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Resumen

Los principales temas de esta tesis son invariantes cardinales, P-puntos y familias
MAD. Respondemos a varias preguntas abiertas encontradas en la literatura.
Los principales resultados originales de esta tesis son los siguientes:

1. Hay una familia MAD que es +-Ramsey. Esto responde a una vieja pre-
gunta de Michael Hrušák.

2. No hay P -puntos en el modelo de Silver, respondiendo a una pregunta de
Michael Hrušák (esto es trabajo conjunto con David Chodounský).

3. La afirmación ”No hay P-puntos” es consistente con que el continuo sea
arbitrariamente grande, esto responde a una pregunta abierta con respecto
a P-puntos, esto es trabajo conjunto con David Chodounský.

4. Un ideal Boreliano es Shelah-Steprāns si y sólo si esta Katětov arriba
de FIN×FIN. Esto implica que las familias Shelah-Steprāns MAD tienen
propiedades de indestructibilidad muy fuertes (Esto es parte de un trabajo
conjunto con Michael Hrušák, Dilip Raghavan y Joerg Brendle).

5. Familias MAD Cohen indestructible existen genéricamente si y sólo si b = c
(Esto es parte de un trabajo conjunto con Michael Hrušák, Ariet Ramos
y Carlos Mart́ınez).

6. non(M) = ω1 implica el principio (∗) de Sierpiński. Esto responde a una
pregunta de Arnie Miller.

Palabras clave: invariantes cardinales, ideales Shelah-Steprāns, P-puntos,
familias MAD, principio (∗) de Sierpiński.
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Abstract

The main topics of this thesis are cardinal invariants, P -points and MAD fami-
lies. We answer several open questions found in the literature. The main original
results on this thesis are the following:

1. There is a +-Ramsey MAD family. This answers an old question of Michael
Hrušák .

2. There are no P -points in the Silver model, answering a question of Michael
Hrušák (this is joint work with David Chodounský).

3. The statement “There are no P -points” is consistent with the continuum
being arbitrarily large, this answers an open question regarding P -points
(see [68], this is joint work with David Chodounský).

4. A Borel ideal is Shelah-Steprāns if and only if it is Katětov above FIN×FIN.
This entails that Shelah-Steprāns MAD families have very strong inde-
structibility properties (This is part of a joint work with Michael Hrušák,
Dilip Raghavan and Joerg Brendle).

5. Cohen indestructible MAD families exist generically if and only if b = c
(This is part of a joint work with Michael Hrušák, Ariet Ramos and Carlos
Mart́ınez).

6. non(M) = ω1 implies the (∗) principle of Sierpiński. This answers a
question of Arnie Miller.
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Introduction

“Set theory was born on that December 1873 day when Cantor established
that the real numbers are uncountable.”

Akihiro Kanamori

Georg Cantor is considered to be the father of set theory, he dared to do
something that seemed impossible: comparing the size of two different infinities.
Currently, we may use the infinite cardinal numbers {ℵα | α ∈ OR} to compare
the size of infinite sets (where OR denotes the class of ordinals). For every infinite
X there is an ordinal number α such that X and ℵα are equipotent. Moreover, if
α < β then the size of ℵα is strictly smaller than the one of ℵβ . In this way, ℵ0 is
the size of the smallest infinite set, this is the cardinality of the natural numbers,
ω. Cantor showed that the set R of real numbers is uncountable, so there is
α > 0 such that ℵα and R are equipotent. The assertion that R has size ℵ1 is
known as the Continuum Hypothesis (CH). Using the constructible universe,
Gödel showed that the Continuum Hypothesis is consistent with the axioms of
ZFC. Several years later, Paul Cohen developed the technique of forcing and
showed that the negation of the Continuum Hypothesis is also consistent. In
fact, the size of the real numbers (denoted by c) can be as big as we want it to
be.

The main topics of this thesis are cardinal invariants, P -points and MAD
families. Cardinal invariants of the continuum are cardinal numbers that are
bigger than ℵ0 and smaller or equal than c. Of course, they are only interesting
when they have some combinatorial or topological definition. Currently, there
is a long list of cardinal invariants that are being studied and compared by set
theorists. An almost disjoint family is a family of infinite subsets of ω such that
the intersection of any two of its elements is finite. A MAD family is a maximal
almost disjoint family. The study of these families has become very important
in set theory and topology. It is easy to construct MAD families; however,
it is very hard to construct MAD families with interesting combinatorial or
topological properties. Perhaps paradoxically, it is also very hard to construct
models of ZFC where certain types of MAD families do not exist. An ultrafilter
U on ω is called a P-point if every countable B ⊆ U there is X ∈ U such that
X \ B is finite for every B ∈ B. This kind of ultrafilters has been extensively

ix



x INTRODUCTION

studied, however there is still a large number of open questions about them.

In the preliminaries we recall the principal properties of filters, ultrafilters,
ideals, MAD families and cardinal invariants of the continuum. We present the
construction of Shelah of a completely separable MAD family under s ≤ a. None
of the results in this chapter are due to the author.

The second chapter is dedicated to a principle of Sierpiński. The principle
(∗) of Sierpiński is the following statement: There is a family of functions
{ϕn : ω1 −→ ω1 | n ∈ ω} such that for every I ∈ [ω1]

ω1 there is n ∈ ω for which
ϕn [I] = ω1. This principle was recently studied by Arnie Miller. He showed
that this principle is equivalent to the following statement: There is a set X =
{fα | α < ω1} ⊆ ωω such that for every g : ω −→ ω there is α such that if β > α
then fβ ∩ g is infinite (sets with that property are referred to as IE-Luzin sets).
Miller showed that the principle of Sierpiński implies that non(M) = ω1. He
asked if the converse was true, i.e. does non(M) = ω1 imply the principle (∗) of
Sierpiński? We answer his question affirmatively. In other words, we show that
non(M) = ω1 is enough to construct an IE-Luzin set. It is not hard to see that
the IE-Luzin set we constructed is meager. This is no coincidence, because with
the aid of an inaccessible cardinal, we construct a model where non(M) = ω1

and every IE-Luzin set is meager.

The third chapter is dedicated to a conjecture of Hrušák. In [26] Michael
Hrušák conjectured the following: Every Borel cardinal invariant is either at
most non(M) or at least cov(M) (it is known that the definability is an im-
portant requirement, otherwise a would be a counterexample). Although the
veracity of this conjecture is still an open problem, we were able to obtain some
partial results: The conjecture is false for “Borel invariants of ωω1 ” nevertheless,
it is true for a large class of definable invariants. This is part of a joint work
with Michael Hrušák and Jindřich Zapletal.

In the fourth chapter we present a survey on destructibility of ideals and
MAD families. If P is a forcing notion and A is a MAD family, we say that
P destroys A if A is not maximal after forcing with P. It is well known that
there is a MAD family that is destroyed by every forcing adding a new real, but
construting indestructible MAD families is much more difficult and there are
still many fundamental open questions in this topic. We prove several classic
theorems, but we also prove some new results. For example, we show that
every almost disjoint family of size less than c can be extended to a Cohen
indestructible MAD family is equivalent to b = c (this is part of a joint work
with Michael Hrušák, Ariet Ramos and Carlos Mart́ınez). A MAD family A
is Shelah-Steprāns if for every X ⊆ [ω]

<ω \ {∅} either there is A ∈ I (A) such
that s ∩ A 6= ∅ for every s ∈ X or there is B ∈ I (A) that contains infinitely
many elements of X (where I (A) denotes the ideal generated by A). This
concept was introduced by Raghavan in [53], which is connected to the notion
of “strongly separable” introduced by Shelah and Steprāns in [61]. We prove
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that Shelah-Steprāns MAD families have very strong indestructibility properties:
Shelah-Steprāns MAD families are indestructible for “many” definable forcings
that does not add dominating reals (this statement will be formalized in the
fourth chapter). According to the author’s best knowledge, this is the strongest
notion (in terms of indestructibility) that has been considered in the literature
so far. In spite of their strong indestructibility, Shelah-Steprāns MAD families
can be destroyed by a ccc forcing that does not add unsplit or dominating reals.
We also consider some strong combinatorial properties of MAD families and
show the relationships between them (This is part of a joint work with Michael
Hrušák, Dilip Raghavan and Joerg Brendle).

The fifth chapter is one of the most important chapters in the thesis. A MAD
family A is called +-Ramsey if every tree that branches into I (A)-positive sets
has an I (A)-positive branch. Michael Hrušák’s first published question is the
following: Is there a +-Ramsey MAD family? It was previously known that
such families can consistently exist. However, there was no construction of such
families using only the axioms of ZFC. We solve this problem by constructing
such a family without any extra assumptions. Our proof is divided by cases: in
case a < s we show that there is a Miller-indestructible MAD family and that
every Miller indestructible MAD family is +-Ramsey. In case s ≤ a we construct
a +-Ramsey MAD family using Shelah’s technique for constructing a completely
separable MAD family. The existence of +-Ramsey MAD families has interesting
applications in topological games on Fréchet spaces, the reader may consult [27]
for more details.

In the fourth and fifth chapters, we introduce several notions of MAD fam-
ilies, in the sixth chapter we prove several implications and non implications
between them. We construct (under CH) several MAD families with different
properties.

In the seventh chapter we build models without P -points. We show that
there are no P -points after adding Silver reals either iteratively or by the side
by side product. These results have some important consequences: The first
one is that is its possible to get rid of P -points using only definable forcings.
This answers a question of Michael Hrušák. We can also use our results to build
models with no P -points and with arbitrarily large continuum, which was also
an open question. These results were obtained with David Chodounský.

In the last chapter we collect some important open problems concerning
MAD families.

The main contributions of this thesis are the following:

1. There is a +-Ramsey MAD family. This answers an old question of Michael
Hrušák (see [20]).
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2. There are no P -points in the Silver model, answering a question of Michael
Hrušák (this is joint work with David Chodounský [15]).

3. The statement “There are no P -points” is consistent with the continuum
being arbitrarily large, this answers an open question regarding P -points
(see [68], this is joint work with David Chodounský [15]).

4. Every Miller indestructible MAD family is +-Ramsey. This improves a
result of Hrušák and Garćıa Ferreira (see [20]).

5. A Borel ideal is Shelah-Steprāns if and only if it is Katětov above FIN×FIN.
This entails that Shelah-Steprāns MAD families have very strong inde-
structibility properties (This is part of a joint work with Michael Hrušák,
Dilip Raghavan and Joerg Brendle [7]).

6. Shelah-Steprāns MAD families exist under ♦ (b) . In particular, ♦ (b) is
strong enough to produce Cohen or random indestructible MAD families
(This answers a question of Hrušák and Garćıa Ferreira, see [7]).

7. Cohen indestructible MAD families exist generically if and only if b = c
(This is part of a joint work with Michael Hrušák, Ariet Ramos and Carlos
Mart́ınez [22]).

8. non(M) = ω1 implies the (∗) principle of Sierpiński. This answers a
question of Arnie Miller (see [21]).

9. The statement “non(M) = ω1” and every IE-Luzin set is meager is con-
sistent (see [21]).

10. Partial solutions to the conjecture of Hrušák; mainly there is a “Borel
cardinal invariant of ωω1 ” that is not below non(M) nor is above cov(M) .
However, the conjecture is true for a large class of Borel cardinal invariants
(This is part of a joint work with Michael Hrušák and Jindřich Zapletal).



Chapter 1

Preliminaries

1.1 Notation

Our notation is mostly standard. We say that T ⊆ κ<κ is a tree if it is closed
under taking initial segments. If s ∈ T we define sucT (s) = {α | s_α ∈ T}
(where s_α is the sequence that has s as an initial segment and α in the last
entry). If T ⊆ ω<ω we say that f ∈ ωω is a branch of T if f � n ∈ T for
every n ∈ ω. The set of all branches of T is denoted by [T ]. For every n ∈ ω
we define Tn = {s ∈ T | |s| = n} . If s ∈ ω<ω then the cone of s is defined as
〈s〉 = {f ∈ ωω | s ⊆ f} . If A ⊆ ω we define A0 = ω \ A and A1 = A. In this
thesis, the expression “for almost all” means “for all but finitely many”. We
say A ⊆∗ B (A is an almost subset of B) if A \B is finite.

With respect to forcing, in this thesis, if p ≤ q then p is “stronger” than q,
or p carries more information than q. We denote by V the collection of all sets.

1



2 CHAPTER 1. PRELIMINARIES

1.2 Filters and ideals

Filters and ideals play a major role in set theory. Let X be a non empty
set. Informally, we can think of filters on X as being a collection of “big” subsets
of X while ideals are collections of “small” subsets of X. The formal definitions
are the following: (for us, all ideals contain all finite sets).

Definition 1 Let X be a set.

1. We say that F ⊆ ℘ (X) is a filter on X if the following conditions hold:

(a) X ∈ F and ∅ /∈ F .
(b) If A ∈ F and A ⊆∗ B then B ∈ F .
(c) If A,B ∈ F then A ∩B ∈ F .

2. We say that I ⊆ ℘ (X) is an ideal on X if the following conditions hold:

(a) X /∈ I and ∅ ∈ I.
(b) If A ∈ I and B ⊆∗ A then B ∈ I.
(c) If A,B ∈ I then A ∪B ∈ I.

3. An ideal I is a σ-ideal if it is closed under countable unions.

In this thesis we will be mainly interested in the cases when X is a count-
able set or a Polish space. Given a family B of subsets of X, we define B∗ =
{X rB | B ∈ B} . It is easy to see that if F is a filter then F∗ is an ideal (called
the dual ideal of F) and if I an ideal then I∗ is a filter (called the dual filter of
I). If I is an ideal on X, we let I+ = ℘ (X)rI be the family of I-positive sets.
If F is a filter, we define F+ = (F∗)+ ; it is easy to see that F+ is the family
of all sets that have non-empty (infinite) intersection with every element of F .
If A ∈ I+ then the restriction of I to A, defined as I �A = ℘ (A) ∩ I, is an
ideal on A. The ortoghonal of I (denoted by I⊥) is the set of all X ⊆ ω such
that X ∩ A is finite for every A ∈ I (this definition also applies for arbitrary
subfamilies of ℘ (ω) , not just ideals).

Definition 2 Let I be an ideal on ω (or any countable set).

1. I is tall if for every X ∈ [ω]
ω

there is Y ∈ I such that Y ∩X is infinite (this
definition also applies to arbitrary subfamilies of ℘ (ω) , not just ideals).

2. I is ω-hitting if for every {Xn | n ∈ ω} ⊆ [ω]
ω

there is Y ∈ I such that
Y ∩Xn is infinite for every n ∈ ω.

3. I is a P+-ideal if for every ⊆-decreasing family {Xn | n ∈ ω} ⊆ I+ there
is Y ∈ I+ such that Y ⊆∗ Xn for every n ∈ ω.
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4. I is a P-ideal if for every family {Xn | n ∈ ω} ⊆ I there is Y ∈ I such
that Xn ⊆∗ Y for every n ∈ ω.

5. I is a Q+-ideal if for every X ∈ I+ and every partition {Pn | n ∈ ω} of X
into finite sets, there is A ∈ I+ ∩ ℘ (X) such that |A ∩ Pn| ≤ 1 for every
n ∈ ω.

6. I is selective if for every ⊆-decreasing family {Yn | n ∈ ω} ⊆ I+ there is
X = {xn | n ∈ ω} such that the following holds:

(a) X ∈ I+.
(b) X ⊆ Y0.
(c) X \ (xn + 1) ⊆ Yxn .

The previous definitions extend to filters as well. We will say that a filter F
is P+ if F∗ is P+ and similarly for the other definitions.

Lemma 3 If I is selective then I is both P+ and Q+.

Proof. If I is selective it is clearly P+ so we only need to prove that it is also
Q+. Let X ∈ I+ and {Pn | n ∈ ω} a partition of X into finite sets. For every
n ∈ ω define Yn = X \ max(

⋃
i≤n

Pi). Then {Yn | n ∈ ω} ⊆ I+ is a decreasing

sequence and if Z witnesses the selectiveness of I then Z is the set we were
looking for.

A filter U is an ultrafilter if it is a maximal filter. Ultrafilters are of fun-
damental importance in practically every branch of set theory. It is easy to
construct an ultrafilter using the Axiom of Choice.

Definition 4 Let U be an ultrafilter in ω.

1. U is a P -point if for every decreasing {Xn | n ∈ ω} ⊆ U there is X ∈ U
such that X ⊆∗ Xn for every n ∈ ω.

2. U is a Q-point if for every partition {Pn | n ∈ ω} of ω into finite sets,
there is X ∈ U such that |X ∩ Pn| ≤ 1 for every n ∈ ω.

3. U is a Ramsey ultrafilter if for every partition {Pn | n ∈ ω} of ω, either
there is n ∈ ω such that Pn ∈ U or there is X ∈ U such that |X ∩ Pn| ≤ 1
for every n ∈ ω.

We now have the following:

Proposition 5 (Mathias [43]) Let U be an ultrafilter. The following are equiv-
alent:
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1. U is Ramsey.

2. U is a P -point and a Q-point.

3. U is selective.

4. For every coloring c : [ω]
2 −→ 2 there is X ∈ U that is c-monochromatic.

Proof. Fix U an ultrafilter. Clearly any Ramsey ultrafilter is both a P -point
and a Q-point. We will first prove that 2 implies 3. Let {Yn | n ∈ ω} ⊆ U be
a decreasing sequence. We may assume n /∈ Yn so

⋂
Yn = ∅. We now define

P0 = ω \ Y0 and Pn+1 = Yn \ Yn+1. Clearly P = {Pn | n ∈ ω} is a partition of
ω and P ∩ U = ∅. Since U is a P -point, there is X ∈ U such that X ∩ Pn is
finite for every n ∈ ω. We can then find an increasing function g : ω −→ ω
such that X \ g (n) ⊆ Yn for every n ∈ ω. Now, we define an interval partition
R = {Rn | n ∈ ω} such that if i ∈ Rn then g (i) < max (Rn+1) . Since U is a
Q-point, there is Z ∈ U such that |Z ∩Rn| ≤ 1 for each n ∈ ω, we may even
assume Z ⊆ X ∩ Y0. Let Z0 =

⋃
n∈ω

(Z ∩R2n) and Z1 =
⋃
n∈ω

(Z ∩R2n+1), since

U is an ultrafilter, then there is i < 2 such that Zi ∈ U , this is the set we were
looking for.

We will now show that 3 implies 4. Let U be a selective ultrafilter and
c : [ω]

2 −→ 2. For every n ∈ ω and i < 2 let Hi (n) = {m > n | c ({n,m}) = i} .
Since U is an ultrafilter, for every n ∈ ω there is in such that Hin (n) ∈ U . Let
Xn =

⋂
m≤n

Him (m) . Since U is selective, there is Y = {yn | n ∈ ω} ∈ U such

that Y ⊆ X0 and Y \ (yn + 1) ⊆ Xyn for every n ∈ ω. Note that if n < m then
c (yn, ym) = iyn . Since U is an ultrafilter, we can find Y1 ⊆ Y such that Y1 ∈ U
and in = im for every n,m ∈ Y1. Clearly Y1 is monochromatic.

We will now prove that 4 implies 1. Let P = {Pn | n ∈ ω} be a partition

of ω. We now define the coloring c : [ω]
2 −→ 2 where c ({n,m}) = 1 if and

only if n and m belong to the same element of the partition. Clearly any
0-monochromatic set is a partial selector and any 1-monochromatic set is con-
tained in a single element of P.

If I is σ-ideal on a Polish space, we denote by PI the forcing of Borel sets
modulo I (i.e. if B and C are Borel sets then B ≤ C if and only if B \C ∈ I).
The book [69] is a very interesting reference about this type of forcings. By
ctble we denote the σ-ideal of all countable subsets of 2ω, by M we denote the
σ-ideal of meager sets, N denotes the σ-ideal of Lebesgue measure zero sets and
Kσ denotes the σ-ideal on ωω generated by compact sets. Given F : ω<ω −→ ω
we define C∃ (F ) = {g ∈ ωω | ∃∞n (g (n) ≤ F (g � n))} . The Laver ideal L is
the σ-ideal generated by {C∃ (F ) | F : ω<ω −→ ω} . It is well known (see [69])
that Pctble is equivalent to the Sacks forcing, PM is equivalent to the Cohen
forcing, PN is equivalent to random forcing, PKσ is the Miller forcing and PL is
equivalent to the Laver forcing.
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Let I be an ideal on a Polish space X and assume W is a model of ZFC
extending the ZFC model V. Given r such that W |= r ∈ X. We say that r is
I-quasigeneric over V if W |= r /∈ BW for every Borel set B ∈ V ∩ I (by BW

we denote the interpretation of B in W ). In this way, the ctble-quasigeneric
reals are the new reals, the M-quasigeneric reals are the Cohen reals, the N -
quasigeneric reals are the random reals and the Kσ-quasigeneric reals are the
unbounded reals.

If I is an ideal on ω (or on any countable set) we define the Mathias forcing
M (I) with respect to I as the set of all pairs (s,A) where s ∈ [ω]

<ω
and A ∈ I.

If (s,A) , (t, B) ∈M (I) then (s,A) ≤ (t, B) if the following conditions hold:

1. t is an initial segment of s.

2. B ⊆ A.

3. (s \ t) ∩B = ∅.

If F is a filter, then by M (F) we denote M (F∗) .
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1.3 Borel filters and ideals

Given a filter (ideal) on ω, we may view it as a subspace of the Cantor space
and then study its topological properties. In this way, we say a filter (ideal) is
Borel (Fσ, Gσ...) if it is is Borel (Fσ, Gσ...) as a subspace of ℘ (ω) . Note that
F and F∗ are homeomorphic since taking complement is a homeomorphism of
the Cantor space.

Lemma 6

1. There are no closed ideals.

2. There are no Gδ ideals.

3. If an ideal has the Baire property then it is meager.

4. There are no meager ultrafilters (i.e. no ultrafilter has the Baire property).

Proof. The first point follows since [ω]
<ω

is a dense subset of ℘ (ω) . If I was
a Gδ set, then by the Baire category theorem, it would be comeager, but then
I∗ would be a comeager set disjoint with I, which is a contradiction. If there
was a non-meager ideal with the Baire property then it would be comeager in
an open set, and we would get a contradiction as before.

In contrast to 1 and 2 of the previous lemma, there are Fσ ideals ([ω]
<ω

being
the easiest example). This kind of ideals has many interesting combinatorial and
forcing properties.

If X ∈ [ω]
ω

we define eX : ω −→ ω as the unique increasing function whose

image is X. If F is a filter we denote by F̃ = {eX | X ∈ F} . We now define two
orders in ωω. Let f, g ∈ ωω then f ≤ g if and only if f (n) ≤ g (n) for every
n ∈ ω and f ≤∗ g if and only if f (n) ≤ g (n) for almost all n ∈ ω. Recall that
in this thesis, “for almost all” means for all except finitely many. In the same
way, we say that f =∗ g if f (n) = g (n) holds for almost all n ∈ ω. We say a
family B ⊆ ωω is unbounded if B is unbounded with respect to ≤∗.We say that
P = {Pn | n ∈ ω} is an interval partition if it is a partition of ω into consecutive
intervals, by PART we denote the set of all interval partitions. The following
notions are very useful for studying meager sets in 2ω (or in ℘ (ω)).

Definition 7

1. A chopped real is a pair (x,P) where x ∈ 2ω and P is an interval partition.
We denote by CR the set of all chopped reals.

2. If (x,P) is a chopped real and y ∈ 2ω then we say that y matches (x,P)
if there are infinitely many P ∈ P such that y � P = x � P.

3. We define Match (x,P) as the set of all y that matches (x,P) and the
set ¬Match (x,P) is defined as the collection of all y that does not match
(x,P).
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We now have the following:

Proposition 8 ([6]) The set {¬Match (x,P) | (x,P) ∈ CR} is a cofinal set for
the meager sets in 2ω.

Proof. Let 〈Tn | n ∈ ω〉 be an increasing sequence of well pruned subtrees of
2<ω such that each [Tn] is a nowhere dense set. We recursively define P =
{Pn | n ∈ ω} and {sn | n ∈ ω} such that for all n ∈ ω the following holds:

1. P is an interval partition.

2. sn : Pn −→ 2.

3. s0 /∈ T0.

4. If t ∈ 2max(Pn) then t ∪ sn+1 /∈ Tn+1.

This is easy to do since each [Tn] is nowhere dense and 2k is finite for every
k ∈ ω. Let x =

⋃
sn. It is easy to see that

⋃
n∈ω

[Tn] ⊆ ¬Match (x,P) (since the

sequence 〈Tn | n ∈ ω〉 is increasing, any y ∈ 2ω matching (x,P) will not be in⋃
n∈ω

[Tn]).

We can now prove the following important result:

Proposition 9 (Talagrand, Jalali-Naini see [4]) Let F be a filter on ω. The
following are equivalent:

1. F is a non-meager filter.

2. F̃ is an unbounded family.

3. For every increasing function f : ω −→ ω there is X ∈ F such that
X ∩ [n, f (n)] = ∅ for infinitely many n ∈ ω.

4. If P = {Pn | n ∈ ω} is an interval partition then there is X ∈ F such that
X ∩ Pn = ∅ for infinitely many n ∈ ω.

Proof. We first prove that 1 implies 2 by contrapositive. Assume that there
is g : ω −→ ω that is an upper bound for F̃ . For every n ∈ ω define An =
{X | eX <n g} , which is a closed nowhere dense set. Then F ⊆

⋃
n∈ω

An so F is

a meager set.

We will now show that 2 implies 3. Let f : ω −→ ω be an increasing
function, we may assume f (n) > n for every n ∈ ω. We now define the func-
tion h : ω −→ ω given by h (n) = fn (n) (where fn is the n-iteration of f).

Note that n < f (n) < ff (n) < ... < fn−1 (n) < fn (n) = h (n) . Since F̃ is
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unbounded, there is X ∈ F such that eX is not dominated by h. Let n such
that eX (n) > h (n) . This means that the n-th element of X is bigger than
h (n) , so X must have empty intersection with one of the following intervals:
[n, f (n)] , [f (n) , ff (n)] , ...,

[
fn−1 (n) , fn (n)

]
.

We will prove that 3 implies 4. Let P = {Pn | n ∈ ω} be an interval partition.
We now define the function f : ω −→ ω given by f (n) as the smallest m
such that there is k such that Pk ⊆ [n,m] . By 3 there is X ∈ F such that
X ∩ [n, f (n)] = ∅ for infinitely many n ∈ ω. It is then easy to see that X has
empty intersection with infinitely many of the intervals.

Finally, we will prove that 4 implies 1. Let (y,P) be a chopped real, we will
show that F is not contained in ¬Match (y,P) . Using 4, we find X ∈ F such
that X has empty intersection with infinitely many intervals. We now define A
as follows: If X∩Pn 6= ∅ then A∩Pn = X∩Pn and if X∩Pn = ∅ then A∩Pn =
y ∩ Pn. Since X ⊆ A, it follows that A ∈ F and clearly A ∈Match (y,P) .
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For the convenience of the reader, we include the 4 most useful versions of
Talagrand’s theorem.

Proposition 10 (Talagrand, Jalali-Naini theorem for filters) Let F be a
filter on ω.

1. The following are equivalent:

(a) F is a non-meager filter.

(b) F̃ is an unbounded family.

(c) If P = {Pn | n ∈ ω} is an interval partition then there is X ∈ F such
that X ∩ Pn = ∅ for infinitely many n ∈ ω.

2. The following are equivalent:

(a) F is a meager filter.

(b) F̃ is a bounded family.

(c) There is an interval partition P = {Pn | n ∈ ω} such that if X ∈ F
then X ∩ Pn 6= ∅ for for almost all n ∈ ω.

Proposition 11 (Talagrand, Jalali-Naini theorem for ideals) Let I be an
ideal on ω.

1. The following are equivalent:

(a) I is a non-meager ideal.

(b) Ĩ∗ is an unbounded family.

(c) If P = {Pn | n ∈ ω} is an interval partition then there is X ∈ I such
that Pn ⊆ X for infinitely many n ∈ ω.

2. The following are equivalent:

(a) I is a meager ideal.

(b) Ĩ∗ is a bounded family.

(c) There is an interval partition P = {Pn | n ∈ ω} such that if X ∈ I
then X contains only finitely many intervals of P.

