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Abstract

This work presents a new approach to model stability and security constraints in Optimal
Power Flow (OPF) problems based on an Artificial Neural Network (ANN) representation
of the system security boundary (SB). The novelty of this proposal is that a closed form,
differentiable function derived from the system SB is used to represent security constraints
in an OPF model. The procedure involves two main steps: First, an ANN representation of
the SB is obtained based on Back-Propagation Neural Network (BPNN) training. Second, a
differentiable mapping function extracted from the BPNN is used to directly incorporate this
function as a constraint in the OPF model. This approach ensures that the operating points
resulting from the OPF solution process are within a feasible and secure region, whose limits
are better represented using the proposed technique compared to typical security-constrained
OPF models. When an insecure operative scenario is identified, the proposed approach uses
as a corrective action load shedding, taking advantage of properly knowing the shape of the
SB; yielding to determine in an optimal fashion the total amount of load to be curtailed, in
such a way that the system returns to the feasible and secure region, taking into account the
inherent cost of the load shedding.

The effectiveness and feasibility of the proposed approach is demonstrated through the
implementation as well as the testing and comparison using the IEEE 2-area and 118-bus
benchmark systems of an optimal dispatch technique that guarantees system security in the
context of competitive electricity markets.

Furthermore, in order to demonstrate that the problem in determining the SB becomes
a multi-dimensional issue when different system parameters are varied, two types of SBs
are presented: the resulting SB when the loading directions are varied maintaining fixed
generator’s dispatch directions at prespecified values, and the resulting SB when the dispatch

directions of generators are varied maintaining fixed loading directions.



Acknowledgments

I would like to express my deepest gratitude to my advisor, Ph.D. Claudio Fuerte, whose
invaluable assistance, support, and guidance have considerably improved my graduate expe-
rience. Thanks for the confidence and opportunity to be one of his doctoral students, as well

as your unconditional friendship.

I must also acknowledge my co-advisor Ph.D. Claudio A. Canizares for his technical as-
sistance and great hospitality during my stay at Waterloo. I must give him a very special
acknowledgment for accepting me as a visiting student at the ECE Department of the Uni-
versity of Waterloo. [ wish to express my gratitude for sharing his time, knowledge and

experience with me.

My acknowledgment is also due to the members of the doctoral committee, for the sup-
port they provided to improve the level of this thesis report. Their valuable suggestions were

very helpful to finish this thesis.

A great acknowledgment to the Consejo Nacional de Ciencia y Tecnologia and the Univer-
sidad Michoacana de San Nicolas de Hidalgo for providing the financial and academic means

to develop this thesis.

There are no words to express my love to my wife Mayra Edith. Thank you for your
dedication, patience, love, and confidence in me. I really appreciate the great effort you
made in accompany me in the fun and great adventure in Canada. Also, I apologize to my
little children Juan Javier and Pamela Sofia for the time we did not play together. However,
I hope some day this may help as a small example to overcome and achieve their goals. [

love you with all my heart.

My parents deserve special mention for their constant support and guidance to reach my
goals. Thank you father for teaching me how a man must support and care for his family, I
am sure you are with God in heaven, because you always were a fair and good man; I wish
someday I will ever be at least half of what you were. Mother I appreciate your countless

prayers for me and my family. T am proud to be your son. God bless you.

i



Dedication

To my father

Javier Gutierrez Franco.f

To my wife Mayra Edith,

my son Juan Javier, and my daughter Pamela Sofia.

To my mother Maria Socorro.

To Juan Servin Trejo.

To my aunts Juana and Tinaf.

il



Contents

Abstract . . . . . . e i
Table of Contents . . . . . . . . . . . .. iv
List of Figures . . . . . . . . . . . e vii
List of Tables . . . . . . . . . . e ix
List of Publications . . . . . . . . . . . ... xi
List of Terms . . . . . . . . . . xii
1 Introduction 1
1.1 Research Motivation . . . . . . . . . .. . ... 1
1.2 Literature Review . . . . . . . . . . . . e 3
1.3 Objectives . . . . . . . . e 5}
1.4 Main Contribution . . . . . . . . . . . ... 6
1.5 Thesis Outline . . . . . . . .. . . . . 6
2 Theoretical Concepts
2.1 Introduction . . . . . . . . ...
2.2 Power System Mathematical Representation . . . . .. .. ... ... ....
2.2.1 The Synchronous Machine Model . . . . . . . .. ... .. ... ... 11
2.2.2  Excitation Control System . . . . . . . ... ... .. ... ... 12
2.2.3 Prime-mover and Speed Governor . . . . . . . .. ... ... 13
2.24 Loads . . . . . . e 14
2.2.5 Network Power Equations . . . . ... ... ... .. ... ... ... 14
2.3 Bifurcation Theory . . . . . . . . . 15
2.4 Differential Algebraic Equations Equivalent System and Equilibrium Points . 22
2.5 Stability /Security Boundaries . . . . . ... ... 23
2.6 SB Determination Procedure . . . . . . . . .. ... ... L. 24
2.7 SB Numerical Determination . . . . . . . . .. . ... ... ... ....... 26

v



2.7.1 Continuation-based Methods . . . . . . . . . . . . . ... ... ... 27

2.7.2 OPF-based Methods . . . .. .. ... .. ... ... ... ... . 27
2.7.3 Eigenvalue Analysis . . . . . . . . .. ... 29
2.7.4 Loading directions-based SB . . . . . .. ..o 29
2.7.5 Dispatch directions-based SB . . . .. ..o o000 29
2.8 Conclusions . . . . . . . e 32
Approximations of the Security Boundary 33
3.1 Imtroduction . . . . . . .. 33
3.2 BPNN-based SB . . . . . .. 34
3.3 BPNN Training and Testing . . . . . . . . ... . . L L0 39
3.4 BPNN and NR Nonlinear Function . . . . ... ... ... .. ... ..... 41
3.5 The Bias/Variance Dilemma . . . . . . .. .. ... ... L. 42
3.6 Study Cases . . . . . .. 43
3.6.1 IEEE 2-area Benchmark System . . . . . .. ... ... ... ..... 43
3.6.2 IEEE 118-bus Benchmark System . . . . . . . .. ... .. ... ... 47
3.7 Conclusions . . . . . . .. 54

Proposed Security Boundary Constrained-Optimal Power Flow Auction

Model 56
4.1 Introduction . . . . . . . . .. 56
4.2 SC-OPF Model . . . . . . .. 56
4.3 Dynamic SC-OPF Model . . . . . . . . . ... o o7
4.4 Proposed SBC-OPF Model . . . . .. .. ... . . . ... ... 58
4.5 Study Cases . . . . .. 60
4.5.1 1TEEE 2-area Benchmark System . . . . . .. . .. ... .. ... ... 60
4.5.1.1 Two Loads . . . .. . .. . . . .. ... ... 60

4.5.1.2 Three Loads . . . . . . . ... . ... ... .. ... 63

4.5.2 1EEE 118-bus Benchmark System . . . . . .. .. ... ... ..... 65
4.5.2.1 Three Areas . . . . . . . . .. e 65

4.5.2.2 Four Areas . . . . .. ... 66

4.6 Considerations . . . . . . . . . .. 67
4.7 Conclusions . . . . . . . .. 68



5 Conclusions and Contributions 70

5.1 Conclusions . . . . . . . e 70
5.2 Contributions . . . . . . . .. 73
5.3 Future work . . . . . .. 73

A Smooth Nonlinear Differentiable Security Boundary Functions 75
A.1 IEEE 2-area Benchmark System . . . ... .. ... ... ... ....... 75
ATl Two Areas . . . . . . . . e 75

A.1.2 Three Areas . . . . . . . . .. 76

A.2 IEEE 118-bus Benchmark System . . . . . .. ... ... ... ....... I
A21 Two Areas . . . . . . . . e 7

A.2.2 Three Areas . . . . . . . . e 78

A23 Four Areas. . . . . . . ... 79

B IEEE 2-area Benchmark System Data 81
C IEEE 118-bus Benchmark System Data 84
D Loading/dispatch Directions 94
Bibliography 118

vi



List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4

3.5
3.6

3.7

3.8

3.9

3.10

Structure of the power system modeling. . . . . ... ... ... ... ...,
Power system model time-scale decomposition. . . . . . . . ... ... ...
[EEE-type DC-1 excitation control system. . . . . . . . . ... ... .. ...
Simplified speed governor and prime-mover. . . . . . . ... .. ... .. ..
SNBinaPVecurve. . . . . .. ...
LIBina PV curve. . . . . . . . . . .o
Bifurcation of static EPsinto HBs. . . . . . .. ... ... ... .......
SB for the IEEE 118-bus benchmark system considering two loading areas. .
SB for the IEEE 118-bus benchmark system considering two dispatch areas.

SB for the IEEE 118-bus benchmark system considering three dispatch areas.

BPNN architecture. . . . . . . . ..o
Single neuron structure. . . . . ... L0000 Lo
IEEE 2-area benchmark system. . . . . . . . .. .. ... ... ... .....
Two-load SB mapping for the IEEE 2-area benchmark system (a) using NR
and (b) using BPNN. . . . . ..
IEEE 2-area system including a load at bus 6. . . . . .. ... ... ... ..
Three-load SB mapping for the IEEE 2-area benchmark system (a) using NR
and (b) using BPNN. . . . . ..o
SB mapping for the IEEE 118-bus benchmark system considering two loading
areas (a) using NR and (b) using BPNN. . . . ... .. ... .. ... ...
SB mapping for the IEEE 118-bus benchmark system considering three loading
areas (a) using NR and (b) using BPNN. . . .. ... .. ... .. ... ...
SB mapping for the IEEE 118-bus benchmark system considering two dispatch
directions (a) using NR and (b) using BPNN. . . .. ... ... ... ...
SB mapping for the IEEE 118-bus benchmark system considering three dis-
patch directions (a) using NR and (b) using BPNN. . . ... ... ... ..

vil

10
10
13
14
21
21
22
30
31
31

35
35
44

45
46

47

49

20

o2

23



4.1
4.2
4.3

C.1

Security and stability boundaries

for the IEEE 2-area system with two loads.

3-D security and stability boundaries for the IEEE 2-area system. . . . . ..

SB for the IEEE 118-bus system

IEEE 118-bus benchmark system

for three areas. . . . . . . . . . .. .. ...

viii

61
64
66

84



List of Tables

4.1 IEEE 2-area system loading scenarios. . . . . . . . ... ... ... .....
4.2 TEEE 2-area system load curtailment values. . . . . . . ... ... ... ...
4.3 1EEE 2-area system interchanging the load curtailment values. . . . . . . ..
4.4 TEEE 2-area system load curtailment values using BPNN and NR approaches.
4.5 IEEE 2-area system loading scenarios for three loads. . . . . . .. ... ...
4.6 IEEE 2-area system load curtailment values for three loads. . . . . . . . . ..
4.7 TEEE 2-area system load curtailment values for three loads using BPNN and
NR approaches. . . . . . . . . ..
4.8 118-bus system 3-area loading scenarios. . . . . . .. ... ... .. ... ..
4.9 118-bus system 3-area load curtailment values. . . . . . . .. ... ... ...
4.10 118-bus system 4-area loading scenarios. . . . . . . . ... ... ...

4.11 118-bus system 4-area loading scenarios. . . . . . .. . .. ... ... ....

B.1 Transmission line parameters. . . . . . . . . . . . . . ... ... ... ...
B.2 Load parameters. . . . . . . . . .. L
B.3 Generators parameters. . . . . . . .. ... e
B.4 Exciter parameters. . . . . . . . ... e e e e
B.7 Power generation bids for the 2-area system. . . . . . . ... ...
B.5 Turbine governor parameters. . . . . . . . . . ... Lo o

B.6 Power system stabilizer parameters. . . . . .. . ..o 00000

C.1 Transmission line parameters. . . . . . . . . . . . . . ... . ...
C.2 Transformer parameters. . . . . . . . . . . .. ..
C.3 Load parameters. . . . . . . . . ..
C.4 Shunt capacitors. . . . . . . . . . e
C.5 Generator parameters. . . . . . . . . ... e

C.6 Power generation bids for the 118-bus system. . . . . . .. . ... ... ...

X

61
62
62
63
63
64

65
65
66
67
67

81
81
82
82
82
82
83

85
88
89
90
90
92



D.1 21 directions for the case of two groups. . . . . . .. . ... ... ... ... 94

D.2 631 directions for the case of two groups. . . . . . . . ... 94
D.3 631 directions for the case of three groups. . . . . .. ... ... .. ... .. 101
D.4 631 directions for the case of four groups. . . . . . . . ... 107



List of Publications

1. V. J. Gutierrez-Martinez, and C. R. Fuerte-Esquivel, “Power flow formulation
as a nonlinear programming problem,” International Journal on Power System
Optimization (IJPSO), vol. 1, no. 1, January-June 2009. ISSN: 0975-458X.

2. V. J. Gutierrez-Martinez, C. A. Canizares, C. R. Fuerte-Esquivel, A. Pizano-
Martinez, and X. Gu, “Neural-network security-boundary constrained optimal

power flow”, IEEE Trans. on Power Systems, vol. 26, no. 1, pp. 63-72, February
2011. ISSN: 0885-8950.

3. R. Ramirez-Betancour, V. J. Gutierrez-Martinez, C. R. Fuerte-Esquivel, “Static
simulation of voltage instability considering effects of governor characteristics and
voltage and frequency dependence of loads,” in North American Power Sympo-
sium (NAPS) 2010, pp. 1 - 7, 26-28 Sept. 2010.

4. C. Battistelli, C. A. Canizares, M. Chehreghani, V. J. Gutierrez-Martinez, and
C. R. Fuerte-Esquivel, “Practical security-boundary-constrained dispatch mod-
els for electricity markets,” accepted at the 17th Power Systems Computation
Conference, August 22-26 2011, Stockholm, Sweden.

5. V. J. Gutierrez-Martinez, C. R. Fuerte-Esquivel, and N. Solis-Ramos, “Analysis

of static voltage collapse in a real subtransmission power system,” in preparation.

x1



List of Terms

ANN Artificial Neural Network
AVR Automatic Voltage Regulator

BPNN Back-Propagation Neural Network

CM Continuation Method

DAE Differential-Algebraic Equations
EP Equilibrium Point

HB Hopf Bifurcation

LIB Limit Induced Bifurcation

MSV Minimum Singular Value

NR Nonlinear Regression

ODEs Ordinary Differential Equations

OPF Optimal Power Flow

SB Security Boundary

SBC-OPF Security-Boundary Constrained OPF

SC-OPF  Security-Constrained OPF

SNB Saddle Node Bifurcation

SSC-OPF  Small-Perturbation Stability-Constrained OPF

VSC-OPF Voltage-Stability-Constrained OPF

xii



Chapter 1

Introduction

1.1 Research Motivation

Because of the highly stressed operating conditions faced by electric power systems, insecure
and dangerous operation scenarios have been frequently present as limits of system stability
are reached [Hines et al., 2008]. This is due to transmission utilization is increasing in sudden
and unpredictable directions, and competition together with other regulatory requirements
make new transmission facility construction more difficult. All these limits and restrictions
jeopardize system security and reliability, and have led to concerns on the part of system op-
erators regarding the secure operation of power networks, particularly in the new competitive
electricity market environment |U.S.-Canada Power System Outage Task Force, 2004].
Among these limits, the most important are the thermal equipment limits, generation
capability limits, voltage stability, oscillatory stability and transient stability limits. Con-
sequently, system operators are demanding tools that allow them to make fast and effec-
tive decisions, in order to prevent power systems from being operated close to these limits
[Avalos, 2008|. Therefore, the proper knowledge of the shape of the region delimited by these
constraints allow for taking better corrective and preventive actions for the cases when the sys-
tem is operating beyond or approaching the boundary of this region. This stability /security
region is defined as a set of load demands and power generations (in the controlled parameter
space) or voltages and their phase angles (in the state variables space) for which the power
flow equations and the stability /security constraints are satisfied [Wu and Kumagai, 1982],
[Kaye and Wu, 1982|. In this context, it is important to identify between security and stabil-
ity regions is important: when the limits mentioned are taken into account and no contingen-

cies are considered, the resulting region is called stability region. On the other hand, if at least



an N-1 contingency criterion is considered, i.e. accounting for the worst single contingency
in the system, the resulting region is called security region. In the present work, a secu-
rity rather than stability region is considered, since it better represents the main operative
considerations used in electricity markets.

In the competitive electricity market environment, security assessment can be divided
into two levels: classification and boundary determination. Classification involves deter-
mining whether the system operating point is secure or insecure under a set of prespecified
contingencies. However, classification does not in itself indicate distance from the operat-
ing condition to the insecure or secure conditions, whereas boundary determination gives
the necessary information to prevent and/or to correct insecure scenarios. A boundary is
represented by the aforementioned limits often called constraints, which are imposed on pa-
rameters characterizing the set of prespecified contingencies, called critical parameters. Once
the boundary is identified, security assessment for any operating point can be carried out.
The problem with these limits is that they do not always represent the actual security limits
directly associated with the current market and system conditions, given the variability of
dispatch because of economic drivers, resulting in some cases in insecure operating conditions
and /or inappropriate price signals [Canizares and Kodsi, 2006|, [Ghasemi and Maria, 2008|;
thus, the security region delimited by these limits may mask possible insecure scenarios,
presenting them as secure and reliable operating points.

Better market and system operating conditions may be attained when system security is
better accounted for in typical electric energy auction systems, avoiding the masking effect
on undesirable operating points. Thus, research has been carried out to improve the rep-
resentation of the security region. The inherent issue resides in the fact that this region is
highly complex in shape, and as a result, its boundary is highly nonlinear, not allowing to
be directly mapped by a smooth nonlinear function.

In the present work, a new approach to better represent the security region is developed.
The main goal is to obtain a closed-form differentiable function derived from the system’s
SB, in order to use it as a constraint in an OPF model to more accurately account for
system security in an operating environment. For this purpose, a BPNN is used to map the
high nonlinear SB. The BPNN is trained and tested until it reproduces the SB with enough

accuracy, then the information is extracted to obtain the aforementioned function.



1.2 Literature Review

As previously mentioned, the SBs must be accounted for in operational planning and real
time operations to maximize the power transfers and to take full advantage of transmission
facilities. Hence, various approaches have tried to determine and to approximate the security
region in order to employ it as a security constraint in OPF models.

The approach of security regions of power systems was first proposed by |[Hnyilicza et
al., 1975]. In [Fischl et al., 1976] and [DeMaio et al., 1976] methods to identify steady-state
security regions were developed. The idea of steady-state security regions was expanded by
[Banakar and Galiana, 1981, where a method to construct the so-called “security corridors”
is suggested for security assessment; this security region, which was formed by keeping the
set of inequality constraints as small as possible, was implicit and was difficult to manage
in the power system security analysis and security operation. One of the first approaches
that suggested a region-wise approach to power system security analysis was proposed in
[Wu and Kumagai, 1982]. This approach characterizes the set of all steady-state secure
operating points by using various operating and security constraints. A stability region
in the state space in terms of load voltage and load-tap-changer position is computed in
[Vu and Liu, 1992| based on the monotonic fall of system voltages; it also shows that when
the reactive capability of generators is reached the voltage stability region shrinks in such a
way that voltage collapse takes place when the system trajectory falls outside the shrunken
region. However, important characteristics of this region are not discussed because of the
simple models used to represent the synchronous generator and its controls.

One of the important problems in defining power system security regions is the adequate
description of its boundary, in such a way that secure and/or insecure operating scenarios
can be readily identified. Therefore, there is a need to develop an analytical description
and /or approximation of the boundary; the SB approximation means a sort of interpolation
between the boundary points obtained, which can be used as a part of the analytical boundary
description, or separately for the purposes of visualization. Hence, the general trend observed
in the area of obtaining the corresponding security region consist of determining security
boundary points in a specified stress direction, locating the closest (critical) bifurcation point,
calculating the critical and sub-critical distances to instability, and finally building the entire
security region and its boundaries in the parameter or state space.

