hand) phenomenon is one that is not identical to its mirror image.
The relative orientation of the spin (~s) of a particle and its momentum ~p can be used to define a
“handedness”, or helicity h = ~s ·~p/ |~p|. For massless particles, it is a Lorentz invariant quantity.
The helicity of a particle is right-handed if the direction of its spin is the same as the direction
of its motion and it is left-handed if the directions of spin and motion are opposite, as shown
in Fig. ??.

Figure A.1: Helicity states of the particle.

Massless particles (photons, gluons and gravitons) have a definite helicity, either positive or
negative and it is Lorentz invariant. For massive particles (electrons, quarks and neutrinos) the
helicity is a frame dependent quantity; it is possible for an observer to change to a reference
frame that overtakes the spinning particle, in which case the particle will then appear to move
backwards, and its helicity (which may be thought of as “apparent chirality”) will be reversed.
Chirality for a Dirac fermion ψ is defined through the operator γ5, which has eigenvalues ±1.
Any Dirac field can thus be projected into its left-handed or right-handed component by acting
with the projection operators:

ψL =
1− γ5

2
ψ, ψR =

1 + γ5

2
ψ. (A.4.1)

A theory that is asymmetric with respect to chiralities is called a chiral theory, while a non-
chiral (i.e., parity-symmetric) theory is sometimes called a vector theory. Many pieces of the
Standard Model of Particle Physics are non-chiral, which is traceable to anomaly cancellations
in chiral theories. QCD is an example of a vector theory, since both chiralities of all quarks
appear in the theory, and couple to gluons in the same way.
Symmetries of the QCD Lagrangian: According to Noether’s theorem “each continuous
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symmetry1 of the Lagrangian density is associated with a conserved current current Jµ that
satisfy ∂µJµ = 0 and a conserved charge Q =

∫
d3xJ0 that is constant in time”.

The global symmetries of the above Lagrangian are following
UV(1) symmetry (conservation of baryon number): If the Lagrangian is invariant under the
UV (1) transformation

ψ → e−iαψ (A.4.2)

where the parameter α is independent of space time coordinates. The associated conserved
current is Jkµ = ψ̄γµψ and the conserved charge is the conservation of baryon number. This
symmetry is an exact symmetry in nature.
SUV(2) symmetry (Isospin): When mu = md (up quark mass=down quark mass), the La-
grangian is invariant under rotation in space. The transformation in this case are

ψ → e−i
~σ·~θ
2 ψ (A.4.3)

which leads to the conserved current Jkµ = ψ̄γµσ
kψ, k = 1, 2, 3. Here ~σ are the generator of

the rotation (which are Pauli spin matrices in this case) and ~θ are the rotation parameters. In
general the mass of up and down quark are not exactly equal and thus isospin symmetry is
only approximate symmetry of nature.
SUA(2) symmetry: In the chiral limit, when the current quark mass m0 = 0, the SUA(2)
transformation are

ψ → e−i
~σ·~θγ5

2 ψ (A.4.4)

is a symmetry and the corresponding conserved current is Jkµ5 = ψ̄γµγ5σ
kψ. When m0 6= 0, this

symmetry is explicitly broken by the part m0ψ̄ψ in the Lagrangian density. This symmetry
also broken spontaneously in the vacuum even in the chiral limit. According to the Goldstone
theorem the spontaneous braking of a symmetry leads to the appearance of massless bosons,
that are the massless bosons in the chiral limit.
UA(1) symmetry (Axial): The UV (1) transformation are

ψ → e−iβγ5ψ (A.4.5)

where β is parameter of the transformation. The associated current is this case Jkµ5 = ψ̄γµγ5ψ.
The UV (1) is explicitly violated due to quantum anomaly2.
The above global symmetries summarize below in the table.

1Transformation of the fields under which the Lagrangian density of the system remain invariant.
2A chiral anomaly is the anomalous nonconservation of a chiral current. In some theories of fermions with

chiral symmetry, the quantization may lead to the breaking of this (global) chiral symmetry. In that case, the
charge associated with the chiral symmetry is not conserved. The non-conservation happens in a tunneling
process from one vacuum to another. Such a process is called an instanton.
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Group Symmetry Transformation Current

SU(2)V Isospin ψ → ei~σ.
~θ/2ψ Jkµ = ψ̄γµσ

kψ
U(1)V Baryonic ψ → eiαψ Jkµ = ψ̄γµψ

SU(2)A Chiral ψ → ei~σ.
~θγ5/2ψ Jkµ5 = ψ̄γµγ5σ

kψ
U(1)A Axial ψ → e−iβγ5ψ Jkµ5 = ψ̄γµγ5ψ

Table A.1: Symmetries of QCD Lagrangian with Nf = 2 for massless quarks.

Chiral Symmetry: Chiral symmetries are symmetries under which the left-handed and
right-handed parts of the field transform independently, i.e.,

ψL =
1− γ5

2
ψ, ψR =

1 + γ5

2
ψ. (A.4.6)

The Dirac part of the QCD Lagrangian Eq. (??) with Nf = 2, can be decomposed in terms of
left-handed and right-handed as

Lqcd = ψ̄u,dL
(
i /D
)
ψu,dL + ψ̄u,dR

(
i /D
)
ψu,dR − ψ̄

u,d
L (mu,d)ψ

u,d
R − ψ̄

u,d
R (mu,d)ψ

u,d
L . (A.4.7)

(A.4.8)

For massless quarks mu = md = m0 = 0, the left and right-handed components decouple and
so the Lagrangian has bigger symmetry. It has SU(2)V ⊗ SU(2)A

