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Resumen

En esta tesis se estudia el comportamiento de los propagadores de gluón y de fantasma, y de
los vértices de fantasma-gluón y de 3 gluones, en una descripción de la teoŕıa de Yang-Mills que
involucra un término de masa para el gluón, introducido en el intento de tomar en cuenta el
efecto de la restricción a la región de Gribov a bajas enerǵıas. Para mejorar los resultados a altas
enerǵıas, lejos del horizonte de Gribov, se resuman las funciones de correlación, evaluadas al
orden de un lazo, mediante el grupo de renormalización en la formulación de Callan-Symanzik.
En el análisis se consideran distintos esquemas de renormalización para encontrar los resultados
que mejor se peguen a los datos calculados en la Red en la norma de Landau.

Palabras claves: Yang-Mills theory, Gribov problem, renormalization group, Curci-Ferrari
model, Callan-Symanzik equations.



Abstract

In this thesis we study the behaviour of the gluon and ghost propagators and of the ghost-gluon
and three-gluon vertices in a description of Yang-Mills theory that involves a gluonic mass term,
introduced in the attempt to take into account the effect of the restriction to the Gribov region
at low energies. In order to improve the results at high energies, far from the Gribov horizon,
the correlation functions evaluated at one-loop order in perturbation theory, are resummed with
the Callan-Symanzik equations of the renormalization group. In this analysis we considered
different renormalization schemes in order to achieve a better quantitative agreement with the
Lattice data calculated in Landau gauge.



Chapter 1

Introduction

In the seminal work of 1954 [1] C-N. Yang and R. L. Mills introduced for the first time the gen-
eralization of the gauge symmetry known in electrodynamics, to a non-Abelian group SU(2),
representing the isospin symmetry within the strong interaction between a proton and a neu-
tron. They were motivated by the principle of locality, arguing that the arbitrariness in choosing
which particle to call a proton or a neutron should be a space-time dependent property of the
theory.

Since then the gauge principle has acquired a prominent role in physics. Every interaction
at its fundamental level is in fact understood as a gauge theory. The electroweak and strong
interactions, described in the Standard Model of particles, are mediated by fields that can be
redefined, without changing the physical content of the theory, by a local transformation of the
group U(1)×SU(2)×SU(3). Also the gravitational interaction is described at the classical level
by a theory, General Relativity, that is invariant under the local redefinition by diffeomorphisms
of its degrees of freedom, hence it can be viewed as a gauge theory, although a proper way to
quantize it is still lacking.

The presence of the local gauge symmetry implies that the field content of the theory is not
in a biunivocal correspondence with physical quantities, otherwise the classical theory would not
be deterministic. This can be understood in a Lagrangian formulation, because the equations
of motion for the fields are not independent, but interrelated by a number of identities equal to
the number of generators of the local symmetry (second Noether theorem). In the Hamiltonian
formulation is understood by the fact the theory is a constrained one, with first-class constraints
generating the local symmetry and spanning a hypersurface in the symplectic space whose points
crossed by the fields evolutions are not determined by the equations of motion.

The physical quantities that save the determinism at the classical level are in fact the equiva-
lence classes (orbits) of the fields, where two fields belong to the same class if they are related by
a local gauge transformation, i.e. if they lie on the same orbit. Being very challenging to define
a consistent quantum field theory whose degrees of freedom are the equivalence classes, the next
best strategy is to select a single field configuration element from any conjugacy class, through
the procedure known as gauge fixing. This procedure, which consists in a modification of the
classical Lagrangian and corresponding equations of motion, overcomes the inconsistencies that
arise at the quantum level, both in the covariant canonical formalism, where the classical equa-
tions of the gauge field are inconsistent with the separating property of the vacuum (cf. [2]),
as in the path integral formulation, where the redundant gauge field configurations that are
not weighted in the directions of the gauge transformations generate infinities that need to be
factorized from the path integral.

Unfortunately, the standard procedure to fix the gauge introduced by Faddeev and Popov [5],
which consists in intersecting each gauge orbit with an hypersurface defined by a covariant gauge
condition, presents a topological obstruction at low energies, as showed by Gribov [6]. This is
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understood by the fact that in a non abelian gauge theory, the gauge trajectories along an orbit
that move away from the trivial configuration, hence far from the region were perturbation
theory is valid, intersect the gauge surface on different points (Gribov copies), spoiling the
validity of the uniqueness property of the gauge fixing procedure. Singer [7] then demonstrated
that such ambiguity cannot be avoided by any local analytical gauge fixing condition.

This constitutes a serious problem for the non perturbative definition of a non abelian gauge
theory in the continuum. QCD (and the pure gluodynamics Yang-Mills theory) has been studied
so far at a non perturbative level in a lattice formulation [8], where the gauge fixing procedure
is unnecessary due to the finite number of degrees of freedom in the discretized space-time, and
by solving the functional Dyson-Schwinger equations (DSEs) and Functional Renormalization
Group equations (FRG) [9]. In this work we study an alternative formulation introduced by
Tissier and Wschebor [10] who showed how introducing an explicit massive term for the gluon,
the evaluation of correlation functions at one-loop order well approximate the lattice results
at low energy (IR) and by improving them with the renormalization group resummation, the
approximation is qualitatively good for the whole range of momenta.

The theoretical motivation to introduce a gluon mass is the soft breaking [45] of the BRST
symmetry [3, 4], the residual global symmetry that survive after gauge fixing and that repre-
sents the local gauge symmetry at the quantum level, due to the restriction of the functional
integration to the first Gribov region in order to take care of the Gribov ambiguity, as shown
by Zwanziger [44]. Here we push further the analysis done by Tissier and Wschebor for the
two-point correlation functions and three-point vertices in Yang-Mills theory, by exploring the
implementation of different renormalization schemes in order to achieve better quantitative
results that fit the lattice data in Landau gauge.

This work is structured as following: in this introductory chapter I we fix the notations in
the construction of the Yang-Mills Lagrangian, the gauge fixing procedure through the Faddeev-
Popov method and the BRST symmetry. In Chapter II we briefly explain the Gribov problem,
the Gribov-Zwanziger scenario that is constructed in order to overcome the Gribov ambiguity
and how it heuristically justifies the introduction of the gluon mass. Chapter III is dedicated to
the exhibition of the one-loop results for the two and three-point correlation functions and in
Chapter IV we present the different results for the renormalization group improved correlation
functions in different renormalization schemes.

1.1 Y-M path integral quantization

In a non abelian gauge theory the matter fields φ(x) 1 are sections of a principle G-bundle, where
G is the structure group (here we consider only the semi-simple compact Lie group SU(N))
acting on the fibre, whose sections define in local coordinates the gauge transformations of the
field:

φ′(x) = U(x)φ(x), U(x) = eigθ(x), (1.1)

where U(x) is the unitary matrix belonging to SU(N), g is the coupling constant and θ(x) =
θa(x)T a contains the functions that parametrize the transformation for each direction of the
Lie algebra hermitian generators T a that obey the commutation relation

[T a, T b] = ifabcT c, a = 1, . . . , N2 − 1, (1.2)

1Here it is irrelevant if they represent scalar or spinor particles.
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where fabc are the totally antisymmetric real structure constants of the group, and being N2−1
the dimension of the group. The generators are normalized as follows:

Tr
[

T aT b
]

=
1

2
δab. (1.3)

The fibre bundle is equipped with a Lie algebra valued 1-form connection ω = gAµ(x)dxµ =
gAa

µ(x)T
adxµ that allows to differentiate the fiber sections. The connection defines a covariant

derivative
Dµ = ∂µ − igAµ, (1.4)

that transforms covariantly under a gauge transformation, guaranteeing the local gauge invari-
ance o the theory:

D′
µφ

′(x) = D′
µ (U(x)φ(x)) = U(x)Dµφ(x). (1.5)

This implies an affine transformation law for the gauge field:

A′
µ(x) = U(x)AµU

†(x) +
i

g
U(x)∂µU

†(x), (1.6)

which reduces for the case of an infinitesimal transformation U(x) ≃ 1− igθ(x) to

A′
µ(x) = ∂µθ(x)− ig[Aµ, θ(x)] = DA

µ θ(x), (1.7)

being DA
µ the covariant derivative in the adjoint representation. In terms of the gauge field

components Aa
µ (1.7) translates to:

A
′a
µ (x) = DAab

µ θb(x) = ∂µθ
a(x) + gfabcA(x)bµθ

c(x). (1.8)

The gauge invariant action is given in terms of the field strength curvature Fµν(x) = F a
µν(x)T

a

defined by:

Fµν(x) ≡
i

g
[Dµ, Dν ] = ∂µAν(x)− ∂νAµ(x)− ig[Aµ(x), Aν(x)], (1.9)

which for the components reads:

F a
µν(x) = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µ(x)A
c
ν(x). (1.10)

. Since the field strength transforms covariantly under a gauge transformation

F ′
µν(x) = U(x)Fµν(x)U

†(x), (1.11)

the following Yang- Mills action defined in Euclidean space is indeed gauge invariant:

SYM =
1

2

∫

dDxTr [FµνFµν ] =
1

4

∫

dDxF a
µνF

a
µν . (1.12)

The starting point to quantize the theory in a Feynman path integral approach is the generating
functional Z[J ] that contains all the non perturbative quantum fluctuations

Z[J ] ≡
∫

DAµe
−SY M+

∫
dDxJµ(x)Aµ(x), (1.13)

which would generate the n-point correlation functions for the gauge field, by consecutive
functional differentiations:

⟨Aµ1
(x1) · · ·Aµn(xn)⟩ =

δnZ[J ]

δJµ1
(x1) · · · δJµn(xn)

∣

∣

∣

∣

Ji=0

, (1.14)
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where a suitable normalization that allows to omit the vacuum diagrams is understood. Un-
fortunately (1.13) is ill defined, since it contains the redundant gauge configurations that are
connected by gauge transformations, i.e. that belongs to the same gauge orbit. In particular
it integrates over the configurations connected to the trivial configuration Aµ = 0, that are not
weighted by the exponential and therefore generate a formal divergence. This is reflected on the
fact that the quadratic term in the action contains zero modes and therefore is not invertible,
meaning a gauge propagator is not well defined.

A way out of this is to factorize the unwanted divergence by imposing a local gauge condition
on the gauge field

F[A] = 0, (1.15)

inserting in the functional integration, the identity

∆F[A]

∫

dUδ
(

F[AU ]
)

= 1, (1.16)

where dU is the invariant Haar measure

dU =
∏

x

∏

a

dθa(x), (1.17)

and the functional Dirac delta is to be understood as the product of deltas

δ
(

F[AU ]
)

=
∏

x

∏

a

δ
(

F
a[AU(x)]

)

, (1.18)

where AU(x) represents the gauge transformed field configuration under the gauge transfor-
mation U(x). In (1.16) ∆F[A] is the absolute value of the gauge invariant Faddeev-Popov
determinant:

∆F[A] =| detMab(x, y) |, M
ab(x, y) =

δFa[AU(x)]

δθb(y)

∣

∣

∣

∣

F[AU ]=0

. (1.19)

(1.16) is the functional generalisation of the one dimensional identity

| f ′(x0) |
∫

dxδ(f(x)) = 1, (1.20)

where x0 is the only solution of f(x) = 0. Inserting (1.16) into (1.13) and exploiting the gauge
invariance of the functional measure dAµ, of the action and of the Faddeev-Popov determinant,
one can therefore factorize the integration over the gauge group measure and absorb it in the
normalization of the generating functional, yielding (omitting the source term):

Z =

∫

DAµδ (F[A])∆F[A]e
−SY M . (1.21)

Since the Faddeev-Popov determinant is gauge invariant it can be evaluated around the identity
θa = 0, implying for the Faddev-Popov operator Mab(x, y)

M
ab(x, y) =

∫

dz
δFa[Aµ(x)]

δAc
ν(z)

δAc U
ν (z)

δθb(y)

∣

∣

∣

∣

θ=0,F[A]=0

=

∫

dz
δFa[Aµ(x)]

δAc
ν(z)

DAbc
ν δD(z − y)

∣

∣

∣

∣

θ=0,F[A]=0

,

(1.22)
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where in the last line we substituted the infinitesimal gauge transformation 2 of the gauge field
(1.8). Using the covariant Lorentz gauge condition F[A] = −∂µAa

µ(x) + ωa(x), with ωa(x) an
arbitrary function, the functional integration results:

Z =

∫

DAµ | det (−∂µDµ) | δ
(

∂µA
a
µ − ωa

)

e−SY M . (1.23)

If one assumes that the Faddeev-Popov determinant is positive, condition that is satisfied
nearby the trivial gauge field configuration, the absolute value can be omitted and the functional
determinant can be lifted into the action by the introduction of a couple of Grassmannian scalar
fields ca(x) and c̄a(x), using the functional identity for the determinant of an operator O:

detO =

∫

DcDc̄ exp

[
∫∫

dxdy c̄a(x)Oab(x, y)cb(y)

]

. (1.24)

Moreover, the Dirac delta that imposes the gauge condition can also be lifted into the action,
by the following trick: since the physics must not depend on the arbitrariness of the auxiliary
function ωa(x), we can average it with a Gaussian factor:

δ
(

∂µA
a
µ − ωa

)

→
∫

Dωδ
(

∂µA
a
µ − ωa

)

exp

[

−
1

2ξ

∫

dDx (ωa(x))2
]

= exp

[

−
1

2ξ

∫

dDx (∂µA
a
µ(x))

2

]

(1.25)
By inserting (1.25) and (1.24) with Oab(x, y) = −∂µDab

µ δ
D(x − y), the generating functional

becomes:

Z =

∫

D[Aµ, c, c̄] exp

[

−SYM −
∫

dDx

(

∂µc̄
a(Dµc)

a +
1

2ξ
(∂µA

a
µ)

2

)]

. (1.26)

The term added to the original action is referred to as the gauge-fixing action SGF . We fur-
thermore rewrite the last term, containing the arbitrary gauge parameter ξ, by inserting in the
functional integration an auxiliary scalar field Ba(x), known as the Nakanishi-Lautrup field:

Z =

∫

D[Aµ, c, c̄, B]e−S, (1.27)

where the total action S is given by:

S = SYM + SGF =

∫

dDx

[

1

4
(F a

µν)
2 + ∂µc̄

a(Dµc)
a + iBa∂µA

a
µ +

ξ

2
BaBa

]

. (1.28)

Integrating (1.27) w.r.t the non dynamical auxiliary field B(x) we indeed recover the form in
(1.26). We stress how, in the Landau gauge considered from now on, corresponding to the choice
of the gauge parameter ξ = 0, the terms containing the auxiliary field in the action reduce to
the exponential representation of the functional Dirac delta δ(∂µAµ), strongly enforcing the
gauge condition.

The Grassmannian scalar fields introduced in the gauge-fixing process are called ghosts, since
their excitation modes cannot appear in the asymptotic physical spectrum of the theory, due to
their nature of fermionic Lorentz scalar particle that is in explicit contradiction with the famous
spin-statistic theorem. However, their presence in the closed loops of the perturbative expansion
of correlation functions is essential in order to cancel the unphysical degrees of freedom of the
gauge field, the longitudinal and temporal components that appear as intermediate states, and
thus ensure the preservation of unitarity.

2From now on we will suppress the index A on the covariant derivative, being clear it is in the adjoint
representation
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1.2 BRST symmetry

The action (1.28) is not locally gauge invariant anymore, because of the gauge-fixing term.
Nevertheless it still possess a global symmetry, residual of the broken local gauge symmetry,
where the ghost field takes the place of the parameter function of the gauge transformation.
The action is indeed invariant by the following transformations that constitute the so called
BRST symmetry:

sAa
µ = (Dµc)

a, sca = −
g

2
fabccbcc,

sc̄a = iBa, sBa = 0. (1.29)

The variation s is a Grassmannian nilpotent operator, i.e. satisfies s2 = 0. The reason to intro-
duce the auxiliary field B(x) was in fact to have the nilpotency property satisfied without the
use of the equations of motion (off-shell). The nilpotency property of BRST on the gauge field,
in particular, encodes the information of a symmetry that mimics the infinitesimal local gauge
transformation but that cannot be extended to a finite transformation by repeated iterations,
due to the gauge-fixing.

The BRST symmetry is a powerful tool to prove the renormalizability at all orders of Yang-
Mills theory, through the use of the Slavnov-Taylor identities that derive from it. Even more
importantly, it constitutes the key element to define a subsidiary condition on the Fock space
of the asymptotic states that select only positive norm states. It is well known in fact, that a
gauge theory covariantly quantized inevitably yield to a Fock space with an indefinite metric.
A mechanism to remove form the physical Hilbert space negative norm states that would break
the unitarity of the theory is therefore required. Kugo and Ojima [46] defined the physical
Hilbert space as the subspace of states that live in the cohomolgy of the BRST operator QB,

Hphys = KerQB/ImQB, Hphys = {|Ψ⟩ ; QB |Ψ⟩ = 0 ∧ |Ψ⟩ ≠ QB |φ⟩} , (1.30)

QB being the conserved charge operator associated to the BRST symmetry. By studying the
representations of the supersymmetric algebra generated by QB andQc, the charge associated to
the ghost-number conservation, Kugo and Ojima showed how unphysical states group together
to form quartets (doublets under BRST transformation that come in pairs with opposite ghost
number) that can appear in the asymptotic physical space, through time evolution, only in zero
norm combinations, therefore without jeopardizing the unitarity of the theory.

We now define the effective action that generates the proper full correlation functions.
Adding to the action a source term that includes sources corresponding to each field and to the
non linear BRST variations,

Ssources =

∫

dDx
[

Ja
µA

a
µ + η̄aca + c̄aηa +RaBa +Ka

µ(sAµ)
a + La(sc)a

]

, (1.31)

the generating functional is given by

Z[Jµ, R, η̄, η, Kµ, L] =

∫

D[Aµ, c, c̄, B]e−S+Ssources ≡ eG[Jµ,R,η̄,η,Kµ,L], (1.32)

where we defined the functional G[Jµ, R, η̄, η, Kµ, L] that generates the connected n-point cor-
relation functions. The effective action is given by the Legendre transform of this latter w.r.t
the classical fields:

Aa
µ(x) =

δG

δJa
µ(x)

, Ba(x) =
δG

δRa(x)
,

ca(x) =
δG

δη̄a(x)
, c̄a(x) = −

δG

δηa(x)
. (1.33)
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The effective action is defined by

Γ[Aµ, B, c, c̄, Kµ, L] = −G[Jµ, R, η̄, η, Kµ, L] +

∫

dDx
(

Ja
µA

a
µ +RaBa + η̄aca + c̄aηa

)

, (1.34)

where the sources are to be considered functions of the classical fields by inverting (1.33). This
functional, which at tree-level coincides with the classical action, generates all the 1PI (one
particle irreducible) diagrams, i.e. diagrams with amputated external legs that cannot be split
in two parts by cutting an internal propagator, and that constitute the quantum corrections to
the vertices.