In the context of OPF models, the analytical description and /or approximation of the SB
usually consists in the use of linear or nonlinear inequality constraints applied to a certain

number of critical parameters such as power flows, load levels, voltage magnitudes, etc, in



such a way that if all constraints are satisfied, the analyzed operating point is considered
to be inside the security region. One of the first approaches which attempted to include
voltage stability /security constraints into a conventional OPF formulation is presented in
[Rosehart et al., 1999|; there optimization techniques are applied to voltage collapse studies
based on a “Maximum Distance to Voltage Collapse" algorithm that incorporates constraints
on the power system current operating conditions. In [Canizares et al., 2001] the Minimum
Singular Value (MSV) of the power flow Jacobian matrix, which is an index to detect proxim-
ity to voltage instability |Lof et al., 1992|, is used as a security constraint to develop a Voltage-
Stability-Constrained OPF (VSC-OPF) restricting the resulting operating points to be within
a certain “reasonable” distance from voltage collapse. An enhancement to this approach is
presented in [Kodsi and Canizares, 2007|, where oscillatory and voltage instability conditions
are used to develop a Small-Perturbation Stability-Constrained OPF (SSC-OPF) based on
the inclusion of a “dynamic” MSV stability index. However, in [Canizares et al., 2001] and
|[Kodsi and Canizares, 2007|, the proposed stability index is an implicit function of the op-
timization variables, and hence their derivatives can be only approximated numerically in
order to be included in the OPF solution process; these approaches present some implemen-
tation and numerical problems due to the MSV-based index being nonlinear. An improved
approach is presented in [Avalos et al., 2008|, where an equivalent constraint based on a sin-
gular value decomposition of the Jacobian power flow is proposed to explicitly represent
the MSV constraint in the OPF model. In [Gan et al., 2000], a stability-constrained OPF
model is proposed based on a time-domain numerical representation of the dynamic equa-
tions which are included as constraints in the OPF process. A somewhat similar approach
is used in [Bruno et al., 2002] to develop a time-domain dispatch algorithm that considers
contingencies.

An alternative approach to including security constraints in an OPF model is to introduce
a differentiable function representing the SB as a constraint in the model. In [Jayasekara
and Annakkage, 2006| the transient stability boundary is approximated by a polynomial
obtained from an interpolation procedure and a nonlinear transformation applied to the
system state variables, representing in a more accurate way the complex shape of the SB.
A similar conceptual idea is proposed in this thesis to include security constraints in an
OPF model, based on a differentiable function extracted from an ANN which represents the
stability /security boundary.

Extensive research has been carried out on the application of ANNs to properly represent
power system stability /security margins. The idea behind the techniques based on ANNS is

to select a set of critical parameters such as power flows, loads, and generator limits, and

4



then train an ANN on a set of simulation data to estimate the security margin. The ad-
vantages of the ANN models include their ability to accommodate nonlinearities and their
very fast performance in real time. For example, in [Aggoune et al., 1991], an approach
based on an ANN to assess power system stability based on training samples from off-line
stability studies is presented. In |Eduards et al., 1996|, state-variable values are computed
for a given set of contingencies, and these are then used as inputs to an ANN to predict a
transient stability margin. Similarly, making use of nomograms, the system SB is character-
ized in [McCalley et al., 1997| by means of critical system parameters randomly generated
to yield an ANN input training set; the ANN is then trained and tested to obtain a SB
representation. A BPNN is applied in [Sahari et al., 2003] to predict voltage instabilities
using as inputs both system load information and a voltage stability index; based on these
inputs, the BPNN predicts new voltage stability index values for different operating scenar-
ios. In |Gu and Canizares, 2007|, a representation of the system stability boundary based
on a trained BPNN is proposed for predicting the available transfer capability of a system
for any given dispatch. Finally, in |[Miranda et al., 1995] an ANN is used to evaluate the
sensitivities of a stability index based on a transient energy function method with respect
to the generator’s power outputs for multiple contingencies, and these sensitivities are then
introduced in the objective function of an OPF to indirectly account for system security in
the dispatch process; this method approximately accounts for system security in the OPF
process, as opposed to directly representing these security margins as constraints in the OPF
model, as proposed in the present work.

When the load in a power system significantly exceeds generation, the system can sur-
vive only if enough loads are disconnected from the system. Conventional methods for
system load shedding do not effectively calculate the correct amount of load to be shed
[Hirodontis et al., 2009], since there is no insight about the operating point with respect to
the boundary of the security region. As a consequence, deciding which curtailment direction
to follow in order to ensure the secure operation of the power system is not simple. Hence,
with a more accurate SB representation the optimal amount of load to be curtailed can be

properly determined, as shown in the present work.

1.3 Objectives

The objectives of the present work can be summarized as follows:

e To analyze different types of equilibrium points, and the way they lose stability by



using bifurcation theory.

e To establish the SB determination procedure once the power system model is defined
as a set of DAE. This procedure will be based on the determination of a critical load

matrix obtained for each generation pattern considered.

e To numerically determine the SB by using continuation-based methods, OPF-based
methods, and eigenvalue analysis, in order to obtain two main types of SBs such as

loading directions-based and dispatch directions-based SBs.

e By using BPNN and Nonlinear Regression (NR) to approximate the SB, and to test
these two approaches on two IEEE benchmark systems such as the two-area and the

118-bus system.

e To include the smooth-nonlinear differentiable function resulting from the trained
BPNN into an OPF, in order to consider this function as a security constraint. Hence,
the so-called Security-Boundary Constrained OPF (SBC-OPF) will be able to ensure

that the resulting optimal point is also secure.

e Finally, the proposed approach will be tested by using the same two IEEE benchmark

systems mentioned above.

1.4 Main Contribution

The current work proposes a novel approach based on BPNNs to obtain explicit differentiable
functions of the system stability /security boundaries. This allows the introduction of the
boundaries characterized by BPNNs as constraints in OPF models. In order to achieve
this goal, SBs as defined in [Sauer and Pai, 1988] are constructed, and then BPNNs are
trained and tested to accurately represent these boundaries. From these BPNNs, explicit,
differentiable functions of the OPF variables are obtained, which are then introduced as
constraints in an OPF model. A SBC-OPF model for optimal dispatch in the context of
competitive electricity markets is proposed, illustrated and tested using a pair of IEEE test

systems.

1.5 Thesis Outline

The thesis is organized into five chapters as follows:



In this Chapter the research motivation, the literature review about the power system’s
SB characterization, and the use of ANN to consider security constraints into OPF models
are presented. Furthermore, the objectives and main contribution of the present work are
highlighted. Finally, the thesis outline is presented.

In Chapter 2 the power system models considered in the present work are described. By
using bifurcation theory, the dynamics related to the resulting set of differential algebraic
equations are analyzed from the point of view of critical points. Then, the SB determination
procedure is explained in detail, describing the numerical methods employed to obtain the
corresponding critical points. Two kinds of SBs are presented: the corresponding SB when the
generator’s dispatch directions are kept fixed at prespecified values while varying the loading
directions, and the SB when the loading directions are kept fixed at prespecified values
while varying the generator’s dispatch directions. Conclusions about the multidimensional
complexity of the SB are drawn.

The approximation of the SB by using BPNNs is presented in Chapter 3. The selected
BPNN architecture and the training and tested procedures are discussed in detail. Based on
the basic neuron structure, the smooth nonlinear differentiable function is obtained from the
resulting trained BPNN. By using two IEEE benchmark systems, comparisons between the
proposed approach and a NR technique are shown in order to demonstrate that BPNNs are
suitable tools to map complex SBs.

In Chapter 4, some relevant security-constrained OPF (SC-OPF) auction models are
presented and discussed, and the proposed SBC-OPF model is described. Furthermore,
discussions and comparisons based on the results obtained from the implementation and
application of the SBC-OPF model to the IEEE 2-area and IEEE 118-bus benchmark systems
are presented, demonstrating the feasibility and benefits of the proposed BPNN-SB and SBC-
OPF.

Finally, the main results, contributions, and papers resulting from this work are summa-
rized and highlighted in Chapter 5.



Chapter 2

Theoretical Concepts

2.1 Introduction

In this Chapter models of the main devices embedded in the power system are presented,
resulting in a set of differential-algebraic equations. It is shown how by using the implicit
function theorem the stability of an EP of the DAE system, for a given value of system
parameters, is obtained by analyzing the eigenvalues of the resulting state matrix. Using this
concept and bifurcation theory, the way in which the DAE system experiences bifurcations
like a simple ODE system is analyzed.

Once critical points have been qualitatively characterized using bifurcation theory, the
concept of stability and security boundaries are presented, and the procedure to obtain these
boundaries is proposed.

Finally, by using numerical methods for SB determination, the loading directions-based
SB and the dispatch directions-based SB are obtained for the IEEE 118-bus benchmark
system, in order to show the complexity of the security surfaces and the high-nonlinearity of

the corresponding SBs.

2.2 Power System Mathematical Representation

Generally speaking, an electric power system can be divided into the following:

1. A transmission network which interconnects the system buses to transmit the energy

from the generation stations to consumers.

2. The connected equipment such as generators, transformers, loads, and mechanical



and /or electronically controlled devices. The loads are connected through the sys-
tem at a variety of voltage levels, whereas the control devices are embedded in the
system in order to guarantee the instantaneous power balance between generators and

loads, avoiding or correcting undesirable operating system conditions.

Since the power system dynamics interact at widely-varying time constants, the mathematical
representation of the dynamics associated with the transmission network and the connected
equipment can be quite different and is expressed in different frames of reference. In this con-
text, as shown in 2.1, conversion equations linking these different models are typically needed,
in such a way that generators, electronically controlled devices, composite load models, the
AC network, and other equipment, are modeled under the same frame of reference. How-
ever, the inherent multiple time scales existing in the dynamics of a power system also crates
the possibility of obtaining reduced order models relevant to a particular time scale. This
implies that the power system’s mathematical model directly depends on the phenomenon
under analysis [Sauer and Pai, 1988], i.e. the level of modeling detail will depend on the time
frame of the dynamic phenomena [Kundur et al., 2004].

In the present work the dynamic phenomenon under study has a quasi-stationary nature,
i.e. the dynamics of the system occur in a few minutes interval, which implies that slow system
dynamics must be properly represented by the resulting power system model, while the fast-
time varying dynamics are not represented at all and are characterized by their equilibrium
conditions. This time-scale decomposition is represented in Fig. 2.2, where x; is a state vector
representing fast-time varying dynamics; xz is a state vector representing slow-time varying
dynamics; y is a state vector representing transmission network dynamics, which are expected
to change instantaneously with variations of the equipment or load states; p C (pU \) is a
system parameter vector; p is a vector of controllable parameters, such as generator terminal
voltage magnitude settings; and A is a vector of non-controllable parameters, such as active
load and reactive power levels, which change continuously.

Based on the above explanation, the considered models contain two divisions:

1. Models related to the transmission level, which basically consist of the power flow
equations. These equations are algebraic because the internal dynamics of the network
are sufficiently fast as to be considered instantaneous: they have no effect on problems
related to the power flow. These algebraic equations can be written in vectorial form

as

0=g(zs, 25, 9,p) (2.1)
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where g represents the set of algebraic equations. Since the existing coupling of the elec-
tromechanical power flow at the generator end and the power consumption at the load
end are expressed in terms of the apparent power, considering the coupling equations

as power balance equations becomes necessary.

2. Models related to system equipment whose dynamic behavior is slower, and as a conse-
quence, have a direct influence on the total dynamics of the system. Thus, differential
equations are needed to describe the behavior of equipment such as generators, com-

posite loads, etc. These differential equations can be written as
ff = hl (vaxsvyvp) (22)

'I:s - h2 ('Tf7 Ls, yap> (23)

where hiand hsrepresent the set of differential equations associated with fast- and slow-
time varying dynamics, respectively. Equations 2.2 and 2.3 are commonly expressed

as
&= h(zx,y,p) (2.4)

T
where x = [ Ty T ] represents the full system dynamics.

Hence, the full power system model may be represented by the following set of parameter-
dependent Differential-Algebraic Equations (DAE) as

& =h(x,y,p)

0=g(z,y.p) (25)

The specific models of each component of the power system are formulated in the following

subsections. Common power system notation is used.

2.2.1 The Synchronous Machine Model

The dynamics of synchronous machines have been extensively studied and are well understood
[Sauer and Pai, 1988|. The two-axis model describing the synchronous machine dynamics,

when stator transients are ignored, can be given as [Sauer and Pai, 1988|, [Sauer and Pai, 1990]:

Si:(wi—wm)wo Z:L,m_l (26)
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wi = M [P — Dy (w; — win) — (Ejy = Xbolat) I — (Bl — Xily) 1] i=1,---,m
(2.7)
By = Tiot | Brai = By — (Xa = X0 ) la] i =1+ ,m 2.8)

where m is the number of system generators and the m! generator is chosen as the system
angle reference; w,, is the system frequency; P,,; is the machine input mechanical power; w;
is the i'" machine frequency (generator angular speed); wy is the system rated frequency; I
and [, are direct axis and quadrature axis currents, respectively: E:ﬁ and E:ﬂ are transient d
axis and ¢ axis electromechanical forces, respectively; Ty, and Ty, are d axis and ¢ axis open
circuit time constants, respectively; Xy and X; are synchronous d axis and ¢ axis reactances;
X:ﬁ and X;Z- are d axis and ¢ axis transient reactances; M; is inertia constant; and D; is the

damping constant of the machine. Interface voltage equations are given as follows:
E;Z- = Vicos (6; — 6;) + Rsily + Xclh-fdi i=1,---.m (2.10)

By = Visin (6; — 0;) + Rylys + Xyl i=1,---,m (2.11)

where V; and 0; are bus phasor voltage and angle, respectively; and R,; is armature resistance
of the machine.

It is important to mention that the results obtained in the present work apply to any
version of generator models, from the two axes model with damper windings, through the

classical model with constant voltage behind a transient reactance.

2.2.2 Excitation Control System

Typical excitation controls with their models are presented in [[EEE Committee Report, 1981].
It is common to use a simplification of the IEEE type DC-1 excitation control system shown
in Fig. 2.3 when the problem of voltage stability is analyzed. This excitation control system
is linear, unless hard limits are reached [IEEE Committee Report, 1981].

Thus, this simplified model version is employed in the present work, and its corresponding
model is as follows:

Efgi =T5" Vi — Sei (Bpai) Epai] i=1,---,m (2.12)

el

Vii=T Vi + Kog Viess = Vi— Rp)] i=1,---,m (2.13)
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Figure 2.3: IEEE-type DC-1 excitation control system.

Rfi = Tf_il =Ry — (Kei + Sei (Epai)) KpiEyai ) Tei + KpiVyi/Ti] i=1,---,m (2.14)

where V.. is the reference voltage of the Automatic Voltage Regulator (AVR); V,; and Ry,
are the outputs of the AVR and exciter soft feedback; Eyq; is the voltage applied to the
generator field windings; T,;, T,; and T}; are the AVR, exciter and feedback time constants;
K, K and Ky, are gains of the AVR, exciter and feedback loop; Vi min and Vi e, are the

lower and upper limits of V..

2.2.3 Prime-mover and Speed Governor

Fig. 2.4 shows the block diagram for a simplified prime-mover and speed governor. The
following two differential equations describe the dynamics when no limits in the steam valve

or water gate are reached:
Poi =T (i — Pri) i=1,---,m (2.15)
i = Tg_il [Pgsi - (wi - wmf) /Ri - Ni] t=1---,m (2'16)
where Py is the designated real power generation; F,,; is the mechanical power of the prime-
mover; u; is the steam valve or water gate opening; R; is the governor regulation constant
representing its inherent speed-droop characteristic; w,.; (=1.0) is the governor reference

speed; and Ty, and T, are the time constants related to the prime-mover and speed governor,

respectively.
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Figure 2.4: Simplified speed governor and prime-mover.

2.2.4 Loads

Modeling the composite load is still a relatively unsolved problem in power system studies.
All results presented in this work are applicable to any mathematically smooth load model.
However, in order to focus the analysis on the security regions rather than the load model,

and without loss of generality, the load model used may be written as

Sq=PFP;+ Qq (2.17)
where
Py = \Py, (2.18)
Qi = A\Qq,

where P, and ()4, represent the active and reactive base case load at each system node,
respectively. The non-controllable parameter A\ represents the load increases which drives

the system to insecure operative scenarios from the voltage stability viewpoint.

2.2.5 Network Power Equations

The transmission system model consists of the typical power flow equations describing the re-
lations between the bus-injected active and reactive power flows, and the bus phasor voltage
magnitude and phase. In this context, a satisfactory circuit representation of the trans-
mission lines is possible assuming that they have moderate length and that the system is
operating within the quasi-stationary phasor range. Thereby, a satisfactory approxima-
tion is defined by introducing R-, L-, and C-based parameters on approximate 7 circuits
[Ilic and Zaborszky, 2000|. On the other hand, conventional transformers may typically be
modeled by an equivalent T circuit, consisting of an ideal transformer together with elements

which represent the imperfections of the real transformer [Gomez-Exposito et al., 2009]. On-
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Load Tap Changer and Phase-Shifter Transformers are not covered in the present work;
however, their models could be readily included.
The power flow mismatch equations may be derived by considering the components’

models described above and are given by the following:

Psi_)\PdOi_IDininO

i=1,--.n (2.19)
Qsi - )‘Qdm - Qinyi =0

where .
Pinyi = ZVz‘VkYQkCOS (91‘ — 0 — %‘k)
ol i=1,---,n (2.20)
Qinyi = 2 ViViYigsin (0; — 0, — vir,)
k=1
and

Psi = ]dZV;SZTL (51 — 91) —I— Iqi‘/iCOS (51 — (91)

, (2.21)
Qsi = 14;Vicos (6; — 0;) — 1,;Visin (6; — 6;)

where n is the number of system buses; P,; and (Qg; are the generator output powers, which
are primarily determined by the inherent characteristics of the speed governors and AVRs;

and Pj,,; and @y, are the powers injected into the network at bus <.

2.3 Bifurcation Theory

Recall that a dynamical system is one whose states evolve with time (¢), and this evolution
is governed by a set of rules that specifies the values of the state variables for continuous
values of t. The set of rules describing the dynamical system behavior are expressed in the
form of differential equations, and the analysis of the system stability can be executed in
a qualitative fashion, avoiding the extensive computational effort of numerically integrating
the set of dynamic equations when its parameters are varying.

As mentioned earlier, an electric power system is generally represented by an implicit
mixed set of parameter-dependent DAEs (2.5), such that variations of any parameter in the
system may result in a complex behavior which could lead to system instability. Hence,
this behavior must be systematically studied by means of the calculation of the steady-state
solutions. In this context, the asymptotic behavior of a dynamical system, as t — oo, is
called steady-state or equilibrium solution of the system, and the corresponding steady-state
solution may be either a static solution or a dynamic solution, i.e. the solution can be

either constant or time varying. The time-constant solutions are often called fixed points or
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stationary solutions, whereas the time-varying solutions are simply called dynamic solutions
[Nayfeh and Balachandran, 2004|. Even though these static and dynamic solutions indicate
that the system has reached an equilibrium on its state variables, to understand their stability,
further analyses are required. There is a theorem which relates the stability in the sense
of Lyapunov and the asymptotic stability and may be used to determine the stability of
the equilibrium solutions as follows [Nayfeh and Balachandran, 2004|: Assume a dynamical

system described by the following system of Ordinary Differential Equations (ODEs)
&= h(r,p) (2.22)

which is fairly similar to Equation 2.4. Consider that the equilibrium solutions of Equation
2.22 for some given value py of p are (zg,pp). Furthermore, assume that there exists an at
least once differentiable scalar function V' (x, p) defined in a neighborhood of these equilibrium
solutions such that V' (zg,po) = 0 and V (z,p) > 0 if (x,p) # (z0,po). The derivative of V'
along the solution trajectories of Equation 2.22 is V = VV - h = VVTh. Hence, if V < 0 in
the chosen neighborhood of (xg, py) the equilibrium solution is stable; if V < 0 in the chosen
neighborhood of (g, pg) the equilibrium solution is asymptotically stable. However, the use
of this theorem presents the disadvantage of having no general methods for determining the
function V' (x, p), called Lyapunov function, and as a consequence finding such a function for
power system models may be difficult. An alternative approach to determine the stability of
equilibrium solutions is discussed next.