The Fσ ideals have many interesting combinatorial properties. A very useful
way to construct such ideals is with the aid of lower semicontinuous submeasures:
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Definition 12 We say ϕ : ℘ (ω) −→ ω ∪ {ω} is a lower semicontinuous sub-
measure if the following hold:

1. ϕ (ω) = ω.

2. ϕ (A) = 0 if and only if A = ∅.

3. ϕ (A) ≤ ϕ (B) whenever A ⊆ B.

4. ϕ (A ∪B) ≤ ϕ (A) + ϕ (B) for every A,B ⊆ X.

5. (lower semicontinuity) if A ⊆ ω then ϕ (A) = sup {ϕ (A ∩ n) | n ∈ ω} .

Given a lower semicontinuous submeasure ϕ we define Fin(ϕ) as the family
of those subsets of ω with finite submeasure. We then have the following:

Lemma 13 If ϕ : ℘ (ω) −→ ω∪{ω} is a lower semicontinuous submeasure then
Fin(ϕ) is an Fσ-ideal.

Proof. Given n ∈ ω define Cn = {A | ϕ (A) ≤ n} which is a closed set by lower
semicontinuity. Clearly Fin(ϕ) =

⋃
n∈ω
Cn.

It is a very interesting result of Mazur that the converse of the previous
lemma is also true: if I is an Fσ-ideal then there is a lower semicontinuous
submeasure ϕ such that I = Fin(ϕ) . Such ϕ is closely related with the repre-
sentation of I as an increasing union of compact sets.

Proposition 14 (Mazur [44]) I is an Fσ-ideal if and only if there is a lower
semicontinuous submeasure such that I = Fin(ϕ) .

Proof. Let I =
⋃
n∈ω
Cn where 〈Cn〉n∈ω is an increasing union of compact sets

such that each Cn is closed under subsets and if X1, X2 ∈ Cn then X1 ∪
X2 ∈ Cn+1 (note every Fσ ideal can be represented in this way). Define
ϕ : ℘ (ω) −→ ω ∪ {∞} as ϕ (s) = min {n+ 1 | s ∈ Cn} if s is a finite set and
ϕ (A) = sup {ϕ (A ∩ n) | n ∈ ω} in case A is an infinite set. It is easy to see that
ϕ is a lower semicontinuous submeasure and I = Fin(ϕ) .

We will now define some Borel ideals that will be used in this thesis. For
every n ∈ ω we define Cn = {(n,m) | m ∈ ω} and if f : ω −→ ω let D (f) =
{(n,m) | m ≤ n} .

Definition 15 We define the following ideals:

1. FIN is the ideal of all finite subsets of ω.

2. ED is the ideal on ω × ω generated by {Cn | n ∈ ω} and (the graphs of)
functions from ω to ω.
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3. FIN×FIN is the ideal on ω×ω generated by {Cn | n ∈ ω}∪{D (f) | f ∈ ωω} .

4. ∅×FIN is the ideal on ω × ω generated by {D (f) | f ∈ ωω} .

5. conv is the ideal on [0, 1] ∩ Q generated by all sequences converging to a
real number.

6. nwd is the ideal on Q generated by all nowhere dense sets.

7. The summable ideal is defined as J1/n = {A ⊆ ω |
∑
n∈A

1
n+1 < ω}.

With the exception of FIN and ∅×FIN, all of the previous ideals are tall. The
ideals ED and J1/n are Fσ while the others are not.

Definition 16 If a ⊆ ω<ω we define π (a) = {f ∈ ωω | ∃∞n (f � n ∈ a)} . Let
I be a σ-ideal on ωω (or 2ω). We define tr (I) the trace ideal of I (which will
be an ideal on ω<ω or 2<ω) where a ∈ tr (I) if and only if π (a) ∈ I.

Note that if a ⊆ ω<ω then π (a) is a Gδ set (furthermore, every Gδ set is of
this form). While both tr (M) and tr (N ) are Borel, in general, the trace ideals
are not Borel (see [34] for more information).
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1.4 MAD Families

A family A ⊆ [ω]
ω

is almost disjoint (AD) if the intersection of any two differ-
ent elements of A is finite, a MAD family is a maximal almost disjoint family.
Almost disjoint families and MAD families have become very important in set
theory, topology and functional analysis (see [31]). It is very easy to prove that
the Axiom of Choice implies the existence of MAD families. However, construct-
ing MAD families with special combinatorial or topological properties is a very
difficult task without the an additional hypothesis beyond ZFC. Constructing
models of set theory where there are no certain kinds of MAD families is also
very difficult. We would like to mention some important examples regarding
the existence or non-existence of special MAD families:

1. (Simon [62]) There is a MAD family which can be partitioned into two
nowhere MAD families. 1

2. (Mrówka [50]) There is a MAD family for which its Ψ-space has a unique
compactification.

3. (Raghavan [52]) There is a van Douwen MAD family.2

4. (Raghavan [53]) There is a model with no Shelah-Steprāns MAD families
(this notion will be defined in the fourth chapter).

In this thesis, we will add another result to the list, we will show that there
is a +-Ramsey MAD family. In this chapter we will recall the basic properties of
AD families. Note that an AD family A is MAD if and only if for every X ∈ [ω]

ω

there is A ∈ A such that A ∩X is infinite.

Definition 17 If A is an AD family we define:

1. I (A) is the ideal generated by A. In other words, X ∈ I (A) if and only
if there are A0, ..., An ∈ A such that X ⊆∗ A0 ∪ ... ∪An.

2. I (A)
++

is the set of all X ⊆ ω for which there is B ∈ [A]
ω

such that if
A ∈ B then X ∩A is infinite.

3. A⊥ is the set of all X ⊆ ω suc that |X ∩A| < ω for every A ∈ A.

Recall that I (A)
+

is the collection of all subsets of ω that are not in I (A) .
Then we have the following:

Lemma 18 If A is an AD family then the following holds:

1A is nowhere MAD if for every X ∈ I (A)+ there is Y ∈ [X]ω such that Y is almost
disjoint with every element of A.

2A family of functions A ⊆ ωω is a Van Douwen MAD family if for every infinite partial
function f from ω to ω there is h ∈ A such that |f ∩ h| = ω.
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1. A is a MAD family if and only if I (A) is a tall ideal.

2. I (A)
++ ⊆ I (A)

+
.

3. A is a MAD family if and only if I (A)
++

= I (A)
+
.

Proof. The first part follows directly by the definitions. Let X ∈ I (A)
++

and
A0, ..., An ∈ A. We need to see that X is not almost contained in A0 ∪ ...∪An.
Since X ∈ I (A)

++
then there is B ∈ A\{A0, ..., An} such that X∩B is infinite,

so X can not be almost contained in A0 ∪ ... ∪An.

Now assume A is a MAD family and let X /∈ I (A)
++

we must show X /∈
I (A)

+
. Let B ⊆ A be the collection of all elements of A that X intersects

infinitely. We then know B is finite, lets say B = {Ai | i < n} and define Y =
X \

⋃
i<n

Ai. Note that no element of A intersects Y infinitely and since A is

MAD, Y must be finite so X ⊆∗
⋃
i<n

Ai and then X /∈ I (A)
+
. For the other

implication, assume I (A)
++

= I (A)
+

we want to prove I (A) is tall but this
immediate if I (A)

++
= I (A)

+
.

The following lemma establishes the basic properties of the ideals generated
by AD families.

Lemma 19 (Mathias [43]) Let A be an AD family then:

1. I (A) is meager.

2. I (A) is selective (hence P+ and Q+).

3. I (A) is not a P -ideal.

4. I (A) is not ω-hitting.

Proof. Let {An | n ∈ ω} ⊆ A, note that no element of I (A) has infinite inter-
section with every An so I (A) is not a P -ideal nor ω-hitting. Define an interval
partition P = {Pn | n ∈ ω} such that Pn ∩Ai 6= ∅ for every i ≤ n, then I (A) is
meager by Talagrand’s theorem.

We will now show that I (A) is selective. Let Y = {Yn | n ∈ ω} ⊆ I (A)
+

be a decreasing family. First assume there is Z ∈ A⊥ such that Z is a pseu-
dointersection of Y. Then we recursively construct X = {xn | n ∈ ω} such that
x0 ∈ Z ∩ Y0 and xn+1 ∈ Z ∩ Yxn (with xn < xn+1). Then X is the set we were
looking for. Now assume Y does not have a pseudointersection in A⊥. Recur-
sively we can find a family B = {Bn | n ∈ ω} ⊆ I (A) such that the following
holds:

1. Each Bn ⊆ Y0 is a pseudointersection of Y.

2. There is An ∈ A such that Bn ⊆ An.
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3. If n 6= m then An 6= Am.

Let f : ω −→ B such that if B ∈ B then f−1 (B) is infinite. Then we
recursively construct X = {xn | n ∈ ω} such that x0 ∈ Y0 and xn+1 ∈ f (n)∩Yxn
(with xn < xn+1). Then X is the set we were looking for.

The following is a useful lemma that will be used implicitly in several occa-
sions:

Proposition 20 Let A be a MAD family and let X ∈ I (A)
+
. Then there is

an almost disjoint family C ⊆ I (A)
+

of subsets of X of size c.

Proof. Since X ∈ I (A)
+

, there is a countable family B = {Bn | n ∈ ω} ⊆
A such that X has infinite intersection with every element of B. Let P =
{Pn | n ∈ ω} be a partition of X into finite sets such that Pn ∩ Bi 6= ∅ for
every i ≤ n. Let D be an almost disjoint family of size c, for every D ∈ D we
define YD =

⋃
n∈D

Pn. The family {YD | D ∈ D} has the desired properties.

The following types of MAD families will play a very important role in this
thesis:

Definition 21 Let A be an AD family.

1. A is weakly tight if for every {Xn | n ∈ ω} ⊆ I (A)
+

there is B ∈ I (A)
such that |B ∩Xn| = ω for infinitely many n ∈ ω.

2. A is tight if for every {Xn | n ∈ ω} ⊆ I (A)
+

there is B ∈ I (A) such
that B ∩Xn is infinite for every n ∈ ω.

Clearly every weakly tight AD family is MAD and tightness imply weak tight-
ness. By the previous result, A is tight if and only if for every {Xn | n ∈ ω} ⊆
I (A)

+
there is B ∈ I (A) such that B ∩Xn 6= ∅ for every n ∈ ω. The following

is a simple equivalence of weak tightness:

Lemma 22 Let A be a MAD family. The following are equivalent:

1. A is weakly tight.

2. If X = {Xn | n ∈ ω} ⊆ I (A)
+

is a partition, then there is A ∈ A such
that A ∩Xn is infinite for infinitely many Xn.

3. If X = {Xn | n ∈ ω} ⊆ I (A)
+

are pairwise disjoint, then there is A ∈ A
such that A ∩Xn is infinite for infinitely many Xn.
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Proof. Obviously 1 implies 2. Moreover, it is easy to see that 2 and 3 are
equivalent since from an infinite family of pairwise disjoint sets we can get a
partition by performing only finite changes. We will now prove the that 3 implies
1. Let A be a MAD family that satisfies 3, we will show that A is weakly tight.
Let X = {Xn | n ∈ ω} ⊆ I (A)

+
, we now define the forcing P whose elements

are functions p with the following properties:

1. p : np ×mp −→ 2.

2. If (i, j) ∈ dom (p) and j /∈ Xi then p (i, j) = 0.

If p, q ∈ P then p ≤ q if q ⊆ p and the following holds: if mq ≤ j < mp and
i1, i2 are two distinct elements of nq either p (i1, j) = 0 or p (i2, j) = 0. It is easy
to see that P adds an almost disjoint family {Yn | n ∈ ω} such that Yn ⊆ Xn.
Moreover, each Yn is forced to be in I (A)

+
and we only need to meet countably

many dense set to achieve this. The result clearly follows.

If P is a property of almost disjoint families, we will say that MAD families
with property P exist generically if every AD family of size less than c can be
extended to a MAD family with property P.
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1.5 The Katětov order

In [37] Katětov introduced a partial order on ideals. The Katětov order is
a very powerful tool for studying ideals over countable sets. It plays a very
important role in understanding destructibility of ideals. Another important
feature of the Katětov order is its usefulness for classifying non-definable objects
like ultrafilters. It can be proved that an ultrafilter U is a Ramsey ultrafilter if
and only if its dual U∗ is not Katětov above the ideal ED, U is a P -point if and
only if U∗ is not Katětov above FIN×FIN and U is a nowhere dense ultrafilter if
and only if U∗ is not Katětov above the ideal nwd (see [26]).

Definition 23 Let A and B be two countable sets, I,J ideals on X and Y
respectively and f : Y −→ X.

1. We say f is a Katětov morphism from (Y,J ) to (X, I) if f−1 (A) ∈ J
for every A ∈ I.

2. We define I ≤K J (I is Katětov smaller than J or J is Katětov above
I) if there is a Katětov morphism from (Y,J ) to (X, I) .

3. We define I 'K J (I is Katětov equivalent to J ) if I ≤K J and J ≤K

I.

4. We say f is a Katětov-Blass morphism from (Y,J ) to (X, I) if f is a
finite to one Katětov morphism from (Y,J ) to (X, I) .

5. We define I ≤KB J if there is a Katětov-Blass morphism from (Y,J ) to
(X, I) .

6. I is Katětov-Blass equivalent to J if I ≤KB J and J ≤KB I.

The following are some simple observations regarding the Katětov order:

Lemma 24 Let I,J ,L be ideals.

1. I 'K I.

2. If I ≤K J and J ≤K L then I ≤K L.

3. FIN is the smallest element in the Katětov order.

4. I is Katětov equivalent to FIN if and only if I is not tall..

5. If X ∈ I+ then I ≤K I � X.

An ideal I is Katětov uniform if I is Katětov equivalent to all its restrictions
(equivalently, if X ∈ I+ then I � X ≤K I). Since every tall ideal contains a
MAD family then the ideals generated by MAD families are coinitial in the
Katětov order. On the other hand, the dual ideals of ultrafilters form a cofinal
family. If A and B are AD families then we define A ≤K B if I (A) ≤K I (B) .
We then have the following:
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Lemma 25 Let A,B be AD families.

1. A is MAD if and only if A �
K

FIN.

2. If X ∈ I (A)
+

then A ≤K A � X.

3. If A ≤K B then |B| ≤ |A| .

Every AD family is Katětov below FIN×FIN as we will prove now.

Proposition 26 If A is an AD family then I (A) ≤KFIN×FIN.

Proof. Let {An | n ∈ ω} ⊆ I (A) be a partition of ω into infinite sets. We
then find a bijection f : ω × ω −→ ω such that f [Cn] = An where Cn is
the set {(n,m) | m ∈ ω} . It is easy to see that f is a Katětov morphism from
(ω × ω,FIN×FIN) to (ω, I (A)) .
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1.6 Cardinal invariants of the continuum

Let (P,≤) be a partial order, we say D ⊆ P is ≤-dominating (or just
dominating if ≤ is clear from the context) if for every p ∈ P there is q ∈ D such
that p ≤ q. Meanwhile, a set B ⊆ P is called ≤-unbounded (or just unbounded)
if there is no p ∈ P such that q ≤ p for every q ∈ B. If P does not have a
maximum we can then define the following invariants:

1. d (P) is the smallest size of a dominating family of P.

2. b (P) is the smallest size of an unbounded family of P.

Since every dominating family is unbounded (in case there is no maximum)
then b (P) ≤ d (P) . We can then define two of the most important cardinal
invariants:

Definition 27

1. The unboundedness number b is b (ωω,≤∗) i.e. the smallest size of an
≤∗-unbounded family of functions.

2. The dominating number d is d (ωω,≤∗) i.e. the smallest size of a ≤∗-
dominating family of functions.

Note that if f is a function then f ≤ f + 1 so (ωω,≤∗) has no maximum
and then b ≤ d. From now on, when talking about elements of ωω, unbounded
will mean ≤∗-unbounded and dominating will mean ≤∗-dominating. The basic
properties of b and d are the following:

Lemma 28

1. ω < b ≤ cof(d) ≤ d ≤ c.

2. b (ωω,≤) = ω and d (ωω,≤) = d.

3. There is an unbounded family B = {fα | α < b} ⊆ ωω such that if α < β
then fα <

∗ fβ .

4. b is a regular cardinal.

Proof. We first prove that ω < b or in other words, that every countable family
of ωω is ≤∗-bounded. Given B = {fn | n ∈ ω} ⊆ ωω define g ∈ ωω such that
g (n) = f0 (n) + ...+ fn (n) . It is easy to see that g is an upper bound for B.

We will now prove that b ≤ cof(d) . We will proceed by contradiction, so
assume that cof(d) < b. Let D ⊆ ωω be a dominating family of size d. Let
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D =
⋃
{Dα | α ∈ cof (d)} where each Dα has size less than d. Since each Dα is

not dominating, there is gα ∈ ωω that is not dominated by any element of Dα

i.e. gα �∗ f for every f ∈ Dα. Since cof(d) < b we can then find h ∈ ωω such
that gα ≤∗ h for every α ∈ cof(d) . But then h is not dominated by any element
of D, which is a contradiction.

If cn ∈ ωω is the function with constant value n, then {cn | n ∈ ω} is ≤-
unbounded, so b (ωω,≤) = ω. Obviously d ≤ d (ωω,≤) so we only need to prove
the other inequality. Given g : ω −→ ω and n ∈ ω we define the function
gn : ω −→ ω where gn (m) = g (m) + n. If D = {gα | α ∈ d} is a dominating
family, then D1 = {gnα | n ∈ ω, α ∈ d} is ≤-dominating, so d (ωω,≤) is at most
d.

We now prove 3. Let A = {gα | α ∈ b} be an unbounded family. We then
recursively construct B = {fα | α < b} such that gα ≤∗ fα and if α < β then
fα <

∗ fβ . This can be done since at each step we have less than b functions. It
is clear that B has the desired properties.

We will now prove that b is a regular cardinal. Let B = {fα | α < b} be as
above and let S ⊆ b be a cofinal set of size cof(b). Since S is cofinal in b, then
B′ = {fα | α ∈ S} is unbounded so |S| = b.

In this way, changing ≤∗ to ≤ makes a difference for b but not for d. It is
important to remark that while b is regular, d can be singular. Given f, g ∈ ωω
and n ∈ ω. we define f ≤n g if f (m) ≤ g (m) for every m ≥ n. In this way,
f ≤∗ g if and only if there is n ∈ ω such that f ≤n g.

Definition 29 We say S = {fα | α ∈ κ} ⊆ ωω is a scale if κ is regular, S is
dominating and fα ≤∗ fβ whenever α < β.

Note that the requirement of the regularity is harmless, if there was a scale
of singular size, then there would be a scale of regular size.

Lemma 30 There is a scale if and only if b = d. Moreover, the size of any scale
is b.

Proof. First assume b = d and let D = {fα | α ∈ d} be a dominating family.
If we do the construction used in 3 of the previous lemma we get a scale. Now
assume that S = {fα | α ∈ κ} is a scale and note that d ≤ κ. Now assume that
b < κ and let B = {gβ | β ∈ b} be an unbounded family. For every β ∈ b find
αβ ∈ κ such that gβ ≤∗ fαβ . Since b < κ and κ is regular, there is γ such that
αβ < γ for every β ∈ b and then fγ will bound B, which is a contradiction.

Recall that P = {Pn | n ∈ ω} is an interval partition if it is a partition of
ω into consecutive intervals and by PART we denoted the set of all interval
partitions. Given interval partitions P and Q define Q ≤ P if for every Pn ∈ P
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there is Qm ∈ Q such that Qm ⊆ Pn (in other words, every interval in P
contains at least one interval of Q) and Q ≤∗P if for almost all Pn ∈ P there is
Qm ∈ Q such that Qm ⊆ Pn (i.e. almost every interval in P contains at least
one interval of Q). The proof of the following useful lemma can be found in [6]:

Lemma 31 ([6])

1. d = d (PART,≤∗) .

2. b = b (PART,≤∗) .

The almost disjointness number a is the smallest size of a MAD family. Since
every MAD family is Katětov below FIN×FIN we conclude that b ≤ a.

Definition 32

1. We say that S splits X if S ∩X and X \ S are both infinite.

2. S ⊆ [ω]
ω

is a splitting family if for every X ∈ [ω]
ω

there is S ∈ S such
that S splits X.

3. The splitting number s is the smallest size of a splitting family.

4. R ⊆ [ω]
ω

is a reaping family if for every X ∈ [ω]
ω

there is A ∈ R such
that either A ⊆∗ X or A ⊆∗ ω \X.

5. The reaping number r is the smallest size of a reaping family.

It is easy to see that [ω]
ω

is a splitting family, so the invariant s is well
defined. Note that a filter F is an ultrafilter if and only if F is a reaping family,
so the invariant r is also well defined.

Lemma 33 s ≤ d and b ≤ r.

Proof. We will first prove the inequality s ≤ d. Let D = {Pα | α < d} be a
dominating family of interval partitions where Pα = {Pα (n) | n ∈ ω} . For every
α < d we define Sα =

⋃
n∈ω

Pα (2n) and we will show that S = {Sα | α < d} is a

splitting family. Let X ∈ [ω]
ω
. We now find an interval partition R such that

every interval of R contains at least one point of X. Since D is a dominating
family of interval partitions, there is α < d such that Pα dominates R. It is easy
to see that Sα splits X.

The inequality b ≤ r is similar: Let κ < b and R = {Aα | α < κ} ⊆ [ω]
ω
.

We will show that R is not a reaping family. For every α < κ we find an interval
partition Pα such that every interval of Pα contains at least one point of Aα.
Since κ < b then there is an interval partition R = {R (n) | n ∈ ω} dominating
every Pα. It is easy to see that X =

⋃
n∈ω

R (2n) witness that R is not a reaping

family.

The following is a stronger notion than of a splitting family:



1.6. CARDINAL INVARIANTS OF THE CONTINUUM 21

Definition 34

1. Let S ∈ [ω]
ω

and P = {Pn | n ∈ ω} be an interval partition. We say S
block-splits P if both of the sets {n | Pn ⊆ S} and {n | Pn ∩ S = ∅} are
infinite.

2. A family S ⊆ [ω]
ω

is called a block-splitting family if every interval par-
tition is block-split by some element of S.

It is easy to see that every block-splitting family is splitting. The following
is a result of Kamburelis and Weglorz:

Proposition 35 ([36]) The smallest size of a block-splitting family is max {b, s} .

Proof. Let κ be the smallest size of a block-splitting family. Obviously s ≤ κ
and now we will prove that b ≤ κ. To prove this it is enough to show that
no family of size less than b is a block-splitting family. Let µ < b and S =
{Sα | α < µ} be a family of infinite subsets of ω. For every α < µ define an
interval partition Pα = {Pn (α) | n ∈ ω} such that each Pn (α) has non empty
intersection with both Sα and ω \ Sα. Since µ < b then there is an interval
partition R = {Rn | n ∈ ω} dominating each Pα i.e. almost all intervals of R
contains one of Pα. It is easy to see that no element of S can block-split R.

Now we will construct a block-splitting family of size max {b, s} . First find
an unbounded family of interval partitions B = {Pα | α < b} (where Pα =
{Pα (n) | n ∈ ω}) and a splitting family S = {Sβ | β < s}. Given α < b and
β < s define Dα,β =

⋃
n∈Sβ

Pα (n) we will prove that {Dα,β | α < b, β < s} is a

block-splitting family. Let R = {Rn | n ∈ ω} be an interval partition. Since B
is unbounded, there is α < b such that Pα is not dominated by R. We can then
find an infinite set W = {wn | n ∈ ω} such that for every n < ω there is k < ω
for which Rk ⊆ Pα (wn) (this is possible since Pα is not dominated by R). Since
S is a splitting family, there is β < s such that both Sβ ∩W and (ω \ Sβ) ∩W
are infinite. It is easy to see that Dα,β block-splits R.

We will need the following notions:

Definition 36 Let S ∈ [ω]
ω

and X = {Xn | n ∈ ω} ⊆ [ω]
ω

.

1. We say that S ω-splits X if S splits every Xn.

2. We say that S (ω, ω)-splits X if both the sets {n | |Xn ∩ S| = ω} and
{n | |Xn ∩ (ω\S)| = ω} are infinite.

3. We say that S ⊆ [ω]
ω

is an ω-splitting family if every countable collection
of infinite subsets of ω is ω-split by some element of S.
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4. We say that S ⊆ [ω]
ω

is an (ω, ω)-splitting family if every countable col-
lection of infinite subsets of ω is (ω, ω)-split by some element of S.

We now have the following:

Lemma 37 Every block-splitting family is an ω-splitting family.

Proof. Let S be a block-splitting family and X = {Xn | n ∈ ω} ⊆ [ω]
ω
. Define

an interval partition P = {Pn | n ∈ ω} such that if i ≤ n then Pn ∩ Xi 6= ∅.
Since S is a block-splitting family, there is S ∈ S that block-splits P. It is then
easy to see that S ω-splits X.

We will need the following lemma.

Lemma 38 ([46]) Every splitting family of size less than b is an (ω, ω)-splitting
family.

Proof. Let S = {Sα | α < κ} be a splitting family of size less than b. Assume
S is not an (ω, ω)-splitting family so there is X = {Xn | n ∈ ω} ⊆ [ω]

ω
that is

not (ω, ω)-split by any element of S. This means that for every α < κ there
iα < 2 such that Xn ⊆∗ Siαα for almost all n ∈ ω. We can then define a function
fα : ω −→ ω such that if n < ω then Xn \ fα (n) ⊆ Siαα if Xn ⊆∗ Siαα and
fα (n) = 0 in the other case. Since κ < b there is g : ω −→ ω dominating each
fα. Recursively define A = {an | n ∈ ω} such that an ∈ Xn \ g (n) and an 6= am
whenever n 6= m. Since S is a splitting family, there is α < κ such that A ∩ Sα
and A ∩ (ω \ Sα) are infinite. However, since g dominates fα we conclude that
A ⊆∗ Siαα which is a contradiction.

We can then conclude the following important result of Mildenberger, Ragha-
van and Steprāns:

Corollary 39 ([46]) There is an (ω, ω)-splitting family of size s.

Proof. If b ≤ s then there is a block-splitting family of size s and if s < b then
every splitting family of minimal size is (ω, ω)-splitting.

Many important cardinal invariants come from ideals as we will now see.

Definition 40 Let I ⊆℘ (X) be an ideal in X. Then we define the following
invariants:

1. add(I) = min {|A| | A ⊆ I∧
⋃
A /∈ I} .

2. cov(I) = min {|A| | A ⊆ I∧
⋃
A = X} .

3. non(I) = min {|B| | B ⊆ X ∧B /∈ I} .

4. cof(I) = min {|A| | A ⊆ I∧ (∀B ∈ I (∃A ∈ A (B ⊆ A)))} .
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Note that I is a σ-ideal if and only if ω < add(I) .nFor ideals on countable
sets, we have the following definitions:

Definition 41 Let I be a tall ideal in ω (or any countable set). Then we define
the following invariants:

1. add*(I) is the smallest size of a family A ⊆ I such that A does not have
a pseudounion in A.

2. cov*(I) is the smallest size of a family A ⊆ I such that A is tall.

3. non*(I) is the smallest size of a family B ⊆ [ω]
ω

such that there is no
A ∈ I that has infinite intersection with every element of B.

It is easy to see that add*(I) ≤ cov*(I) , non*(I) ≤cof(I) . Note that if A
is a MAD family then cov*(I (A)) = |A| .

Lemma 42 If I ≤K J then cov∗ (J ) ≤cov∗ (I) .

Proof. Let f : (ω,J ) −→ (ω, I) be a Katětov morphism. It is easy to see that
if {Bα | α ∈ κ} ⊆ I is a tall family such that

⋃
Bα = ω then

{
f−1 (Bα) | α ∈ κ

}
is also tall.

We will need the following definition:

Definition 43 We say (A,B,−→) is an invariant if,

1. −→ ⊆ A×B.

2. For every a ∈ A there is a b ∈ B such that a −→ b (which means (a, b) ∈
−→).

3. There is no b ∈ B such that a −→ b for all a ∈ A.

The evaluation of (A,B,−→) (denoted by ‖A,B,−→‖) is defined as the
minimum size a family D ⊆ B such that for every a ∈ A there is a d ∈ D such
that a −→ d. The invariant (A,B,−→) is called a Borel invariant if A,B and
−→ are Borel subsets of some Polish space. Most (but not all) of the usual
invariants are in fact Borel invariants.

