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Resumen

Dada una colección de señales de audio, descubrir si una nueva señal de audio se

identifica con alguno de los miembros de la colección, este problema se vuelve interesante

cuando las señales a reconocer han sufrido deformaciones como ecualización, contaminación

por ruido, compresión con pérdidas, regrabación, etc. El problema se complica cuando se

deben identificar piezas musicales que han sido ejecutadas por diferentes artistas. Este

problema se conoce como Identificación automática de señales de audio.

Las Huellas de Audio también conocidas como Firmas de Audio reemplazan a las

señales de audio con fines de identificación. La huella mas robusta encontrada en la literatura

se basa en una medida de lo plano que resulta ser el espectro de la señal, esta huella forma

parte del estándar de MPEG-7 1. La huella mas citada en la literatura fué desarrollada por

Haitsma y Kalker en los laboratorios de Philips Research, esta huella se ha convertido en

una referencia obligada.

En esta tesis presentamos dos huellas de audio basadas en la entroṕıa de Sha-

nnon. La primera de ellas a la que denominamos TES (Time domain Entropy Signature)

es mas robusta que la huella de Haitsma y Kalker para canciones completas bajo todas las

deformaciones contempladas y se calcula tres veces mas rápido. Por otro lado MPEG-7 es

mas robusta que TES bajo ecualización, siendo ambas igualmente efectivas para las demás

deformaciones. A la segunda huella la denominamos MBSES (Multi Band Spectral Entropy

Signature). Con MBSES logramos el 100% de reconocimiento incluso haciendo mas sev-

eras las deformaciones (ninguna de las huellas anteriores logra el 100 % de reconocimiento

en estas condiciones). En una colección de 4000 canciones de géneros diversos, al utilizar

MPEG-7 solo se logró identificar al 63 % de las canciones contaminadas por ruido, al 79 %

de las re-grabadas y al 82 % de las filtradas. Con Haitsma-Kalker solo se pudo identificar al

40% de las ecualizadas, al 20 % de las contaminadas por ruido, al 10 % de las re-grabadas, al

70% de las filtradas y al 80 % de las comprimidas. Finalmente, en la identificación de difer-

entes interpretaciones de una misma pieza musical, usando MBSES se obtuvo una precisión

de 99.2 %, mientras que las firmas de audio de Haitsma-Kalker, MPEG-7 y TES lograron

una precisión de 97.6 %, 93.75 % y 88.3% respectivamente.

1MPEG-7 es un estandar desarrollado por MPEG (Moving Pictures Expert Group). El nombre formal
de MPEG-7 es “Interfaz para la descripción de contenidos multimedia”. Este estándar no solo describe el
contenido multimedia sino un cierto grado de interpretación o significado del mismo y en que forma esa
descripción puede ser transmitida o accedida por un dispositivo o computadora.



Abstract

Given a set of audio signals, find out if a new audio signal may be identified with

one of the members of the set, this problem becomes interesting when the signal to identify

has been deformed by equalization, noise contamination, lossy compression, re-recording,

etc.,. The problem is even more complex if the audio-signals to be identified are actually

musical pieces performed by different artists. This problem is known as Automatic Audio-

signal Identification.

Audio-Fingerprints also known as Audio-Signatures replace the audio signals for

identification purposes. The most robust Audio-fingerprint (AFP) found in the literature is

based in a measure of the flatness of the spectrum of the signal, this AFP is now part of

the standard of MPEG-7 2. The most cited AFP was developed by Haitsma and Kalker at

the Philips Research Labs, this AFP is a classic reference in the literature.

In this thesis report, two AFPs based on Shannon’s entropy are introduced. The

first one which we named TES (Time-domain Entropy Signature) is more robust than

Haitsma-Kalker’s AFP, it is very small and fast to compute since it is extracted directly

in time domain. TES is more robust than Haitsma-Kalker’s AFP for whole songs under

every deformation considered in this work, still TES is computed three times faster. The

AFP of MPEG-7 is as effective as TES for every deformation considered in this work

except for equalization where MPEG-7 was found to be more robust. For identifying audio-

signals using 5 seconds excerpts we introduce the Multi-Band Spectral Entropy Signature

(MBSES). With MBSES we achieved 100 % of precision rate for severe deformations (For

such levels of deformations none of the other AFPs gets 100 % of precision rate). In a

collection with 4000 songs of various gneres MPEG-7 could only identify 63 % of the songs

contaminated with noise, 79% of the re-recorded ones, and 82 % of the filtered ones. With

Haitsma-Kalker’s AFP only 40 % of the equalized songs could be identified, 20 % of the

songs contaminated by noise, 10 % of the re-recorded ones, 70 % of the filtered ones, and

80% of the lossy compressed ones. Finally, at identifying music performed by different

artists, MBSES obtained a precision rate of 99.2 %, while TES, Haitsma-Kalker’s AFP, and

the AFP of MPEG-7 obtained a precision rate of 88.3 %, 97.6 %, 93.75 % respectively.

2MPEG-7 is an standard developed by the Moving Pictures Expert Group (MPEG), formally named
“Multimedia contents description interface”, this is a standard for describing the multimedia content data
that supports some degree of interpretation of the information meaning, which can be passed onto, or
accessed by, a device or a computer.
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Chapter 1

Introduction

We are interested in the automatic identification of audio-signals such as songs

and commercial spots. We want to be able to identify songs even if they have been severely

degraded by equalization, noise contamination, lossy compression, re-recording, low-pass

filtering and scaling (i.e. volume variation). We want to be able to recognize a song using

a small excerpt of only a few seconds of it. In the literature, a excerpt of an audio-signal

is sometimes considered as an audio-signal that has suffered a deformation called cropping.

We are also interested in the ability to identify a song independently of the performing

artists, perhaps even using a different set of instruments, such a generalization of the audio

identification problem known as Polyphonic Audio Matching requires the use of aligning

techniques to deal with rhythm variations.

Just as a human being is born with fingerprints that are not supposed to have

significative changes throughout his/her life term. An Audio-Fingerprint (AFP) is a small

representation of an audio-signal that is not supposed to suffer major changes when the

audio-signal is slightly degraded or deformed. To understand why audio signals are degraded

in practically every real world application, consider the following examples:

In Querying by melody [Shalev-Shwartz02] a small excerpt of only a few seconds of a

song is used to identify it, the exact beginning of the excerpt is random for all practical

purposes and the probability of any frame to begin at exactly the same sample with a

frame of the whole song is approximately zero. This particular deformation in known

1



2 Chapter 1: Introduction

as time-shift and is considered unavoidable.

If a song is to be identified using a piece of audio captured with a microphone [Haits-

ma02], the noise in the environment will be recorded along with the music.

Songs stored in a lossy compressed format (i.e. MP3) are degraded songs, the lower

the rate bit, the more deformed they are.

An AFP should be robust to signal degradations, it should also be compact for all

storage or transmission purposes. In addition, an AFP should be determined with as little

computational effort as possible. Finally, an audio-fingerprinting system should be scalable,

meaning that it should be able to work with hundreds or thousands of songs with a good

performance both in time and precision.

1.1. Objective

It is the objective of this work to design a more robust audio signature than the

state-of-the-art audio signatures with respect to equalization, noise contamination, low- pass

filtering, lossy compression, time shifting, scaling, loudspeakers to microphone transmission

and cropping. The desired audio signature should allow for identification of audio-signals

using small excerpts of a few seconds. The audio signature should be adequate for matching

musical performances.

1.2. Thesis Statement

By tracking how the information content of an audio-signal evolves both in time

and frequency, a very robust audio-fingerprint can be extracted. Such an audio-fingerprint

would allow the identification of the corresponding audio-signal even if it has been severely

degraded.
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1.3. Motivation

We were motivated by the fact that the applications of a robust Audio-Fingerprint

cover a wide spectrum, some audio-fingerprinting applications are listed below:

1. Radio Broadcasts Monitoring. Sometimes to assess sponsorship effectiveness, others

for auditory purposes, people are actually being employed just to monitor a radio

station and keep track of the commercial or political spots that are being transmitted

by the radio station in turn. Many people are needed to monitor 24 hours a day all

the local radio and tv stations, such a job may be performed by computers equipped

with multi channel FM/TV cards [Shin02].

2. Duplicate detection. To discover if two audio files store the same song independently

of the bit rate and compression format is very useful for maintaining the integrity of

a multimedia database since it allow us to avoid duplicates.

3. Automatic labeling. Modern MP3 1 players provide the user with tools for organizing

songs, these tools rely in the contents of meta-data labels (e.g. Album’s title), when

these labels are empty they can be automatically filled up using audio-fingerprinting

techniques. [Mus02].

4. Querying by example. A song may be identified using a small excerpt of audio captured

for example by a cell phone as explained in [Haitsma02].

5. Filtering in p2p networks. When music is transmitted in a peer to peer network,

the audio-fingerprint is determined from the packets and searched for in a list of

copyrighted songs to prevent illegal copies [Shrestha04].

The most robust Audio-fingerprint (AFP) found in the literature is based in a

measure of the flatness of the spectrum of the signal, this AFP is now part of the standard

of MPEG-7 2. The most cited AFP was developed by Haitsma and Kalker at the Philips
1MP3 is shorthand for the standard MPEG-1 layer 3 developed by the Moving Pictures Expert Group

(MPEG) where the codec for audio compression is defined.
2MPEG-7 is an standard developed by the Moving Pictures Expert Group (MPEG), formally named

“Multimedia contents description interface”, this is a standard for describing the multimedia content data
that supports some degree of interpretation of the information meaning, which can be passed onto, or
accessed by, a device or a computer.
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Research Labs, this AFP is a classic reference in the literature. We believe Haitsma-Kalker’s

AFP has become an obligated reference.

In this work, two audio-fingerprints based on Shannon’s entropy are introduced.

The first one, the Time-domain Entropy Signature (TES) is very small and fast to compute

since it is extracted directly in time domain. TES turned out to be more robust than

Haitsma-Kalker’s AFP. TES however, did not work well for the specific deformation of

equalization, this fact motivated us to design the Multi-Band Spectral Entropy Signature

(MBSES). MBSES turned out to be more robust than Haitsma-Kalker’s AFP and more

robust than the state-of-the-art AFP of MPEG-7 as well. The superior robustness of our

MBSES is more evident under severe degradations such as noise contamination with a Signal

to Noise Ratio (SNR) of approximately 3.5 dB.

The experiments were carried out using a collection of 4000 songs of almost every

genre. Using MBSES we managed to identify 100% of the songs independently of the kind

of degradation. Using TES we identified 100 % of the songs deformed by low-pass filtering,

lossy compression and scaling, unfortunately we could only identify 53.7 % of the equalized

songs, 63 % of the noisy songs, and 91 % of the re-recorded ones. With the AFP of MPEG-7

100 % of the equalized, lossy compressed or scaled songs were identified, but only 55.3 % of

the noisy songs, 80 % of the re-recorded ones and 72.1% of the filtered ones.

In the experiments where 5 seconds excerpts were used as queries, the robustness of

MBSES was confirmed since 100 % of the songs were identified independently on the kind of

degradation. With the audio-fingerprint of MPEG-7 100 % of the lossy-compressed, scaled,

time-shifted, and equalized songs were identified. However only 63 % of the noisy songs, 79 %

of the re-recorded and 82 % of the filtered ones could be identified. Using Haitsma-Kalker’s

AFP, 100 % of the time-shifted songs were identified but only 40 % of the equalized, 20 % of

the noisy songs, 10% of the re-recorded, 70 % of the filtered, 90 % of the Scaled, and 80 %

of the compressed were identified.

Finally, the experiments on matching musical performances reported a precision

rate of 99.2% when MBSES was used in combination with the algorithm of the Longest

Common Subsequence (LCS) as the alignment technique. With Haitsma-Kalker’s audio-

fingerprint a precision rate of 97.6% was reported. with the audio-fingerprint of MPEG-7
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a precision rate of 93.75 % was obtained. TES achieved a precision rate of 88.3 %.

The rest of this work is organized as follows: In the next chapter, a review of

techniques for feature extraction and audio modeling is given. Extraction of the AFP of

MPEG-7 and Haitsma-Kalker’s AFP is given in detail. In the same chapter (Chapter 2) there

is a survey on the problem of the matching of musical performances and some preliminaries

on aligning techniques are discussed. In chapter 3 our new entropy based signatures are

defined. In chapter 4 the experiments are detailed and the results are reported. Finally in

chapter 5 the results are discussed and future work is proposed.



Chapter 2

State of the Art

Audio-Fingerprints are used to asses the perceptual similarity between audio-

signals. Ideally, an AFP should be an invariant of the audio signal, an intrinsic characteristic

found in it even if it has suffered severe degradations as long as it is still recognizable.

2.1. Characteristics of an AFP

For an AFP to be successful, there are several issues to consider, the most impor-

tant of them are listed below:

1. Robustness. Audio signals may be subject to a variety of signal degradations such

as noise contamination, lossy compression, loudspeaker to microphone transmission

(LsMic), low-pass filtering simulating narrow band telephone line transmission, equa-

lization, cropping, time shifting and loudness variation. The AFP of a song should

not be too different from the AFP of a degraded version of the same song.

2. Compactness. Some applications need to store the AFP of every song from a possible

large collection; other applications need to transmit the AFP over the internet, these

facts make compactness a very desirable characteristic of an AFP.

3. Granularity. Some Music Information Retrieval applications require the ability to

identify a song with a small excerpt of it. For example, in querying by humming we do

7
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not want the user having to hum the entire song he/she is searching for. Granularity

is also known as robustness to cropping.

4. Time complexity. The AFP should be determined with as little computational effort

as possible. The AFP of every song from the collection has to be determined in

a reasonable time. Real time systems have to extract the AFP of a song on line,

furthermore, in Radio Broadcasts Monitoring it is desirable to be able to compute the

AFP of several audio channels simultaneously.

5. Scalability. It is defined as the ability of an audio fingerprinting system to operate

with a large collection of songs, this feature is conditioned by a low time complexity,

compact AFP as well as a good indexing technique.

2.2. Audio-Fingerprint Survey

The most important aspect of an audio-fingerprint is the selection of the perceptual

feature it is based on. The perceptual features considered to be the more relevant for audio-

fingerprinting purposes in the literature are:

Loudness. Loudness is a Psycho-Acoustic measure of how loud or soft a sound is really

heard. Loudness can be measured by judging a ratio of two sensations produced by

two given stimuli. For loudness evaluations, the simplest ratio is doubled and halved,

the subject searches for the level increment that leads to a sensation that is twice as

loud as that of the starting level. The average indicates that the level of a 1-KHz tone

has to be increase by 10 dB in order to enlarge the sensation of loudness by a factor

of two [Zwicker90].

Joint Acoustic and Modulation Frequency (JAMF). Sukitatton [Sukittanon02] claimed

that incorporating modulation spectral features into signal classification provided

some improvement over systems that used only short-term features. The modula-

tion spectrum of an audio signal P (η, ω) not only contains short-term information

about the signals, but also provides long-term information representing patterns of

time variation. η represents the Modulation frequency and ω represents the Acoustic
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or Fourier frequency. To determine P (η, ω), first a joint time-frequency representa-

tion of the signal (i.e. a spectrogram) P (t, ω) is estimated (t represents time), then,

a Fourier transform is applied along the time dimension of the spectrogram, yielding

an estimate of the modulation spectrum also called Join Acoustic and Modulation

Frequency representation of the signal [Sukittanon05].

Mel-Frequency Spectral Coefficients (MFCC). These coefficients are among the most

preferred features for building audio-fingerprints. To determine the Mel-Frequency

Spectral Coefficients of a windowed short segment of an audio signal, first the Discrete

Fourier Transfrom (DFT) is computed. From the spectrum, the so-called Mel filter

bank is applied, this filter bank consists of M (frequently 30) overlapped triangular

filters with central frequencies positioned logarithmically (on the Mel scale). From the

resulting list of M log-amplitudes the Discrete Cosine Transform is determined, as if

this M values made a short signal. The Mel-Frequency Spectral Coefficients are the

amplitudes of the resulting spectrum [Sigurdsson06], [Logan00].