The notation for the two-point function in the space of momenta generated by the effective
action is, for the ghosts:

(2π)2D
δ2Γ

δca(−p)δc̄b(q)

∣

∣

∣

∣

(Aµ,B,c,c̄)=0

= Γcc̄(p
2)δab(2π)DδD(p− q), (1.35)

and similarly for other combinations of fields. We stress that in passing to the momentum
space the following convention for the Fourier transform is used

f(x) =

∫

dDp

(2π)D
f(p)eipx. (1.36)
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Chapter 2

Yang-Mills with a massive gluon

2.1 Gribov problem

Albeit the nilpotent BRST symmetry is essential for the construction of the physical Hilbert
space of positive norm states and is at the basis of the Kugo-Ojima criterion for removing from
the physical space non-singlet colour states [46, 32], thus explaining the confinement of coloured
particles, it has been very challenging to preserve BRST symmetry in a non perturbative
framework. This is mainly due to the Neuberger’s no-go theorem [47] which asserts that in
a BRST invariant lattice formulation, the expectation value of any gauge invariant physical
observable takes the form of the indeterminate ratio 0/0. In the continuum formulation this
can be understood by the fact that the gauge-fixing factor in the Faddeev-Popov action (1.28)
is a coboundary term for the BRST transformation (1.29):

SGF =

∫

dDx

[

∂µc̄
a(Dµc)

a + iBa∂µA
a
µ +

ξ

2
BaBa

]

= −s

∫

dDx

[

∂µc̄
aAa

µ + i
ξ

2
c̄aBa

]

. (2.1)

This property, which guarantees the invariance of any physical quantity on the gauge parameter,
incidentally also causes the generating functional to formally vanish. In fact, if we consider the
gauge-fixing part of this latter with the first term in (2.1) multiplied by a real parameter t

ZGF (t) =

∫

D[c, c̄, B]es
∫
dDx[t∂µ c̄aAa

µ+i ξ
2
c̄aBa], (2.2)

its derivative w.r.t t is zero, because of the nilpotency of the BRST transformation and the
vanishing of the functional integral of a total BRST variation (if the vacuum is a BRST invariant
physical state as it is supposed to be):

d

dt
ZGF (t) =

∫

D[c, c̄, B]s
(

∂µc̄
aAa

µ

)

es
∫
dDx[t∂µ c̄aAa

µ+i ξ
2
c̄aBa]

=

∫

D[c, c̄, B]s
(

∂µc̄
aAa

µ e
s
∫
dDx[t∂µ c̄aAa

µ+i ξ
2
c̄aBa]

)

= 0.

(2.3)

Since ZGF does not depend on t it can therefore be evaluated at t = 0, but then, because of
the rules of Grassmannian integration, we have

ZGF (0) =

∫

D[c, c̄, B]e−
∫
dDx[ ξ2BaBa] = 0. (2.4)

The Neuberger problem is in turn deeply connected with a topological obstruction discovered by
Gribov [6] which is found when one tries to extend the Faddeev-Popov gauge-fixing procedure
described in the previous chapter, at a non perturbative level. Through the derivation of the
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Faddeev-Popov action, in fact, two assumptions were made that turn out to be wrong when
one moves away from the perturbative region: in using the identity (1.16) it was implicitly
assumed that the gauge condition has a unique solution along each orbit of the gauge field, and
in removing the absolute value of the functional determinant in (1.23) it was assumed that the
Faddeev-Popov operator −∂µDµ[A] is positive definite.

For what concerns the first assumption, the gauge condition F[A] = 0 has more than one
solution (Gribov copy), i.e. the hypersurface represented by the gauge condition intersects the
gauge orbits in more than one point, if for a certain gauge configuration that satisfies it there is
a gauge transformation U(x) such that the transformed field also satisfies it F[AU ] = 0. For the
Lorentz covariant gauge ∂µAµ = 0 this translates to the condition for the gauge transformation:

∂µA
U
µ = (∂µU)AµU

† + UAµ∂µU
† +

i

g
∂µU∂µU

† +
i

g
U∂2U †

=
i

g
∂µ
(

UDµ[A]U
†) = 0,

(2.5)

where we used ∂µAµ = 0. Gribov explicitly derived a solution for such copy, known as the
Gribov pendolum, in the case of Coulomb gauge for the three dimensional group SU(2). For an
infinitesimal gauge transformation (2.5) reduces to

−∂µDµ[A] = (−∂2 + ig ∂µ [Aµ, ·]) = 0, (2.6)

meaning that two points on a gauge orbit infinitesimally closed are Gribov copies to each other,
as soon as the gauge field is sufficiently strong to generate zero modes in the Faddeev-Popov
operator (the free part −∂2 is positive definite), in the same way as the Schrödinger equation
generates bound states modes if the potential is strong enough.

Gribov therefore proposed to overcome both of the inconsistencies in the Faddeev-Popov
formulation, i.e. the presence of Gribov Copies and the presence of negative eigenvalues of
the Faddeev-Popov operator for large non perturbative gauge configurations, by restricting the
functional integration over the region of those gauge field configurations that keep the Faddeev-
Popov operator positive definite. This region Ω, known as the first Gribov region is thus defined
as

Ω ≡ {Aµ, ∂µAµ = 0, −∂µDµ[A] > 0} . (2.7)

The boundary of the Gribov region, called Gribov horizon therefore represents the set of gauge
configurations that turn the lowest eingevalue of the Faddeev-Popov operator into a negative
value. In the same manner one can then define the second Gribov region as the one where the
second lowest eigenvalue becomes negative, and so on.

Incidentally one can understand the origin of the Neuberger problem as caused by the fact
that ignoring the absolute value of the functional determinant inside the functional integration
is equivalent to sum over all the Gribov copies with a factor corresponding to the alternate
sign of the determinant, that switches every time a subsequent Gribov region is crossed. These
alternate signs cancel out among each other [33]. This zero has also a deeper topological
meaning, being related through the Gauss-Bonnet theorem [34] to the computation of the
Euler’s character, a topological invariant that vanishes for the compact group SU(N).

It can be easily proven that the Gribov region is convex and bounded in every direction. It
is also equivalent to the set of local minima of the following functional

|| AU ||2= Tr

∫

dDxAU
µ (x)A

U
µ (x) =

1

2

∫

dDxAaU
µ (x)AaU

µ (x), (2.8)
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which ca be seen as a norm in the space of gauge configurations. In fact, the stationary points
that cancel the first variation of (2.8) w.r.t an infinitesimal gauge transformation (1.7), obey
the Landau gauge condition

0 = δ || AU ||2=
∫

dDxδAa
µ(x)A

a
µ(x) = −

∫

dDxDab
µ θ

b(x)Aa
µ(x)

=

∫

dDx θa(x)∂µA
a
µ(x) =⇒ ∂µA

a
µ(x) = 0.

(2.9)

The local minima which make the second variation to be positive definite are the ones that
make the Faddeev-Popov operator to be positive definite

δ2 || AU ||2 =
∫

dDx θa(x)∂µδA
a
µ(x) =

∫

dDx θa(x) (−∂µDµ)
ab θb(x) > 0

=⇒ −∂µDµ > 0.

(2.10)

The Gribov region therefore contains all the local minima of the functional (2.8) and it can be
showed that every orbit in the space of gauge configurations possess at least a local minimum,
thus every orbit intersects at least once the Gribov region. Generally the minima are more than
one though, meaning that the Gribov region still contains redundant Gribov copies and that in
order to pick a single representative configuration for each orbit one should further restrict the
functional integration to the region containing only the global minima of (2.8), known as the
Fundamental Modular Region Λ. Unfortunately it is very challenging to construct a procedure
that effectively restrict the integration only to Λ, both analytically as in a lattice formulation,
but there are arguments, due to Zwanziger, that suggest that the dominant configurations in
the functional integration lie in the common boundary δΩ ∩ δΛ of the Gribov region and the
Fundamental region, meaning that one might safely compute correlation functions restricting
only to the Gribov region.

Gribov also understood the implications of such a restriction for the IR behaviour of the
ghost and gluon propagator, which he calculated in a semiclassical approximation. The positive
definiteness of the Faddeev-Popov operator, in particular, is closely connected to the analytical
structure of the ghost propagator. This latter can in fact be written as

⟨ca(x)c̄b(y)⟩ =
δ2Z

δηb(y)η̄a(x)

∣

∣

∣

∣

sources=0

=

∫

Ω

DAµ det (−∂µDµ)
[

−∂µDab
µ (x, y)

]−1
e−SY M .

(2.11)

The ghost propagator is therefore given by the expectation value of the inverse of the Faddeev-
Popov operator, multiplied by its determinant, and since this latter is positive definite inside
the Gribov region, the ghost propagator, in the space of momenta, cannot have a pole except
at vanishing momentum (no-pole condition), which therefore corresponds to the Gribov hori-
zon. Calculating the ghost propagator at one-loop order in a semiclassical approximation, i.e.
keeping the gauge field as an external background field, Gribov found

⟨ca(p)c̄b(−p)⟩ ≈ δab
1

p2
1

1− σ(p, A)
, (2.12)

where

σ(p, A) =
1

V

1

p2
Ng2

N2 − 1

∫

dDk

(2π)D
Aa

µ(−k)Aa
ν(k)

(p− k)µkν
(p− k)2

, (2.13)

where V is the volume factor to be taken to infinity in the thermodynamic limit, where the
saddle point approximation becomes exact. Since one can prove that σ(p, A) is a decreasing
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function of momentum, the no-pole condition, thought as equivalent to the restriction over the
Gribov region, can be settled by introducing inside the path integral the constraint

θ (1− σ(0, A)) =

∫ +i∞

−i∞

dβ

2πiβ
eβ(1−σ(0,A)), (2.14)

where θ(x) is the Heaviside function and σ(0, A) is given by

σ(0, A) =
1

V D

Ng2

N2 − 1

∫

dDk

(2π)D
Aa

µ(−k)Aa
µ(k)

1

k2
. (2.15)

It is noteworthy that the factor inside the integral in (2.15) corresponds to the inverse of the
usual tree-level kinetic term. Inserting this constraint inside the path integral to evaluate the
gluon propagator at tree-level and using a saddle point approximation for the integration over
the parameter β in (2.14) one gets

⟨Aa
µ(p)A

b
ν(−p)⟩ ≈ δab

(

δµν −
pµpν
p2

)

p2

p4 + λ4
, (2.16)

where λ, called the Gribov mass, is given by the gap equation

1 =
D − 1

D
Ng2

∫

dDk

(2π)D
1

k4 + γ4
. (2.17)

The gluon propagator, transverse since we are in Landau gauge, recovers it’s bare behaviour
for high values of momentum, but it drastically changes its form in the IR, vanishing at van-
ishing momentum, due to the presence of the Gribov horizon. One can interpret (2.16) as a
massive tree-level propagator with a mass that is a function of momentum and that diverges
quadratically with the momentum in the IR and vanishes quadratically in the UV.

Inserting this expression for the gluon propagator back to the one-loop calculation of the
ghost propagator, Gribov found that this latter is IR enhanced compared to its tree-level form.
For small values of momentum it behaves like

⟨ca(p)c̄b(−p)⟩ ≈ δab
1

p4
. (2.18)

2.2 Gribov-Zwanziger scenario

After Gribov’s analysis, Zwanziger managed to generalize Gribov’s result to all orders [44],
transferring the restriction over the Gribov region to the exponential inside the path integral,
i.e. to a new extended action, as compared to the standard Faddeev-Popov action (1.28).
Instead of implementing the constraint (2.14) on the no-pole condition, Zwanziger inserted in
the path integral the constrain θ(λ(A)), where λ(A) is the lowest eigenvalue, depending on the
gauge field, of the Faddeev-Popov operator

(−∂µDµ[A])
ab = −δab∂2 + gfabcAc(x)∂µ, (2.19)

where the Landau gauge condition ∂µAµ = 0 is explicitly imposed (on-shell). Zwanziger there-
fore considered the Faddeev-Popov operator as a free operator −∂2 plus a perturbation, applied
degenerate perturbation theory and managed to sum at all orders, in the thermodynamic limit,
the different factors in which the lowest degenerate eigenvalue splits because of the interaction
term in (2.19). He then lifted the constraint to the exponential factor inside the path integral

11



and performed the saddle point approximation, which at the end it translates to adding to the
Lagrangian the following non-local term

h(x) = γ4
∫

dDygf balAa
ν(x)

[

(−∂µDµ)
lm
]−1

δD(x− y)gf bkmAk
ν(y), (2.20)

where the parameter γ is given by the gap equation

⟨h(x)⟩ = γ4D
(

N2 − 1
)

. (2.21)

In order to localize the non-local term given by the inverse of the Faddeev-Popov operator,
Zwanziger then introduced new fields in the path integral, making use of the sketched identity
for an operator O

exp
[

JO−1J̄
]

= detO

∫

DϕDϕ̄ exp
[

−ϕ̄Oϕ+ ϕJ + ϕ̄J̄
]

=

∫

DωDω̄ϕDϕ̄ exp
[

ω̄Oω − ϕ̄Oϕ + ϕJ + ϕ̄J̄
]

,

(2.22)

where (ϕ, ϕ̄) are commuting scalar fields and (ω, ω̄) are Grassmannian scalar fields. Eventually
the generating functional takes the form:

Z =

∫

D[A, c, c̄, B,ϕ, ϕ̄,ω, ω̄]e−SGZ , (2.23)

where the Gribov-Zwanziger action SGZ is given by

SGZ = SYM + SGF + S0 + Sγ, (2.24)

where

S0 =

∫

dDx
[

ϕ̄ac
µ ∂µD

ab
µ ϕ

bc
µ − ω̄ac

µ ∂µD
ab
µ ω

bc
µ − gfabc∂µω̄

ae
ν Dbd

µ cdϕce
ν

]

, (2.25)

Sγ = −γ2g
∫

dDx
[

fabcAa
µϕ

bc
µ + fabcAa

µϕ̄
bc
µ

]

. (2.26)

The gap equation now reads:

⟨gfabcAa
µ(ϕ

bc
µ + ϕbc

µ )⟩ = −2γ2D(N2 − 1). (2.27)

The last term in S0 is generated by performing a non-local shift on the field ωab
µ

ωab
ν (x) → ωab

ν +

∫

dDz
(

−∂µDad
µ

)−1
(x, z)gf dkl∂µ

(

Dke
µ ce(z)ϕlb

ν

)

, (2.28)

which is implemented in order to preserve the renormalizability of the theory. The BRST
symmetry (1.29) can be trivially extended to the extra fields, organized in doublets according
to

sϕab
µ = ωab

µ , sωab
µ = 0,

sω̄ab
µ = ϕ̄ab

µ , sϕ̄ab
µ = 0. (2.29)

It can be verified that the action S0 is BRST invariant under such transformations combined
with the ones in (1.29), but Sγ breaks the BRST symmetry because of the presence of the γ
parameter that encodes the presence of the Gribov horizon:

sSγ = −gγ2
∫

dDxfabc
[

Aa
µω

bc
µ − (Dae

µ ce(ϕ̄bc
µ + ϕbc

µ ))
]

. (2.30)
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We also stress that the behaviour of the gluon and ghost propagators in this Gribov-Zwanziger
scenario is the same, at least at the first perturbative order, as the one already found by Gribov
in the semiclassical approximation, i.e. one finds an IR vanishing gluon propagator and an IR
enhanced ghost propagator. Such behaviour was initially believed to be in agreement with the
lattice results at low energy and also to the so called scaling solution, found solving the DSE
for the propagators [23, 24, 27], solution corresponding to a power scaling behaviour in the IR
and to a non-trivial IR fixed point for the coupling. It also confirmed the Kugo-Ojima criterion
[32] for the confinement of colour charge that in Landau gauge predicts an IR enhancement of
the ghost propagator, albeit it must be stressed that the Kugo-Ojima argument is based on
the maintenance of the BRST symmetry at the non-perturbative level, condition that as it has
been showed, is not fulfilled in this scenario.

Since 2007, however, numerical data from the largest lattices [54, 55, 56] seemed to univo-
cally point to an IR finite behaviour of the gluon propagator and to a non enhancement of the
ghost propagator, which in the IR behaves therefore like its tree-level counterpart. This kind
of IR behaviour was also found solving the DSE [57, 58, 59] and it is known as the decoupling
solution, and corresponds to a trivial IR fixed-point.

We stress that also in the Gribov-Zwanziger scenario this IR behaviour for the propagators
can be reproduced, in particular the IR gluon massive behaviour, if one takes into account
the presence of the two dimensional gluonic condensate and of the BRST invariant condensate
⟨ϕ̄ϕ− ω̄ω⟩, in what is referred to as the refined Gribov-Zwanziger scenario [45].

2.3 Curci-Ferrari action

In this work, instead of scrutinizing the implications to the correlation functions from the
complicated Gribov-Zwanziger action, we take a more heuristically point of view, initiated by
Tissier and Wschebor [10], based on the attempt to include the effect of the presence of the
Gribov horizon by simply adding to the Faddeev-Popov action (1.28) a massive term for the
gluon, thus working with the following action

S =

∫

dDx

[

1

4
(F a

µν)
2 + ∂µc̄

a(Dµc)
a + iBa∂µA

a
µ +

m2

2
(Aa

µ)
2

]

. (2.31)

In [10] was in fact shown that the renormalized gluon and ghost propagators calculated at one-
loop order in perturbation theory starting from (2.31) well reproduce the lattice data in the
IR. This suggests that Yang-Mills theory is well described in the IR by (2.31). Furthermore, in
[51] was shown, through an ϵ-expansion analysis, how such action can generate an IR attractive
trivial fixed point for D > 2, accounting for the decoupling solution, and through a suitable
fine-tuning that enhances the ghost propagator in the IR, it can also generate the non-trivial
fixed point corresponding to the scaling solution, and even closely reproduce the IR exponents
of the power-like behaviour found in the DSE solutions.

However, as already pointed out in [10], plain perturbation theory with a massive gluon will
not be able to reproduce the behaviour of the propagators in the whole range of momentum,
since the effect of the mass parameter must vanish in the UV perturbative region. In fact, the
reason why the presence of a massive operator for the gluon seems to provide a good description
of the non-perturbative IR region, is thought to be the breaking of BRST symmetry, explained
in the last section, caused by the restriction to the Gribov region, breaking that cannot therefore
prevent the generation of such relevant operator in the IR. But the BRST breaking is contained
in the term (2.30), proportional to the dimensionful Gribov parameter γ2 that accounts for the
presence of the Gribov horizon and should not be “seen” by the perturbative region closed to
the trivial gauge field configuration which is far from the horizon. In this sense the BRST
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symmetry breaking is called “soft”, meaning that it affects only the IR region and in fact does
not spoil the renormalizability of the theory. The vanishing of the effect of the mass parameter
in the UV will be taken care of, in this framework, by the flow equations of the renormalization
group machinery explained in the next chapter.

We point out that (2.31) is a particular case of the so called Curci-Ferrari model [12, 13],
which was constructed in the search of the most general extension of the Faddeev-Popov action
that could preserve both BRST and anti-BRST symmetries. This latter is introduced by
exchanging the roles of ghost and anti-ghost. In particular, in Landau gauge, the following
conjugation transformation CFP is a symmetry of the action (1.28)

CFPA
a
µ = Aa

µ, CFPB
a = Ba − igfabcc̄bcc,

CFP c
a = c̄a, CFP c̄

a = −ca. (2.32)

The anti-BRST transformation s̄ is then defined by

s̄ = CFPsC
−1
FP , (2.33)

and acts on the fields according to

s̄Aa
µ = (Dµc̄)

a, s̄ca = −gfabcc̄bcc − iBa,

s̄c̄a = −
g

2
fabcc̄bc̄c, s̄Ba = −gfabcc̄bBc. (2.34)

The anti-BRST transformation can therefore be seen as the specular version of the BRST-
transformation where the roles of the ghost and anti-ghost fields are interchanged. This specu-
larity can be completely accomplished if one furthermore introduces the anti-auxiliary field B̄,
defined as

B̄a ≡ −Ba + igfabcc̄bcc. (2.35)

In fact under the conjugation transformation this anti-field satisfies

CFPB
a = −B̄a, CFP B̄

a = −Ba, (2.36)

and the anti-BRST transformations on the RHS of (2.34) can be written in the more (anti-)
symmetric way

s̄ca = iB̄a, s̄B̄a = 0. (2.37)

It is noteworthy that albeit the conjugation transformation CFP is a symmetry of the Faddeev-
Popov action only in Landau gauge, the anti-BRST transformation leaves the general covariant
gauge action (1.28) invariant. One can now extend the action (1.28) by adding to the gauge-
fixing part SGF the following quadratic term in the anti-auxiliary field

SGF → SGF =

∫

dDx

[

∂µc̄
a (Dµc)

a + iBa∂µA
a
µ +

ξ

2
BaBa +

η

2
B̄aB̄a

]

= −s

∫

dDx

[

∂µc̄
aAa

µ + i
ξ

2
c̄aBa − i

η

2
c̄aB̄a

]

= s̄

∫

dDx

[

∂µc
aAa

µ + i
ξ

2
caBa − i

η

2
caB̄a

]

.