For a fixed value of p, the Equilibrium Points (EPs) of the dynamic model are given by

0=h(z,p) (2.23)

To determine the stability of these equilibrium solutions a small disturbance ¢ is considered,

obtaining

x(t) =z0+€(t) (2.24)

Substituting Equation 2.24 in Equation 2.22 yields

¢ =h(xo+e€p) (2.25)

Thus the fixed point xg has been transformed into the fixed point € = 0. Assuming that h is

at least twice differentiable, Equation 2.25 can be expanded in a Taylor series about xg as
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¢ = h (0, p0) + Duh (20, p0) € + O (|e]|) (2.26)

where D, is the derivative operator w.r.t. z, and O (||e||2) represents higher order terms.

Retaining only linear terms in the disturbance leads to

é =~ Dyh(xg,po) = Je (2.27)

where J is the matrix of first partial derivatives called the Jacobian matrix. As can be proven,
the eigenvalues of this matrix provide information about the local stability of the fixed point
zo as follows [Nayfeh and Balachandran, 2004]: The solution of Equation 2.27 that passes

through the initial condition ¢y € R™ at time ¢y € R can be expressed as

€ (t) = et~ ¢, (2.28)
where
2 (t—to)
e<H0>J:Z—< .,0) J? (2.29)
=

If the eigenvalues A; of the matrix J are distinct, then there exists a matrix P such that
P~'JP = D, in such a way that

A O 0
0 Xy -+ 0

D=1| | (2.30)
0 O An

Introducing the transformation ¢ = Pv in Equation 2.27 results in

Pi = JPv (2.31)

or

o = Duv (2.32)
Hence a solution of Equation 2.32 can be expressed as
v = eltt0) Py (2.33)
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where vy = v (tg) = P '€p. In terms of ¢, this solution becomes

€ (t) = Pelt=0)D p=ig (2.34)

(t—to)D (t—to) i

The matrix e is a diagonal matrix with entries e . Hence, the eigenvalues of J
are also known as the characteristic exponents associated with h at (o, po).

A slight modification must be considered in the above-mentioned procedure when the
eigenvalues of J are not distinct. If this is the case, then there exists a matrix P such that

P~'JP = J. has a Jordan canonical form with off-diagonal entries as

L6 o ¢
Jo -
P I (2.35)
b ¢ - Jy
where ¢ represents a matrix with zero entries and
An 1 0 0
0O A 1 -+ 0
I = ) (2.36)
0 A -
0 0 Am

where m =1,2,--- k.

Hence the same procedure may be applied considering .J. instead of D.

Based on the analysis described above, the associated response of Equation 2.22 is quali-
tatively described by the characteristic exponents associated with Equation 2.27 and can be
used to determine the stability of the EPs as follows [Seydel, 2010], [Nayfeh and Balachan-
dran, 2004]: When all of the eigenvalues of J have nonzero real parts, the corresponding EP
is called hyperbolic equilibrium solution, irrespective of the values of the imaginary parts;
otherwise it is called non-hyperbolic equilibrium solution. The word hyperbolic is due to the
fact that solution trajectories near a hyperbolic equilibrium point lay on pieces of hyperbolas
centered in that point with respect to a suitable coordinate system, i.e. a solution point
is hyperbolic if all sufficiently small perturbations on the equilibrium points of the corre-
sponding set of differential equations close to that equilibrium point have similar behavior
|Glendinning, 1994].

If all of the eigenvalues of J have negative real parts, then all of the components of the
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disturbance € decay in time, and hence x approaches the equilibrium solution zy of Equa-
tion 2.22 as t — oo; therefore, the solution z( is asymptotically stable. On the other hand,
if one or more of the eigenvalues have positive real parts, some of the components of ¢
grow in time, and x moves away from the equilibrium solution zy as ¢ increases; thus, the
solution xy is said to be unstable in this case. As a result, for these type of equilibrium
solutions the local nonlinear dynamics near x = xy are qualitatively similar to the linear
dynamics near ¢ = 0, and a qualitative change in the local nonlinear dynamics can be de-
tected by examining the associated linear dynamics, as per the Hartman-Grobman Theorem
[Nayfeh and Balachandran, 2004].

A non-hyperbolic equilibrium solution is unstable if one or more of the eigenvalues of J
have positive real parts. If some of the eigenvalues have negative real parts while the rest
have zero real parts, the equilibrium solution x = x is said to be neutrally or marginally
stable. For these type of equilibrium solutions the Hartman-Grobman Theorem loses validity,
i.e. the linearization of the nonlinear dynamical system fails. An alternative may then be
to take high-order terms of the Taylor series expansion of Equation 2.26 in order to address
this issue.

Since eigenvalues are a useful tool for analyzing the stability of EPs, the manner in
which these lose stability is of interest. To do so, recall the concept of bifurcation, which
refers to a qualitative change in the features of a dynamical system, such as the number
and type of solutions, under the slow variation of one or more system parameters. When
this change is analyzed in the neighborhood of an EP, it is referred to as a local bifurcation
[Nayfeh and Balachandran, 2004|. Bifurcations are represented in a space formed by the
state variables and the varied parameters, called state-control space, or more commonly
bifurcation space. Therefore, starting with values of system parameters corresponding to
a stable equilibrium solution, and then varying them slowly, the equilibrium solutions of

Equation 2.22 can lose stability, typically through one of the following bifurcations:

a) Saddle-node bifurcation (SNB)

These types of co-dimension 1 (i.e. when only a single parameter is varied), static

generic bifurcations occur when two equilibrium points, typically one stable and one
unstable in practice, merge and disappear as the parameter slowly changes, as illus-
trated in the PV curve of Fig. 2.5. Mathematically, assume that for p = p® Equation

2.22 satisfies the following at an equilibrium point (z€, p©) [Seydel, 2010]:

Oh(x¢,p°©
1) (amp )

right eigenvector v and left eigenvector w.

has n — 1 eigenvalues with negative real part and a simple eigenvalue 0 with
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2) w” () (@,p)) £0.

3) wT (% |z pe) (v,v)) # 0.

Then, there is a smooth curve of equilibria passing through (z¢, p¢), tangent to R" x p°.
Depending on the signs in 2) and 3), there are no equilibrium points near (z¢, p®) when
p < or > p° and two hyperbolic equilibrium points exist, one stable and one unstable,
when p < or > p°.

In power systems, SNBs are associated with voltage collapse [IEEE/PES Tech. Rep.,
2002].

b) Limit-induced bifurcation (LIB)
These types of co-dimension 1 generic bifurcations in power systems were first studied in
detail in [Dobson and Lu, 1992|, and are typically encountered in these systems since as
the load increases, reactive power demand generally increases as well, and thus reactive
power limits of generators or other voltage regulating devices are reached. These bi-
furcations result in reduced voltage stability margins [Avalos et al., 2009], and in some
cases the operating point “disappears” in a LIB causing a voltage collapse, as illustrated
in Fig. 2.6, where (Qg,,q, represents the reactive power limit supplied by the generator
and Vj represents the generator’s voltage set point. LIBs occur at the equilibrium point
(¢, p°) where the eigen-system of the matrix J undergoes a discrete change due to x
reaching a limit condition, which changes the structure of Equation 2.22 and hence the

associated Jacobian, which is nonsingular [Venkatasubramanian et al., 1995].

c) Hopf bifurcation (HB)
The type of bifurcation that connects equilibria with periodic motions is an HB; it is
the bifurcation of a static EP into a dynamic EP of the model defined by Equation 2.22
as shown in Fig. 2.7, and it is responsible for power system oscillatory behaviors. In
this case, the Jacobian matrix J has a pair of purely imaginary eigenvalues while all of
its other eigenvalues have nonzero real parts. Mathematically, the following conditions
define an HB at the equilibrium point (z¢, p°) |Seydel, 2010]:
1) f(z¢p°) = 0.
2) The Jacobian W |(zepe) has a simple pair of purely imaginary eigenvalues p =
0 ¢4 and all other eigenvalues have negative real parts.
3) dRON) | s ),

dp
If these three conditions are satisfied, there is a birth or death of limit cycles at the

point (x¢, p°) depending on the sign of equation defined in 3).
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The main reason to consider only these three types of bifurcations resides in the fact that in
power systems HBs, SNBs and LIBs are generic and can be basically characterized by the
oscillatory, and the local merging and disappearance of the power flow solutions as certain sys-

tem parameters, particularly system demand, slowly change [IEEE/PES Tech. Rep., 2002 |.
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Figure 2.5: SNB in a PV curve.
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Figure 2.6: LIB in a PV curve.
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2.4 Differential Algebraic Equations Equivalent System

and Equilibrium Points

Systems in the form of Equations 2.5 are “theoretically problematic,” because the set of
algebraic equations may have singular points where it cannot be solved for the dependent
algebraic variables y, and consequently at these points the response of the system cannot be
defined [Van Cutsem and Vournas, 2008]. These differential-algebraic systems are analyzed
establishing conditions under which systems equivalent to Equations 2.5 and comprised solely
of differential equations can be derived. These equivalent systems have the same dynamic
and algebraic properties as the full model. Hence, based on Schur’s Theorem [Seydel, 2010)]
and the Implicit Function Theorem, there exists a locally unique, smooth function F' of the

form
&= F(x,p) (2.37)

from which the algebraic variables have been eliminated. Since F' can be defined and is
smooth at all points where g, is nonsingular, from the existence theorem there is a unique
solution of the DAE system (2.5) for all these points. The domain of F in state space for a
given value of the parameter p is bounded by the points satisfying the singularity condition
of g,. Hence, EPs of dynamical system models such as those resulting from the electric power

systems (Equations 2.5) can be obtained when they satisfy the equations:
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0=h(z,y,p)

0=g(z,y.p) (238)

The stability of these EPs can be determined by linearizing Equations 2.38 around the equi-

[M]:J[M] (2.39)
0 Ay

where J is the unreduced Jacobian of the resulting equivalent DAE system

J= [ ha Py ] (2.40)

9z Gy

librium:

Assuming g, is nonsingular Ay can be eliminated from Equation 2.39

Az = [hx — hygy_lgx} Az (2.41)
The state matrix of the linearized system is

A=H, = [hx — hygy_lgz} (2.42)

which is the Schur complement of the Jacobian’s algebraic equation g, in the unreduced
Jacobian J.

The stability of an EP of the DAE system (2.5) for a given value of p is obtained by
analyzing the eigenvalues of the state matrix A |Hill and Mareels, 1990|. As p varies, the
DAE may experience bifurcations like a simple ODE system, as presented in the previous
Section. Therefore, as system inputs (demand and generation) vary or unexpected equipment
contingencies occur, the basic problem of whether the system could sustain its operation
under the new condition arises. In electric power system studies this problem is known as

the small-signal stability problem [Kundur et al., 2004].

2.5 Stability /Security Boundaries

The concept of security regions is very useful in conceptualizing and, under certain con-
ditions, in explicitly characterizing the multidimensional boundaries where power networks

may operate in a secure fashion in terms of controllable parameters. The security boundaries
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are crucial in defining any type of power interchange and the corresponding capability of
power networks.

The region in the parameter space in which the power network satisfies all steady-state
and transient operational requirements under both the existing network topology and a set
of contingency-degraded network topologies is called Security Region |Venkatasubramanian
et al., 1995] and [Venkatasubramanian et al., 1995-1|; it is important to recall that when
no contingencies are considered a stability, rather than security, region is obtained. To
find the boundary of this region, even for a simple system, normally requires a sequence of
simulations that repeatedly vary the generation patterns and load levels until meeting all
security constraints becomes impossible. This procedure and the numerical tools used to
obtain the set of points determining and characterizing the SB are described in this Section.
Furthermore, two types of SB are described: the SB resulting when the loading directions
are varied considering prespecified dispatch patterns, and the resulting SB when the dispatch
patterns are varied considering prespecified loading levels reflecting the practical fact of the

inelasticity of loads.

2.6 SB Determination Procedure

Recalling that the main goal of the present research work is to provide a closed-form dif-
ferentiable function which represents the highly nonlinear SB, the procedure to obtain such
a boundary must be established. The SB is constructed by loading the power system un-
til the stability limits are reached for the most critical single contingency (N-1 contingency
criterion), considering multiple and realistic generator dispatch patterns; these dispatch pat-
terns are also called dispatch directions due to the fact that each dispatch pattern defines a
trajectory in which generators will increase their generating power.

In order to obtain the SB, the power system model defined by Equations 2.5 may be

written as follows [Sauer and Pai, 1988]:

&=h(@y,p ) (2.43)
0=yg(z,y,p A

where p and A change continuously, moving the system from one EP to another. As it was

previously mentioned, the region in the parameter space where all the operating points can

be reached without causing instability is called a feasible region [Venkatasubramanian et

al., 1995], and [Venkatasubramanian et al., 1995-1]. Since at the boundary of this region,
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the system EPs change their stability characteristics, the feasible region and the associated
boundary can be constructed based on stability analyses of the EPs associated with the
differential-algebraic Equations 2.43 representing the power system.

In the operation of power systems, the system loads and generators vary throughout the
operating horizon. For a given generation dispatch pattern, each specific pattern or “direc-
tion” of load changes (load increases are typically more relevant from a security standpoint
than load reductions) drives the system to unstable conditions when the operating point
reaches the feasibility boundary. Therefore, a SB can be constructed through voltage, angle
and frequency stability studies for various loading changes and considering an N-1 contin-
gency criterion.

As a first step to compute this boundary, let \; = [ Ail iz AN ]T be an ¢

particular set of load increase rates for the N loads in (2.43), so that

i1 = adjy
Nig = adip (2 44)
Ain = ad;n

where o > 0 is a scalar value typically referred to as the loading factor, and d;;, j =
1,2,---, N, represents the loading increase “direction” for load j in the i particular set of

load increase rates, with the following conditions:

0<d; <1V (2.45)
N
> d=1 (2.46)
j=1

Thus, considering Equations 2.18 and assuming a constant power factor, the load may be

defined as
Pu; = NijFa;, = adij Py,

Qdi]- = /\idejo = Oédidejo

where Py, and Qg,, are the “base” active and reactive powers demanded at the 4 load bus.

(2.47)

T

Once the loading direction vector d; = [ din dip - din ] is defined, the system load
can be increased until an EP on the SB is reached by increasing the loading factor «; this
boundary can then be associated with “critical” Af; values. To obtain a discrete representation

of the SB, the N system loads can be varied in M different sets of load directions for given
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generation dispatch criteria. The SB can then be represented in the A-parameter space.

Computationally, this boundary may be represented by means of a critical load matrix as

follows:
51 52 fN
A€ D V- V-
My=1 ¢ ¢ - CN]: A 2N (2.48)
Abvr Az o A

Observe that for each generation pattern considered, a similar matrix can be obtained.

The loading directions should cover the whole range 0 < d;; < 1 to attain a complete
boundary and should have an even distribution. To attain this even distribution in a multi-
dimensional d-parameter space, the interval [0 1| on each axis is divided into M points:
1 =1,2,..., M, where M is selected so that a reasonable density is achieved. Thus, all the
possible combinations of the points that satisfy Equation 2.46 can be employed to obtain the
boundary points required to train the BPNN.

2.7 SB Numerical Determination

For a given generation dispatch, the critical Af; values that define the SB for the system
model (2.43) are computed using continuation power flows, eigenvalue analyses and transient
stability studies considering an N-1 contingency criterion, as described in some detail in
[Gu and Canizares, 2007|. These critical points obtained along different loading directions
for different generation patterns that make up the SB constitute the training and testing set
of the BPNN.

It is important to mention that for each contingency and dispatch scenario a unique sta-
bility limit, which is a point of the stability boundary, can be obtained. The SB is then
made up of the stability limit points obtained for each system dispatch and its correspond-
ing “worst” contingency scenario: the contingency that yields the smallest loading margin
associated with the system stability limit for the given dispatch, as per the N-1 contingency
criterion. Again, observe that if no contingencies are considered, a stability boundary rather
than a SB is obtained. In the following sections, the different studies considered to obtain
the points defining the SB are presented. Furthermore, the two types of SBs which may
be obtained based on these studies are discussed: the loading-directions-based SB and the

dispatch-directions-based SB.
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2.7.1 Continuation-based Methods

The power system physical constraints impose a maximum loadability limit, which is the
amount of power that the system is able to supply. Near this loadability maximum, the
stability analysis is restricted by the resulting ill-conditioning of the Jacobian matrix when
conventional numerical methods to determine the equilibrium point are used. Hence, as the
electric power systems are operated closer to their stability limits, computational tools must
be numerically robust in order to allow the proper stability assessment. Among the numerical
methods commonly used to achieve this numerical robustness are the Continuation Methods
(CM) |Ritcher and Decarlo, 1983|; these methods are used as branch tracing or path following
and have the particularity of maintaining the Jacobian matrix well-conditioned allowing the
computation of complete solution trajectories. The CM allows the tracing of complete PV
curves in order to properly assess the power system voltage stability. In this context, the basic
idea behind the branch tracing procedure consists of carrying out small successive increments
in a system’s parameter called the continuation parameter; often this parameter is the system
load and is called the loadability parameter. For each load increment, the power system EP
will move to a different point, until the desired part of the solution trajectory is determined
[Van Cutsem and Vournas, 2008|. The commonly used method to determine the set of points
defining such a solution trajectory is the predictor-corrector based CM.

Several computational tools considering this method have been developed and success-
fully applied to analyze the voltage collapse phenomenon, in such a way that preventive
or corrective actions may be assessed in order to increase the voltage stability margins
|Canizares and Alvarado, 1993|, |Fluek, 1996|, and |Zhu, 2001|. In the present work, this
method is used to obtain the SNB and LIB points for each loading direction, considering
particular generator’s dispatch patterns, so that the resulting set of SNB points make up a

subset of the training points used to map the SB, as explained in Chapter 3.

2.7.2 OPF-based Methods

When using the CM to obtain a critical value Aj; corresponding to a loading direction, sev-
eral continuation parameter increments must be carried out in order to obtain a SNB or LIB
point. Hence, in order to obtain the set of critical points defining the SB, a procedure of this
type must be performed for each loading direction, resulting in a time-consuming procedure.
However, this computational burden can be reduced as shown in [Avalos et al., 2009| by using
an optimization-based approach to identify and analyze SNBs and LIBs of a power system

model. In this case, the solution points procured from an optimization model, which is based
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on complementarity constraints used to properly represent generators’ voltage controls, cor-
respond to SNB or LIB points associated with a loadability direction, avoiding the procedure
of successive increments in the continuation parameter.

This approach is based on the application of optimization methods to compute the maxi-
mum loadability points, which are directly associated with SNBs and LIBs. The optimization

model used may be represented as [Avalos et al., 2009]:

maxr A (2.49)
SVVeQs
st. Fpp(6,V, Vs, Ps,Qs, Pq,Qa, A) =0 (2.50)
(Qu—Qs,, Wa, =0 VE€G (2.51)
(Qsp Qs Wi, =0VkeG (2.52)
Ve = Ve, + Vo, Vi, VEE€G (2.53)
Qs, < Qs <Qs,, .. YkEG (2.54)
Vs Vi, >0 VEk € G (2.55)

where GG represents the number of system generators; V' and § correspond to the bus volt-
age phasor components; V, is the k' generator voltage; Vi, s the kt" generator voltage
regulator set point, i.e. the generator terminal voltage level if the generated reactive power
Qs is within limits; P, and P, are the supply and demand power levels in MW, respectively,
that cannot exceed their maximum values; Fpp () stands for the power flow equations of the
system; Qs and )y are the generated and demanded reactive powers in MVars, respectively;
the constraints defined by Equations 2.51-2.55 associated with the auxiliary variables V, and
V, are used to model the actuation limits associated with the generator voltage regulators.
As formally demonstrated in [Avalos et al., 2009] a solution to the model (2.49)-(2.55) cor-
responds to either SNB or LIB points by establishing that the transversality conditions of
the corresponding bifurcations are met, based on the optimality conditions of the optimal
solution. As a consequence, this model obtains the SNB and LIB points based on powerful

optimization solvers, resulting in a more computationally efficient method.
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2.7.3 Eigenvalue Analysis

The eigenvalue analysis presented in Section 2.3 also identifies the type of EP associated
with HBs, which make up the complementary subset of points defining the SB, which will
be the training set of the proposed BPNN. The procedure is based on the CM and consists
of detecting the HB at each step of the CM by obtaining the eigenvalues of the resulting
Jacobian matrix J; when an HB is detected, it is saved as a critical point, and the CM
procedure is interrupted. This procedure is repeated for each loading direction until the full

segment of the SB has been determined.