Spectral Crest Factor (SCF). The SCF is the ratio of the largest magnitude and the

mean magnitude from the spectral coefficients of a band. This value is always greater

or equal than 1. If it is near 1, then the signal is surely noisy. If the SCF is far

from 1 then the signal has at least an important spectral component (an Harmonic),

suggesting the signal is more tone-like. This feature belong to a family of flatness

oriented spectral features [Herre01].

Spectral Flatness Measure (SFM). This state-of-the-art feature will be widely discussed

in Subsection 2.4.1.

Spectral Sub-band Centroids (SSC). Also called Spectral Sub-band moments. The fre-

quency centroid has been found to be related to the human sensation of the brightness

of a sound [Seo05]. The subband moment of order v at the i-th subband of an audio

spectrum P [k, m] is defined as in Equation 2.1.

Mv
i [m] =

CBi+1∑
k=CBi+1

kvP [k,m] (2.1)
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where k, m and CBi denote the frequency bin, the frame index, and the frequency

boundary of the i-th critical band respectively.

The SSC for band i and frame m (Ci[m]) is the first-order normalized moment given

as in Equation (2.2) [Sungwoong07].

Ci[m] =
M1

i [m]
M0

i [m]
(2.2)

The sign of Energy’s second derivative. Also called “String Hash” by Haitsma and

Kalker [Haitsma02], [Sinitsyn06]. This feature will be widely discussed in Subsection

2.4.2.

Chroma Values.

Two tones separated by an integral number of octaves share the same value of chro-

ma. This is an intuitive concept for musicians, since chroma is closely related to the

musical-theoretic concept of pitch class. Even thought Chroma values have been used

for audio-fingerprinting [Bartsch05], this feature is mostly used for the estimation

of musical keys from the audio-signal [Pauws04], [VandePar06]. A chromagram re-

presents the likelihood of the chroma occurrences in the audio-signal. To determine a

chromagram, the tonal (sinusoidal) components need to be extracted. The initial tonal

component selection is based on a peak-picking method Fourier domain that selects

local maxima. The chromagram of an audio-signal is defined as a restructuring of the

spectrum of the audio-signal in which the frequencies are mapped onto a limited set

of 12 chroma values in a many-to-one fashion. This is done by assigning frequencies to

the “bin” that represents the ideal chroma value. The “bins” correspond to the twelve

chromas in an octave.

Seo [Seo05] shows how the Normalized SSC are more robust than the Mel-frequency

Cepstral Coefficients (MFCC) and Tonality [Hellman72] for lossy compression and equali-

zation. Sukittanon [Sukittanon02] reported that the Normalized JAMF has superior robust-

ness than a “spectral estimate” for compression and equalization. Herre [Herre01] reported

that SFM has superior robustness than Loudness and SCF as well. SFM was then adopted
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by MPEG-7 for audio fingerprinting purposes [Group01]. Sert [Sert06] reported that SFM

was more robust than MFCC. Kurth [Kurth03] found that the sign of the time derivative

of the signal was robust to lossy compression and low-pass filtering.

2.3. Audio-Fingerprint Extraction

The extraction of the audio-fingerprint of an audio-signal is performed by Front-

End and the audio modeling modules as depicted in Figure 2.1. In the Front-end module, the

perceptual features of the audio-signal are extracted. Since an audio-fingerprint is intended

to represent the audio-signal, the features delivered by the front-end are taken by the audio-

modeling module with the purpose of building an AFP that is adequate for Information

Retrieval purposes.

FRONT-END

Pre-processing

Framming & Overlap

Transform

Feature extraction

Post-processing

AUDIO
MODELING

Audio signal

Audio Fingerprint

Mono Conversion
Sampling rate
Normalization
Band filteringFrame size=10-500ms

Overlap=50-98%
Window type DFT

DWT
MFT
DCT

Energy
MFCC
Spectral Flatness
Chroma values
Modulation Frequency Normalization

Differentiation
Quantization

Codebooks
Trajectories
GMM
HMM
Statistics
Strings

Figure 2.1: Audio-Fingerprint Extraction Framework [Cano02]
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2.3.1. The Front-End Module

The audio signal is normally processed on a frame by frame basis. A frame of signal

is a short segment of audio to which a “window” is applied. The Parzen window the Hann

window and the Hamming window are good examples [Rabiner78]. Windows emphasize the

signal near the middle of the frame and fade the signal near the end points of the frame.

When no window is applied it is said that the rectangular window is being used.

Stereo audio signals are normally converted to mono-aural and an amplitude nor-

malization is frequently used to make the AFP robust to changes in volume. The frame

should contain at least two periods of the lowest frequency component of the signal that it

is being considered, therefore the frame is never shorter than 10ms. On the other hand, the

frame should not be longer than 500 ms in order to consider the signal as stationary.

A large overlap is normally used to ensure a slow variation of the extracted fea-

tures, the exception of the case is the audio-fingerprint of MPEG-7 which is determined

without overlapping. The reason for using an overlap of zero is that the AFP of MPEG-7

is determined using the average of the features every 32 frames, so there is no need for

a slow variation of the feature vectors. The smaller the overlap the fewer the number of

computations needed to determine the AFP.

There actually are systems that extract signal features directly in time domain as

in [Kurth03]. However, most systems extract signal features in the frequency domain using

a variety of linear transforms such as the Discrete Cosine Transform, the Discrete Fourier

Transform, the Modulation Frequency Transform [Sukittanon02] and some Discrete Wavelet

Transforms like Haar’s and Walsh-Hadamard’s [Subramanya99]. Once in the frequency do-

main, there is a variety of features that have been used as the relevant characteristic of

audio signal as described in the previous paragraph (Energy, MFCC, SFM, etc.,). Some

AFP systems perform some post-processing of the features, for example by time-deriving

the features, the information of how fast such features change over time would be available.

2.3.2. The Audio Modeling Module

The Audio signal is modeled in a way that best serves the purpose of the application

for which the audio-fingerprint has been designed. Some existing audio models are:
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Sequences of Feature Vectors. This kind of AFPs are also known as trajectories or

traces. The features extracted at equally spaced periods of time are simply stored in

a list of vectors or in a table, one row per frame. An example of this kind of AFP is

the binary vector sequence described in [Haitsma02].

Statistics. Instead of storing every feature vector, only statistical data over the set of

feature vectors are stored. The audio-fingerprint designed for MPEG-7 computes the

means, variances, minima and maxima every 32 frames. The minima and maxima are

used for delimiting the search and the means and variances are used for the actual

search using some distance measure such as the Mahalanobis’ distance [Hellmuth01].

Codebooks. The sequence of feature vectors extracted from a song is replaced by a

small number of representative code vectors stored in a codebook, which from then on

represents the song. This model disregards the temporal evolution of the audio signal

[Allamanche02].

Strings. Trajectories can be converted into long strings of integers using vector quan-

tization. This model allows the treatment of songs as texts that may be compared

using flexible string matching techniques [Guo04].

Single vectors. These are perhaps the smallest AFPs. They are usually built with

average features extracted from the whole song, for example, an AFP may be a vec-

tor containing the beats per minute, the average zero crossing rate and the average

spectrum [Mus02].

Hidden Markov Models (HMM). These finite state machines model non stationary

stochastic processes (e.g. songs). For each song of the collection a HMM is built. The

features extracted from the test song are considered to be a sequence of acoustic events

and then used as the input for the candidate’s HMM. The candidate’s HMM in turn

reports the probability that the test song matches the candidate song, this probability

is used as a proximity measure for choosing the right song [Batlle04a],[Batlle04b].

Gaussian Mixture Models (GMM). An audio-signal is modeled by a probability density

function (PDF). If we assume that such PDF is the result of a combination of gaussian
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components or mixtures, then the parameters (i.e. mean and variance) of every com-

ponent have to be estimated. The estimation of the parameters is made by maximizing

the probability of the audio frames actually present in the audio signal. For this maxi-

mization the Baum-Welch or Expectation-Maximization (EM) Algorithm [Bilmes98]

is normally used. In [Ramalingam05] an audio clip modeled by a GMM made out of

16 mixtures is searched in a database of GMMs, the GMM that gives the highest like-

lihood is assumed as a match. In [Lin06] it was assumed that all the audio-segments

shared a common set of gaussian components and only the weights of those common

components were estimated, they called it Common Components GMM or CCGMM.

The Kullback-Leibler distance (also known as joint entropy) was used in [Lin06] to

measure the dissimilarity between two probabilistic models (i.e. Audio-fingerprints).

2.4. Two Successful Audio-Fingerprints

Several years were needed for the definition of the standard that will be used

by MPEG-7 for audio-fingerprinting purposes. It is also true that the audio-fingerprint

developed in the Philip’s Research Labs has been the classical reference for robust audio-

fingerprinting for years, it is known as Haitsma-Kalker’s Hash String. In this section both

AFPs will be detailed.

2.4.1. The Standard for Audio-Fingerprinting in MPEG-7

In Figure 2.2 a block diagram of the process for the determination of MPEG-7’s

AFP of an audio signal is depicted. The AFP of MPEG-7 is a configurable audio signature

with variable resolution, where the maximum number of bands allowed is 24. The maximum

resolution allowed by the MPEG-7 standard is 1/4 of an octave. The range of frequencies to

take into consideration is also configurable, the widest range allowed covers the frequencies

between 250 Hz and 16 KHz. There is always an overlap of 5 percent between bands. The

frame size is fixed at 30 milliseconds with no overlapping between frames. The Hann window

[Stanley84] is applied to every frame. Every 32 frames the minimum, maximum, mean and

variance of the SFM values are determined for each band. Therefore, a vector is added to
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the AFP every 0.96 seconds.

Audio signal

Audio Fingerprint

Frame size=30ms
No overlap

Hann Window

Mono Conversion

DFT

Spectral Flatness computation

Band Division

Statistics

FEATURE EXTRACTION

AFP MODELLING

5% overlap between bands
Variable resolution in octaves

Min, Max, Mean and Variance
every 32 frames (0.96 seconds)

Figure 2.2: Block diagram for the determination of the AFP of MPEG-7 from an audio
signal
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The SFM is a feature related to the tonality aspect of the audio signal. The SFM is

defined as the ratio of the geometric mean and the arithmetic mean of the power spectrum

coefficients. The SFM for band b with bandwidth nb is computed with Formula (2.3).

SFMb =

[ ∏nb
i=1 c(i)

] 1
nb

1
nb

∑nb
i=1 c(i)

(2.3)

where c is the vector where the power spectrum coefficients are stored.

The SFM reports values between zero and one, values near one indicate that the

spectrum is flat and the audio is noisy, while values near zero show that the audio signal is

more tone-like.

The values determined by the last block depicted in Figure 2.2 are stored in XML

files. Suppose a small AFP of an audio signal of only two seconds was determined, this

particular AFP was determined using only 4 bands (i.e. vector size) in the range of 500Hz

to 1000Hz, there are eight values for each row corresponding to 2 vectors (i.e. elementNum).

One row stores the min values, another row stores the max values, another row is for the

means and another for the variances. The XML file would look as follows:

<AudioDescriptor xsi:type="AudioSpectrumFlatnessType" loEdge="500"

hiEdge="1000">

<SeriesOfVector vectorSize="4" totalSampleNum="128">

<Scaling ratio="64" elementNum="2">

<Min dim="2 4"> 0.3 0.1 0.4 0.3 0.2 0.3 0.3 0.2 </Min>

<Max dim="2 4"> 0.8 0.5 0.7 0.6 0.5 0.6 0.6 0.8 </Max>

<Mean dim="2 4"> 0.6 0.4 0.5 0.4 0.4 0.5 0.4 0.4 </Mean>

<Variance dim="2 4"> 0.1 0.11 0.06 0.08 0.07 0.1 0.09 0.07 </Variance>

</SeriesOfVector>

</AudioDescriptor>

The minima and maxima are useful for delimiting the search in the collection and

the means and variances may be used to estimate how close AFP x and AFP y are, using

the Mahalanobis distance for that matter as in Equation (2.4).

DM (x, y) =

√√√√NumBands∑
i=1

(μxi − μyi)2

σxi + σyi

(2.4)

To increase a frequency in one octave is equivalent to multiply it by two. Increasing

a frequency in three octaves is equivalent to multiplying it three times by two (i.e. 23 ).
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Increasing the frequency by 1
4 of an octave is done by multiplying it by 20.25 . Finally, the

frequency that is located m fourths of an octave above f is 20.25mf . The smallest frequency

allowed by the standard of MPEG-7 to build AFPs is 250Hz, so the 24 bands used in the

highest resolution allowed (i.e. a forth of a octave) are listed on Table 2.1 with and without

the 5 percent overlapping between bands.

Table 2.1: Bands for the maximum resolution of MPEG-7’s AFP

Band Without overlapping Overlapped
1 250.00 - 297.30 Hz 237.50 - 312.17 Hz
2 297.30 - 353.55 Hz 282.44 - 371.23 Hz
3 353.55 - 420.45 Hz 335.88 - 441.47 Hz
4 420.45 - 500.00 Hz 399.43 - 525.00 Hz
5 500.00 - 594.60 Hz 475.00 - 624.33 Hz
6 594.60 - 707.11 Hz 564.87 - 742.46 Hz
7 707.11 - 840.90 Hz 671.75 - 882.94 Hz
8 840.90 - 1000.00 Hz 798.85 - 1050.00 Hz
9 1000.00 - 1189.21 Hz 950.00 - 1248.67 Hz
10 1189.21 - 1414.21 Hz 1129.75 - 1484.92 Hz
11 1414.21 - 1681.79 Hz 1343.50 - 1765.88 Hz
12 1681.79 - 2000.00 Hz 1597.70 - 2100.00 Hz
13 2000.00 - 2378.41 Hz 1900.00 - 2497.33 Hz
14 2378.41 - 2828.43 Hz 2259.49 - 2969.85 Hz
15 2828.43 - 3363.59 Hz 2687.01 - 3531.76 Hz
16 3363.59 - 4000.00 Hz 3195.41 - 4200.00 Hz
17 4000.00 - 4756.83 Hz 3800.00 - 4994.67 Hz
18 4756.83 - 5656.85 Hz 4518.99 - 5939.70 Hz
19 5656.85 - 6727.17 Hz 5374.01 - 7063.53 Hz
20 6727.17 - 8000.00 Hz 6390.81 - 8400.00 Hz
21 8000.00 - 9513.66 Hz 7600.00 - 9989.34 Hz
22 9513.66 - 11313.71 Hz 9037.97 - 11879.39 Hz
23 11313.71 - 13454.34 Hz 10748.02 - 14127.06 Hz
24 13454.34 - 16000.00 Hz 12781.63 - 16800.00 Hz

2.4.2. Haitsma-Kalker’s AFP

Haitsma-Kalker’s AFP was developed in the Philips research Labs, their goal was

to design an audio-fingerprint for identifying songs as captured and transmitted by a cell

phone using only three seconds of audio signal for that purpose (i.e. Granularity=3 sec).



18 Chapter 2: State of the Art

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

5

10

15

20

25

Hertz

Ba
rk

s

Figure 2.3: Bark scale

To extract Haitsma-Kalker’s AFP the audio-signal is processed in frames of 0.37

seconds with an overlap of 31/32, therefore a frame is processed every 11.6 milliseconds (i.e.

The Frame Rate is 86.2 frames per second). To each frame the Hann window is applied and

then the Discrete Fourier Transform is determined. The spectral coefficients are grouped in

33 bands ranging from 300 Hz to 2000 Hz uniformly distributed in the Bark scale.