(2.38)

Adding such factor to the action therefore does not affect the expectation value of physical
gauge-invariant quantities, since the gauge-fixing term still retains its coboundary form w.r.t.
the BRST transformation and the anti-BRST transformation, which is also nilpotent and an-
ticommutes with the BRST one

ss̄+ s̄s = 0. (2.39)
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Note that the quadratic term in the auxiliary field contains a quartic ghost anti-ghost inter-
action, due to its definition (2.35). If the two gauge parameters are now identified ξ = η, one
can further extend the gauge-fixing action by adding a massive term for the gluon and for the
ghost in the following way

SGF → SGF +

∫

dDx

[

m2

2
Aa

µA
a
µ + 2iξm2c̄aca

]

. (2.40)

This massive extended action preserves the BRST and anti-BRST symmetry if one modifies
the transformation laws of the auxiliary field by the following

sBa = −im2ca, s̄Ba = −im2c̄a − gfabccbBc. (2.41)

Exploiting the preservation of such symmetry at a quantum level one can prove the renormal-
izability of the massive Curci-Ferrari model at all orders. Due to the modifications in (2.41),
however, the transformations lose their nilpotency property, that was crucial to properly define
the Hilbert space of physical states. This is the main reason why the massive Curci-Ferrari
model has not been taken very seriously so far. Indeed, if one insists in defining the physical
Hilbert space as the set of states contained in the kernel of this not nilpotent BRST charge
operator, one can show that this space contains asymptotic states of negative norm that break
the unitarity of the theory [14, 15].

In addition, the Curci-Ferrari model was used in a lattice formulation in order to bypass
the Neuberger problem [16], but it was pointed out that in such formulation the gauge-fixing
partition function is orbit dependent, meaning that the expectation value of a gauge invariant
quantity now depends on the gauge-fixing process and in particular on the gauge parameter ξ
(the dependency vanishes only at m2 = 0).

However here we take the point of you that the Curci-Ferrari model provides a good descrip-
tion of non-perturbative Yang-Mills theory only in the Landau gauge ξ = 0, where the ghost
remains massless and there is no quartic ghost anti-ghost interaction. The action considered
here is therefore given by (2.31) which is invariant under the extended not nilpotent BRST
transformation

sAa
µ = (Dµc)

a, sca = −
g

2
fabccbcc,

sc̄a = iBa, sBa = −im2ca. (2.42)

2.4 Transversality of the gluon propagator

We show here how, despite the gluon mass term that breaks the usual nilpotent BRST sym-
metry, the gluon propagator remains transverse in Landau gauge. This is easily derived using
the Dyson-Schwinger equation for the auxiliary field. The vanishing of the integral of a total
field derivative, gives, for the auxiliary field

0 =

∫

D[Ba · · · ]
δ

δBa(x)
e−S+Ssources =

∫

D[Ba · · · ]
(

−i∂µA
a
µ +Ra

)

e−S+Ssources, (2.43)

where Ssources was given in (1.31). This vanishing expectation value can be written in terms of
the generating functionals defined in the previous chapter as

−i∂µ
δG

δJa
µ(x)

+Ra(x) = −i∂µA
a
µ(x) +

δΓ

δBa(x)
= 0, . (2.44)
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By taking another derivative of the left side of (2.44) with respect to a J source, the
transversality of the connected gluon propagator is immediately obtained. Incidentally, by
differentiating the same equation referred to the effective action, it is also proved that the
two-point functions involving the auxiliary field do not receive any quantum corrections, i.e.
(following the notation (1.35), although it would not be necessary to put the external sources
equal to zero):

ΓBB(p) = 0 , ΓAµB(p) = pµ. (2.45)

We can also extract information about the transverse and longitudinal part of the gluon two-
point function (the latter, unlike the longitudinal part of the propagator, does not vanish in
the presence of a mass term) by looking at the identity

(

ΓAµAν (p) ΓAµB(p)
ΓBAν (p) ΓBB(p)

)

×
(

GJνJρ(p) GJνR(p)
GRJρ(p) GRR(p)

)

=

(

δµν 0
0 1

)

, (2.46)

which gives a non trivial matrix relation, due to the non vanishing mixed terms involving both
gauge and auxiliary fields. By decomposing the two-point function into its transverse and
longitudinal parts

ΓAµAν(p) = Γ⊥
AA(p)P

⊥
µν(p) + Γ∥

AA(p)P
∥
µν(p), (2.47)

where
P⊥
µν(p) = δµν −

pµpν
p2

, P ∥
µν(p) =

pµpν
p2

, (2.48)

and considering the transversality of the gluon propagator: GJµJν(p) = GJJ(p)P⊥
µν(p), the

identity in (2.46) yields

Γ⊥
AA(p) = (GJJ(p))

−1 , Γ∥
AA(p) = p2GRR(p). (2.49)

The first identity in particular guarantees that the transverse part of the gluon two-point
function is given by the inverse of the gluon propagator.
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Chapter 3

One-loop corrections

3.1 Feynman rules

The perturbative series of the correlation functions are systematically organized in terms of
Feynman diagrams. The building blocks of these diagrams are the propagators and vertices,
whose expressions in the space of momentum can be derived from the classical action. Expand-
ing the free quadratic and the interaction terms, the action (2.31) reads, neglecting the term
with the auxiliary field1:

S =

∫

dDx

[

1

2
Aa

µ(x)
(

(−∂2 +m2)δµν + ∂µ∂ν
)

Aa
ν(x) + c̄(x)(−∂2)c(x) + g fabc∂µc̄(x)A

b
µ(x)c

c(x)

+g fabc∂µA
a
ν(x)A

b
µ(x)A

c
ν(x) + g2fabcfadeAb

µ(x)A
c
ν(x)A

d
µ(x)A

e
ν(x)

]

.
(3.1)

The gluonic quadratic term proportional to δµν corresponds to the transverse part of the gluon
two-point function at the classical level, therefore its inverse is the free gluon propagator which
is transverse (vd. 2.4). In momentum space the free gluon and ghost propagator are therefore:

⟨Aa
µ(p)A

b
ν(−p)⟩0 =

1

p2 +m2
P⊥
µν(p) δ

ab , ⟨ca(p)c̄b(−p)⟩0 =
1

p2
δab, (3.2)

where we have already imposed the momentum conservation, omitting the Dirac delta, as part
of the Feynman rules. To get the expressions for the vertices it is sufficient to functionally
derive the Fourier transformed action w.r.t corresponding fields. For example, the Feynman
rule for the ghost-gluon vertex is given by:

−
δ3S

δcb(−k)δc̄a(p)δAc
µ(q)

∣

∣

∣

∣

(A,c̄,c)=0

= igfabcpµ, (3.3)

where again we have omitted the Dirac delta for the conservation of momentum. In the deriva-
tion of (3.3), the convention for the Fourier transform given in (1.36) is understood , where the
momentum taken with a positive sign is meant as outgoing. The minus sign in the left side of
(3.3) corresponds to the minus sign of the exponential weight inside the generating function Z.
The other Feynman rules are given in Table 3.1.

3.2 Tensor reduction

The one-loop corrections to the two-point and three-point functions have been evaluated using
the Mathematica package FeynCalc. This tool allows to perform the tensor reduction, also

1We could go back and integrate it out, but it is not necessary here in order to get the gluon propagator.
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Table 3.1: Feynman rules
Feynman diagram Feynman rule

µ ν

a b

p

1

p2 +m2

(

δµν −
pµpν
p2

)

δab

a b

p

1

p2
δab

b a pk

µ

q

c

igfabcpµ

b c kq

µ

p

a

ν ρ
−igfabc [δρν(k − q)µ + δρµ(p− k)ν + δµν(q − p)ρ]

a

µ

b
ν

ρ
c

σ
d

g2
[

fabef cde(δµσδνρ − δµρδνσ) + facef dbe(δµνδρσ − δµσδρν) + fadef bce(δµρδσν − δµνδσρ)
]

The gluon momenta are meant as outgoing and the ghost momenta as following the ghost
flow.

known as the Passarino-Veltman reduction [64] of the Feynman integrals, i.e. to decompose the
latter in terms of scalar integrals that do not contain powers of loop momentum in the numerator
but only propagator denominators and whose expressions are given in the appendices. They
are called scalar integrals because they represent the genuine Feynman integrals in a theory
with scalar particles.

In order to sketch the general procedure of the tensor reduction let us define the integral
with n propagators and a function of the loop momentum f(l) in the numerator:

In[f(l)] ≡
∫

dDl

(2π)D
f(l)

(l2 +m2
0)((l + q1)2 +m2

1) · · · ((l + qn−1)2 +m2
n−1)

, (3.4)

where qi ≡ p1 + · · · pi, being pi the n external incoming momentum. The scalar integrals
correspond to the case f(l) = 1. We illustrate the tensor reduction for one power of loop
momentum in the numerator, f(l) = lµ. Since dimensional regularization preserves the Lorentz
covariance, the integral must be a combination of the independent external momenta:

In[l
µ] =

∫

dDl

(2π)D
lµ

(l2 +m2
0)((l + q1)2 +m2

1) · · · ((l + qn−1)2 +m2
n−1)

=
n−1
∑

i=1

An,ip
µ
i . (3.5)

Contracting each side with pµj one gets:

In[pj · l] =
n−1
∑

i=1

An,i∆ij , (3.6)

where ∆ij = pi · pj is the Gram matrix. Writing pj · l = (qj − qj−1) · l as

pj · l =
1

2

(

((l + qj)
2 +m2

j )− ((l + qj−1)
2 +m2

j−1)−m2
j +m2

j−1 − q2j + q2j−1

)

, (3.7)
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In[pj · l] is reduced to a combination of scalar integrals:

In[pj · l] =
1

2

(

I(j)n−1[1]− I(j−1)
n−1 [1] + (m2

j −m2
j−1 − q2j + q2j−1)In[1]

)

=
n−1
∑

i=1

An,i∆ij , (3.8)

where we denote with I(j)n−1[1] the scalar integral In[1] without the (j+1)th propagator ((l+qj)2+
m2

j ). One can now invert (3.8) multiplying both sides with ∆−1
ij and obtain the coefficients An,i

in terms of scalar integrals. For the case of two powers of loop momentum in the numerator
lµlν one can similarly decompose the integral in a combination of the tensor structures δµν and
pµi p

ν
j and derive the coefficients by suitable contractions in terms of the previously calculated

scalar integrals, in a sort of recursive procedure.
To better illustrate the tensor reduction, let us show it for the simple case of the ghost loop

for the gluon self-energy:

Πgh,ab
µν (p) =

p

k

k − p

= −g2Nδab
∫

dDk

(2π)D
kµ(kν − pν)

k2(k − p)2
. (3.9)

We therefore need to reduce the integrals with two massless propagators and with one and two
loop momenta in the numerator, I2[kµ] and I2[kµkν ]. Contracting I2[kµ] = Apµ with pµ one
gets:

I2[p · k] =
∫

dDk

(2π)D
p · k

k2(k − p)2
= Ap2. (3.10)

Writing p · k as 1
2(k

2− (k−p)2+ p2) and taking into account that in dimensional regularization

∫

dDk

(2π)D
lµ

(l2)κ
=

∫

dDk

(2π)D
1

(l2)κ
= 0, (3.11)

it turns out that

A =
1

2
I2[1] =

1

2

∫

dDk

(2π)D
1

k2(k − p)2
. (3.12)

The term with two loop momenta can be decomposed in:

I2[kµkν] =

∫

dDk

(2π)D
kµkν

k2(k − p)2
= A0δµν + A1pµpν . (3.13)

Contracting both sides with δµν one gets:

0 = A0 D + A1 p
2. (3.14)

Contracting with (pµpν)/p2:

1

p2
I2[(p · k)2] =

1

p2

∫

dDk

(2π)D
(p · k)2

k2(k − p)2
= A0 + A1p

2. (3.15)

To obtain I2[(p · k)2] we substitute again one power of p · k with 1
2(k

2 − (k − p)2 + p2):

1

p2
I2[(p · k)2] =

1

2p2

[
∫

dDk

(2π)D
p · k

(k − p)2
−
∫

dDk

(2π)D
p · k
k2

+ p2
∫

dDk

(2π)D
p · k

k2(k − p)2

]

. (3.16)
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Due to (3.11) only the last term in parenthesis survives, which is just the I2[p · k] previously
obtained. We therefore get:

1

p2
I2[(p · k)2] =

1

2
I2[p · k] =

1

2
Ap2 = A0 + A1p

2. (3.17)

Combining it with (3.14) we obtain

A0 = −
Ap2

2(D − 1)
, A1 =

AD

2(D − 1)
. (3.18)

The ghost loop diagram is therefore reduced to:

Πgh,ab
µν (p) = −g2Nδab [A0δµν + (A1 − A)pµpν ]

= g2Nδab
p2A

2(D − 1)

[

δµν + (D − 2)
pµpν
p2

]

= g2Nδab
p2

4(D − 1)

[

δµν + (D − 2)
pµpν
p2

]

B0(p
2, 0, 0),

(3.19)

where we have introduced the traditional notation for the two-point scalar integrals, bookkeeper
of the number of massive propagators:

B0(p
2, m2

0, m
2
1) =

∫

dDk

(2π)D
1

(k2 +m2
0) ((k − p)2 +m2

1)
, (3.20)

whose expressions are given in the appendix. In all the diagrams evaluated in this work there
is only one mass parameter present, the mass of the gluon, therefore only those corresponding
scalar integrals are calculated. For future reference we also introduce the notation for the
three-point scalar integrals:

C0(p
2
1, (p1 − p2)

2, p22, m
2
0, m

2
1, m

2
2) =

∫

dDl

(2π)D
1

(l2 +m2
0) ((l + p1)2 +m2

1) ((l + p2)2 +m2
2)
. (3.21)

Since we will calculate the three-point vertices at the symmetric configuration of momenta,
where the expressions depend only on the number of massive propagators and not on which
one is massive, we also introduce the condensed notation (for D=4):

J̃0 ≡ µ2(4π)2C0(µ
2, µ2, µ2, 0, 0, 0),

J̃1(t) ≡ µ2(4π)2C0(µ
2, µ2, µ2, m2, 0, 0),

J̃2(t) ≡ µ2(4π)2C0(µ
2, µ2, µ2, m2, m2, 0),

J̃3(t) ≡ µ2(4π)2C0(µ
2, µ2, µ2, m2, m2, m2),

(3.22)

where we defined the dimensionless integrals J̃i(t), functions of the dimensionless parameter
t = µ2/m2. The subindex i labels the number of massive scalar propagators.

In the following illustration of Feynman diagrams we will not express the symbolic tensor
reduction, implemented by FeynCalc, in terms of the scalar integrals, but we will directly show
the final results where the scalar integrals are substituted with their expressions given in the
appendices. Only the functions J̃i(t) will be kept in their symbolic notation, since they are
given in terms of one dimensional integrals that will be eventually numerically evaluated.
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3.3 Two-point functions

The gluon and ghost self energies, respectively denoted as Πµν(p) and Σ(p) contain the quantum
corrections of the corresponding two-point functions (the trivial color factor is not included):

ΓAµAν (p) = p2
(

δµν −
pµpν
p2

)

+m2δµν −Πµν(p),

Γcc̄(p) = p2 − Σ(p).

(3.23)

The gluon self energy splits into transverse and longitudinal parts Πµν(p) = Π⊥(p)P⊥
µν(p) +

Π∥(p)P ∥
µν(p). Below we give the explicit expressions for the Feynman diagrams that contribute

at one-loop order to the ghost and gluon self energies, evaluated at dimension D = 4 − ϵ.
Because of the tensor structor of the gluonic part at tree-level, the expressions result simpler if

written in terms of the combination
(

Π⊥(p)−Π∥(p)
)

(

δµν − pµpν
p2

)

+ Π∥(p)δµν . The ghost self

energy at one loop2 is given by the following diagram:

Σ(p) =

pp− k

k

=
3

4

Ng2

(4π)2
p2

2

ϵ
+

1

4

Ng2

(4π)2
p2
(

s−1 + 5 + s ln s− s−2(1 + s)3 ln(1 + s)
)

(3.24)

where s = p2/m2. In (3.24) we denoted the divergent term, that in dimensional regularisation

include both eventual UV and IR divergences of the integral, as 2
ϵ , given by:

2

ϵ
=

2

ϵ
− γE − log(m2/4πκ2), (3.25)

where γE is the Euler constant and κ is an arbitrary scale denoting the dimension of the coupling
constant in D = 4 − ϵ (g → g κ

ϵ
2 ). In the IR limit (s ≪ 1) the first terms of the diagram’s

expansion in powers of s are

Σ(p)/p2 =
3

4

Ng2

(4π)2

(

2

ϵ
+

5

6

)

+
1

4
s
Ng2

(4π)2

(

ln s−
11

6

)

+O(s2), (3.26)

while the UV limit (s ≫ 1) is given by

Σ(p)/p2 =
3

4

Ng2

(4π)2

(

2

ϵ
− ln s+

4

3

)

−
3

4

1

s

Ng2

(4π)2

(

ln s+
1

2

)

+O(1/s2). (3.27)

The gluon self energy at one loop contains the following diagrams. Among these only the one
with a gluon loop has non trivial limits for low and high momentum.

Πgh
µν(p) =

p

k

k − p

= −
(

δµν −
pµpν
p2

)

1

6

Ng2

(4π)2
p2
(

2

ϵ
− ln s+

5

3

)

+ δµν
1

4

Ng2

(4π)2
p2
(

2

ϵ
− ln s+ 2

)

,

(3.28)

2We omit the super index on the self energies that denote their one-loop approximation, being clear that
this is the case.
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Πtad
µν (p) =

p

= δµν
9

4

Ng2

(4π)2
m2

(

2

ϵ
+

1

6

)

, (3.29)

Πgl
µν(p) =

p

k

k − p

=

(

δµν −
pµpν
p2

)

Ng2

(4π)2
p2
[

7

3

(

2

ϵ

)

+
1

72s2
(

2(12− 144s+ 131s2)− 6s−1(1 + s)3(4− 10s+ s2) ln(1 + s)

+3s4 ln s− 3
√
s(4 + s)3/2(s2 − 20s+ 12) ln

(
√
4 + s−

√
s√

4 + s+
√
s

))]

− δµν
Ng2

(4π)2
p2
[

1

4

(

2

ϵ

)

(12s−1 + 1) +
1

8s2
(

2 + 13s+ 4s2

−2s−1(1 + s)3 ln(1 + s)
)]

.
(3.30)

This last diagram has the following expansion in the deep IR (s ≪ 1)

Πgl
µν(p)/p

2 =

(

δµν −
pµpν
p2

)

Ng2

(4π)2

[

7

3

(

2

ϵ

)

−
11

36
−

217

360
s+O(s2)

]

− δµν
Ng2

(4π)2

[

1

4

(

2

ϵ

)

(12s−1 + 1) +
1

24

(

24s−1 + 1−
3

2
s

)

+O(s2)

]

(3.31)

and in the UV (s ≫ 1)

Πgl
µν(p)/p

2 =

(

δµν −
pµpν
p2

)

Ng2

(4π)2

[

7

3

(

2

ϵ
− ln s

)

+
107

36
−

1

8s
(6 ln s + 71) +O(1/s2)

]

− δµν
Ng2

(4π)2

[

1

4

(

2

ϵ
− ln s

)

(12s−1 + 1) +
1

2
−

1

8s
(6 ln s− 11) +O(1/s2)

]

(3.32)

We point out that in the deep IR the dominant contribution to the gluon self energy comes
from the ghost loop diagram (3.28), which contains a term ln p2 while the other two diagrams
approach a constant value in this limit. This had to be expected, since the diagram contains
massless propagators which dominate in the IR over the massive gluonic ones.