The statement ♦ (A,B,−→) means the following: For every
Borel C : 2<ω1 −→ A there is a g : ω1 −→ B such that for every R ∈ ω12 the

set {α | C (R � α) −→ g (α)} is stationary.

Here a function C : 2<ω1 −→ A is Borel if C � α is Borel for every α < ω1.
We will write ♦ (d) instead of ♦ (ωω, ωω,≤∗) and ♦ (b) instead of ♦ (ωω, ωω,∗�) .



24 CHAPTER 1. PRELIMINARIES

1.7 A completely separable MAD family from
s ≤ a

A MAD family A is completely separable if for every X ∈ I (A)
+

there is A ∈ A
such that A ⊆ X. This type of MAD families was introduced by Hechler in [24].
A year later, Shelah and Erdös asked the following question:

Problem 44 (Erdös-Shelah) Is there a completely separable MAD family?

It is easy to construct models where the previous question has a positive
answer. It was shown by Balcar and Simon (see [3]) that such families exist
assuming one of the following axioms: a = c, b = d, d ≤ a and s = ω1. In [60] (see
also [31] and [46]) Shelah developed a novel and powerful method to construct
completely separable MAD families. He used it to prove that there are such
families if either s ≤ a or a < s and a certain (so called) PCF hypothesis holds
(which holds for example, if the continuum is less than ℵω). Since Shelah’s
construction of a completely separable MAD family under s ≤ a is the key for
our construction of a +-Ramsey MAD family, we will present his construction
in the following section. It is worth mentioning that the method of Shelah has
been further developed in [55] and [46] where it is proved that weakly tight
MAD families exist under s ≤ b. Dilip Raghavan has recently found even more
applications of this method, unfortunately, his results are still unpublished.

In this section, we expose the construction of Shelah of a completely sepa-
rable MAD family under s ≤ a. This exposition is based on [46] and [31], none
of the results in this section are due to the author.

Lemma 45 s has uncountable cofinality.

Proof. We argue by contradiction. Let S be a splitting family of size s. We
can then find {Sn | n ∈ ω} such that S =

⋃
Sn and each Sn has size less than

s (so they are “nowhere splitting”). We can then recursively find a decreasing
sequence P = {An | n ∈ ω} such that no element of Sn splits An. Let B be a
pseudointersection of P. It is easy to see than no element of S splits B, which
is a contradiction.

We will need the following proposition:

Proposition 46 ([55]) If S is an (ω, ω)-splitting family, A an AD family and
X ∈ I (A)

+
then there is S ∈ S such that X ∩ S, X ∩ (ω \ S) ∈ I (A)

+
.

Proof. We may assume A is a MAD family (in other case we extend it to a MAD
family keeping X as a positive set). Since X ∈ I (A)

+
, there is {An | n ∈ ω} ⊆

A such that X ∩ An is infinite for every n ∈ ω. Since S is an (ω, ω)-splitting
family there is S ∈ S that (ω, ω)-splits {X ∩An | n ∈ ω} and then X ∩ S,
X ∩ (ω \ S) ∈ I (A)

+
.
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By the previous result, ifA is an AD family, X ∈ I (A)
+

and S = {Sα | α < s}
is an (ω, ω)-splitting family then there are α < s and τAX ∈ 2α such that:

1. If β < α then X ∩ S1−τA
X (β)

β ∈ I (A) .

2. X ∩ Sα, X \ Sα ∈ I (A)
+
.

Clearly τAX ∈ 2<s is unique and if Y ∈ [X]
ω ∩ I (A)

+
then τAY extends τAX .

We can now prove the main result of this section:

Theorem 47 (Shelah [60]) If s ≤ a then there is a completely separable MAD
family.

Proof. Let [ω]
ω

= {Xα | α < c} .We will recursively constructA = {Aα | α < c}
and {σα | α < c} ⊆ 2<s such that for every α < c the following holds: (where
Aα = {Aξ | ξ < α})

1. Aα is an AD family.

2. If Xα ∈ I (Aα)
+

then Aα ⊆ Xα.

3. If α 6= β then σα 6= σβ .

4. If ξ < dom (σα) then Aα ⊆∗ Sσα(ξ)ξ .

It is clear that if we manage to do this then we will have achieved to construct
a completely separable MAD family. Assume Aδ = {Aξ | ξ < δ} has already

been constructed. Let X = Xδ if Xδ ∈ I (Aδ)+ and if Xδ ∈ I (Aδ) let X be
any other element of I (Aδ)+ . We recursively find {Xs | s ∈ 2<ω} ⊆ I (Aδ)+
,{ηs | s ∈ 2<ω} ⊆ 2<s and {αs | s ∈ 2<ω} as follows:

1. X∅ = X.

2. ηs = τAδXs and αs = dom (ηs) .

3. Xs_0 = Xs ∩ Sαs and Xs_1 = Xs ∩ (ω \ Sαs) .

Note that if t ⊆ s then Xs ⊆ Xt and ηt ⊆ ηs. On the other hand, if s
is incompatible with t then ηs and ηt are incompatible. For every f ∈ 2ω let
ηf =

⋃
n∈ω

ηf�n. Since s has uncountable cofinality, each ηf is an element of 2<s

and if f 6= g then ηf and ηg are incompatible nodes of 2<s. Since δ is smaller
than c there is f ∈ 2ω such that there is no α < δ such that σα extends ηf .

Since {Xf�n | n ∈ ω} is a decreasing sequence of elements in I (Aδ)+ so there is

Y ∈ I (Aδ)+ such that Y ⊆∗ Xf�n for every n ∈ ω.
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Letting β = dom (ηf ) , we claim that if ξ < β then Y ∩S1−ηf (ξ)
ξ ∈ I (A) . To

prove this, let n be the first natural number such that ξ < dom (ηf�n) . By our

construction, we know that Xf�n ∩ S
1−ηf (ξ)
ξ ∈ I (A) and since Y ⊆∗ Xf�n the

result follows.

For every ξ < β let Fξ ∈ [A]
<ω

such that Y ∩ S1−ηf (ξ)
ξ ⊆∗

⋃
Fξ and let

W = {Aα | σα ⊆ ηf} . Let D = W ∪
⋃
ξ<β

Fξ and note that D has size less than s,

hence it has size less than a. In this way we conclude that Y � D is not a MAD
family, so there is Aδ ∈ [Y ]

ω
that is almost disjoint with every element of D and

define σδ = ηf . We claim that Aδ is almost disjoint with Aδ. To prove this, let
α < δ, in case Aα ∈ W we already know Aα ∩ Aδ is finite so assume Aα /∈ W.
Letting ξ = ∆ (σδ, σα) we know that Aα ⊆∗ S1−σδ(ξ)

ξ so Aα ∩ Aδ ⊆∗
⋃
Fξ but

since Fξ ⊆ D we conclude that Aδ is almost disjoint with
⋃
Fξ and then Aα∩Aδ

must be finite.

A key feature in the previous proof is that each Aδ = {Aξ | ξ < δ} is nowhere
MAD.



Chapter 2

The principle (∗) of
Sierpiński and a question of
Miller

The principle (∗) of Sierpiński is the following statement: There is a family of
functions {ϕn : ω1 −→ ω1 | n ∈ ω} such that for every I ∈ [ω1]

ω1 there is n ∈ ω
for which ϕn [I] = ω1. It was introduced by Sierpiński and he proved that it is
a consequence of the Continuum Hypothesis. It was recently studied by Arnold
W. Miller in [47] and this was the motivation for this work. This principle is
related to the following type of sets:

Definition 48 Let I be a σ-ideal on ωω. We say X = {fα | α < ω1} ⊆ ωω is
an I-Luzin set if X ∩A is at most countable for every A ∈ I.

In this terminology, the Luzin sets are the M-Luzin sets and the Sierpiński
sets are the N -Luzin sets. Clearly the existence of an I-Luzin set implies
non(I) = ω1, but the converse is usually not true. For example, it was shown
by Shelah and Judah in [35] that there are no Luzin or Sierpiński sets in the
Miller model while non(M) = non(N ) = ω1 holds.

Definition 49

1. Given f ∈ ωω we define ED (f) = {g ∈ ωω | |f ∩ g| < ω} .

2. IE is the σ-ideal generated by {ED (f) | f ∈ ωω} .

It is easy to see that each ED (f) is a meager set so IE ⊆ M. It is well
known that non(IE) = non(M) (see [6]). In [47] Miller proved the following
result:

27
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Proposition 50 (Miller [47]) The following are equivalent:

1. The principle (∗) of Sierpiński.

2. There is a family {gα : ω −→ ω1 | α < ω1} with the property that for every
g : ω −→ ω1 there is α < ω1 such that if β > α then gβ ∩ g is infinite.

3. There is an IE-Luzin set.

The implication from 3 to 1 is not explicit in [47] (it is implicitly proved in
lemma 6 of [47]). The referee of [21] found a very elegant and short proof of
this result which we reproduce here.

Proposition 51 The existence of an IE-Luzin set implies the principle (∗) of
Sierpiński.

Proof. Let A = {Aα | ω ≤ α < ω1} be an almost disjoint family. Since there is
an IE-Luzin set, for each α we can find a family Fα = {fαβ : Aα −→ α | β < ω1}
such that for every g : Aα −→ α there is δ such that if β > δ then fαβ ∩ g is
infinite. Since A is an almost disjoint family, we can then construct a family
G = {gβ : ω −→ ω1 | ω ≤ β < ω1} such that fαβ =∗ gβ � Aα for every α < β <
ω1.

By the previous proposition, we need to prove that for every g : ω −→ ω1

there is α < ω1 such that if β > α then gβ∩g is infinite. First we find δ such that
g : ω −→ δ and then we know there is γ such that if β > γ then fδβ ∩ (g � Aδ)
is infinite. It then follows that if β > max {δ, γ} then gβ � Aδ =∗ fδβ , so
|gβ ∩ g| = ω.

It then follows that the existence of a Luzin set implies the principle (∗) of
Sierpiński while it implies non(M) = ω1. Miller then asked if the principle (∗)
of Sierpiński is a consequence of non(M) = ω1 and we will show that this is
indeed the case. We will then prove (with the aid of an inaccessible cardinal)
that while non(M) = ω1 implies the existence of a IE-Luzin set, it does not
imply the existence of a non-meager IE-Luzin set.

2.1 non(M) = ω1 implies the existence of an IE-
Luzin set

We will now show that the principle (∗) of Sierpiński follows by non(M) = ω1,
answering the question of Miller. By Partial (ωω) we shall denote the set of all
infinite partial functions from ω to ω. We start with the following lemma:
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Lemma 52 If non(M) = ω1 then there is a family X = {fα | α < ω1} with the
following properties:

1. Each fα is an infinite partial function from ω to ω.

2. The set {dom (fα) | α < ω1} is an almost disjoint family.

3. For every g : ω −→ ω there is α < ω1 such that fα ∩ g is infinite.

Proof. Let ω<ω = {sn | n ∈ ω} and we define H : ωω −→ Partial (ωω) where
the domain of H (f) is {n | sn v f} and if n ∈ dom (H (f)) then H (f) (n) =
f (|sn|) . It is easy to see that if f 6= g then dom (H (f)) and dom (H (g)) are
almost disjoint.

Given g : ω −→ ω we define N (g) = {f ∈ ωω | |H (f) ∩ g| < ω} . It then
follows that N (g) is a meager set since N (g) =

⋃
k∈ω

Nk (g) where Nk (g) =

{f ∈ ωω | |H (f) ∩ g| < k} and it is easy to see that each Nk (g) is a nowhere
dense set. Finally, if X = {hα | α < ω1} is a non-meager set then H [X] is the
family we were looking for.

With the previous lemma we can prove the following:

Proposition 53 If non(M) = ω1 then the principle (∗) of Sierpiński is true.

Proof. Let X = {fα | α < ω1} be a family as in the previous lemma. We
will build a IE-Luzin set Y = {hα | α < ω1} . For simplicity, we may assume
{dom (fn) | n ∈ ω} is a partition of ω.

For each n ∈ ω, let hn be any constant function. Given α ≥ ω, enumerate
it as α = {αn | n ∈ ω} and then we recursively define B0 = dom (fα0

) and
Bn+1 = dom (fαn) \ (B0 ∪ ... ∪Bn) . Clearly {Bn | n ∈ ω} is a partition of ω.
Let hα =

⋃
n∈ω

fαn � Bn, it then follows that Y = {hα | α < ω1} is an IE-Luzin

set.

2.2 non(M) = ω1 does not imply the existence of
a non-meager IE-Luzin set

It is not hard to see that the IE-Luzin set constructed in the previous proof
is meager. One may then wonder if it is possible to construct a non-meager
IE-Luzin set from non(M) = ω1. We will prove that this is not the case. This
will be achieved by using Todorcevic’s method of forcing with models as side
conditions (see [66] for more on this very useful technique). It is currently
unknown if there is a non-meager IE-Luzin set in the Miller model.
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Definition 54 We define the forcing Pcat as the set of all p =
(
sp,Mp, Fp

)
with

the following properties:

1. sp ∈ ω<ω (this is usually referred as the stem of p).

2. Mp = {M0, ...,Mn} is an ∈-chain of countable elementary submodels of

H( (2c)
++

).

3. Fp : Mp −→ ωω.

4. sp ∩ Fp (Mi) = ∅ for every i ≤ n.

5. Fp (Mi) /∈Mi and if i < n then Fp (Mi) ∈Mi+1.

6. Fp (Mi) is a Cohen real over Mi (i.e. if Y ∈ Mi is a meager set then
Fp (Mi) /∈ Y ).

Finally, if p, q ∈ Pcat then p ≤ q if sq ⊆ sp, Mq ⊆Mp and Fq ⊆ Fp.

The following lemma is easy and it is left to the reader:

Lemma 55

1. If M � H( (2c)
+++

) is countable and p ∈ M ∩ Pcat then there is f ∈ ωω
such that if N = M ∩H( (2c)

++
) then p =

(
sp,Mp ∪ {N} , Fp ∪ {(N, f)}

)
is a condition of Pcat and it extends p.

2. If n ∈ ω then Dn = {p ∈ Pcat | n ⊆ dom (sp)} is an open dense subset of
Pcat.

We will now prove that Pcat is a proper forcing by applying the usual “side
conditions trick”.

Lemma 56 Pcat is a proper forcing.

Proof. Let p ∈ Pcat and M a countable elementary submodel of H( (2c)
+++

)
such that p ∈ M . By the previous lemma, we know there is f ∈ ωω such that
p =

(
sp,Mp ∪ {N} , Fp ∪ {(N, f)}

)
∈ Pcat (where N = M ∩ H( (2c)

++
)). We

will now prove p is an (M,Pcat)-generic condition.

Let D ∈M be an open dense subset of Pcat and q ≤ p (we may even assume
q ∈ D). We must prove that q is compatible with an element of M ∩ D. In
order to achieve this, let qM =

(
sq,Mq ∩M,Fq ∩M

)
. It is easy to see qM is a

condition as well as an element of M . By elementarity, we can find r ∈M ∩D
such that r ≤ qM and sr = sq. It is then easy to see that r and q are compatible
(this is easy since r and q share the same stem).
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The next lemma shows that Pcat destroys all the ground model non-meager
IE-Luzin families.

Lemma 57 If X = {fα | α < ω1} ⊆ ωω is a non-meager set then Pcat adds a
function that is almost disjoint with uncountably many elements of X.

Proof. Given a generic filter G ⊆ Pcat, we denote the generic real by fgen i.e.
fgen is the union of all the stems of the elements in G. We will show fgen is
forced to be almost disjoint with uncountably many elements of X. Let p ∈ Pcat
with stem sp and α < ω1. Choose t ∈ ω<ω with the same length as sp but
disjoint with it. Let Y = {gβ | α < β < ω1} where gβ = t ∪ (fβ � [|t| , ω)) . It is
easy to see that Y is a non-meager set and then we can find β > α and q ≤ p
such that gβ is in the image of Fq. In this way, fgen is forced by q to be disjoint
from gβ , so it will be almost disjoint with fβ .

We say a forcing notion P destroys category if there is p ∈ P such that
p  “ωω ∩ V ∈ M”. The following is a well known result, but I was unable to
find a reference for it:

Proposition 58 Let P be a partial order. Then P destroys category if and only
if P adds an eventually different real.

Proof. If P adds an eventually different real then clearly P destroys category,
so we only need to prove the other implication. Let P be a partial order that
destroys category. If P adds a dominating real the result is obvious, so let us
assume P does not add dominating reals.

Let G ⊆ P be a generic filter. Then there is a chopped real (x,P) ∈ V [G]
such that 2ω∩V ⊆ ¬Match (x,P) . Since P does not add dominating reals, then
there is a ground model interval partition R such that there are infinitely many
intervals of R that contain an interval of P. Let W = 2<ω× [R]

<ω
which clearly

is a ground model countable set. We work in V [G] , let Z = {Ri | i ∈ ω} ⊆ R
be such that every Ri contains an interval from P. We now define the function
f : ω −→ W where f (n) = (x � max (R2n) , {R0, ..., R2n}) . We claim that f
is an eventually different real. Assume this is not the case, so there is g ∈ V
such that g ∩ f is infinite. We may assume each g (n) is of the form (sn, Fn)

where Fn ∈ [R]
2n

and dom (sn) is a superset of all intervals of Fn. We can then
recursively define y ∈ 2ω ∩ V such that if g (n) = (sn, Fn) then there is R ∈ Fn
for which y � Fn = sn � Fn. It is then easy to see that y matches (x,P) , which
is a contradiction.

Given a Polish space X, we denote by nwd(X) the ideal of all nowhere dense
subsets of X. We will need the following result of Kuratowski and Ulam (see
[38]):
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Proposition 59 (Kuratowski-Ulam) Let X and Y two Polish spaces. If
N ⊆ X × Y is a nowhere dense set, then {x ∈ X | Nx ∈ nwd(Y )} is comeager
(where Nx = {y | (x, y) ∈ N}).

As a consequence of the Kuratowski-Ulam theorem we get the following
result:

Lemma 60 Let p ∈ Pcat, Mp = {M0, ...,Mn} and i ≤ n. Let gj = Fp (Mi+j)

and m = n − i. If D ∈ Mi and D ⊆ (ωω)
m+1

is a nowhere dense set, then
(g0, ..., gm) /∈ D.

Proof. We prove it by induction on m. If m = 0 this is true just by the
definition of Pcat. Assume this is true for m and we will show it is also true for
m+1. Since D ⊆ (ωω)

m+2
is a nowhere dense set, then by the Kuratowski-Ulam

theorem we conclude that A = {h ∈ ωω | Dh ∈ nwd((ωω)
m+1

)} is comeager and

note it is an element of Mi. In this way, g0 ∈ A so Dg0 ∈ nwd((ωω)
m+1

) and it is
an element of Mi+1. By the inductive hypothesis we know (g1, ..., gm+1) /∈ Dg0

which implies (g0, ..., gm+1) /∈ D.

We will prove that Pcat does not destroy category and this is a consequence
of the following result:

Lemma 61 Let p ∈ Pcat and ġ a Pcat-name for an element of ωω. Let 〈Mn | n ∈ ω〉
be an ∈-chain of elementary submodels of H( (2c)

+++
), h : ω −→ ω and {An | n ∈ ω} ⊆

[ω]
ω

a family of infinite pairwise disjoint sets with the following properties:

1. p, ġ ∈M0.

2. h � An ∈Mn+1.

3. If f ∈Mn ∩ ωω then f ∩ (h � An) is infinite.

Then there is a condition q ≤ p such that q  “ |h ∩ ġ| = ω”.

Proof. Let M =
⋃
n∈ω

Mn and define hn = h � An ∈ Mn+1. We know there

is some f ∈ ωω such that p =
(
sp,Mp ∪ {N} , Fp ∪ {(N, f)}

)
∈ Pcat (where

N = M ∩ H( (2c)
++

)). We will now prove that p forces that ġ and h will have
infinite intersection. We may assume An ∩ n = ∅ for every n ∈ ω.

Pick any q ≤ p and k ∈ ω. We must find an extension of q that forces that
ġ and h share a common value bigger than k. We first find n > k such that
q′ =

(
sq,Mq ∩M,Fq ∩M

)
∈Mn. Let m =

∣∣Mq\Mq′
∣∣ and now we define D as

the set of all t ∈ ω<ω such that there are l ∈ An and r ∈ Pcat with the following
properties:
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1. r ≤ q′.

2. r ∈Mn.

3. sq ⊆ t and the stem of r is t.

4. r  “ġ (l) = hn (l) ”.

It is easy to see that D is an element of Mn+1. We now define N (D) ⊆ (ωω)
m

as the set of all (f1, ..., fm) ∈ (ωω)
m

such that (f1 ∪ ... ∪ fm) ∩ t * sq for every
t ∈ D. We claim that N (D) is a nowhere dense set.

Let z1, ..., zm ∈ ω<ω and we may assume all of them have the same length
and it is bigger than the length of sq. We know q′ =

(
sq,Mq′ , Fq′

)
and let

im (Fq′) = {f
1
, ..., f

k
} (where im denotes the image of the function). Let t0

be any extension of sq such that t0 ∩ (fα1
∪ ... ∪ fαk ∪ z1 ∪ ...zm) ⊆ sq and

|t0| = |z1| . In this way, q0 =
(
t0,Mq′ , Fq′

)
is a condition and is an element of

Mn. Inside Mn, we build a decreasing sequence 〈qi〉i∈ω (starting from the q0 we
just constructed) in such a way that qi determines ġ � i. In this way, there is
a function u : ω −→ ω ∈ Mn such that qi  “ġ � i = u � i”. Since u ∈ Mn

we may then find l ∈ An such that u (l) = hn (l) . Let t = tl+1 and r = ql+1,
we may then find z′i ⊇ zi such that t ∩ (z′1 ∪ ... ∪ z′m) ⊆ sq and |z′i| = |t| .
In this way, we conclude that 〈z′1, ..., z′m〉 ∩ N (D) = ∅ (where 〈z′1, ..., z′m〉 =
{(g1, ..., gm) | ∀i ≤ m (z′i ⊆ gi)}) so we conclude N (D) is a nowhere dense set.

Let g1, ..., gm be the elements of im (Fq) that are not in M. Since D ∈ N
then by the previous lemma, we know that (g1, ..., gm) /∈ N (D) . This means
there are l ∈ An, t ∈ ω<ω and r ∈ Mn such that r ≤ q′, whose stem is t and
r  “ġ (l) = hn (l) ” with the property that t ∩ (g1 ∪ ... ∪ gm) ⊆ sq, but since
q is a condition, it follows that t ∩ (g1 ∪ ... ∪ gm) = ∅. In this way, r and q are
compatible, which finishes the proof.

As a corollary we get the following:

Corollary 62 Pcat does not destroy category.

Unfortunately, the iteration of forcings that do not destroy category may
destroy category (this may even occur at a two step iteration, see [4]). Luckily
for us, the iteration of the Pcat forcing does not destroy category as we will
prove soon. First we need a couple of lemmas.

Lemma 63 Let P be a proper forcing that does not destroy category and p ∈ P.
If Ṡ is a P-name for a countable set of reals, then there is q ≤ p and h : ω −→ ω
such that q  “∀f ∈ Ṡ (|f ∩ h| = ω) ”.
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Proof. First note that if ḟ0, ..., ḟn are P-names for reals, then there is q ≤ p and
h : ω −→ ω such that q forces ḟi and h have infinite intersection for every i ≤ n.
To prove this, we choose a partition {A0,, ..., An} of ω into infinite sets and let

ġi be the P-name of ḟi � Ai. Since P does not destroy category, there are q ≤ p
and hi : Ai −→ ω such that q forces that hi and ḟi have infinite intersection.
Clearly q and h =

⋃
hi have the desired properties.

To prove the lemma, let Ṡ = {ġn | n ∈ ω} and fix a partition {An | n ∈ ω}
of ω in infinite sets. By the previous remark, we know there is a P-name Ḟ
such that p  “Ḟ : ω −→ Partial (ωω) ∩ V ” such that every Ḟ (n) is forced
to be a function with domain An and intersects infinitely ġ0 � An, ..., ġn � An.
Since P is a proper forcing, we can find q ≤ p and M ∈ V a countable subset
of Partial (ωω) such that q  “Ḟ : ω −→ M”. We know P does not destroy
category and M is countable, so there must be r ≤ q and H : ω −→ M such
that r  “∃∞n(Ḟ (n) = H (n))”. We may assume that the domain of H (n) is
An for every n ∈ ω. Finally, we define h =

⋃
n∈ω

H (n) and it is easy to see that

r forces that h has infinite intersection with every element of Ṡ.

We will also need the following lemma.

Lemma 64 Let P be a proper forcing that does not destroy category, G ⊆ P
a generic filter and X any set. Then there are M = {Mn | n ∈ ω} ⊆ V, P =
{An | n ∈ ω} ⊆ V and h : ω −→ ω in V with the following properties:

1. Each Mn is a countable elementary submodel of H (κ) for some big enough
κ (in V ).

2. X ∈M0 and Mn ∈Mn+1 for every n ∈ ω.

3. P is a family of infinite pairwise disjoint subsets of ω.

4. P,M ∈ V [G] (while M is a subset of V, in general it will not be a ground
model set, the same is true for P ).

5. G ∩Mn is a (Mn,P)-generic filter for every n ∈ ω.

6. h � An ∈Mn+1 and if f ∈Mn [G] then h � An ∩ f is infinite.

Proof. Let r be any condition of P. We will prove that there is an extension
of r that forces the existence of the desired objects. Let {Bn | n ∈ ω} be any
definable partition of ω into infinite sets.

Claim 65 If G ⊆ P is a generic filter with r ∈ G then (in V [G]) there is a
sequence 〈(Ni, pi, hi) | i ∈ ω〉 such that for every i ∈ ω the following holds:



2.2. NON(M) = ω1 DOES NOT IMPLY THE EXISTENCE OF A NON-MEAGER IE-LUZIN SET35

1. Ni ∈ V is a countable elementary submodel of H (κ) (the H (κ) of the
ground model).

2. r,X ∈ N0 and Ni ∈ Ni+1.

3. p0 ≤ r and 〈pk〉k∈ω is a decreasing sequence contained in G.

4. pi is (Ni,P)-generic.

5. hi : Bi −→ ω in Ni+1.

6. pi  “∀f ∈ Ni[Ġ] ∩ ωω (|f ∩ hi| = ω) ”.

Assume the claim is false, so we can find n ∈ ω and a sequence R =
〈(Ni, pi, hi) | i ≤ n〉 that is maximal with the previous properties (the point
5 is only demanded for i < n). Let p ∈ G be a condition forcing R has all
these features (including the maximality). Back in V, let M be a countable
elementary submodel such that P, p, R ∈ M. By the previous lemma, there is
an (M,P)-generic condition q ≤ p and g : Bn+1 −→ ω such that g is forced by q
to intersect infinitely every real of M [G] . In this way, q forces that R could be
extended by adding (M, q, g) but this is a contradiction since q ≤ p so it forces
R was maximal. This finishes the proof of the claim.

Let 〈(Ṅi, ṗi, ḣi) | i ∈ ω〉 be the name of a sequence as in the claim. We
can now define a name for a function Ḟ from ω to Partial (ωω) ∩ V such that
r  “∀n(Ḟ (n) = ḣn)”. As in the previous lemma, we can find a condition p ≤ r
and H : ω −→ Partial (ωω) such that p  “∃∞n(Ḟ (n) = H (n))”. We may
assume the domain of H (n) is Bn and let h =

⋃
n∈ω

H (n) . Let Ż = {żn | n ∈ ω}

be a name for a subset of ω such that p  “∀n (F (żn) = H (żn)) ”. If G ⊆ P is
a generic filter such that p ∈ G then we define Mn = Nżn[G] and An = Bżn[G],
it is clear that these sets have the desired properties.

From this we can conclude the following,

Corollary 66 If P is a proper forcing that does not destroy category then P ∗ Pcat
does not destroy category.