2.7.4 Loading directions-based SB

Since load increases are typically more relevant from a security standpoint, the SB resulting
when the loading directions are varied and considering prespecified generator’s dispatch pat-
terns is presented in this Section by using a realistic IEEE benchmark system, such as the
118-bus system. This system is composed of 53 generators and 91 loads. The system data
and generator bid data are shown in Appendix C.

The system is divided in two operational areas, in such a way that the corresponding SB
represents a specific transfer limit between these areas: Area 1 with 45 loads, and Area 2
contains 46 loads. The system SB for an Area 1 - Area 2 interchange is obtained using, for
the sake of simplicity and without the loss of generality, voltage stability criteria only, i.e. the
boundary is basically composed of SNBs and LIBs [Milano, 2005], [UWPFLOW]|, with the
assumption that a Line 39-40 trip stands for the worst contingency. A total of 631 loading
directions are considered to get an even distribution of points, and a generation dispatch
pattern based on the base generator powers is used. The loading directions are presented in
Appendix D for the case or two groups. The resulting SB is shown in Fig. 2.8.

It is important to recall that each point at the SB represents an equilibrium point at
which a bifurcation occurs, and this point is obtained considering a prespecified generator’s
dispatch pattern. Clearly if an operative point is located outside the region bounded by the
set of bifurcation points, the power system no longer fulfills the security requirements for

proper operation.

2.7.5 Dispatch directions-based SB

In this section, another type of SB is presented, obtained when the generator’s dispatch

direction are varied considering pre-specified loading increase rates. For this purpose the
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Figure 2.8: SB for the IEEE 118-bus benchmark system considering two loading areas.

same [EEE 118-bus benchmark system used in the previous Section is considered assuming
the same line trip as the worst contingency. Two loading groups containing 45 and 46 loads are
defined; a fixed value of 0.5 for the loading direction is arbitrarily selected for each loading
group without loss of generality. In order to vary the dispatch directions, two generator
groups are considered containing 27 generators each, and 21 dispatch directions are selected
for the reason explained in the previous Section. As in the previous case, only LLIB and SNB
points are considered when the SB is obtained. The SB is shown in Fig. 2.9, where Py, and

Pq,, represent the generated active power for each area in MW.

B
For further insight into the complexity of the security region, generators and loads of the
system under study are split into three groups each. The loading groups contain 31, 31,
and 29 loads each, and the generation groups contain 18 generators each. A fixed value of
0.33 for the loading direction is arbitrarily selected for each loading group, and 631 dispatch
directions are selected, as shown in Appendix D. Once more, only LIB and SNB points are
considered to obtain the SB, which is shown in Fig. 2.10, where FPg,, Pg,, and FPg,, represent
the total generated active power for each group.

Thus, the SB must be obtained by taking into account a specific criteria only, depending
on the context under analysis: if it is desired to evaluate the system security based on a
voltage stability approach, load increments must be implemented in order to obtain the

corresponding SB. On the other hand, a specific “base point” may be relocated into its
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Figure 2.10: SB for the IEEE 118-bus benchmark system considering three dispatch areas.
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corresponding SB by means of varying the generator’s dispatch patterns, obtaining its SB
varying the generator’s dispatch directions. In the present work, the SBs are obtained by
varying the loading directions assuming pre-specified generator’s dispatch patterns. This
assumption is reasonably because currently the electric power systems are highly stressed
due to the load increments resulting from the demand increase and the rare construction of

new generation units and transmission corridors.

2.8 Conclusions

In this Chapter the power system mathematical representation has been reviewed, showing
that due to power system dynamics interact at widely-varying time constants, conversion
equations are needed. Also, it is reviewed the main concepts of bifurcation theory, which
allow to qualitatively describe the stability of solution points of the resulting power system
model. Furthermore, based on the implicit function theorem it is shown how the power
system model expressed by a set of differential-algebraic equations can be analyzed as a set
of ODEs.

It is introduced the concept of stability and security boundaries and it is established the
SB determination procedure, which is based on a proposed critical load matrix. By using the
techniques applied for this procedure, two types of SB are obtained for the IEEE 118-bus
benchmark system: the loading directions-based SB and the dispatch directions-based SB,

emphasizing their complex topology.
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Chapter 3

Approximations of the Security

Boundary

3.1 Introduction

The SB gives the system operator very important information regarding the stability and/or
security of the current power system operating point. Thus, all this information must be
taken into account by the computational tools used in electricity markets in order to gener-
ate adequate market signals to properly address the security-constrained unit commitment,
ancillary services auction, and transmission pricing. This information can be used to take
preventive and corrective actions when insecure operating points are identified. However,
exacting this information could be a challenge because the high nonlinear characteristics of
the SB, which as previously shown is very complex.

The goal of the present Chapter is to describe a new methodology to obtain an explicit
smooth-nonlinear-differentiable function reproducing the SB with adequate precision, in order
to be included as a security constraint in a SC-OPF model in a straightforward way. The
approach for it is based on the SB approximation which is implemented with two different
mapping tools: BPNN and NR. ANNs have good mapping characteristics, as well as a large
degree of freedom that is basically model-independent, which make them easily modifiable in
order to map complex multidimensional surfaces resulting from systems containing several

generation and loading areas. NR is only capable of mapping low-dimensional surfaces.
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3.2 BPNN-based SB

ANNs are mathematical models that try to mimic the brain’s neural networks. The brain
can be considered a large-scale system that has many neural cells called neurons. Neurons
are continuously processing and transmitting information to each other. Massive parallel
information processing, learning functions and the self-organizing capabilities are among the
main features of a human brain. By analogy, as shown in Fig 3.1, ANNs are formally defined
by three elements: a set (layer) of information processing units (neurons), a specific topology
of weighted interconnections among the neurons, and a learning algorithm that updates the
connection weights. As shown in Figs. 3.1 and 3.2, four basic elements of the neuronal model
can be identified [Haykin, 1999]:

1. A set of connecting links, each characterized by a weight wfz

2. An adder ) for summing the input signals, weighted by the respective link of the

neuron.
3. An activation function f; for mapping and producing the output of the neuron.

4. An externally applied bias b; which has the effect of increasing or lowering the net input

of the activation function.

The resulting mathematical expression of a neuron ¢ may be written as

Output; = f; (inputiw;-“i + bi) = fi (n;) (3.1)
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Figure 3.2: Single neuron structure.

There are several activation functions that can be used such as threshold (e.g. piecewise-

linear, sigmoid, etc.), and their application will depend on the particular ANN behavior

desired |Haykin, 1999|.
The goal of ANN applications is to find a model that represents the observations of a

system’s input/output behavior. An ANN learns through the process of extracting enough
information from a training set to form a mapping function that accurately describes the

system at all points of interest. These networks can be trained for function approximation,

pattern association, or pattern classification.
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The training process requires a set, of samples of proper network behavior. During training,
all network parameters are iteratively adjusted based on a learning rule to minimize a network
performance function, which is a measure of how well the network represents the training
samples. The learning rule is the procedure by which an ANN modifies its parameters to
perform some particular task, and it is referred to as a training algorithm.

When training the ANN, there are several learning rules that can be used such as back-
propagation. [Haykin, 1999|, and all are based on the way in which the network weights
are adjusted along the gradient of the performance function. Properly trained BPNN have
been demonstrated to give reasonable answers when presented with inputs that they have
never seen. Typically, a new input leads to an output similar to the output for input vectors
used in training that are similar to the input being used. This generalization property makes
possible to train a network on a representative set of input/target pairs, without having to
train the network on all possible input/output pairs. When BPNNs are used as function
approximators, the composed set of activation functions, which directly depends on the
BPNN architecture, can be viewed as a function whose parameters have been adjusted to
perform the required mapping process.

The universal approximation theorem provides the mathematical justification for the
robust approximation of any arbitrary continuous function by a nonlinear input-output map-
ping using BPNN [Haykin, 1999]. In other words, these networks can approximate any
function with arbitrary accuracy as long as enough units (neurons and/or layers) are used in
the network. Their accuracy will depend on the complexity of their structure; thus, the more
complex the BPNN structure, the better accuracy will be obtained when complex functions
are mapped.

The lack of success of a BPNN to solve an approximation problem is not because of
the innate capabilities of neural networks, but rather due to one or more of the following
conditions [Hornik et al., 1989):

1. There is an insufficient number of units in the network: Depending on the accuracy of
the approximation required to solve a given task, a minimum number of nodes may be
required. A specific network architecture is initially selected, and if the desired degree
of accuracy is not achieved, additional network neurons and/or layers are added until

the desired accuracy is met.

2. There is an inability to learn the proper network parameters: The reasons for this in-
ability may be a lack of the number of training samples, a lack of information “richness”

in the training set, an ineffective learning algorithm, and/or numerical complications.
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The role of the trained BPNN when used to solve a function approximation problem is to
properly represent the function y = f(x) that describes the system at each point x in the
required domain. In this context, “to solve” implies meeting a desired error threshold rather
than perfect performance. Estimating a target function at all points in the domain of interest
is known as generalization: the BPNN is asked to “generalize” its representation of the system
in areas “unseen” during training. Generalization is concerned with the ability of a model to
represent a function (approximation) and the ability to realize the model using finite data
(estimation). The main goal here is to use a BPNN as a function approximator in such a
way that all the necessary information in the desired SB could be contained in the trained

network. The mapping process for each SB involves the following steps:

1. Obtain the matrix M, given by Equation 2.48, which constitutes the training and
testing sets for the BPNN.

2. Train and test the BPNN.

3. Obtain an explicit function representation of the BPNN for its inclusion in an OPF

model.

The BPNN considered in this work is composed of three layers: input, hidden and output
layers, as shown in Figs. 3.1 and 3.2. Each layer contains a number of neurons whose
connections increase the BPNN’s capability to learn complex relationships. The number of
neurons was determined considering a compromise between the bias and the variance errors.

As it is shown in Fig. 3.2, every connection between the i** layer and the j** consecutive layer
k

ji-
input;, which could be the weighted output information from other neurons and passes the net

through the k™ neuron is weighted by a number w”. A neuron adds the incoming inputs
sum through an activation function f;. The activation function of each neuron transforms
the net weighted sum n; of all incoming input signals into one output signal. Also, each
neuron has an additional input, called a bias b;, which is used in the network to generalize
the solution and avoid a zero value for n;, even when an input; is zero.

The BPNN architecture used in this work was selected based on the criteria of having
the simplest array of neurons, capable to map the security or stability boundary with a
reasonable precision. Hence, the BPNN consists of one neuron for both input and output
layers and eight neurons for the hidden layer, as shown in Fig. 3.1. The neurons composing

the hidden layer have the activation function

i) = () 1 (32)

14 e2n
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where n; can be an input state variable or algebraic expression depending if the state variables
are coming from the input data or from the output of other neurons. The input and output
neurons have a linear activation function with unitary value.

In the majority of BPNN applications, the main handicap resides in the fact that BPNNs
are handled as “black boxes”. That is, once the network is trained, little can be said about
the functional approximation or the functional form between any of the inputs with the
output. Thus, in order to obtain a differentiable function from a trained BPNN, the following
procedure is proposed: The input-output relationship of the neuron single structure is shown
in Equation 3.1. From the input-output relationships between the three layers of the trained
BPNN shown in Fig. 3.1, the implicit mapping function that relates the network inputs and
output can be obtained.

The output of the input layer of the proposed BPNN represented in Fig. 3.1 is:
Outputyy, = finput (inputiwf” + bm) Vi=1,2,--- ,N—1 (3.3)

where N — 1 are the loading points making up the boundary provided as inputs to the
BPNN. Since the identity function is the input layer activation function , Equation 3.3 may
be written as

Output;, = input;w!™ + by, Yi=1,2,--- N —1 (3.4)

This output represents the input for each neuron at the hidden layer in such a way that the
input-output relationship of each neuron at this layer is

Outputy, = fi, ((Outputy,), wh + by) wh, Vk=1,2,---,8 (3.5)

where £ is the number of neurons at the hidden layer. Substituting Equation 3.4 into Equation
3.5
Outputy, = fi ((mputiwf" + bm)k wh, + bk) wh, VYk=1,2,---,8 (3.6)

These outputs are the inputs of the output layer, thus the output of the output layer is

8

OUtpUtout = foutput ka: ((anUtzw;m + bzn)k wél + bk) w§2 + bout (37)
k=1
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As the identity function is the output layer activation function, Equation 3.7 may be written

as

8
Output e = ka ((inputiwf” + bm)k w§1 + bk) w§2 + by Vi=1,2,--- ,N—1 (3.8)
k=1

Note that following this procedure the extraction of the function associated with a trained
BPNN is possible, regardless of the number of layers and the number of neurons in each
layer. Furthermore, any type of activation function may be considered, either a standard-

predefined activation function or a user-defined activation function, allowing high flexibility

when mapping complex-shaped SBs using the proposed BPNN.

3.3 BPNN Training and Testing

The term training or learning algorithm refers to a systematic procedure for adjusting the
weights in the network in order to achieve a desired input/output relationship. In the case of
“supervised” learning is based on pairs of input vectors and desired output vectors (u’",y}),
where the superscript r ranges over all pairs used to train the network, and the subscript d
stands for “desired” output vector. The network then learns to associate the input vector u”
with the output vector y); then, for a given set of weights, if the network is presented with
an input u", it will produce an output y" which should be identical or very close to yJ.

The method used to train the BPNN off-line consists of iteratively adjusting the network
weights and biases to minimize the network’s performance, which in this work is given by
the square error between the network outputs and the target outputs. The gradient of
the performance function is used to adjust all the weights and biases using an updating
technique known as back-propagation, which adjusts the weights of an ANN in order to
reduce the value of the performance criterion. Specifically, the error performance is given by
[Chassiakos and Masri, 1996]:

1 ne m
E=5> > Wi~ vi)’ (3.9)
r k=1
where ne is the number of training patterns, and m is the number of outputs.
Back-propagation adjusts the parameters following a gradient algorithm. The gradient
of E with respect to a parameter vector called W, which compares all the weights and

parameters of a specific layer, is calculated; the parameters are then adjusted in the direction
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of the negative gradient. Since neither the input to nor the reference signals for the hidden
layers are known, back-propagation starts at the output level and “propagates” the results
backwards to the first layer. The summarized steps of the back-propagation algorithm are
as follows [Luzardo-Flores, 1997|:

1. Initialize all the parameters of the net.
2. Propagate forward the input u” to the successive hidden layers up to the output layer.

3. Adjust the parameters starting at the last layer, and then back-propagate the error
through the network up to the first layer, as follows:
- Adjust the parameters by using:

wrew = weld _ nVE (3.10)

where 7 is the step size called learning rate, and VE is the gradient of E with respect
to the parameters of the corresponding layer.

- Once the corresponding parameters of a layer are updated, back-propagate the error
to the next layer and update the parameters of that layer. This procedure continues

until the first layer is reached.

4. Change the input vector and repeat the procedure from step 2 until all the pairs (u", y})

are considered.
5. Repeat from step 2 through step 4 until a limit number of epochs is reached.

In order to train the BPNN to represent the SB, the M critical values of the N — 1 loading
points making up the SB are provided as inputs to the BPNN, i.e., in Fig. 3.1, input; = ¢y,
inputy = ca,.. .,inputy_1 = cy_1 as per Equation 2.48. The target (output) value that must
be satisfied within a given tolerance is given by a chosen N** column of M) defined in Equation
2.48, i.e. Output,,; = cy, so that ¢y = f (input), where input = [ mputy ... inputy_q ],
and f (-) stands for the “total” BPNN function (Equation 3.8). Observe that a given point
on the boundary is basically defined by:

iv A (i Az Aivn) %f<5\z> (3.11)

In other words, for N — 1 known load increase rates defined by the vector 5\1-, the SB value

Xy of a chosen N load/generation increase is defined by (3.11).
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The boundary points can also be represented in the Pj-parameter or loading space based

on (2.44), (2.47) and (3.11), so that a critical loading point on the boundary is given by

Therefore, the equation

P~ f (ﬁd> —0 (3.13)
defines a hyper-surface in the N-dimensional loading space on which the BPNN-SB is defined
(e.g. for 2 loads it is a curve, for 3 loads it is a 2-dimensional surface, etc.).

The BPNN training and validation process used here is based on randomly dividing the
input vectors and the target vector in three sets as follows: 60% are used for training; 20%
are used to validate the BPNN and to stop training before over-fitting as per the above-
mentioned performance function; and the last 20% are used as an independent set to test
the BPNN generalization [Demoth et al., 2008]. The time that it takes to train the BPNN
is in the range of a few seconds to several minutes, depending on the number of loading or
generation areas considered to build the SB. Since this is carried out off-line, obtaining the
required BPNN-SBs should not represent a problem in a practical implementation of the

proposed methodology.

3.4 BPNN and NR Nonlinear Function

Following an inverse procedure, a symbolic algebraic process can be employed to relate the
input /output of the BPNN, considering its architecture and the basic neuron structure, as
shown in the previous section. Hence, the mapping function that relates the input-output
for the BPNN shown in Fig. 3.1, in terms of load /generation increase rates, is obtained from
Equations 2.48, 3.8, and 3.11 as

8

X = D0 (A0 + bin ) why + b1 ) sz + o (3.14)
k=1
where w'" = [ wit wy e Wi ] . From Equation 2.44, Equation 3.14 can be rewritten

as
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ofdy = kz:fk <<acc§Twi" + bm> wlgl + bk> W3o + boyr (3.15)

where a¢ represents the critical loading factor. Observe that the system operating point
associated with a loading/generating level Ay > A% is located outside the security region.

Based on Equation 2.47, the mapping function (Equation 3.14) can be expressed as
8 A
PC?N - ka (<PdTwzn + bl”) w’2€1 + bk) W3z + bout (316)
k=1

Similarly, system operating points associated with a loading level Py, > Pg  are located
outside the security region. Hence, the mapping functions (Equations 3.14 or 3.15) can be
used as security constraints in the OPF formulation, as explained in the next Chapter, to
achieve a stable equilibrium point from a voltage collapse viewpoint.

On the other hand, the SB can also be approximated by the following polynomial ap-

proximation, as proposed in |Jayasekara and Annakkage, 2006]:

8 8
V=AY (B,-S\i + > Cuhih+ DA?) (3.17)
i=1,i#N j=i+1,i#N
A NR approach can be used to obtain the A, B, C' and D parameters in Equation 3.17, and
a similar procedure used for the validation of the BPNN can be employed to validate the NR;
thus, 70% of input and target vectors are used in the fitting process, while the rest are used
to validate the NR function performance. A mayor problem in using regression techniques
is that for complex relationships, a search for a suitable model can be very difficult, as

demonstrated with an example later in the Chapter.

3.5 The Bias/Variance Dilemma

The aforementioned mapping tools introduce a bias error (a measure of how different on
average the function estimate is from the target function for each training sample) in the es-
timation of the SB. This error is always present in any approximation process [Haykin, 1999].
For the case of the BPNNs, this can be minimized by increasing the number of neurons in
the hidden layer and/or the number of hidden layers, since as the number of neurons and/or
layers increases. The network will interpolate the training data to decrease the bias error.