For completeness we give the explicit expressions of the transverse and longitudinal parts
of the gluon two-point function:

Γ⊥
AA(p) = p2 +m2 +

Ng2

(4π)2
p2

2

ϵ

(

13

6
−

3

4
s−1

)

−
Ng2

24(4π)2
p2
[

−
242

3
+ 126s−1 − 2s−2 + (2− s2) ln s

+2(1 + s−1)3(1− 10s+ s2) ln(1 + s) + (4s−1 + 1)3/2(12− 20s+ s2) ln

(
√
4 + s−

√
s√

4 + s+
√
s

)]

,

(3.33)
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Γ∥
AA(p) = m2 −

3

4

Ng2

(4π)2
m2 2

ϵ
−

Ng2

4(4π)2
m2
[

s−1 + 5 + s ln s− s−1(1 + s)3 ln(1 + s)
]

. (3.34)

In the deep IR (p2 ≪ m2) they approach the following limits:

Γ⊥
AA(p

2) = p2 +m2 +
3

4
m2 Ng2

(4π)2

(

2

ϵ
+

5

6

)

−
13

6
p2

Ng2

(4π)2

(

2

ϵ
−

1

26
ln

p2

m2
−

3

52

)

, (3.35)

Γ∥
AA(p

2) = m2 +
3

4
m2 Ng2

(4π)2

(

2

ϵ
+

5

6

)

−
1

4
p2

Ng2

(4π)2

(

− ln
p2

m2
+

11

6

)

. (3.36)

From these expressions we can see how the transverse and longitudinal parts satisfy, at least
up to the one-loop order, the locality condition:

Γ⊥
AA(0) = Γ∥

AA(0). (3.37)

We also stress that in the IR the coefficients of the ln p2 do not coincide with the coefficients
of the divergent terms 2/ϵ, as it happens in the UV. This is due to the presence of the gluonic
mass. The asymptotic expressions in the UV (p2 ≫ m2) are:

Γ⊥
AA(p

2) = p2 +m2 +
3

4
m2 Ng2

(4π)2

(

2

ϵ
+

79

6

)

−
13

6
p2

Ng2

(4π)2

(

2

ϵ
− ln

p2

m2
+

97

78

)

, (3.38)

Γ∥
AA(p

2) = m2 +
3

4
m2 Ng2

(4π)2

(

2

ϵ
− ln

p2

m2
+

4

3

)

. (3.39)

The divergent terms 2/ϵ multiply only the local terms present at the classical level, which
permits to absorb them in the definitions of the renormalized mass and field strengths, as
we will examine in the next chapter. This was obviously to be expected being the theory
renormalizable.

3.3.1 Two-point functions in D=3

We also calculated the Feynman diagrams for the one-loop corrections to the two-point functions
in dimension D=3, where such diagrams are finite.

Σ(p) =

pp− k

k

=
Ng2

32π
p
[

2
√
s(s− 1)− πs2 + 2(s+ 1)2 arctan

(√
s
)]

(3.40)

Πgh
µν(p) =

p

k

k − p

= −
(

δµν −
pµpν
p2

)

Ng2

64
p+ δµν

Ng2

32
p,

(3.41)

Πtad
µν (p) =

p

= δµν
Ng2

3π
m, (3.42)
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Πgl
µν(p) =

p

k

k − p

=

(

δµν −
pµpν
p2

)

Ng2

128π

m

s3/2
[

4
√
s(5s2 + 9s− 3)− πs3

+4(s2 − 6s+ 3)(s+ 1)2 arctan
(√

s
)

− 2s(s+ 4)(s2 − 12s+ 8) arctan

(√
s

2

)]

− δµν
Ng2

48π

m

s3/2
[√

s(19s− 3) + 3(s+ 1)2 arctan
(√

s
)]

.

(3.43)

The transverse and longitudinal part of the gluon two-point function are therefore given by:

Γ⊥
AA(p) = p2 +m2 −

Ng2

128π

m

s3/2
[

4
√
s (5s2 + 7s− 1)− πs3 (3.44)

+4(s2 − 6s+ 1)(s+ 1)2 arctan
(√

s
)

− 2s(s+ 4)(s2 − 12s+ 8) arctan

(√
s

2

)]

,

Γ∥
AA(p) =m2 −

Ng2

32π

m

s3/2
[

−2
√
s(s− 1) + πs2 − 2(s+ 1)2 arctan

(√
s
)]

. (3.45)

3.4 Three-point functions

Below we show the result for the one-loop corrections to the three-point vertices, i.e. the
ghost-gluon vertex and the three-gluon vertex. The interest in these results is twofold: in the
next chapter we will use them on one hand to estimate the behaviour of the vertices dressing
functions at all energies through the integration of the renormalization group equations, and on
the other to define the renormalized coupling constants in different renormalization schemes.

3.4.1 Ghost-gluon vertex

The ghost-gluon vertex has played a fundamental role in the previous analysis of the IR prop-
erties of the propagators in Landau gauge (and Coulomb gauge). This is due to the Taylor non
renormalization theorem [28] which establishes how in these transverse gauges the quantum
corrections of the ghost-gluon vertex vanish at all orders when the incoming ghost momen-
tum vanishes. This has allowed to solve the coupled system of DSEs for the ghost and gluon
propagators approximating the full vertex with its tree-level counterpart, since also in other
momenta configurations its contribution stays close to the bare vertex, as it as been confirmed
from lattice calculations and from its DSE [65]. This approximation allows to close the two-
point system of DSEs if one is interested only in the IR behaviour, in a truncation that includes
only the ghost-loop diagram, justified by the IR ghost dominance [30, 38, 39, 40]. With the
addition of a proper ansatz for the three-gluon vertex introduced ad hoc in order to recover the
correct UV behaviour of the propagators, it was possible to solve for whole range of momenta
[23, 36, 37, 65].

The full ghost-gluon vertex is denoted as:

Γabc
c̄cAµ

(p,−k, k − p) = igfabcΓµ(p,−k, k − p)

= igfabc
[

P⊥
µν(k − p)pνD

t
c̄cA(p, k, k − p) + (k − p)µD

l
c̄cA(p, k, k − p)

]

,
(3.46)
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where it has been decomposed into its transverse and longitudinal dressing functionsDt
c̄cA(p, k, k − p)

and Dl
c̄cA(p, k, k − p), w.r.t the external gluon momentum. Since we work in Landau gauge we

consider the external gluon attached to its transverse projector P⊥
µν(k − p) and therefore we

consider only the transverse dressing function (omitting the super index t from now on).
Below we show the expressions at the symmetry point (p2 = k2 = (p − k)2 = µ2) for the

two diagrams contributing to the one-loop correction of the ghost-gluon vertex, at dimension
D = 4 (the diagrams are UV convergent in Landau gauge):

p k

p− k

l

k − lp− l

a b

c

µ

= iP⊥
µν(p− k)pν

Ng3fabc

24(4π)2t2
[

3t+ t(2− t2) ln t− (1 + t)(5− t2) ln(1 + t)

−t3J̃0 + (2 + t)(1 + t2)J̃1(t)
]

, t =
µ2

m2

(3.47)

where the J̃i(t) were defined in (3.22). This diagram in the IR (t ≪ 1) limit behaves like

iP⊥
µν(p− k)pν

Ng3fabc

288(4π)2
[t(−30 ln t+ 31− 12J̃0) +O(t2)], (3.48)

and in the UV (t ≫ 1)

iP⊥
µν(p− k)pν

Ng3fabc

96(4π)2

[

8J̃0 +
1

t
(−18 ln t + 3− 4J̃0) +O(1/t2)

]

. (3.49)

p k

p− k

l

k − lp− l

a b

c

µ

= iP⊥
µν(p− k)pν

Ng3fabc

48(4π)2t2
[

2t(2 + 9t)− t2(4 + 18t− 3t2) ln t

− 6(1 + t)2(2− t+ t2) ln(1 + t)−
√

t(4 + t)(8− 4t+ 18t2 + 3t3) ln

(
√
4 + t−

√
t

√
4 + t +

√
t

)

+2t4J̃0 − 4t(1 + t)(1 + 4t+ t2)J̃1(t)− 2(1 + t)2(4− 8t− t2)J̃2(t)
]

,

(3.50)

whose limit in the IR is

iP⊥
µν(p− k)pν

Ng3fabc

72(4π)2
[51t+ t2(−31 + 3J̃0) +O(t3)], (3.51)

and in the UV is

iP⊥
µν(p− k)pν

Ng3fabc

24(4π)2

[

18 + 3J̃0 −
2

t
(6 + 9 ln t + J̃0) +O(1/t2)

]

. (3.52)
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Summing the expressions for the two diagrams we get for the transverse dressing function
at the symmetry point:

Dc̄cA(µ
2, µ2, µ2) = 1 +

g2N

48(4π)2t2
[

2t(9t+ 5) + t(3t3 − 20t2 − 4t+ 4) ln t− 2(t+ 1)(3t3 − t2 + 3t+ 11)

× ln(1 + t)− (3t3 + 18t2 − 4t+ 8)
√

t(t + 4) ln

(
√
4 + t−

√
t

√
4 + t+

√
t

)

+ 2t3(t− 1)J̃0

−2(2t4 + 9t3 + 8t2 + t− 2)J̃1(t) + 2(t+ 1)2(t2 + 8t− 4)J̃2(t)
]

,

(3.53)

which in the IR (t ≪ 1) goes like:

Dc̄cA(µ
2, µ2, µ2) = 1 +

g2N

288(4π)2

[

t(235− 12J̃0 − 30 ln t) +O(t2)
]

, (3.54)

and in the UV (t ≫ 1):

Dc̄cA(µ
2, µ2, µ2) = 1 +

g2N

24(4π)2

[

18 + 5J̃0 +O

(

1

t

)]

. (3.55)

It can be thus seen that the ghost-gluon dressing function approaches a constant value at high
momentum (it will actually approach unity when the coupling constant will be let run, due to
the asymptotic freedom), and its one-loop correction is suppressed in the IR with a power of
t = µ2/m2.

The ghost-gluon dressing function has also been evaluated in the configuration of vanish-
ing external gluon momentum. The three-point scalar integrals in this limit reduce to the
expressions given in the appendix.

Dc̄cA(p
2, p2, 0) = 1+

g2N

16(4π)2t2
[

(t+ 2)(2t+ 5) + 2t3(t− 1) ln t− 2(1 + t)2(t2 − 3t+ 5) ln(1 + t)
]

,

(3.56)
which shares the same qualitative asymptotic limits as in the case of the symmetry point
configuration.

3.4.2 Three-gluon vertex

The three-gluon vertex has been studied so far using different approaches. Perturbatively, it
has been calculated off-shell, in a covariant gauge, at one-loop level [66, 67, 68, 69, 70, 71]
and in some special momentum configurations at two-loops [72, 73, 74]. In [75] a compact
representation of the vertex at one-loop in Feynman gauge is obtained using the world-line
formalism.

At a non-perturbative level the three-gluon vertex was mainly studied using DSEs. An
IR analysis in Landau gauge was conducted, focusing on the scaling solution, using a power
counting technique based on the skeleton expansion [76, 77, 78]. The IR divergent behaviour
of the three-gluon vertex for this kind of solution was derived in both the uniform limit and
in the soft momentum configuration. The role of these IR divergencies in the behaviour of the
quark-gluon vertex and the role of the latter in the mechanisms of dynamical chiral symmetry
breaking and confinement was studied in [79].

The IR behaviour of the three-gluon vertex was also studied in [82] in relation to the
generation of massless composite excitations that might trigger the Schwinger mechanism and
therefore generate a gluonic mass dynamically.
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A full momentum dependence of the three-gluon vertex was derived in Landau gauge by
numerically solving its DSE, for the dressing function corresponding to the tree-level tensor
structure [80] and for the full transverse tensor basis [81].

The fully dressed three-gluon vertex is denoted as:

ΓAa
µA

b
νA

c
ρ
(p1, p2, p3) = −igfabc Γµνρ(p1, p2, p3), (3.57)

where we factored out the colour structure. The latter being totally antisymmetric, Γµνρ(p1, p2, p3)
must be totally antisymmetric in the exchange of two arbitrary momenta and corresponding
Lorentz indices, since the full vertex must be totally symmetric, being obtained by the func-
tional derivatives of the effective action w.r.t. bosonic gauge fields.

The full covariant basis for the three-gluon vertex was found by Ball and Chiu in [68] where
in the decomposition of the vertex into its independent tensor structures and corresponding
dressing functions, terms with mixed symmetry in the exchange of momenta appear. In [81] a
fully antisymmetric tensor basis, with corresponding fully symmetric scalar dressing functions,
was constructed by properly combining the irreducible representations of the permutation group
S3, i.e. its symmetric and antisymmetric singlets and its mixed-symmetric doublets. In Landau
gauge it is sufficient to consider the transverse tensor structures, i.e. the ones that survive under
contraction with the external transverse projectors. Such fully antisymmetric basis consists of
four terms:

τµνρ1 = (p2 − p3)
µδνρ + (p3 − p1)

νδρµ + (p1 − p2)
ρδµν ,

S0 τ
µνρ
2 = (p2 − p3)

µ(p3 − p1)
ν(p1 − p2)

ρ,

S0 τ
µνρ
3 = p21(p2 − p3)

µδνρ + p22(p3 − p1)
νδρµ + p33(p1 − p2)

ρδµν ,

−
S1

A
S0τ

µνρ
4 = (p23 − p22)(p2 − p3)

µδνρ + (p21 − p23)(p3 − p1)
νδρµ + (p22 − p21)(p1 − p2)

ρδµν ,

(3.58)

where S0 and S1 are two of the three totally symmetric singlets under permutation of the scalar
momenta, and A is the totally antisymmetric singlet:

S0 =
1

6
(p21 + p22 + p23),

S1 =
1

9 S2
0

(p41 + p42 + p43 − p21p
2
2 − p21p

2
3 − p22p

2
3),

S2 =
1

54 S3
0

(p21 + p22 − 2p23)(2p
2
1 − p22 − p23)(p

2
1 − 2p22 + p23),

A = −
1

6
√
3 S3

0

(p21 − p22)(p
2
1 − p23)(p

2
2 − p23),

(3.59)

that are given in such a way that only S0 has the dimension of momentum square, all the others
are dimensionless. The first structure in (3.58) clearly corresponds to the tree-level vertex.

At the symmetry point where p21 = p22 = p23 = µ2 only two out of the four independent
structures in (3.58) remain, since in this momentum configuration the third one coincides
with the first one (save a numeric multiplicative factor) and the fourth one vanishes. After
contracting with the transverse projectors corresponding to the external legs P⊥

µα(p1), P
⊥
νβ(p2),

P⊥
ργ(p3), which does not change the symmetry properties of the tensor, imposing the momentum

conservation (p1 + p2 + p3 = 0) and renaming the momenta p1 → p, p2 → q = −p− k, p3 → k,
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the two tensor structures are given by:

T1 ≡ P⊥
µα(p)P

⊥
νβ(−k − p)P⊥

ργ(k)τ1αβγ
∣

∣

s.p.
= (δµρ(kν − pν) + δµν(kρ + 2pρ)− δνρ(2kµ + pµ))

+
1

2µ2
[2kµkρ(kν + pν)− pµkρ(pν − kν)− 2pµpρ(pν + kν)] ,

T2 ≡ P⊥
µα(p)P

⊥
νβ(−k − p)P⊥

ργ(k)τ2αβγ
∣

∣

s.p.
=

2

µ2
(pµ + 2kµ)(pν − kν)(2pρ + kρ).

(3.60)

The one-loop corrections to the three-gluon vertex with external momenta at the symmetry
point are given by the following diagrams (the momenta of the external legs are all outgoing
and are contracted with the corresponding transverse projectors):

µ

a

p

b
ν

c ρ

kq

=
ig3Nfabc

(4π)2

{

T1

2

2

ϵ
+

T1

144t2
[

6t(43t− 21) + 3t2(t2 + 11t+ 6) log(t)

− 6(1 + t)2(t2 + 42t− 31) log(1 + t)− 3
√

t(t + 4)(t3 + 75t2 − 32t− 20) log

(
√
t+ 4−

√
t

√
t + 4 +

√
t

)

+ 2t5J̃0 − 6t(1 + t)2(t2 − t− 3)J̃1(t) + 6(t− 5)(1 + t)2(t2 + 5t− 2)J̃2(t)

−2t(t4 + 3t3 − 66t2 − 132t+ 72)J̃3(t)
]

+
T2

864t2
[

3(31t2 + 52t− 14) + 3t(2− 7t)(1 + t)2 log(t)

+ 6t−1(1 + t)3(7t2 + 9t+ 9) log(1 + t) + 3
√
1 + 4t−1(7t4 + 34t3 + 57t2 + 68t+ 4) log

(
√
t+ 4−

√
t

√
t+ 4 +

√
t

)

+ 2t5J̃0 − 3(1 + t)2(2t3 + 3t2 + 6t− 2)J̃1(t) + 6t−1(1 + t)5(t + 2)J̃2(t)

−t(2t + 9)(t3 + 6t2 + 12t+ 24)J̃3(t)
]}

.

(3.61)

µ a

p

ν
b q

ρc

k

+ ! =
ig3Nfabc

216(4π)2

{

T1

[

−9
2

ϵ
− 27 + 9 log(t) + 3J̃0

]

+ T2

[

−
11

4
+ J̃0

]}

.

(3.62)
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µ
a

p

ν

b q
ρ

c

k

+ perm. =
ig3Nfabc

16(4π)2
T1

{

−30
2

ϵ
+ 10t−1 − 48− t2 log(t) + 2t−2(t− 5)(1 + t)3 log(1 + t)

+(t2 − 6t− 40)
√
1 + 4t−1 log

(
√
t+ 4−

√
t√

t+ 4 +
√
t

)}

.

(3.63)

The diagram with the ghost triangle is summed to the same diagram with the inverted ghost
flow, which at the symmetry point is equal to the first diagram. The latter is the IR domi-
nant diagram, because of its massless internal propagators containing a logarithmic divergence.
The last diagram, called swordfish, is summed to other two diagrams with the external mo-
menta permuted. The sum of these three swordish diagrams contains only the tree-level tensor
structure. We also stress that the divergent terms in each diagram are contained only in the
tree-level structure, as it should be in a renormalizable theory.

For the three-gluon vertex, what is actually calculated in the lattice and what will be
used later to define a sensible renormalized coupling constant, is actually the dressing function
obtained by contracting the vertex Γµνρ(p, q, k) with the external transverse projectors and the
tree-level structure and normalized with the same contraction with only the tree-level structures:

DAAA(p, q, k) =
(δρµ(k − q)µ + perm.)Γσξγ(p, q, k)P⊥

µσ(p)P
⊥
νξ(q)P

⊥
γρ(k)

(δρµ(k − q)µ + perm.)(δγξ(k − q)σ + perm.)P⊥
µσ(p)P

⊥
νξ(q)P

⊥
γρ(k)

. (3.64)

Summing the diagrams given above and performing the proper contractions we therefore get
for the three-gluon dressing function at the symmetry point:

DAAA(µ
2, µ2, µ2) = 1−

17

12

g2N

(4π)2
2

ϵ
+

g2N

1584(4π)2t3
{

−3t2(8t3 − 145t2 − 94t+ 4) log(t)

− 4t(569t2 + 177t− 21) + 3(8t4 − 1091t3 − 1082t2 + 84t− 8)
√

t(t+ 4)

× log

(
√
t+ 4−

√
t

√
t + 4 +

√
t

)

+ 12(1 + t)2(4t3 − 313t2 + 70t− 9) log(1 + t)

+ 2t3(9t3 + 10)J̃0 − 6t(1 + t)2(9t3 − 14t2 − 39t+ 2)J̃1(t)

+6(1 + t)2(9t4 − 10t3 − 315t2 + 96t− 4)J̃2(t)− 24t2(t3 − 67t2 − 134t+ 48)J̃3(t)
}

(3.65)

The IR limit of the dressing function is:

DAAA(µ
2, µ2, µ2) = 1−

17

12

g2N

(4π)2
2

ϵ
+

g2N

1584(4π)2

(

66 log(t) + 187 + 20J̃0 +O(t)
)

, (3.66)

where the log(t) comes from the ghost triangle diagram. In UV it goes like:

DAAA(µ
2, µ2, µ2) = 1−

17

12

g2N

(4π)2

(

2

ϵ
− log(t)

)

+
g2N

396(4π)2

(

−167 + 128J̃0 +O

(

1

t

))

. (3.67)

29



We can again ascertain that the coefficient of the logarithmic term coincides with the coefficient
of the 2/ϵ term only in the high energy limit, where the effect of the gluon mass becomes
negligible.