Proof. Let ṗ be a P-name for a condition of Pcat and ḟ a P-name for a Pcat-
name for a real. Let G ⊆ P be a generic filter. By the previous lemma, there
are h : ω −→ ω in V, an ∈-chain of elementary submodels {Mn [G] | n ∈ ω}
and a pairwise disjoint family {An | n ∈ ω} of infinite subsets of ω such that
ṗ [G] , ḟ [G] ∈M0 [G] and h � An ∈Mn+1 [G] has infinite intersection with every
real in Mn [G] . Then by lemma 61, we can extend ṗ [G] to a condition forcing
that ḟ [G] and h will have infinite intersection.
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As commented before, the iteration of forcings that does not destroy category
may destroy category, but the following preservation result of Dilip Raghavan
shows this can only happen at the successor steps of the iteration:

Proposition 67 (Raghavan [51]) Let δ be a limit ordinal and 〈Pα, Q̇α | α <
δ〉 a countable support iteration of proper forcings. If Pα does not destroy cate-
gory for every α < δ then Pδ does not destroy category.

With the aid of the previous preservation theorem we conclude the following:

Corollary 68 The countable support iteration of Pcat does not destroy category.

Putting all the pieces together, we can finally prove our theorem:

Proposition 69 If the existence of an inaccessible cardinal is consistent, then
so is the following statement: non(M) = ω1 and every IE-Luzin set is meager.

Proof. Let µ be an inaccessible cardinal. We perform a countable support
iteration {Pα, Q̇α | α < µ} in which Q̇α is forced by Pα to be the Pcat forcing.
It is easy to see that if α < µ then Pα has size less than µ so it has the µ-
chain condition and then Pµ has the µ-chain condition (see [5]). The result then
follows by the previous results.



Chapter 3

Remarks on a conjecture of
Hrušák

Based on his Category Dichotomy for Borel ideals ([30]), Hrušák conjectured
the following:

Conjecture 70 (Hrušák) If (A,B,−→) is a Borel invariant then either
‖A,B,−→‖ ≤ non(M) or cov(M) ≤ ‖A,B,−→‖ .

We will provide both a partial negative and a partial affirmative answer to
this conjecture: We show that the conjecture of Hrušák is false if we allowed
A and B to be Borel subsets of ωω1 . Nevertheless, we show that the conjec-
ture is true for a large class of Borel invariants. Note that the definability of
(A,B,−→) is important: otherwise the almost disjointness number a will be a
counterexample.

For every function F : ω<ω1 −→ ω1 we define the set C (F ) = {f ∈ ωω1 | ∃∞n (f (n) ∈ F (f � n))}.
The ω1-Namba ideal Lω1 is the ideal on ωω1 generated by {C (F ) | F : ω<ω1 −→ ω1} .
We will be interested in the invariant non(Lω1

) . It is easy to see that this
invariant is uncountable. By Eω1

ω we denote the set of all ordinals smaller
than ω1 with cofinality ω. CGω (ω1) is the statement that there is a sequence
C = 〈Cα | α ∈ Eω1

ω 〉 where Cα ⊆ α is a cofinal set of order type ω such that for
every club D ⊆ ω1 there is α for which Cα ⊆ D. We call such C a club guessing
sequence.

We will show that the existence of a Club Guessing sequence implies that
the uniformity of Lω1

is precisely ω1.

Proposition 71 The principle CGω (ω1) implies non(Lω1) = ω1.

Proof. Let C = {Cα | α ∈ Eω1
ω } be a club guessing sequence. Enumerate each

Cα = {αn | n ∈ ω} in an increasing way, we may further assume 0 /∈ Cα for

37
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every α ∈ LIM (ω1) . We now define fα : ω −→ ω1 where fα (n) = αn. We will
show that X = {fα | α ∈ Eω1

ω } /∈ Lω1 .

Let F : ω<ω1 −→ ω1, we must show that X is not contained in C (F ) . Let
D ⊆ ω1 be a club such that if α ∈ D and s ∈ α<ω then F (s) < α. Since C is a
club guessing sequence, there is α ∈ D such that Cα ⊆ D. It is then easy to see
that fα /∈ C (F ) .

We will now prove that the inequality non(Lω1) > ω1 is consistent and we
will use Baumgartner’s forcing for adding a club with finite conditions. Let
BA be the set of all finite functions p ⊆ ω1 × ω1 with the property that there
is a function enumerating a club g : ω1 −→ ω1 such that p ⊆ g and im (g)
consists only of indecomposable ordinals. We order BA by inclusion. It is
well known that BA is a proper forcing and adds a club, whose name we will
denote by Ḋgen. Given a club D ⊆ ω1, define a function FD : ω<ω1 −→ ω1

given by FD (s) = min {γ ∈ D | im (s) ⊆ γ} . Recall that if F : ω<ω1 −→ ω1 we
defined C (F ) = {f ∈ ωω1 | ∃∞n (f (n) ∈ F (f � n))} . Note that if f ∈ ωω1 then
the following holds:

1. If f [ω] has a maximum then f ∈ C (FD) .

2. If
⋃
f [ω] is not a limit point of D then f ∈ C (FD) .

Lemma 72 If f ∈ ωω1 then Ef = {p ∈ BA | p  “f ∈ C(FḊgen)”} is a dense
set.

Proof. Let p ∈ BA. We may assume f [ω] has no maximum and p forces that
γ =

⋃
f [ω] is a limit point of Ḋgen (in particular γ must be an indecomposable

ordinal) so there must be a limit ordinal β < ω1 such that p (β) = γ. Let
q ≤ p and n ∈ ω. We must prove that there is q1 ≤ q and m > n such that
q1  “f (m) < FḊgen (f � m) ”. Let g : ω1 −→ ω1 be a function enumerating a

club such that q ⊆ g and im (g) consists only of indecomposable ordinals. Let
β0 = max (β ∩ dom (q)) and note we may assume that f (0) , ...f (n) < q (β0) (if
this is not the case we just extend q in order to obtain this condition). Let m be
the smallest natural number for which q (β0) < f (m) . Since q forces that γ is
a limit point of Ḋgen, there must be β0 < β1 < β such that f (m) , f (m+ 1) <
g (β1) . We then define q1 and g1 as follows:

1. q1 = q ∪ {(β0 + 1, g (β1))} .

2. g � (β0 + 1) , g � [β, ω1) ⊆ g1.

3. g1 (β0 + 1) = g (β1) .

4. If ξ ∈ (β0 + 1, β) then g1 (ξ) = g (β1 + ξ) .
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Note that q1 is a condition of BA (as witnessed by g1) extending q and
q1  “f (m+ 1) < FḊgen (f � m+ 1) ”.

Since BA is a proper forcing, we conclude the following:

Proposition 73 The Proper Forcing Axiom implies non(Lω1) > ω1.

We will now show that the cardinal invariant non(Lω1) does not satisfy the
conjecture of Hrušák. Although non(Lω1

) is not a Borel invariant, it is still (in
some sense) definable (it would be a Borel invariant if we were allowed to use
the space ωω1 instead of a Polish space).

Proposition 74 Both the inequalities non(Lω1
) < cov(M) and non(M) <

non(Lω1
) are consistent with the axioms of ZFC.

Proof. It is well known that Martin’s Axiom is consistent with CGω (ω1) (see
[39] chapter V.7.3) so the inequality non(Lω1

) < cov(M) is consistent. In order
to build a model for the second inequality, we will perform a countable support
iteration 〈Pα, Q̇α | α ≤ ω2〉 where Pα  “Q̇α = BA” for every α < ω2. It is
enough to show that non(M) = ω1 holds after forcing with Pω2 . To achieve this,
it is enough to prove that BA preserves Cohen reals: (see [4])

• For any countable elementary submodel M of H (θ) (for some big enough
θ), p ∈M ∩BA and c a Cohen real over M, there is q an (M,BA)-generic
condition extending p such that q forces that c is a Cohen real over M [Ġ].

Let M,p and c as above and let δ = M ∩ ω1. Define q = p ∪ {(δ, δ)} . It is
easy to see that q ∈ BA and q is an (M,BA)-generic condition. We will now
prove that it forces that c remains a Cohen real over M [Ġ]. Let Ḋ ∈ M be a
name for an open dense set of ωω and r ≤ q. We must show we can find r′ ≤ r
such that r′  “c ∈ Ḋ”. Let r1 = r � δ and note that r1 ∈ M since r (δ) = δ.
Now we define E =

⋃
{〈s〉 | ∃b ≤ r1(b  “ 〈s〉 ⊆ Ḋ”)} which clearly is an open

dense set and belonging to M. Since c is a Cohen real over M, we know that
c ∈ E so there is s ∈ ω<ω and b ≤ r1 such that b  “ 〈s〉 ⊆ Ḋ” and c ∈ 〈s〉 .
By elementarity, we may assume b ∈ M. It is then easy to see that b and r are
compatible.

Nevertheless, we will show that the conjecture of Hrušák holds for a large
class of Borel cardinal invariants. A forcing notion P preserves category if
P “A /∈ M” for every nonmeager set A. Given a σ-ideal I on a Polish space
X, we define PI = Borel (X) /I. We say I is a universally Baire ideal if the set
of all (codes for) analytic sets is universally Baire.

Definition 75 Let (A,B,−→) be a Borel invariant, we say that non(M) <
‖A,B,−→‖ is nicely consistent if there is a universally Baire σ-ideal I such
that PI is proper, preserves category and destroys (A,B,−→) .
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By the methods of [69], non(M) < ‖A,B,−→‖ is nicely consistent if there
is an iterable σ-ideal I such that (PI)ω2

 “non(M) < ‖A,B,−→‖ ” where
(PI)ω2

denotes the countable support iteration of the forcing PI (see [69] for
the definition of an iterable ideal). Intuitively, non(M) < ‖A,B,−→‖ is nicely
consistent just means that the inequality non(M) < ‖A,B,−→‖ can be forced
with the a nice enough forcing. Given a σ-ideal I, define cov− (I) as the smallest
size of a family A ⊆ I such that there is a Borel set B /∈ I for which B ⊆

⋃
A

(in [69] cov− (I) is denoted as cov∗ (I)).

Lemma 76 Let (A,B,−→) be a Borel invariant and I a σ-ideal such that PI
is proper. If PI destroys (A,B,−→) then cov− (I) ≤ ‖A,B,−→‖ .

Proof. Let ṙ be a PI-name such that PI  “ṙ ∈ A” and if b ∈ B then
PI  “ṙ 9 b”. By the Borel reading of names (see [69]) there is a Borel set
C /∈ I and a Borel function F : C −→ A such that C  “F (ṙgen) = ṙ”. For
every b ∈ B let Eb = {x ∈ C | F (x) −→ b} . Note that each Eb is a Borel set and
Eb ∈ I. Let D ⊆ B be a dominating family for (A,B,−→) of minimum size and
let M be a countable elementary submodel such that (A,B,−→) , C, F ∈ M.
Define C1 as the set of all M -generic points of C, since PI is proper then C1 is a
Borel set extending C. It is easy to see that C1 ⊆

⋃
b∈D

Eb and then we conclude

that cov− (I) ≤ ‖A,B,−→‖ .

With this we can prove the following (where by LC we denote a large cardinal
hypothesis):

Theorem 77 (LC ) Let (A,B,−→) be a Borel invariant such that non(M) <
‖A,B,−→‖ is nicely consistent, then cov(M) ≤ ‖A,B,−→‖ .

Proof. Let I be a σ-ideal such that PI is proper, preserves category and de-
stroys (A,B,−→) . By the previous result, we know that cov− (I) ≤ ‖A,B,−→‖ .
By [69] Corollary 3.5.4, Cohen forcing C = PM adds an I-quasigeneric real, us-
ing the same method as in the previous lemma, we can then conclude that
cov(M) ≤ cov− (I) and then cov(M) ≤ ‖A,B,−→‖ .

We do not know if there is a Borel invariant (A,B,−→) such that non(M) <
‖A,B,−→‖ is consistent but not nicely consistent.



Chapter 4

Indestructibility

4.1 Indestructibility of ideals

If I is an ideal in ω and P is a partial order, we say that P destroys I if P
forces that I is no longer tall i.e. if P adds a new subset of ω that is almost
disjoint with every element of I. The theory of destructibility of ideals is very
important in forcing theory, since many important forcing properties may be
stated in these terms. The following proposition is an example of this fact.

Proposition 78 Let P be a partial order.

1. P adds new reals if and only if P destroys tr (ctble) .

2. P adds unbounded reals if and only if P destroys tr (Kσ) .

3. P adds dominating reals if and only if P destroys tr (L) if and only if P
destroys FIN×FIN.

4. P adds eventually different reals if and only if P destroys ED.

Proof. The first and second points will be proved later in this chapter. We will
now prove that P adds dominating reals if and only if P destroys FIN×FIN. First
assume P destroys FIN×FIN, so then P adds an infinite partial function that is al-
most disjoint with (FIN×FIN)∩V. We may assume f is increasing. We now define
g : ω −→ ω such that g (n) = f (mn) where mn = min {k ≥ n | k ∈ dom (f)} .
It is easy to see that g is a dominating real. Clearly if P adds a dominating
real then P destroys FIN×FIN. By a theorem below, since Laver forcing adds
dominating reals then FIN×FIN≤K tr (L) so by destroying tr (L) we will add
a dominating real. It is easy to see that adding a dominating real will destroy
tr (L) . Finally, if P adds an eventually different real then P will destroy ED.
Conversely, if P destroys ED then P will make V ∩ ωω a meager set, hence it
will add an eventually different real.

41
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The previous proposition suggests the following conjecture: if I is a σ-ideal
on ωω and P is a partial order, then P adds I-quasigeneric reals if and only
if P destroys tr (I) . However, this conjecture is false even for nice ideals and
nice partial orders, as the following example from [34] shows: the trace of the
null ideal can be destroyed by a σ-centered forcing (for example by M (tr (N )))
however, it is known that no σ-centered forcing can add random reals.

The Katětov order is a key tool for understanding the destructibility of
ideals:

Lemma 79 Let I,J be two ideals such that I ≤K J . If P destroys J then P
destroys I.

Proof. Let f : (ω,J ) −→ (ω, I) be a Katětov-morphism. Let Ẋ be a P-name
for an infinite subset of ω that is forced to be almost disjoint with every element
of J . It is easy to see that f [Ẋ] is forced to ba almost disjoint with I.

The following is an useful lemma:

Lemma 80 ([69]) Let I be σ-ideal in ωω such that PI is proper and has the
continuous reading of names. If B ∈ PI then there is D ≤ B such that D is Gδ.

Proof. Let B ∈ PI and since B is analytic, we can find T a tree on ω×ω such
that B = {x | ∃y ((x, y) ∈ [T ])} (where [T ] = {(x, y) | ∀n ((x � n, y � n) ∈ T )}).
Let ẏ be a PI-name such that B  “ (ṙgen, ẏ) ∈ [T ] ” (where ṙgen is the name
of the generic real). Since PI is proper and has the continuous reading of
names we can find C ≤ B and a continuous function F : C −→ ωω such that
C  “F (ṙgen) = ẏ”. Since C  “ (ṙgen, F (ṙgen)) ∈ [T ] ” we may assume (by
possibly shrinking the condition) that (x, F (x)) ∈ [T ] for every x ∈ C.

Let L = {s ∈ ω<ω | 〈s〉 ∩ C 6= ∅} . We now define a function F : L −→ ω<ω

as follows: if F is not constant on 〈s〉 ∩ C we define F (s) = t where t is the
largest such that F [〈s〉 ∩ C] ⊆ 〈t〉 . In case F is constant on 〈s〉 ∩ C we define
F (s) = r � |s| where r is the constant value of F [〈s〉 ∩ C] . We now define D as
the set of all r ∈ ωω such that for every n ∈ ω there is s ⊆ r such that F (s)
has length at least n. It is easy to see that C ⊆ D ⊆ B so D ∈ PI and it is a
Gδ set.

The relevance of the trace ideals in the study of destructibility is the following
important result of Hrušák and Zapletal:

Proposition 81 ([34]) Let I be a σ-ideal in ωω such that PI is proper and has
the continuous reading of names. If J is an ideal on ω, then the following are
equivalent:

1. There is a condition B ∈ PI such that B forces that J is not tall.

2. There is a ∈ tr (I)
+

such that J ≤K tr (I) � a.
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Proof. We first show that 2 implies 1. Let B = π (a) which is an element of
PI . It is enough to show that B forces that tr (I) � a is no longer tall. Let
ṙgen be the name for the generic real. Note that since B  “ṙgen ∈ B”, it
follows that B forces that ẋ = {ṙgen � n | ṙgen � n ∈ a} is infinite. We will prove
that B forces ẋ to be AD with tr (I) � a. Let C ≤ B and d ∈ tr (I) � a then
C1 = C \ π (d) ∈ PI and C1 forces ẋ is almost disjoint with d.

Now assume that there is B ∈ PI and a PI-name Ẋ such that Ẋ =
{ẋn | n ∈ ω} is forced by B to be almost disjoint with J . We recursively define
{an | n ∈ ω} and a function g as follows:

1. Each an ⊆ ω<ω is an antichain.

2. If s ∈ an+1 then there is t ∈ an such that t ⊆ s.

3. If a =
⋃
an then π (a) ⊆ B and π (a) ∈ PI .

4. g is a function from a to ω.

5. If s ∈ an then 〈s〉 ∩ π (a)  “ẋn = g (s) ”.

This can be done since PI has the continuous reading of names (and the
previous lemma). It is then easy to see that g : (ω<ω, tr (I) � a) −→ (ω,J ) is a
Katětov-morphism.

If t ∈ 2<ω we define 〈t〉<ω = {s ∈ 2<ω | t v s} . We now have the following:

Lemma 82 tr (M) is Katětov-Blass equivalent to nwd.

Proof. Let � be a well order for the rational numbers. We recursively define
{Us | s ∈ 2<ω} and {qs | s ∈ 2<ω} ⊆ Q as follows:

1. Each Us is a clopen set of the rational numbers and qs = min� (Us) .

2. U∅ = Q.

3. {Us_0, Us_i} is a partition (into clopen sets) of Us − {qs} .

4. Q = {qs | s ∈ 2<ω} and {Us | s ∈ 2<ω} is a π-base of open sets

We then define f : 2<ω −→ Q given by f (s) = qs. We will prove that f is
a Katětov-morphism from (2<ω, tr (M)) to (Q,nwd). Let N ⊆ Q be a nowhere
dense set, we will prove that π

(
f−1 (N)

)
is a nowhere dense set of 2ω. Let

s ∈ 2<ω and since N is nowhere dense and {Us | s ∈ 2<ω} is a π-base of open
sets we can find t ∈ 2<ω extending s such that Ut ∩ N = ∅. It then follows
that 〈t〉 ∩ π

(
f−1 (N)

)
= ∅. Now we will prove that f−1 is a Katětov-morphism

from (Q,nwd) to (2<ω, tr (M)) . It is enough to prove that if a ∈ tr (M) then
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f [a] ∈nwd. Let s ∈ 2<ω and since π (a)∩〈s〉 is a Gδ meager set in 〈s〉 it can not
be dense, so there is t ∈ 2<ω extending s such that 〈t〉∩π (a) = ∅ which implies
that a ∩ 〈t〉<ω is an off-branch set, so we can then find an extension r of t such
that a ∩ 〈r〉<ω = ∅ which then implies f [a] ∩ Ur = ∅.

The following result is useful for computing the covering numbers of the
trace ideals:

Proposition 83 ([34]) Let I be a σ-ideal in ωω generated by analytic sets such
that PI is proper and has the continuous reading of names. Then:

cov(I) ≤ cov∗ (tr (I)) ≤ max{cov(I) , d}.

Proof. Let κ < cov(I) and {aα | α < κ} ⊆ tr (I) . Since κ <cov(I) , there is
f ∈ ωω such that f /∈

⋃
α<κ

π (aα) and then {f � n | n ∈ ω} is almost disjoint

with each aα. Now we will prove that cov∗ (tr (I)) ≤ max{cov(I) , d}. Let S be
the set of all f : ω<ω −→ [ω<ω]

<ω
such that s ∈ f (s) and f (s) is a finite set

of {t ∈ ω<ω | s v t} . Let F = {fα | α < d} ⊆ S such that for every f ∈ S there
is α < d such that f (s) ⊆ fα (s) for every s ∈ ω<ω. Let κ be the maximum of
cov(I) and d. Since every analytic set is the union of at most d compact sets, we
can find a family {Tβ | β < κ} of finitely branching subtrees of ω<ω such that
each [Tβ ] belongs to I and ωω =

⋃
β<κ

[Tβ ] . For every α < d and β < κ we define

〈aα,β (n) | n ∈ ω〉 and 〈mn | n ∈ ω〉 with the following properties:

1. m0 = ∅.

2. If l < k then ml < mk.

3. aα,β (n) is a finite subset of ω<ω.

4. aα,β (0) = fα (∅) .

5. mn+1 is bigger than the length of all the elements of aα,β (n) .

6. aα,β (n+ 1) =
⋃
{fα (t) | t ∈ Tβ ∩ ωmn+1} .

Let aα,β =
⋃
aα,β (n) and note that if g ∈ π (aα,β) then there are infinitely

many t ∈ Tβ such that t v g so g ∈ [Tβ ] and then aα,β ∈ tr (I) . For every
t ∈ ω<ω and α < d define bα,t =

⋃
{fα (t_n) | n ∈ ω} . Clearly π (bα,t) = ∅.

Hence W = {aα,β | α < d, β < κ}∪ {bα,t | α < d∧t ∈ ω<ω} is a subset of tr (I) .
We will now show W is a tall family. Let X ⊆ ω<ω be an infinite set.

Define L as the tree of all t ∈ ω<ω such that {s | t ⊆ s ∧ s ∈ X} is infinite.
We proceed by cases: first assume there is t ∈ L that is a maximal node. Since
t ∈ L and it is maximal, it follows that {n | ∃s ∈ X (t_n ⊆ s)} is infinite and
then there is α < d such that bα,t ∩X is infinite. We now assume that L does
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not have a maximal node, so there is r ∈ [L] . Since ωω =
⋃
β<κ

[Tβ ] there is β < κ

such that r ∈ [Tβ ] . We now define a function f : ω<ω −→ [ω<ω]
<ω

as follows:
if t /∈ L then f (t) = {t} and if t ∈ L we choose s ∈ X such that t ⊆ s and
define f (t) = {t, s} . Let α < d such that fα dominates f, it is easy to see that
aα,β ∩X is infinite.

In particular, we may conclude that cov(M) ≤ cov∗(nwd) ≤ d. The following
result of Keremedis shows that cov∗(nwd) is actually the covering number of the
meager ideal:

Proposition 84 (Keremedis, see [2]) cov(M) = cov∗ (tr (M)) .

Proof. Let κ < cov∗ (tr (M)) and {Tα | α < κ} be a family of subtrees of 2<ω

such that each [Tα] is nowhere dense. We must prove that 2ω 6=
⋃
α<κ

[Tα] . Since

π (Tα) = [Tα] , therefore Tα ∈ tr (M) for every α < κ. In this way, there is
an infinite Y ⊆ 2<ω that has finite intersection with each Tα. Furthermore, we
claim there is such Y for which π (Y ) 6= ∅.

Assume this is not the case. We then recursively build {An | n ∈ ω} such
that for every n ∈ ω the following holds:

1. An ⊆ 2<ω is an infinite antichain.

2. An ∩ Tα is finite for every α < κ.

3. Every element of An+1 extends an element of An; moreover, every t ∈ An
has infinitely many extensions in An+1.

Let A0 be any infinite antichain almost disjoint with every Tα. Assuming
we have constructed An we will see how to construct An+1. Given s ∈ An
let B (s) = {t ∈ 2<ω | s ⊆ t} and since κ < cov∗ (tr (M)) we conclude that
{Tα ∩B (s) | α < κ} is not tall. Let Ds ⊆ B (s) be an infinite antichain almost
disjoint with every Tα ∩B (s) . We now define An+1 =

⋃
s∈An

Ds. Since each Tα is

upward closed we know that Tα∩An+1 is finite. Let An = {sn (i) | i ∈ ω} and for
every α < κ we define fα ∈ ωω given by fα (n) = min {m | ∀i ≥ m (sn (i) /∈ Tα)} .
Since κ <cov∗ (tr (M)) ≤ d there is a function g ∈ ωω not dominated by any
fα. We then recursively build Y = {tn | n ∈ ω} such that for every n ∈ ω the
following holds:

1. tn ∈ An.

2. tn ⊆ tn+1.

3. There is i ≥ g (n) such that tn = sn (i) .
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It is easy to see that Y ∩Tα is finite for every α < κ, which is a contradiction.

Let Y such that π (Y ) 6= ∅ and Y is almost disjoint with each Tα. Clearly if
r ∈ π (Y ) then r /∈

⋃
α<κ

[Tα] .

As a consequence of the previous results we can conclude the following:

Proposition 85

1. cov∗ (tr (ctble)) = c.

2. cov∗ (tr (Kσ)) = d.

3. cov∗ (tr (M)) = cov(M) .

4. cov∗ (tr (L)) = b.

The last equality follows since tr (L) is Katětov above FIN×FIN.

Definition 86 Let I and J be two σ-ideals in ωω. We say I is continuously
Katětov smaller than J (denoted by I ≤CKJ ) if there is a continuous function
F : ωω −→ ωω such that F−1 (A) ∈ J whenever A ∈ I.

Then we have the following result:

Proposition 87 ([45]) Let I and J be σ-ideals in ωω. If I ≤CKJ then
tr (I) ≤K tr (J ) .

Proof. Let F : ωω −→ ωω be a continuous function such that F−1 (A) ∈ J
whenever A ∈ I. We now define f : ω<ω −→ ω<ω as follows: let s ∈ ω<ω, if
F is not constant on 〈s〉 we define f (s) = max {t | F (〈s〉) ⊆ 〈t〉} and if F is
constant on 〈s〉 then f (s) = r � |s| where r is the constant value of F � 〈s〉 .
We claim that f : (ω<ω, tr (J )) −→ (ω<ω, tr (I)) is a Katětov morphism. Let
a ∈ tr (I) we will show that π

(
f−1 (a)

)
∈ J . Note that if x ∈ π

(
f−1 (a)

)
then

F (x) ∈ π (a) ∈ I. However, PJ forces that F (ṙgen) is I-quasigeneric (where
ṙgen denotes the name of the generic real) so π

(
f−1 (a)

)
can not be a condition

of PJ .

Let I be a σ-ideal, we say that PI is continuously homogenous if for every
B ∈ PI it is the case that I � B ≤CK I. Note that if PI is continuously
homogenous then tr (I) is Katětov uniform.

Lemma 88 The ideals tr(ctble), nwd, tr (Kσ) , tr (L) are all Katětov uniform.



4.1. INDESTRUCTIBILITY OF IDEALS 47

Proof. It is well known that every uncountable Borel set of 2ω contains a Cantor
set, it then follows that ctble is continuously homogenous. A similar argument
works for Miller and Laver forcings. Finally, if A /∈ nwd then it contains a copy
of the rational numbers.

We can then conclude the following:

Proposition 89 Let P be a partial order.

1. P destroys tr(ctble) if and only if P adds a new real.

2. P destroys tr (Kσ) if and only if P adds an unbounded real.

Proof. Clearly if P destroys tr(ctble) then it must add a new real. Conversely,
if r is a new real added by P then {r � n | n ∈ ω} destroys tr(ctble). The second
point follows by the proof of cov∗ (tr (Kσ)) = d.

We have the following characterizations:

Proposition 90 Let J be an ideal on ω.

1. The following are equivalent:

(a) J is destructible by Sacks forcing.

(b) J is destructible by any forcing adding a new real.

(c) J ≤K tr(ctble)

2. The following are equivalent:

(a) J is destructible by Miller forcing.

(b) J is destructible by any forcing adding an unbounded real.

(c) J ≤K tr (Kσ) .

3. The following are equivalent:

(a) J is destructible by Cohen forcing.

(b) J ≤Knwd.

The following definition is essentially the same as one considered by Brendle
and Yatabe in [14]:

Definition 91 Let I be a σ-ideal on ωω (or 2ω) such that PI is proper and has
the continuous reading of names. We say I has very weak fusion if for every
ideal J on ω, the following conditions are equivalent:

1. There is a condition B ∈ PI such that B  “J is not tall”.



48 CHAPTER 4. INDESTRUCTIBILITY

2. There is a ∈ tr (I)
+

such that J ≤KB tr (I) � a.