3 chiral symmetry which can
be written as

SU(2)V ⊗ SU(2)A ∼= SU(2)L ⊗ SU(2)R, (A.4.9)

and the Lagrangian is invariant under the transformation

ψR → e−i~σ·
~θRψR, ψL → e−i~σ·

~θLψL. (A.4.10)

This chiral symmetry can equally well regarded as vector–axial-vector symmetry [?]. Let us
define

θV =
θL + θR

2
, θA =

θL − θR
2

. (A.4.11)

Then, the Lagrangian is invariant under the transformation

ψ → e−i~σ·
~θV ψ, ψ → e−i~σ·

~θAγ5ψ. (A.4.12)

3The chiral symmetry transformation can be divided into a component that treats the left-handed and
the right-handed parts equally, known as vector symmetry (V), and a component that actually treats them
differently, known as axial symmetry (A).
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A rotation through an equal angle to left and right corresponds to the vector transformation,
while a rotation by equal and opposite angles to right and left gives an axial transformation.

When mu = md 6= 0, the QCD Lagrangian does not posses the chiral symmetry, because
the mass term in the Lagrangian, ψ̄mu,dψ breaks it explicitly. The chiral symmetry SU(2)L ⊗
SU(2)R breaking also take place spontaneously in the vacuum by a quark-atiquark condensate
〈ψ̄ψ〉 6= 0 formed through non-perturbative interactions of quarks and gluons, into the diagonal
vector subgroup SU(2)V known as isospin. The Goldstone bosons that correspond to the three
broken generators are the pions. As a consequence, the effective theory of QCD bound states
like the baryons, must now include mass terms for the constituent quarks, ostensibly disallowed
by unbroken chiral symmetry. Thus, this chiral symmetry breaking induces the bulk of hadron
masses, such as those for the nucleon, i.e., the bulk of the mass of all visible matter. The
spontaneous breaking of chiral symmetry takes place for both with a current quark mass and
in the chiral limit (massless quark).

A.4.1 The order parameter for the chiral symmetry breaking

Above, we discussed the patterns of chiral symmetry breaking. Now we discuss the correspond-
ing order parameter. The Fourier transform of the quark propagator in position space is given
by

S(x) =

∫
d4p

(2π)4
e−ip.xS(p). (A.4.13)

At the origin of the co-ordinate space x→ 0, we have

S(x→ 0) =

∫
d4p

(2π)4
S(p). (A.4.14)

The chiral quark condensate is defined as

−〈ψ̄ψ〉 = NcTr[S(x→ 0)] = Nc

∫
d4p

(2π)4
Tr[S(p)]. (A.4.15)

In the Schwinger-Dyson equations framework (discussed in Chapter 2) the dressed quark prop-
agator is given by

S(p) = iγ · pσv(p2) + σs(p
2). (A.4.16)

Thus the final expression for the chiral condensate is

−〈ψ̄ψ〉 = 4Nc

∫
d4p

(2π)4
σs(p

2), (A.4.17)
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where

σs(p
2) =

F (p2)M(p2)

p2 +M2(p2)
, σv(p

2)
F (p2)

p2 +M2(p2)
, (A.4.18)

with M the dynamically generated mass and F (p2) the quark wavefunction renormalization
function. In the chiral limit, when −〈ψ̄ψ〉 6= 0, chiral symmetry is said to be dynamically
broken and the chiral condensate is an exact order parameter, while −〈ψ̄ψ〉 = 0, corresponds
to the chirally symmetric phase. In the presence of the current quark mass, it is considered to
be an approximate order parameter. Quark condensate satisfies the Gell-Mann-Oakes-Renner
(GMOR) formula

−〈ψ̄ψ〉 =
1

2

m2
πf

2
π

(mu +md)
, (A.4.19)

with

f 2
π = 4Nc

∫
d4p

(2π)4
σs(p

2)

[
M(p2)− p2

2

dM

dp2

]
(A.4.20)

is the pion decay constant and mπ is the mass of the pion, which can easily be calculated once we
know the value of 〈ψ̄ψ〉 and fπ. For example with mu +md = 13 MeV, 〈ψ̄ψ〉 = −(0.23 GeV)3,
and fπ = 92 MeV, the mass of the pion is found to be mπ = 137 MeV.

A.4.2 Reflection positivity and confinement

According to the axiom of violation of positivity, “if a certain degree of freedom has negative
norm contributions in its propagator, it cannot describe a physical asymptotic state, i.e. ab-
sence of Kallen-Lehmann spectral representation for its propagator” [?]. In Euclidean quantum
field theory, positivity is formulated in terms of the Osterwalder-Schrader axiom of reflection
positivity [?]. In the special case of a two-point correlation function ∆(x − y), this condition
can be written as ∫

d4xd4y ḡ(~x, x4)∆(x− y)g(~y, y4) ≥ 0, (A.4.21)

where g(~x, x4) is a complex valued test function with support in {(~x, x4) : x4 = t > 0}. On
applying the three dimensional Fourier transformation as argued in [?], this condition implies

∫ ∞
0

dt

∫ ∞
0

dt′
∫
d3p ¯̃g(t, ~p)∆ (−(t+ t′), ~p) g̃(t′, ~p) ≥ 0. (A.4.22)
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The above condition is valid only in a region around t0 = (t + t′) where ∆ (−t0, ~p) < 0. One
can choose a real test function g(t) which peaks at t and t′, and could immediately lead to a
violation of reflection positivity. Thus the condition Eq. (??), for a special case of ~p = 0, yield
the “spatially averaged Schwinger function”

∆(t)v,s =
1

2π

∫
dp4e

−ip4tσv,s(p4,~0) =
1

π

∫
dp4cos(p4t)σv,s(p4,~0) > 0. (A.4.23)

Form the above equation, one can write the Schwinger function as

∆(t)v,s =

∫
d3x

∫
d4p

(2π)4
e−i(~p.~x+p4t)σv,s(p

2), (A.4.24)

where σv,s were defined in Chapter 2. Thus, for the stable (free particle) ∆(t) ≥ 0, On setting
x = p2 > 0, the order parameter for confinement is defined as the inflection point xc, i.e., the
point at which

d2σv(x)

dx2

∣∣∣∣∣
x=xc

= 0, (A.4.25)

provided xc > 0. The non existence of inflection points means the absence of confinement in
the propagator.