In the limit when one gluon external momentum vanishes (pµ → 0), before contracting with
the external transverse projections, there are three independent tensor structures. This can be
seen because, by Lorentz covariance, there are four structures involving the only momentum k:
δµνkρ, δµρkν , δρνkµ, kµkνkρ, but imposing the Bose-symmetry property to the vertex makes two
of these terms, kρδµν and kνδρµ, group together. In this limit, without transverse projections,
the vertex reads (now t = k2/m2):

Γµνρ(0,−k, k) = (−kνδρµ − kρδµν)

{

1−
17

12

g2N

(4π)2
2

ϵ
−

g2N

144(4π)2t3
[

t(6t3 + 355t2 − 594t+ 36)

+ 3t3(3t2 − 2) log(t)− 3(t(t + 4))3/2(t2 − 30t+ 24) log

(
√
t+ 4−

√
t

√
t + 4 +

√
t

)

−12(1 + t)3(t2 − 9t+ 3) log(1 + t)
]}

+ 2kµδρν

{

1−
17

12

g2N

(4π)2
2

ϵ
+

g2N

144(4π)2t3
[

t(24t3 − 131t2 − 321t+ 18) + 3t3(t− 1)(t2 − 2t− 2) log(t)

− 6(1 + t)2(t− 1)(t3 − 7t2 + 7t− 3) log(1 + t)

−3t
√

t(t + 4)(t4 − 11t3 + 22t2 + 16t+ 48) log

(
√
t + 4−

√
t√

t + 4 +
√
t

)]}

− (kµkνkρ)
g2N

(4π)2
1

72m2 t4
{

2t(15t3 + 112t2 − 417t+ 54) + 3t6 log(t)

− 6(1 + t)2(t4 − 6t3 − 2t2 − 22t+ 18) log(1 + t)

−3t(t4 − 10t3 − 4t2 − 80t+ 144)
√

t(t+ 4) log

(
√
t+ 4−

√
t

√
t+ 4 +

√
t

)}

.

(3.68)

The dressing function DAAA in this momentum configuration is given by:

DAAA(0, k
2, k2) = 1−

17

12

g2N

(4π)2
2

ϵ
+

g2N

144(4π)2t3
[

3t3(t− 1)(t2 − 2t− 2) log(t)

− 6(1 + t)2(t− 1)(t3 − 7t2 + 7t− 3) log(1 + t) + t(24t3 − 95t2 − 321t+ 18)

−3t(t4 − 11t3 + 22t2 + 16t+ 48)
√

t(t + 4) log

(
√
t+ 4−

√
t√

t+ 4 +
√
t

)]

,

(3.69)

which also has the same qualitative asymptotic expansions as in the symmetry point configu-
ration.
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Chapter 4

Renormalization group equations

4.1 Callan-Symanzik equations

The renormalization group is a powerful tool used in Quantum Field Theory as well as in Statis-
tical Mechanics in order to extract non perturbative information about the effective behaviour
of the theory at low energies. Its original formulation due to Wilson [18, 19] is based on the
functional integration formulation and consists in integrating small shells of momenta in order
to assess the influence of the quantum (or statistical) fluctuations throughout the flow in the
space of theories, generally towards a fixed point.

Although this formulation exhibits the whole power of the renormalization group, it is rather
cumbersome to handle, especially dealing with a gauge theory, since it defines the theory with
the use of a cut-off UV regulator, therefore its flow in the space of possible Lagrangians does
not preserve the Ward (or Slavnov-Taylor) identities without the introduction of proper counter
terms.

Technically it is simpler to work with flow equations that involve the renormalized quantities,
for which the cut-off scale has already been sent to infinity (or in dimensional regularisation
the poles in ϵ have already been absorbed in the parameters of the theory). This implies that
it has already been assumed a priori that the theory approaches a fixed point around which it
takes the form of a renormalizable theory. In order to study the effect of non renormalizable
interactions (irrelevant operator) in a vicinity of the fixed point, one can add them to the
renormalizable theory and study their flow through the renormalization group equations (cf.
[49, 50]). In this work we are interested in studying the flow of Yang-Mills theory between two
different fixed point (crossover): the well known UV trivial one (Gaussian fixed point), where
the gluon mass vanishes, and an IR fixed point where the gluon mass operator dominates over
the kinetic one [51] (m2 ≫ p2), the so called high temperature fixed point, which, as shown in
[51], is IR attractive, hence of physical relevance.

The renormalization group equations for renormalized correlation functions were originally
formulated by Callan and Symanzik [20, 22], although in a different form than the one used
here, since they were originally given in terms of variations w.r.t. the mass parameter, whose
renormalized value was fixed on-shell, instead of variations w.r.t to the scale at which the
renormalized functions and parameters are defined. This latter formulation used here, suitable
for off-shell renormalization schemes, was actually introduced by Georgi and Politzer [21], but
the designation “Callan-Symanzik equations” has historically stuck.

In the so called MOM (momentum subtraction) renormalization scheme the renormalized
correlation functions and parameters are in fact defined at an arbitrary space-like momentum
scale µ by suitable normalization conditions that fix the Zi renormalization constants that
multiplicatively relate the bare parameters and fields with their corresponding renormalized
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ones:

AaB
µ (x) = Z1/2

A Aa
µ(x), caB(x) = Z1/2

c ca(x),

gB = Zgg, m2
B = Zm2m2,

(4.1)

where we use the index B to denote the bare quantities. The Callan-Symanzik equations
derive from the fact that the original bare theory, and hence the physics, does not depend on
the arbitrary scale µ at which we choose to renormalize. The renormalized (nA + nc)-point
function generated by the effective action, containing nA external gluons and nc ghosts, is
related to its bare version by:

ΓnA nc

(

{pi} , µ, g(µ), m2(µ)
)

= ZnA/2
A (µ)Znc/2

c (µ)ΓB
nA nc

(

{pi} , ϵ, gB, m2
B

)

. (4.2)

The LHS represents the finite renormalized 1PI vertex, that depends explicitly on µ and implic-
itly through its dependence on the renormalized parameters. In the RHS the dependence on the
renormalization scale µ is only in the renormalized constants ZA and Zc, while the bare vertex
depends only on bare quantities and on a regularization parameter, here denoted ϵ, referring
to dimensional regularization. Deriving both sides w.r.t. µ we therefore obtain:

µ
d

dµ
ΓnA nc

(

{pi} , µ, g(µ), m2(µ)
)

=
(nA

2
γA(µ) +

nc

2
γc(µ)

)

ΓnA nc

(

{pi} , µ, g(µ), m2(µ)
)

, (4.3)

where γA(µ) and γc(µ) are the anomalous dimension functions defined by:

γA(µ) ≡
1

ZA
µ
d

dµ
ZA

∣

∣

∣

∣

gB,mB

, γc(µ) ≡
1

Zc
µ
d

dµ
Zc

∣

∣

∣

∣

gB,mB

, (4.4)

where we made explicit that the derivatives have to be taken keeping the bare quantities fixed.
However, after the derivation is performed, the bare parameters must be substituted with the
finite renormalized ones. Since the anomalous dimensions are dimensionless functions, their
dependence on µ is explicitly contained in the dimensionless parameter t = µ2/m2 and implicitly
in its dependence on g(µ) and m2(µ). It is important to stress that, although the definition of
the anomalous dimensions involves the formally divergent renormalization constants Zi, they
are finite, because the divergent terms contained in the Zi (the factors 2/ϵ) are not multiplied
by any function of µ and hence they disappear once the derivative is performed.

Integrating (4.3) one gets:

ΓnA nc

(

{pi} , µ, g(µ), m2(µ)
)

= ΓnA nc

(

{pi} , µ0, g(µ0), m
2(µ0)

)

e−
∫ µ0
µ

dµ′

µ′ [
nA
2

γA(µ′)+nc
2
γc(µ′)].

(4.5)

This equation connects the (nA + nc)-point function at two difference renormalization scales µ
and µ0. Inside the function, and inside the anomalous dimensions, the running coupling and
running mass are given by the solutions of the flow equations defined by the beta functions:

βg(µ) ≡ µ
d

dµ
g(µ)

∣

∣

∣

∣

gB ,mB

, βm2(µ) ≡ µ
d

dµ
m2(µ)

∣

∣

∣

∣

gB,mB

. (4.6)

The beta functions, like the anomalous dimensions, are finite. Once they are given at a certain
loop order, as functions of the renormalized parameters, they can be integrated, at least numer-
ically, as the coupled system of ordinary differential equations (4.6) (coupled because they both
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contain both g and m2). If the Callan-Symanzik equations gave us information only about the
dependence of the correlation function on the renormalization scale, as showed in (4.3), they
would not provide a lot of physical insight, since as we have stressed, physics does not depend
on the arbitrary scale µ at which we renormalize. But if we choose as the arbitrary scale µ0 the
physical momentum scale p of the same order of the external momenta of the vertex we get:

ΓnA nc

(

{pi} , µ, g(µ), m2(µ)
)

= ΓnA nc

(

{pi} , p, g(p), m2(p)
)

e−
∫ p
µ

dµ′

µ′ [
nA
2

γA(µ′)+nc
2
γc(µ′)]. (4.7)

The point of this is that the factor multiplying the exponential in the RHS is now under
control by perturbation theory. In fact, if in the collection of the external momenta {pi} only
a relevant scale of order p appears (like in the case of the symmetry point or soft momentum
configuration for the three-point vertices), this factor can simply coincide with its tree-level
counterpart, usually given as the normalization condition at the renormalization scale, or be
well approximated by the first loop correction, because the presence of the running parameters
at the scale p makes sure that the expressions in the perturbative expansion remain relatively
small, despite the presence of logarithmic terms that go like ln(p/µ) and therefore become
large when the momentum move away from the renormalization scale µ. We therefore see
how, knowing (at least up to a certain approximation under control) the factor multiplying
the exponential, (4.7) provides us with an expression for the full non perturbative correlation
function, for the whole range of momenta. This is explained by the fact that, as one can show
(cf. [50]), the insertion of the running parameters at the scale of momentum under interest,
correspond to include the contribution of all the powers of the leading logarithmic terms of the
whole perturbation expansion (or of further subleading logarithmic terms if we approximate
the beta functions and the anomalous dimensions beyond the one-loop level).

Of course the whole procedure would break down if at some scale the parameters became
too large, as it happens in the usual treatment of QCD where the running coupling constant
flows towards a Landau pole. Fortunately, as we will show, the presence of the mass term
allows to find some renormalization schemes in which the running values of both the coupling
and the mass parameters remain finite and relatively small.

4.2 Slavnov-Taylor identity

In the renormalization schemes that we will shortly present, the following identity for the bare
quantities plays a crucial role:

ΓB
cc̄(p

2)Γ∥B
AA(p

2) = p2m2
B. (4.8)

We stress how this identity implies that the longitudinal part of the gluon two-point function
vanishes only when m = 0, as expected. The identity can be obtained by exploiting the
invariance of the action and of the integration measure under the BRST variation (2.42), from
which it is easy to derive the Slavnov-Taylor identity for the effective action:

∫

dDx

[

δΓ

δAa
µ(x)

δΓ

δKa
µ(x)

+
δΓ

δca(x)

δΓ

δLa(x)
− iBa(x)

δΓ

δc̄a(x)
+ im2ca(x)

δΓ

δBa(x)

]

= 0. (4.9)

We will also make use of the antighost equation:

∂µ
δG

δKa(x)
+ ηa(x) = −∂µ

δΓ

δKa(x)
+

δΓ

c̄a(x)
= 0, (4.10)
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where G is the generating functional of the connected diagrams previously introduced. (4.10)
is derived by taking a total derivative w.r.t. antighost field inside the integral of the generating
functional. In momentum space it reads

ipµ
δΓ

δKa(p)
+

δΓ

δc̄a(p)
= 0. (4.11)

Taking another derivative with respect to cb(−q) we obtain:

Γcc̄(p) = −ipµΓcKµ(p), (4.12)

which, by Lorentz covariance, implies that ΓcKµ(p) = iΓcc̄(p)pµ/p2. Deriving (4.9) with respect
to Ab

ν(y) and cc(z) and going to momentum space, we get, at vanishing sources, considering
the conservation of the ghost number at quantum level:

ΓAµAν(p)ΓcKµ(p) = im2ΓAνB(p). (4.13)

Substituting (4.12) and the expression for ΓAνB(p) = pν derived in (2.45), into (4.13) it follows:

pµΓAµAν (p)Γcc̄(p) = m2p2pν . (4.14)

Finally, decomposing the gluon two-point function in its transverse and longitudinal part, (4.8)
is obtained. By taking the expressions of the gluon and ghost two-point functions calculated
in section 3.3 one can check that the identity is indeed satisfied at one-loop order.

4.3 Renormalization schemes

Physical quantities, like scattering amplitudes, cannot depend on the arbitrary renormaliza-
tion scale or on the normalization conditions we impose to the renormalized quantities at this
scale. Even at a given order of expansion in perturbation theory, renormalized correlation func-
tions defined in different renormalization schemes differ at most for an irrelevant multiplicative
factor. Nevertheless in the integration of the Callan-Symanzik equations (4.7), since we are
approximating the flow functions at one-loop order, different renormalization schemes can give
different results. We therefore explore different normalization conditions in order to see which
one can give better results as compare with lattice results.

It is important to stress that the expression for the beta function of the coupling constant
changes according to different renormalization schemes. Its usual independence of the renor-
malization scheme up to two-loop orders is not valid here, because of the presence of the mass
parameter. As we will see in fact, different renormalization schemes can even bring deep qual-
itative changes to the beta function, e.g. changing its sign at low energies, determining the
appearance (or disappearance) of a Landau pole in the IR. If the Landau pole is not generated
and the coupling runs towards an IR fixed point (which is trivial in D = 4 as we will see), the
scheme is referred to as “IR safe”.

4.3.1 Tissier-Wschebor scheme

In the “IR safe scheme” proposed by Tissier and Wschebor in Ref. [10], the following normal-
ization conditions are imposed on the renormalized two-point functions at the renormalization
scale µ:

Γ⊥
AA(µ

2) = µ2 +m2 , (4.15)

Γ∥
AA(µ

2) = m2 , (4.16)

Γcc̄(µ
2) = µ2 . (4.17)
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The conditions (4.15) and (4.17) fix the values for the renormalization constants ZA and Zc, at
one-loop order, to:

Zc(µ) = 1 +
ΣB(µ2)

µ2
, (4.18)

ZA(µ) = 1 +
1

µ2

(

Π⊥B(µ2)− Π∥B(µ2)
)

= 1 +
1

µ2

(

Π⊥B(µ2) +
m2

B

µ2
ΣB(µ2)

)

, (4.19)

where ΣB, Π⊥B and Π∥B are respectively the ghost, gluon transverse and gluon longitudinal
self energies defined in (3.23). In the last identity in (4.19) we have used the Slavnov-Taylor
identity (4.8) which for the self energies translate, at one-loop order, into:

m2
BΣ

B(p2) = −p2Π∥B(p2). (4.20)

By substituting the ZA and Zc, using the expressions for the self energies calculated in section
3.3, in the definitions of the anomalous dimensions (4.4) we get for these latter (t = µ2/m2):

γc(t) =
g2N

2(4π)2t2
[

−2t(1 + t) + t3 ln t− (1 + t)(t2 − t− 2) ln(1 + t)
]

, (4.21)

γA(t) =
g2N

6(4π)2t2
[

−17t2 + 74t− 12 + t4 ln t− t−1(2t− 3)(t− 2)2(t+ 1)2 ln(1 + t) (4.22)

−
√

t(t+ 4)(t3 − 9t2 + 20t− 36) ln

(
√
t+ 4−

√
t

√
t+ 4 +

√
t

)]

.

The Slavnov-Taylor identity (4.8) can be written in terms of the renormalized quantities as

Γcc̄(p
2)Γ∥

AA(p
2) = (ZAZcZm2)p2m2 . (4.23)

If we specialize to p2 = µ2 and apply the normalization condition (4.17), the Slavnov-Taylor
identity implies that

Γ∥
AA(µ

2) = (ZAZcZm2)m2 . (4.24)

It is hence apparent that the normalization condition (4.16) is equivalent to ZAZcZm2 = 1,
provided that Γcc̄(p2) is normalized as in Eq. (4.17), in which form it was originally proposed
in Ref. [10]. We furthermore conclude from Eq. (4.23) that the normalization condition implies
the renormalized counterpart of the Slavnov-Taylor identity,

Γcc̄(p
2)Γ∥

AA(p
2) = p2m2 . (4.25)

Since one of the principles in renormalizing a quantum field theory is to preserve the symmetries
of the classical theory (whenever possible, i.e., in the absence of anomalies), the fact that the
renormalization scheme (4.15)–(4.17) implies the identity (4.25) for the renormalized quantities
is certainly satisfactory.

A second renormalization scheme presented in Ref. [10] replaces the normalization condition
(4.16) with

Γ∥
AA(0) = m2 . (4.26)

In fact, in Ref. [10] the normalization condition was imposed on Γ⊥
AA(0), however, in three and

four space-time dimensions we find that

Γ⊥B
AA (0) = Γ∥B

AA(0) (4.27)
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to any order in perturbation theory, meaning that the gluon two-point function ΓB
AµAν

(p) is local,

a property that carries over to the renormalized two-point function. Since Γ∥
AA(0) ̸= Γ∥

AA(µ
2) in

general, the argument above shows that the Slavnov-Taylor identity (4.25) for the renormalized
quantities is not fulfilled in the renormalization scheme with condition (4.26). It was also shown
in Ref. [10] that this scheme is not IR safe, i.e., the integration of the renormalization group
equations leads to a Landau pole. We shall come back to the property of IR safeness below.

4.3.2 IR safeness

In order to establish the “IR safe” property of this renormalization scheme we need to inves-
tigate the IR behaviour of the beta function, which depends on the definition of renormalized
coupling constant. Tissier and Wschebor defined it at the so called “Taylor point”, meaning
the configuration of momentum for which the ghost-gluon vertex does not receive quantum
corrections in Landau gauge, i.e. at vanishing incoming ghost momentum:

g(µ) ≡ gDc̄cA(µ, 0, µ) = gB Z1/2
A (µ)Zc(µ). (4.28)

Therefore the beta function is simply given in therm of the anomalous dimensions:

βg(µ) = g

(

γA(µ)

2
+ γc(µ)

)

. (4.29)

The behaviour of the beta function in the deep IR is therefore given by the limits of the
anomalous dimensions in this region. For p2 ≪ m2 the ghost anomalous dimension goes like
p2/m2, as can be seen by looking at the IR expansion of the ghost self energy (3.26), hence it
does not contribute to the beta function in the limit of vanishing momentum. The sign of the
beta function in this limit is determined solely by the gluon anomalous dimension, which, for
t ≪ 1 goes like:

γA(t) =
g2N

3(4π)2
+O(t), (4.30)

which implies that in the deep IR the beta function is positive:

βg = µ
dg

dµ
=

g3N

6(4π)2
, µ2 ≪ m2. (4.31)

Its IR positivity makes sure that the coupling diminishes at low momenta, running towards a
trivial IR fixed point. Integrating (4.31) we can see the behaviour of the running coupling near
its fixed point:

g2(µ) =

(

N

6(4π)2

)−1(

ln

(

Λ2
IR

µ2

))−1

, Λ2
IR ≡ µ2

0 exp

[

(

Ng2(µ0)

6(4π)2

)−1
]

, (4.32)

where µ0 is an arbitrary reference scale. Hence the coupling constant logarithmically vanishes
in the IR, in the same way as it logarithmically vanishes in the UV, where it also reaches a
trivial fixed point. In the limit where µ2 ≫ m2, in fact, the beta function recovers its traditional
asymptotic form that causes the famous asymptotic freedom in QCD:

βg = −
11

3

g3N

(4π)2
µ2 ≫ m2, (4.33)
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which implies a flow for the running coupling constant in the UV like:

g2(µ) =

(

11N

3(4π)2

)−1(

ln

(

µ2

Λ2
UV

))−1

, Λ2
UV ≡ µ2

0 exp

[

−
3

11

(

Ng2(µ0)

(4π)2

)−1
]

. (4.34)

We therefore see how the crucial property that the beta function needs to satisfy in order to
yields an “IR safe” scheme, is to change sign at a certain intermediate scale and to remain
positive in the deep IR. The fact that the coupling runs to an IR trivial fix point makes thus
the perturbative treatment reliable.