To convert any frequency in Hertz to Barks units, Equation (2.5) may be used. In

Figure 2.3 the correspondence between Barks and Hertz is shown. Some of the 33 bands

used by Haitsma and Kalker are shown on Table 2.2.

z = 13tan−1

(
0.76f

1000

)
+ 3.5tan−1

(
f

7500

)2

(2.5)

where f is the frequency in Hertz and z is the frequency in Barks

For each band the Energy is computed and from these 33 energy values, the diffe-

rences between each consecutive band are determined resulting in a vector with 32 values for

each frame. Each of the 32 values corresponding to a frame are compared with the corres-

ponding value of the next frame, a single bit indicates which one is greater. This indicator

bit is added to the “Hash string”. The Hash string is a binary matrix conformed by 256
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Table 2.2: Bands used for Haitsma-Kalker’s AFP

Band Hertz Barks
1 200 - 243 1.9635 - 2.3768
2 243 - 330 2.3768 - 3.2034
3 330 - 420 3.2034 - 4.0300
4 420 - 514 4.0300 - 4.8566
: : :

32 2612 - 2798 14.7758 - 15.1891
33 2798 - 3000 15.1891 - 15.6024

binary vectors of 32 bits each. The Hash String represents 3 seconds of audio [Haitsma02].

Figure 2.4 shows the extraction framework of Haitsma-Kalker’s AFP.

Figure 2.4: Extraction framework of Haitsma-Kalker’s AFP
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2.5. Music Information Retrieval

Once a fingerprint has been determined from an audio signal, it may be searched

in the database in order to retrieve the meta-data associated with it. Figure 2.5 shows

a diagram to illustrate the generic process of audio identification. A metric distance, an

indexing technique and some criteria for the search are embedded in the searching process.

Figure 2.5: Audio Identification framework [Cano02]
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2.6. Matching Musical Performances

Aligning performances of classical musical masterpieces is a problem that is common-

ly addressed as Polyphonic Audio Matching. Several applications related to Music Infor-

mation Retrieval rely in robust and efficient solutions to this problem. Polyphonic Score

retrieval [Pickens02] is one of such applications, the query might be specified by choosing

an audio file containing a performance of a musical masterpiece whose score is required,

the score is probably linked to another performance of the same masterpiece on the server’s

database. For example, suppose you need the score of Mozart’s Symphony 41 and you make

a query using a performance of this masterpiece by the London Philharmonic Orchestra,

now suppose this particular score is linked in the server’s database to another performance

of this masterpiece by the Berliner Philharmonische Orchester, then the query server would

eventually have to align these two musical performances in order to answer the request. The

kind of AFPs that stores how the relevant features of the audio signal evolve in time are

what would actually be aligned, more precisely, the AFP of the query’s musical performance

and those AFPs from the performances included in the database would have to be aligned.

Another application to the Matching performances problem arise in radio broadcast

monitoring where a performance of some song could be used to monitor occurrences of other

renditions of the same song. To enable such application, we will make use of flexible string

matching techniques for aligning musical performances, such techniques would allow for

multiple songs to be monitored simultaneously. Efficient methods such as Kimmo-Navarro’s

algorithm based on filtering and hierarchical verification [Fredriksson04] might be used.

Music is considered to be monophonic when it is produced by a single instrument

and has at most one note being played at any given time, this restriction enables accurate

pitch class estimation techniques. Pairs of pitch and duration values were used in [Kosugi00]

for the Querying by Humming problem.

Aligning performances of polyphonic music was addressed in [Cano99] for the

problem known as Score-Performance following, aligning a performance with a score is

used for automatic accompaniment and automatic adding of special effects using meta-data

included in the score. Energy, Delta Energy, Zero crossings, Fundamental Energy, and Delta

Fundamental Energy were chosen as the relevant features of polyphonic audio while Hidden
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Markov Models (HMM) were preferred to align a performance and a score in [Cano99].

Polyphonic Audio Matching was also addressed in [Hu03] where Chromagrams

were extracted from the audio signal and Dynamic Time Warping was used to align mu-

sical performances with scores which were also converted to chromagrams. Chromagrams

are sequences of chroma vectors, where each chroma vector contains 12 elements correspon-

ding to the same number of chromas in an octave (i.e. C, C#, D, D#, etc.). Under this

formulation, two tones separated by an integral number of octaves share the same value of

chroma. To compute chroma values, the frequencies are assigned to bins that represent pitch

classes, then the chroma value is computed simply by taking the arithmetic mean of the

magnitudes of all the similarly-classified bins [Bartsch05]. Hu et al compared the use of the

chromas with the use of pitch histograms, Mel Frequencies Cepstral Coefficients (MFCC)

and Normalized MFCC get better results with chromas [Hu03].

Dixon and Widmer claimed pitch recognition to be notoriously unreliable for poly-

phonic music and so preferred to use a low level spectral representation of the audio data.

For the alignment, Dixon and Widmer implemented a linear time Dynamic Time Warping

(DTW) by estimating the forward path to restrict the search of the optimal warping path

[Dixon05b]. The forward path estimation is based on the on-line time warped algorithm

developed by Dixon for live tracking performances applications [Dixon05a].

In the Querying by melody problem, only a piece of the performance (i.e. a melody)

is available. In [Shalev-Shwartz02] the melody is taken as a chorus and searched for.

2.7. Aligning Techniques

To compare musical performances an aligning technique has to be used. The classi-

cal approach for aligning time series is the Dynamic Time Warping algorithm. As opposed

to the Hidden Markov Model (HMM) approach, DTW requires no training nor choosing

a topology (i.e. number of states and how they should be connected), this is specially

advantageous since the dictionary (i.e. collection of songs) can be quite dynamic. Flexi-

ble String Matching techniques were developed for matching DNA sequences [Gusfield97],

finding strings occurrences in texts allowing errors [Navarro02] or finding computer viruses.
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As DTW, flexible string matching requires no training, but unlike DTW it easily allows

for monitoring occurrences of musical performances in an audio stream (for radio broad-

cast monitoring) as will be explained below. Methods for the efficient implementation of

flexible string matching methods have already been designed either using a finite automata

or by using bit parallelism [Navarro02]. Algorithms for Fast Multiple Approximate String

Matching have also been developed [Fredriksson04]. Let us first give a short introduction

to the classical DTW algorithm.

2.7.1. Dynamic Time Warping (DTW)

The task of aligning a couple of musical performances R(n) and T (m) of lengths

N and M respectively is equivalent to the common task with time series of comparing one

sequence with another. Figure 2.6 shows two time series that are being compared. In order

to establish a similarity measure between them, the time axis of a sequence (or both) needs

to be “warped”. Dynamic time warping (DTW), is the classic technique for accomplishing

this.

Figure 2.6: Aligning Time Series

At aligning musical performances R(n) and T (m), DTW solves the problem of

finding a warping function m = w(n) that maps indices n and m so that a time registration

between the time series is obtained. Function w is subject to the boundary conditions

w(0) = 0 and w(N) = M and it is also subject to local restrictions. An example of such

local restriction says that if the optimal warping function goes through point (n,m) it must

go through either (n−1,m−1), (n,m−1) or (n−1,m), this particular restriction is depicted

in Figure 2.7. A penalization of 2 is charged when choosing (n − 1,m − 1), a penalization
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of 1 if either (n,m − 1) or (n − 1,m) is chosen. This way, the three possible paths from

(n− 1,m− 1) to (n,m) (i.e. first to (n, m− 1) and then (n,m) ) will all have the same cost

of 2. Other local restrictions defined by Sakoe and Chiba [Sakoe78] can be used.

�1

�1
�

��
�

�
2

Figure 2.7: Symmetric local restriction of first order

Let dR(n),T (m) be the distance between frame n of performance R and frame m

of performance T , then the optimal warping function between R and T is defined by the

minimum accumulated distance Dn,m as in Equation (2.6).

Dn,m =
n∑

p=1

dR(p),T (w(p)) (2.6)

The DTW distance between performance R of size N and performance T of size

M is DN,M and it may be computed using the recurrence defined in Equations (2.7), (2.8),

(2.9) and (2.10). This recurrence use the local restriction shown in Figure 2.7. Based on this

recurrence DN,M may be obtained using dynamic programming for that purpose.

D0,0 = 0 (2.7)

Di,0 =
i∑

k=0

dR(k),T (0) (2.8)

D0,j =
j∑

k=0

dR(0),T (k) (2.9)

Di,j = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Di−1,j−1 + 2dR(i),T (j)

Di−1,j + dR(i),T (j)

Di,j−1 + dR(i),T (j)

(2.10)
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Figure 2.8 shows the warping path as found by DTW corresponding to the align-

ment of the time series shown on Figure 2.6.

Figure 2.8: The optimal warping path
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We will now give a short introduction to flexible string matching techniques, be-

ginning with the most general string edit distance also called the Levenshtein distance.

2.7.2. Levenshtein Distance

The string edit distance between two strings is defined as the number of opera-

tions needed to convert one of them into the other. The considered operations are insertions,

deletions and substitutions. For some specific problems transpositions are also considered

as valid operations. However, we do not believe they are useful in the problem of matching

musical performances. A different cost may be assigned to each operation. If only substi-

tutions are allowed and the cost is 1.0, the distance becomes the Hamming distance. If

only insertions and deletions are allowed and the cost of both operations is 1.0, the Longest

common subsequence (LCS) distance is obtained [Navarro97]. Finally if only insertions are

allowed at the cost of 1.0, the asymmetric Episode distance is obtained [Navarro97]. The

episode distance is used when all the symbols are expected to be found in both strings, in

such case the episode distance E(x, y) is simply |y| − |x|, otherwise it is defined to be ∞.

We will not use this distance due to its lack of symmetry.

To compute the Levenshtein distance L between string t of length N and string

p of length M , the recurrence defined by Equations (2.11),(2.12) and (2.13) is used. Note

that the same cost of 1.0 has been assigned to all considered operations (insertion,deletions

and substitutions).

Li,0 = i ∀ i = 0..N − 1 (2.11)

L0,j = j ∀ j = 0..M − 1 (2.12)

Li,j =

⎧⎨
⎩ Li−1,j−1 ti = pj

min[Li−1,j−1, Li,j−1, Li−1,j ] + 1 ti �= pj

j = 1..M − 1 ; i = 1..N − 1 (2.13)

The classical approach for computing the Levenshtein distance relies on Dynamic

Programming. For example, to compute the Levenshtein distance between String “hello”
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and String “yellow” of lengths 5 and 6 respectively the dynamic programming matrix L of

size 6 × 7 has to be filled up as follows:

Row zero and Column zero of Matrix L are first filled up with incremental se-

quences according to Equations (2.11) and (2.12). Proceeding to L1,1, since the first charac-

ter of String “hello” (i.e. character ’h’) is different from the first character of String “yellow”

(i.e. character ’y’), then L1,1 will hold minimum among [L0,0, L1,0, L0,1] plus 1 (i.e. the cost

of a edit operation) as in Equation (2.14).

L1,1 = min[L0,0, L1,0, L0,1] + 1 = min[0, 1, 1] + 1 = 0 + 1 = 1 (2.14)

The first character of String “hello” (i.e. character ’h’) is different from the second

character of String “yellow” (i.e. character ’e’). Therefore L1,2 will hold minimum among

[L0,1, L1,1, L0,2] plus 1 as in Equation (2.15).

L1,2 = min[L0,1, L1,1, L0,2] + 1 = min[1, 1, 2] + 1 = 1 + 1 = 2 (2.15)

The second character of String “hello” (i.e. character ’e’) is different from the first

character of String “yellow” (i.e. character ’y’). Therefore L2,1 = min[L1,0, L2,0, L1,1] + 1 or

L2,1 = min[1, 2, 1] + 1 = 1 + 1 = 2.

The second character of String “hello” (i.e. character ’e’) is the same as the second

character of String “yellow” (i.e. character ’e’). Therefore in Location (2,2) the accumulated

edit distance stored in Location (1,1) will be copied L2,2 = L1,1 = 1. The rest of Matrix L

has to be filled up, and when this process is finished, Location (5, 6) of matrix L will hold

the accumulated distance of 2 (See Matrix (2.16)). In conclusion, two edit operations are

needed to transform String “yellow” into String “hello”. For example, replace “h” in “hello”

by a “y” and add a “w” at the end.
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y e l l o w

0 1 2 3 4 5 6

h 1 1 2 3 4 5 6

e 2 2 1 2 3 4 5

l 3 3 2 1 2 3 4

l 4 4 3 2 1 2 3

o 5 5 4 3 2 1 2

(2.16)

There is no need for keeping the whole dynamic programming matrix in memory.

The Levenshtein distance may be computed using a single column for that matter. To

compute the Levenshtein distance between string t of length N and string p of length M

using column L, initialize it as L0
i = i for i = 0..N − 1 and then update it using Equation

(2.17).

Lj
i =

⎧⎨
⎩ Lj−1

i−1 ∀ ti = pj

min[Lj−1
i−1 , Lj

i−1, L
j−1
i ] + 1 ∀ ti �= pj

j = 1..M − 1 ; i = 0..N − 1 (2.17)

where Lj stands for L once j characters of string p have been read. The Levenshtein distance

between String t and String p will be in LM
N−1.

For the purpose of finding occurrences of a string in a text we must allow a match

to occur at any time. To achieve this, first set L0 = 0 and then check the last element of

L, if it is less than or equal to the maximum number of errors allowed then a match has

occurred. For example, the DNA String ATT was found at positions 2, 3, and 5 with one

error inside the DNA sequence ATCATT. See how L changes as characters of the DNA

sequence ATCATT are read in (2.18). In effect, sub-strings AT found at position 2, ATC

found at position 3, and AT found at position 5 have all Levenhtein distances of 1 with

String ATT. String ATT was also found at position 6 without errors since a Levenshtein

distance of zero appeared in the last element of L after reading the sixth element of the

DNA sequence ATCATT.
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2.7.3. The LCS Distance

The computation of the LCS distance is done just as the computation of the

Levenshtein distance, except that only insertions and deletions are allowed. The LCS dis-

tance works better than the Levenshtein distance where the same sequence of symbols are

present in both strings as is usually the case with speech signals or musical performances. In

this context, a symbol represents an acoustic event. For example, the Levenshtein distance

cannot tell that the strings computer and curtain are any more different than the strings

computer and cooommpuuuteeer. However, the LCS distance does report that the distance

between the first couple of strings is greater than the distance between the second couple

of strings. See Table 2.3.

Table 2.3: Comparison between Levenshtein and LCS distance metrics. The first row are
the distances between strings that contain the same sequence of symbols, the second row
are distances between strings that do not

x y Levenshtein(x, y) LCS(x, y)
computer cooommpuuuteeer 7 7
computer curtain 7 10

The recurrence defined in Equations (2.19),(2.20) and (2.21) is used with dynamic

programming to compute the LCS distance. Of course, LCS can also be computed using a

single vector.

Ci,0 = i ∀ i = 0..N − 1 (2.19)
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C0,j = j ∀ j = 0..M − 1 (2.20)

Ci,j =

⎧⎨
⎩ Ci−1,j−1 ti = pj

min[Ci,j−1, Ci−1,j ] + 1 ti �= pj

j = 1..M − 1 ; i = 1..N − 1 (2.21)

2.7.4. Time Warped LCS

The Time Warped LCS algorithm (twLCS) was proposed by AnYuan et al [Guo04]

for dealing with rhythm variations quite common in music. AnYuan defined his similarity

measure as in Equation (2.22). A similarity measure reports high values for similar strings.

We adapted twLCS as a distance measure, so smaller values correspond to similar strings

as in Equations (2.23), (2.24) and (2.25). The twLCS distance may be computed in a single

vector as well. Table 2.4 shows how string “456” and string “445566” have a zero twLCS

distance as desired while the LCS distance between these strings is 3.

fi,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if i = 0 or j = 0

max[fi,j−1, fi−1,j , fi−1,j−1] + 1 if i, j > 0 and ti = pj

max[fi,j−1, fi−1,j ] if i, j > 0 and ti �= pj

(2.22)

Fi,0 = i ∀ i = 0..N − 1 (2.23)

F0,j = j ∀ j = 0..M − 1 (2.24)

Fi,j =

⎧⎨
⎩ min[Fi−1,j−1, Fi,j−1, Fi−1,j ] ti = pj

min[Fi,j−1, Fi−1,j ] + 1 ti �= pj

j = 1..M − 1 ; i = 1..N − 1 (2.25)
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Table 2.4: Example of how the twLCS distance deals with rhythm variations

x y LCS(x, y) twLCS(x, y)
456 445566 3 0

2.8. Conclusions

State-of-the-art works in audio-fingerprinting claim to have solved the problem of

finding robust features from the audio-signals. These works however, acknowledge

that they do not severely deform the audio signals used in their experiments. For

example, in the experiments reported in [Herre01], the songs were contaminated with

noise only with a “reasonable SNR of 20-25 dB simulating background noise”. In

[Haitsma02] the only equalization style used alternates attenuation and amplification

of consecutive bands in just 3 dB. At such level of degradation the precision rate of

those audio-fingerprint is in effect 100 %. We however use severe degradations such as

noise mixing resulting in a Signal to Noise Ratio (SNR) of 3-4 dB, and equalization

styles in the range of -20dB to +20dB. It is with severely deformed audio signals

that our Multi-Band Spectral Entropy Signature outperforms the state-of-the-arts

audio-fingerprints.