We then have the following:

Proposition 92 ([14]) ctble,M,N and Kσ have very weak fusion.

Proof. Let J be an ideal on ω, we need to prove that if PI destroys J (for I
one of the ideals mentioned in the proposition) then there is a ∈ tr (I)

+
such

that J ≤KB tr (I) � a.

We first prove it for Cohen forcing. Let s ∈ ω<ω and Ẋ be a name for
an infinite set that is forced by s to be almost disjoint with J . Let C =
{tn | n ∈ ω} ⊆ ω<ω be the set of all extensions of s. We now recursively find
a = {tn | n ∈ ω} ⊆ ω<ω and {mn | n ∈ ω} ⊆ ω such that for every n ∈ ω the
following holds:

1. tn extends tn.

2. mn < mn+1.

3. tn  “mn ∈ Ẋ”.

This is very easy to do and clearly a ∈ tr (M)
+
. We now define f : a −→ ω

where f
(
tn
)

= mn. It is easy to see that f is injective and is a Katětov morphism
from (a, tr (M) � a) to (ω,J ) .

We now prove it for Sacks forcing. Let p be a Sacks tree and Ẋ be a name for
an infinite set that is forced by S to be almost disjoint with J . We recursively
construct {ps | s ∈ 2<ω} ⊆ S, a = {ts | s ∈ 2<ω} ⊆ 2<ω and {ms | s ∈ 2<ω} ⊆ ω
such that for every s ∈ 2<ω the following holds:

1. p∅ ≤ p.

2. ps_0 and ps_1 are two incompatible extensions of ps.

3. ts is the stem of ps.

4. ts_0 and ts_1 are incomparable nodes of 2<ω and ts_0 ∩ ts_1 = ts.

5. ps  “ms ∈ Ẋ”.

6. If s 6= t then ms 6= mt.

Once again, this is easy to do and a ∈ tr(ctble)+. We now define f : a −→ ω
where f (ts) = ms. It is easy to see that f is injective and is a Katětov morphism
from (a, tr(ctble)+ � a) to (ω,J ) . A very similar proof works for Miller forcing.
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Finally, we prove it for random forcing. Let T ⊆ 2<ω be a tree such that
[T ] has positive Lebesgue measure and Ẋ = {ẋn | n ∈ ω} be a name for an
infinite set that is forced by B to be almost disjoint with J . By the usual proof
that random forcing is ωω-bounding, we may assume there are {Fn | n ∈ ω} and
{hn | n ∈ ω} such that for every n ∈ ω the following holds:

1. Fn is a finite maximal antichain of T.

2. Fn+1 refines Fn.

3. hn : Fn −→ ω.

4. If s ∈ Fn then Ts  “ẋn = hn (s) ”.

Let W ∈ [ω]
ω

such that if n,m ∈ W and n < m then hn (s) < hm (t) for
every s ∈ Fn and t ∈ Fm. Let a =

⋃
n∈W

Fn then a ∈ tr (N)
+
. We now define

f : a −→ ω where f =
⋃

n∈W
hn. It is easy to see that f is finite to one and is a

Katětov morphism from (a, tr (N ) � a) to (ω,J ) .

We will not need the following results, but we would like to mention them
since they are important in the theory of destructibility of ideals:

Proposition 93

1. (Laflamme [41]) Every Fσ-ideal can be destroyed without adding unbounded
reals.

2. (Zapletal [69]) Every Fσ-ideal can be destroyed without adding unbounded
reals or splitting reals.

3. (Raghavan, Shelah [54]) The density zero ideal can not be destroyed with-
out adding unbounded reals.

4.2 Indestructibility of MAD families

Let A be a MAD family and P a forcing notion. We say that P destroys A if A
is not longer maximal after forcing with P. Clearly, P destroys A if and only if
P destroys I (A) . Recall that if I, J are ideals and I ≤K J then cov∗ (J ) ≤
cov∗ (I) and that cov∗ (I (A)) = |A| .

Corollary 94 Let A be a MAD family.

1. If |A| < c then A is Sacks indestructible.

2. If |A| < d then A is Miller indestructible.

3. If |A| < cov(M) then A is Cohen indestructible.
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Since every tall ideal contains a MAD family, there are Sacks destructible
MAD families. However, the answers of the following questions are unknown:

Problem 95 (Steprāns) Is there a Cohen indestructible MAD family?

Problem 96 (Hrušák) Is there a Sacks indestructible MAD family?

The answer is positive under many additional axioms, but it is currently
unknown if it is possible to build such families on the basis of ZFC alone. Since
every AD family is Katětov below FIN×FIN we have the following:

Proposition 97 If P adds a dominating real then P destroys every ground
model MAD family.

The following lemma shows that tight families are Cohen indestructible.
Moreover, these concepts are almost the same:

Lemma 98 ([32])

1. If A is tight then A is Cohen-indestructible.

2. If A is Cohen indestructible then there is X ∈ I (A)
+

such that A � X is
tight.

Proof. Let A be a tight MAD family, we will show that I (A) �Knwd. Let
f : Q −→ ω be a function, we will show it is not a Katětov morphism. Let
{Un | n ∈ ω} be a base of open sets for the rational numbers. If there is n ∈ ω
such that f [Un] ∈ I (A) then clearly f is not a Katětov morphism, so assume
{f [Un] | n ∈ ω} ⊆ I (A)

+
. Since A is tight, there is B ∈ I (A) such that B ∩

f [Un] is infinite for each n ∈ ω. Then f−1 (B) is dense so f−1 (B) /∈ nwd.

We prove 2 by the contrapositive. Assuming that A is a MAD family without
tight restrictions, we will show Cohen forcing destroys A. We recursively build
{Xs | s ∈ ω<ω} such that for all s ∈ ω<ω the following holds:

1. Xs ∈ I (A)
+
.

2. A � Xs is not tight.

3. {Xs_n | n ∈ ω} witness the non tightness of A � Xs (we may assume
that for every A ∈ I (A � Xs) there is n ∈ ω such that A and Xs_n are
disjoint).

4. X∅ = ω.
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This is easy to do since A does not have tight restrictions. Let c ∈ ωω

be a Cohen real over ω<ω. Now, in V [c] we find a pseudointersection X of
{Xc�n | n ∈ ω} and we claim that X is forced to be almost disjoint with every
element of A. Let s ∈ ω<ω be a Cohen condition and B ∈ I (A) . By our
construction, there is n ∈ ω such that B ∩Xs_n = ∅ hence s_n forces that Ẋ
and B are almost disjoint.

In this way, there are tight MAD families if and only if there are Cohen in-
destructible MAD families. Nevertheless, Cohen indestructibility (consistently)
does not imply tightness, as we will prove later. We will need the following
lemma:

Lemma 99 Let A be an AD family of size less than b. If {Xn | n ∈ ω} ⊆ I (A)
+

then there is B ∈ A⊥ such that B ∩Xn 6= ∅ for every n ∈ ω.

Proof. Since A is nowhere MAD, we may assume Xn ∈ A⊥ for every n ∈ ω
and they are disjoint. For every A ∈ A we define a function fA : ω −→ ω where
A ∩ Xn ⊆ fA (n) for each n ∈ ω. Since |A| < b there is g ∈ ωω dominating
each fA. Choose any B = {bn | n ∈ ω} such that bn ∈ Xn \ g (n) then B has the
desired properties.

With a usual bookkeeping argument we can then conclude the following:

Proposition 100 If b = c then tight MAD families exist generically.

We will now prove the converse of the previous proposition.

Proposition 101 There is an AD family of size b that can not be extended to
a tight MAD family.

Proof. Define π : ω × ω −→ ω by π (n,m) = n. If A ⊆ ω × ω and n ∈ ω
we put (A)n = {k | (n, k) ∈ A} and let ω<ω = {sn | n ∈ ω} . We define H :
ωω −→ ℘ (ω × ω) where π (H (f)) = {n | sn v f} and if n ∈ dom (H (f)) then
(H (f))n = f (|sn|) . It is easy to see that if f 6= g then H (f) and H (g) are al-
most disjoint. Given g : ω −→ ω we define N (g) = {f ∈ ωω | |H (f) ∩ g| < ω} .
It then follows that N (g) is a bounded set since N (g) =

⋃
k∈ω

Nk (g) where

Nk (g) = {f ∈ ωω | |H (f) ∩ g| < k} and it is easy to see that each Nk (g) is
σ-compact.

Let X ⊆ ωω of size b that can not be covered by σ-compact sets. Now,
we may find A an AD family of size b such that H [X] ⊆ A and Cn =
{(n,m) | m ∈ ω} ∈ I (A)

++
for every n ∈ ω. It is easy to see that A can

not be extended to a tight MAD family.

We can then conclude the following result:
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Corollary 102 The following statements are equivalent:

1. b = c.

2. Tight MAD families exist generically.

We will mention some other results regarding the generic existence of inde-
structible MAD families. In order to do so, we need the following definition.

Definition 103 Let J be a tall ideal on ω. We define a (J ) as smallest size of
an AD family A such that A ∪A⊥ ⊆ J .

The following lemma follows by the definitions.

Lemma 104 Let J be a tall ideal on ω and A an infinite AD family of size
less than a (J ) . If f : ω −→ ω is a finite to one function, then there is an AD
family B such that the following holds:

1. A ⊆ B.

2. |B| = |A| .

3. There is B ∈ I (B) such that f−1 (B) ∈ J +.

Then we have the following:

Proposition 105 Let I be a σ-ideal on ωω that has very weak fusion and tr (I)
is Katětov uniform. The following statements are equivalent:

1. PI indestructible MAD families exist generically.

2. a (tr (I)) = c.

Proof. By a simple bookkeeping argument and the previous lemma we conclude
that 2 implies 1. Clearly, every witness of a (tr (I)) can not be extended to a
PI indestructible MAD family.

The previous arguments show that a (tr (M)) = b. The following definition
is useful for studying this invariants:

Definition 106 Let J be a tall ideal. We define cov+ (J ) as the smallest family
B ⊆ J such that for every X ∈ J + there is B ∈ B such that B ∩X is infinite.

Clearly cov∗ (J ) and a (J ) are upperbounds for cov+ (J ) . Given s ∈ 2<ω

we define 〈s〉<ω = {t ∈ 2<ω | s v t} . It is clear that if X ∩ 〈s〉<ω 6= ∅ for every
s ∈ 2<ω then X /∈ tr(ctble) . Let BR be the ideal of 2<ω generated by branches.
In this way BR⊥ is the ideal of all well founded subsets of 2<ω, its elements are
called off-branch and it is clear that BR⊥ ⊆ tr(ctble) . We have the following
simpler characterization of cov+(tr(ctble) ).
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Lemma 107 cov+(tr(ctble) ) is the minimum size a family B ⊆ BR⊥ such that
for every A ∈ tr(ctble)+ there is B ∈ B such that |A ∩B| = ω.

Proof. Call µ the minimum size a family B ⊆ BR⊥ such that for every A ∈
tr(ctble)+ there isB ∈ B such that |A ∩B| = ω. It is clear that cov+(tr(ctble) ) ≤
µ and we shall now prove the other inequality. In case cov+(tr(ctble)) = c there
is nothing to prove, so assume cov+(tr(ctble)) is less than size of the continuum
and let B ⊆ tr(ctble) witness this fact. Since 2ω×ω ∼= 2ω we may find a partition
{[Tα] | α < c} of 2ω where each Tα is a Sacks tree. Since B ⊆ tr(ctble) and has
size less than c, there is Tα such that π (B) ∩ [Tα] = ∅ for every B ∈ B. The
splitting nodes of Tα is isomorphic to 2<ω and for every B ∈ B it is the case
that B ∩ Tα is offbranch in Tα.

Now it is easy to prove the following:

Proposition 108 cov(M) ≤ cov+(tr(ctble)).

Proof. Let κ < cov(M) and A = {Aα | α ∈ κ} ⊆ BR⊥. We ought to find
B ∈ tr(ctble)+ that is AD with A. Let P be the partial order of all finite trees
contained in 2<ω and we order it by end extension. Obviously, P is isomorphic
to Cohen forcing. Let Ṫgen be the name for the generic tree, clearly Ṫgen is
forced to be a Sacks tree. For every α < κ define the set Dα of all T ∈ P such
that if s ∈ T is a maximal node, then 〈s〉≤ω ∩ Aα = ∅. It is straightforward to
see that Dα is dense. Since κ < cov(M) then we can find in V a filter that
intersects every Dα and the result follows.

We can then conclude the following:

Corollary 109 ([14]) If cov(M) = c then Sacks indestructible MAD families
exist generically.

For simplicity, we define aSacks = a(tr(ctble)). As before, aSacks is the small-
est size of an almost disjoint family A ⊆ BR⊥ such that A ∪A⊥ ⊆ tr(ctble).
The reason we are interested in this cardinal invariant is the following:

Proposition 110 If a ≤ aSacks then there is a Sacks indestructible MAD fam-
ily.

Proof. If a < c then any MAD family of minimum size is Sacks indestructible
and if a = c then aSacks = c so Sacks indestructible MAD families exist generi-
cally.

We do not know if the inequality aSacks < a is consistent.

The following is a very important result of Shelah regarding the destructibil-
ity of MAD families (see [57]).
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Proposition 111 Every MAD family can be destroyed with a proper forcing
that does not add dominating reals.

Letting I be an ideal in ω, by (I<ω)
+

we denote the set of all X ⊆ [ω]
<ω\{∅}

such that for every A ∈ I there is s ∈ X such that s∩A = ∅. If F is a filter then

we define (F<ω)
+

as
(
(F∗)<ω

)+
. Note that if X ⊆ [ω]

<ω\{∅} then X ∈ (F<ω)
+

if and only if for every A ∈ F there is s ∈ X such that s ⊆ A. The following
definition will be very important in the rest of the chapter:

Definition 112 An ideal I is called Shelah-Steprāns if for every X ∈ (I<ω)
+

there is Y ∈ [X]
ω

such that
⋃
Y ∈ I.

In other words, an ideal I is Shelah-Steprāns if for every X ⊆ [ω]
<ω \ {∅}

either there is A ∈ I such that s∩A 6= ∅ for every s ∈ X or there is B ∈ I that
contains infinitely many elements of X. The previous notion was introduced by
Raghavan in [53] for almost disjoint families, which is connected to the notion
of “strongly separable” introduced by Shelah and Steprans in [61].

Lemma 113 Every non-meager ideal is Shelah-Steprāns.

Proof. Let I be a non-meager ideal and X ∈ (I<ω)
+
. Note that since X ∈

(I<ω)
+

(and I contains every finite set) for every n ∈ ω there is s ∈ X such
that s ∩ n = ∅. In this way we can find Z = {sn | n ∈ ω} ⊆ X such that if
n 6= m then sn ∩ sm = ∅. We then define M = {A ⊆ ω | ∀∞n (sn * A)} which
is clearly a meager set and then there must be A ∈ I such that A /∈ M hence
there is Y ∈ [X]

ω
such that

⋃
Y ⊆ A ∈ I.

Nevertheless, there are meager ideals that are also Shelah-Steprāns as the
following result shows:

Lemma 114 FIN×FIN is Shelah-Steprāns.

Proof. It is easy to see that if X ∈ (FIN×FIN)+ then there must be infinitely
many elements of X that are below the graph of a function, so there must be
Y ∈ [X]

ω
such that

⋃
Y ∈ I.

We will now show that the property of being Shelah-Steprāns is upward
closed in the Katětov order:

Lemma 115 Let I and J be two ideals on ω. If the ideal I is Shelah-Steprāns
and I ≤K J then J is also Shelah-Steprāns.

Proof. Let f : ω −→ ω be a Katĕtov-morphism from (ω,J ) to (ω, I) .

Letting X ∈ (J<ω)
+

we must find Y ∈ [X]
ω

such that
⋃
Y ∈ J . Define

X1 = {f [s] | s ∈ X} , we will first argue that X1 ∈ (I<ω)
+
. To prove this fact,
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let A ∈ I. Since f is a Katĕtov-morphism, f−1 (A) ∈ J so there is s ∈ X
for which s ∩ f−1 (A) = ∅ and then f [s] ∩ A = ∅. Since I is Shelah-Steprāns,
there is Y1 ∈ [X1]

ω
such that

⋃
Y1 ∈ I. Finally if Y ∈ [X]

ω
is such that

Y1 = {f [s] | s ∈ Y } then
⋃
Y ∈ J .

We will need the following game designed by Claude Laflamme: Let I be an
ideal on ω, define the game L (I) between players I and II as follows:

I ... An ...
II ... sn ...

⋃
sn ∈ I+

At the round n ∈ ω player I plays An ∈ I and II responds with sn ∈ [ω\
An]<ω. The player II wins in case

⋃
sn ∈ I+. The following is a result of

Laflamme.

Proposition 116 (Laflamme [42]) Let I be an ideal on ω.

1. The following are equivalent:

(a) I has a winning strategy in L (I) .

(b) FIN×FIN ≤K I.

2. The following are equivalent:

(a) II has a winning strategy in L (I) .

(b) There is {Xn | n ∈ ω} ⊆ (I<ω)
+

such that for every A ∈ I there is
n ∈ ω such that A does not contain any element of Xn.

If s0, ..., sn are finite non-empty sets of ω, we say a = {k0, ..., kn} ∈ [ω]
<ω

is
a selector of (s0, ..., sn) if ki ∈ si for every i ≤ n.

Proposition 117 If I is Shelah-Steprāns then II does not have a winning strat-
egy in L (I) .

Proof. Let I be an ideal for which II has a winning strategy in L (I) , we will

prove that I is not Shelah-Steprāns. Let {Xn | n ∈ ω} ⊆ (I<ω)
+

such that for
every A ∈ I there is n ∈ ω such that A does not contain any element of Xn.
For every n ∈ ω enumerate Xn =

{
tin | i ∈ ω

}
and

∏
j<n

Xj = {pin | i < ω}.

For every n,m ∈ ω and a selector a ∈ [ω]
<ω

of
(
t0n, ..., t

m
n

)
we define

F(n,m,a) = pmn (0) ∪ ... ∪ pmn (n− 1) ∪ a (recall pmn ∈
∏
j<n

Xj). Clearly each

F(n,m,a) is a non-empty finite set. Let X be the collection of all the F(n,m,a),
we will prove that X witnesses that I is not Shelah-Steprāns.
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We will first prove that X ∈ (I<ω)
+
. Letting A ∈ I we first find n ∈ ω

such that A does not contain any element of Xn. Since each Xj ∈ (I<ω)
+

for
every j < ω there is m ∈ ω such that A is disjoint with pmn (0)∪ ...∪pmn (n− 1) .
Finally, by the assumption of Xn we can find a selector b of

(
t0n, ..., t

m
n

)
such

that b ∩A = ∅ and therefore A ∩ F(n,m,b) = ∅.

Letting Y ∈ [X]
ω

we will show that B =
⋃
Y ∈ I+. There are two cases to

consider: first assume there is n ∈ ω for which there are infinitely many (m, a)
such that F(n,m,a) ∈ Y. In this case, B intersects every element of Xn, hence
B ∈ I+. Now assume that for every n ∈ ω there are only finitely many (m, a)
such that F(n,m,a) ∈ Y. In this case, there must be infinitely many n ∈ ω for
which there is (m, a) such that F(n,m,a) ∈ Y, hence B must contain (at least)
one element of every Xk. We can then conclude that B ∈ I+.

We can now conclude the following (the equivalence of point 2 and 3 was
proved by Laczkovich and Rec law in [40], we include the proof for the conve-
nience of the reader).

Corollary 118 Let I be an ideal on ω. The following are equivalent:

1. I is not Shelah-Steprāns.

2. The Player II has a winning strategy in L (I) .

3. There is an Fσ set F ⊆ ℘ (ω) such that I ⊆ F and I∗ ∩ F = ∅.

Proof. By the previous result, we know that 2 implies 1. We will now
prove that 1 implies 3. Assume that I is not Shelah-Steprāns, so there is
X = {sn | n ∈ ω} ∈ (I<ω)

+
such that

⋃
Y ∈ I+ for every Y ∈ [X]

ω
. We know

define F = {W ⊆ ω | ∀∞n (sn *W )} . It is easy to see that F has the desired
properties.

We will now prove that 3 implies 2. Assume there is an increaing sequence
of closed sets 〈Cn | n ∈ ω〉 such that F =

⋃
n∈ω

Cn contains I and is disjoint from

I∗. We will now describe a winning strategy for Player II: In the first round, if
Player I plays A0 ∈ I then Player II finds s0 an initial segment of ω\A0 such that
〈s0〉 = {Z | s0 v Z} is disjoint from C0 (where s0 v Z means that s0 is an initial
segment of Z). At round round n+ 1, if Player I plays An+1 ∈ I then Player II
finds sn+1 such that t =

⋃
i≤n+1

si is an initial segment of (ω \An)∪
⋃

j<n+1

sj (we

may assume
⋃

j<n+1

sj ⊆ An) and 〈t〉 is disjoint from Cn+1. It is easy to see that

this is a winning strategy.

Since every game with Borel payoff is determined, we can give a characteri-
zation of the Borel ideals that are Shelah-Steprāns.
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Corollary 119 If I is a Borel ideal then I is Shelah-Steprāns if and only if
FIN×FIN ≤K I.

We can extend the previous corollary under some large cardinal assumptions.
Fix a tree T of height ω, f : [T ] −→ ℘ (ω) a continuous function (where [T ]
denotes the set of branches of T ) and W ⊆ ℘ (ω) . We then define the game
G (T, f,W) as follows:

I ... xn ...
II ... yn ...

At the round n ∈ ω player I plays xn and II responds with yn with the
requirement that 〈x0, y0, ..., xn, yn〉 ∈ T. Then Player I wins if f (b) ∈ W where
b is the branch constructed during the game. The following is a well known
extension of Martin’s result (see [69]):

Proposition 120 (LC) If W ∈ L(R) then G (T, f,W) is determined (L(R) de-
notes the smallest transitive model of ZFC that contains all reals)

Where LC denotes a large cardinal assumption. We can then conclude the
following:

Corollary 121 (LC)

1. Let I ∈ L(R) be an ideal on ω. Then I is Shelah-Steprāns if and only if
FIN×FIN ≤K I.

2. Let J be a σ-ideal in ωω such that J ∈ L(R) and X ∈ tr (J )
+
. Then

tr (J ) � X is Shelah-Steprāns if and only if FIN×FIN ≤K tr (J ) � X.

Proof. To prove the first item, let Y be the set of all sequences 〈A0, s0, ..., An, sn〉
such that An ∈ I and sn ∈ [ω \An]

<ω
and max (si) ⊆ Ai+1 if i < n. Let T be

the tree obtained by closing Y under restrictions. We know define f : [T ] −→
℘ (ω) where f (b) =

⋃
n∈ω

b (2n+ 1) where b ∈ [T ] . Clearly L (I) is a game equiv-

alent to G (T, f, I) so the result follows from the previous results. The second
item is a consequence of the first.

We say a MAD family A is Shelah-Steprāns if I (A) is Shelah-Steprāns. The
following is a very interesting result of Raghavan:

Proposition 122 ([53]) It is consistent that there are no Shelah-Steprāns MAD
families.

The following result shows that Shelah-Steprāns MAD families have very
strong properties:
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Corollary 123 If A is Shelah-Steprāns then:

1. A can not be extended to an Fσδ ideal.

2. A is Cohen and Random indestructible.

3. (LC) If J is a σ-ideal in ωω such that J ∈ L(R) for which PJ is proper,
has the continuos reading of names and does not add a dominating real
(under any condition), then A is PJ -indestructible.

Proof. By results of Solecki, Laczkovich and Rec law, no Fσδ ideal is Katĕtov
above FIN×FIN (see [63] and [40]) this implies the first item. We will now prove
the third item. Let J ∈ L(R) be a σ-ideal in ωω such that such that PJ is proper
and has the continuos reading of names. If there is B ∈ PJ such that forcing
below B destroys A, then there is X ∈ tr (J )

+
such that I (A) ≤K tr (J ) � X.

We can then conclude that tr (J ) � X is Shelah-Steprāns and by our definability
hypothesis, we know that FIN×FIN ≤K tr (J ) � X so PJ must add a dominating
real below some condition. Since the trace of the meager and null ideals is Borel,
in this case the large cardinals hypothesis is not needed.

We will now prove that such families exist under certain assumptions:

Proposition 124 If p = c then Shelah-Steprāns MAD families exist generi-
cally.

Proof. Let A be an AD family of size less than c and X = {sn | n ∈ ω} ∈(
I (A)

<ω)+
. We define the forcing P as the set of all p = (tp,Fp) where tp ∈ 2<ω

and Fp ∈ [A]
<ω

. If p = (tp,Fp) and q = (tq,Fq) then p ≤ q if the following
holds:

1. tq ⊆ tp and Fq ⊆ Fp.

2. In case n ∈ dom (tp) \dom (tq) and A ∈ Fq if tp (n) = 1 then sn ∩A = ∅.

For any n ∈ ω and A ∈ A let Dn,A ⊆ P be the set of conditions p = (tp,Fp)
such that t−1p (1) has size at least n and A ∈ Fp. Since X ∈

(
I (A)

<ω)+
, each

Dn,A is open dense. Clearly P is σ-centered and since A has size less than p we
can then force and find Y ∈ [X]

ω
such that

⋃
Y is almost disjoint with every

element of A.

We already know that Shelah-Steprāns MAD families are Cohen indestruc-
tible, however, even more is true:

Lemma 125 If A is Shelah-Steprāns then A is tight.
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Proof. AssumeA is a MAD family that is not tight as witnessed by {Xn | n ∈ ω} ⊆
I (A)

+
, then player II can easily win in the game L (I (A)) by making the re-

sulting set intersects every Xn.

We will later prove that tightness does not imply being Shelah-Steprāns. We
shall now introduce a stronger version of tightness:

Definition 126 A is strongly tight whenever W = {Xn | n ∈ ω} ⊆ [ω]
ω

is a
family such that

1. For every n ∈ ω there is An ∈ A such that Xn ⊆ An.

2. For every A ∈ A the set {n | An = A} is finite.

There is A ∈ I (A) such that A ∩Xn 6= ∅ for every n ∈ ω.

Note that ifW is as above, then for everyB ∈ I (A) the set {X ∈ W | B ∩X ∈ [ω]
ω}

is finite. We can prove the following lemma:

Lemma 127 Let A and B be two MAD families. If A is strongly tight and
I (A) ≤K I (B) then B is strongly tight.

Proof. Fix f a Katetov morphism from (ω, I (B)) to (ω, I (A)) and a fam-
ily W = {Xn | n ∈ ω} such that for every n ∈ ω there is Bn ∈ B such that
Xn ⊆ Bn and for every B ∈ B the set {n | Bn = B} is finite. Let W1 ={
X ∈ W | f [X] ∈ [ω]

<ω}
and for every X ∈ W we choose bX ∈ f [X] such

that f−1 ({bX}) is finite. We first claim that the set Y = {bX | X ∈ W} is
finite. If this was not the case, we could find A ∈ A such that A ∩ Y is infi-
nite. Since f is a Katetov morphism, we conclude that f−1 (A) ∈ I (B) and{
X ∈ W | f−1 (A) ∩X ∈ [ω]

ω}
is infinite, but this is a contradiction. Using

that Y is finite, it is easy to see that W1 must also be finite.

Letting W2 = W \W1, for every X ∈ W2 we choose AX ∈ I (A) such that
YX = AX∩f [X] is infinite. Note that if A ∈ A then the set {X ∈ W2 | A = AX}
must be finite. Since A is strongly tight we can find A ∈ I (A) such that
A ∩ YX 6= ∅ for every X ∈ W2. Since f is a a Katetov morphism, we may
conclude that B1 = f−1 (A) belongs to I (B) and B1∩X 6= ∅ for every X ∈ W2.
Clearly B1 ∪

⋃
W1 has the desired properties.

We now have the following:

Proposition 128 If A is strongly tight then d ≤ |A| .