A.4.3 QCD phase transitions

After the discovery of the asymptotic freedom and confinement, another question arose: What
happens when a heat bath at finite temperature is taken into account? In response to this
question, Collins [?] and Cabibo [?] in 1975 predicted the existence of a deconfined state of
quarks and gluons at high temperature and/or high pressures. At sufficiently high temperatures,
quarks and gluons interact weakly and the system behaves as an ideal ultra-relativistic gas. The
degrees of freedom are then determined by the flavor numbers, spin states, color and charge
states of quarks and gluons. Later, such deconfinened state was named quark gluon plasma
(QGP)4. When colorless particle dissociate to create deconfined matter, one open question,
after the discovery of asymptotic freedom, concerned with the properties of the transition from
the hadron gas to the QGP: Does it take place smoothly or via a phase transition and exhibiting
critical behavior? Another question was whether the QGP phase transition exists? Indeed, the
chiral symmetry of the QCD Lagrangian with massless quark is spontaneously broken at low
temperatures and this symmetry should be restored at high temperatures. This represents a
valid condition to predict the existence of a QCD phase transition. It remained, however, an

4The word plasma is used to describe the state of matter when ions and electrons are dissociated in atoms.
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open question if the chiral symmetry transition and the deconfinement transition are or not the
same one. The answer is provided by SDE (that we studied in this dissertation) and Lattice
QCD among other approaches.

Hadronic matter to quark gluon plasma: The bag model

According to the bag model: “hadrons are like little bubbles of (perturbative) vacuum or bags
in which the quarks are to be treated as free particles (asymptotic freedom). Outside of the bag,
quarks and gluons can not appear as free particles i.e., they are confined. The above mentioned
feature can be achieved by considering a constant energy density B, (the bag constant) for the
vacuum, which keeps quarks and gluons confined” [?]. The total energy of the hadrons is given
by

EH =
4π

3
R3 +

C

R
, (A.4.26)

where the first term represent the finite energy density of the vacuum associated with the
volume of the bag, while the second term is the kinetic energy of the quark (in accordance with
the uncertainty principle) inside the bag in the form of sphere with radius R. The value of
R can be obtained by minimizing Eq. (??) with respect to R, which yields

R =

(
C

4πB

)1/4

, (A.4.27)

and

C = 4πBR4. (A.4.28)

Using Eq. (??) in Eq. (??) and setting EH = MH , the mass of the hadron is given by

MH =
16π

3
R3B. (A.4.29)

For MH = 1 GeV, the bag constant B1/4 = 200 MeV. On the other hand, pressure P is given
by

P = −∂EH
∂V

= −B +
C

4π
. (A.4.30)

In case of two light quark and at zero density, the transition temperature from hadronic gas
to the QGP can be calculated through balancing of the pressure of the ideal gas of massless
hadrons (three states of pion) and the pressure of plasma phase. The pressure for ideal hadron
(boson) gas is defined through the Stefan-Boltzmann law

PHG = fb
π2T 4

90
, (A.4.31)
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with fb = 3, are the boson degrees of freedom. The pressure of the QGP is defined as

PQGP =

(
fgb +

7

8
fqf

)
π2T 4

90
−B, (A.4.32)

where fgb = 2 (spin states) ×8 (no. of gluons), represents the gluon degrees of freedom and
fqf = 3 (three color)×2 (flavor) ×2 (spin states) ×2 (charge states corresponding to quarks and
antiquarks), denote the quarks degrees of freedom. The factor 7/8 in Eq. (??) is introduced to
obtain the correct statistics. Thus, setting PHG = PQGP , we have

Tc =

(
45B

17π2

)1/4

. (A.4.33)

With B1/4 = 200 MeV, the critical temperature is found to be Tc = 144 MeV, (Recall 100 MeV
= 166× 109 K) and the transition is of first order. Which is controversial because some recent
effective models and SDE study, shows that the transition are second order in the chiral limit
and cross-over in the presence of current quark mass. Lattice QCD with Nf = 2 with current
quark mass also supported the smooth cross-over.

Hadronic matter to quark gluon plasma: SDE

The transition temperature for chiral symmetry breaking-restoration in the framework of SDE
can be calculated through the chiral condensate. In the chiral limit, the temperature at which
−∂T 〈ψ̄ψ〉1/3 diverges is the critical temperature of the chiral symmetry restoration. The transi-
tion is supposed to be of second order. In the presence of a current quark mass, the temperature
at which −∂T 〈ψ̄ψ〉1/3 peaks is the pseudo-critical temperature and the transition in this case
will be smooth cross-over.
The deconfinement temperature in the SDE can be calculated from the “Spatially Averaged
propagator” (see section 7.4.2). At finite temperature (discussed in Chapter. 3), it is given by

∆(τ) = T
∑
n

e−iωnτ
M(0, ω2

n)

ω2
n +M2(0, ω2

n)
. (A.4.34)

At low temperature, the function ∆(τ) oscillates with high amplitude and hence describes
confinement. At sufficiently high temperature when ∆(τ) > 0, the amplitude of oscillations
vanishes, and the temperature at which it happens is regarded as the pseudo-critical tempera-
ture for deconfinement.