However, increasing the size of a network increases the difficulty of estimating the network
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parameters, thus affecting the variance error (a measure of how different on average the
function estimate is from its expected value over all training samples), and over-fitting may
occur. On the other hand, decreasing the number of neurons in the hidden layer and/or
the number of hidden layers minimizes the variance error but increases the bias error and
may result in under-fitting. The same “dilemma” occurs in the case of the NR model, where
if an approximation procedure is performed, the variance error is reduced while increasing
the bias error, whereas if an interpolation procedure is performed, the bias error is forced to
zero while increasing the variance error. This is commonly referred to as the bias/variance
dilemma.

In the proposed approach a trade-off between the bias and variance errors is considered in
order to achieve generalization, which as it was previously mentioned, is the ability of a model
to properly estimate a process/system based on a set of input/target pairs without having to
repeat the approximation procedure for all possible input/output pairs. Thus, these errors
must be minimized even though they depend on each other; the bias error minimization
implies the increment of the variance error and viceversa, and hence both cannot be reduced
at the same time. As a consequence, to achieve generalization a midpoint between these

values resulting in a trade-off between them is useful here.

3.6 Study Cases

The results of the proposed approach to map the SB and their comparison with respect to
the results obtained by using the NR approximation are presented in this Section. Two test
systems are considered, namely IEEE 2-area and IEEE 118-bus benchmark systems, to prove
that the accuracy and reliability of the mapping process using BPNN are sufficient for the

application to large-scale power systems.

3.6.1 IEEE 2-area Benchmark System

The slightly modified IEEE 2-area benchmark system shown in Fig. 3.3 consists of two
similar areas connected through a relatively weak double-circuit tie line; the added variable
capacitor at Bus 8 keeps the bus voltage constant to improve voltage profiles for various
loading conditions. The system generators were modeled using detailed sub-transient models
including simple excitation systems and speed governors. A power system stabilizer was
installed on generator G4 to damp possible low frequency oscillations. There are only two

loads in the system at Buses 7 and 9, respectively. The system data [Kundur, 1994|, generator
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bid data, and active power generation limits are shown in Appendix B.
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Figure 3.3: IEEE 2-area benchmark system.

A. Two Loads

Following the procedure described in this Chapter, the SB of the system shown in Fig. 3.3
is obtained considering a Line 7-8 trip, based on the 21 different loading directions shown in
Appendix D for each load and detailed static and dynamic studies using the tools described in
[Milano, 2005 and [UWPFLOW]|; the generator dispatch pattern used to obtain the boundary
was based on the base generator powers. Hence, the resulting SB is composed of pairs [AS, A§]
associated with the loading directions of the loads located at Nodes 7 and 9; these are referred
here as training points to better express the inherent training procedure associated with the
BPNN. To train the BPNN and to perform the NR, A\ was assumed as the input, and \§ was
considered as the target. For the case of the BPNN, it took about 91 secs. on a standard PC
to minimize the error between the output and the target to within a 10~° tolerance; and for
the case of the NR, it took about 80 secs. to minimize the error to within a 10~* tolerance.
It was not possible to obtain a 107° tolerance by using the NR approach due to its lack of
accuracy. Because of the mapped surface’s simplicity, good mapping results are obtained,
and no significant differences are observed.

The mapping results of the NR and the BPNN are presented in Fig. 3.4.
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Figure 3.4: Two-load SB mapping for the IEEE 2-area benchmark system (a) using NR and
(b) using BPNN.

B. Three Loads

For this case, the system is modified including a load of 800 MW and 50 MVARs at Bus 6.
The modified system is shown in Fig. 3.5.
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Figure 3.5: IEEE 2-area system including a load at bus 6.

Following the procedure described for the case of two loads, the SB was obtained based on
the 631 different loading directions shown in Appendix D for each load, and detailed static
and dynamic studies using the tools described in [Milano, 2005| and [UWPFLOW]. The
generator’s dispatch patterns used to obtain the boundary was based on the base generator
powers. As in the previous case, the SB is obtained for a Line 7-8 trip.

The resulting SB is composed of points [AS, \§, A§] associated with the load directions
of the loads located at Nodes 7, 9 and 6, respectively, which are also referred as training
points. Here, A2 and \§ were assumed to be the inputs to the BPNN and the NR, and
A was considered as the target. It took about 96 secs. on a standard PC to minimize
the error between the output and the target to within a 1075 tolerance for the case of the
BPNN. On the other hand, the NR-based mapping procedure is faster than the BPNN-based
mapping (it took only about 15 secs.). However, as shown in the resulting SB depicted
in Fig. 3.6(a), the NR-based mapping tool does not give appropriate results since the SB
presents some discontinuities that, for the case of the BPNN in Fig. 3.6(b), are averaged by
the approximation, resulting in a more even surface for obtaining a differentiable nonlinear
function in terms of the loading space.

Therefore, if the NR approach is used as SB approximation tool, there will exist regions
where the SB is not defined, and there is nothing much to said about the power system’s
secure operation. The power system would be steering towards insecure operating points
having no clue of where the boundary is located, disabling the possibility of taking preventive
or corrective actions. The same case occurs for regions unmapped by the NR tool as shown
at the bottom part of Fig. [fig:Three-loads-SB-mapping| (a) and (b); also observe how at the
right-bottom part there are some points resulting from the NR located outside the SB, which

will give false signals regarding the power system’s security, i.e. operating points may seem
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secure when in reality they are insecure. The opposite cases may be presented: an operative
point may be considered as insecure when in reality is secure.
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Figure 3.6: Three-load SB mapping for the IEEE 2-area benchmark system (a) using NR
and (b) using BPNN.

3.6.2 IEEE 118-bus Benchmark System

In order to test if the proposed approach is capable of handling more complex SBs and to

compare its behavior against the NR-based mapping tool, the more realistic IEEE 118-bus
Benchmark System presented in Section 2.7.4 is used.

Following standard utility and electricity market practices, the SBs are obtained varying
the loading and dispatch directions. For the case when loading directions are varied, the
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system was divided into 2, 3, and 4 operational areas as shown in Appendix C, so that
the corresponding SBs basically represent transfer limits between these areas. Also, the
same 631 loading directions were considered for the reasons explained in Section2.7.4, and a
generation dispatch pattern based on the base generator powers was used. Regarding varied
dispatch directions, the system is divided into 2 and 3 generating areas as shown in Section
2.7.5, considering 21 and 631 dispatch directions as shown in Appendix D, respectively. The
proposed BPNN-SBs were obtained in these cases using the same criteria discussed in Sections
2.7.4 and 2.7.5. A similar training and testing procedure used for the IEEE 2-area system
was applied to obtain the required SBs.

Loading Directions
A. Two Areas

The system’s SB for an Area 1 - Area 2 interchange and the corresponding NR- and BPNN-
based mappings are shown in Fig. 3.7. On a standard PC, approximately 100 secs. were
required to minimize the error between the output and the target to within a 107° tolerance
for the case of the BPNN, and 90 secs. for the case of the NR. Similar to the case of
the IEEE 2-area benchmark system when two loads are considered, the mapping tools have
similar behavior due to the simplicity of the SB. However, for the case of the NR a small

deviation in the response on the top left of Fig. 3.7 (a) can be observed.

48



0
1410

1405
1400

1395

¢ Training Points
——NR Response

g
=
2 1390
o
1385
1380
1375
1 1 1 1 1 1 1 1 1 1 1
2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710
P s (MW)
(a)
1410 ® Training Points
——BPNN Response
1405
1400
S 1395
£
,_.L% 1390

1385

1380

1375

| |
2680 2685
P iay (MW)

(b)

| | | |
2660 2665 2670 2675

Figure 3.7: SB mapping for the IEEE 118-bus benchmark system considering two loading

areas (a) using NR and (b) using BPNN.

B. Three Areas

The system was divided in three operating areas, namely, Area 1 with 31 loads, Area 2 with
31 loads, and Area 3 with 29 loads. The SB mapped by the proposed BPNN and the NR
is illustrated in Fig. 3.8 in the Pj-parameter space. It took 156 secs. on a standard PC to
train the BPNN and to reduce the error between the output and the target to within a 107°

tolerance. For the case of the NR, it took 150 secs. to minimize this error within a 1073

tolerance.
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Figure 3.8: SB mapping for the IEEE 118-bus benchmark system considering three loading
areas (a) using NR and (b) using BPNN.

From Fig. 3.8 and the error tolerance for each case, it can be seen how the NR does
not accurately map the SB. Both mapping tools cannot properly map the bottom of the SB,
because it is the region of the SB where more nonlinearities are presented. To overcome this
problem the complexity of the BPNN architecture may be increased modifying the number
of neurons/layers. However, because the main goal here is to attain the simplest BPNN ar-
chitecture in order to achieve an “adequate” SB representation, in terms of a smooth-mapped
surface which enables the extraction of a differentiable nonlinear function, the development
of an “optimal” BPNN which reduces as much as possible the error between the output and

the target is not considered here.

C. Four Areas
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In this case, the system was divided into the following four areas: Area 1, 2 and 3 with 22
loads each; and Area 4 with 25 loads. The BPNN-SB training took 225 secs., and the NR 180
secs. for tolerances of 1076 and 107%, respectively. In this case, the flexibility of the BPNN
is evident since it is capable of accurately mapping high-dimensional and complex surfaces.

Hence, it may be applied to cases where several loads or loading areas are considered.

Dispatch Directions
A. Two Areas

The system is divided in two operating areas as mentioned in Section 2.7.5. The SB mapped
by the proposed BPNN and the NR is shown in Fig. 3.9. The NR is unable to map the
SB even using a 9th degree polynomial, because of the nonlinearity, discontinuities, and few
available training points of the SB to be mapped. On the other hand, the proposed BPNN
yields the desired results by accurately mapping this more complex SB.

Notice in this figure how it seems not possible to approximate the SB by a single math-
ematical function, i.e. for each value of Pg4 correspond two values of Pgp, preventing the
implementation of the considered approaches. However, observe how in the left part of Fig.
3.9 when the aforementioned it seems to occur the training points are not aligned w.r.t. the
x-axis, allowing to using the approximation tools; if it were the case that they were aligned,
a little change in the dispatch direction of one of the two training points will be enough to

overcome this issue and to produce a deviation between them w.r.t. the x-axis.
B. Three Areas

The system is divided in three operating areas as shown in Section 2.7.5. Several BPNN
architectures were tested in order to obtain the simplest one. Because of the complexity of
the SB, as shown in Fig. 3.10, it is necessary to use a three-layer ANN containing 25 neurons
in the first layer (input layer), 20 neurons in the second layer (hidden layer), both with a
sigmoid activation function, and 1 neuron in the third layer (output layer) using a linear
activation function. Even when the number of neurons are increased as in this case, the
architecture of the BPNN used still can be considered “simple”, since it only contains three
layers. As illustrated in Fig. 3.10, the NR is unable to successfully map the SB whereas the

BPNN shows high accuracy even when complex-shape security regions are presented.

ol



4000

3800

3600

3400

P g (MW)

3200

3000

2800

—o—Training Points
v NR Response ||

1 1
2600 2700
Pga (MW)

(a)

1 1 1
2300 2400 2500

1
2200

1
2800

1 1 1
2900 3000 3100

4000 : :
= Training Points
v BPNN Response
38001 B
3600 E
S 34001 —
£
8
o 3200 —

3000

28001

| | |
26%(% 00 2200 2600 2700

P (MW)

(b)

| | |
2300 2400 2500
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3.7 Conclusions

The approximations of the SB were presented in this Chapter. Two main approximation
tools were considered: the BPNN and the NR.

The role of the trained BPNN when used to solve a function approximation problem is
to properly represent the function that describes the system at each point in the required
domain. For this case, the SB mapping process consists in obtaining the critical load matrix
which constitutes the training and testing sets for the BPNN training and testing the BPNN|,
and obtaining the explicit function representation from the BPNN. The BPNN considered in
this work is composed of three layers: input, hidden, and output layers; this architecture was
selected based on the criteria of having the simplest array of neurons, capable to map the SB
with a reasonable precision. Hence, from the trained BPNN a smooth-nonlinear differentiable
function was obtained, which may be represented either in the A-parameter or P;-parameter
space. On the other hand, the SB may also be approximated by polynomial approximation
by using NR.

The results of the proposed approach when used to map the SB and their comparison
with respect to the results obtained by using the NR were presented. Two test systems were
considered, such as the IEEE 2-area and the IEEE 118-bus benchmark systems.

Two cases were presented for the IEEE 2-area benchmark system: two and three loads. In
the former no significant differences were obtained due to the simplicity of the SB; however,
better tolerances were obtained by using BPNN. In the later case, it was shown how due to
the complexity and discontinuity of the SB better mapping results were obtained by using
BPNN compared with the results obtained by using NR.

In order to test if the proposed approach is capable of handling more complex SBs and to
compare its behavior against the NR-based mapping tool, the more realistic IEEE 118-bus
benchmark system was considered. In order to achieve this, two types of SB were presented:
the resulting SB obtaining when loading directions are varied, and the SB obtained when the
dispatch directions are varied.

For the first case considering two loading areas, no significant differences were observed
between the results obtained by using both mapping tools for the same reason as in the
2-area system. When three loading areas were considered, it was shown how the NR it
was unable to successfully map the SB; there were unmapped areas and low precision was
obtained compared with the better results obtained by using BPNN. When four areas were
considered, it was evident the flexibility of the BPNN since it was capable of accurately

mapping high-dimensional and complex surfaces.
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For the second case where the dispatch directions were varied, two and three operating
groups were considered. When two operating groups were considered, the NR was unable
to map the SB even by using a 9th degree polynomial, because of the nonlinearity, discon-
tinuities, and few available training points of the SB to be mapped. The proposed BPNN
yielded the desired results by accurately mapping this more complex SB. When three op-
erating groups were considered, several BPNN architectures were tested in order to obtain
the simplest case because of the complexity of the SB. Again, it was shown how the NR
was unable to successfully map the SB whereas the BPNN showed high accuracy even when

complex-shape security regions are presented.
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Chapter 4

Proposed Security Boundary
Constrained-Optimal Power Flow
Auction Model

4.1 Introduction

In this Chapter, a discussion of a typical SC-OPF auction model and a novel “dynamic”
SC-OPF model are presented. Also, the advantages and disadvantages of both models are
discussed. The proposed SBC-OPF auction model is discussed in detail, highlighting the
advantages of including a smooth nonlinear differentiable function as an optimization auction
security constraint. Furthermore, comparison results between using a BPNN and a NR as
tools to map the SB are also presented, showing that the BPNN-based mapping can better

represent highly nonlinear multidimensional SB.

4.2 SC-OPF Model

The following is a typical SC-OPF auction model which includes the AC power flow equations

as part of the optimization auction constraints to directly account for reactive power and
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voltage control and their associated limits |Canizares and Kodsi, 2006]:

Min. Sb=—(CIP,—CIP,)
s.t. FPF (57 V7 P87 Qsa Pd? Qd) =0
0< P, <P,
0< Py < Pipas (4.1)
‘Pl.] (57‘/) S Bjmaac v@,j,l#] .
IZ] (57 V) S Iijmaz vz7j7z % j
Qsmin S QS S Qsmaz
Vmin S V S Vmaz

where C; and Cy are vectors of supply and demand bids in $§/MWh, respectively; I;; repre-
sents the current in the transmission line 77, so that thermal limits can be directly modeled in

the auction process. Finally, P, is used to represent transmission system security limits,

Jmax
which are determined off-line by means of stability and contingency studies. It is impor-
tant to highlight the fact that these security limits do not correspond to the actual system
conditions associated with the resulting solutions, since these limits were not necessarily
obtained using the operating conditions corresponding to the solution of the OPF-based auc-
tion; hence, this model may yield insecure operating conditions and/or inappropriate price

signals [Canizares and Kodsi, 2006|, |Ghasemi and Maria, 2008|.

4.3 Dynamic SC-OPF Model

A technique that yields a representation of the SB, which accounts for system dynamics,
which could be included as an explicit stability function constraint in the OPF model, is
proposed in [Jayasekara and Annakkage, 2006]. In this case, the SC-OPF model may be

formulated as follows:
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Min. S, = — (CTP;— CTP,)
sit. Fpp (6,V,Qs, Py, Ps,Qq) =0
0< P <P,..
0< Py <Py,

I;; (0,V) < Lijo Vi, 5,0 # ]
Qspin < Qs < Qs
Vinin <V < Vinaa
Inry — fnr (V,0) <0

AN TN N N N N N N
=R R R R R R R

© 0 N O Ot e L o
e’ N e e e S S

where the SB is represented by the explicit function fyg () in Equation 4.9, and fyg, is
a suitable threshold value. To attain the mapping function fyg (), the NR fitting technique
discussed in Chapter 3 is used. The importance of this approach is that the mapping function
can provide a “quick” mapping between an operating point and the corresponding security
status, to guarantee that the solution to the OPF problem remains within the SB defined by
Equation 4.9. This technique represents an advance in terms of efficiently characterizing the
SB with respect to previously proposed SC-OPF methods. Hence, a similar conceptual idea
is adopted in this work to develop the proposed BPNN-based SBC-OPF model suitable to

obtain stable optimal equilibrium points from a static voltage stability viewpoint.

4.4 Proposed SBC-OPF Model

Given that in practice the majority of system loads are inelastic (price unresponsive) [Bom-
pard, et al., 2000|, the OPF model described by Equations 4.2-4.9 can be readily modified
to reflect this fact. Thus, the proposed optimization model considers that loads bid on the
market only a fraction of their demand which they are willing to curtail if they need to be at
a high curtailment price; this better reflects the way markets operate in most jurisdictions.
Furthermore, the security constraint (Equation 4.9) can be replaced by the proposed BPNN-
SB (Equation 3.14) for each supply pattern considered. Therefore, the following OPF model

is proposed:
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Min. S, =— (CIP,— CI'P,) (4.10)
s.t. FPF (5, V,QS,PS,Pd7Qd) =0 (411)
0< P, <P, (4.12)
Qsmin S Qs S Qsmax (413)
me < vV < Vmaa: (414)
8 ~ .
M= 3 fe ((Angg + bmm> wh, + bkm> why + by, <0 Ym=1,...,G (415)
APy, <0VYj=1,...,N (4.16)
APy = (Nj — Njo) FPa,
6= =do) P iy (4.17)
= (Oédj — Ckodjo) deo

Qa, = tan (p;) Py, ¥j=1,...,N (4.18)
0<d;<1Vj=1,...,N (4.19)

N
Sd; =1 (4.20)

j=1
a>0 (4.21)

where ¢ is the power factor angle; m stands for the m*™ SB obtained for a given generation
pattern out of a total of G dispatch patterns; N is the number of loads bidding in the
market; Cy represents load curtailment prices; and the load curtailments are represented
by AP, assuming a constant power factor as per Equation 4.18. Observe that constraints
represented by Equation 4.16 force APy, to be negative or zero for all bidding loads, which,
combined with high C, values, would effectively force the load curtailment to be zero if there
is a solution to the problem within the boundaries defined by Equation 4.15. On the other
hand, APy, becomes nonzero only when there are security violations that cannot be resolved
simply with generation dispatch. It is important to highlight the fact that for loads that do
not wish to bid in the market Cyq, = AP, = 0. Therefore, this optimization dispatch model
properly reflects the basic operating principles of current electricity markets.

This model was solved using two different types of solvers: the Newton-based approach de-
scribed in [Pizano-Martinez et al., 2007] and [Fuerte-Esquivel et al., 1998], and AMPL [Fourer
et al., 2003] with the KNITRO solver [KNITRO]. Both generated the same solutions in all

the examples discussed next.
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4.5 Study Cases

Numerical results of the proposed method are presented and discussed in this Section.
Comparisons between the proposed BPNN-SB mapping approach and the NR proposed in
[Jayasekara and Annakkage, 2006] are also presented.