There is not a shared database for benchmark purposes. Every author on audio-

fingerprinting report to have used a different collection of songs, they do specify the

genre of the music they used (i.e rock, country). Guo, in [Guo04] uses folk music

claiming that this kind of music was “monophonic in nature”, which was quite conve-

nient for his experiments. However, a Database with monophonic music “may not be

interesting in practice” as stated in [Yang02]. We therefore used our own collection of

polyphonic music of almost all genres.

The aligning techniques that are best known in the field of Approximate String

Matching are more convenient for Music Information Retrieval purposes since a va-

riety of indexes may be designed taking advantages of efficient algorithms for multiple

approximate on-line search using LCS distance or Levenshtein distance. The classic

approach of Dynamic Time Warping (DTW) is considered only as a reference for the
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results, as opposite to the Hidden Markov Model (HMM) approach, DTW requires

no training nor choosing a topology (i.e. number of states and how they should be

connected), this is advantageous specially because the dictionary (i.e. collection of

songs) can be quite dynamic



Chapter 3

Entropy Signatures

Perhaps someday there will be audio identification systems that work better than

the human auditory system. Meanwhile, it would be considered as a great achievement if

somehow machines with the ability of identifying sounds similar to that of human beings

could be built. The question of How we identify sounds emerges naturally.

We know a human being improves the ability to recognize sounds with the years

because the brain learns to expect certain sounds depending on the context. That is why

in the presence of noise or when loosing hearing sensibility we still identify the words or at

least confuse them with similar ones.

The following text might give us a clue about what the human brain perceives

when subject to the problem of identifying sequences:

“Aoccdrnig to a rsecheearr at an Elingsh uinervtisy, it deosn’t mttaer in waht oredr

the ltteers in a wrod are, the olny iprmoetnt tihng is that frist and lsat ltteer is at the rghit

pclae. The rset can be a toatl mses and you can sitll raed it wouthit a porbelm”.

The entropy (at least Shannon’s entropy) of the scrambled words of the preceding

text would be the same if they were not scrambled. Is the information content in a sequence

what a brain perceives?. Such a possibility served as a motivation for using entropy as

the perceptual feature for audio-identification purposes. The use of Shannon’s entropy in

computer vision was already aborded by Viola [Viola95] who used mutual information (i.e.

33
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cross-entropy) for identifying images, he found that his method was robust with respect to

variations of illumination.

The entropy of the spectrum of an audio signal has been used for the detection of

the end-points (begin and end) of utterances in noisy environments [Shen98]. Entropy has

also been used for choosing the desirable frame rate in the analysis of speech signals [You04].

In [Bank01] the entropy of an audio-signal was compared with the entropy of the spectrum

of the same audio-signal. If the spectral entropy was smaller, then spectrum coding was

chosen for compressing the audio-signal, otherwise waveform coding, a method that works

in time domain was preferred.

Anyway, Entropy had never been used as the relevant perceptual feature for build-

ing audio-fingerprints. So we decided that the use of entropy for building AFPs would be

the central idea of our research. Our first attempt for identifying songs using entropy con-

sisted on transforming the audio-signal entropy into the Entropy Signal as we called it. For

determining the entropy signal we used the first segment of the audio signal with a dura-

tion of two seconds (i.e. involving a number of samples that was twice the sampling rate)

to build a histogram of the audio-samples. By normalizing the histogram it was converted

into a probability density function and then the first entropy value was determined. From

then on, for every incoming audio sample, the histogram was updated and a new entropy

value was obtained. The Entropy Signal was almost the same size as the audio signal except

it was one second shorter. We first used the exact position of the global maximum of the

entropy signal as the shortest audio-fingerprint ever (i.e. a single number). This technique

was proved to be robust to lossy compression when we used it with 50 songs, the position of

the global maxima was indeed an invariant. Unfortunately, we soon discovered that it was

not unique, at trying it with a hundred songs several collisions occurred. To avoid collisions

we used not only the position of the maximum entropy but the position of the k higher

peaks int the entropy signal. By increasing k collisions decreased, still collisions occurred.

Encouraged by the result the experiment described above, we decided that the aim

of this research should be the use of entropy as the perceptual feature for building robust

audio-fingerprints. We will now give a short introduction to the concept of entropy.
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3.1. Entropy

The information content of a message is, in Claude Shannon’s view, proportional

to how much it surprises you when you read it [Shannon49][Shannon49]. Shannon linked

irreversible the concept of entropy or disorder in gases as expressed by Boltzman with the

information content in a signal by using Boltzman’s formula.

Let v1, v2, ..., vn be the possible amplitude values of the samples of an audio signal.

If for example, the sample size were 8 bits long, then the audio-samples would be integers

in the range [-128,127]. Each vi has the probability pi to occur and the whole sequence

p1, p2, ..., pn is a discrete Probability Density Function (PDF). Equation (3.1) must hold.

n∑
i=1

pi = 1 (3.1)

The information content I in a value vi also called “self information”, depends only

on its probability pi to occur and it is denoted I(pi). The less likely a value is to appear,

the more information it brings if it actually occurs. Equivalently, if a value is expected,

it delivers very little self information when it arrives. Therefore, the self information is a

monotonically decreasing function of the probability. In addition to this, I(pi) has to be

computed in a way that if vi depends on two or more independent events with probabilities

pi1 , pi2 , ..., then the contribution to the information content of each event must be summed to

be taken into consideration and the result must be I(pi), so it can be handled as information.

Therefore if pi = pi1pi2 ... then I(pi) = I(pi1) + I(pi2) + .... The one function to accomplish

this is the logarithmic function [Shannon49]. That is why among other reasons that the self

information is computed using Equation (3.2). Shannon used base-2 logarithms, however

any base may be used for the issue of measuring entropy. The units for entropy are “nats”

when the natural logarithm is used and “bits” when the base-2 logarithm is used [Gray90].

I(pi) = ln
( 1

pi

)
= −ln(pi) (3.2)

The entropy H in a sequence is the expected information content in it, so it is the

average of all the information contents weighted by their probabilities to occur [Principe00],

[Bercher00]. Shannon’s entropy H is computed using Equation (3.3) and its continuous
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version called “differential entropy” is computed with Equation (3.4).

H = E[I(p)] =
n∑

i=1

piI(p) = −
n∑

i=1

piln(pi) (3.3)

H(X) = −
∫ +∞

−∞
p(x)ln[p(x)]dx (3.4)

The entropy of a signal is a measure of how unpredictable it is, if the signal is

constant at a fixed value k, then its probability density function (PDF) is a unitary impulse

located at k, that is pi = δ(k), its entropy or unpredictability would be zero as shown in

Equation (3.5). Note that 0log(0) needs to be considered zero for this to be true. On the

opposite case, if the signal has a uniform distribution then the entropy would be maximum,

that is, if pi = 1/n for n possible values then its entropy would be ln(n) as in Equation

(3.6)

Hmin = −
∑

i

δ(k)ln[δ(k)] = −ln(1) = 0 (3.5)

Hmax = −
n∑

i=1

1
n

ln(
1
n

) = −ln(
1
n

) = ln(n) (3.6)

Consider for example that each audio sample was digitalized in words of 16 bits.

The maximum entropy would then be 11.09 (i.e. ln(216)). Of course in a real audio signal

this level of entropy is nearly impossible since it would require that each possible value

of the samples appeared the same number of times. For a frame of 2.9721 seconds at a

sampling rate of 44,100 samples per second and a sample size of 16 bits, each possible value

would have to appear exactly twice.

For two-dimensional data, Shannon’s entropy is computed with Equation (3.7). For

a uniform probability distribution, the 2D entropy is 2ln(n) as shown in Equation (3.8).

H = −
n∑

i=1

n∑
j=1

pi,jln(pi,j) (3.7)

Hmax = −
n∑

i=1

n∑
j=1

1
n2

ln(
1
n2

) = 2ln(n) (3.8)
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3.2. The Time-Domain Entropy Signature (TES)

By computing Shannon’s entropy from the audio samples of every frame we ob-

tained a sequence of entropy values. We will refer to this sequence as the entropy curve.

3.2.1. On Line Entropy Measurement

Computing the entropy of a signal requires some estimation of the Probability Den-

sity Function (PDF). Such estimation may be accomplished using Parametric methods, non

parametric methods and histograms. Parametric methods [Bercher00] are advisable when

the distribution is known a priori and the amount of data involved is not large. In parame-

tric methods, first a distribution model is chosen and then its parameters are determined

[Bercher00]. In non-parametric methods, no assumptions are made about the distribution

the PDF belongs to, the PDF is shaped by the data which is in turn smoothed by some ker-

nel. Non-parametric methods require also a large number of samples to be involved to make

a good estimation of the PDF. The most popular non-parametric method is the Parzen

window estimation method [Duda01]. However, non-parametric methods are computation-

ally expensive and so not frequently used for realtime pattern recognition applications. For

the on-line determination of the PDF of an audio stream we designed an algorithm based

on histograms. The probability pi for value vi to be a sample read from the audio stream is

computed using Laplace’s formula as in Equation (3.9)

pi =
fi

N
(3.9)

where fi is the number of times that value vi occurs in the sequence x = x1, x2, .., xN as in

Equation (3.10). N is the frame size.

fi =
N∑

j=1

ϕ(xj , vi) (3.10)

where ϕ(x, y) = 1 if x = y and ϕ(x, y) = 0 otherwise.
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The certainty of the histogram method is ensured by the fact that thousands of

audio-samples will be used at building the histogram. Furthermore, since the precision of

the audio-samples is reduced to only 8 bits, then the resulting histogram is a table with only

256 entries. Algorithm 1 extracts the entropy curve from an audio-signal, this algorithm first

builds a histogram for the very first frame of audio. The entropy for the first frame of audio

is computed using Equation (3.3). The histogram is updated every time an audio-sample

is read from the stream, this is done by increasing the frequency of the last audio-sample

read and decreasing the frequency of the audio-sample that gets out of the frame (the

oldest sample in the frame). The entropy is also updated for every audio-sample read. To

reduce processing time, a lookup table L is used to avoid direct calls to the logarithm

function. Six arithmetic operations and two memory access operations are performed for

each audio-sample read from the stream. If an audio signal consists of M audio-samples,

then approximately 6M operations will be performed by Algorithm 1, the complexity of

this algorithm is therefore linear.
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Algoritmo 1 Algorithm to obtain the Entropy curve

Input:

Audio stream with SampleSize (precision) reduced to 8 bits

Frame size N

Output:

Entropy curve

ExtractTES()

1 for i ← 1 to N

2 fifo.write(InputStream.read()) ; Read N samples and save them in buffer fifo

3 for i ← 1 to N

4 L[i] ← −(i/N)ln(i/N) ; Fill up lookup Table L of size N

5 for i = 1 to N

6 val ← fifo.read()

7 Hist[val] ← Hist[val] + 1 ; Build the histogram for the frame of audio saved on the buffer

8 fifo.write(val)

9 H ← 0

10 for i = 1 to 256

11 H ← H + L[Hist[i]] ; Compute entropy for the first frame of audio

12 OutputStream.write(H) ; Send H to the output stream

13 while There are more audio samples

14 SampleIn ← InputStream.read() ; Read one sample from the audio stream

15 fifo.write(SampleIn) ; Add it to the FIFO buffer

16 H ← H − L[Hist[SampleIn]] − L[Hist[SampleOut]] ; Subtract the old information

17 Hist[SampleIn] ← Hist[SampleIn] + 1 ; Update the histogram

18 Hist[SampleOut] ← Hist[SampleOut] − 1

19 H ← H + L[Hist[SampleIn]] + L[Hist[SampleOut]] ; Add the new information

20 if Number of samples read is multiple of N/2

21 then OutputStream.write(H) ; Send H to the output stream

22

23 return
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The Entropy curves of several degraded versions of the song Diosa del cobre 1 are

shown in Figure 3.1. Please note how similar the entropy curves look between the original,

the lossy compressed version (i.e. mp3@32kbps), the low-pass filtered version (i.e. 1KHz

cutoff) and the scaled version (i.e. 50 percent louder). The profile of these four entropy

curves is almost identical, therefore we can safely use the sign of the derivative to build a

binary string that we call the Time-domain Entropy Signature (TES).
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Figure 3.1: Entropy curves of several degraded versions of the song Diosa del cobre

1Author: Pavel Uriquiza, Perform: Miguel Bosé and Ana Torroja, Album: Girados en concierto, year:
2000
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3.2.2. Codification

For every equally spaced interval of one second of the audio-signal two steps are

performed:

1. Compute Shannon’s entropy using a histogram of the audio-samples directly in time

domain. Algorithm 1 is recommended for on-line applications and for efficiently com-

puting entropy.

2. If the entropy of the current segment of audio is greater than the entropy of the

previous segment of audio, set bit I to “1” otherwise, clear it (i.e. set I to “0”).

Append bit I to the signature of the audio-signal (i.e. TES).

To keep only the sign of the entropy’s time derivative makes the signature ex-

tremely compact. This way, instead of having 239 floating point values for a 4 minute song,

only 30 bytes are needed. Taking the derivative and binary coding it is a key aspect of the

technique because we want to compare the profile of the entropy curve of an audio-signal

with the profile of the entropy curve of another audio-signal independently of the dynamic

ranges of these entropy curves.

As reported in [Ibarrola06], TES is not only extremely compact and easy to com-

pute but turned out to be very robust for the specific degradations of low-pass filtering,

scaling and lossy compression. On the other hand, the entropy curve is severely deformed

when the song is degraded by equalization, noise mixing and re-recording (i.e. Loudspeakers

to microphone transmission in a noisy environment).

3.3. The Multi-Band Spectral Entropy Signature (MBSES)

The information content in the signal should be measured in the perspective of

the human ear. The Bark scale defines 25 critical bands, each one of them of exactly one

bark of bandwidth and each one of them corresponds to a section of the cochlea of about

1.3 mm [Zwicker90]. We decided to discard the 25th critical band which corresponds to the

frequencies between 15.5 to 20 KHz since only the youngest and healthiest ears are able to

perceive. After all, not only the young people are able to recognize a song. If the entropy
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of the spectral coefficients corresponding to critical band k is computed for every frame of

an audio signal, we obtain a sequence of entropy values. Let this sequence be denoted as

SEk(t) for t = 0, .., N − 1 where N is the number of frames in the audio-signal. If we plot

SEk(t) we obtain the Spectral Entropy curve for the critical band k or simply the SEk

curve.

Remember from the preceding section how equalization deformed the entropy curve

making TES practically unsuitable for this kind of degradation. The SE curves do not suffer

such deformations where the audio signal is subject to equalization, to show this effect, Fig-

ure 3.2 shows the curves SE4, SE8, SE12, SE16 and SE20 of the song Diosa del cobre.

The curves at the left on Figure 3.2 correspond to the original song while the curves at

the right correspond to the equalized version. Amazingly, the SE curves seem almost una-

ffected by equalization. Not all 24 critical bands are shown so the figure is not geometrically

overcrowded, however, the other bands behave similarly. This early experiment was quite

encouraging for the design of an audio-fingerprint based on Multi-Band Spectral Entropy.