However, In order to rely on the asymptotic expressions, both in the IR as in UV, we
need to ensure that the limits µ2 ≪ m2 and µ2 ≫ m2 do actually make sense, i.e. that the
mass parameter does not grow faster than µ2 at high energy and does not vanish faster in the
IR. This is guaranteed by the asymptotic expressions of βm2 in these limits. Because of the
definition of the renormalized mass parameter given in (4.16) that we saw to imply the identity
Zm2ZAZc = 1 the beta function for the mass is given by:

βm2(µ) = µ
dm2

dµ
= µ

d

dµ

(

ZA(µ)Zc(µ)m
2
B

)

= m2(µ) (γA(µ) + γc(µ)) . (4.35)

Its limit in the IR is positive, guaranteeing the vanishing of the running mass at low energy:

βm2(µ) = m2(µ)
g2(µ)N

3(4π)2
µ2 ≪ m2, (4.36)

and in the UV is negative, guarantying the vanishing of the running mass at high energy:

βm2(µ) = −m2(µ)
35

6

g2(µ)N

(4π)2
µ2 ≫ m2. (4.37)

Integrating these asymptotic equations, using the expressions for the running coupling in this
limits given in (4.32) and (4.34), one finds that the mass logarithmically vanishes in the IR:

m2(µ) = m2(µ0) ln

(

Λ2
IR

µ2
0

)(

ln

(

Λ2
IR

µ2

))−1

, (4.38)

and vanishes like a power of the logarithm in the UV:

m2(µ) = m2(µ0)

(

ln

(

µ2
0

Λ2
UV

))
35

44
(

ln

(

µ2

Λ2
UV

))− 35

44

. (4.39)

These two limit expressions therefore guarantee that it is effectively sensible to talk about
µ2 ≪ m2 and µ2 ≫ m2. The last one, in particular, guarantees that in the UV we recover the
traditional massless Yang-Mills theory and BRST symmetry.

Now, going back to the IR limit of the beta function for the coupling constant, it is in-
teresting to check the different contributions to this limit from the transverse part and the
longitudinal part of the gluon self energy. Since we stressed that the ghost anomalous dimen-
sion does vanishes in the IR, the positivity of the beta function in the IR only depends on the
gluon anomalous dimension, which in this renormalization scheme involves in fact the difference
between the transverse and longitudinal parts of the gluon self energy, cf. (4.19). Taking a
look at the IR limits of these latter in (3.35) we can rewrite the IR asymptotic expression for
the beta function separating the two contributions:

βg(µ) =
g3N

(4π)2

[

−
1

12

⊥
+

1

4

∥]

. (4.40)
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The positivity of the beta function is therefore due to the contribution of the longitudinal part
that needs to overcome the negative contribution from the transverse part. This important fact
implies the impossibility of having a renormalization scheme that is “IR safe” and that involves
only the transverse part of the gluon two-point function Γ⊥

AA(p
2).

The idea behind such a scheme would be that, in the Landau gauge, only the transverse
part of the gluon propagator which is the inverse of Γ⊥

AA(p
2), ever contributes to correlation

functions which are completely transverse with respect to the external gluon momenta, to all
orders in perturbation theory. One would then expect normalization conditions like

∂

∂p2
Γ⊥
AA(p

2)
∣

∣

∣

p2=µ2

= 1 , (4.41)

Γ⊥
AA(µ

2) = µ2 +m2 , (4.42)

to lead to an optimal approximation of the full gluon propagator at momentum scales of the
order of µ2, and thus include as many higher-loop contributions as possible in the one-loop
renormalization group-improved transverse correlation functions. However, as we have showed,
such normalization conditions lead to a negative beta function, and hence to a Landau pole,
for the coupling constant in the IR.

The integration of the renormalization group equations (4.7) for the two-point functions in
this Tissier-Wschebor renormalization scheme gives:

Γcc̄(p
2, µ2, g(µ), m2(µ)) = Γcc̄(p

2, p2, g(p), m2(p)) exp

{

−
∫ p

µ

dµ′

µ′ γc(µ
′)

}

(4.43)

= p2 exp

{

−
∫ p

µ

dµ′

µ′ γc(µ
′)

}

Γ⊥
AA(p

2, µ2, g(µ), m2(µ)) = Γ⊥
AA(p

2, p2, g(p), m2(p)) exp

{

−
∫ p

µ

dµ′

µ′ γA(µ
′)

}

(4.44)

= (p2 +m2(p)) exp

{

−
∫ p

µ

dµ′

µ′ γA(µ
′)

}

,

where in the last identities we substituted the normalization conditions (4.15) and (4.17). These
equations have been numerically integrated, using the Runge-Kutta method up to fourth order.
We point out how, in order to achieve a good numerical precision in both the IR and UV limits
we needed to explicitly glue the expressions for the flow functions beta and anomalous dimen-
sions with their corresponding asymptotic expressions, because subtle analytical cancellations
between terms of the same order take place in these limits. The expressions are derived for the
ghost and gluon propagators Gc(p2) and GA(p2), the inverse of the two-point functions

Gc(p
2) = Γ−1

cc̄ (p
2), (4.45)

GA(p
2) =

(

Γ⊥
AA(p

2)
)−1

. (4.46)

The propagators have been evaluated for the SU(2) case (N = 2 in all the expressions) in order
to compare them with the data of the largest lattice available, i.e. the data that go deeper in
the IR [52] . For the ghost we plot its dressing function p2Gc(p2), the function that encodes how
much the propagator moves away from its tree-level form, since it remains finite and different
from zero in the whole range of momenta. For the gluon we plot both the propagator and the
dressing function, since the propagator vanishes at high energy and approaches a constant value
in the IR and the dressing function vanishes in the IR and decreases as a power of logarithm in
the UV, therefore in order to appreciate the goodness of the fit with the lattice data is better
to look at both.
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Figure 4.1: Ghost dressing function in the TW scheme.

The strategy for fitting, regarding this and the next presented renormalization schemes,
is the following: we adjust the coupling and mass parameters in such a way that the ghost
dressing function well fits the lattice data, lying within its error bars. In this way, in order to
estimate the goodness of the scheme one has only to look at the gluonic diagrams. We therefore
show the ghost dressing function plot only once, for this Tissier-Wschebor (TW) scheme. The
best fit has been obtained by setting g = 2.92 and m = 0.31GeV at the renormalization scale
µ = 3GeV.

Tissier-Wschebor scheme in D = 3

We also resummed the two-point functions in the three dimensional case, D = 3, in the TW
scheme. Imposing the normalization conditions given in (4.15) and (4.17) the following ex-
pressions for the anomalous dimensions are obtained in D = 3 (note that now they have a
dimension of [m]−1)

γc(t) =
Ng2

32π

1

mt3/2

[

2
√
t(t + 3)− πt2 + 2(t− 3)(t+ 1) arctan

(√
t
)]

, (4.47)

γA(t) =
Ng2

128π

1

mt5/2

[

4
√
t(7t2 − 29t+ 15)− 3πt4 + 4(t+ 1)(3t3 − 7t2 + 15t− 15) arctan

(√
t
)

(4.48)

−2t(3t3 − 8t2 + 40t− 96) arctan

(
√
t

2

)]

.

The best fit in this scheme for the ghost dressing function and for the gluon propagator is
shown in Fig. 4.4. It is noteworthy the IR raising of the gluon propagator, which is reproduced
by the renormalization group resummation. We stress that such raising in the deep IR also is
found in the four dimensional, albeit it is not clear in the plots since the lattice data do not
reach such deep IR values.

4.3.3 Derivative schemes

We also explored the different results for schemes in which the renormalized two-point functions
break the Slavnov-Taylor identity (4.25), meaning the identity Zm2ZAZc = 1 is not satisfied
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Figure 4.2: Gluon propagator (left) and gluon dressing function (right) in the TW scheme.
g = 2.92 and m = 0.31 GeV at µ = 3 GeV.
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Figure 4.3: Running coupling (left) and running mass (right) in the TW scheme.
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Figure 4.4: Ghost dressing function (left) and gluon propagator (right) in the TW scheme.
g = 2.68 and m = 0.64 GeV at µ = 1 GeV.
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. These schemes are given by imposing renormalization conditions that fix the values of the
derivatives of the two-point functions, instead of the two-point functions themselves. The first
scheme we tried is given by the following conditions:

∂

∂p2

(

Γ⊥
AA(p

2)− Γ∥
AA(p

2)
)

∣

∣

∣

∣

p2=µ2

= 1 (4.49)

and, by analogy,
∂

∂p2
Γcc̄(p

2)
∣

∣

∣

p2=µ2

= 1 . (4.50)

The condition (4.49) looks more natural when one considers decomposing the gluonic two-point
function not in its transverse and longitudinal parts, but rather as

ΓAµAν (p) =
(

Γ⊥
AA(p

2)− Γ∥
AA(p

2)
)

(

δµν −
pµpν
p2

)

+ Γ∥
AA(p

2)δµν , (4.51)

which mimics the grouping of terms in the classical action (2.31), as already pointed out in
section 3.3. It is clear that the new condition for the ghost two-point function (4.50) alone
spoils the Slavnov-Taylor identity for the renormalized quantities, since for this to be satisfied
Γcc̄(µ2) = µ2 had to be fulfilled. The conditions (4.49) and (4.50) imply new expressions for
the renormalization constants ZA and Zc:

Zc(µ) = 1 +
∂ΣB(p2)

∂p2

∣

∣

∣

∣

p2=µ2

, (4.52)

ZA(µ) = 1 +
∂

∂p2
(

Π⊥B(p2)− Π∥B(p2)
)

∣

∣

∣

∣

p2=µ2

, (4.53)

which in turn give rise to slightly different expressions for the anomalous functions:

γc(t) =
g2N

2(4π)2t2
[

−t(t− 2) + 2t3 ln t− 2(t3 + 1) ln(1 + t)
]

, (4.54)

γA(t) =
g2N

6(4π)2t2
[

−2(3t2 + 22t− 12) + 3t4 ln t− 2t−1(1 + t)(t− 2)(3t3 − 4t2 + 2t− 6) ln(1 + t)

(4.55)

−(t− 2)(3t3 − 2t2 − 38t− 36)
√

t(t+ 4)−1 ln

(
√
t + 4−

√
t

√
t+ 4 +

√
t

)]

. (4.56)

These anomalous dimensions share the same UV asymptotic limit with the previous one in the
TW scheme, since at high energies the presence of the mass is irrelevant and we recover the
universality of the anomalous dimensions at one-loop. The limits, for this particular scheme,
are also the same in the IR. In particular, the beta function does not change its behaviour
at low and high momentum. We also stress how the UV behaviour of the gluon anomalous
dimension is purely determined by the transverse part of the self energy, since in any sensible
scheme the longitudinal part must vanish at high energy, in order to restore the original BRST
symmetry.

A third normalization condition is required to complete the renormalization scheme given
by Eqs. (4.49) and (4.50) so far. One might be inclined to use the condition (4.42) to this end,
however, as we shall now show, such a scheme runs into trouble in the UV limit µ2 ≫ m2. In
fact, using the normalization condition (4.42) the renormalized mass is given, in terms of bare
quantities by:

m2(µ) = ZA(µ)
(

µ2 +m2
B −Π⊥B(µ2)

)

− µ2, (4.57)
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implying for the beta function of the mass parameter:

βm2(µ) = µ
d

dµ
m2(µ) = γA(µ)(µ

2 +m2(µ)) + 2µ2(ZA(µ)− 1)− µ
d

dµ
Π⊥B(µ)

−→
µ2≫m2

−
13

3

g2N

(4π)2
µ2.

(4.58)

It is therefore seen how the beta function and then the running mass become arbitrarily negative
in the UV and the usual Yang-Mills theory and BRST symmetry are not recovered in this limit.
Instead of using Eq. (4.42), we hence complement the normalization conditions (4.49) and (4.50)
with the condition (4.16),

Γ∥
AA(µ

2) = m2 , (4.59)

in order to complete the renormalization scheme. We thus see how the longitudinal part of the
gluon self energy is of crucial importance in any renormalization scheme. It must be included in
the condition that defines the gluon anomalous dimension in order to have an IR positive beta
function for the coupling constant (“IR safe”) and it must be used to define the renormalized
mass in order for it to behave properly in the UV.

From the definition of the renormalized mass (4.59) the mass beta function is given by:

βm2 = µ
dm2

dµ
= m2γA(µ)− µ

dΠ∥B(µ)

dµ

= m2 g2N

6(4π)2t2
[

3t3(1 + t) ln t− (t− 2)(t+ 1)(6t2 − 5t+ 7− 12t−1) ln(1 + t)

−2(6t2 + 25t− 12)− (t− 2)(3t3 − 2t2 − 38t− 36)
√

t(t + 4)−1 ln

(
√
t+ 4−

√
t√

t + 4 +
√
t

)]

.

(4.60)

We point out how now this beta function cannot be written as a simple sum of the gluon
and ghost anomalous dimensions, as in (4.35), since this latter was derived by the identity
Zm2ZAZc = 1 which is not valid here. However its IR limit does not change, since this depends
only on the limit of the gluon anomalous dimension, and this, as we stressed before, does not
change from the previous one calculated in the TW scheme.

The integration of the renormalization group equations is slightly more complicated in this
derivative renormalization scheme. In order to implement the normalization conditions (4.49)
and (4.50), in fact, one has to take the derivative of (4.44) w.r.t p2 (before setting µ2

0 = p2).
For the ghost two-point function we have:

∂

∂p2
Γcc̄(p

2, µ2, g(µ), m2(µ)) =

{

∂

∂p2
Γcc̄(p

2, µ2
0, g(µ0), m

2(µ0)) exp

[

−
∫ µ0

µ

dµ′

µ′ γc(µ
′)

]}
∣

∣

∣

∣

µ2
0
=p2

(4.61)

= exp

{

−
∫ p

µ

dµ′

µ′ γc(µ
′)

}

,

where in the last line we imposed the condition (4.50). Integrating in p2 from a vanishing
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momentum we obtain:

Γcc̄(p
2, µ2, g(µ), m2(µ)) = Γcc̄(p

2 = 0, µ2, g(µ), m2(µ)) +

∫ p2

0

dp
′2 exp

{

−
∫ p′

µ

dµ′

µ′ γc(µ
′)

}

=

∫ p2

0

dp
′2 exp

{

−
∫ p′

µ

dµ′

µ′ γc(µ
′)

}

,

(4.62)

where in the last line we put Γcc̄(p2 = 0) = 0, since the ghost remains massless at the quantum
level in Landau gauge. This can be seen looking again at the Slavnov-Taylor identity (4.8) for

the bare quantities: putting p2 = 0 implies the vanishing of the product ΓB
cc̄(p

2 = 0)Γ∥B
AA(p

2 = 0).
Since the bare longitudinal part of the gluon two-point function is different from zero, this im-
plies the vanishing of the bare ghost two-point function at vanishing momentum, and therefore
the vanishing of its renormalized counter part, due to multiplicative renormalizability.

For the resummation of the gluon two-point function, due to its normalization condition
(4.50) that involves the difference between the transverse and longitudinal parts, we consider
the derivative of the corresponding renormalization group equations (we omit the dependence
of the two-point functions on the renormalized parameters):

∂

∂p2

(

Γ⊥
AA(p

2, µ2)− Γ∥
AA(p

2, µ2)
)

=

{

∂

∂p2

(

Γ⊥
AA(p

2, µ2
0)− Γ∥

AA(p
2, µ2

0)
)

exp

[

−
∫ µ0

µ

dµ′

µ′ γA(µ
′)

]}
∣

∣

∣

∣

µ2
0
=p2

= exp

{

−
∫ p

µ

dµ′

µ′ γA(µ
′)

}

,

(4.63)

which after integration yields:

Γ⊥
AA(p

2, µ2) = Γ∥
AA(p

2, µ2) +

∫ p2

0

dp
′2 exp

{

−
∫ p′

µ

dµ′

µ′ γA(µ
′)

}

= m2(p) exp

{

−
∫ p

µ

dµ′

µ′ γA(µ
′)

}

+

∫ p2

0

dp
′2 exp

{

−
∫ p′

µ

dµ′

µ′ γA(µ
′)

}

,

(4.64)

where in the last line we substituted the expression for the resummed longitudinal part:

Γ∥
AA(p

2, µ2) = Γ∥
AA(p

2, p2) exp

{

−
∫ p

µ

dµ′

µ′ γA(µ
′)

}

= m2(p) exp

{

−
∫ p

µ

dµ′

µ′ γA(µ
′)

}

. (4.65)

In both (4.64) and (4.65) is clearly assumed that the transverse and the longitudinal parts are
renormalized by the same renormalization constant ZA(µ). We also stress how the constant of

integration in (4.64) vanishes due to the local condition Γ⊥
AA(p

2 = 0) = Γ∥
AA(p

2 = 0).
The gluon propagator and gluon dressing function for this derivative scheme (denoted by D)

are plotted in Fig. 4.5. The best fit has been found fixing g = 2.6 and m = 0.33 GeV at µ = 3
GeV.

The use of the p2-derivative actually allows for a greater flexibility in the normalization
conditions: one may interpolate between the conditions (4.41) and (4.49) by introducing a
parameter ζ and replacing the condition (4.49) with

∂

∂p2

(

Γ⊥
AA(p

2)− ζ Γ∥
AA(p

2)
)

∣

∣

∣

∣

p2=µ2

= 1 , (4.66)
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Figure 4.5: Gluon propagator (left) and gluon dressing function (right) in the derivative (D)
scheme. g = 2.6 and m = 0.33 GeV at µ = 3 GeV.

while keeping the conditions (4.50) and (4.59) (the condition (4.42) cannot be used, for the same
reasons as before). Note that a condition analogous to (4.66) but without the p2-derivative,
like

Γ⊥
AA(µ

2)− ζ Γ∥
AA(µ

2) = µ2 + (1− ζ)m2 , (4.67)

would be completely equivalent to the condition (4.15) in the original IR safe scheme of Tissier
and Wschebor as can explicitly be seen by adding

ζ Γ∥
AA(µ

2) = ζm2 (4.68)

to Eq. (4.67). The normalization condition (4.66) corresponds to the decomposition

ΓAµAν(p) =
(

Γ⊥
AA(p

2)− ζ Γ∥
AA(p

2)
)

(

δµν −
pµpν
p2

)

+ Γ∥
AA(p

2)

(

ζ δµν + (1− ζ)
pµpν
p2

)

(4.69)

of the gluonic two-point function which interpolates linearly between the standard decomposi-
tion for ζ = 0

ΓAµAν (p) = Γ⊥
AA(p

2)

(

δµν −
pµpν
p2

)

+ Γ∥
AA(p

2)
pµpν
p2

(4.70)

and the decomposition (4.51) analogous to the classical action for ζ = 1. Because of the
normalization condition (4.66), the IR limits of the coupling and mass beta functions now
become:

βg =
g3N

(4π)2

(

−
1

12
+
ζ

4

)

(4.71)

βm2 = m2 g3N

(4π)2

(

−
1

6
+
ζ

2

)

, (4.72)

so that the renormalization scheme is IR safe, with a trivial IR fixed point of the coupling
constant, for ζ > 1/3. For ζ < 1/3, on the other hand, the integration of the renormalization
group equations generates a Landau pole. The case ζ = 1/3 is particularly interesting, since for
this “critical” value, we find that the renormalized coupling constant g(µ2) and the renormalized
mass m(µ2) converge to a nontrivial value in the limit µ2 → 0 (Fig. 4.6). However, the actual
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Figure 4.6: Running coupling (left) and running mass (right) in the critical derivative scheme
(Dc) corresponding to ζ = 1/3. g = 2.52 and m = 0.305 GeV at µ = 3 GeV.
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Figure 4.7: Gluon propagator (left) and gluon dressing function (right) in the critical derivative
scheme (Dc), corresponding to ζ = 1/3. g = 2.52 and m = 0.305 GeV at µ = 3 GeV.

values of g and m in this limit depend on the initial conditions, i.e. on their value fixed at the
renormalization scale.