Hadronic matter to quark gluon plasma: Lattice

The critical temperature for chiral symmetry breaking-restoration in lattice also studied through
the quark-antiquark condensate. The transition temperature for confinment-deconfinement is
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obtained from the expectation value of the Polyakov loop P [?].
Polakov loop: is a Wilson loop closed around the periodic Euclidean time direction, and is
defined as a matrix in color space

Φ(~x) = Πexp

[
i

∫ 1/T

0

dτA4 (~x, τ)

]
, (A.4.35)

where Π denote the path ordering of the exponential and A4 = iA0. In Polaykov gauge, the
matrix in diagonal form is given by

Φ = exp [i (φ3λ3 + φ8λ8)] , (A.4.36)

where the λ′s are the Gell-Mann matrices and the φ′s are constant parameters. The expectation
value of the trace of Eq. (??) is denoted by P, and is given by

P =
1

Nc

〈TrΦ〉 , (A.4.37)

with Nc = 3 representing the number of colors. In pure gauge theory, with guage group
SU(N) the action S has a global Z(N) symmetry. At finite temperature, this symmetry is
spontaneously broken at the phase transition and the corresponding order parameter is the
Polyakov loop expectation value P, which is related to the free energy Eq(T ) induced by the
static quark source in the gluonic heat bath i.e.,

P = e−Eq(T )/T . (A.4.38)

When Eq(T ) → ∞, 〈P〉 = 0 and quarks are confined. For finite Eq(T ), when 〈P〉 6= 0, it
corresponds to the deconfined phase. Dual quark condensate (see Chapter 3) is another order
parameter for the confinment-deconfinement phase transition introduced in lattice [?].



Appendix B

Gap equation at finite temperature

This Appendix is based on some mathematical steps of Chapter 2.

B.1 Traces and tensor contraction

(
δµν −

QµQν

Q2

)
δµν =

(
δµνδµν −

Q2

Q2

)
= 4− 1 = 3. (B.1.1)

P T
µνδµν = P T

00δ00 + P T
i0δi0 + P T

0jδ0j + P T
ij δij

= 0 + 0 + 0 + P T
ij δij =

(
δij −

qiqj
q2

)
δij = 3− 1 = 2. (B.1.2)

Tr[γip
iγµγjk

jγν ] = 4pi[δiµδjν − δijδµν + δiνδµν ]k
j. (B.1.3)

Tr[γip
iγµγ0γν ] = 4pi[δiµδ0ν − δi0δµν + δiνδµ0]

= 4pi[δiµδ0ν + δiνδµ0]. (B.1.4)
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P T
µνTr[γip

iγµγjk
jγν ] = 4P T

µνp
i[δiµδjν − δijδµν + δiνδµν ]k

j

= 4pi[P T
ij − δijP T

µνδµν + P T
ij ]k

j

= 4pi[2P T
ij − 2δij]k

j

= 4pi
[
2

(
δij −

qiqj
q2

)
− 2δij

]
kj

= 4pi
(
−2

qiqj
q2

)
kj

= −8
(~p · ~q)(~q · ~k)

q2
. (B.1.5)

P T
µνTr[γip

iγµγ0γν ] = 4piP T
µν [δiµδ0ν + δiνδµ0] = 4pi[P T

i0 + P T
0i ] = 0. (B.1.6)

(
δµν −

QµQν

Q2

)
Tr[γip

iγµγjk
jγν ] = 4pi

(
δµν −

QµQν

Q2

)
[δiµδjν − δijδµν + δiνδµν ]k

j

= 4

[
pi(δij − 4δij + δij)k

j − pi

Q2
(QiQj − δijQ2 +QjQi)k

j

]
= 4

[
−2(~p · ~k)− 1

Q2

(
(~p · ~q)(~q · ~k)− (~p · ~k)Q2 + (~k · ~q)(~p · ~q)

)]
= 4

[
−2(~p · ~k)− 2

(~p · ~q)(~q · ~k)

Q2
+

(~p · ~k)Q2

Q2

]

= −4

[
(~p · ~k) + 2

(~p · ~q)(~q · ~k)

Q2

]
. (B.1.7)

(
δµν −

QµQν

Q2

)
Tr[γip

iγµγ0γν ] = 4

(
δµν −

QµQν

Q2

)
pi[δiµδ0ν + δiνδµ0]

= 4

[
piδµν(δiµδ0ν + δiνδµ0)− piQµQν

Q2
(δiµδ0ν + δiνδµ0)

]
= 4

[
pi(δi0 + δi0)− pi

(
QiQ0

Q2
+
Q0Qi

Q2

)]
= 4

[
(0)− (~p · ~q)q0

Q2
+
q0(~p · ~q)
Q2

]
= −4

[
2

(~p · ~q)Ωnl

Q2

]
, (B.1.8)
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where Q0 = q0 = Ωnl and Qi = qi = ~q.