The Multi-Band Spectral Entropy Signature (MBSES).
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Figure 3.2: Curves SE4, SE8, SE12, SE16 and SE20 of the song Diosa del cobre (from the
top downwards) according to the Bark scale. Not all 24 critical bands are shown so the
figure is not overcrowded: Left, original. Right, Equalized version

3.3.1. Entropygram Determination

For each frame of the audio-signal a vector with 24 entropy values is obtained. The

sequence of vectors corresponding to a short excerpt of audio of a few seconds make a matrix

of 24 rows and a number of columns that depends on the duration of the excerpt. Such a

matrix may be shown as an image where the horizontal axis represents time, the vertical

axis represents frequency and the gray levels represent the level of entropy for every band

and frame. We call these images Entropygrams. In Figure 3.3 an entropygram determined

from a piece of audio of 5 seconds is shown.

The firsts steps for the determination of the MBSES of a song are related to the
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Figure 3.3: Entropygram of a piece of audio of 5 seconds

determination of the SEk(t) values, these steps correspond to the first blocks depicted in

Figure 3.4 and are explained further below:
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Figure 3.4: Signal processing for the determination of the MBSES of an audio signal

1. Stereo audio signals are first converted to monoaural by averaging both channels.

2. The signal is processed in frames of 370 ms, this frame size ensures an adequate time

support for entropy computation according to our experiments. The frame sizes nor-

mally used in audio-fingerprinting ranges from 10 ms to 500 ms according to [Cano02].

The frame size used in [Haitsma02] is precisely 370 ms.

3. Our frames are overlapped fifty percent, therefore, 5.4 frames per second will be the

frame rate for the MBSES extraction. A low frame rate like this will result in a

compact audio-fingerprint.
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4. To each frame the Hann window is applied and then its DFT is determined.

5. Shannon’s entropy is computed for the first 24 critical bands according to the Bark

scale, discarding only the 25th critical band (frequencies between 15.5 KHz and 20

KHz).

The use of histograms requires the use of a high amount of data to obtain a faithful

estimation of the PDF. There are however very few spectral coefficients in the first critical

bands (i.e. According to the Bark scale) of the spectrum. At 44,100 samples per second,

a frame of 0.37 seconds is made out of 16,384 samples. The frequencies ranging from 0 to

22,050 Hz are then spread among 8,192 spectral coefficients. Therefore, the first critical

band (i.e. 0-100 Hz) is conformed by only 37 coefficients, the same holds for next band (i.e.

100-200 Hz). See Table 3.1 for the other critical bands.

With as few spectral coefficients as 37, we decided to use a parametric method

to estimate the PDF. The real and imaginary parts of the DFT of an audio signal can

both be modeled as independent gaussian random variables according to [Martin01]. We

will assume that the spectral coefficients corresponding to every critical band also follow

a gaussian distribution. Appendix C shows how assuming the spectral coefficients of a

single band being gaussian is not very far from reality, however, since using histograms and

assuming gaussianity produce non identical results, the PDF estimation method used when

building the fingerprint database must be the same method used for the extraction of the

fingerprint at querying the database.

When a signal follows a gaussian distribution with mean zero and variance σ2,

then Equation (3.11) holds.

p(x) =
e−x2/2σ2

√
2π σ

(3.11)

Replacing p(x) into Equation (3.4), the formula for determining Shannon’s entropy

of a random variable with a gaussian distribution is deduced in Equation (3.12):
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Table 3.1: Number of spectral coefficients available per critical band for PDF estimation
purposes. The first critical bands are conformed by very few spectral coefficients according
to the Bark scale. Audio signal sampled at 44,100 Hz in a frame of 0.37 sec

Initial Spectral
Bark Hz Coefficient Coefficients

1 0-100 2 37
2 100-200 39 37
3 200-300 76 37
4 300-400 113 37
5 400-510 150 41
6 510-630 191 45
7 630-770 236 52
8 770-920 288 55
9 920-1080 343 66
10 1080-1270 409 70
11 1270-1480 479 78
12 1480-1720 556 90
13 1720-2000 646 105
14 2000-2320 751 112
15 2320-2700 863 148
16 2700-3150 1011 161
17 3150-3700 1172 210
18 3700-4400 1382 260
19 4400-5300 1642 335
20 5300-6400 1977 408
21 6400-7700 2385 509
22 7700-9500 2894 643
23 9500-12000 3537 923
24 12000-15500 4460 1300

H = −
∫ ∞

−∞
e−x2/2σ2

√
2π σ

ln

[
e−x2/2σ2

√
2π σ

]
dx

=
ln(

√
2π σ)√

2π σ

∫ ∞

−∞
e−x2/2σ2

dx +

+
1√

2π 2σ3

∫ ∞

−∞
x2e−x2/2σ2

dx

=
ln(

√
2π σ)√

2π σ

√
2σ2π +

4
√

π(
√

2σ/2)
3

√
2π 2σ3

=
1
2
ln(2π) + ln(σ) +

1
2

=
1
2
ln(2πe) +

1
2
ln(σ2) (3.12)
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Similarly, for the n-dimensional case it is not difficult to prove that the entropy

of a random variable with Normal distribution N (0,R) with zero mean and co-variance

matrix R of size n × n is computed with Equation (3.13) [Mohammad-Djafari94].

H =
n

2
ln(2πe) +

1
2
ln[det(R)] (3.13)

We then compute entropy using Equation (3.13) with n = 2 as in Equation (3.14).

H = ln(2πe) +
1
2
ln(σxxσyy − σ2

xy) (3.14)

where σxx and σyy also known as σ2
x and σ2

y are the variances of the real and the imaginary

part respectively and σxy = σyx is the covariance between the real and the imaginary part

of the spectrum in its rectangular form and so σxyσyx = σ2
xy.

3.3.2. The codification step

It was shown on Figure 3.2 how the SEk for any band k was practically not

deformed when a song was equalized, the profile of the curve remained almost unchanged.

There was however a change in the dynamic range due to a general decrease of entropy in

attenuated bands. Based on this observation, it seems to be a good strategy to compare

not the amplitudes but the slopes of the SEk curves for each band k, better yet would be

to compare only the signs of the slopes. The codification step consists of storing for each

band only an indication of whether the spectral entropy is increasing or not in the current

frame. Equation (3.15) states how the bit corresponding to band b and frame n of MBSES

is determined using the entropy values of frames n and n − 1 for band b. Only 3 bytes (i.e.

24 bits) are needed for each frame of audio signal, that was another reason for dropping the

25th critical band.

F (n, b) =

⎧⎨
⎩ 1 if [hb(n) − hb(n − 1)] > 0

0 Otherwise
(3.15)

Since the MBSES of a song is a binary matrix, it can be shown as a black and

white image as the one shown in Figure 3.5 where a piece of the MBSES from the song

Diosa del cobre is shown. In the same figure a 5 second excerpt is magnified.
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Figure 3.5: Fragment of the MBSES of the song Diosa del cobre. A 5 sec excerpt is magnified

3.3.3. Time complexity for the MBSES extraction procedure

Assume that an audio-signal is formed by M audio-samples, extracting MBSES

from this audio-signal requires the determination of the Fast Fourier Transform (FFT) of

2M/N frames of length N (Remember that frames are overlapped 50%). Determining the

FFT of a frame with N samples has a complexity O(Nlog(N)) [Stanley84]. Therefore, the

complexity of the MBSES extraction procedure would be linear on M . After computing

the means, variances and entropies from the 24 subsets of spectral coefficients, the MBSES

extraction procedure complexity is O(M).

3.4. Polyphonic Audio Matching

In Figure 3.6, the entropygrams of two performances of Tchaikovsky’s Nutcracker

waltz of the Flower look just alike. Encouraged by this observation we decided to include

some experiments on the use of MBSES in the problem of matching musical performances.

Figure 3.7 shows the MBSES of two performances of Mozart’s Serenade number 13 Allegro.
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Figure 3.6: Entropygrams of the two performances of Tchaikovsky’s Nutcracker waltz of the
flower

3.5. Conclusions

Since Time-domain Entropy Signature (TES) is conformed by a single bit per

frame, then it is an extremely compact audio-fingerprint, it is also computed with very

little computations since it is determined directly in time domain. Although TES seems

to be robust by low-pass filtration, lossy compression, re-recording and scaling, it does not

seem very robust by noise mixing and it does not seem robust to equalization at all. This

is suspected by observing the entropy curves plotted in Figure 3.1 and it is expected to be

confirmed by the experiments described in the next chapter.

The Multi-Band Spectral Entropy Signature (MBSES) is conformed by 3 bytes per

frame of audio, Haitsma-Kalker’s AFP is conformed by 4 bytes per frame. Since MBSES

uses a frame rate of only 5.4 fps (frames per second) while Haitsma-Kalker’s AFP works

with a frame rate of 86.2 fps then MBSES results in a signature that is far more compact.

The AFP of MPEG-7 stores 96 floating point values every second of audio, if the floating

point values are stored using 4 bytes, then 3 kbps (kilo bits per second) is the required space

for storing the AFP of MPEG-7, 2.6 kbps is the space needed to store Haitsma-Kalker’s

AFP and only 0.13 kbps to store MBSES. Therefore, even being 24 times bigger than TES,

MBSES is still a very compact AFP.

By observing the SEk curves of Figure 3.2, MBSES is expected to be robust to

every degradation, this is will be confirmed by the experiments described in the next chapter.
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(b) performed by the Slovak Philharmonic Orchestra, conducted by Libor Pesek

Figure 3.7: MBSES of two performances of Mozart’s Serenade Number 13 Allegro



Chapter 4

Experiments

In this chapter we explain the experiments for the evaluation of robustness of

MBSES, TES, the AFP of MPEG-7 and Haitsma-Kalker’s AFP.

4.1. Introduction

Four experiments were designed: In the first experiment, degraded whole songs

were compared against each other searched to verify that the degraded versions of the

same song had short distances between them and that different songs had large distances

between them. In the second experiment, degraded whole songs are searched in a collection

of 4000 MP3 files using the nearest neighbor criterion. In the third experiment, excerpts of

only five seconds of the degraded songs were used to search in the collection of 4000 MP3

files. The fourth experiment is about searching in the collection of 4000 songs using other

performances of 124 of them. Additionally, some experiments with speech signals are shown

in Appendix D.

4.1.1. Degradations of the Audio Signals

For the experiments on robustness the following deformations were considered:

1. Cropping. The songs will be identified using excerpts of 5 seconds.

2. Desynchronization. The 5 seconds excerpt that is used to search a song is randomly

51
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selected. Therefore, the probability that the initial frame of the excerpt begins at

exactly the same time than any frame from the original song is practically zero (A

real scenario was reproduced). This deformation is also known as time shifting.

3. Lossy compression. Compressing songs to MP3 implies a certain degradation of the

audio-signal. The implicit degradation of MP3 compression is higher when a low bit

rate is selected. In our experiments we used a bit rate of only 32 kbps. MP3 compres-

sion system also introduces a certain time shift. The “CD to MP3 freeware” [cd2] was

used to generate these files directly from the CDs using the lowest allowed bit rate

allowed by this utility which was precisely 32kbps.

4. Equalization. The equalization styles included are common equalization styles from

[EQp06]. Figure 4.1 shows the Amplification/Attenuation diagrams corresponding to

all the equalization styles used.

(a) 1965 (b) Classic V (c) Louder

(d) Pop (e) Soft Bass (f) Home Theater

Figure 4.1: Equalization styles used. Eighteen bars spread from the lowest band (i.e. left-
most) at 55 Hz to the highest band at 20 KHz. A bar above the horizontal axis indicates
the amplification of its corresponding band. A bar below the horizontal axis indicates the
attenuation of its corresponding band

To equalize songs, the utility used was xmms [xmm], the default output plugin libALSA.so

(ALSA 1.2.10) was changed for libdisk writer.so (Disk Writer 1.2.10), this library

writes the equalized sound to a file instead of sending it to the speakers. The effect

plugin libeq.so (EQ plugin 0.5) was used to implement the equalization effect. As
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an example, the equalization fashion corresponding to Table 4.1 is specified in the

following file “ClassicV.preset”:

Preamp=0

Band0=20

Band1=10

Band2=0

Band3=-5

Band4=-10

Band5=-5

Band6=0

Band7=5

Band8=10

Band9=20

Table 4.1: Parameters for the equalizer

KHz .06 .17 .31 .6 1 3 6 12 14 16
dB 20 10 0 -5 -10 -5 0 5 10 20

5. Mixing with white noise. This kind of noise contaminates all bands. Once mixed with

white noise the songs have a Signal to Noise Ratio (SNR) between 3 and 5 dB. The

SNR is determined by using Equation (4.1) where Psignal is the power of the original

signal and Pnoise is the power of the noise added to the signal.

SNR = 20log10(
Psignal

Pnoise
) (4.1)

Noise produced by big fans fall in the range that is referred as white noise. The noise

we used to contaminate songs can be accessed under the name of turbofan-hifi.wav

at:

http://www.asti-usa.com/skinny/sampler.html.

Please note that colored noise is not as severe as white noise since colored noise affect

only some bands of the signal.

To contaminate with noise we made use of the ecasound utility [Eca] specifically the

command used was:

ecasound -a:1 -i cobre.wav -a:2 turbofan.ewf -eac:200,1 -eac:200,2

-t:279 -a:all -o cobreHiss.wav
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where turbofan.ewf is the following text file with only two lines:

turbofan44100.wav

looping=true

Ecasound will take as input the file cobre.wav for chain one, for chain two the input

as indicated in file turbofan.ewf will be the file with noise called turbofan44100.wav.

The second line of file turbofan.ewf indicates that when the noise signal of tur-

bofan44100.wav reaches an end, it starts over again, this was done because turbo-

fan44100.wav is only 108 seconds long while the song to be contaminated is longer, it

lasts 279 seconds. The duration of cobre.wav is specified in seconds with the -t option

which causes to finish processing once this time is over (i.e. 279 seconds). Both chains

are mixed (-a:all) and the output is sent to the file cobreHiss.wav.

6. Low pass filtering with a cutoff frequency of 1KHz.

The Sox utility [Sox] was used for low pass filtering the song, used as in the following

example where the audio signal in cobre.wav was filtered:

sox cobre.wav cobre1000.wav lowpass 1000

Sox uses a Butterworth filter with an attenuation of 20 dB/decade. An amplification

in dB is defined as:

GdB = 20log(Vout/Vin) (4.2)

Since the amplification is -20dB/decade (a negative amplification in dB is really an

attenuation), then every decade the relation between the amplitudes of the output

signal Vout and the input signal Vin would be given by:

−20 = 20log(Vout/Vin)

−1 = log(Vout/Vin)

10−1 = Vout/Vin (4.3)
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Therefore, for a frequency that is ten times the cutoff frequency (i.e. a decade above)

the amplitude of the output signal has declined to a tenth of the amplitude of the

input signal.

Vout = Vin/10 (4.4)

7. Loudspeaker-Microphone transmission (Ls-Mic). This degradation consisted of playing

the music with the pair of loudspeakers of a multimedia system and recapturing it

with an omnidirectional microphone with a sensibility of -54±3 dB and a frequency

response of 50Hz to 16KHz in a noisy environment. The microphone was placed at a

distance of 10 cm from the speakers.

Again Ecasound was used for this degradation, the way how it was used is shown in

the following example:

ecasound -b:256 -r -f:16,2,44100 -a:1 -i cobre.wav -o /dev/dsp

-t:279 -a:2 -i /dev/dsp -o cobreLsMic.wav

Ecasound will take as input of the first chain the file cobre.wav and will send it to

the speakers, the default output of the sound card (/dev/dsp). In the second chain

the input is the microphone, the default input of the sound card (again /dev/dsp).

With the -o option, the file cobreLsMic.wav was specified as the output. To minimize

synchronization problems, a small buffer size is set to 256 samples with the -b:256

option. To ensure flawless recording, runtime priority is risen with the -r option

8. Scaling. The signal was amplified 50 percent without clipping prevention, in fact

approximately 30 percent of the signal’s peaks were clipped during this degradation.