Manipulating the renormalization group equation as we did in (4.64), we get for the trans-
verse part in this critical renormalization scheme:

Γ⊥
AA(p

2, µ2) =
2

3
m2(p2 → 0) exp

{
∫ µ

0

dµ′

µ′ γA(µ
′)

}

+
1

3
m2(p2) exp

{

−
∫ p

µ

dµ′

µ′ γA(µ
′)

}

+

∫ p2

0

dp
′2 exp

{

−
∫ p′

µ

dµ′

µ′ γA(µ
′)

}

.

(4.73)

The plots for the gluon propagator and gluon dressing function in this scheme are showed in
Fig. 4.7. Their fits to lattice data represent an improvement compared to the previous schemes.

This analysis brought us to consider another normalization condition from the observation
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that the standard decomposition (4.70) of the gluonic two-point function is particularly ade-
quate in the UV limit where its longitudinal part vanishes as a consequence of the reinstatement
of the proper (not extended) BRST symmetry in this limit, while the decomposition (4.51) is

rather natural in the IR limit where the difference (Γ⊥
AA(p

2) − Γ∥
AA(p

2)) goes to zero, see Eq.
(4.27). It might then seem to be a good idea to allow the parameter ζ that interpolates between
the two decompositions in Eq. (4.69) to depend on the renormalization scale µ. The simplest
choice is to replace ζ in the normalization condition (4.66) with

ζ =
1

1 + (µ2/m2)
, (4.74)

so that ζ → 1 for µ2 ≪ m2 and ζ → 0 for µ2 ≫ m2 (the other normalization conditions (4.50)
and (4.59) go unchanged). We shall refer to this renormalization scheme as the dynamical
ζ-scheme.

For this normalization condition the renormalization constant ZA is given by:

ZA(µ) = 1 +
∂

∂p2

(

Π⊥B(p2)−
1

1 + (µ2/m2(µ2))
Π∥B(p2)

)
∣

∣

∣

∣

p2=µ2

, (4.75)

which yields the following expression for the anomalous dimension

γA(t) =
g2N

12(4π)2t3(1 + t)2
[

−2t(t + 1)(6t3 + 59t2 + 32t− 24) + 6t4(t3 + 2t2 + t− 1) ln t

− 2(t + 1)2(6t5 − 14t4 − 3t2 − 8t+ 24) ln(1 + t)− 2t(t + 1)2(t− 2)(3t3 − 2t2 − 38t− 36)

×(1 + 4t−1)−1/2 ln

(
√
t+ 4−

√
t

√
t + 4 +

√
t

)]

.

(4.76)

The asymptotic limits of γA in the IR and in the UV are, as expected, the same as before. In
order to get the renormalization group equation for the transverse part of the gluon two-point
function we consider the following:

∂

∂p2
Γ⊥
AA(p

2, µ2)−
(

1

1 + µ2
0/m

2(µ0)

)

∂

∂p2
Γ∥
AA(p

2, µ2)

=
∂

∂p2

(

Γ⊥
AA(p

2, µ2
0)−

(

1

1 + µ2
0/m

2(µ0)

)

Γ∥
AA(p

2, µ2
0)

)

exp

[

−
∫ µ0

µ

dµ′

µ′ γA(µ
′)

]

.

(4.77)

Setting on both sides µ0 = p, so that the term multiplying the exponential turns into unity
because of the normalization condition, and integrating over p2, we get

Γ⊥
AA(p

2, µ2) = Γ⊥
AA(p

2 → 0, µ2) +

∫ p2

0

dp
′2

(

1

1 + p′2/m2(p′)

)

Γ∥
AA(p

′2, µ2)

+

∫ p2

0

dp
′2 exp

[

−
∫ p′

µ

dµ′

µ′ γA(µ
′)

]

= m(p2 → 0) exp

[
∫ µ

0

dµ′

µ′ γA(µ
′)

]

+

∫ p2

0

dp
′2

{(

1

1 + p′2/m2(p′)

)

×m2(p
′2) exp

[

−
∫ p′

µ

dµ′

µ′ γA(µ
′)

]}

+

∫ p2

0

dp
′2 exp

[

−
∫ p′

µ

dµ′

µ′ γA(µ
′)

]

,

(4.78)

where we imposed the locality condition (4.27) on the transverse part at vanishing momentum
and substituted the expression for the resummed longitudinal part, given in (4.65). The best
fits to the lattice data for this dynamical ζ-scheme are showed in Fig. 4.8. The plots are almost
identical to the previous ones calculated in the critical scheme ζ = 1/3.
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Figure 4.8: Gluon propagator (left) and gluon dressing function (right) in the dynamical ζ-
scheme. g = 2.56 and m = 0.315 GeV at µ = 3 GeV.

4.3.4 Symmetry point scheme

We now explore a scheme that involves a different definition of the renormalized coupling
constant at the renormalization scale. In this scheme the coupling, instead of being defined at
the asymmetric momentum configuration of the ghost-gluon vertex, is defined at the symmetry
point configuration (SP)

g(µ) ≡ gDc̄cA(µ
2, µ2, µ2) = gBZ

1/2
A (µ)Zc(µ)D

B
c̄cA(µ

2, µ2, µ2). (4.79)

Since, as we showed in section 3.4.1, the one-loop correction to the ghost-gluon dressing function
does not vanish in this momentum configuration, the beta function acquire an extra term in
this scheme, as compared to the expression (4.29), where it was given only in terms of the
anomalous dimensions:

βg(µ) = g

(

γA(µ)

2
+ γc(µ) + µ

∂

∂µ
DB

c̄cA(µ
2, µ2, µ2)

)

. (4.80)

From the expression for the vertex dressing function at the symmetry point in (3.53) and from
the derivatives of the scalar three-point functions given in the appendix, we have:

µ
∂

∂µ
DB

c̄cA(µ
2, µ2, µ2) = 2t

d

dt
DB

c̄cA(t)

=
g2N

12(4π)2t2

[

−t2(7t+ 10) +
t(3t5 − 5t4 + 2t3 − 4t2 − t− 4)

t2 + t+ 1
ln t

− 2
(1 + t)(3t5 + 3t4 + 10t3 − 8t2 − 9t− 11)

t2 + t + 1
ln(1 + t)

− 3(t2 + 2t+ 2)(t2 + 4t− 4)
√

t(t + 4)−1 ln

(
√
t + 4−

√
t

√
t + 4 +

√
t

)

+ (t + 1)(t2 + 8t− 4)
√

t(t + 4)−1 ln

(

1

4

(

t +
√

t(t + 4) + 2
)2
)

+t3(2t− 1)J̃0 − (4t4 + 9t3 − t + 4)J̃1(t) + 2(t4 + 5t3 + 4)J̃2(t)
]

.

(4.81)
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Figure 4.9: Ghost dressing function in the symmetry point scheme (SP). g = 3.3 and m = 0.28
GeV at µ = 3 GeV.

We already know from the behaviour of the dressing function at low and high energies (cf.
(3.54) and (3.55)), that this extra factor does not contribute in these limits to the beta func-
tion. However, it quantitatively affects the integration of the Callan-Symanzik equations for
the propagators, as it can be seen in Fig. 4.9 and 4.10. The fits are clearly worse than the pre-
viously obtained ones (for the other flow functions we have used the original TW scheme). This
can be intuitively understood by the following: the vertex momentum configuration at which
the renormalized coupling is defined should be chosen in such a way that where the coupling
appears within the Feynman diagrams, the vertex Feynman rule joined with the propagators
attached to it, give the most relevant contribution to the Feynman integral at that particular
configuration of momenta. In this way the running coupling will be able to encapsulate the
largest contribution of the higher orders in the perturbative expansion. Therefore, since the
ghost propagator is massless, the configuration of vanishing incoming momentum should be
more dominant compared to the symmetric one, despite the fact that the ghost-gluon vertex
contributes with a power of outgoing ghost momentum, which, because of the transversality of
the gluon propagator, is equivalent to the incoming ghost momentum. It is still a power of mo-
mentum in the numerator from the vertex and two powers of momentum from the propagators.

This is for what concerns the ghost-gluon vertex. As we stressed before, the diagrams where
it mostly appears are the dominant ones at low energies, because of the ghost dominance. But
up to this point the renormalized coupling has been made run also in the diagrams where it is
attached to the three and four gluon vertices. Because of the Bose-symmetry of these vertices
and since they are attached to massive propagators, it is clear that a renormalized coupling
defined at the symmetry point would be more suitable for these vertices. This consideration
brought us to consider a scheme involving different couplings defined at different momenta
configuration.

4.3.5 Two running couplings

In this section we consider as distinct the coupling associated to the ghost-gluon vertex, denoted
by g, and the coupling associated to the three-gluon vertex, denoted by g3. The reason for
this, as stated in the end of the previous section, is to have more chance to absorb the largest
amount of momentum contribution at higher orders through the flow integration of the running
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Figure 4.10: Gluon propagator (left) and gluon dressing function (right) in the symmetry point
scheme (SP). g = 3.3 and m = 0.28 GeV at µ = 3 GeV.

couplings related to the corresponding vertices. This procedure, that could be interpreted as an
over-renormalization of the coupling, has actually a deeper physical justification. Because of
the presence of the gluon mass scale, in fact, the couplings associated to different vertices are not
prevented to separately flow towards the IR fixed point. This was in particular pointed out in
[51] where it is shown how the IR high temperature fixed point changes the canonical dimension
of the gluon field compared to the UV Gaussian fixed point, due to the mass parameter,
causing different scalings for the different coupling constants. In particular, only the ghost-gluon
coupling is shown to be marginal in the upper critical dimension of the IR fixed point D = 2,
while the other couplings are irrelevants, another manifestation of the IR ghost dominance.

We therefore intend to study the effect of the separate running of the three different cou-
plings, but for the time being we consider only two of them, identifying the coupling associated
to the four-gluon vertex with the one corresponding to the three-gluon vertex g3. The normal-
ization condition for this latter is defined at the symmetry point of the three-gluon vertex:

g3(µ) ≡ ΓAAA(µ
2, µ2, µ2, g, g3) = Z3/2

A (µ)ΓB
AAA(µ

2, µ2, µ2, gB, g3B), (4.82)

where with ΓAAA(µ2, µ2, µ2, g, g3) we denote the full vertex after the proper contractions at the
symmetry point, where we made explicit its dependence on the two couplings. All the diagrams
that have been calculated in Chapter 3, in fact, are now to be thought with the right factors
of g or g3 according to the type of vertex present in each diagram. Thus, if we set g = g3 we
would have

ΓAAA(µ
2, µ2, µ2, g, g) = gDAAA(µ

2, µ2, µ2), (4.83)

where DAAA(µ2, µ2, µ2) is the three-gluon dressing function defined in (3.64). The renormalized
coupling g is defined as before at the Taylor limit of the ghost-gluon vertex. The anomalous
dimensions and the beta function for the mass parameter are defined using the original Tissier-
Wschebor scheme, given by the conditions (4.15), (4.16), (4.17), re-expressed by putting g and
g3 in their corresponding places.

We now have a coupled system of three flow equations to numerically integrate, constituted
by the two beta functions of the two different couplings and the beta function of the mass
parameter. Special care has to be taken in the UV limit, though, in order to guarantee the
vanishing of the running mass and the merging of the two running couplings, thus restoring the
original BRST symmetry at high energy. In this limit in fact, now βm2 takes the the asymptotic
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form:

βm2 = m2 N

(4π)2

(

−
37

6
g23 +

1

3
g2
)

+
µ2

2

N

(4π)2

(

1− ln

(

µ2

m2

))

(

g23 − g2
)

+O(m2/µ2). (4.84)

We see from the last term that in the deep UV the difference between the squares of the couplings
needs to vanish faster than 1/µ2 in order to recover the asymptotic limit of the beta function
that guarantees the vanishing of the mass parameter as a power of the logarithm of the scale
(cf. (4.39)). To make sure that this is the case we need to investigate the analytical behaviour
of the couplings in the UV. The asymptotic expressions of the other two beta functions are:

βg =g
(γA
2

+ γc
)

=
N

(4π)2

[

−
4

3
g3 −

7

3
gg23 + g30

m2

µ2

(

59

8
+

9

4
ln

(

µ2

m2

))]

+O((m2/µ2)2),

βg3 =
3

2
g3 γA + µ

d

dµ

[

g33
(

Λgl(µ2) + Λsw(µ2)
)

+ g3Λgh(µ2)
]

(4.85)

=
N

(4π)2

[

−
17

4
g33 +

1

2
g3g

2 +
1

12
g3 + g30

m2

µ2

(

1863

88
+

71

33
J̃0 +

9

4
ln

(

µ2

m2

))]

+O
(

(m2/µ2)2
)

,

where in the expression for the beta function of g3 we indicated the different contributions
from the one-loop Feynman diagrams with the coupling constants factored out. In the terms
that decrease with 1/µ2 we neglected the difference between g and g3, indicating with g0 the
asymptotic solution (4.34)

g20(µ) =
3

11

(

N

(4π)2

)−1 1

ln
(

µ2

Λ2
UV

) . (4.86)

Neglecting for the moment these terms in the beta functions and approximating the two different
couplings by linear deviations from the asymptotic solution (4.86), i.e. putting g = g0+ δg and
g3 = g0 + δg3, we obtain a coupled system of differential equations for the linear deviations:

µ
d

dµ
δg =

Ng20
(4π)2

[

−
19

3
δg −

14

3
δg3

]

(4.87)

µ
d

dµ
δg3 =

Ng20
(4π)2

[

5

4
δg −

49

4
δg3

]

, (4.88)

which can be solved by diagonalizing it. We obtain for the following combinations:

µ
d

dµ
δḡ ≡µ

d

dµ

[

−
15

41
δg +

56

41
δg3

]

= −11
Ng20
(4π)2

δḡ

=⇒ δḡ =
C̄

(

ln
(

µ2

Λ2
UV

))3/2
, (4.89)

µ
d

dµ
δg̃ ≡

12

41
µ
d

dµ
[δg − δg3] = −

91

12

Ng20
(4π)2

δg̃

=⇒ δg̃ =
C̃

(

ln
(

µ2

Λ2
UV

))91/88
, (4.90)

where C̄ and C̃ are proper constant factors. In solving (4.90) we substituted the expression
(4.86) for g0. By re-inserting into the beta functions the terms that go with 1/µ2, the inho-
mogenous equations for the combinations δḡ and δg̃ can be solved by the method of variation
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of constants applied to the homogeneous solutions. C̄ and C̃ thus become functions of µ that
satisfy the following equations:

µ
d

dµ
C̄(µ) =

4π

N1/2

(

3

11

)3/2 m2

µ2

(

94593

3608
+

3976

1352
J̃0 +

9

4
ln

(

µ2

m2

))

, (4.91)

µ
d

dµ
C̃(µ) = −

4π

N1/2

(

3

11

)3/2 1
(

ln
(

µ2

m2

))41/88

m2

µ2

(

1821

451
+

284

451
J̃0

)

. (4.92)

We can thus see that, if m2 approaches its asymptotic values m2
0 given in (4.39), the functions

C̄ and C̃ indeed vanish as 1/µ2, and so they do the variations δg and δg3. By rewriting the UV
expression of the mass beta function (4.84), considering that

g23 − g2 ≃ 2g0(δg3 − δg) = −
41

6
δg̃, (4.93)

βm2 ≃ −
35

6

Ng20
(4π)2

m2 +
41

12

Ng0
(4π)2

δg̃ µ2

(

ln

(

µ2

m2

)

− 1

)

, (4.94)

we can therefore assure the well behaviour of the mass at high energies, due to the decay of δg̃
faster than 1/µ2. Operationally what it’s done is integrating the asymptotic equations (4.94)
and (4.92) from infinity (numerically from a very high scale), where the constants of integration
are set to zero (which can be viewed as the proper fine tuning to recover BRST), down to the
renormalization scale, which is chosen at the large momentum µ = 10 GeV in order to rely on
the approximate expressions for the flow functions used and on the linear approximation of the
couplings, fixing the values of g and g3 by inverting (4.90), and from the renormalization scale
down to the IR integrating the full expressions for the flow functions.

It is worthy to stress that, although we consider the separate running of the two couplings,
we fix only one parameter g0 at the renormalization scale. The running of the couplings and
of the mass is plotted in Fig. 4.11. We see that the ghost-gluon coupling g dominates in the
IR the three-gluon coupling g3. Moreover, in the deep IR the three-gluon coupling becomes
negative. This can be also assessed analytically by looking at the IR asymptotic expression for
βg3 :

βg3 = µ
dg3
dµ

=
N

(4π)2

[

1

12
g3 +

1

2
g2g3

]

+O(µ2/m2), (4.95)

which constitutes a first order inhomogenous differential equation for g3. The IR behaviour of
g is already known from (4.32):

Ng2

(4π)2
=

6

ln
(

Λ2
IR

µ2

) , µ2 ≪ Λ2
IR. (4.96)

This allows to solve the inhomogenous equation by the method of variation of constants. The
result is:

g3(µ) =

(

3

8

4π

N

)1/2 ln
(

µ2

Λ2

)

(

ln
(

Λ2
IR

µ2

))3/2
, (4.97)

where Λ in another scale containing the constant of integration. Therefore, for sufficient small
values of µ, the coupling becomes negative (the denominator in (4.97) remains always positive
and the numerator changes sign when µ < Λ), and it then approaches zero as µ tends to zero.

The best fits for the propagators are plotted in Fig. 4.12 and 4.13. Since they are the best
fits to the lattice data obtained so far, we plot also the result for the ghost dressing function.

51



10-4 10-3 10-2 10-1 100 101 102 103

p [GeV]

0

2

4

6

8

10

g(p)
g3(p)

10-3 10-2 10-1 100 101 102 103

p [GeV]

0

0.1

0.2

0.3

0.4

0.5

m
2  [G

eV
2 ]

Figure 4.11: Running couplings g and g3 (left) and running mass (right) in the TW scheme.
g = 2.16 and m = 0.11 GeV at µ = 10 GeV.

This latter does not change compared to the original fit in the TW scheme plotted in Fig. 4.1,
since, as we explained, the parameters are fixed in such a way to optimize the ghost dressing
fit (although for the symmetry point scheme (SP) this was not possible). The fits to the gluon
propagator and gluon dressing function, however, have considerably improved compared to
Fig. 4.2. Considering that the normalization conditions used for the two-point functions are
the same in the two cases, the only difference being the inclusion of the separate running of the
two coupling constants, it would therefore seem that the considerations that lead us to explore
this scenario were indeed correct. This could be viewed as a further evidence of the soft BRST
symmetry breaking.

4.4 Three-point dressing functions

We shall now integrate the Callan-Symanzik equations for the vertices dressing functions, in
some of the renormalization schemes introduced before. In the TW renormalization scheme the
calculations have already been performed in [35].

Let us consider the three-gluon dressing function at the symmetry point configuration of
momenta, meaning the external gluon propagators have the same momentum p2. The renor-
malization group equation (4.7) for this case reads:

ΓAAA(p
2, µ2, g(µ2), m(µ2)) = ΓAAA(p

2, p2, g(p2), m(p2)) exp

{

−
3

2

∫ p

µ

dµ′

µ′ γA(µ
′, g(µ′), m(µ′))

}

,

(4.98)
where, as explained before, ΓAAA(p2), is the three-gluon vertex after the proper contractions,
the ones used to define the dressing function in (3.64), related to the vertex through:

ΓAAA(p
2, µ2, g(µ2), m(µ2)) = g(µ)DAAA(p

2, µ2, g(µ2), m(µ2)). (4.99)

In the case where we considered the running of the two couplings g and g3, in principle there
would be an ambiguity on which coupling to put in (4.99), but since we renormalized at a scale
in the UV (10 GeV) where the two couplings coincide (cf. Fig 4.11), it is indifferent if we choose
g(µ) or g3(µ).