Tr[γ0γµγiγν ]k
i = 4[δ0µδiν − δ0iδµν + δ0νδµi]k

i. (B.1.9)(
δµν −

QµQν

Q2

)
Tr[γ0γµγiγν ]k

i = 4

(
δµν −

QµQν

Q2

)
[δ0µδiν − δ0iδµν + δ0νδµi]k

i

= 4

[
δµν(δ0µδiν − δ0iδµν + δ0νδµi)k

i − QµQν

Q2
(δ0µδiν − δ0iδµν + δ0νδµi)k

i

]
= 4

[
(0)− q0(~q · ~k)

Q2
− q0(~q · ~k)

Q2

]
= −4

[
2
q0(~q · ~k)

Q2

]
= −4

[
2

Ωnl(~q · ~k)

Q2

]
. (B.1.10)

Tr[γ0γµγiγν ]k
i = 4P T

µν [δ0µδiν − δ0iδµν + δ0νδµi]k
i

= 4[P T
0i − P T

0i + P T
i0 ] = 0. (B.1.11)

Tr[γ0γµγ0γν ]k
i = 4[δ0µδ0ν − δ00δµν + δ0νδµ0] = 4[2δ0µδ0ν − δµν ]. (B.1.12)

(
δµν −

QµQν

Q2

)
Tr[γ0γµγ0γν ] = 4

(
δµν −

QµQν

Q2

)
[2δ0µδ0ν − δµν ]

= 4

[
δµν(2δ0µδ0ν − δµν)−

QµQν

Q2
(2δ0µδ0ν − δµν)

]
= 4

[
−2− q2

0

Q2
+ 1

]
= −4

[
1 +

q2
0

Q2

]
= −4

[
1 +

Ω2
nl

Q2

]
. (B.1.13)

Tr[γαγµγβγν ] = 4[δαµδβν − δαβδµν + δανδµβ]. (B.1.14)(
δµν −

qµqν
q2

)
Tr[γαp

αγµγβk
βγν ] = 4pα

(
δµν −

qµqν
q2

)
[δαµδβν − δαβδµν + δανδµβ]kβ

= 4

[
pα(δαβ − 4δβ + δαβ)kβ − pα

q2
(qαQβ − δαβq2 + qβQα)kβ

]
= 4

[
−2(~p · ~k)− 1

q2
[(~p · ~q)(~q · ~k)− (~p · ~k)~q2 + (~k · ~q)(~p · ~q)]

]
= 4

[
−2(~p · ~k)− 2

(~p · ~q)(~q · ~k)

~q2
+

(~p · ~k)~q2

~q2

]

= −4

[
(~p · ~k) + 2

(~p · ~q)(~q · ~k)

~q2

]
. (B.1.15)
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Also

(~p · ~q)(~q · ~k) = [~p · (~p− ~k)][(~p− ~k) · ~k] = (~p2 + ~k2)(~p · ~k)− ~p2~k2 − (~p · ~k)2, (B.1.16)

(~p · ~q) = ~p2 − (~p · ~k), (B.1.17)

(~q · ~k) = (~p · ~k)− ~k2. (B.1.18)

Angular Integration: ∫
d3~k = 2π

∫ ∞
0

d~k~k2

∫ π

0

dθsinθ. (B.1.19)

In all above, ~k and ~p alone represent the magnitude of the spatial vector, respectively.

B.2 Gap equations after performing angular integration

The self consistent equation to determine B, A and C after performing the angular integration
are:

B(~p2, ω̃2
n) = mc −

1

3π2
T

∞∑
l=−∞

∫ ∞
0

d~k~k2σB(~p2, ω̃2
n)

[
I0 + 2I ′0

]
, (B.2.1)

A(~p2, ω̃2
n) = 1− T

3~p2π2

∞∑
l=−∞

∫ ∞
0

d~k~k2

[
σA(~k2, ω̃2

l )[~p
~kI1 +

2~p~k(~p2 + ~k2)(I2 − I5 + I ′5)− 2~p2~k2(I3 + I4 − I6 − I7 + I ′6 + I ′7)]

+2Ωnlω̃lσC(~k2, ω̃2
l )[~p

2I4 − ~p~kI2]

]
(B.2.2)

and

C(~p2, ω̃2
n) = 1− 1

3π2ω̃n
T

∞∑
l=−∞

∫ ∞
0

d~k~k2

[
2σA(~k2, ω̃2

l )Ωnl[~k
2I4 − ~k~pI2] +

ω̃lσC(~k2, ω̃2
l )[−I0 + 2I ′0 + 2Ω2

nlI4]

]
, (B.2.3)
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where

I0 =

∫ π

0

dθsinθg2DL(~k2,Ω2
nl), I ′0 =

∫ π

0

dθsinθg2DT (~k2,Ω2
nl),

I1 =

∫ π

0

dθsinθcosθg2DL(~k2,Ω2
nl), I2 =

∫ π

0

dθsinθcosθ
g2DL(~k2,Ω2

nl)

Q2
,

I3 =

∫ π

0

dθsinθcos2θ
g2DL(~k2,Ω2

nl)

Q2
, I4 =

∫ π

0

dθsinθ
g2DL(~k2,Ω2

nl)

Q2
,

I5 =

∫ π

0

dθsinθcosθ
g2DL(~k2,Ω2

nl)

~q2
, I ′5 =

∫ π

0

dθsinθcosθ
g2DT (~k2,Ω2

nl)

~q2
,

I6 =

∫ π

0

dθsinθcos2θ
g2DL(~k2,Ω2

nl)

~q2
, I ′6 =

∫ π

0

dθsinθcos2θ
g2DT (~k2,Ω2

nl)

~q2
,

I7 =

∫ π

0

dθsinθ
g2DL(~k2,Ω2

nl)

~q2
, I ′7 =

∫ π

0

dθsinθ
g2DT (~k2,Ω2

nl)

~q2
. (B.2.4)

B.2.1 Sum over two Matsubara frequencies

Here we perform explicitly the sum over two Matsubara frequencies n = 0,−1.