Proof. Let {An | n ∈ ω} be a partition of ω contained in A and for each
n ∈ ω let Pn = {An (i) | i ∈ ω} be a partition of An into infinite pieces. Given
A ∈ I (A) we define a function fA : ω −→ ω given by fA (n) = 0 if A ∩ An is
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infinite and in the other case fA (n) = max {i | A ∩An (i) 6= ∅} + 1. We claim
that {fA | A ∈ I (A)} is a dominating family. Assume this is not the case, so
there is g : ω −→ ω not dominated by any of the fA. For each n ∈ ω define
Xn = An (g (n)) and X = {Xn | n ∈ ω} . Since A is strongly tight, there must
be A ∈ I (A) such that A ∩ Xn 6= ∅ for every n ∈ ω. Pick any m such that
fA (m) < g (m) ; this implies that A ∩ Am (g (m)) = ∅ so A ∩Xm = ∅ which is
a contradiction.

Now we can conclude the following:

Corollary 129 There are no strongly tight MAD families in the Cohen model.

Proof. If there were then they must have size continuum, but since it is also
tight, it should have size ω1.

We will later prove that there are Shelah-Steprāns MAD families in the Cohen
model, so Shelah-Steprāns does not imply strong tightness. We will now show
that strongly tight MAD families may consistently exist:

Lemma 130 Let A be an AD family of size less than p. Let X = {Xn | n ∈ ω}
be a family of infinite subsets of ω such that for every A ∈ I (A) the set
{n | Xn ⊆∗ A} is finite. Then there is B ∈ A⊥ such that B ∩ Xn 6= ∅ for
every n ∈ ω.

Proof. We may assume that for every n ∈ ω there is An ∈ A such that Xn ⊆ An
(note that if A ∈ A then the set {n | An = A} is finite). Let B = {An | n ∈ ω}
and D = A\B. We now define the forcing P whose elements are sets of the form
p = (sp, Fp, Gp) with the following properties:

1. sp ∈ ω<ω, Fp ∈ [D]
<ω

and Gp ∈ [B]
<ω

.

2. If i ∈ dom (sp) then sp (i) ∈ Xn.

If p, q ∈ P then p ≤ q if the following conditions hold:

1. sq ⊆ sp, Fq ⊆ Fp and Gq ⊆ Gp.

2. For every i ∈ dom (sp) \ dom (sq) the following holds:

(a) sp (i) /∈
⋃
Fq.

(b) If B ∈ Gq and Ai 6= B then sp (i) /∈ B.

It is easy to see that P is a σ-centered forcing and adds a set almost disjoint
with A that intersects every Xn. Since A has size less than p the result follows.

We can then conclude the following:
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Proposition 131 If p = c then strongly tight MAD families exist generically.

We know that Shelah-Steprāns MAD families are indestructible by many
definable forcings that do not add dominating reals. Surprisingly, they can be
destroyed by forcings that do not add dominating or unsplitted reals, as we will
shortly see. We need the following definitions:

Definition 132 Let I be an ideal in ω.

1. We say I is Canjar if and only if for every {Xn | n ∈ ω} ⊆ (I<ω)
+

there

are Yn ∈ [Xn]
<ω

such that
⋃
n∈ω

Yn ∈ (I<ω)
+

for every A ∈ [ω]
ω
.

2. We say I is Hurewicz if and only if for every {Xn | n ∈ ω} ⊆ (I<ω)
+

there are Yn ∈ [Xn]
<ω

such that
⋃
n∈A

Yn ∈ (I<ω)
+

for every A ∈ [ω]
ω
.

We will say that a MAD family A is Canjar (Hurewicz) if I (A) is Canjar
(Hurewicz). Is I is an ideal, we denote by M (I) the Mathias forcing of I as
the set of all (s,A) such that s ∈ [ω]

<ω
and A ∈ I. If (s,A) , (t, B) ∈M (I) then

(s,A) ≤ (t, B) if t ⊆ s, B ⊆ A and (s \ t) ∩ B = ∅. It is easy to see that M (I)
destroys I. We would like to mention the following important results regarding
Canjar and Hurewicz ideals:

Proposition 133 ([33]) I is Canjar if and only if M (I) does not add a dom-
inating real.

Proposition 134 ([16]) I is Canjar if and only if I is a Menger subspace of
℘ (ω) .

Proposition 135 ([16]) I is Hurewicz if and only if M (I) preserves all un-
bounded families of the ground model.

We will need the following lemma:

Lemma 136 Let I be an ideal on ω. The following are equivalent:

1. I is Shelah-Steprāns.

2. For every {Xn | n ∈ ω} ⊆ (I<ω)
+

there is B ∈ I such that Xn ∩ [B]
<ω

is
infinite for every n ∈ ω.

Proof. Clearly 2 implies 1 and if 2 fails then it is easy to see that Player II has
a winning strategy in L (I) , so 1 also fails.

With the previous lemma we can then conclude the following:g:



62 CHAPTER 4. INDESTRUCTIBILITY

Proposition 137 Every Shelah-Steprāns MAD family is Hurewicz.

Proof. Let A be a Shelah-Steprāns MAD family and X = {Xn | n ∈ ω} ⊆(
I (A)

<ω)+
. Note that if B ∈ I (A) then

{
Xn \ [B]

<ω | n ∈ ω
}
⊆
(
I (A)

<ω)+
.

We can then recursively find {Bn | n ∈ ω} ⊆ I (A) with the following properties:

1. If n 6= m then there is no A ∈ A that has infinite intersection with both
Bn and Bm.

2. If n,m ∈ ω then Bn contains an element of Xm.

For every n ∈ ω let Yn ∈ [Xn]
<ω

such that Yn ∩ [Bi]
<ω 6= ∅ for every i ≤ n.

It is then easy to see that if D ∈ [ω]
ω

then
⋃
n∈D

Yn ∈
(
I (A)

<ω)+
.

We need the following definition:

Definition 138

1. We say that S = {Sα | α ∈ ω1} ⊆ [ω]
ω

is a tail block-splitting family if
for every infinite set P of finite disjoint subsets of ω there is α < ω1 such
that Sγ block splits P for every γ > α.

It is easy to see that tail block splitting families exist if d = ω1 and tail block
splitting families are splitting families. We say that a forcing P preserves a tail
block-splitting family if it remains being tail block-splitting after forcing with
P. The following result could be consider folklore:

Proposition 139 Let I be a Hurewicz ideal. If S = {Sα | α ∈ ω1} ⊆ [ω]
ω

is a
tail block-splitting family then M (I) preserves S as a tail block-splitting family.

Proof. Let I be a Hurewicz ideal and S a tail block-splitting family. Let Ṗ
= {ṗn | n ∈ ω} be a name for an infinite set of pairwise disjoint finite subsets of
ω, we may assume ṗn is forced to be disjoint from n. For every s ∈ [ω]

<ω
and

m ∈ ω we define Xm (s) as the set of all t ∈ [ω]
<ω

such that max (s) < min (t)
and there are F(t,m,s) ∈ [ω]

<ω
and B ∈ I such that (s ∪ t, B)  “ṗm = F(t,m,s)”.

It is easy to see that {Xm (s) | m ∈ ω} ⊆ (I<ω)
+

and since I is Hurewicz, we

may find Ym (s) ∈ [Xm (s)]
<ω

such that if W ∈ [ω]
ω

then
⋃

m∈W
Ym (s) ∈ (I<ω)

+
.

Let Zm (s) =
⋃

t∈Ym(s)

F(t,m,s). For every s ∈ [ω]
<ω

we can then find D (s) ∈ [ω]
ω

such that R (s) = {Zm (s) | m ∈ D (s)} is pairwise disjoint.

Since S is tail block-splitting, we can find α such that if γ > α then Sγ block
splits R (s) for every s ∈ [ω]

<ω
. We claim that in this case, Sγ is forced to block

split Ṗ . If this was not the case, we could find (s,A) ∈M (I) and n ∈ ω such that
either (s,A)  “

⋃
{ṗm | ṗm ⊆ Sγ} ⊆ n” or (s,A)  “

⋃
{ṗm | ṗm ∩ Sγ = ∅} ⊆
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n”. Assume the first case holds (the other one is similar). Since Sγ block splits
R (s) , we know that the set W = {m > n | Zm (s) ⊆ Sγ} is infinite. Since⋃
m∈W

Ym (s) ∈ (I<ω)
+

then there is m ∈ W and t ∈ Ym (s) such that t ∩A = ∅.

We then know there is B ∈ I such that (s ∪ t, B)  “ṗm = F(t,m,s)”. Since
t ∩ A = ∅ then (s ∪ t, A ∪B) ≤ (s,A) . But (s ∪ t, A ∪B) forces that ṗm is a
subset of Sγ , which is a contradiction. We then conclude that S remains being
a tail block-splitting family.

Clearly {Xm | m ∈ ω} ⊆ (I<ω)
+

and since I is Hurewicz, we may find Ym ∈
[Xm]

<ω
such that if A ∈ [ω]

ω
then

⋃
m∈A

Ym ∈ (I<ω)
+
. For every t ∈ Ym let

Ft such that there is B for which (t, B)  “Ṗm = F”, let Zm =
⋃

t∈Ym
Ft. Let

D ∈ [ω]
ω

such that if i, j ∈ D and i < j then max (Zi) < min (Zj) . Let
R = {Zi | i ∈ D} since S1 is block-splitting, we may find S ∈ S1 that block

splits R. Since S ∈ S1 there is C ∈ I such that (s, C)  “
{
k | Ṗk ⊆ S

}
⊆ n” if

r = 0 and (s, C)  “
{
k | Ṗk ∩ S = ∅

}
⊆ n” if r = 1. Let D1 = {i ∈ D | Zi ⊆ S}

if r = 0 and D1 = {i ∈ D | Zi ∩ S = ∅} if r = 1, in either case, D1 is infinite.

Since
⋃

m∈D1

Ym ∈ (I<ω)
+

there is t ∈ [C]
<ω

and m ∈ D1 such that t ∈ Ym. In this

way, there is E such that (t, E)  “Ṗm ⊆ Zm” and (t, E ∩ C) ≤ (t, E) , (s, C) .
Therefore (t, E ∩ C)  “Ṗm ⊆ S” if r = 0 and (t, E ∩ C)  “Ṗm ∩ S = ∅” if
r = 1, in either case, we get a contradiction.

Since Hurewicz ideals are Canjar ideals, we conclude the following:

Corollary 140 If A is Shelah-Steprāns then A can be destroyed with a ccc
forcing that does not add dominating nor unsplit reals.

We will now find a notion stronger than both strongly tight and Shelah-
Steprāns:

Definition 141 Let I be an ideal on ω.

1. We say a family X = {Xn | n ∈ ω} such that Xn ⊆ [ω]
<ω

is locally finite
according to I if for every B ∈ I for almost all n ∈ ω there is s ∈ Xn

such that s ∩B = ∅.

2. We say I is raving if for every family X = {Xn | n ∈ ω} that is locally
finite according to I there is B ∈ I such that B contains at least one
element of each Xn.

It is easy to see that every raving MAD family is both Shelah-Steprāns and
strongly tight. The following lemma is easy and left to the reader:
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Lemma 142 Let A and B be two MAD families. If A is raving and I (A) ≤K
I (B) then B is raving.

We can construct such families with the parametrized diamond principles:

Proposition 143

1. ♦ (b) implies there is a Shelah-Steprāns MAD family.

2. ♦ (d) implies there is a raving MAD family.

Proof. For every α < ω1 fix an enumeration α = {αn | n ∈ ω} . We will
first show that ♦ (b) implies there is a Shelah-Steprāns MAD family. With
a suitable coding, the coloring C will be defined for pairs t = (At, Xt) where
At = 〈Aξ | ξ < α〉 and Xt ⊆ [ω]

<ω
(we identify t with an element of 2α). We

define C (t) to be the constant 0 function in case At is not an almost disjoint

family or Xt /∈
(
I (At)<ω

)+
. In the other case, define an increasing function

C (t) : ω −→ ω such that if n ∈ ω then there is s ∈ Xt such that s ⊆ C (t) (n)
and s ∩ (Aα0

∪ ... ∪Aαn ∪ n) = ∅.

Using ♦ (b) let G : ω1 −→ ωω be a guessing sequence for C, by changing
G if necessary, we may assume that all the G (α) are increasing and if α < β
then G (α) <∗ G (β) . We will now define our MAD family: start by taking a
partition {An | n ∈ ω} of ω. Having defined Aξ for all ξ < α, we proceed to define
Aα =

⋃
n∈ω

(G (α) (n) \Aα0
∪ ... ∪Aαn) in case this is an infinite set, otherwise

just take any Aα that is almost disjoint with Aα = {Aξ | ξ < α} . We will see

that A is a Shelah-Steprāns MAD family. Let X ∈
(
I (A)

<ω)+
. Consider the

branch R = (〈Aξ | ξ < ω1〉 , X) and pick β > ω such that C (R � β) ∗ � G (β) .
It is easy to see that Aβ contains infinitely many elements of X.

Now we will prove that ♦ (d) implies there is a raving MAD family. With
a suitable coding, the coloring C will be defined for pairs t = (At, Xt) where
At = 〈Aξ | ξ < α〉 and Xt = {Xt

n | n ∈ ω} ⊆ ℘
(
[ω]

<ω)
. We define C (t) to

be the constant 0 function in case At is not an almost disjoint family or Xt is
not locally finite according to I (At) . We will describe what to do in the other
case. For every n ∈ ω define Bn =

⋃
i<n

Aαi (hence B0 = ∅) and let d (n) be the

smallest k ≥ n such that if l ≥ k then Bn does not intersect every element of Xt
l .

We define an increasing function C (t) : ω −→ ω such that for every n, i ∈ ω, if
d (n) ≤ i < d (n+ 1) then C (t) (n) \ Bn contains an element of Xt

i . The rest of
the proof is similar to the case of ♦ (b) .

By the previous result, we conclude that there are Shelah-Steprāns MAD
families in the Cohen model. Denote by PMAD the set of all countable AD
families ordered by inclusion. This is a σ-closed forcing and adds a MAD family
Agen. We now have the following:
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Proposition 144 PMAD forces that Agen is raving.

Proof. Let B ∈ PMAD and X = {Xn | n ∈ ω} such that B forces that X is locally
finite according to I (Agen) . Let B = {Bn | n ∈ ω} and we define En = B0 ∪
...∪Bn for every n ∈ ω. We can then find an interval partition P = {Pn | n ∈ ω}
such that if i ∈ Pn+1 then En does not intersect every element of Xi. For every
i ∈ ω we choose si ∈ Xi as follows: if i ∈ P0 let si be any element of Xi and if
i ∈ Pn+1 we choose si ∈ Xi such that si ∩ En = ∅. Let A =

⋃
n∈ω

sn so A ∈ B⊥

and the condition B∪{A} ∈ PMAD is the extension of B we were looking for.

We will now comment on the reason for why we introduced the concept of
raving MAD families. First we take a look at the following theorems:

Proposition 145 (Todorcevic) An ultrafilter U is ℘ (ω) \FIN generic over
L (R) if and only if U is Ramsey.

Proposition 146 (Chodousky, Zapletal) Let I be an Fσ-ideal and U an ul-
trafilter. U is ℘ (ω)\I generic over L (R) if and only if I ∩ U = ∅ and for every
closed set C if C ∩U = ∅ then there is A ∈ U such that A∩Y ∈ I for every Y ∈
C.

It would be interesting to find a similar characterization of the PMAD generics
over L (R) :

Problem 147 Is there a combinatorial characterization of the ideal I (A) where
A is PMAD generic over L (R)?

The indestructibility if MAD families is a particular instance of the following
problem:

Problem 148 Let X be a set of ideals. Is there a MAD family that is not
Katětov below any element of X?

Of course, the answer depends on the nature of the set X . Recall that every
MAD family is Katětov below FIN×FIN, so this imposes some condition on X .
The following is a particularly interesting instance of the problem:

Definition 149

1. Let I be an ideal. I is Laflamme if it is not Katětov below any Fσ-ideal.

2. A MAD family A is Laflamme if I (A) is Laflamme.

David Meza and Michael Hrušák proved that every ideal Katětov above
conv is Laflamme (see [45]). It is unknown if this a is characterization for Borel
ideals.
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Lemma 150 Let K be an ideal. The following are equivalent:

1. K is Laflamme.

2. K can not be extended to an Fσ-ideal.

Proof. Let K be an ideal that can not be extended to an Fσ-ideal. Letting I
be an Fσ ideal and f : ω −→ ω. We will show that f is not a Katětov morphism
from (ω, I) to (ω,K) . We now define J =

{
X | f−1 (X) ∈ I

}
. Let ϕ be a lower

semicontinuous submeasure such that I = Fin(ϕ) . For every n ∈ ω we define
Cn =

{
X | ϕ

(
f−1 (X)

)
≤ n

}
. It is easy to see that each Cn is a closed set and

J =
⋃
n∈ω

Cn. Since K is not contained in J the result follows.

Clearly every Shelah-Steprāns MAD family is Laflamme (it can not even be
extended to an Fσδ ideal). In particular, we get the following result of [48]:

Proposition 151 ([48]) If p = c then there is a Laflamme MAD family.



Chapter 5

There is a +-Ramsey MAD
family

5.1 +-Ramsey MAD families

In this chapter we introduce the concept of a +-Ramsey ideal, which is a stronger
notion than selectiveness and then we will prove that there is a +-Ramsey MAD
family, answering an old question of Hrušák. Letting X ⊆ [ω]

ω
, we say a tree

T ⊆ ω<ω is a X -branching tree if sucT (s) ∈ X for every s ∈ T . If B ⊆ [ω]
ω

is a
centered family, we define 〈B〉 as the filter generated by B. The following is an
important theorem of Adrian Mathias:

Proposition 152 Let I be an ideal in ω. The following are equivalent:

1. I is selective.

2. For every I+-branching tree T such that B = {sucT (s) | s ∈ T} is centered
and 〈B〉 ⊆ I+ there is f ∈ [T ] such that im (f) ∈ I+.

Proof. Let I be a selective ideal and T an I+-branching tree such that B =
{sucT (s) | s ∈ T} is centered and 〈B〉 ⊆ I+. We may assume that if s ∈ T then s
is an increasing sequence. For every n ∈ ω, we define Yn =

⋂
{sucT (s) | s ⊆ n} .

Clearly {Yn | n ∈ ω} ⊆ I+ and it forms a decreasing sequence. Since I is
selective, there is X = {xn | n ∈ ω} ∈ I+ such that X ⊆ Y0 = sucT (∅) and
X \ (xn + 1) ⊆ Yxn . It is easy to see that there is f ∈ [T ] such that im (f) = X.

Now assume I has the property stated in point 2. We will show that I is
selective. Let {Yn | n ∈ ω} ⊆ I+ be a decreasing sequence. We now recursively
define a tree T ⊆ ω<ω as follows:

1. ∅ ∈ T.

2. If s = 〈n0, ..., nm〉 ∈ T then sucT (s) = Ynm \ (nm+1) .

67
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Clearly T is a tree such that B = {sucT (s) | s ∈ T} is centered and 〈B〉 ⊆ I+.
We can then find f ∈ [T ] such that im (f) ∈ I+. It is easy to see that im (f)
has the desired properties.

We are now ready to introduce the notion of a +-Ramsey ideal:

Definition 153

1. An ideal I is +-Ramsey if for every I+-branching tree T, there is f ∈ [T ]
such that im (f) ∈ I+.

2. An AD family A is +-Ramsey if I (A) is +-Ramsey.

Obviously every +-Ramsey ideal is selective, but the converse is not true.
Recall that the ideals generated by MAD families are selective, however we have
the following:

Lemma 154 There is a MAD family that is not +-Ramsey.

Proof. Given f ∈ ωω we let f̂ = {f � n | n ∈ ω} . Let A be a MAD family with
the following properties:

1. If f ∈ ωω then f̂ ∈ A.

2. If s ∈ ω<ω then {s_n | n ∈ ω} ∈ I (A)
+

It is easy to see that ω<ω is an I (A)
+

-branching tree without branches in
I (A)

+
.

Although we will not need the following interesting result of Michael Hrušák,
we will include it.

Proposition 155 ([27]) cov(M) is the smallest cofinality of an ideal that is
not +-Ramsey.

Proof. Letting I be an ideal with cof(I) < cov(M) we will show it is +-
Ramsey. Let T ⊆ ω<ω be an I+-branching tree. We view T is as a forcing
notion, which clearly is equivalent to Cohen forcing. We denote by ṙgen the
name of the generic branch. For every A ∈ I and n ∈ ω we define Dn (A) =
{s ∈ T | im (s) * A ∪ n}. Since T is an I+-branching tree, each Dn (A) is an
open dense set for every A ∈ I and n ∈ ω. Since cof(I) < cov(M) the result
follows.

We will now construct an ideal I that is not +-Ramsey such that cof(I) is
equal to cov(M) . Let {Tα | α < cov (M)} be a family of well pruned trees of
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ω<ω such that each [Tα] is nowhere dense and ωω =
⋃

[Tα] . We define I as the
ideal in ω<ω generated by {Tα | α < cov(M)}. We will show that I is not +-
Ramsey. We define a tree T ⊆ (ω<ω)

<ω
as the set of all sequences (s0, s1, ..., sn)

such that s0 ( s1... ( sn. It is easy to see that T is the tree we were looking
for.

We know that there are MAD families that are not +-Ramsey. On the other
hand, +-Ramsey MAD families can be constructed under b = c, cov(M) = c,
a < cov(M) or ♦ (b) (see [27] and [32]). This led Michael Hrušák to ask the
following,

Problem 156 (Hrušák [27]) Is there a +-Ramsey MAD family in ZFC?

We will provide a positive answer to this question. Our technique for con-
structing a +-Ramsey MAD is based on the technique of Shelah for constructing
a completely separable MAD family (however, in this case we are able to avoid
the PCF hypothesis).

The first step to construct a +-Ramsey MAD family is to prove that ev-
ery Miller-indestructible MAD family has this property. In [32] it is proved
that every tight MAD family is + -Ramsey. We will prove that every Miller-
indestructible MAD family is +-Ramsey. This improves the previous result since
Miller-indestructibility follows from Cohen-indestructibility. First we need the
following lemma:

Lemma 157 Let A be a MAD family and T an I (A)
+

-branching tree. Then
there is a subtree S ⊆ T with the following properties:

1. S is an I (A)-branching tree.

2. If s ∈ S there is As ∈ A such that sucS (s) ⊆ As.

3. If s and t are two different nodes of S, then As 6= At and sucS (s) ∩
sucS (t) = ∅.

Proof. Since T is an I (A)
+

-branching tree and A is MAD , sucT (t) intersects
infinitely many infinite elements of A for every t ∈ T . Recursively, for every
t ∈ T we choose At ∈ A and Bt ∈ [At ∩ sucT (t)]

ω
such that Bt ∩ Bs = ∅ and

As 6= At whenever t 6= s. We then recursively construct S ⊆ T such that if
s ∈ S then sucS (s) = Bs.

With the previous lemma we can now prove the following,

Proposition 158 If A is Miller-indestructible then A is +-Ramsey.
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Proof. LetA be a Miller-indestructible MAD family and T an I (A)
+

-branching
tree. Let S be an I (A)-branching subtree of T as in the previous lemma. We
can then view S as a Miller tree. Let ṙgen be the name of the generic real and

Ẋ the name of the image of ṙgen.

We will first argue that S  “Ẋ /∈ I (A) ”. Assume this is not true, so there
is S1 ≤ S and B ∈ I (A) (B is an element of V ) such that S1  “Ẋ ⊆ B”.
In this way, if t is a splitting node of S1 then sucS1

(t) ⊆ B but note that if
t1 6= t2 are two different splitting nodes of S2 then sucS1 (t1) and sucS1 (t2) are
two infinite sets contained in different elements of A, so then B ∈ I (A)

+
which

is a contradiction.

In this way, Ẋ is forced by S to be an element of I (A)
+

but since A is still
MAD after performing a forcing extension of Miller forcing, we then conclude
there are names {Ȧn | n ∈ ω} for different elements of A such that S forces that
Ẋ ∩ Ȧn is infinite. We then recursively build two sequences {Sn | n ∈ ω} and
{Bn | n ∈ ω} such that for every n ∈ ω the following holds:

1. Sn is a Miller tree and Bn ∈ A.

2. S0 ≤ S and if n < m then Sm ≤ Sn.

3. Sn  “Ȧn = Bn” (it then follows that Bn 6= Bm if n 6= m).

4. If i ≤ n then stem (Sn) ∩Bi has size at least n.

We then define r =
⋃
n∈ω

stem (Sn) then clearly r ∈ [S] and im (r) ∈ I (A)
++

.

The previous proposition has the following corollary, which is an unpub-
lished result of Michael Hrušák, which he proved by completely different means.

Corollary 159 (Hrušák) Every MAD family of size less than d is +-Ramsey.
In particular, if a < d then there is a +-Ramsey MAD family.

Proof. Let A be a MAD family that is not +-Ramsey. Then A is destructible by
Miller forcing, so I (A) ≤K tr (Kσ) and then d = cov∗ (tr (Kσ)) ≤ cov∗ (I (A)) =
|A| .

5.2 The construction of a +-Ramsey MAD fam-
ily

In this chapter we will construct a +-Ramsey MAD family without any extra
hypothesis beyond ZFC. We will use the construction of Shelah of a completely
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separable MAD family, however, the previous result will help us avoid the need
of a PCF hypothesis for our construction. From now on, we will always assume
that all Miller trees are formed by increasing sequences.

Definition 160 Let p be a Miller tree. Given f ∈ [p] we define Sp (p, f) =
{f (n) | f � n ∈ Split (p)} and [p]split = {Sp (p, f) | f ∈ [p]} .

We will need the following definitions,

Definition 161 Let p be a Miller tree and H : Split (p) −→ ω. We then define:

1. Catch∃ (H) is the set

{Sp (f, p) | f ∈ [p] ∧ ∃∞n (f � n ∈ Split (p) ∧ f (n) < H (f � n))} .

2. Catch∀ (H) is the set

{Sp (f, p) | f ∈ [p] ∧ ∀∞n (f � n ∈ Split (p) ∧ f (n) < H (f � n))} .

3. Define K (p) as the collection of all A ⊆ [p]split for which there is G :
Split (p) −→ ω such that A ⊆ Catch∃ (G) .

Note that if B = {fα | α < b} ⊆ ωω is an unbounded family of increasing
functions then for every infinite partial function g ⊆ ω × ω there is α < b
such that the set {n ∈ dom (g) | g (n) < fα (n)} is infinite. With this simple
observation we can prove the following lemma,

Lemma 162 K (p) is a σ-ideal in [p]split that contains all singletons and b =
add(K (p)) = cov(K (p)) .

Proof. In order to prove that b ≤ add(K (p)) it is enough to show that if κ < b
and {Hα | α < κ} ⊆ ωSplit(p) then

⋃
α<κ

Catch∃ (Hα) ∈ K (p) . Since κ is smaller

than b, we can find H : Split (p) −→ ω such that if α < κ then Hα (s) < H (s)
for almost all s ∈ Split (p) . Clearly

⋃
α<κ

Catch∃ (Hα) ⊆ Catch∃ (H) .

Now we must prove that cov(K (p)) ≤ b. Let Split (p) = {sn | n < ω} and
B = {fα | α < b} ⊆ ωω be an unbounded family of increasing functions. Given
α < b define Hα : Split (p) −→ ω where Hα (sn) = fα (n) . We will show that
{Catch∃ (Hα) | α < b} covers [p]split . Letting f ∈ [p] define A = {n | sn v f}
and construct the function g : A −→ ω where g (n) = f (|sn|)+1 for every n ∈ A.
By the previous remark, there is α < b such that fα � A is not dominated by
g � A. It is then clear that Sp (p, f) ∈ Catch∃ (Hα) .

Letting p be a Miller tree and S ∈ [ω]
ω
, we define the game G (p, S) as

follows:
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I s0 s1 · · ·
II r0 r1

1. Each si is a splitting node of p.

2. ri ∈ ω.

3. si+1 extends si.

4. si+1 (|si|) ∈ S and is bigger than ri.

Player I wins the game if she can continue playing for infinitely many rounds.
Given S ∈ [ω]

ω
we denote by Hit (S) as the set of all subsets of ω that have

infinite intersection with S.

Lemma 163 Letting p be a Miller tree and S ∈ [ω]
ω

, we have the following:

1. Player I has a winning strategy if and only if there is q ≤ p such that
[q]split ⊆ [S]

ω
.