Here again the Sox utility is used as follows:

sox cobre.wav cobreLoud.wav vol 1.5

4.1.2. Sensitivity Analysis

When two degraded versions of the same song have a distance below some threshold

th between them, we say that we are in the presence of a true positive, if those two degraded
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versions of the same song have a distance above th between them, then we are dealing with

a false negative. On the other hand, when comparing two different songs, if the distance

between them falls below th then we call that a false positive and if the distance is grater

than th, then is a true negative. Table 4.2 summarizes these definitions.

Table 4.2: Definitions for the sensitivity analysis

dist < th dist > th

Same songs True Positive (TP ) False Negative (FN)
Different songs False Positive (FP ) True Negative (TN)

Consider the following situation: Assume that 40,000 comparisons between songs

were performed in an experiment and we know for a fact that 4,000 times a song was

actually compared with another degraded version of the same song and the rest (36,000)

comparisons were between different songs. Suppose that given a certain threshold th the

audio-fingerprinting system computed a distance below th (considered them as a match) for

3900 out of the 4000, and the rest (i.e. 100) were mistakenly considered as being different

songs (i.e. distance above th). On the other hand, 35950 out of the 36000 the system correctly

considered them as being different and 50 incorrectly considered them to belong to the same

class (i.e. song). In Table 4.3 these hypothetic results are summarized.

Table 4.3: Example of positive-negative result for a certain threshold th

dist < th dist > th Total
Same songs TP = 3900 FN = 100 4000 Positives
Different songs FP = 50 TN = 35950 36000 Negatives
Totals 3950 36050 40000

The True Positive Rate (TPR) is the fraction of songs that the system correctly

identifies (i.e. true positives) from all the songs the system should have (i.e. Positives). The

TPR is also known as sensitivity or recall and it is estimated with Equation (4.5). TPR

equals 1 − FRR where FRR is the well known False Rejection Rate.

TPR =
TP

TP + FN
(4.5)

For the Example described above, TPR = 3900/(3900 + 100) = 0.975=97.5%
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The False Positive Rate (FPR) is a measure of how often the system mistakes a

song for another and it is defined as in Equation (4.6). The FPR is also known as False

Alarm Rate and equals 1 − specificity

FPR =
FP

FP + TN
(4.6)

For the Example described above, FPR = 50/(50 + 35950) = 0.00125=0.125%

and then specificity=1 − 0.00125 = 0.99875=99.875 %

The Receiver Operating Characteristics (ROC) space is the plane where the verti-

cal axis is the TPR and the horizontal axis is the FPR, a single point in this plane represents

the performance of the system for a given threshold. By varying the threshold a ROC curve

is generated.

The precision rate is defined as the fraction of the correctly identified songs (i.e.

true positives) over the number of queries performed (i.e. true positives plus false positives)

[Fawcett03].

For the Example described above, precision rate=3900/(3900+50)=0.9873=98.73 %

4.1.3. Additional Information concerning the experiments

Some remarks about the experiments:

The Hamming distance was used for TES, MBSES and Haitsma-Kalker’s AFP. The

Mahalanobis distance (2.4) was used for the AFPs of MPEG-7.

Since TES is a signature designed for whole songs since it is extremely small, it was

only included in experiments where whole songs were compared.

Haitsma-Kalker’s AFP was excluded from the Experiment 2 where whole songs were

used to search the nearest neighbors from a collection of 4,000 songs. Haitsma-Kalker’s

AFP is too big for using it in such a way, this AFP was designed for searching small

excerpts. The same could be said for Experiment 1. However, Experiment 1 implied

much fewer comparisons than experiment 3 and so Haitsma-Kalker was not excluded

from Experiment 1.
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Segments from several degraded versions of one of the songs of the test set are available

at

http://lc.fie.umich.mx/∼camarena/Audiofiles.html

4.2. Experiment 1. Comparing Whole Songs

In this experiment, degraded songs were not only compared to original songs, but

to other degraded versions as well. For example, the equalized version of a song will be com-

pared with its noisy version. In the problem of querying by example the degraded versions

are always compared with originals. However, this is not the case for other applications.

For example, in radio broadcast monitoring, the audio signal that is going to be used as

the reference for monitoring a specific announcement spot is normally captured in the same

way as the audio signal to be monitored. As another example, consider a p2p application

that is always looking in the network for audio files with better quality than the ones in

the local host, this application would be comparing all kinds of degraded versions including

those obtained from old tapes.

Thirty eight songs were used for this experiment, each one in six versions: Original,

Equalized, Scaled, Noisy, Recaptured and Filtered (through Low pass filter). Each audio

file were compared with every other one to fill up the confusion matrix of 228 rows and 228

columns. The 51,984 locations of the confusion matrix correspond to the same number of

Hamming distances between AFPs that had to be computed.
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B6 C1 C2 C3 C4 C5 C6 D1

C4

Figure 4.2: A piece of a row of a confusion matrix where audio file C4 (i.e. song C degraded
version 4) is compared with 6 versions of song C (including itself) and two audio files from
other songs (B and D)

In Figure 4.2, eight comparisons out of the 228 of a single row of the confusion

matrix are shown. The degraded version 4 of song C is compared with the six degraded

versions of the same song including itself (i.e. C1,..,C6) and two degraded versions of other

songs (i.e. B6 and D1). The differences are shown graphically, a fuller image means a higher

Hamming distance.
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Figure 4.3: Confusion Matrix obtained when MBSES was used in Experiment 1

Figure 4.3 shows the whole confusion matrix that results from Experiment 1 using

MBSES. Every pixel of Figure 4.3 has a gray level according to the distance it represents
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(darker means closer). The first row of pixels represents the set of distances between the first

audio file and every other one. The second row of pixels represents the distances between

the second audio file and every one from the rest and so on. The 228 pixels along the

diagonal are all black because the distance between any audio file and itself is always zero.

The symmetry of the Hamming distance implies a symmetric confusion matrix. The name

of every audio-file has a prefix according to the song’s name and a suffix that denotes the

kind of degradation the song suffered. The audio files are maintained in alphabetical order

according to its name, for this reason, the ideal confusion matrix would be all white with

38 black squares along the main diagonal, being each black square of size 6 × 6 (i.e. six

degradations).
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Figure 4.4: Confusion Matrix obtained when TES was used in Experiment 1

The confusion matrices that result from Experiment 1 using TES, Haitsma-Kalker’s

AFP and the AFP of MPEG-7 and are shown in Figures 4.4, 4.5 and 4.6 respectively. What

is evident is that the expected 6×6 black squares along the diagonal are not as well defined

in these figures as they are in Figure 4.3. Figure 4.3 even resembles the ideal confusion

matrix described above, this fact reveals MBSES as the most robust audio fingerprint when

compared with TES, Haitsma-Kalker’s AFP and the AFP of MPEG-7.
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Figure 4.5: Confusion Matrix for Haitsma-Kalker’s AFP (Experiment 1)
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Figure 4.6: Confusion Matrix obtained when the AFP of MPEG-7 was used. Experiment 1

Figure 4.7 shows the ROC curves for AFP systems that use MBSES, TES ,

Haitsma-Kalker’s AFP and the AFP of MPEG-7; there we clearly see that the area un-

der the ROC curve for MBSES is greater than the area under the ROC curve of TES,

Haitsma-Kalker’s AFP or the AFP of MPEG-7.
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Figure 4.7: ROC curves for Experiment 1

Table 4.4: Precision rates of MBSES for its optimal threshold (Experiment 1)

LowPass EQ Loud Noisy LsMic
Original 100% 100% 100% 100% 100%
LowPass 100% 100% 97% 100%
EQ 100% 97% 100%
Loud 100% 100%
Noisy 95 %

From the sensitivity analysis that generate the ROC curves, the optimal threshold

for each system was also determined, this is the threshold that corresponds to the point

of the ROC curve that is closest to the upper-left corner of the ROC plane. Using the

optimal threshold, the precision rates for all possible combinations of degradations (e.g low

pass filtered against equalized) using MBSES is shown on Table 4.4. Tables 4.5, 4.6 and 4.7

correspond to the precision rates for the AFP of MPEG-7, TES and Haitsma-Kalker’s AFP

respectively.
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Table 4.5: Precision rates of MPEG-7 for its optimal threshold (Experiment 1)

LowPass EQ Loud Noisy LsMic
Original 97% 100% 100 % 77% 95 %
LowPass 100% 100 % 71% 90 %
EQ 100 % 76% 87 %
Loud 77% 95 %
Noisy 74 %

Table 4.6: Precision rates of TES for its optimal threshold (Experiment 1)

LowPass EQ Loud Noisy LsMic
Original 87% 52 % 100% 74% 85%
LowPass 52 % 87% 61% 74%
EQ 42% 26% 42%
Loud 74% 55%
Noisy 37%

Table 4.7: Precision rates of Haitsma-Kalker’s AFP for optimal threshold (Experiment 1)

LowPass EQ Loud Noisy LsMic
Original 87% 61 % 100% 47% 29%
LowPass 55 % 87% 32% 32%
EQ 61% 24% 21%
Loud 45% 29%
Noisy 18%
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4.3. Experiment 2. Searching in a larger collection

To verify if the system is scalable, that is, if the precision rates fall when dealing

with thousands of songs, the following steps were followed:

1. The signatures (i.e. MBSES, TES and the AFP of MPEG-7) of 4 000 songs from all

kind of genres (rock, pop, classical, etc.) were extracted.

2. Four hundred songs (i.e. ten percent) were subject to the six signal degradations

numbered (3) to (8) at the beginning of subsection 4.1.1

3. The signatures of the 2,400 audio files, obtained in the previous step, were also ex-

tracted.

4. The signatures of the degraded songs were searched in the collection of 4 000 using

the nearest neighbor criterion (i.e. that with the smallest distance).

Table 4.8 shows the precision rates for TES, MBSES and the AFP of MPEG-7

that resulted from this experiment. In this experiment MBSES showed high robustness to

every considered degradation. The AFP of MPEG-7 showed high robustness to equalization,

lossy compression an scaling. Finally, TES showed high robustness to Low-Pass filtering,

lossy compression and scaling, its robustness to re-recording is also acceptable.

Table 4.8: Precision rate for different signal degradations using TES, MBSES, and the AFP
of MPEG-7 without cropping (whole songs).

Degradation TES MBSES MPEG-7
Equalization 53.7% 100.0% 100.0%
Noise contamination (SNR=3.4dB) 63.2% 100.0% 55.3 %
Re-recording (LsMic) 92.1% 100.0% 80.0 %
Low-Pass filtering (1KHz) 100.0% 100.0% 72.1 %
Lossy Compression (32kbps) 100.0% 100.0% 100.0%
Scaling (50 percent louder) 100.0% 100.0% 100.0%
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4.4. Experiment 3. Searching With Small Excerpts

Experiment 2 was done with whole songs, however, for some applications it is

important to identify a song using only a small excerpt of it. To verify the robustness to the

degradations considered in experiment 2, combined with cropping and desynchronization

at the same time, the following steps were followed:

Figure 4.8: The piece of MBSES that was magnified in Figure 3.5 but in the same size as
the used in Figures 4.10 and 4.11

1. The signatures (i.e. MBSES, Haitsma-Kalkers’s AFP and the AFP of MPEG-7) of

4,000 songs from all kinds of genres (rock, pop, tropical, classical, etc.) were extracted

and stored.

2. Four hundred of these songs were degraded in six different ways: Lossy compres-

sion, Equalization, Mixing with noise, Low pass filtering, Scaling, and Loudspeaker-

Microphone transmission in a noisy environment.

3. From each of the 2,800 audio files (including originals) obtained in the previous step

an excerpt of 5 seconds was extracted, therefore all those degradations were combined

with cropping and desynchronization at the same time.

4. The short signatures of the 2,800 excerpts that resulted from the previous step were

determined. In Figure 4.9 the entropygrams of an excerpt of the song Diosa del cobre

corresponding to the seven (including original) versions considered are shown, their

corresponding signatures are shown in Figure 4.10.

5. All the short signatures determined in the previous step were searched inside every

whole song’s signature from the collection of 4,000 determined in the first step using

the nearest neighbor criterion. For example, the nearest signature to those shown in
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Figure 4.10 was found inside the piece of the whole song’s signature that is magnified

in Figure 3.5 and shown again in Figure 4.8.

The Hamming distance was used to establish how different the MBSES of two

excerpts are from each other. The Hamming distance between two binary matrices can be

conceived as a measure of fullness of the matrix that results from computing the absolute

difference between them. Figure 4.11 shows the differences found between the degraded

versions of an excerpt of the song Diosa del cobre and the nearest neighbor found inside

that song, precisely the one shown in Figure 4.8.

(a) Original (b) Equalized (c) Low-pass filtered

(d) Noisy (e) Lossy compressed (f) Ls-Mic

(g) Louder

Figure 4.9: Entropygrams of several degraded versions from a 5-second excerpt of the song
Diosa del cobre
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(a) Original (b) Equalized (c) Low-pass filtered

(d) Noisy (e) Lossy compressed (f) Ls-Mic

(g) Louder

Figure 4.10: MBSES of excerpts of five seconds of the degraded versions of the song Diosa
del cobre

Not even the excerpts extracted from the original songs were found without errors.

To understand this fact, consider that the probability for the first frame of the random-

ly selected excerpts to begin exactly at the same instant than any frame of the song is

practically zero, so the experiment is reproducing a real scenario, this effect is known as

desynchronization or time-shift. In Figure 4.12, the distance between a excerpt of a song

and the most similar (i.e. closest Hamming distance) segment of audio inside the same song

is plotted as a function of the time-shift. To generate the curve of Figure 4.12 a song at

44,100 samples per second was used, therefore a frame of 0.37 sec consists of 16,384 samples

(i.e. the frame size). The first excerpt was extracted beginning at a position that was a

multiple of the frame size (i.e. zero time-shift); this excerpt was of course found inside the

song without errors (i.e. Hamming distance equal to zero) and corresponds to the first point
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(a) Original (b) Equalized (c) Low-pass filtered

(d) Noisy (e) Lossy compressed (f) Ls-Mic

(g) Louder

Figure 4.11: Absolute differences, the fuller the images the greater the Hamming distances.

of the curve shown in Figure 4.12. The second excerpt was extracted beginning 100 samples

(i.e. 2.2 ms) after the first excerpt, the most similar piece of audio inside the song was found

with a normalized Hamming distance of 0.013, it corresponds to the second point of the

curve shown in Figure 4.12. The third excerpt was extracted beginning 100 samples after

the second excerpt and so on. Since the frames overlap fifty percent, a distance of zero is

found again at a time-shift of 185 ms (i.e. half the frame size). Increasing the overlap btween

frames surely results in an audio-fingerprint that is more robust to time-shift. Of course, a

price in processing time and disk space would have to be paid if an increase in robustness

is desired.
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Figure 4.12: Hamming distance between an excerpt of a song and the most similar segment
of audio inside the same song as a function of the time-shift

The MBSES of a song is a binary matrix with a number of rows that depends on

the duration of the song and a fixed number of columns. For example, The MBSES of a

song of 4 minutes and 39 seconds is a binary matrix of 1869 × 24. On the other hand, the

MBSES of an excerpt is a binary matrix with a fixed size (i.e. 24 × 24 in our experiment)

as long as the duration of the excerpts does not change.

In order to find the song to which the excerpt belongs to, we compared the short

binary matrix (i.e. the MBSES) of the query excerpt with every possible sub-matrix with the

same size inside every song’s MBSES of the collection. For example, the nearest sub-matrix

to those shown in Figure 4.10 was found inside the piece of the whole song’s MBSES that

is magnified in Figure 3.5 (and shown again in Figure 4.8). A brute force search procedure

took approximately 20 seconds to answer a query in a 2.8 GHz Pentium 4 PC. The searching

time was reduced to about 10 seconds using the following strategy: Instead of finishing the

computation of the Hamming distance between any sub-matrix of the MBSES of any song

and the MBSES of the query excerpt just to find that they are too different, just skip to the

next sub-matrix as soon as the normalized Hamming distance between the first columns of

the sub-matrix and the first columns of the query excerpt’s MBSES is higher than 0.3, this
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threshold was used because the normalized hamming distance between degraded versions

of a song was never higher than 0.3.