B(~p2, ω̃2
0) = mc −

1

3π2
T

∫ ∞
0

d~k~k2

[
σB(~p2, ω̃2

0)[I0(00) + 2I ′0(00)]

+σB(~p2, ω̃2
−1)[I0(0−1) + 2I ′0(0−1)]

]
, (B.2.5)

B(~p2, ω̃2
−1) = mc −

1

3π2
T

∫ ∞
0

d~k~k2

[
σB(~p2, ω̃2

0)[I0(−10) + 2I ′0(−10)]

+σB(~p2, ω̃2
−1)[I0(−1−1) + 2I ′0(−1−1)]

]
, (B.2.6)
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A(~p2, ω̃2
0) = 1− T

3~p2π2

∫ ∞
0

d~k~k2

[[
σA(~k2, ω̃2

0)[~p~kI1(00) + 2~p~k(~p2 + ~k2)(I2(00) − I5(00) + I ′5(00))

−2~p2~k2(I3(00) + I4(00) − I6(00) − I7(00) + I ′6(00) + I ′7(00))]

+2Ω00ω̃0σC(~k2, ω̃2
0)[~p2I4(00) − ~p~kI2(00)]

]
+[

σA(~k2, ω̃2
−1)[~p~kI1(0−1) + 2~p~k(~p2 + ~k2)(I2(0−1) − I5(0−1) + I ′5(0−1))

−2~p2~k2(I3(0−1) + I4(0−1) − I6(0−1) − I7(0−1) + I ′6(0−1) + I ′7(0−1))]

+2Ω0−1ω̃−1σC(~k2, ω̃2
−1)[~p2I4(0−1) − ~p~kI2(0−1)]

]]
, (B.2.7)

A(~p2, ω̃2
−1) = 1− T

3~p2π2

∫ ∞
0

d~k~k2

[[
σA(~k2, ω̃2

0)[~p~kI1(−10) + 2~p~k(~p2 + ~k2)(I2(−10) − I5(−10) + I ′5(−10))

−2~p2~k2(I3(−10) + I4(−10) − I6(−10) − I7(−10) + I ′6(−10) + I ′7(−10))]

+2Ω−10ω̃0σC(~k2, ω̃2
0)[~p2I4(00) − ~p~kI2(00)]

]
+[

σA(~k2, ω̃2
−1)[~p~kI1(−1−1) + 2~p~k(~p2 + ~k2)(I2(−1−1) − I5(−1−1) + I ′5(−1−1))

−2~p2~k2(I3(−1−1) + I4(−1−1) − I6(−1−1) − I7(−1−1) + I ′6(−1−1) + I ′7(−1−1))]

+2Ω−1−1ω̃−1σC(~k2, ω̃2
−1)[~p2I4(00) − ~p~kI2(00)]

]]
, (B.2.8)
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C(~p2, ω̃2
0) = 1− 1

3π2ω̃0

T

∫ ∞
0

d~k~k2

[[
2σA(~k2, ω̃2

0)Ω00[~k2I4(00) − ~k~pI2(00)] +

ω̃0σC(~k2, ω̃2
0)[−I0(00) + 2I ′0(00) + 2Ω2

00I4(00)]

]

+

[
2σA(~k2, ω̃2

−1)Ω0−1[~k2I4(0−1) − ~k~pI2(0−1)] +

ω̃−1σC(~k2, ω̃2
−1)[−I0(0−1) + 2I ′0(0−1) + 2Ω2

0−1I4(0−1)]

]]
, (B.2.9)

C(~p2, ω̃2
−1) = 1− 1

3π2ω̃−1

T

∫ ∞
0

d~k~k2

[[
2σA(~k2, ω̃2

−1)Ω−10[~k2I4(−10) − ~k~pI2(−10)] +

ω̃−1σC(~k2, ω̃2
−1)[−I0(−10) + 2I ′0(−10) + 2Ω2

−10I4(−10)]

]

+

[
2σA(~k2, ω̃2

−1)Ω−1−1[~k2I4(−1−1) − ~k~pI2(−1−1)] +

ω̃−1σC(~k2, ω̃2
−1)[−I0(−1−1) + 2I ′0(−1−1) + 2Ω2

−1−1I4(−1−1)]

]]
, (B.2.10)

with Ωnl = 2(n− l)πT , ωn = (2n+1)πT , ωl = (2l+1)πT , Ω00 = 0, Ω0−1 = 2πT , Ω−10 = −2πT ,
Ω2
−10 = Ω2

0−1 = 4π2T 2, Ω2
00 = Ω2

−1−1 = 0, ω0 = πT , ω−1 = −πT , and ω2
0 = ω2

−1 = π2T 2. The
integrals involved here are the following:
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I0(00) = I0(−1−1) =

∫ π

0

dθsinθg2DL(~k2, 0) =

∫ π

0

dθsinθg2DL(~k2),

I
′

0(00) = I
′

0(−1−1) =

∫ π

0

dθsinθg2DT (~k2, 0) =

∫ π

0

dθsinθg2DT (~k2),

I1(00) = I1(−1−1) =

∫ π

0

dθsinθcosθg2DL(~k2, 0) =

∫ π

0

dθsinθcosθg2DL(~k2),

I2(00) = I2(−1−1) =

∫ π

0

dθsinθcosθ
g2DL(~k2, 0)

Q2
=

∫ π

0

dθsinθcosθ
g2DL(~k2, 0)

Q2
,

I3(00) = I3(−1−1) =

∫ π

0

dθsinθcos2θ
g2DL(~k2, 0)

Q2
=

∫ π

0

dθsinθcosθ
g2DL(~k2)