For this renormalization scheme the factor multiplying the exponential in (4.98) is just the
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Figure 4.12: Ghost dressing function in the TW scheme with two couplings. g = 2.16 and
m = 0.11 GeV at µ = 10 GeV.

running coupling g3(p) defined in (4.82). The equation for the dressing function thus reads:

DAAA(p
2, µ2, g(µ2), m(µ2)) =

g3(p)

g(µ)
exp

{

−
3

2

∫ p

µ

dµ′

µ′ γA(µ
′, g(µ′), g3(µ

′), m(µ′))

}

. (4.100)

For the renormalization schemes that use only one coupling defined through the ghost-gluon
vertex, the factor multiplying the exponential is approximated by its perturbative expression
at one-loop order, as explained in the introduction of this chapter. We have:

ΓAAA(p
2, p2, g(p2), m(p2)) = g(p)DAAA(p

2, p2, g(p2), m(p2))

= gB Z3/2
A (p)DB

AAA(p
2, ϵ, g(p2), m(p2))

= g(p)
ZA(p)

Zc(p)
DB

AAA(p
2, ϵ, g(p2), m(p2)),

(4.101)

where we used the definition of the renormalized coupling at the Taylor point

g(p) = gBZ
1/2
A (p)Zc(p). (4.102)

In (4.101)DB
AAA(p

2, ϵ, g(p2), m(p2)) is given by the bare perturbative dressing function in (3.65),
putting t = p2/m(p2) and substituting the coupling constant with its running function. These,
in fact, are the conditions that allow us to rely on the perturbative approximation. It is
noteworthy that the factor ZA/Zc is indeed required in order to cancel the divergent pole
present in the bare dressing function. The renormalization group equation for the three-gluon
dressing function for the schemes that use one coupling defined at the Taylor point, is therefore
reduced to

DAAA(p
2, µ2, g(µ2), m(µ2)) =

g(p2)

g(µ2)

ZA(p)

Zc(p)
DB

AAA(p
2, ϵ, g(p2), m(p2))

× exp

{

−
3

2

∫ p

µ

dµ′

µ′ γA(µ
′, g(µ′), m(µ′))

}

.

(4.103)

The integrated three-gluon dressing function is plotted in Fig. 4.14 for the renormalization
scheme that exploits the running of the two couplings (2g) and for two schemes that use only one
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Figure 4.13: Gluon propagator (left) and gluon dressing function (right) in the TW scheme
with two couplings. g = 2.16 and m = 0.11 GeV at µ = 10 GeV.

coupling, the original Tissier-Wschebor scheme (TW) and the critical ζ-scheme corresponding to
ζ = 1/3. As one can see the dressing function integrated with the two running coupling behaves
considerably differently in the IR, with a milder logarithmically behaviour. In particular, its
behaviour is much closer to the one found by solving its DSE [80], as it can be seen in Fig.
4.15. The zero crossing scale at which the dressing function becomes negative is also closer to
the DSE solution, corresponding to about 80 MeV, being 30 MeV for the solution with two
couplings and about 500 MeV for the solutions with one coupling.

It is important to stress that once the parameters g and m2 are fixed at the renormalization
scale by fitting the propagators with the lattice data, the dressing functions for the vertices are
completely determined, according to the renormalization scheme used. In this description of
Yang-Mills theory, thus, the whole dimensional physical content is contained in two parameters,
the coupling constant, that implicitly fixes the unit of momentum scale, and the mass parameter
that describes the whole IR behaviour and should somehow be related to ΛQCD, although in
this description is a free parameter.

In a similar fashion we can obtain the Callan-Symanzik equation for the ghost-gluon dressing
function at the symmetry point:

Γc̄cA(p
2, µ2, g(µ2), m(µ2)) = Γc̄cA(p

2, p2, g(p2), m(p2)) exp

{

−
∫ p

µ

dµ′

µ′

(

1

2
γA(µ

′) + γc(µ
′)

)}

,

(4.104)
which for the dressing function reads:

Dc̄cA(p
2, µ2, g(µ2), m(µ2)) =

g(p)

g(µ)
DB

c̄cA(p
2, g(p2), m(p2)) exp

{

−
∫ p

µ

dµ′

µ′

(

1

2
γA(µ

′) + γc(µ
′)

)}

,

(4.105)
where the finite bare dressing function at the symmetry point is the one calculated at one-loop
order, given in (3.53). Note that in the Taylor scheme the bare dressing function is equal to
the renormalized one. We have in fact:

Dc̄cA(p
2, µ2) =

1

g(µ)
Γc̄cA(p

2, µ2) =
Z1/2

A (µ)Zc(µ)

g(µ)
ΓB
c̄cA(p

2, µ2)

= Z1/2
A (µ)Zc(µ)

gB
g(µ)

DB
c̄cA(p

2) = DB
c̄cA(p

2).

(4.106)
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Figure 4.14: Three-gluon dressing function at the symmetry point in linear (left) and logarith-
mic (right) scale, calculated for the renormalization schemes with two couplings (2g) and with
one coupling at the Taylor point in the Tissier-Wschebore scheme (TW) and in the critical
derivative scheme (Dc).

The integrated ghost-gluon dressing function is shown in Fig. 4.16, where it is plotted for
the configuration of momenta at the symmetry point and at vanishing gluon momentum. As
it can be seen, it shows little deviation from its tree-level value, as assessed by the Taylor
argument.
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Figure 4.15: Three-gluon dressing function at the symmetry point in the scheme with two
couplings (2g) compared with the DSE solution.
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Figure 4.16: Ghost-gluon dressing function at the symmetry point (left) and at vanishing
gluon momentum (right), calculated for the renormalization schemes with two couplings (2g)
and with one coupling at the Taylor point in the Tissier-Wschebore scheme (TW) and in the
critical derivative scheme (Dc).
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Chapter 5

Conclusions

In this work we have taken a closer look at the analysis carried out by Tissier and Wschebor
[10, 35] who first calculated the one-loop corrections of the Yang-Mills two and three point
functions in Landau gauge with the insertion of a massive gluon. This additional mass term
was included in order to account for the effect of the Gribov horizon in the IR. In fact, in the
general framework of the refined version of the Gribov-Zwanziger action constructed in order to
overcome the problem of the Gribov ambiguity, a massive IR behaviour for the gluon propagator
is found, in agreement with the latest lattice data and with a particular solution of the DSEs.
We repeated the calculations done in [10, 35], exploring other possible renormalization schemes
in order to capture the largest non perturbative contributions throughout the resummation with
the renormalization group equations, performed to better connect the IR massive fixed point
to the massless UV one. We understood in particular the crucial role in every renormalization
scheme of the longitudinal part of the gluon two-point function, that must be included, despite
in Landau gauge the gluon propagator is transverse, in the definition of the renormalized
mass parameter and in the normalization condition for the gluon two-point function, otherwise
the scheme would not be IR safe, i.e. a Landau pole would be generated invalidating the
perturbative approach, and/or the flow equations would not reproduce the correct behaviour
in the UV, restoring the original BRST symmetry through the vanishing of the running mass
parameter at high energies.

We then played with the freedom offered by renormalization schemes that involve the deriva-
tive of the two-point functions in the normalization conditions, and found better quantitative
agreement with the lattice data. The best fit, however, was found by letting separately run the
coupling constants corresponding to the ghost-gluon vertex, renormalized at the Taylor config-
uration of momenta (vanishing incoming ghost momentum) and the one corresponding to the
three-gluon vertex, renormalized at the symmetry point configuration of momenta. This result,
in particular, suggests that this framework is the correct one to describe Yang-Mills theory at
all scales within a perturbative approach, and that the soft breaking of the BRST symmetry,
allegedly originated by the presence of the Gribov horizon, has to be taken seriously, since it
causes the different couplings to scale differently in the IR.
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Appendix A

Two-points scalar integrals

Following the Passarino-Veltman notation [64] we define the general two-point scalar integral
as:

B0(p
2, m2

0, m
2
1) =

∫

dDl

(2π)D
1

(l2 +m2
0) ((l − p)2 +m2

1)
, (A.1)

and the one-point (tadpole) integral:

A0(m
2) =

∫

dDl

(2π)D
1

(l2 +m2)
. (A.2)

These are easily evaluated in dimensional regularisation by introducing Feynman parameters.
For the ones that are needed in the calculations of this thesis only a single mass parameter
appears and the corresponding expressions are given, in 4 dimensions (D = 4− ϵ):

B0(p
2, m2, m2) =

1

(4π)2

⎧

⎨

⎩

2

ϵ
+ 2 +

√

4m2

p2
+ 1 log

⎡

⎣

√

4 + p2

m2 −
√

p2

m2

√

4 + p2

m2 +
√

p2

m2

⎤

⎦

⎫

⎬

⎭

, (A.3)

B0(p
2, m2, 0) =

1

(4π)2

{

2

ϵ
+ 2−

(

1 +
m2

p2

)

log

(

1 +
p2

m2

)}

, (A.4)

B0(p
2, 0, 0) =

1

(4π)2

{

2

ϵ
+ 2− log

(

p2

m2

)}

, (A.5)

A0(m
2) =−

m2

(4π)2

{

2

ϵ
+ 1

}

, (A.6)

where 2
ϵ =

2
ϵ − γE − log(m2/4πκ2), being γE the Euler constant and κ an arbitrary scale given

by the dimension of the coupling constant, g = g κ
ϵ
2 (g is dimensionless).

For example, in order to obtain the expression in (A.3) we introduce a Feynman parameter,
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writing:

B0(p
2, m2, m2) =

∫

dDl

(2π)D
1

(l2 +m2) ((l − p)2 +m2)
=

∫ 1

0

dx

∫

dDl

(2π)D
1

[l2 + x(1− x)p2 +m2]2

=
Γ(2−D/2)

(4π)D/2

∫ 1

0

dx
1

(x(1 − x)p2 +m2)2−D/2

=
D=4−ϵ

Γ( ϵ2)

(4π)2−ϵ/2

∫ 1

0

[

1−
ϵ

2
log
[

x(1− x)p2 +m2
]

]

=
1

(4π)2

{

2

ϵ
− γE + log(4π)−

∫ 1

0

log
[

x(1 − x)p2 +m2
]

}

=
1

(4π)2

⎧

⎨

⎩

2

ϵ
+ 2 +

√

4m2

p2
+ 1 log

⎡

⎣

√

4 + p2

m2 −
√

p2

m2

√

4 + p2

m2 +
√

p2

m2

⎤

⎦

⎫

⎬

⎭

,

(A.7)

where in the first line we used the Feynman’s formula:

1

Aα1

1 · · ·Aαn
n

=
Γ(
∑

i α1)
∏

i αi

∫ 1

0

dx1 · · · dxn δ(x1 + · · ·xn − 1)

∏

i x
αi−1
i

(
∑

i xiAi)
∑

i αi
, (A.8)

in the second line we integrated the D dimensional loop integral using:

∫

dDl

(2π)D
(l2)a

(l2 +∆)b
=

Γ(b− a−D/2)Γ(a+D/2)

(4π)D/2Γ(b)Γ(D/2)
∆D/2+a−b, (A.9)

and in the third line we expanded the Γ function around its pole, neglecting terms of order ϵ:

Γ
(

−n +
ϵ

2

)

=
(−1)n

n!

[

2

ϵ
− γE +

n
∑

k=1

1

k
+O(ϵ)

]

. (A.10)

In three dimensions the same scalar integrals, now convergent, are given by the following
expressions (D=3):

B0(p
2, m2, m2) =

1

4π

arctan
(

p
2m

)

p
, (A.11)

B0(p
2, m2, 0) =

1

4π

arctan
(

p
m

)

p
, (A.12)

B0(p
2, 0, 0) =

1

8p
, (A.13)

A0(m
2) =−

m

(4π)
. (A.14)
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Appendix B

Three-point scalar integrals

The notation for the three-point scalar integral is:

C0(p
2
1, (p1 − p2)

2, p22, m
2
0, m

2
1, m

2
2) =

∫

dDl

(2π)D
1

(l2 +m2
0) ((l + p1)2 +m2

1) ((l + p2)2 +m2
2)

. (B.1)

In order to reduce (B.1) in the simplest form it is useful tu use the Cheng-Wu trick [11] that
consists in loosing two of the three Feynman parameters from the Dirac delta in (A.8), letting
them go to infinity:

C0(p
2
1, (p1 − p2)

2, p22, m
2
0, m

2
1, m

2
2) = 2

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz δ(x+ y + z − 1) (B.2)

×
∫

dDl

(2π)D
1

[x(l2 +m2
0) + y((l + p1)2 +m2

1) + z((l + p2)2 +m2
2)]

3

= 2

∫ ∞

0

dy

∫ ∞

0

dz

∫

dDl

(2π)D
1

[(l2 +m2
0) + y((l + p1)2 +m2

1) + z((l + p2)2 +m2
2)]

3

= 2

∫ ∞

0

dy

∫ ∞

0

dz
1

(1 + y + z)3

∫

dDl

(2π)D
1

[

l2 + y(1+z)p2
1
+z(1+y)p2

2
−2yzp1·p2+(1+y+z)(m2

0
+ym2

1
+zm2

2
)

(1+y+z)2

]3

=
Γ(3−D/2)

(4π)D/2

∫ ∞

0

dy

∫ ∞

0

dz (1 + y + z)3−D (B.3)

×
[

y(1 + z)p21 + z(1 + y)p22 − 2yzp1 · p2 + (1 + y + z)(m2
0 + ym2

1 + zm2
2)
]D/2−3

.

B.1 Symmetry point

At the symmetry point configuration p21 = p22 = (p1−p2)2 = µ2 in four dimensions and with only
one mass parameter, it is possible to perform an integration over one Feynman parameter. For
example, the scalar integral with one massive propagator, at the symmetry point with D = 4
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reads:

C0(µ
2, µ2, µ2, m2, 0, 0) =

1

(4π)2

∫ ∞

0

dy

∫ ∞

0

dz
1

(1 + y + z) [µ2(y + z + yz) + (1 + y + z)m2]

= −
1

(4π)2µ2

∫ ∞

0

dy

∫ ∞

0

dz
1

1 + y + y2

(

1

1 + y + z
−

1

z + y(µ2+m2)
(1+y)µ2+m2

)

=
1

(4π)2µ2

∫ ∞

0

dy
1

1 + y + y2
log

(

(1 + y)(µ2(1 + y) +m2)

y(µ2 +m2) +m2

)

=
1

(4π)2µ2

∫ 1

0

dx
1

1− x+ x2
log

(

x+ t

x(1 + xt)

)

, t =
µ2

m2

(B.4)

where in the last line we substituted x = 1/(1 + y), in order to have a compact domain of
integration, which is suitable for numerical evaluation. In a similar fashion one can reduce the
three-point scalar integrals at the symmetry point with two or three massive propagators:

C0(µ
2, µ2, µ2, m2, m2, 0) =

1

(4π)2µ2

∫ 1

0

dx
1

1− x+ x2
log

(

1 + t

1 + xt(1 − x)

)

, (B.5)

C0(µ
2, µ2, µ2, m2, m2, m2) =

1

2(4π)2µ2

∫ 1

0

dx
1

1− x+ x2
{− log (1 + x(1 − x)t) (B.6)

+
t

√

t2 + 4t(1− x+ x2)
log

(

t + 2 +
√

t2 + 4t(1− x+ x2)

t + 2−
√

t2 + 4t(1− x+ x2)

)}

,

and the massless three-point scalar integral:

C0(µ
2, µ2, µ2, 0, 0, 0) = −2

1

(4π)2µ2

∫ 1

0

dx
1

1− x+ x2
log (x)

=
1

18(4π)2µ2

(

ψ′
(

1

6

)

+ ψ′
(

1

3

)

− ψ′
(

2

3

)

− ψ′
(

5

6

))

,

(B.7)

where ψ(z) = Γ′(z)/Γ(z) is the digamma function.
Since at the symmetry point the result for the integrals depends only on the number of

massive scalar propagators and not on which one is massive and which one is not, we condense
the notation and call the dimensionless part of these integrals J̃i(t), where the lower index
stands for the number of massive propagators, i.e. J̃1 = µ2(4π)2C0(µ2, µ2, µ2, m2, 0, 0). It is
noteworthy that the derivatives of J̃i(t) w.r.t. their dimensionless parameter t = µ2/m2 have
compact expressions:

dJ̃1

dt
= −

log(t)− 2 log(1 + t)

t2 + t + 1
, (B.8)

dJ̃2

dt
=

log

(

1
4

(

2 + t +
√

t(t + 4)
)2
)

(1 + t)
√

t(t+ 4)
, (B.9)

dJ̃3

dt
=

log
(√

t+4+
√
t√

t+4−
√
t

)

+ log

(

t+2+
√

t(t+4)

t+2−
√

t(t+4)

)

(t+ 3)
√

t(t+ 4)
. (B.10)
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Here below we give the asymptotic expressions for these scalar integrals in the IR limit (t ≪ 1)
and in the UV limit (t ≫ 1), which are used in the evaluation of the asymptotic behaviour
of the Feynman diagrams that is needed for the numerical integration of the renormalization
group equations. Since these limits correspond to branch points for some of these integrals,
the fastest way to get the asymptotic behaviours is to expand the derivative expressions given
above and then integrate. In the IR we have:

J̃1(t) = t(1− log(t)) + t2
(

log(t)

2
+

3

4

)

− t3 + t4
(

23

48
−

log(t)

4

)

+ t5
(

log(t)

5
+

19

150

)

+O(t6),

(B.11)

J̃2(t) = t−
7

12
t2 +

2

5
t3 −

169

560
t4 +

1523

6300
t5 +O(t6), (B.12)

J̃3(t) =
t

2
−

t2

8
+

t3

30
−

31

3360
t4 +

11

4200
t5 +O(t6). (B.13)

The expansions in the UV are:

J̃1(t) = J̃0 −
log(t) + 1

t
+

1
2 log(t)−

3
4

t2
+

1

t3
−

1
4 log(t) +

23
48

t4
+O

(

1

t5

)

, (B.14)

J̃2(t) = J̃0 −
2 log(t) + 2

t
+

3 log(t)− 1
2

t2
−

6 log(t)− 4

t3
+

29
2 log(t)− 317

24

t4
+O

(

1

t5

)

, (B.15)

J̃3(t) = J̃0 −
3 log(t) + 3

t
+

15
2 log(t) + 3

4

t2
−

21 log(t)− 6

t3
+

249
4 log(t)− 515

16

t4
+O

(

1

t5

)

. (B.16)

In three dimensions one can perform both of the integrals over the Feynman parameters, due to
the simplification occurring in (B.2) (the factor (1+y+z)3−D becomes 1). For D = 3 we define
three-point scalar integrals at the symmetry point J̃i(t) as before, the only difference being the
factor multiplying the C0 functions is now µ3(4π), in order for them to be dimensionless. Their
expressions are:

J̃0 =
π

2
, (B.17)

J̃1(t) =
t√

1 + t+ t2
arctan

(

√

1 + t+ t2

t

)

, (B.18)

J̃2(t) =
t

1 + t
arctan

(
√
t

2

)

, (B.19)

J̃3(t) =

√

t

t+ 3

[

arctan(
√
t+ 3) + arctan

(

t+ 2

2
√
t+ 3

)

−
π

2

]

. (B.20)

The expressions for the three-point scalar integrals with one and two massive propagators are
also given in [17].

B.2 Soft momentum

In the evaluation of the three-point vertices diagrams in the limit of an external vanishing gluon
momentum, the following three-point scalar integrals are required (D = 4− ϵ):
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C0(k
2, k2, 0, 0, 0, 0) =

∫

dDl

(2π)D
1

l4 (l + k)2
=

1

(4π)2m2t

[

−
2

ϵ
+ log(t)

]

, t =
k2

m2
(B.21)

C0(k
2, k2, 0, 0, m2, 0) =

∫

dDl

(2π)D
1

l4 ((l + k)2 +m2)
(B.22)

=
1

(4π)2m2(1 + t)

[

−
2

ϵ
+ t−1(t− 1) log(1 + t)

]

, (B.23)

C0(k
2, k2, 0, m2, 0, m2) = C0(0, k

2, k2, m2, m2, 0) =

∫

dDl

(2π)D
1

(l2 +m2)2 (l + k)2
(B.24)

=
1

(4π)2m2t
log(1 + t), (B.25)

C0(0, k
2, k2, m2, m2, m2) =

∫

dDl

(2π)D
1

(l2 +m2)2 ((l + k)2 +m2)
(B.26)

=
1

(4π)2m2
√

t(t+ 4)
log

(
√
t + 4 +

√
t√

t+ 4−
√
t

)

. (B.27)
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