Table 4.9 shows the precision rates for MBSES, Haitsma-Kalker’s AFP and the

AFP of MPEG-7 for the signal degradations considered. MBSES shows higher robustness

to Noise addition, Re-recording, and Low-pass filtering.

Table 4.9: Precision rates of MBSES, MPEG-7 and Haitsma-Kalker’s AFP for different
signal degradations

Degradation MBSES MPEG-7 Haitsma-Kalker
Cropping and time-shift 100% 100% 100%
Equalization, cropping and time-shift 100% 100% 40%
Noise contamination, cropping and time-shift 100% 63% 20%
Re-recording in noisy environment,
cropping and time shift 100% 79% 10%
Low-Pass filtering, cropping and time-shift 100% 82% 70%
Lossy Compression,cropping and time-shift 100% 100% 80%
Scaling, cropping and time shift 100% 100% 90%

4.5. Experiment 4. Matching Musical Performances

The Audio-Fingerprints (i.e. TES, MBSES, Haitsma-Kalker’s AFP, and the AFP

of MPEG-7) from a collection of 4,000 audio files including several genres of music (i.e.

classical, rock, pop, etc.) were extracted. For some of the songs or masterpieces of the

collection, 124 to be accurate, we were able to obtain at least another musical rendition of

it, for example for Beethoven’s Symphony Number 5 in C minor performed by the Berliner

Philharmonische Orchester conducted by Karajan we obtained the Viena Philarmonic Or-

chestra version conducted by Kleiber. The Audio-Fingerprints of these other performances

were also extracted. Using the aligning techniques described on section 2.7, every song

was searched in the collection of 4,000 songs to see if another performance of it could be

found. The distance between every song from the collection of 124, and every song from the

collection of 4,000 were stored for further studies (i.e. obtaining the ROC curves).
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4.5.1. Specific details for Experiment 4

Those who want to reproduce these experiments should take into account the

following considerations:

Using the Longest Common Subsequence Distance

The LCS distance produce short distances when the same sequence of acoustic

events are present in both musical performances being compared. In this context a symbol

represents an acoustic event. To use MBSES as a string, the symbols are considered to

belong to an alphabet that is too large (224). It would be naive to consider two symbols

as completely different just because they differ in one bit, remember that the symbols are

made of bits that result from an analysis on unrepeatable audio segments. We considered

two symbols as different only if the normalized Hamming distance was greater than 0.3,

this threshold was used based on the knowledge that no frame of 24 bits was found to have

changed in more than 7 bits when the songs were degraded. Finally, the costs of insertions

and deletions used were both of 1.0.

Using the Levenshtein distance

Using a threshold to decide whether an acoustic event equals another may seem

dangerous, therefore, instead of throwing away the normalized Hamming distance between

feature frames, they are used as the substitution cost for the Levenshtein distance, while

keeping the insertion and deletion costs to 1.

Ci,j = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ci−1,j−1 + d(ti, pj)

Ci,j−1 + 1

Ci−1,j + 1

(4.7)

where d(ti, pj) = Hamming(ti, pj)/24 since ti and pj are made from 24 bits and we want

d(ti, pj) to be a value between 0 and 1.
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Matching Musical Performances with TES

The TES of a performance is a binary string, it is very easy to align with the

TES of another performance, for example, a short segment of 9 seconds of audio coded as

11001001 would have a Levenshtein distance of 5.0 with the 10 seconds segment of audio

coded as 110110010 (11001001 → 110101001 → 1101101001 → 110110001 → 1101100101 →
110110010).

Normalizing the distances

The Levenshtein distance between performances of length N and M cannot be

greater than the length of the longest one of them, so in order to normalize the Levenshtein

distance it was divided by max(N,M). Once normalized, it was possible to set a threshold

to decide whether two performances match or not. The LCS distance cannot be grater than

N + M , so in order to normalize the LCS distance it was divided by N + M . The DTW

distance was also divided by N + M .
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Figure 4.13: ROC curves that resulted from using Haitsma-Kalker’s AFP for the considered
aligning techniques
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4.5.2. Results on Matching Musical Performances

Figure 4.13 shows the ROC curves that resulted from using Haitsma-Kalker’s AFP.

DTW turned out to be the best aligning technique for this AFP. The Levenshtein distance

did not work well with Haitsma-Kalker’s AFP.
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Figure 4.14: ROC curves that resulted from using the AFP of MPEG-7 for the considered
aligning techniques

Figure 4.14 shows the ROC curves that resulted from using the AFP of MPEG-7.

To use flexible string matching techniques, the AFP of MPEG-7 from every song (which

consist of a sequence of floating point vectors) was converted into a string (i.e. a sequence of

integer values) through vector quantization. However, for DTW the original floating point

vectors were used. Therefore, in the case of this AFP the poor results of LCS, Levenshtein,

and twLCS compared with DTW might be the consequence of the loss of precision associated

with vector quantization. Levenshtein and LCS distances resulted with similar performances

being LCS slightly better. Finally, twLCS turned out to be the worst choice for this audio-

fingerprint.
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Figure 4.15: ROC curves that resulted from using TES for the considered aligning techniques

Figure 4.15 shows the ROC curves that resulted from using TES. The best aligning

techniques turned out to be LCS and Levenshtein and twLCS had the worst performance.
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Figure 4.16: ROC curves that resulted from using MBSES for the considered aligning
techniques
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Figure 4.16 shows the ROC curves that resulted from using MBSES. With MBSES

all the aligning techniques performed very well. It seems as if the selection of the aligning

technique was not as important as the selection of the audio-fingerprint. Nevertheless, LCS

outperformed the other aligning techniques.
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Figure 4.17: Best ROC curves for the considered AFP/Aligning technique combinations

In Figure 4.17 we clearly see that the best choice for aligning musical performances

among those tried in this work is achieved by using MBSES on the front-end and LCS as

the aligning technique.
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The area under a ROC curve is frequently used for scoring the performance of

classification systems, the greater the area under the ROC curve is, the better the classi-

fication system works. The left part of a ROC curve is much more relevant than the right

part, this fact is disregarded when the area under the ROC curve is used for scoring classi-

fication systems. Therefore, we decided to list the true positive rates for the false positive

rates of 0, 1 %, 2 %, and 5 % (i.e. the leftmost part of the ROC curves) on Table 4.10. The

best precision rates for the considered Aligning-technique/Audio-signature combination are

printed in boldface on Table 4.10.

Table 4.10: Precision Rate for the all the Aligning-Technique/Audio-Signature combinations
used in the tests

Align/AFP FPR=0 FPR=0.1% FPR=1 % FPR=2% FPR=5%
LCS/SES 77.34% 94.53% 98.44 % 99.22% 99.22%

twLCS/SES 76.56% 81.25% 91.41% 96.88% 97.66%
Leven/SES 85.94% 92.97% 96.09% 96.09% 96.09%
DTW/SES 67.97% 77.34% 90.63% 92.19% 98.44%
LCS/E2S 82.81% 91.41% 91.41% 92.19% 92.19%

twLCS/E2S 83.59% 90.63% 91.41% 91.41% 92.19%
Leven/E2S 46.88% 49.22% 52.34% 58.59% 68.75%
DTW/E2S 76.56% 91.80% 96.09% 96.88% 97.66%
LCS/SFS 50.78% 57.03% 64.45% 67.19% 77.73%

twLCS/SFS 46.88% 48.44% 58.20% 62.89% 68.75%
Leven/SFS 50.78% 57.03% 65.23% 67.19% 76.56%
DTW/SFS 68.75% 72.66% 82.03% 88.28% 93.75%
LCS/TES 68.75% 75.00% 83.20% 86.72% 89.45%

twLCS/TES 46.88% 49.22% 52.34% 57.81% 68.36%
Leven/TES 70.70% 82.81% 86.72% 87.89% 88.28%
DTW/TES 46.88% 49.22% 57.81% 61.72% 73.44%
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4.6. Conclusions of the chapter

The purpose of the experiments reported in this chapter was to evaluate the ro-

bustness of MBSES and TES with respect to state-of-the-art audio-fingerprints. The state-

of-the-art AFP is the AFP of MPEG-7 but the most cited audio-fingerprint of Haitsma

and Kalker was an obligated reference. In the experiments reported in this chapter, MBSES

emerged as the most robust audio-fingerprint available.



Chapter 5

Conclusions and Future Work

In this thesis report two robust audio-fingerprints based on Shannon’s entropy

where introduced as TES and MBSES. Audio-fingerprints have to be evaluated from seve-

ral angles, basically robustness, compactness, time complexity, granularity, and scalability.

However, robustness is definitively the most important aspect of an audio-fingerprint, that

is why all the experiments that were done in this research were designed to evaluate this

relevant characteristic. Therefore, we begin this short chapter with some conclusions on

robustness, and then add some comments on the other aspects of these AFPs.

1. Robustness.

The Multi Band spectral entropy signature has proved to be highly robust to heavy

degradations of the audio signals. MBSES was found to be more robust than TES

specifically for equalization, noise contamination and loudspeaker to microphone trans-

mission in a noisy environment (LsMic). MBSES was found to be more robust than

the AFP of MPEG-7 specifically for Noise contamination, LsMic and low-pass filtra-

tion. Finaly, MBSES was found to be more robust than Haitsma-Kalker’s AFP under

equalization, noise contamination, LsMic, lowpass filtration, lossy compression and

scaling.

It is very interesting how the MBSES of the low pass filtered songs did not change

significatively even when only 8 out of the 24 considered critical bands fall below

the cutoff frequency of 1 KHz. To understand this effect, remember that a low-pass

79
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filter attenuates the contents of the signal above the cutoff frequency gradually as the

frequency increases. The Butterworth filter of second order (See [Proakis92]) used to

filter the audio signals attenuates the signal at a rate of with -20 dB/decade, this

means that the signal’s amplitude declines to a tenth for a frequency that is ten

times the cutoff frequency. Since the entropy value depends on the distribution of

the spectrum for each considered band, disregarding its amplitude, then the entropy

value does not change significatively except for the last 4 bands. You can see how the

absolute differences shown in Figure 4.11(c) are not relevant below the first 20 bands,

only the last 4 bands (at the top) seem affected.

2. Compactness.

MBSES stores only 24 bits every 185 ms, it is a very compact finger-print of only 0.13

kbit/s. As a reference, Haitsma-Kalker’s AFP [Haitsma02] requires 2.6 kbit/s. The

AFP of MPEG-7 is an AFP with a variable resolution, its compactness is in the range

of 0.76 to 4.6 kbit/s. TES is an extremely compact AFP of only 0.001 kbit/s but it

was designed for whole songs only (not for small excerpts of audio).

3. Time complexity.

As specified in Subsections 3.2.1 and 3.3.3, the time complexity of the TES and MB-

SES extraction algorithms are both linear on the length of the audio-signal. However,

the time complexity of the algorithms for determining the AFP of MPEG-7 and

Haitsma-Kalker’s AFP are also linear on the length of the audio-signal. TES is deter-

mined in Time-domain and therefore faster to compute. MBSES, Haitsma-Kalker’s

AFP and the AFP of MPEG-7 are determined in the frequency domain and are deter-

mined in similar times. Table 5.1 shows the time it took to determine the considered

audio-signatures of a song of 4 minutes and 39 seconds using a personal computer

with processor Pentium 4 (2.8GHz) and 512 MB of RAM.

4. Granularity.

In this thesis, we show the results of the experiments where excerpts of five seconds

were used to identify a song. However, we experimented with excerpts of 10, 15 and 20
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Table 5.1: AFP Extraction timing for a song of 4 minute and 39 seconds using a personal
computer with a Pentium 4 processor (2.8 GHz)

Audio-Fingerprint Time in seconds
TES 8.5

MPEG-7 15.5
MBSES 20

Haitsma-Kalker’s 24.5

seconds as well. An elementary observation from such experiments is that the shorter

the excerpt was, the higher the required resolution (i.e. greater overlap percentage)

to identify a song.

5. Scalability.

The first row of Table 4.4 is the accuracy rate of searching original songs among 228

audio files. In experiment 2, the songs were searched inside a collection of 4 000 songs,

no decrease of the precision rate of MBSES is observed with the increase of the the

database size. Metric indexing, as surveyed in [Chavez01], could be used to speed up

searches.

6. Polyphonic Audio Matching.

The audio fingerprint based on Multi-Band spectral entropy (MBSES) emerged as the

more adequate AFP for the problem of matching musical performances among those

included in our tests. The LCS distance performed better as an aligning technique and

since it has the versatility of flexible string matching techniques, it is more adequate

for applications like broadcast monitoring of musical performances. It was a surprise

to discover that LCS worked better than twLCS since it was reported otherwise in

[Guo04], two facts explain this result, the first is that the experiments reported in

[Guo04] were carried out with music that was “monophonic in nature” (i.e. folk mu-

sic) while we used polyphonic music instead. The second fact is that as described

in [Guo04], they did not used real performances for they experiments, they “shorte-

ned and lengthened randomly selected notes to simulate inaccuracies in rhythm” and

“stretched out the song by factors up to four” to obtain simulated performances. We



82 Chapter 5: Conclusions and Future Work

instead collected real musical performances for this work. We do not doubt that by

repeating values of audio fingerprints twLCS might work well, unfortunately that does

not occur with real musical performances.

5.1. Future work

There are several aspects that we are willing to work on in the future, they are:

1. Experiment with alternative ways of estimating the amount of information.

In this thesis, Shannon’s entropy was used intensively as a way of estimating the ex-

pected information content in a signal. Recent work on Theory of Information present-

ed Renyi’s entropy as an alternative to Shannon’s entropy for information estimation

purposes [Principe00]. Renyi’s entropy of order α is computed with Equation (5.1).

HRα =
1

1 − α
log

( N∑
k=1

pα
k

)
(5.1)

There is a relation between Renyi’s entropy and Shannon’s entropy given by Equation

(5.2).

ĺım
α→1

HRα = HS (5.2)

Renyi’s Entropy tends to Shannon’s entropy when its order α tends to one. However,

Renyi’s entropy of second order or above might work better than Shannon’s entropy

for audio-fingerprinting purposes.

2. Shannon made rigorous the idea that the the entropy of a process is the amount

of information in the process. He focused on memoryless sources whose probability

distribution did not change with time and whose outputs were drawn from a finite

alphabet. However, the measures of information have recently been extended to more

general random processes [Gray90]. We are willing to find out if these new unrestricted

ways of measuring the information content of random processes produce better results

in robust audio-fingerprinting.
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3. Use of Multi-Band Spectral Entropy for Automatic Speech Recognition (ASR).

In Appendix D some experiments on the use of Entropy-Spectrograms for the charac-

terization of utterances are reported. In these experiments, the Entropy-Spectrograms

seems to be a slight improvement to Energy-spectrograms and LPC-12 coefficients. In

the future we intend to validate this results by using the TIMIT database. Some ex-

periments with noisy speech are also required, perhaps using the AURORA database.

The use of the Continuous Fourier Transform explained in Appendix A apparently

does not lead to any improvement according to our experiments, this might be due

to a not so chaotic nature of the speech signal. Again this should be validate with

more experiments. The use of predictograms using the kernel predictor explained in

Appendix B came out as the worst choice, apparently, the gaussian nature of the

speech spectrum makes the blind method of kernel predictability useless for speech

recognition purposes.