Q2
,

I4(00) = I4(−1−1) =

∫ π

0

dθsinθ
g2DL(~k2, 0)

Q2
=

∫ π

0

dθsinθ
g2DL(k2)

Q2
,

I5(00) = I5(−1−1) =

∫ π

0

dθsinθcosθ
g2DL(~k2, 0)

~q2
=

∫ π

0

dθsinθcosθ
g2DL(~k2)

~q2
,

I6(00) = I6(−1−1) =

∫ π

0

dθsinθcos2θ
g2DL(~k2, 0)

~q2
=

∫ π

0

dθsinθcos2θ
g2DL(~k2)

~q2
,

I7(00) = I7(−1−1) =

∫ π

0

dθsinθ
g2DL(~k2, 0)

~q2
=

∫ π

0

dθsinθ
g2DL(~k2)

~q2
,

I ′5(00) = I ′5(−1−1) =

∫ π

0

dθsinθcosθ
g2DT (~k2, 0)

~q2
=

∫ π

0

dθsinθcosθ
g2DT (~k2)

~q2
,

I ′6(00) = I ′6(−1−1) =

∫ π

0

dθsinθcos2θ
g2DT (~k2, 0)

~q2
=

∫ π

0

dθsinθcos2θ
g2DT (~k2)

~q2
,

I ′7(00) = I ′7(−1−1) =

∫ π

0

dθsinθ
g2DT (~k2, 0)

~q2
=

∫ π

0

dθsinθ
g2DT (~k2)

~q2
,

I0(0−1) = I0(−10) =

∫ π

0

dθsinθcosθg2DL(~k2, 4π2T 2),

I1(0−1) = I1(−10) =

∫ π

0

dθsinθcosθg2DL(~k2, 4π2T 2),

I2(0−1) = I2(−10) =

∫ π

0

dθsinθcosθ
g2DL(~k2, 4π2T 2)

Q2
,

I3(0−1) = I3(−10) =

∫ π

0

dθsinθcos2θ
g2DL(~k2, 4π2T 2)

Q2
,

I4(0−1) = I4(−10) =

∫ π

0

dθsinθ
g2DL(~k2, 4π2T 2)

Q2
,

I5(0−1) = I5(−10) =

∫ π

0

dθsinθcosθ
g2DL(~k2, 4π2T 2)

~q2
,

I6(0−1) = I6(−10) =

∫ π

0

dθsinθcos2θ
g2DL(~k2, 4π2T 2)

~q2
,
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I7(0−1) = I7(−10) =

∫ π

0

dθsinθ
g2DL(~k2, 4π2T 2)

~q2
,

I ′5(0−1) = I ′5(−10) =

∫ π

0

dθsinθcosθ
g2DT (~k2, 4π2T 2)

~q2
,

I ′6(0−1) = I ′6(−10) =

∫ π

0

dθsinθcos2θ
g2DT (~k2, 4π2T 2)

~q2
,

I ′7(0−1) = I ′7(−10) =

∫ π

0

dθsinθ
g2DT (~k2, 4π2T 2)

~q2
.

Substituting the values of frequencies, we observe that the self consistent equations with n = 0
and n = −1 are the same, i.e.,

B(~p2, ω̃2
0) = mc −

1

3π2
T

∫ ∞
0

d~k~k2σB(~p2, π2T 2)

[
[I0(00) + 2I ′0(00)]

+[I0(0−1) + 2I ′0(0−1)]

]
, (B.2.11)

B(~p2, ω̃2
−1) = mc −

1

3π2
T

∫ ∞
0

d~k~k2σB(~p2, π2T 2)

[
[I0(0−1) + 2I ′0(0−1)]

+[I0(00) + 2I ′0(00)]

]
, (B.2.12)

A(~p2, ω̃2
0) = 1− T

3~p2π2

∫ ∞
0

d~k~k2

[
σA(~k2, π2T 2)

[
[~p~kI1(00) + 2~p~k(~p2 + ~k2)(I2(00) − I5(00) + I ′5(00))

−2~p2~k2(I3(00) + I4(00) − I6(00) − I7(00) + I ′6(00) + I ′7(00))]

+[~p~kI1(0−1) + 2~p~k(~p2 + ~k2)(I2(0−1) − I5(0−1) + I ′5(0−1))

−2~p2~k2(I3(0−1) + I4(0−1) − I6(0−1) − I7(0−1) + I ′6(0−1) + I ′7(0−1))]

]

−4π2T 2σC(~k2, π2T 2)[−~p~kI2(0−1) + ~p2I4(0−1)]

]
, (B.2.13)
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A(~p2, ω̃2
−1) = 1− T

3~p2π2

∫ ∞
0

d~k~k2

[
− 4π2T 2σC(~k2, π2T 2)[−~p~kI2(0−1) + ~p2I4(0−1)]

+σA(~k2, π2T 2)

[
[~p~kI1(0−1) + 2~p~k(~p2 + ~k2)(I2(0−1) − I5(0−1) + I ′5(0−1))

−2~p2~k2(I3(0−1) + I4(0−1) − I6(0−1) − I7(0−1) + I ′6(0−1) + I ′7(0−1))]

+[~p~kI1(00) + 2~p~k(~p2 + ~k2)(I2(00) − I5(00) + I ′5(00))

−2~p2~k2(I3(00) + I4(00) − I6(00) − I7(00) + I ′6(00) + I ′7(00))]

]]
, (B.2.14)

C(~p2, ω̃2
0) = 1− T

3π2

∫ ∞
0

d~k~k2

[
σC(~k2, π2T 2)

[
[−I0(00) + 2I ′0(00)]

−[−I0(0−1) + 2I ′0(0−1) + 8π2T 2I4(0−1)]

]

+4σA(~k2, π2T 2)[~k2I4(0−1) − ~k~pI2(0−1)]

]
, (B.2.15)

C(~p2, ω̃2
−1) = 1− T

3π2

∫ ∞
0

d~k~k2

[
4σA(~k2, π2T 2)[~k2I4(0−1) − ~k~pI2(0−1)] +

σC(~k2, π2T 2)

[
[−I0(0−1) + 2I ′0(0−1) + 8π2T 2I4(0−1)]

+[−I0(00) + 2I ′0(00)]

]]
. (B.2.16)



Appendix C

Gap equation in magnetic field

In this Appendix we present some calculations of Chapter 4.