Two sample systems were selected to test and demonstrate the proposed SBC-OPF model,
namely, the IEEE 2-area system and the IEEE 118-bus system; the latter shows that the
presented approach can be readily applied to realistic power systems. To simplify the pre-
sented analyses and explanations of the results, and without loss of generality, the SB was
obtained for a “typical” dispatch pattern, i.e. G =1 in Equation 4.15 for both test systems.
Furthermore, to test the effect of the security constraint defined by Equation 4.15, all case
studies presented are based on load dispatches Py, that violate the SBs. The corresponding

smooth nonlinear differentiable function extracted from the BPNN are found in Appendix

A.

4.5.1 IEEE 2-area Benchmark System

The IEEE 2-area benchmark system shown in Fig. 3.3 is used to test the SBC-OPF in order
to demonstrate how insecure operating points can be relocated inside the security region
using the security constraint defined by Equation 4.15. The two cases presented in Chapter 3
are considered in order to show how the proposed approach can be readily applied to systems

containing several loads or loading areas.

4.5.1.1 Two Loads

Following the procedure described in Chapter 3, the resulting stability and SBs are depicted
in Fig. 4.1. The latter corresponds to the system stability boundary for a Line 7-8 trip, which
is not the worst contingency in this test system since other line trips such as a Line 6-7 trip
would yield an unsolvable base power flow; however, this allows to illustrate the application of
the proposed dispatch algorithm without loss of generality. Observe the reduced loadability
margin when the contingency is considered. Note as well that the boundaries present some
discontinuities that are “averaged” by the BPNN approximation, which is a differentiable
nonlinear function in the considered loading space.

The values for «, d;7, and d;9 shown in Table 4.1 were chosen so that the corresponding P,;.
and P, values force the system to be outside the SB to test the proposed optimization model,

which should yield the most economical dispatch while meeting all security constraints. The
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assumed large curtailment bids for the loads were Cy, = 200$/MW and Cy, = 22008/ MW,
which are, as previously discussed, significantly larger than the generator bids, in the 70 to
90 $/MWHh range, as shown in Appendix B.

Table 4.1: TEEE 2-area system loading scenarios.

Case (0% di7 dig Pd7 Pd9
IMW| | [MW]|
1 0.8104]0.6 |1276.44| 2615.16
2 0.8 10.5]0.5|1353.80| 2473.80
3 0.91]0.6] 04| 1489.18 | 2403.12
4 0.91]0.7]0.3|1576.21 | 2244.09
) 1.0 | 0.8 ] 0.2 | 1740.60 | 2120.40
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Figure 4.1: Security and stability boundaries for the IEEE 2-area system with two loads.

The load change results obtained by applying the proposed model defined by Equations
4.10-4.20 are shown in Table 4.2. The five initial loading points and five final points with
respect to the SB are shown in Fig. 4.1; observe how the loads are minimally curtailed so
that the system returns to its SB, curtailing the cheapest load the most, as expected. Thus,
in all cases, the cheapest load P, is curtailed the most, whereas the most expensive load P,
is only curtailed in the cases when this is necessary to bring the system within the security

limits (Cases 1 and 2), as clearly illustrated with Fig. 4.1.
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Table 4.2: IEEE 2-area system load curtailment values.

Case « di7 dig APd7 APdg
IMW| | [MW]|
1 0.4402 | 0.1004 | 0.8996 | 266.68 | 148.38
2 0.4402 | 0.1004 | 0.8996 | 344.04 7.02
3 0.5602 | 0.3574 | 0.6426 | 328.56 0.0
4 0.6902 | 0.6088 | 0.3912 | 202.90 0.0
d 0.7436 | 0.7310 | 0.2690 | 247.93 0.0

To test if the proposed approach is successfully curtailing as much as possible the load
with the cheaper shedding cost, an interchange in the curtailing bids is carried out considering
the same values for «, d;; and d;9 shown in Table 4.1. For this case the load at Node 9 is
the cheapest load (Cy, = 200$/MW), and the load at Node 7 is the most expensive load
(Cy, = 22008/ MW).

It can be shown from the load change results of Table 4.3 that, as in the previous case,
the loads are minimally curtailed so that the system returns to its SB. The cheapest load
P, is curtailed the most, whereas the most expensive load Py, is only curtailed in Case 5
because of it is the optimal curtailing scenario. Thus, the proposed SBC-OPF is proved to
return the insecure operative points into the security region taking into account economic

aspects of the bidding market loads.

Table 4.3: IEEE 2-area system interchanging the load curtailment values.

Case « di7 dig APd7 APdg
IMW| | [MW]|

1 0.6365 | 0.5027 | 0.497 0.0 288.86
2 0.6801 | 0.5881 | 0.4119 0.0 211.80
3 0.7422 | 0.7275 | 0.2725 0.0 278.78
4 0.7741 | 0.8139 | 0.1861 0.0 2.2253
3 0.7918 | 1.0000 | 0.0000 | 7.94 353.40

The proposed BPNN-SB representation (Equation 4.15) is then replaced by the NR poly-
nomial approximation defined by Equation 3.17. The resulting mean square errors for the
BPNN and the NR functions are 9.94e-7 and 2.39e-5, respectively, which basically shows that
the BPNN approximation fits the boundary better than the NR polynomial approximation.
Table 4.4 shows the load changes and the value of the corresponding SB constraint for the
BPNN approximation and the NR approximation. Observe that the differences in load cur-

tailments are not significant, but the BPNN security constraint is in general closer to zero
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than the NR polynomial one, thus yielding more accurate results at similar computational
costs for the solution of the optimization model. Considering that both approximations are
based on the same training data, with the BPNN approach requiring a not too costly off-line
training process, while the NR approach requires a computationally somewhat cheaper off-
line fitting process, the BPNN approximation can be regarded as a better alternative given

the more accurate results.

Table 4.4: TEEE 2-area system load curtailment values using BPNN and NR approaches.

BPNN Approach NR Approach
Case | AP, | AP, | Value APy, | AP | Value
MW]| | [MW] of [MW] | [MW] | of eq.
eq.(4.15 (3.17)
1 266.68 | 148.38 | -2.2e-5 || 309.44 | 148.60 | 2.3e-5
2 344.04 7.02 -2.2e-5 || 386.80 7.24 2.3e-5
3 328.56 0.0 -1.8e-5 || 321.66 0.0 2.2e-5
4 202.90 0.0 1.4e-5 | 207.12 0.0 -7.4e-5
5 247.93 0.0 3.1e-6 || 246.75 0.0 -2.6e-5

4.5.1.2 Three Loads

To test if the proposed approach can be applied to systems containing more than two loads
or loading areas, the IEEE 2-area benchmark system is modified as shown in Fig. 3.5. The
values for «, d;s, di7, and d;9 in Table 4.5 were chosen so that the corresponding Py, Pj..
and Py, values force the system to be outside the SB to test the proposed approach with
multi-dimensional SBs. The base load values are depicted in Fig. 4.2. The curtailment bids
for the three loads were Cy, =208/ MW, Cy, =903/ MW, and Cy, = 103/ MW.

Table 4.5: IEEE 2-area system loading scenarios for three loads.

Case o di6 di7 dig Pda Pd7 Pd9
MW]| | [IMW]| | [MW]
22107101102 2032 |1179.74| 2544.48
22105031 0.2 1680 1605.22 | 2544.48
1.4 102 710.11]07 | 1024 | 1102.38| 3498.66
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Figure 4.2: 3-D security and stability boundaries for the IEEE 2-area system.

The load change results obtained by applying the proposed model defined by Equations
4.10-4.20 are shown in Table 4.6 and depicted in Fig. 4.2. For the three cases, the cheaper
load is curtailed as much as possible in order to return the unstable equilibrium point to the

SB. Thus, the proposed approach has prove to be useful in systems with more than two loads

or loading areas.

P, (MW)

Table 4.6: TEEE 2-area system load curtailment values for three loads.

Case « dig di7 dig Pds Pd7 Pdg
IMW| | [MW]| | [MW]
1 1.4957 | 0.8041 | 0.1057 | 0.0903 | 1762.14 | 1119.81 | 2005.53
2 1.4362 | 0.5112 | 0.4127 | 0.076 | 1387.40 | 1540.22| 1960
3 0.8053 0 0.108 | 0.892 800 1051.08 | 3036.28

Similarly to the last example, the polynomial approximation defined by Equation 3.17
has also been employed to obtain the optimal load shedding which assures that the system
is operating within the stable region. Table 4.7 shows the load changes and the value of
the corresponding SB constraint for the BPNN approximation (Equation 4.15) and the NR
approximation (Equation 3.17). As in the previous case, the differences in load curtailments

are not significant, but the BPNN security constraint is in general closer to zero than the

NR polynomial one.
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Table 4.7: IEEE 2-area system load curtailment values for three loads using BPNN and NR
approaches.

BPNN Approach NR Approach
Case | APy, | APy, | AP | Value APy, | APy, | AP | Value
[MW]| | [MW] | [MW] | ofeq. | [MW] | [MW] | [MW] | of eq.
(4.15) (3.17)
1 269.86 | 959.63 | 538.95 | -1.7e-5 | 269.80 99.9 537.5 1.0e-5
292.6 65 084.48 | -1.4e-5 292 65 084.4 | 2.0e-5
3 224 o1.3 462.38 | 1.8e-5 223 92 462.3 | 2.1e-5

4.5.2 ITEEE 118-bus Benchmark System

To prove the effectiveness of the proposed method with a more realistic system, the IEEE
118-bus benchmark system was used. The system loads are divided into three and four

loading groups or areas.

4.5.2.1 Three Areas

The three area loading cases in Table 4.8, which all define operating conditions outside the
security region as depicted in Fig. 4.3, were used to test the proposed optimal dispatch
model with the following large load curtailment bids per area: Cy,, = 2008/ MWh, C,4,, =
4008/ MW h, and Cy,, = 600$/MWh. The total area loads were proportionally distributed
among the area buses based on their base loading values. The generator bid data are given

in Appendix C.

Table 4.8: 118-bus system 3-area loading scenarios.

Case PdA1 PdA2 PdAs
MW] | [MW] | [MW]
848.64 | 822.97 | 2138.85
866.944 | 803.794 | 2061.444
836.16 | 830.96 | 2047.185
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Figure 4.3: SB for the IEEE 118-bus system for three areas.

Table 4.9 shows the total area load changes resulting from the solution of the SBC-OPF
dispatch model, which also yields optimal dispatch values for all generators. Observe in Fig.
4.3 how the most expensive Area 3 loads are shed the least, except for Case 1 where this load

must also be curtailed for the system to be on the required SB.

Table 4.9: 118-bus system 3-area load curtailment values.

Case | APy, | APy, | AP,
1 10.1147 | 13.9695 | 62.4044
2 17.3010 0.0 0.0
3 0.0 6.2105 0.0

As in the case of the IEEE 2-area system, a comparison between the BPNN and NR
approaches to map the SB was also carried out. The mean square errors for the BPNN and
the NR approximations are 2.6e-6 and 5.85e-6 respectively, demonstrating that the BPNN

more effectively approximates the boundary than the NR polynomial.

4.5.2.2 Four Areas

The three test cases shown in Table 4.10 were used to test the proposed dispatch model; all
operating points are located outside the security region. The total area load was assumed

again to be proportionally distributed among the area buses based on their base loading val-
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ues. Large curtailment value bids are assumed for the loads in each area: Cy,,

Capy = 1008/ MWh, Cy,, = 3008/ MWh, and Cy,, = 600$/MW h.

Table 4.10: 118-bus system 4-area loading scenarios.

— 800$/MWh,

Case | Py, [MW] | Py, [MW | Py, [MW] | Py, [MW]

1 790.0891 623.6631 1237.4465 1624.8792
2 807.7263 648.9401 1332.6901 1661.1514
3 798.8817 758.0656 1442.9201 1642.9618

The load changes obtained from solving the SBC-OPF model defined by Equations 4.10-
4.20 for all three operating cases considered are shown in Table 4.11. The loads are curtailed
according to their bids and their effect on system security. In this case, the most expensive
loads in Area 1, as well as the cheaper loads in Areas 2 and 3, are not curtailed; only the
loads in Area 4, which have the most impact on system security conditions, are shed the

most.

Table 4.11: 118-bus system 4-area loading scenarios.

Case APdAl APdA2 APdAg, APdA4
IMW]| IMW]| IMW]| IMW]
1 0.0 0.0 0.0001 154.0212
0.0 0.0 0.0 190.2934
3 0.0 0.0 0.0 172.1038

4.6 Considerations

As long as the simulations were carried out, the following advantages and disadvantages were
noticed. It is evident that the main advantage is having an explicit function, which represents
the power system’s security, in such a way that may be included as a security constraint into
a SBC-OPF auction model, giving the system operator a clear indicator about the security
of an operating point.

However, due to the fact that the BPNN neurons’ activation function considered in the
present work has exponential nature, numeric problems may arise during the SBC-OPF
solution process, i.e. in some cases the exponential terms which form part of the security
constraint may become too large yielding to the solver to diverge. Hence, care should be taken
in order to monitor these exponential terms. In the present work, when numerical issues were

presented a scaling in the training points reduced all exponentials and the resulting function
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had well behavior. In addition, user-defined activation functions may be developed in order

to avoid exponentials in the resulting function.

4.7 Conclusions

As a first step to present the proposed SBC-OPF, a typical SC-OPF was presented in this
Chapter; this model includes the AC power flow equations as part of the optimization auction
constraints. A technique that yields a better representation of the SB in form of an explicit
function, which accounts for system dynamics was also presented; this technique represents
an advance in terms of efficiently characterizing the SB with respect to previously proposed
SC-OPF models.

Taking as reference this approach, the smooth-nonlinear differentiable function obtained
from the BPNN was included as a security constraint into a SC-OPF auction model, result-
ing in the proposed SBC-OPF. This model was solved using two different types of solvers:
the Newton-based approach and AMPL with the KNITRO solver. Numerical results of the
proposed approach were presented by using two IEEE benchmark systems such as the 2-area
system and the 118-bus system. For the first case when two loads were considered, some op-
erating points were located outside the resulting SB assuming prespecified load curtailment
cost values. The SBC-OPF relocates these points by shedding the load with the cheaper
curtailment cost; the resulting points were located at the boundary of the security region.
The proposed BPNN-SB representation was then replaced by the NR polynomial approx-
imation. The resulting mean square errors showed that the BPNN approximation fits the
boundary better than the NR polynomial approximation; differences in load curtailments
were not significant, but the BPNN security constraint yields to more accurate results at
similar computational costs.

The same simulation was carried out for the 2-area system considering three loads. Again,
the proposed SBC-OPF relocates the “insecure” operating points into the security region by
curtailing the load with the cheaper load shedding cost. Only for cases where there was
no option, the load with the most expensive load curtailment cost was shed. Similarly to
the first case, the polynomial approximation was employed showing that better results were
obtained by using the BPNN approximation.

To prove the effectiveness of the proposed method with a more realistic system, the IEEE
188-bus benchmark system was used. For the case of three operating areas, three operating
points were located outside the SB. The SBC-OPF curtailed the loads with cheaper shedding
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costs as much as possible in order to return into the SB the “insecure” points. When four
areas were considered, the loads were curtailed according to their bids and their effect on
system security. It was shown how Area 4 had the most impact on system security conditions

due to was shed the most.
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Chapter 5

Conclusions and Contributions

5.1 Conclusions

This thesis proposes a new technique to obtain a differentiable function of power system
variables from a BPNN approximation of the stability /security boundary. This function was
introduced as a security constraint in a SC-OPF model for optimal dispatch in a competi-
tive market environment, accounting for the load inelasticity in current auction and dispatch
problems. The solution of the proposed SBC-OPF problem was shown to yield dispatch con-
ditions that are within a feasible operating region from the stability /security viewpoint. The
proposed model was tested using two IEEE benchmark systems, demonstrating its usefulness
and feasibility in practical applications.

In order to achieve the aforementioned, the power system mathematical representation
has been reviewed, showing that due to power system dynamics interact at widely-varying
time constants, conversion equations are needed. Also, it was reviewed the main concepts
of bifurcation theory, which allow to qualitatively describe the stability of solution points of
the resulting power system model. Furthermore, based on bifurcation theory it was shown
how the power system model expressed by a set of differential-algebraic equations can be
analyzed as a set of ODEs.

It was introduced the concept of stability and security boundaries and it was established
the SB determination procedure, which is based on a proposed critical load matrix. By using
the techniques applied for this procedure, two types of SB were obtained for the IEEE 118-bus
benchmark system: the loading directions-based SB and the dispatch directions-based SB,
emphasizing their complex topology. Once these SB were obtained, two main approximation
tools were considered: the BPNN and the NR.
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For the BPNN case, the SB mapping process consists in obtaining the critical load matrix
which constitutes the training and testing sets for the BPNN, training and testing the BPNN,
and obtaining the explicit function representation from the BPNN. The BPNN considered in
this work is composed of three layers: input, hidden, and output layers; this architecture was
selected based on the criteria of having the simplest array of neurons, capable to map the SB
with a reasonable precision. Hence, from the trained BPNN a smooth-nonlinear differentiable
function was obtained, which may be represented either in the \lambda-parameter or P {d}-
parameter space. On the other hand, the SB may also be approximated by polynomial
approximation by using NR.

The results of the proposed approach when used to map the SB and their comparison
with respect to the results obtained by using the NR were presented in this work. Two test
systems were considered, such as the IEEE 2-area and the IEEE 118-bus benchmark systems.

Two cases were presented for the IEEE 2-area benchmark system: two and three loads. In
the former no significant differences were obtained due to the simplicity of the SB; however,
better tolerances were obtained by using BPNN. In the later case, it was shown how due to
the complexity and discontinuity of the SB better mapping results were obtained by using
BPNN compared with the results obtained by using NR.

In order to test if the proposed approach is capable of handling more complex SBs and to
compare its behavior against the NR-based mapping tool, the more realistic IEEE 118-bus
benchmark system was considered, considering also the loading directions-based SB and the
dispatch directions-based SB.

For the first case considering two loading areas, no significant differences were observed
between the results obtained by using both mapping tools for the same reason as in the
2-area system. When three loading areas were considered, it was shown how the NR it
was unable to successfully map the SB; there were unmapped areas and low precision was
obtained compared with the better results obtained by using BPNN. When four areas were
considered, it was evident the flexibility of the BPNN since it was capable of accurately
mapping high-dimensional and complex surfaces.

For the second case where the dispatch directions were varied, two and three operating
groups were considered. When two operating groups were considered, the NR was unable
to map the SB even by using a 9th degree polynomial, because of the nonlinearity, discon-
tinuities, and few available training points of the SB to be mapped. The proposed BPNN
yielded the desired results by accurately mapping this more complex SB. When three op-
erating groups were considered, several BPNN architectures were tested in order to obtain

the simplest case because of the complexity of the SB. Again, it was shown how the NR
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was unable to successfully map the SB whereas the BPNN showed high accuracy even when
complex-shape security regions are presented.

Based on a model which includes the AC power flow equations as part of the optimization
auction constraints, a technique that yields a better representation of the SB in form of an ex-
plicit function, which accounts for system dynamics was presented; this technique represents
an advance in terms of efficiently characterizing the SB with respect to previously proposed
SC-OPF models. As a result of analyzing this approach, the smooth-nonlinear differentiable
function obtained from the BPNN was included as a security constraint into a SC-OPF auc-
tion model, resulting in the proposed SBC-OPF. Numerical results of the proposed approach
were presented by using two I[EEE benchmark systems such as the 2-area system and the
118-bus system. For the first case when two loads were considered, some operating points
were located outside the resulting SB assuming prespecified load curtailment cost values. The
SBC-OPF relocates these points by shedding the load with the cheaper curtailment cost; the
resulting points were located at the boundary of the security region. The proposed BPNN-
SB representation was then replaced by the NR polynomial approximation. The resulting
mean square errors showed that the BPNN approximation fits the boundary better than the
NR polynomial approximation; differences in load curtailments were not significant, but the
BPNN security constraint yields to more accurate results at similar computational costs.