4. Indexing techniques for Music Information Retrieval (MIR).

To search a song among hundreds of thousands of them using only a small degraded

excerpt as a query is a challenging problem. The search has to be done in milliseconds

if thousands of queries per second have to be answered. Haitsma and Kalker use an

inverted index [Haitsma02], Cheng Yang uses locally sensitive hashing (LSH) combined

with the Hough Transform [Yang02]. We are working in the design of an index that

should reduce the searching time of the state-of-the-art indexes while preserving the

precision rate of the brute-force procedure that was used in our test for the assessment

of robustness.
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AFP Audio-Fingerprint

ASR Automatic Speech Recognition

CFT Continuous Fourier Transform

DFT Discrete Fourier Transform

DTW Dynamic Time Warping

FN False Negative

FP False Positive

FPR False Positive Rate

fps Frames Per Second

FRR False Rejection Rate

kbps kilo-bits per second

LCS Longest Common Subsequence

LPC Linear Prediction Coding

LSH Locally Sensitive Hashing

MBSES Multi-Band Spectral Entropy Signature
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MFCC Mel-Frequency Cepstral Coefficients

MIR Music Information Retrieval

MP3 MPEG1,2 Layer 3

MPEG Moving Pictures Experts Group

ROC Receiver Operating Characteristics

SCF Spectral Crest Factor

SFM Spectral Flatness Measure

SNR Signal to Noise Ratio

TES Time-domain Entropy Signature

TN True Negative

TP True Positive

TPR True Positive Rate

twLCS time warped Longest Common Subsequence



Appendix A

Continuous Fourier Transform

The Continuous Fourier Transform (CFT) is defined as in Equation (A.1), it may

be applied to any signal. However, since the CFT has an infinite kernel its exact computation

is not an option.

X(jω) =
∫ ∞

−∞
x(t)e−jωtdt (A.1)

The Discrete Fourier Transform (DFT) is defined as in Equation (A.2. The DFT

has a kernel with the same size as the length of the signal as can be seen in Equation (A.3).

When using the DFT, you are either assuming that the signal is periodic or accepting the

fact that the DFT will consider the whole signal as a single period of a waveform that is

periodic. However, the speech signal is not periodic, in fact, the unvoiced segments of the

speech signal are particularly aperiodic.

X[k] =
N−1∑
n=0

x[n]e−j2πkn/N (A.2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X[0]

X[1]

X[2]
...

X[N ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

1 W 1
N W 2

N · · · WN−1
N

1 W 2
N W 4

N · · · W
2(N−1)
N

...
...

...
. . .

...

1 WN−1
N W

2(N−1)
N · · · W

(N−1)2

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[0]

x[1]

x[2]
...

x[N ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.3)
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Where WN = e−j2π/N

The CFT may be determined with high precision on the Hermite’s zeroes as Cam-

pos demonstrated in [Campos92]. If enough values of the CFT are determined, a discretiza-

tion of the CFT is obtained, Campos’ discretization is computed using a finite kernel. In

fact, the size of the kernel equals the number of the Hermite’s zeroes where the CFT values

are determined. The kernel for the discretization of the CFT is defined in Equation (A.4).

Fk,l =
π√
2n

4

√
4n + 3 − x2

l

4n + 3 − x2
k

ejxkxl (A.4)

where:

x is a vector with the roots of Hermite’s Polynomial of degree n

f(x) is the signal at points x

g = Ff(x) is a vector with the CFT evaluated at the roots of the Hermite’s Polynomial

To find the discretization of the CFT of a speech signal, we designed the following

method:

1. Convert the sequence 0, 1, 2, ..., N −1 into a sequence with N (the frame size) equidis-

tant values from −π to π

2. Find the coefficients of the trigonometric polynomial of degree M < N/2 given by

Equation (A.5) that best adjusts to the speech signal waveform using Formulas (A.6)

and (A.7) to find aj and bj respectively [Mathews00].

a0

2
+

M∑
j=1

[ajcos(jx) + bjsin(jx)] (A.5)

aj =
2
N

N∑
k=1

[f(xk)cos(jxk)] ∀ j = 0, 1, . . . , M (A.6)

bj =
2
N

N∑
k=1

[f(xk)sin(jxk)] ∀ j = 1, 2, . . . , M (A.7)
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3. Form vector x with the roots of the Hermite polynomial of degree P

4. Construct the Fourier’s Kernel matrix F using Equation (A.8) according to [Campos95].

This Matrix is Hermitian so F−1 = F t. Multiplying a signal vector by F is equivalent

to finding a discretization of its CFT, multiplying by F t would be a way of computing

the inverse CFT.

Fi,j =
π√
2n

4

√
4n + 3 − x2

j

4n + 3 − x2
i

[cos(xixj) + jsin(xixj)] (A.8)

5. Evaluate the trigonometric polynomial found in step (2) in the hermite’s zeros vector

of step (3), call this vector f .

6. Compute g = Ff so g will be the discretization of the CFT of f

Hermite’s Polynomials are defined as in Equation (A.9).

Hn(x) = (−1)nex2 dn

dxn
ex2

(A.9)

Hermite Polynomials form a complete orthogonal set on the interval with respect

to the weighting function ex2
, so they make an orthogonal system, meaning Equation (A.10)

holds.

∫ ∞

−∞
ex2

Hn(x)Hm(x)dx = 0 ∀n �= m (A.10)

The first ten Hermite’s polynomials are written below, those of degree 2, 3 and 4

are plotted in Figure A.1.

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x2 + 12

H5(x) = 32x5 − 160x3 + 120x

H6(x) = 64x6 − 480x4 + 720x2 − 120

H7(x) = 128x7 − 1344x5 + 3360x3 − 1680x
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Figure A.1: Hermite’s Polynomials

H8(x) = 256x8 − 3584x6 + 13440x4 − 13440x2

H9(x) = 512x9 − 9216x7 + 48384x5 − 80640x3 + 30240x

H10(x) = 1024x10 − 23040x8 + 161280x6 − 403200x4 + 302400x2 − 30240
...
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Figure A.2: Example of the discretization of the CFT.

As an example of the CFT, consider: x(t) = e−2|t| then:

X(jω) =
∫ ∞

−∞
e−2|t|e−jωtdt = X(jω) =

4
ω2 + 4

(A.11)

Figure A.2 shows x(t), X(jω), the discretization of the CFT of x(t) and the DFT

of x(t). You can clearly see how the disretization of the CFT of x(t) looks very similar to

X(jω) unlike the DFT of x(t). Imaginary parts are plotted in red. The MATLAB code used

to generate this figure is:

x=xiher(30); f=exp(-2*abs(x)); F=fourierker(30); g=F*f;

plot(x,real(g),’r’); plot(x,imag(g),’c’); gv=4./(x.^2+4);

plot(x,gv,’g’) four=fft(f); plot(x,real(four),’k’);

plot(x,real(four),’b’);

As another example of the CFT, consider: x(t) = sin( t2

2 ) then:

X(jω) = π[cos(
ω2

2
) + sin(

ω2

2
)] (A.12)
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Figure A.3: Example of the discretization of the CFT

Figure A.3 shows x(t), X(jω), the discretization of the CFT of x(t) and the DFT

of x(t). Again, you can clearly see how the disretization of the CFT of x(t) looks quite

similar to X(jω) unlike the DFT of x(t). Imaginary parts are plotted in red. The MATLAB

code used to generate this figure is:

load her480;y=x;[F,xh,nf]=fkerasin(y);f=sin((xh.^2)/2);

g=F*f;plot(xh,abs(g),’r’)

gv=(cos(xh.^2/2)+sin(xh.^2/2))*sqrt(pi);plot(xh,abs(gv),’g’)

four=fft(f);plot(xh,abs(four),’b’)

Hermite’s polynomial roots are not spaced at equal distances. However, for Her-

mite’s polynomials of high degree there is a linear range where the roots may be considered

equidistant, see Figure A.4. We chose to use only the 170 roots of least magnitude of an

Hermite’s polynomial of degree 480.

When adjusting the speech signal to a trigonometric polynomial, we used one of

degree 100 (M = 100) since using a lower degree affected the waveforms of unvoiced speech

signals. The speech frames were made of 256 samples (N = 256) and the overlap of fifty
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Figure A.4: In the Linear range, the zeroes of Hermite’s polynomials are equidistant. blue:
480 Zeros Red: 640 Zeros Black 1000 Zeros

percent. No window was applied to the frames (which is one of the advantages of the CFT)

and the sampling was made for telephonic quality (8 samples per second, 8 bits per sample,

mono-aural). Algorithm 2 was used to determine the spectrogram of a utterance.

Figure A.5 shows the Energy-spectrograms determined using the CFT of two utter-

ances of each word from the set of Spanish words: {“uno”, “dos”, “tres”, “cuatro”, “cinco”}
spoken with a Mexican accent.

In order to compare Energy-Spectrograms determined using the CFT with the

Energy-Spectrograms determined using the traditional DFT, Figure A.6 was included, it

shows the Energy-Spectrograms determined using the DFT of two utterances of each word

from the set: {“uno”, “dos”, “tres”, “cuatro”, “cinco”} spoken with a Mexican accent.

Algorithm 3 was used to determine the Energy-spectrogram of a utterance using the DFT.

This algorithm uses standard parameters for speech signal processing such as, frame size N

of 30 ms, Hann Window and overlapping of 30 % between frames.
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Algoritmo 2 Extraction of CFT spectrogram

Input:

Speech waveform.

Output:

Spectrogram

SpectrogramCFT()

1 Fill vector x̂ with the roots of the Hermite’s polynomial of degree n

2 Construct the finite kernel matrix F using x̂

3 while there are more frames

4 Adjust the speech waveform to a trigonometric polynomial p(x)

5 Evaluate the trigonometric polynomial x̂, call this vector f (f = p(x̂))

6 Compute g = Ff (CFT for this frame)

7 Add vector g to the spectrogram
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uno uno2

dos dos2

tres tres2

cuatro cuatro2

cinco cinco2

Figure A.5: CFT-Spectrograms of two utterances of 5 spanish digits spoken with a Mexican
accent
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uno uno2

dos dos2

tres tres2

cuatro cuatro2

cinco cinco2

Figure A.6: DFT-Spectrograms of two utterances of 5 spanish digits spoken with a Mexican
accent
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Algoritmo 3 Algorithm to determine the spectrogram of a utterance

1. Read a Frame of size N

2. Multiply the frame by the Hamming Window

3. Determine the DFT of the resulting sequence

4. For the first nineteen critical bands according to Bark’s scale:

Compute the energy of critical band b

E =
∑
i∈b

x2
i + y2

i

rem x and y are the real and imaginary parts of the DFT respectively.

Divide E by N and by wss

rem wss (Window Squared and Summed) is the energy in the Hamming

window

5. Add the vector of nineteen energies to the sequence of vectors (i.e. the spec-

trogram)

6. go to (1)





Appendix B

Kernel Predictors

A kernel predictor measures how predictable a signal is, it is opposite to the concept

of Entropy. Kernel predictors were used for image registration in [Gomez-Garćıa06]. KP 1

was defined in [Gomez-Garćıa06] as Equation (B.1).

KP 1 =
2

n(n − 1)

n−1∑
i=1

n∑
j=i+1

K(Xi, Xj) (B.1)

where the kernel K is the gaussian:

Gσ(x1, x2) = exp(−||x1 − x2||2
2σ2

) (B.2)

σ is a free parameter.

The MATLAB code for computing this kernel predictor is:

function kp=kernelPredictor(x,sigma)

n=length(x);

suma=0;

for i=1:n-1

for j=i+1:n

suma=suma+exp(-(x(i)-x(j))^2/(2*sigma^2));

end

end

kp=suma*2/((n)*(n-1));

By computing the predictability for each critical band of every frame of a utterance,

we build the predictogram of the utterance. Algorithm 4 may be used for extracting the

predictogram of a speech signal.
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Algoritmo 4 Extraction of a predictogram

Input:

Speech waveform.

Output:

Predictogram in matrix KPM

Predictogram()

1 n ← 1

2 while there are more frames

3 Multiply the frame by the Hamming Window

4 Compute the DFT frame

5 for b ← 1 to 19

6 Compute KP 1 from the components of the DFT belonging to band b

7 Store result in KPM [n][b] (predictability for frame n and band b)

8 n ← n + 1

9 return KPM
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uno uno2

dos dos2

tres tres2

cuatro cuatro2

cinco cinco2

Figure B.1: Predictograms of two utterances of 5 spanish digits spoken with a Mexican
accent

Figure B.1 shows the predictograms of two utterances of each word from the set

of Spanish words: {“uno”, “dos”, “tres”, “cuatro”, “cinco”} spoken with a Mexican accent.





Appendix C

Gaussianity

Negentropy is a measure of the Gaussianity of a probability density function

(PDF). If a signal is Gaussian it is considered to have a normal distribution and the Negen-

tropy vanishes. The Negentropy states how far a PDF is from being normal, it is defined

as:

J(px) = H(φx) − H(px) (C.1)

Where:

J(px) is the Negentropy of the PDF px

H(px) is the entropy of the PDF px

φx is the Gaussian density with the same mean and variance as px

H(φx) is the entropy of the PDF φx

To verify that the spectral coefficients of the critical bands according to the Bark

scale follow a gaussian distribution, the negentropy of 1000 randomly selected frames of

audio was computed. For each frame the Negentropy was computed as in the block diagram

of Figure C.1

To build histograms some precautions were observed:

The dynamic range of the whole spectrum was determined.
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Figure C.1: Block diagram for computing Negentropy
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The number of bins in the histogram was fixed to 5 % of the number of spectral

coefficients in the band.

The width of each bin equals the dynamic range of the whole spectrum divided by

the number of bins.

The Negentropy values obtained ranged between 0 and 1.1092, and since the en-

tropy values ranged from 0 to 14.8051, then assuming gaussianity implies an error of 7.5 %.

Figure C.2 shows two versions of the curve BSES10 (Entropy vs time for the tenth critical

band) for a segment of audio corresponding to 100 frames (37 seconds). The upper curve

was generated assuming gaussianity and the lower curve was generated using histograms.

The fact that these curves are not identical implies that the spectral coefficients correspon-

ding to a single band are not strictly gaussian. In conclusion, since assuming gaussianity

and building histograms produce different entropy values, the method for extracting the

MBSES of the songs in the collection must be the same method used at extracting the

MBSES for a querying song. These methods are not equivalent.
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Figure C.2: SE10(t) obtained assuming gaussianity (top) and using histograms (down)



Appendix D

Use of Multi-Band Spectral

Entropy in Isolated Word

Recognition

To find out whether spectrograms would be of any use in Automatic Speech Recog-

nition (ASR), the following experiment was designed:

Twenty one students read 34 words 4 times each, all those utterances were recorded

to make a collection of 2772 audio files (i.e. wav files). The list of words consists of the ten

digits in spanish (i.e. “cero”, “uno”,...,and “nueve”, with a Mexican accent) as well as the

names of the 24 greek letters: α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ, ν, ξ, o, π, ρ, σ, τ, υ, φ, χ, ψ, ω, (i.e.

“alpha”, “beta”, “gamma”, etc.). The Spectral entropy was determined only for the lower

nineteen critical bands since human speech does not have spectral components above 4

kHz. The frame size was 50 ms and the frames were overlapped 75% so that a vector of

19 spectral entropies was obtained every 12.5 ms. The sequence of such vectors make the

speech entropygrams. Figure D.1 shows the entropygrams two utterances of each word from

the set of Spanish words: {“uno”, “dos”, “tres”, “cuatro”, “cinco”} spoken with a Mexican

accent.

The Linear Prediction Coding (LPC) coefficients [Rabiner78], and Energy-spectrograms

are among the most commonly used features in Automatic Speech Recognition (ASR). They
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uno uno2

dos dos2

tres tres2

cuatro cuatro2

cinco cinco2

Figure D.1: Entropygrams of two utterances of 5 spanish digits spoken with mexican
pronunciation
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Figure D.2: ROC curves that resulted from the experiments on isolated word recognition

were therefore included in our tests. Spectrograms determined with the use of the Conti-

nuous Fourier Transform (CFT) as in [Campos92] were also included in the experiments. Fi-

nally predictograms were also considered as candidate features since predictability has been

successful as the key feature of images in the field of image registration [Gomez-Garćıa06].

The features of every utterance was compared with those of every other utterance using

the DTW distance for that matter. Figure D.2 shows the ROC curves that resulted from

this experiments; entropygrams show a better accuracy rate than the other features since

its ROC curve has a greater AUC (Area Under Curve).