C.1 Zero temperature and magnetic field

The Schwinger propagator in a uniform magnetic field is given by

S(k) =

∫ ∞
0

dτ
e
−τ(k2

‖+k
2
⊥

tan(|qfBτ |)
|qfBτ |

+M2)

cosh(|qfBτ |)

[(
cosh(|qfBτ |)(M − /k‖)−

(M − /k‖)iγ1γ2sinh(|qfBτ |)
)
−

/k⊥
cosh(|qfBτ |)

]
, (C.1.1)

where k2
‖ = k2

0 + k2
3 and k2

⊥ = k2
0 + k2

3. The trace of Eq. (??) is given by

Tr[S(k)] =

∫ ∞
0

dτ
e
−τ(k2

‖+k
2
⊥

tan(|qfBτ |)
|qfBτ |

+M2)

cosh(|qfBτ |)
Tr

[(
cosh(|qfBτ |)(M − /k‖)−

(M − /k‖)iγ1γ2sinh(|qfBτ |)
)
−

/k⊥
cosh(|qfBτ |)

]
. (C.1.2)

As Tr[/k] = 0, Tr[γ1γ2] = 4δ12 = 0, and Tr[MI] = 4M , Eq. (??) becomes

Tr[S(k)] = 4M

∫ ∞
0

dτ
e
−τ(k2

‖+k
2
⊥

tan(|qfBτ |)
|qfBτ |

+M2)

cosh(|qfBτ |)
cosh(|qfBτ |),

= 4M

∫ ∞
0

dτe
−τ(k2

‖+k
2
⊥

tan(|qfBτ |)
|qfBτ |

+M2)
. (C.1.3)
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Introducing the infra-red and ultraviolet cut-offs, we have

Tr[S(k)] = 4M

∫ τ2
ir

τ2
uv

dτe
−τ(k2

‖+k
2
⊥

tan(|qfBτ |)
|qfBτ |

+M2)
. (C.1.4)

Since

M = mc +
4αeff(0)

3

∫
d4k

(2π)4
Tr[S(k)], (C.1.5)

using Eq. (??) in Eq. (??), we have

M = mc +
16Mαeff(0)

3

∫
d4k

(2π)4

∫ τ2
ir

τ2
uv

dτe
−τ(k2

‖+k
2
⊥

tan(|qfBτ |)
|qfBτ |

+M2)
, (C.1.6)

or

M = mc +
16Mαeff(0)

3

∫
d2k⊥
(2π)2

d2k‖
(2π)2

∫ τ2
ir

τ2
uv

dτe
−τ(k2

‖+k
2
⊥

tanh(|qfBτ |)
|qfBτ |

+M2)
. (C.1.7)

As ∫ ∞
−∞

d2k‖
(2π)2

e−τk
2
‖ =

1

4πτ
,

∫ ∞
−∞

d2k⊥
(2π)2

e
−τk2

⊥
tanh(|qfBτ |)
|qfBτ | =

|qfB|
4πtanh(|qfBτ |)

, (C.1.8)

our final gap equation expression is of the form

M = mc +
Mαeff(0)

3π2

1

2

∑
f=u,d

|qfB|
∫ τ2

ir

τ2
uv

dτ
e−τM

2

τtanh(|qfBτ |)
. (C.1.9)

The factor (1/2) is due to the fact that our gap equation at zero temperature and magnetic
field considers Nf = 2, and in the case of magnetic field each flavor gets separated by electric
charge.

C.2 Finite temperature and magnetic field

At finite temperature, we replace k0 by ωn such that the gap equation is expressed as

M = mc +
4αeff(0)

3
T
∑
n

∫
d3k

(2π)3
Tr[S(k)], (C.2.1)
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or

M = mc +
16Mαeff(0)T

3

∑
n

∫
d3k

(2π)3

∫ τ2
ir

τ2
uv

dτe
−τ(ω2

n+k2
3+k2

⊥
tan(|qfBτ |)
|qfBτ |

+M2)
. (C.2.2)

Since ∫
d3k

(2π)3
=

∫ ∞
−∞

dk3

(2π)

d2k⊥
(2π)2

,
∞∑

n=−∞

e−τω
2
n = Θ2(0, e−4π2τT 2

),∫ ∞
−∞

dk3

(2π)

d2k⊥
(2π)2

e
−τ(k2

3+k2
⊥

tanh(|qfBτ |)
|qfBτ |

)
=

|qfB|
8π3/2

√
τtanh(|qfBτ |)

, (C.2.3)

where Θ2(x, y) is the Jacobi theta function. Using Eq. (??) in Eq. (??), we have

M = mc +
2Mαeff(0)T

3π3/2

1

2

∑
f=u,d

|qfB|
∫ τ2

ir

τ2
uv

dτ
Θ2(0, e−4π2τT 2

)e−τM
2

√
τtanh(|qfBτ |)

. (C.2.4)
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