2. Player II has a winning strategy if and only if there is H : Split (p) −→ ω
such that if f ∈ [p] then the set {f � n ∈ Split (p) | f (n) ∈ S} is almost
contained in {f � n ∈ Split (p) | f (n) < H (f � n)} (in particular [p]split∩
Hit (S) ∈ K (p)).

Proof. The first equivalence is easy so we leave it for the reader. Now as-
sume there is a winning strategy π for II. We define H : Split (p) −→ ω
such that if s ∈ Split (p) then π (x) < H (s) where x is any partial play in
which player I has build s and II has played according to π (note there are
only finitely many of those x so we can define H (s)). We want to prove
that if f ∈ [p] then {f � n ∈ Split (p) | f (n) ∈ S} is almost contained in the
set {f � n ∈ Split (p) | f (n) < H (f � n)} . Assume this is not the case. Let
B be the set of all n ∈ ω such that f � n ∈ Split (p) with f (n) ∈ S but
H (f � n) ≤ f (n) . By our hypothesis B is infinite and then we enumerate it as
B = {bn | n ∈ ω} in increasing order. Consider the run of the game where I plays
f � bn at the n-th stage. This is possible since f (bn) ∈ S and H (f � bn) ≤ f (bn)
so I will win the game, which is a contradiction. The other implication is easy.

Since G (p, S) is an open fame for II by the Gale-Stewart theorem (see [38])
it is determined, so we conclude the following dichotomy:

Corollary 164 If p is a Miller tree and S ∈ [ω]
ω

then one and only one of the
following holds:

1. There is q ≤ p such that [q]split ⊆ [S]
ω
.
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2. There is H : Split (p) −→ ω such that if f ∈ [p] then the set defined
as {f � n ∈ Split (p) | f (n) ∈ S} is almost contained in the following set:
{f � n ∈ Split (p) | f (n) < H (f � n)} (and [p]split ∩Hit (S) ∈ K (p)).

In particular, for every Miller tree p and S ∈ [ω]
ω

there is q ≤ p such that
either [q]split ⊆ [S]

ω
or [q]split ⊆ [ω \ S]

ω
(although this fact can be proved

easier without the game).

Definition 165 Let p be a Miller tree and S ∈ [ω]
ω
. We say S tree-splits p if

there are Miller trees q0, q1 ≤ p such that [q0]split ⊆ [S]
ω

and [q1]split ⊆ [ω \ S]
ω
.

S is a Miller tree-splitting family if every Miller tree is tree-split by some element
of S.

It is easy to see that every Miller-tree splitting family is a splitting family and
it is also easy to see that every ω-splitting family is a Miller-tree splitting family.
We will now prove there is a Miller-tree splitting family of size s.

Proposition 166 The smallest size of a Miller-tree splitting family is s.

Proof. We will construct a Miller-tree splitting family of size s. In case b ≤ s
there is an ω-splitting family of size s and this is a Miller tree-splitting family
as remarked above.

Now assume s < b. We will show that any (ω, ω)-splitting family is a Miller
tree splitting family. Let S = {Sα | α < s} be a (ω, ω)-splitting family and p
a Miller tree. Let Split1 (p) = {sn | n ∈ ω} and for every n < ω define An as
the set of all α < s such that there is i (α, n) such that there is no q ≤ psn
for which [q]split ⊆ [S

i(α,n)
α ]ω (hence [psn ]split ∩ Hit(S

i(α,n)
α ) ∈ K (psn)). Since

An has size less than b = cov(K (psn)) we can find fn ∈ [psn ] such that Xn =

Sp (psn , fn) /∈
⋃

α∈An
Hit(S

i(α,n)
α ), which means Xn is almost disjoint with every

S
i(α,n)
α whenever α ∈ An. Since S is an (ω, ω)-splitting family, there is α < s

such that both F = {n | |Sα ∩Xn| = ω} and G = {n | |(ω \ Sα) ∩Xn| = ω} are
infinite (in particular, they are not empty). Choose any n ∈ F and m ∈ G.
We then know that Xn is not almost disjoint with Sα so then there must be
q0 ≤ psn for which [q0]split ⊆ [Sα]ω. In the same way, since m ∈ G there must
be q1 ≤ psn for which [q1]split ⊆ [ω \ Sα]ω and then Sα tree-splits p.

The following lemma is probably well known:

Lemma 167 Assume κ < d and for every α < κ let Fα ⊆ [ω]
<ω

be an infinite
set of disjoint finite subsets of ω and gα :

⋃
Fα −→ ω. Then there is f : ω −→ ω

such that for every α < κ there are infinitely many X ∈ Fα such that gα � X <
f � X.
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Proof. Given α < κ find an interval partition Pα = {Pα (n) | n ∈ ω} such that
for every n ∈ ω there is X ∈ Fα such that X ⊆ Pα (n) (this is possible since Fα
is infinite and its elements are pairwise disjoint). Then define the function gα :
ω −→ ω such that gα � Pα (n) is the constant function max {gα [Pα (n+ 1)]} .
Since κ is smaller than d, we can then find an increasing function f : ω −→ ω
that is not dominated by any of the gα. It is easy to prove that f has the desired
property.

Now we can prove the following lemma that will be useful:

Lemma 168 Let q be a Miller tree and κ < d. If {Hα | α < κ} ⊆ ωSplit(q) then

there is r ≤ q such that Split (r) = Split (q)∩ r and [r]split∩
⋃
α<κ

Catch∀ (Hα) =

∅.

Proof. We will first prove there isG : Split (q) −→ ω such that
⋃
α<κ

Catch∀ (Hα)

is a subset of Catch∃ (G) . Given t ∈ Split (q) let T (t, α) the subtree of q such
that if f ∈ [T (t, α)] then t v f and if t v f � n and f � n ∈ Split (q) then
f (n) ∈ Hα (f � n) . Clearly T (t, α) is a finitely branching subtree of q. Then
define F (t, α) = {Splitn (q) ∩ T (t, α) | n < ω} which is an infinite collection of
pairwise disjoint finite sets and let g(t,α) :

⋃
F (t, α) −→ ω given by g(t,α) (s) =

Hα (s) . Since κ < d by the previous lemma, we can find G : Split (q) −→ ω such
that if α < κ and t ∈ Split (q) then there are infinitely many Y ∈ F (t, α) such

that g(t,α) � Y < G � Y. We will now prove that
⋃
α<κ

Catch∀ (Hα) ⊆ Catch∃ (G) .

Let α < κ and f ∈ Catch∀ (Hα) . Find t ∈ Split (q) such that t v f and if
t v f � m and f � m ∈ Split (q) then f (m) ∈ Hα (f � m) . Note that f is a
branch through T (t, α) . Let Y ∈ F (t, α) such that g(t,α) � Y < G � Y and
since f ∈ [T (t, α)], there is n ∈ ω such that f � n ∈ Y so f (n) < Hα (f � n) <
G (f � n) .

Define r ≤ q such that Split (r) = Split (q)∩r and sucr (s) = sucq (s)\G (s) .
Clearly [r]split is disjoint from Catch∃ (G) .

We can then finally prove our main theorem.

Theorem 169 There is a +-Ramsey MAD family.

Proof. If a < s, then a is smaller than d so then there is a +-Ramsey MAD
family (in fact, there is a Miller-indestructible MAD family). So we assume s ≤ a
for the rest of the proof. Fix an (ω, ω)-splitting family S = {Sα | α < s} that is
also a Miller-tree splitting family. Let {L,R} be a partition of the limit ordinals
smaller than c such that both L and R have size continuum. Enumerate by
{Xα | α ∈ L} all infinite subsets of ω and by {Tα | α ∈ R} all subtrees of ω<ω.
We will recursively construct A = {Aξ | ξ < c} and {σξ | ξ < c} as follows:

1. A is an AD family and σα ∈ 2<s for every α < c.
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2. If σα ∈ 2β and ξ < β then Aα ⊆∗ Sσα(ξ)ξ .

3. If α 6= β then σα 6= σβ .

4. If δ ∈ L and Xδ ∈ I (Aδ)+ then Aδ+n ⊆ Xδ for every n ∈ ω (where
Aδ = {Aξ | ξ < δ}).

5. If δ ∈ R and Tδ is an I (Aδ)+-branching tree then there is f ∈ [Tδ] such
that Aδ+n ⊆ im (f) for every n ∈ ω.

It is clear that if we manage to perform the construction then A will be
a +-Ramsey MAD family (and it will be completely separable too). Let δ be
a limit ordinal and assume we have constructed Aξ for every ξ < δ. In case
δ ∈ L we just proceed as in the case of the completely separable MAD family,
so assume δ ∈ R. Since Aδ = {Aξ | ξ < δ} is nowhere-MAD, we can find p an
A⊥δ -branching subtree of Tδ.

First note that since S is a Miller-tree splitting family, for every Miller tree
q there is α < s and τq ∈ 2α such that:

1. Sα tree-splits q.

2. If ξ < α then there is no q′ ≤ q such that [q′]split ⊆ [S
1−τq(ξ)
ξ ]ω.

Note that if q′ ≤ q then τq′ extends τq. If q ≤ p and τq ∈ 2α we fix the
following items:

1. W0 (q) = {ξ < α | ∃β < δ (σβ = τq � ξ)} and

W1 (q) = {ξ < α | ∃β < δ (∆ (σβ , τq) = ξ)} .

2. Let ξ ∈ W0 (q) we then find β such that σβ = τq � ξ and define Gq,ξ :
Split (q) −→ ω such that if s ∈ Split (q) then Aβ ∩ sucq (s) ⊆ Gq,ξ (s)
(this is possible since q is A⊥δ -branching).

3. Given ξ ∈W1 (q) we know there is no q′ ≤ q such that [q′]split ⊆ [S
1−τq(ξ)
ξ ]ω.

We know that there is Hq,ξ : Split (q) −→ ω such that if f ∈ [q], the set

defined as {f � n ∈ Split (q) | f (n) ∈ S1−τq(ξ)
ξ } is almost contained in the

set {f � n ∈ Split (q) | f (n) < Hq,ξ (f � n)} .

4. If U ∈ [W0 (q)]
<ω

and V ∈ [W1 (q)]
<ω

choose any

Jq,U,V : Split (q) −→ ω such that if s ∈ Split (q) then Jq,U,V (s) >
max {Gq,ξ (s) | ξ ∈ U} , max {Hq,ξ (s) | ξ ∈ V } .

5. A (q) = {Aξ ∈ Aδ | τq * σξ} .
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Note that if ξ ∈ W0 (q) then there is a unique β < δ such that σβ = τq � ξ
(although the analogous remark is not true for the elements of W1 (q)). The
following claim will play a fundamental role in the proof:

Claim 170 If q ≤ p then there is r ≤ q such that [r]split ⊆ I (A (q))
+

.

Let α < s such that τq ∈ 2α. Since s ≤ d, we know there is r ≤ q such that
[r]split is disjoint from

⋃{
Catch∀ (Jq,U,V ) | U ∈ [W0 (q)]

<ω
, V ∈ [W1 (q)]

<ω}
and

Split (r) = Split (q)∩ r. We will now prove [r]split ⊆ I (A (q))
+

but assume this

is not the case. Therefore, there is f ∈ [r] and F ∈ [A (q)]
<ω

such that X =
Sp (r, f) ⊆∗

⋃
F. Let F = F1∪F2 and U ∈ [W0 (q)]

<ω
, V ∈ [W1 (q)]

<ω
such that

for every Aβ ∈ F1 there is ξβ ∈ U such that σβ = τq � ξβ and for every Aγ ∈ F2

there is ηγ ∈ V such that ∆ (τq, σγ) = ηγ . Let D ⊆ {n | f � n ∈ Split (r)} be
the (infinite) set of all n < ω such that the following holds:

1. f � n ∈ Split (r) and f (n) ∈
⋃
F.

2. If ηγ ∈ V then Aγ \ n ⊆ S
1−τq(ηγ)
ηγ .

3. f (n) > Jq,U,V (f � n) .

4. If η ∈ V and f (n) ∈ S1−τq(η)
η then f (n) < Hq,η (f � n) < Jq,U,V (f � n)

(recall that {f � m ∈ Split (q) | f (m) ∈ S1−τq(η)
η } is almost contained in

{f � m ∈ Split (q) | f (m) < Hq,η (f � m)}).

We first claim that if n ∈ D, ξβ ∈ U and ηγ ∈ V then f (n) /∈ Aβ ∪S
1−τq(ηγ)
ηγ .

On one hand, since Aβ∩sucq (f � n) ⊆ Gq,ξβ (f � n) < Jq,U,V (f � n) and f (n) >
Jq,U,V (f � n) then f (n) /∈ Aβ . On the other hand, if it was the case that

f (n) ∈ S1−τq(ηγ)
ηγ so f (n) < Hq,η (f � n) < Jq,U,V (f � n) but we already know

that f (n) > Jq,U,V (f � n) . Since n ≤ f (n) (recall every branch through p is

increasing) f (n) /∈ Aγ for every ηγ ∈ V because Aγ \n ⊆ S
1−τq(ηγ)
ηγ . This implies

f (n) /∈
⋃
F which is a contradiction and finishes the proof of the claim.

Back to the proof of the theorem, we recursively build a tree of Miller trees
{p (s) | s ∈ 2<ω} with the following properties:

1. p (∅) = p.

2. p (s_i) ≤ p (s) and the stem of p (s_i) has length at least |s| .

3. τp(s_0) and τp(s_1) are incompatible.

4. [p (s_i)]split ⊆ I (A (p (s)))
+
.
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This is easy to do with the aid of the previous claim. For every g ∈ 2ω let
τg =

⋃
τp(g�m). Note that if g1 6= g2 then τg1 and τg2 are two incompatible nodes

of 2<s. Since Aδ has size less than the continuum, there is g ∈ 2ω such that
there is no β < δ such that σβ extends τg and then Aδ =

⋃
m∈ω
A (p (g � m)) .

Let f be the only element of
⋂
m∈ω

[p (g � m)] . Obviously, f is a branch through

p and we claim that im (f) ∈ I (Aδ)+ . This is easy since if Aξ1 , ..., Aξn ∈ Aδ
then we can find m < ω such that Aξ1 , ..., Aξn ∈ A (p (g � m)) and then we know
that Sp (p (g � m+ 1) , f) *∗ Aξ1 ∪ ... ∪ Aξn and since Sp (p (g � m+ 1) , f) is

contained in im (f) we conclude that im (f) ∈ I (Aδ)+ .

Finally, find a partition {Zn | n ∈ ω} ⊆ I (Aδ)+ of im (f) and using the
method of Shelah construct Aδ+n such that Aδ+n ⊆ Zn. This finishes the proof.
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Chapter 6

MAD examples

We now repeat the main definitions of MAD families used in this thesis:

Definition 171 Let A be a MAD family.

1. A is P-indestructible if A remains MAD after forcing with P (we are
mainly interested where P is Cohen, random, Sacks or Miller forcing).

2. A is weakly tight if for every {Xn | n ∈ ω} ⊆ I (A)
+

there is B ∈ I (A)
such that |B ∩Xn| = ω for infinitely many n ∈ ω.

3. A is tight if for every {Xn | n ∈ ω} ⊆ I (A)
+

there is B ∈ I (A) such
that B ∩Xn is infinite for every n ∈ ω.

4. A is Laflamme if A can not be extended to an Fσ-ideal.

5. A is +-Ramsey if for every I (A)
+

-branching tree T, there is f ∈ [T ] such
that im (f) ∈ I (A)

+
.

6. A is FIN×FIN-like if I (A) �K J for every analytic ideal J such that
FIN×FIN �K J .

7. A is called Shelah-Steprāns if for every X ∈
(
I (A)

<ω)+
there is Y ∈ [X]

ω

such that
⋃
Y ∈ I (A) .

8. A is strongly tight if for every family {Xn | n ∈ ω} such that for every B ∈
I (A) the set {n | X ⊆∗ B} is finite, there is A ∈ A such that A∩Xn 6= ∅
for every n ∈ ω.

9. A is a raving MAD family if for every family X = {Xn | n ∈ ω} that is
locally finite according to I (A) there is B ∈ I (A) such that B contains
at least one element of each Xn (a family X = {Xn | n ∈ ω} such that
Xn ⊆ [ω]

<ω
is locally finite according to I (A) if for every B ∈ I (A) for

almost all n ∈ ω there is s ∈ Xn such that s ∩B = ∅).

79
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In this chapter we will build (consistently) examples of the non implications
of the previous notions. Note that raving implies all the other properties. The
following definition will be useful in this chapter:

Definition 172 Let I be an ideal. We say that I is nowhere Shelah-Steprāns
if no restriction of I is Shelah-Steprāns.

It is easy to see that nwd, tr(ctble), tr (N ) , tr (Kσ) and every Fσ-ideal are
nowhere Shelah-Steprāns.

Lemma 173 Let I,J be two ideals such that I is nowhere Shelah-Steprāns and
J �K I. Let A ⊆ J be a countable AD family and f : (ω, I) −→ (ω, I (A)) be
a Katětov morphism. Then there is B ∈ J ∩ A⊥ such that f−1 (B) ∈ I+.

Proof. Let A = {An | n ∈ ω} . We know f is a Katětov morphism so the
set

{
f−1 (An) | n ∈ ω

}
is contained in I. Since J �K I there is D ∈ J such

that C = f−1 (D) ∈ I+. Since I � C is not Shelah-Steprāns, there is X ∈(
(I � C)

<ω)+
such that no element of I contains infinitely many elements of X.

For each n ∈ ω we choose sn ∈ X such that sn ∩
(
f−1 (A0 ∪ ...An)

)
= ∅. We

then know that D =
⋃
sn ∈ I+. It is easy to see that B = f [D] has the desired

properties.

By a simple bookkeeping argument we can then conclude the following:

Proposition 174 (CH) Let I,J be ideals such that I is nowhere Shelah-Steprāns
and J �K I. Then there is a MAD family A ⊆ J such that I (A) �K I.

The previous proposition shows that Miller indestructibility does not im-
ply Cohen indestructibility and that Random and Miller indestructibility are
incomparable notions (this is a result of Brendle and Yatabe).

Cohen and Random indestructibility does not imply weak tightness
or Laflamme. FIN×FIN-like implies weak tightness

We will start with a useful characterization of weak tightness.

Definition 175 We define the ideal WT on ω × ω as follows:

1. WT � Cn is a copy of FIN×FIN (where Cn = {(n,m) | m ∈ ω}).

2. WT extends ∅×FIN.

Note that if B ⊆ ω×ω has infinite intersection with infinitely many columns
then B ∈ WT +.
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Proposition 176 WT is strictly Katětov below FIN×FIN.

Proof. Note that the identity mapping witnesses WT ≤KFIN×FIN. Now, we
will show II has a winning strategy in L (WT ) . This is easy, since every Cn is
not inWT and then player II can play in such a way that the set she constructed
at the end intersects infinitely all the Cn, so it can not be an element ofWT .

Then we have the following characterization:

Proposition 177 If A is a MAD family then A is weakly tight if and only if
A �

K
WT .

Proof. We will prove that A is not weakly tight if and only if A ≤K WT . First
assume A is not weakly tight, so we can find a partition X = {Xn | n ∈ ω} ⊆
I (A)

+
such that if A ∈ A then A ∩ Xn is finite for almost all n ∈ ω. Since

A � Xn is an AD family, we know A � Xn ≤K FIN×FIN so for each n ∈ ω
fix hn : Cn −→ Xn a Katětov morphism from (Cn,WT �Cn) to (Xn,A � Xn) .
Letting h =

⋃
hn we will show h is a Katětov morphism from (ω × ω,WT ) to

(ω,A) . If A ∈ A then we can find B ∈ X⊥ and a finite set F ⊆ ω such that
A =

⋃
n∈F

(A ∩Xn) ∪ B. Clearly h−1 (B) ∈ WT since h−1 (B) ∈ ∅×FIN and

h−1 (A ∩Xn) = h−1n (A ∩Xn) which is an element of WT since hn is a Katětov
morphism. Therefore, h−1 (A) ∈ WT .

For the second implication, assume A ≤K WT so there is a Katětov mor-
phism h : ω × ω −→ ω from (ω × ω,WT ) to (ω,A) . Let Xn = h [Cn] which
is an element of I (A)

+
since h is a Katětov morphism. Note that if B ∩ Xn

is infinite for infinitely many n ∈ ω then h−1 (B) ∈ WT +, hence {Xn | n ∈ ω}
witnesses that A is not weakly tight.

We can then conclude the following:

Corollary 178 If A is FIN×FIN-like then A is weakly tight.

Note that diagonalizingWT will result in adding a dominating real, soWT is
not Katětov below tr (N ) or tr (M) . Furthermore, tr (M) is not Katětov above
ED and tr (N ) is not Katětov above the Solecki ideal (see [45]). Therefore we
conclude the following:

Corollary 179 (CH) There is a Cohen and random indestructible MAD family
that is not weakly tight. Neither does Cohen or random indestructibility imply
being Laflamme.
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Laflamme does not imply Sacks indestructibility or weakly tight.

Since every Fσ-ideal is nowhere Shelah-Steprāns we can conclude the following:

Lemma 180 (CH) Every Laflamme ideal contains a Laflamme MAD family.

Since both tr(ctble) and WT are Laflamme (they are Katětov above conv)
we conclude the following:

Corollary 181 (CH) There is a Laflamme family that is destructible by Sacks
forcing and is not weakly tight.

Laflamme does not imply +-Ramsey

Let J be the ideal on ω<ω of all sets a ⊆ ω<ω such that π (a) is finite. It
is easy to see that J can not be extended to an Fσ-ideal (this is because conv
≤K J ).

Proposition 182 (CH) There is a Laflamme MAD family that is not +-Ramsey.

Proof. Let BR = {f̂ | f ∈ ωω} (where f̂ = {f � n | n ∈ ω}) and {Iα | α ∈ ω1}
be the set of all Fσ -ideals in ω<ω. We construct A = {Aα | α < ω1} such that
the following holds:

1. A ∪ BR is an AD family.

2. If s ∈ ω<ω then A contains a partition of suc (s) = {s_n | n ∈ ω} .

3. If Aα∪BR ⊆ Iα then Aα /∈ Iα (where Aα = {Aξ | ξ < α}).

4. Aα is countable.

At step α assume that BR ∪ Aα ⊆ Iα. Since Iα is an Fσ-ideal and it
contains all branches, there is a ∈ I+α ∩ J . Let π (a) = {f1, ..., fn} and we now

define b = a \ f̂1 ∪ ... ∪ f̂n. Note that π (b) = ∅ and b ∈ I+α . Let ϕ be a lower
semicontinuous submeasure such that Iα = Fin(ϕ) and let Aα = {Bn | n ∈ ω} .
We recursively find sn ⊆ b \B0 ∪ ... ∪Bn such that ϕ (sn) ≥ n (this is possible
since b ∈ I+α ). Then Aα =

⋃
n∈ω

sn is the set we were looking for. It is easy to

see that A ∪ BR is a Laflamme MAD family that is not +-Ramsey.
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+-Ramsey does not imply S-indestructibility, Laflamme or weakly
tight

We start with the following lemma:

Lemma 183 Let A be a countable AD family, I a tall ideal such that A ⊆ I
and T an I (A)

+
-tree. Then there is a countable AD family B and R ∈ [T ] such

that:

1. A ⊆ B.

2. B ⊆ I.

3. R ∈ I (B)
++

.

Proof. Since A is +-Ramsey we can find R ∈ [T ] such im (R) ∈ I (A)
+
. Since

I is a tall ideal and A is countable, we can find A ∈ [im (R)]
ω ∩ I ∩ A⊥. We

partition A into countably many disjoint pieces and add them to A.

With a simple bookkeeping argument we can then prove the following:

Proposition 184 (CH) Every tall ideal contains a +-Ramsey MAD family.

Weakly tight does not imply +-Ramsey

Recall that if f : ω −→ ω we let f̂ = {f � n | n ∈ ω} . We now have the following:

Lemma 185 If A ⊆ ω<ω does not have infinite antichains then A can be cov-
ered with finitely many chains.

Proof. Define S as the set of all unsplitting nodes of A i.e. s ∈ A if and only
if every two extensions of s in A are compatible. Note that S ⊆ A and every
element of A can be extended to an element of S (otherwise A would contain
a Sacks tree and hence an infinite antichain). Let B ⊆ S be a maximal (finite)

antichain. For every s ∈ B let bs ∈ ωω the unique branch such that A∩ [s] ⊆ b̂s.
Then (by the maximality of B) we conclude A ⊆

⋃
s∈B

b̂s.

We need the following lemma:

Lemma 186 If A = {An | n ∈ ω} ⊆ ℘ (ω<ω) is a collection of infinite an-
tichains, then there is an antichain B such that B ∩An is infinite for infinitely
many n ∈ ω.

Proof. We say s ∈ ω<ω watches An if s has infinitely many extensions in An.
Define T ⊆ ω<ω such that s ∈ T if and only if there are infinitely many n ∈ ω
such that s watches An. Note that T is a tree. First assume there is s ∈ T that
is a maximal node. By shrinking A if needed, we may assume s watches every
element of A. We now define the set C = {An | ∃∞m (An ∩ [s_m] 6= ∅)} . In case
C is infinite, we can find an antichain B that has infinite intersection with every
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element of C. Now assume that C is finite, by shrinking A we may assume C is
the empty set. In this way, for every An there is mn such that s_mn watches
An. We can then find an infinite set X ∈ [ω]

ω
such that mn 6= mr whenever

n 6= r and n, r ∈ X (recall that s is maximal). Then B =
⋃
n∈X

[s_mn] ∩ An is

the set we were looking for.

Now we may assume T does not have maximal nodes. If T is a Sacks tree
then we can find an infinite antichain Y ⊆ T . For every s ∈ Y we choose ns
such that s watches Ans and if s 6= t then Ans 6= Ant . Then B =

⋃
s∈Y

[s] ∩ Ans
is the set we were looking for.

The only case left is that there is s ∈ T that does not split in T. Let f ∈ [T ]
the only branch that extends s. We may assume s watches every element of A
and every An is disjoint from f̂ (this is because An is an antichain and f is

a branch). We say An is a comb with f if ∆(An ∩ [s] , f̂) is infinite. We may
assume that either every element of A is a comb with f or none is. In case all
of them are combs we can easily find the desired antichain. So assume none of
them are combs. In this way, for every n ∈ ω we can find tn extending s but
incompatible with f of minimal length such that tn watches An. Since tn /∈ T
we can find W ∈ [ω]

ω
such that tn 6= tm for all n,m ∈ W where n 6= m. Then

we recursively construct the desired antichain.

We can then conclude the following:

Proposition 187 (CH) There is a weakly tight MAD family that is not +-
Ramsey.

Proof. Let
{
Xα | ω ≤ α < ω1

}
enumerate all countable sequences of infinite

pairwise disjoint subsets of ω<ω. Let BR = {f̂ | f ∈ ωω}, we construct A =
{Aα | α < ω1} such that the following holds:

1. A ∪ BR is an AD family.

2. If s ∈ ω<ω then A contains a partition of suc (s) = {s_n | n ∈ ω} .

3. For every ω ≤ α < ω1 if Xα = {Xn | n ∈ ω} ⊆ (Aα∪BR)
+

then Aα ∩Xn

is infinite for infinitely many n ∈ ω (where Aα = {Aξ | ξ < α}).

At step α assume Xα = {Xn | n ∈ ω} ⊆ (Aα∪BR)
+
. Since every Xn can

not be covered with a finite number of branches, we may assume every Xn is an
infinite antichain. Let Yn = Xn \ (Aα0 ∪ ...Aαn) which is an infinite antichain.
By the lemma we can find an antichain B and W ∈ [ω]

ω
such that if n ∈ W

then B ∩Yn is infinite. Let Aα =
⋃

n∈W
B ∩Yn then Aα is AD with Aα and since
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it is an antichain it is also disjoint from BR. Clearly A ∪ BR is not +-Ramsey
(recall that weakly tight families are maximal).

Weakly tight does not imply Sacks indestructibility

First we need the following definition:

Definition 188 We say an ideal I is weakly ω-hitting if for every countable
family {Xn | n ∈ ω} ⊆ [ω]

ω
there is A ∈ I such that A ∩ Xn is infinite for

infinitely many n ∈ ω.