The same simulation was carried out for the 2-area system considering three loads. Again,
the proposed SBC-OPF relocates the “insecure” operating points into the security region by
curtailing the load with the cheaper load shedding cost. Only for cases where there was
no option, the load with the most expensive load curtailment cost was shed. Similarly to
the first case, the polynomial approximation was employed showing that better results were
obtained by using the BPNN approximation.

To prove the effectiveness of the proposed method with a more realistic system, the IEEE
188-bus benchmark system was used. For the case of three operating areas, three operating
points were located outside the SB. The SBC-OPF curtailed the loads with cheaper shedding
costs as much as possible in order to return into the SB the “insecure” points. When four
areas were considered, the loads were curtailed according to their bids and their effect on
system security. It was shown how Area 4 had the most impact on system security conditions
due to was shed the most.

Therefore, the SBC-OPF has proved to be a suitable tool to ensure that the resulting

points are optimal from the economical and secure standpoint.
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5.2 Contributions

The proposed approach represents a new and useful technique to deal with the issue of
properly representing system congestion in OPF-based auction and dispatch mechanisms.
Using the proposed SB representation obtained from a trained BPNN, system operators
should have a full and more accurate idea of the shape and characteristics of the secure
operating region, allowing them to properly dispatch generator and loads, as well as take
preventive and corrective actions to avoid system instabilities.

The main contributions of the present work are listed below:

e A new methodology to obtain an explicit smooth-nonlinear-differentiable function re-
producing the SB with adequate precision, in order to be included as a security con-
straint in a SC-OPF model in a straightforward way is presented and described in
detail.

e The approach is based on the SB approximation, which is implemented with two differ-
ent mapping tools: BPNN and NR. It has been shown that ANNs have good mapping
characteristics, as well as a large degree of freedom that is basically model-independent,
which make them easily modifiable in order to map complex multidimensional surfaces

resulting from systems containing several generation and loading areas.

e The BPNN architecture used in this work was selected based on the criteria of having
the simplest array of neurons, capable to map the security or stability boundary with

a reasonable precision.

5.3 Future work

As it was mentioned in the previous Chapter, the development of a used-defined activation
function for the BPNN neurons which avoids the use of exponentials it is an issue to be solved.
This activation function must maintain the BPNN flexibility to map complex surfaces and
must be suitable to allow the development of simple BPNN architectures.

Regarding the BPNN architectures, it must be considered the use of commercial software
in order to obtain the better BPNN architecture. It is mentioned the commercial software
due to it represents a faster and better alternative keeping in mind the main objective which
is to reduce the mapping errors, fitting better the SB; the architecture considered in the
present work was obtained by trial and error using the only consideration of simplicity which

implies that an optimal architecture might not be considered.
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The proposed SB representation cannot be applied to OPF-based dispatch and market
auction models based on classical DC-OPF, which in practice is used in most energy dispatch
and market clearing mechanisms. The author is currently working on developing practical
DC-OPF dispatch model based on a linearization of the proposed BPNN-SB.

Analyze the impact of the electronically controlled devices (such as Flexible AC Trans-
mission Systems) on the SB and to include the devices’ state variables into the optimization
model in order to achieve a secure and optimal control avoiding the induced bifurcations
which result when these devices are embedded in the power system it represents another

future work.
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Appendix A

Smooth Nonlinear Differentiable Security

Boundary Functions

The smooth nonlinear differentiable SB functions obtained from the NR and the BPNN, for
the case studies considered in this work are presented in this Appendix. As mentioned in
previous Chapters, for the case of the BPNN these functions were used as security constraints
for the proposed SBC-OPF auction model.

A.1 1IEEE 2-area Benchmark System

A.1.1 Two Areas

For the case when two loads are considered, as shown in Fig. 3.3, the resulting NR-based

function obtained from the corresponding SB of Fig. 3.4 is

y = A12° + Asx® + Agx” + Aux® + Asa® + Agxt + Az + Aga® + Agz + Ay (A1)
where

Ay =—1754  Ag = 564.6
Ay =5777 A7 = —68.74
As = —T7870 Ag = 2.339
Ay =5724 A9 =0.01492
As = —2385 A = 0.3939

I6)



and

T = ady

y = ady

In addition, the resulting BPNN-based function is

y = 12.2084 N, — 0.12464N, + 0.39917N; — 1.5423 N, + 2.417Ns+

(A.2)

+2.8707Ng — 1.83N7 + 1.1 Ng — 2.5109

where

Ng = 2/(1 + e(=2n6)
Ny = 2/(1 + el=2n7)
Ng =2/(1+ el=2m®)

Ny =2/(1 +el2m)) —

Ny =2/(1+e~2m2)) —

N3 =2/(1 +el72m)) —

Ny =2/(1+el-2)) —

N5 = 2/(1 4 e(72ms)) —
( ) —
( ) —
( ) —

and z and y are as defined above.

A.1.2 Three Areas

1
1
1
1
1
1
1
1

ng = 2.9818z — 0.07202
ny = —15.9261n4 + 39.7772
ng = —9.7456n 4 — 1.3514
ng = —0.59004n 4 + 1.2741
ny = 12.2891n 4 + 3.2302
—11.6928n 4 — 3.9371

= —11.2571n, — 4.9281
ny = 11.2001n 4 + 8.0002
ng = —11.2n, — 11.2

Ny =

When three loads are considered, as shown in Fig. 3.5, the NR-based function obtained from

the mapped SB shown in Fig. 3.6 is as follows:

where

—2.8867 x y* — 1.3345 % 22 — 0.5183 « z * y — 0.4460 * y — 0.0779 * = + 2.0373

T = ady
y = ady
z = ads
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The resulting BPNN-based function is

z = 0.4909N; + 25.7972Ny 4 68.0697 N3 + 1.4051N, — 28.0054 N5+
+42.828 Ng — 113.5545N7 4 0.3171Ng + 1.6534

where

Ny =2/(1+e2)) —1 ny = —1.2268z + 97.2039y — 67.4325
Ny =2/(1+e22) —1  ny = 0.46062 + 2.0556y — 0.4838
Ny =2/(1+e2)) —1  ng=—3.5308z — 1.2824y + 3.1277
Ny=2/(1+e2) 1  ny = —T7.6686x — 1.0385y + 5.9569
Ny =2/(1+e=2)) —1  ng=0.5237z + 1.9386y — 0.5097
Ng=2/(14+e72m0)) —1  ng = —3.47692 — 1.1874y + 2.5661
Ny =2/(1+e=2)) —1  n; = —3.3201z — 1.1537y + 2.749
Ng =2/(1+e=2)) —1 ng = 10.5585z — 245.0895y + 166.6335

and x, y, and z are defined as above.

A.2 1EEE 118-bus Benchmark System

A.2.1 Two Areas

Regarding the NR to map the SB shown in Fig. 3.7 for this system, the smooth nonlinear

differentiable function is as follows:

Yy = All’ﬁ + AQIES + A31E4 + A4.Z‘3 + A5(L’2 + AGJ] + A7 (A3)
where
A =8205"°  As = 6.4416
Ay = —0.0001324 Ag = —6.929°
As = 0.8904 A7 = 3.105"
Ay = —3193
and
T = ad;
y = ady

For the case of the BPNN, defining = and y as above, the resulting function used as a
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constraint in the proposed SBC-OPF auction model is

y = —0.0002N; + 0.0166 Ny — 0.0001 N3 — 0.0006 Ny — 0.0019 N5+
+0.0002Ng + 0.0006 N7 + 0.0011Ng + 0.0057

where

Ny =2/(1+e72")) —1 n; = 5166.9742x — 100.9904
Ny =2/(1+e72)) —1  ny = —241.04687 + 4.8036
N3 =2/(1+¢e72)) —1 ng = 1756.28832 — 26.1805
Ny=2/(14e=2m)) — 1 ny = 749.34982 — 9.1384
Ns =2/(1+el72m)) — 1 ns = 428.33z — 3.936
Ne=2/(1+el2%) —1 ng = —1282.3668x + 8.9246
Ny =2/(1+e2) — 1 ny = —899.4003z + 4.4339
Ng =2/(1 +e72)) — 1  ng = —567.6048z + 0.8939

A.2.2 Three Areas

For the SB shown in Fig. 3.8, the resulting smooth nonlinear differentiable function using

the NR as a mapping tool is as follows:

2 = —1.334522 — 2.8867y2 — 0.5183zy — 0.07792 — 0.4460y + 2.0373

where
T = ady
Y = ady
z = auds

For the case of the BPNN, the resulting function is

z = —T7.3805N; + 0.0047Ny — 5.5378 N3 + 9.7261 N, — 4.257T N5+
+0.0021Ng + 0.0027N7 + 7.7853Ng — 15.0868
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where

Ny =2/(1 + el=2m)
Ny =2/(1 + el=2n2
N3 =2/(1 +el72m
Ny =2/(1 + el2n
Ny =2/(1+ e

Ng = 2/(1 + el=2ns
Ny =2/(1 + el=2m7
Ng = 2/(1 + el2ns

x, Yy, and z are defined as above.

A.2.3 Four Areas

1 ny =347.2685x — 170.9192y — 13.4514
1 ng = —216.1512x — 272.4126y + 10.1801
—1 n3=-249.4101z — 52.8251y + 6.8235
—1 ny = —240.9152 — 51.4847y + 6.654
—1 ny=-228.3211x — 49.5281y + 6.4103
—1  ng=289.0137x — 135.3242y + 3.1167
—1 ny = —142.54x — 59.252y + 2.3323

1 ng="70.2355x — 313.4993y + 13.4296

For this case, the SB is only mapped by the BPNN because employing NR in multidimensional

surfaces is not possible. As mentioned earlier, because of the BPNNs’ flexibility as mapping

tools, other possible alternatives

capable of managing higher multidimensional surfaces go

beyond the scope of this work. Hence, the resulting function is

z = —0.007424N; + 0.0014775N5 — 0.0032812N3 + 0.00098494 N4
+0.0025951 N5 — 0.00072946 N + 0.006882N7 — 0.0029058 Ng + 0.005462

where

Ny =2/(1+el2m
Ny = 2/(1 + el-2n2
N3 = 2/(1 + e(-2n
Ny =2/(1+ el72n4

(14 el 1
( (
( (
( (
N5 =2/(1 + 2
( (
( (
( (

-1

1
-1

1
-1
1
1

Ng =2/(1 + e(~2ns
N7:2/ 1—|—6_2n7
Ng = 2/(1 + el-2ns

) -
)
) -
)
) -
)
) -
) -

= —104.7231w + 26.4597x — 34.951y + 2.1453
ng = —180.8856w + 62.8459x — 121.0512y + 4.8548
= —150.9193w — 29.5053x + 26.4502y + 2.1676
ng = —157.6627w + 17.2566x — 129.7312y + 2.5839

ns = 166.175w — 27.4839x + 61.7906y — 1.5158
ng = 35.8246w — 119.5784x + 147.2598y — 0.39664

ny = 58.549w — 150.2008zx + 20.1553y + 5.6615

ng = —167.3856w — 27.0132x + 2.6647y + 1.0148
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w = ad,

T = ady

and

y = auds

2 = ady
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Appendix B

IEEE 2-area Benchmark System Data

Table B.1: Transmission line parameters.

Nodes R(pu) X(pu) B/2(pu) Nodes R(pu) X(pu) B/2(pu)

1 b) 0 0.0167 0 3 11 0 0.0167 0
2 6 0 0.0167 0 4 10 0 0.0167 0
7 6 0.001 0.01 0.0175 9 8 0.011 0.11 0.1925
7 8 0.011 0.11 0.1925 9 8 0.011 0.11 0.1925
3 8 0.011 0.11 0.1925 9 10 0.001 0.01 0.0175
) 6 0.0025 0.025 0.0437 11 10  0.0025 0.025 0.0437

Table B.2: Load parameters.
Node P(Mw) Q(Mw)

7 967 100

9 1767 100
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Table B.3: Generators parameters.

X4=18 Xg=17 X;=02 X,=03 X,=
0.55
X;=02 X, = Ro=  Ty=8 Ty=
0.25 0.0025 0.4s
Th =0.03s T = H=65 D=0

q
0.05s

Table B.4: Exciter parameters.

Node K Ta(s)
1 200 0.05
2 200 0.05
3 200 0.05
4 200 0.05

Table B.7: Power generation bids for the 2-area system.

Gen. C, P
[$/MWh| [MW]|
1 70 900
2 70 1000
3 90 900
4 70 900

Table B.5: Turbine governor parameters.

Gen. R (pu) Thna(pu) Thin(pu) Ts(s) To(s) Ti(s) Tu(s) Ts(s
1 0.04 1 0 0.1 0.5 0 1.25 D
2 0.04 1 0 0.1 0.5 0 1.25 >
3 0.04 1 0 0.1 0.5 0 1.25 5
4 0.04 1 0 0.1 0.5 0 1.25 5
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Table B.6: Power system stabilizer parameters.
Vsmae = 0.2 K, =10
Vsmin = —0.05 T, =10
Ty = 0.05 T, =0.01
T5 = 0.05 T, =0.01
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Appendix C

IEEE 118-bus Benchmark System Data

Figure C.1: IEEE 118-bus benchmark system.
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Table C.1: Transmission line parameters.

Nodes R(pu) X(pu) B/2(pu) Nodes R(pu) X(pu) B/2(pu)

1 2 0.0303 0.0999 0.0254 38 65 0.00901  0.0986 1.046

1 3 0.0129 0.0424 0.01082 64 65 0.00269 0.0302 0.38

4 ) 0.00176  0.00798 0.0021 49 66 0.018 0.0919 0.0248

3 5 0.0241 0.108 0.0284 49 66 0.018 0.0919 0.0248
5 6 0.0119 0.054 0.01426 62 66  0.0482 0.218 0.0578
6 7 0.00459  0.0208 0.0055 62 67  0.0258 0.117 0.031
8 9 0.00244  0.0305 1.162 66 67  0.0224 0.1015 0.02682
9 10 0.00258  0.0322 1.23 65 68 0.00138 0.016 0.638

4 11 0.0209  0.0688 0.01748 47 69 0.0844  0.2778 0.07092

) 11 0.0203 0.0682 0.01738 49 69  0.0985 0.324 0.0828

11 12 0.00595  0.0196 0.00502 69 70 0.03 0.127 0.122

2 12 0.0187  0.0616 0.01572 24 70 0.00221 0.4115 0.10198

3 12 0.0484 0.16 0.0406 70 71 0.00882  0.0355 0.00878
7 12 0.00862 0.034 0.00874 24 72 0.0488 0.196 0.0488
11 13 0.02225  0.0731 0.01876 71 72 0.0446 0.18 0.04444

12 14 0.0215 0.0707 0.01816 71 73 0.00866  0.0454 0.01178

13 15 0.0744 0.2444 0.06268 70 74 0.0401 0.1323 0.03368

14 15 0.0595 0.195 0.0502 70 75 0.0428 0.141 0.036

12 16 0.0212 0.0834 0.0214 69 75 0.0405 0.122 0.124

15 17 0.0132 0.0437 0.0444 74 75 0.0123 0.0406 0.01034

16 17 0.0454 0.1801 0.0466 76 77 0.0444 0.148 0.0368

17 18 0.0123 0.0505 0.01298 69 77 0.0309 0.101 0.1038

18 19 0.01119  0.0493 0.01142 75 77 0.0601 0.1999 0.04978
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19 20 0.0252 0.117 0.0298 77 78 0.00376  0.0124 0.01264
15 19 0.012 0.0394 0.0101 78 79 0.00546  0.0244 0.00648
20 21 0.0183 0.0849 0.0216 77 80 0.017 0.0485 0.0472
21 22 0.0209 0.097 0.0246 77 80  0.0294 0.105 0.0228
22 23 0.0342 0.159 0.0404 79 80  0.0156 0.0704 0.0187
23 24 0.0135 0.0492 0.0498 68 81 0.00175  0.0202 0.808

23 25 0.0156 0.08 0.0864 77 82 0.0298 0.0853 0.08174
25 27 0.0318 0.163 0.1764 82 83 0.0112 0.03665 0.03796
27 28 0.01913  0.0855 0.0216 83 84  0.0625 0.132 0.0258
28 29 0.0237 0.0943 0.0238 83 8 0.043 0.148 0.0348
8 30 0.00431  0.0504 0.514 84 8  0.0302 0.0641 0.01234
26 30 0.00799 0.086 0.908 85 86 0.035 0.123 0.0276
17 31 0.0474 0.1563 0.0399 86 87 0.02828  0.2074 0.0445
29 31 0.0108 0.0331 0.0083 8 88 0.02 0.102 0.0276
23 32 0.0317 0.1153 0.1173 8 89  0.0239 0.173 0.047

31 32 0.0298 0.0985 0.0251 88 89  0.0139 0.0712 0.01934
27T 32 0.0229 0.0755 0.01926 89 90  0.0518 0.188 0.0528
15 33 0.038 0.1244 0.03194 89 90  0.0238 0.0997 0.106

19 34 0.0752 0.247 0.0632 90 91  0.0254 0.0836 0.0214
35 36 0.00224  0.0102 0.00268 89 92 0.0099 0.0505 0.0548
35 37 0.011 0.0497 0.01318 89 92 0.0393 0.1581 0.0414
33 37 0.0415 0.142 0.0366 91 92 0.0387 0.1272 0.03268
34 36 0.00871  0.0268 0.00568 92 93  0.0258 0.0848 0.0218
34 37 0.00256  0.0094 0.00984 92 94  0.0481 0.158 0.0406
37 39 0.0321 0.106 0.027 93 94 0.0223 0.0732 0.01876
37 40 0.0593 0.168 0.042 94 95  0.0132 0.0434 0.0111
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30 38 0.00464 0.054 0.422 80 96  0.0356 0.182 0.0494
39 40 0.0184 0.0605 0.01552 82 96  0.0162 0.053 0.0544
40 41 0.0145 0.0487 0.01222 94 96  0.0269 0.0869 0.023

40 42 0.0555 0.183 0.0466 80 97  0.0183 0.0934 0.0254
41 42 0.041 0.135 0.0344 80 98  0.0238 0.108 0.0286
43 44 0.0608 0.2454 0.06068 80 99  0.0454 0.206 0.0546
34 43 0.0413 0.1681 0.04226 92 100  0.0648 0.295 0.0472
44 45 0.0224 0.0901 0.0224 94 100 0.0178 0.058 0.0604
45 46 0.04 0.1356 0.0332 95 96 0.0171 0.0547 0.01474
46 47 0.038 0.127 0.0316 96 97  0.0173 0.0885 0.024

46 48 0.0601 0.189 0.0472 98 100  0.0397 0.179 0.0476
47 49 0.0191 0.0625 0.01604 99 100  0.018 0.0813 0.0216
42 49 0.0715 0.323 0.086 100 101 0.0277 0.1262 0.0328
42 49 0.0715 0.323 0.086 92 102 0.0123 0.0559 0.01464
45 49 0.0684 0.186 0.0444 101 102  0.0246 0.112 0.0294
48 49 0.0179 0.0505 0.01258 100 103  0.016 0.0525 0.0536
49 30 0.0267 0.0752 0.01874 100 104  0.0451 0.204 0.0541
49 51 0.0486 0.137 0.0342 103 104  0.0466 0.1584 0.0407
a1 52 0.0203 0.0588 0.01396 103 105 0.0535 0.1625 0.0408
52 33 0.0405 0.1635 0.04058 100 106  0.0605 0.229 0.062

53 54 0.0263 0.122 0.031 104 105 0.00994  0.0378 0.00986
49 54 0.073 0.289 0.0738 105 106  0.014 0.0547 0.01434
49 o4 0.0869 0.291 0.073 105 107  0.053 0.183 0.0472
54 35 0.0169 0.0707 0.0202 105 108  0.0261 0.0703 0.01844
54 56 0.00275  0.00955 0.00732 106 107  0.053 0.183 0.0472
35 96 0.00488  0.0151 0.00374 108 109  0.0105 0.0288 0.0076
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56 57 0.0343 0.0966 0.0242 103 110 0.03906  0.1813 0.0461
50 57 0.0474 0.134 0.0332 109 110 0.0278 0.0762 0.0202
56 58 0.0343 0.0966 0.0242 110 111 0.022 0.0755 0.02
51 58 0.0255 0.0719 0.01788 110 112 0.0247 0.064 0.062
54 59 0.0503 0.2293 0.0598 17 113 0.00913  0.0301 0.00768
56 59 0.0825 0.251 0.0569 32 113 0.0615 0.203 0.0518
56 59 0.0803 0.239 0.0536 32 114  0.0135 0.0612 0.01628
55 59 0.04739  0.2158 0.05646 27 115 0.0164 0.0741 0.01972
59 60 0.0317 0.145 0.0376 114 115 0.0023 0.0104 0.00276
59 61 0.0328 0.15 0.0388 68 116 0.00034 0.00405 0.164
60 61 0.00264  0.0135 0.01456 12 117  0.0329 0.14 0.0358
60 62 0.0123 0.0561 0.01468 75 118  0.0145 0.0481 0.01198
61 62 0.00824  0.0376 0.0098 76 118 0.0164 0.0544 0.01356
63 64 0.00172 0.02 0.216
Table C.2: Transformer parameters.
Nodes Rs(pu) Xs(pu) Tap Tap Nodes Rg(pu) Xs(pu) Tap  Tap
T, U, T, Uy
8 ) 0 0.0267 0985 1.0 63 59 0 0.0386 0.96 1.0
26 25 0 0.0382 0.96 1.0 64 61 0 0.0268 0.985 1.0
30 17 0 0.0388 0.96 1.0 65 66 0 0.037 0935 1.0
38 37 0 0.0375 0935 1.0 68 69 0 0.037 0.935 1.0
81 80 0 0.037 0935 1.0
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Table C.3: Load parameters.