We have then prove the following:

Proposition 189 (CH) If I is weakly ω-hitting then there is a weakly tight
MAD family contained in A.

Proof. Let {Xα | α < ω1} enumerate all partitions of ω andXα = {Xα (n) | n ∈ ω} .
We will build A = {Aα | α < ω1} ⊆ I such that for every α < ω1 if Xα ⊆
I (Aα)

+
then Aα ∩Xα (n) is infinite for infinitely many n ∈ ω.

Assume we are at stage α and Xα ⊆ I (Aα)
+
. First for each n ∈ ω we find

Yn ∈ [Xα (n)]
ω

such that Yn is AD with Aα and Yn ∩ (Aα0
∪ ... ∪Aαn) = ∅.

Since I is weakly ω-hitting we can find B ∈ I and W ∈ [ω]
ω

such that B ∩ Yn
is infinite for every n ∈ W, we may even assume B =

⋃
n∈ω

(B ∩ Yn) . We then

just define Aα = B.

We then have the following:

Lemma 190 tr(ctble) is weakly ω-hitting.

Proof. Let {Xn | n ∈ ω} ⊆ [2<ω]
ω

and we may assume each Xn is either a
chain or an antichain. In case they are all antichains the result follows by a
previous result. We only need to consider the case where all of the Xn are
chains, so there are rn ∈ 2ω such that Xn ⊆ r̂n. In case there is r ∈ 2ω such
that {n | rn = r} is infinite then we just take r̂n. So assume rn 6= rm whenever
n 6= m. Since 2ω is compact, we can find r ∈ 2ω and W ∈ [ω]

ω
such that the

sequence 〈rn〉n∈W converges to r. Then B =
⋃

n∈W
Xn is an element of tr(ctble).

We can then conclude the following:

Corollary 191 (CH) There is a weakly tight family that is destructible by Sacks
forcing.
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If P is ωω-bounding then P-indestructibility does not imply +-Ramsey

We will now prove that (in particular) Sacks or random indestructibility are not
enough to get +-Ramseyness. We will say a family A on ω<ω is a standard Kσ
family if the following holds:

1. A is an AD family.

2. If A ∈ A either π (A) = ∅ or A is a finitely branching tree on ω<ω.

3. If s ∈ ω<ω then {s_n | n ∈ ω} ∈ I (A)
++

.

We now need the following lemma:

Lemma 192 Let P be an ωω-bounding forcing and A a countable standard Kσ
family. If p ∈ P and ḃ is a P-name for an infinite subset of ω<ω such that
p  “ḃ ∈ A⊥” then there are q ≤ p and B a countable standard Kσ family such
that A ⊆ B and q  “ḃ /∈ B⊥”.

Proof. Let A = {Tn | n ∈ ω}∪{an | n ∈ ω} where Tn is a finitely branching tree
and π (an) = ∅ for every n ∈ ω. We may assume that p forces that π(ḃ) is either
empty or a singleton. We first assume there is ṙ such that p  “π(ḃ) = {ṙ} ”.
Since P is ωω-bounding, we may find p1 ≤ p and T ∈ V a finitely branching
well pruned tree such that p1  “ṙ ∈ [T ] ”. Once again, since P is ωω-bounding
we may find p2 ≤ p1 and f ∈ ωω such that the following holds:

1. f is an increasing function.

2. p2  “ (Tn ∪ an) ∩ r̂ ⊆ ω<f(n)”.

Define K =
(
T ∩ ω≤f(0)

)
∪
⋃(

T ∩ ω≤f(n+1) \ (T0 ∪ ...Tn ∪ a0 ∪ ...an)
)
. It is

easy to see that K is a finitely branching tree, p2  “ṙ ∈ [K] ” and K ∈ A⊥.
We now simply define B = A∪{K} .

Now we consider the case where π(ḃ) is forced to be empty. Let Ṡ be the
tree of all s ∈ ω<ω such that s has infinitely many extensions in ḃ. We will first
assume there are p1 ≤ p and s such that p1 forces that s is a maximal node
of Ṡ. Since P is ωω-bounding, we can find a ground model interval partition
P = {Pn | n ∈ ω} and p2 ≤ p1 such that if n ∈ ω then p2 forces that there is
ṁn ∈ Pn such that ([s_ṁn]∩ ḃ)\(T0 ∪ ...Tn ∪ a0 ∪ ... ∪ an) 6= ∅. Given n,m ∈ ω
we define Kn,m = {s_i_t | i ∈ Pn ∧ t ∈ mm} . Using once again that P is ωω-
bounding, we may find p3 ≤ p2 and an increasing function f : ω −→ ω such that
if n ∈ ω then p3 forces (Kn,f(n) ∩ ḃ) \ (T0 ∪ ...Tn ∪ a0 ∪ ... ∪ an) is non-empty
for every n ∈ ω. We now define a =

⋃
n∈ω

Kn,f(n) \ (T0 ∪ ...Tn ∪ a0 ∪ ... ∪ an) . It

is easy to see that π (a) = ∅, a ∈ A⊥ and p3 forces that a and ḃ have infinite
intersection.
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Now we assume that p forces that Ṡ does not have maximal nodes, let ṙ be a
name for a branch of Ṡ. First assume that ṙ is forced to be a branch through some
element of A. Without lose of generality, we may assume that p  “ṙ ∈ [T0] ”.
Since P is ωω-bounding, we may find p1 ≤ p and an increasing ground model
function f : ω −→ ω such that if n ∈ ω then p1 forces that ṙ � f (n) has
an extension that is in ḃ \ (T0 ∪ ...Tn ∪ a0 ∪ ... ∪ an) . Once again, we may find
p2 ≤ p1 and g : ω −→ ω such that if n ∈ ω then ḃ has non empty intersection

with the set {ṙ � f (n)
_
t | t ∈ g (n)

g(n)} \ (T0 ∪ ...Tn ∪ a0 ∪ ... ∪ an) . We now

define a =
⋃

s∈(T0)f(n)

({s_t | t ∈ g (n)
g(n)} \ (T0 ∪ ...Tn ∪ a0 ∪ ... ∪ an)). It is easy

to see that a has the desired properties. Finally, in case that ṙ is not forced to be
a branch through some element of A, we find a finitely branching tree T ∈ A⊥
such that p  “ṙ ∈ [T ] ” as we did at the beginning of the proof. If T has infinite
intersection with ḃ we are done and if not then we apply the previous case.

With a standard bookkeeping argument we can then conclude the following:

Proposition 193 (CH) If P is a proper ωω-bounding forcing of size ω1 then
there is a MAD family A that is P indestructible but is not +-Ramsey.

FIN×FIN-like does not imply tightness

Proposition 194 (CH) There is a FIN×FIN-like MAD family that is not tight.

Proof. Let {Iα | ω ≤ α < ω1} be an enumeration of all analytic ideals that are
not Shelah-Steprāns and X = {Xn | n ∈ ω} be a partition of ω into infinite sets.
We will recursively construct an AD family A = {Aα | α < ω1} such that for
every α the following conditions hold:

1. {An | n ∈ ω} is a partition of ω refining {Xn | n ∈ ω} and every Xn con-
tains infinitely many of the Am.

2. There is ξ ≤ α such that Aξ /∈ Iα.

3. If B ∈ I (A) then there is n ∈ ω such that B ∩Xn is finite.

Let Aα = {Aξ | ξ < α} and assume Aα ⊆ Iα. Let α = {αn | n ∈ ω} and
define Ln = Aα0

∪ ... ∪ Aαn . Define En = {m | |Ln ∩Xm| < ω} and note that
E = 〈En〉n∈ω is a decreasing sequence of infinite sets. Find a pseudointersection
D of E such that ω \ D also contains a pseudointersection of E. Define T0 =⋃
n∈D

Xn and T1 =
⋃
n/∈D

Xn. Since FIN×FIN �
K
Iα we know that either FIN×FIN
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�
K
Iα � T0 or FIN×FIN �

K
Iα � T1. First assume FIN×FIN �

K
Iα � T0 so then

we choose any Aα ∈ (Iα � T0)
+

that is almost disjoint with Aα�T0 which implies
it is AD with Aα. We now need to prove that for every n < ω there is Xm such
that (Ln ∪Aα) ∩Xm is finite. Since ω \D contains a pseudointersection of E,
there is m ∈ En \ D and then both Ln and Aα are almost disjoint with Xm.
The other case is similar.

Strong tightness does not imply Laflamme or random indestructible

We start with the following proposition:

Lemma 195 Let A be a countable AD family contained in the summable ideal.
Let X = {Xn | n ∈ ω} ⊆ [ω]

ω
such that if n ∈ ω then Xn is contained in some

Bn ∈ A and Bm 6= Bn for almost all m ∈ ω. Then there is D ∈ A⊥ ∩J1/n such
that D ∩Xn 6= ∅ for every n ∈ ω.

Proof. LetA = {An | n ∈ ω} and for each n ∈ ω we define Fn = {Xi | Xi ⊆ An} .
We construct a sequence of finite sets {sn | n ∈ ω} ⊆ [ω]

<ω
such that:

1. max (sn) < min (sn+1) .

2.
∑
i∈sn

1
1+i <

1
2n+1 .

3. sn has non empty intersection with every element of Fn.

4. If m < n then sn is disjoint from Am.

Assuming we are at step n, let r such that Fn = {Xn1
, ..., Xnr} . Find m

such that r
1+m < 1

2n+1 and si ⊆ m for every i < n. For every 1 ≤ i ≤ r we
choose ki > m such that ki ∈ Xni \

⋃
j<n

Aj and let sn = {ki | 1 ≤ i ≤ r} . It is

easy to see that D =
⋃
n∈ω

sn has the desired properties.

In [25] it is proved that random forcing destroys the summable ideal. We
can then conclude the following:

Proposition 196 (CH) There is a strongly tight family contained in the summable
ideal J1/n (in particular, it is B-destructible and not Laflamme).



Chapter 7

Destroying P -points with
Silver reals

Recall that an ultrafilter U is called a P-point if every countable subfamily
of U has a pseudointersection in U . This special kind of ultrafilters has been
extensively studied by set theorists and topologists. It is possible to construct
such ultrafilters under d = c (see [6]) or if the parametrized diamond ♦ (r) holds
(see [49]). 1 On the other hand, it is a remarkable theorem of Shelah that the
existence of P -points can not be proved using only the axioms of ZFC (see [4]).
The model of Shelah is obtained by iterating the Grigorieff forcing of non-meager
P -filters.

By a “canonical model” we mean a model obtained after performing a count-
able support iteration of Borel proper partial orders of length ω2. In the “Forc-
ing and its applications retrospective workshop” held at the Fields institute,
Michael Hrušák asked the following:

Problem 197 Are there P -points in every canonical model?

There will be a P -point in case the iteration adds unbounded reals or does
not add splitting reals (since at the end we will get a model of either d = c or
♦ (r)). Therefore, we only need to consider the Borel ωω-bounding forcings that
add splitting reals. The best known examples of this type of forcings are the
random and Silver forcings. We will answer the question of Michael Hrušák by
proving that there are no P -points in the Silver model. The existence of a model
without P -points with the continuum larger than ω2 was also an open question
[68] and we will also show that the side-by-side product of Silver forcing produces

1In fact, P -points can also be constructed assuming the existence of a “d-pathway” (which
generalizes the construction under d = c). Pathways are interesting combinatorial structures,
but since we are not going to use them in this thesis, we will avoid defining them.

89
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sucha model. The results of this chapter were obtained in collaboration with
David Chodounský.

Regarding the random model, in [17] it was claimed that there is a P -point
in this model; unfortunately, I discovered the proof presented there is incorrect.
It seems that the existence of P -points in that model is an open question.

We start by fixing some notation and remarks that will be used in the proof.
By −n and =n we denote the substraction operation and congruence relation
modulo n. The notation j ∈n X is interpreted as “there is x ∈ X such that
j =n x”. For X,Y ⊆ n we define X −n Y = {x−n y | x ∈ X ∧ y ∈ Y } .

We will need the following lemma:

Lemma 198 For every n ∈ ω there is k (n) ∈ ω such that for each C ∈ [k (n)]
n

there is s ∈ k (n) such that C ∩
(
C −k(n) s

)
= ∅.

Proof. It is easy to see that if k (n) > n2 then the result holds.

We now recursively define two functions v : ω −→ ω and m : ω −→ ω as
follows: We define v (0) = 0 and m (0) = k (2) . If v (n− 1) and m (n− 1) are
already defined then let v (n) =

∑
i<n

m (i) and m (n) = k ((n+ 1) (v (n) + 2)) .

We will need the following definitions:

Definition 199 Let r ∈ [ω]
ω
, f : ω −→ ω be an increasing function and

X = 〈Xn | n ∈ ω〉 where Xn ∈ [m (n)]
n+1

.

1. Let P (r) = {Pl (r) | l ∈ ω} be the interval partition where P0 (r) = min (r)
and Pn+1 (r) = (max (Pn (r)) ,min (r \ Pn)].

2. For every n ∈ ω and every i < m (n) we define the set D
m(n)
i (r) =⋃{

Pj (r) | j =m(n) i
}
.

3. For every n ∈ ω let En
(
r,X

)
=

⋃
i∈Xn

D
m(n)
i (r) .

4. We define E
(
r,X, f

)
=
⋂
n∈ω

(
En
(
r,X

)
∪ f (n)

)
Note that E

(
r,X, f

)
is a pseudointersection of

{
En
(
r,X

)
| n ∈ ω

}
, fur-

thermore, E
(
r,X, f

)
\ f (n) ⊆ En

(
r,X

)
for each n ∈ ω.

7.1 Doughnuts and P -points

Given x, y ∈ [ω]
ω

such that x ⊆ y, y \ x is infinite, we define [x, y] as the
set {z ⊆ ω | x ⊆ z ⊆ y} . These sets are often referred to doughnuts. We say
N ⊆ [ω]

ω
is doughnut-null if for every doughnut p there is a doughnut p′ ⊆ p
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such that p′ ∩N = ∅. If p = [x, y] is a doughnut, we define cod (p) = y \ x. The
ideal v0 is defined as the ideal generated by all doughnut-null sets. Doughnuts
were first defined by Di Prisco and Henle (see [18]). The main result is the
following:

Proposition 200 Let U be a (non principal ultrafilter), f : ω −→ ω and X =

〈Xn | n ∈ ω〉 where Xn ∈ [m (n)]
n+1

. Then the set N (U , f,X) = {r ⊆ ω | ∀A ∈
U
(
A ∩ E

(
r, f,X

)
6= ∅
)
} is doughnut null.

Proof. Letting p be a doughnut, we must show that p can be shrunken in order
to avoid N (U , f,X) . We now choose an interval partition {An | n ∈ {−1} ∪ ω}
such that for each n ∈ ω the following holds:

1. f (n) < min (A2n).

2. m (n) < |A2n+j ∩ cod (p)| for each j < 2.

We can assume that U0 =
⋃
{A2n+1 | n ∈ ω} ∈ U , if this was not the case,

we take the interval partition 〈A−1 ∪A0, A1, A2, ...〉 instead (this is possible
since U is not principal). Let p1 = [a1, b1] ⊆ p be a doughnut such that
cod (p1) ∩ A2n−1 = ∅ and |cod (p1) ∩A2n| = m (n) for each n ∈ ω. Note
that |cod (p1) ∩min (A2n)| = v (n) . We now define Cn as the following set:{
j ∈ m (n) | j ∈m(n)

(
Xn −m(n) {i | i ∈ v (n) + 2}

)}
and note that |Cn| is at

most (n+ 1) (v (n) + 2) . Let Hn = A2n+1 ∩
⋃{

Pj (a1) | j ∈ ω ∧ j ∈m(n) Cn
}

for every n ∈ ω.

We will now distinguish two cases: first assume that
⋃
{Hn | n ∈ ω} /∈ U .

Therefore, U =
⋃
{A2n+1 \Hn | n ∈ ω} ∈ U . Let p2 = [a2, b2] ⊆ p1 be a dough-

nut such that a2 = a1 and |cod (p2) ∩A2n| = 1 for each n ∈ ω. Note that if r ∈ p2
and i ∈ Xn then D

m(n)
i (r) ∩ A2n+1 ⊆ Hn. Thus, En

(
r,X

)
∩ A2n+1 ⊆ Hn and

since E
(
r,X, f

)
\min (A2n) ⊆ En

(
r,X

)
we conclude that E

(
r,X, f

)
∩U = ∅,

so p2 is the doughnut we were looking for.

We now consider the case where U =
⋃
{Hn | n ∈ ω} ∈ U. By the previous

lemma, for each n ∈ ω we can find sn ∈ m (n) such that Cn∩
(
Cn −m(n) {sn}

)
=

∅. We then choose a doughnut p2 = [a2, b2] ⊆ p1 such that |cod (p2) ∩A2n| = 1
and |a2 ∩A2n| = |a1 ∩A2n|+ sn for each n ∈ ω (such a2 exists since cod (p1) ∩
A2n has sizem (n)). For every n ∈ ω we defineHn = A2n+1∩

⋃{
Pj (a1) | j ∈ ω ∧ j ∈m(n)

(
Cn −m(n) {sn}

)}
.

It is not hard to see that Hn = A2n+1 ∩
⋃{

Pj (a2) | j ∈ ω ∧ j ∈m(n) Cn
}
. No-

tice that Hn∩Hn = ∅. Now, if r ∈ p2 and i ∈ Xn then D
m(n)
i (r)∩A2n+1 ⊆ Hn

which as before implies that E
(
r,X, f

)
∩ U = ∅.

We can then prove the following result:

Proposition 201 The inequality cof(N ) < cov(v0) implies that there are no
P -points.
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Proof. Let U be a non principal ultrafilter, we will show that U is not a P -point.
Let S = {Xα | α ∈ cof(N )} be a family with the following properties:

1. Xα = 〈Xα
n | n ∈ ω〉 where Xα

n ∈ [m (n)]
n+1

for n ∈ ω and α < cof(N ) .

2. For every h : ω −→ ω such that h (n) < m (n) for every n ∈ ω, there is
α < cof(N ) such that h (n) ∈ Xα

n for every n ∈ ω.

Let {fβ | β ∈ cof(N )} ⊆ ωω be a≤-dominating family of functions. We know
that B = {N

(
U , fβ , Xα

)
| α, β < cof(N )} is a family of doughnut null sets.

Since cof(N ) < cov(v0) we can find r /∈ N
(
U , fβ , Xα

)
for every α and β smaller

than cof(N ) . We can then find h : ω −→ ω such that D
m(n)
h(n) (r) ∈ U for every

n ∈ ω (note that h (n) < m (n)). We will now prove that {Dm(n)
h(n) (r) | n ∈ ω}

has no pseudointersection in U . Let Y be a pseudointersection. We first find
α < cof(N ) such that h (n) ∈ Xα

n for every n ∈ ω and then we find β < cof(N )

such that Y \ fβ (n) ⊆ Dm(n)
h(n) (r) for every n ∈ ω. Since r /∈ N

(
U , fβ , Xα

)
there

is A ∈ U such that A ∩ E
(
r,Xα, fβ

)
= ∅. Since Y ⊆∗ E

(
r,Xα, fβ

)
the result

follows.

7.2 There are no P -points in the Silver model

The Silver forcing (also known as Silver-Prikry forcing) consists of all partial
functions p ⊆ ω × 2 such that ω \ dom (p) is infinite. We say that p ≤ q in case
q ⊆ p. We will denote Silver forcing by PS. Note that the set of all conditions
p ∈ PS such that p−1 (1) is infinite forms an open dense set, so we will assume
all conditions have this property. It is well known that Silver forcing is proper.
By the Silver model we refer to the model obtained by iterating Silver forcing
ω2 times over a model of the Continuum Hypothesis. The following results is
well known:

Proposition 202 The equality cov(v0) = c holds in the Silver model.

Proof. Let G ⊆ PSω2 be a generic filter, we will prove that V [G] |= cov(v0) =
ω2. Let B = {Nβ | β ∈ ω1} be a family of doughnut null sets. By a reflection
argument, we can find α < ω2 such that for every doughnut d ∈ V [Gα] and
for every β < ω1 there is a subdoughnut d1 ∈ V [Gα] such that d1 ⊆ d and
d1 ∩Nβ = ∅. It is easy to see that the next generic real will avoid all of the Nβ .

It is well known that cof(N ) = ω1 holds in the Silver model (see [23]).

Corollary 203 There are no P -points in the Silver model.
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It is possible to modify the previous argumentin order to construct models
with no P -points where the continuum is arbitrarily large:

Proposition 204 Assume V is a model of GCH and κ > ω1 is a regular
cardinal. If ⊗κPS is the countable support product of κ many Silver forcings
and G ⊆ ⊗κPS is a generic filter, then V [G] |= “There are no P -points and
c = κ”.

The previous proposition does not seem to follow formally from the previous
results (it is not clear that cov(v0) is bigger than ω1 after adding many Silver
reals by the countable support product). Nevertheless, the proof is almost the
same as before. The reader may consult [15] for more details.
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Chapter 8

Open problems on MAD
families

In this small chapter, we gather some important open problems regarding MAD
families. This is not supposed to be an exhaustive list, it just reflects the per-
sonal interests of the author. Perhaps the most famous problem is the following:

Problem 205 (Roitman) Does d = ω1 imply a = ω1?

It is a result of Shelah that the inequality d < a is consistent (see [59] and
[9]). Furthermore, it is known that a = ω1 follows from the diamond principle
♦d (see [28]) which is slightly stronger than d = ω1. The previous question is
essentially equivalent to the following:

Problem 206 Can every MAD family be destroyed with a proper ωω-bounding
forcing?

As mentioned on the chapter of indestructibility, it is known that every MAD
family can be destroyed with a proper forcing that does not add dominating
reals. The following stronger version of Roitman’s question is also open:

Problem 207 (Brendle [8]) Does b = s = ω1 imply a = ω1?

It is a well known result of Shelah that ω1 = b < a is consistent (see [57]). A
natural attempt to try to solve the problem of Brendle would be to show under
CH that every MAD family can be extended to a Hurewicz ideal. Unfortunately,
in an unpublish work, Raghavan showed that this might not be the case:

Proposition 208 (Raghavan) If ♦ (S) holds for every stationary S ⊆ ω1 then
there is a MAD family that can not be extended to a Hurewicz ideal.
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The question of Brendle is essentially equivalent to the following question:
Assuming CH, can every MAD family be destroyed by a proper forcing that does
not add dominating or unsplit reals? Since every Shelah-Steprāns MAD family
has this property, we conjecture that this must be the case for every MAD family,
however as the result of Raghavan shows, this forcing can not be the Mathias
forcing of an ideal extending the respective MAD family.

Problem 209 (Laflamme [41]) Is there a Laflamme MAD family?

We already saw that the answer is positive under d = c (see also [48]). In an
unpublished work, Raghavan has found more conditions that imply the existence
of such families. Regarding the indestructibility, we have the following:

Problem 210 (Hrušák [29]) Is there a Sacks indestructible MAD family?

The answer is positive under b = c, cov(M) = c or ♦ (b) (see [14]). The
following variant of the previous question is also open:

Problem 211 (Hrušák [29]) Is there a Sacks indestructible MAD family of
size c in the Sacks model?

The similar problem for Cohen forcing is also open:

Problem 212 (Steprāns [65]) Is there a Cohen indestructible MAD family?

The answer is positive under b = c or ♦ (b). Since Cohen indestructibility
implies Sacks indestructibility, a positive answer to the previous question will
give a positive answer to the problem of Hrušák. Recall that the existence of a
Cohen indestructible MAD family is equivalent to the existence of a tight MAD
family. The existence of weakly tight MAD families is also open:

Problem 213 (Garcia Ferreira, Hrušák [32]) Is there a weakly tight MAD
family?

The answer is positive under s ≤ b (see [55]). In an unpublished work,
Raghavan has found more conditions that imply the existence of such families.
The notion of raving MAD families is one of the strongest notions considered
so far in the literature (and in this case, we know that they consistently do not
exist). However, we do not know the answer to the following problem:

Problem 214 Is it consistent to have a raving MAD family of size bigger than
ω1?



97

A MAD family A is called Canjar if M (I (A)) does not add a dominating
real (note that any Hurewicz MAD family is Canjar). It is easy to construct a
non Canjar MAD family, however, the following is still open:

Problem 215 Is there a Canjar MAD family?

It is known that the answer is positive in case d = c (see [16]). Regarding
the Katětov order on MAD families, we have the following:

Problem 216 (Garcia Ferreira, Hrušák [32]) Is there a Katětov-top MAD
family? (i.e. a MAD family Katětov above any other MAD family)

It was shown by Garćıa Ferreira and Hrušák that the answer is negative
under b = c (see [32]). In an unpublished work, the author proved that the an-
swer is also negative under s ≤ b and under some strenghtening of the principle
♦ (b) . Most likely, the previous question has a negative answer in ZFC. We can
then wonder about Katětov-maximality instead of Katětov-top:

Problem 217 (Garcia Ferreira, Hrušák [32]) Is there a Katětov maximal
MAD family?

In [1] the authors proved that the answer is positive under p = c (in contrast
with the previous question). In an unpublished work, the author proved the
following results:

Proposition 218

1. There is a Katětov maximal MAD family under b = c.

2. ♦ (d) implies that there is a Katětov maximal MAD family of size ω1.

3. There is no Katětov maximal MAD family of size ω1 in the Cohen model.

The relationship between a and some other cardinal invariants is still unclear,
we will mention more examples. The cardinal invariant aT is defined as the least
size of a maximal AD family consisting of finitely branching subtrees of of ωω.
It is known that d ≤ aT and that d < aT is consistent (see [27] and [64]). The
following question is still unknown:

Problem 219 (Hrušák) Is the inequality aT < a consistent?

Unfortunately, the template framework does not seem to help in this situa-
tion. This is also the case for the following question of Jerry Vaughan:



98 CHAPTER 8. OPEN PROBLEMS ON MAD FAMILIES

Problem 220 (Vaughan [67]) Is the inequality i < a consistent?

By forcing along a template (with the aid of a measurable cardinal) it can
be shown that u < a is consistent (see [11]). However, the following question
are still open:

Problem 221 (Shelah [58])

1. Does u = ω1 imply a = ω1?

2. Is the measurable cardinal necessary for the consistency of u < a?

The cardinal invariant hm is one of the largest Borel invariants considered
so far. However, the following is still unknown:

Problem 222 (Weinert) Is the inequality hm < a consistent?

In [56] Shelah constructed a model of i < u. In an unpublished work, the
author showed that a = hm < u holds in that model.

The cardinal invariant aclosed is defined as the smallest number of closed sets
such that its union is a MAD family. Clearly it is below a and it is uncountable
by a result of Mathias. Unlike the almost disjointness number, aclosed is known
to be incomparable to b (see [12] and [13]). It is known that p ≤ aclosed, but
the following is still unknown:

Problem 223 (Raghavan) Is the inequality aclosed < h consistent?

This is really a question about computing aclosed in the Mathias model.

As mentioned before, by a result of Shelah, it is known that the inequality
b < a is consistent. However, the following is still open:

Problem 224 (Brendle [10]) Does b = ω1 and ♣ imply a = ω1?

At last but not least, we would like to mention the problem of Erdös and
Shelah:

Problem 225 (Erdös, Shelah [19]) Is there a completely separable MAD fam-
ily?

The answer is positive (see [60]) under s ≤ a and under a < s plus some PCF
hypothesis (it is unknown if this hypothesis can even fail).
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[16] David Chodounský, Dusan Repovs, and Lyubomyr Zdomskyy. Mathias
forcing and combinatorial covering properties of filters. J. Symb. Log.,
80(4):1398–1410, 2015.

[17] Paul E. Cohen. P -points in random universes. Proc. Amer. Math. Soc.,
74(2):318–321, 1979.

[18] Carlos A. Di Prisco and James M. Henle. Doughnuts, floating ordinals,
square brackets, and ultraflitters. J. Symbolic Logic, 65(1):461–473, 2000.

[19] Paul Erd˝ os and Saharon Shelah. Separability properties of almost-disjoint
families of sets. Israel J. Math., 12:207–214, 1972.

[20] Osvaldo Guzman. There is a + ramsey mad family. preprint.

[21] Osvaldo Guzman. The onto mapping of sierpinski and nonmeager sets. The
Journal of Symbolic Logic, page 18, 2017.
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