Node P(Mw) Q(MVars) Node P(Mw) Q(MVars) Node P(Mw) @Q(MVars)

1 51 27 41 37 10 80 130 26
2 20 9 42 37 23 82 54 27
3 39 10 43 18 7 83 20 10
4 30 12 44 16 8 84 11 7
6 52 22 45 53 22 85 24 15
7 19 2 46 28 10 86 21 10
11 70 23 47 34 0 88 48 10
12 47 10 48 20 11 90 78 42
13 34 16 49 87 30 92 65 10
14 14 1 50 17 4 93 12 7
15 90 30 a1 17 8 94 30 16
16 25 10 92 18 ) 95 42 31
17 11 3 53 23 11 96 38 15
18 60 34 54 113 32 97 15 9
19 45 25 95 63 22 98 34 8
20 18 3 56 84 18 100 37 18
21 14 8 57 12 3 101 22 15
22 10 5 58 12 3 102 ) 3
23 7 3 59 277 113 103 23 16
27 62 13 60 78 3 104 38 25
28 17 7 62 7 14 105 31 26
29 24 4 66 39 18 106 43 16
31 43 27 67 28 7 107 28 12

89



32 59 23 70 66 20 108 2 1
33 23 9 74 68 27 109 8 3
34 59 26 75 47 11 110 39 30
35 33 9 76 68 36 112 25 13
36 31 17 7 61 28 114 8 3
39 27 11 78 71 26 115 22 7
40 20 23 79 39 32 117 20 8
118 33 15
Table C.4: Shunt capacitors.
Node Q(MVars) Node Q(MVars)
5 -40 74 12
34 14 79 20
37 -25 82 20
44 10 83 10
45 10 105 20
46 10 107 6
48 15 110 6
Table C.5: Generator parameters.
Node P Q Qmaa Qmin Node P Q Qmaa Qmin
(Mw) (MVars) (MVars) (MVars) (Mw) (MVars) (MVars) (MVars)
1 0 0 15 -5 65 391 0 200 -67
4 -9 0 300 -300 66 392 0 200 -67
6 0 0 50 -13 69 516.4 0 300 -300
8 -28 0 300 -300 70 0 0 32 -10
10 450 0 200 -147 72 -12 0 100 -100
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Table C.6: Power generation bids for the 118-bus system.
Gen. C Gen. C Gen. C

[$/MWh] [$/MWh] [$/MWh]
1 30 19 30 37 30
2 30 20 30 38 30
3 30 21 50 39 80
4 80 22 30 40 30
3 30 23 30 41 30
6 50 24 30 42 30
7 30 25 40 43 30
8 30 26 40 44 40
9 30 27 30 45 30
10 30 28 40 46 30
11 60 29 70 47 30
12 70 30 30 48 30
13 30 31 30 49 30
14 30 32 30 20 30
15 30 33 30 o1 30
16 30 34 30 52 30
17 30 35 30 53 30
18 30 36 90 o4 30

Next, the sequence of load nodes making up the loading groups are given:

e Two loading groups

Group 1: [1,2,3,4,6,7, 11,12, 13, 14, 15, 16, 17, 18, 19, 27, 31, 32, 34, 36, 40, 42, 46, 49,
54, 55, 56, 59, 62, 66, 70, 74, 76, 77, 80, 85, 90, 92, 100, 103, 104, 105, 107, 110, 112, |

Group 2: [20, 21, 22, 23, 28, 29, 33, 35, 39, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 57, 58, 60,
67, 75, 78, 79, 82, 83, 84, 86, 88, 93, 94, 95, 96, 97, 98, 101, 102, 106, 108, 109, 114,
115, 117, 118

e Three loading groups

Group 1: [1, 4, 6, 12, 15, 18, 19, 27, 31, 32, 34, 36, 40, 42, 46, 49, 54, 55, 56, 59, 62, 66, 70,
74, 76, 77, 80, 85, 90, 92, 103|

Group 2: [2, 3,7, 11, 13, 14, 16, 17, 20, 21, 22, 23, 28, 29, 33, 35, 39, 41, 43, 44, 45, 48, 50,
51, 52, 100, 104, 105, 107, 110, 112]
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Group 3: [47, 53, 57, 58, 60, 67, 75, 78, 79, 82, 83, 84, 86, 88, 93, 94, 95, 96, 97, 98, 101,
102, 106, 108, 109, 114, 115, 117, 118]

e Four Loading groups

Group 1: [, 4, 6, 12, 15, 18, 19, 27, 31, 32, 34, 36, 40, 42, 46, 49, 54, 55, 56, 59, 62, 66|

Group 2: [2, 3,7, 11, 13, 14, 16, 70, 74, 76, 77, 80, 85, 90, 92, 100, 103, 104, 105, 107, 110,
112]

Group 3: [17, 20, 21, 22, 23, 28, 29, 33, 35, 39, 41, 43, 44, 45, 48, 50, 51, 52, 53, 57, 58, 60|

Group 4: [47, 67, 75, 78, 79, 82, 83, 84, 86, 88, 93, 94, 95, 96, 97, 98, 101, 102, 106, 108,
109, 114, 115, 117, 118]

Furthermore, the sequence of generation nodes making up the generator groups are given:
e Two generator groups

Group 1: [1, 4, 6,8, 10, 12, 15, 18, 19, 24, 25, 26, 27, 31, 32, 34, 36, 40, 42, 46, 49, 54, 55,
56, 59, 61]

Group 2: [62, 65, 66, 70, 72, 73, 74, 76, 77, 80, 85, 87, 89, 90, 91, 92, 99, 100, 103, 104,
105, 107, 110, 111, 112, 113, 116]

e Three generator groups
Group 1: [1, 8, 10, 24, 25, 26, 61, 65, 69, 72, 73, 87, 89, 91, 99, 111, 113, 116|
Group 2: [4, 6, 12, 15, 18, 19, 27, 31, 32, 34, 36, 40, 42, 46, 49, 54, 55, 56]

Group 3: |59, 62, 66, 70, 74, 76, 77, 80, 85, 90, 92, 100, 103, 104, 105, 107, 110, 112]
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Appendix D

Loading/dispatch Directions

Table D.1: 21 directions for the case of two groups.

No. di d» No. dy dy No. di ds
1 0 1 8 0.35 0.65 15 0.7 0.3
2 0.05 0.95 9 0.4 0.6 16 075 0.25
3 0.1 0.9 10 0.45 0.55 17 0.8 0.2
4 0.15 0.85 11 0.5 0.5 18 0.85 0.15
) 0.2 0.8 12 0.55 045 19 0.9 0.1
6 0.25 0.75 13 0.6 0.4 20 095 0.05
7 0.3 0.7 14  0.65 0.35 21 1 0

Table D.2: 631 directions for the case of two groups.

No. dy do No. dy dsy No. dy do
1 1 0 211 0.7 0.3 421 0.2667 0.7333
2 1 0 212 0.65 0.35 422 0.8167 0.1833
3 0.95 0.05 213 0.6 0.4 423  0.7667 0.2333
4 1 0 214 0.55 0.45 424 0.7167 0.2833
5 0.9 0.1 215 0.5 0.5 425 0.6667 0.3333
6 1 0 216 0.45 0.55 426  0.6167 0.3833
7 0.85 0.15 217 0.4 0.6 427  0.5667 0.4333
8 1 0 218 0.35 0.65 428 0.5167 0.4833
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9 0.8 0.2 219 0.3 0.7 429  0.4667 0.5333
10 1 0 220 0.25 0.75 430  0.4167 0.5833
11 0.75 0.25 221 0.2 0.8 431  0.3667 0.6333
12 1 0 222 0.15 0.85 432 0.3167 0.6833
13 0.7 0.3 223 0.9333 0.0667 433 0.85 0.15
14 1 0 224 0.9333 0.0667 434 0.85 0.15
15 0.65 0.35 225  0.8833 0.1167 435 0.8 0.2
16 1 0 226 0.9333 0.0667 436 0.85 0.15
17 0.6 0.4 227  0.8333 0.1667 437 0.75 0.25
18 1 0 228 0.9333 0.0667 438 0.85 0.15
19 0.55 0.45 229 0.7833 0.2167 439 0.7 0.3
20 1 0 230 0.9333 0.0667 440 0.85 0.15
21 0.5 0.5 231 0.7333  0.2667 441 0.65 0.35
22 1 0 232 09333 0.0667 442 0.85 0.15
23 0.45 0.55 233 0.6833 0.3167 443 0.6 0.4
24 1 0 234 0.9333 0.0667 444 0.85 0.15
25 0.4 0.6 235 0.6333 0.3667 445 0.55 0.45
26 1 0 236 0.9333 0.0667 446 0.85 0.15
27 0.35 0.65 237 0.5833 0.4167 447 0.5 0.5
28 1 0 238 0.9333 0.0667 448 0.85 0.15
29 0.3 0.7 239 0.5333 0.4667 449 0.45 0.55
30 1 0 240  0.9333 0.0667 450 0.85 0.15
31 0.25 0.75 241  0.4833 0.5167 451 0.4 0.6
32 1 0 242 0.9333 0.0667 452 0.85 0.15
33 0.2 0.8 243 0.4333 0.5667 453 0.35 0.65
34 1 0 244  0.9333 0.0667 454 0.85 0.15
35 0.15 0.85 245 0.3833 0.6167 455 0.3 0.7
36 1 0 246 0.9333 0.0667 456 0.8 0.2
37 0.1 0.9 247 0.3333 0.6667 457 0.75 0.25
38 1 0 248 0.9333 0.0667 458 0.7 0.3
39 0.05 0.95 249 0.2833 0.7167 459 0.65 0.35
40 1 0 250 0.9333 0.0667 460 0.6 0.4
41 0 1 251  0.2333 0.7667 461 0.55 0.45
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42 09833 0.0167 252 0.9333 0.0667 462 0.5 0.5

43 0.95 0.05 253  0.1833 0.8167 463 0.45 0.55

44 0.9 0.1 254 0.9333 0.0667 464 0.4 0.6

45 0.85 0.15 255 0.1333 0.8667 465 0.35 0.65

46 0.8 0.2 256  0.8833 0.1167 466 0.8333 0.1667
47 0.75 0.25 257  0.8333 0.1667 467 0.8333 0.1667
48 0.7 0.3 258 0.7833 0.2167 468 0.7833 0.2167
49 0.65 0.35 259  0.7333  0.2667 469 0.8333 0.1667
50 0.6 0.4 260  0.6833 0.3167 470 0.7333 0.2667
51 0.55 0.45 261 0.6333 0.3667 471 0.8333 0.1667
52 0.5 0.5 262 0.5833 0.4167 472 0.6833 0.3167
93 0.45 0.55 263  0.5333 0.4667 473 0.8333 0.1667
54 0.4 0.6 264 0.4833 0.5167 474 0.6333 0.3667
35 0.35 0.65 265 0.4333 0.5667 475 0.8333 0.1667
o6 0.3 0.7 266 0.3833 0.6167 476 0.5833 0.4167
o7 0.25 0.75 267  0.3333 0.6667 477 0.8333 0.1667
58 0.2 0.8 268 0.2833 0.7167 478 0.5333 0.4667
99 0.15 0.85 269 0.2333 0.7667 479 0.8333 0.1667
60 0.1 0.9 270 0.1833 0.8167 480 0.4833 0.5167
61 0.05 0.95 271 0.9167 0.0833 481 0.8333 0.1667
62 09833 0.0167 272 09167 0.0833 482 0.4333 0.5667
63 09333 0.0667 273 0.8667 0.1333 483 0.8333 0.1667
64 09833 0.0167 274 0.9167 0.0833 484 0.3833 0.6167
65 0.8833 0.1167 275 0.8167 0.1833 485 0.8333 0.1667
66  0.9833 0.0167 276 0.9167 0.0833 486 0.3333 0.6667
67 0.8333 0.1667 277 0.7667 0.2333 487 0.7833 0.2167
68  0.9833 0.0167 278 0.9167 0.0833 488 0.7333 0.2667
69 0.7833 0.2167 279 0.7167 0.2833 489 0.6833 0.3167
70 0.9833 0.0167 280 0.9167 0.0833 490 0.6333 0.3667
71 0.7333 0.2667 281 0.6667 0.3333 491 0.5833 0.4167
72 09833 0.0167 282 0.9167 0.0833 492 0.5333 0.4667
73 0.6833 0.3167 283 0.6167 0.3833 493 0.4833 0.5167
74 09833 0.0167 284 0.9167 0.0833 494 0.4333 0.5667
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75 0.6333 0.3667 285 0.5667 0.4333 495 0.3833 0.6167
76 0.9833 0.0167 286 0.9167 0.0833 496 0.8167 0.1833
77 0.5833 0.4167 287 0.5167 0.4833 497 0.8167 0.1833
78  0.9833 0.0167 288 0.9167 0.0833 498 0.7667 0.2333
79 0.5333 0.4667 289 0.4667 0.5333 499 0.8167 0.1833
80  0.9833 0.0167 290 0.9167 0.0833 500 0.7167 0.2833
81 0.4833 0.5167 291 0.4167 0.5833 501 0.8167 0.1833
82 0.9833 0.0167 292 0.9167 0.0833 502 0.6667 0.3333
83 04333 0.5667 293 0.3667 0.6333 503 0.8167 0.1833
84 09833 0.0167 294 09167 0.0833 504 0.6167 0.3833
85 0.3833 0.6167 295 0.3167 0.6833 505 0.8167 0.1833
86  0.9833 0.0167 296 0.9167 0.0833 506 0.5667 0.4333
87 0.3333 0.6667 297 0.2667 0.7333 507 0.8167 0.1833
88 0.9833 0.0167 298 0.9167 0.0833 508 0.5167 0.4833
89  0.2833 0.7167 299 0.2167 0.7833 509 0.8167 0.1833
90  0.9833 0.0167 300 0.9167 0.0833 510 0.4667 0.5333
91 0.2333 0.7667 301 0.1667 0.8333 511 0.8167 0.1833
92  0.9833 0.0167 302 0.8667 0.1333 512 0.4167 0.5833
93 0.1833 0.8167 303 0.8167 0.1833 513 0.8167 0.1833
94 09833 0.0167 304 0.7667 0.2333 514 0.3667 0.6333
95 0.1333 0.8667 305 0.7167 0.2833 515 0.7667 0.2333
96  0.9833 0.0167 306 0.6667 0.3333 516 0.7167 0.2833
97  0.0833 0.9167 307 0.6167 0.3833 517 0.6667 0.3333
98  0.9833 0.0167 308 0.5667 0.4333 518 0.6167 0.3833
99  0.0333 0.9667 309 0.5167 0.4833 519 0.5667 0.4333
100 0.9333 0.0667 310 0.4667 0.5333 520 0.5167 0.4833
101 0.8833 0.1167 311 0.4167 0.5833 521 0.4667 0.5333
102 0.8333 0.1667 312 0.3667 0.6333 522 0.4167 0.5833
103 0.7833 0.2167 313 0.3167 0.6833 523 0.8 0.2

104 0.7333 0.2667 314 0.2667 0.7333 524 0.8 0.2

105 0.6833 0.3167 315 0.2167 0.7833 525 0.75 0.25

106  0.6333 0.3667 316 0.9 0.1 526 0.8 0.2

107 0.5833 0.4167 317 0.9 0.1 927 0.7 0.3
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108  0.5333 0.4667 318 0.85 0.15 528 0.8 0.2
109 0.4833 0.5167 319 0.9 0.1 529 0.65 0.35
110  0.4333 0.5667 320 0.8 0.2 530 0.8 0.2
111 0.3833 0.6167 321 0.9 0.1 531 0.6 0.4
112 0.3333 0.6667 322 0.75 0.25 532 0.8 0.2
113 0.2833 0.7167 323 0.9 0.1 933 0.55 0.45
114  0.2333 0.7667 324 0.7 0.3 534 0.8 0.2
115 0.1833 0.8167 325 0.9 0.1 935 0.5 0.5
116 0.1333 0.8667 326 0.65 0.35 536 0.8 0.2
117 0.0833 0.9167 327 0.9 0.1 237 0.45 0.55
118  0.9667 0.0333 328 0.6 0.4 538 0.8 0.2
119  0.9667 0.0333 329 0.9 0.1 539 0.4 0.6
120 0.9167 0.0833 330 0.55 0.45 540 0.75 0.25
121 0.9667 0.0333 331 0.9 0.1 541 0.7 0.3
122 0.8667 0.1333 332 0.5 0.5 942 0.65 0.35
123 0.9667 0.0333 333 0.9 0.1 943 0.6 0.4
124 0.8167 0.1833 334 0.45 0.55 544 0.55 0.45
125 0.9667 0.0333 335 0.9 0.1 945 0.5 0.5
126 0.7667 0.2333 336 0.4 0.6 546 0.45 0.55
127 0.9667 0.0333 337 0.9 0.1 547 0.7833 0.2167
128  0.7167 0.2833 338 0.35 0.65 5948 0.7833 0.2167
129  0.9667 0.0333 339 0.9 0.1 549  0.7333  0.2667
130 0.6667 0.3333 340 0.3 0.7 550  0.7833 0.2167
131 0.9667 0.0333 341 0.9 0.1 951  0.6833 0.3167
132 0.6167 0.3833 342 0.25 0.75 552 0.7833 0.2167
133 0.9667 0.0333 343 0.9 0.1 553  0.6333 0.3667
134  0.5667 0.4333 344 0.2 0.8 554 0.7833 0.2167
135  0.9667 0.0333 345 0.85 0.15 555  0.5833 0.4167
136 0.5167 0.4833 346 0.8 0.2 956  0.7833 0.2167
137 0.9667 0.0333 347 0.75 0.25 957  0.5333  0.4667
138  0.4667 0.5333 348 0.7 0.3 558 0.7833 0.2167
139 0.9667 0.0333 349 0.65 0.35 5959 04833 0.5167
140  0.4167 0.5833 350 0.6 0.4 560 0.7833 0.2167
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141 0.9667 0.0333 351 0.55 0.45 561  0.4333 0.5667
142 0.3667 0.6333 352 0.5 0.5 562 0.7333  0.2667
143 0.9667 0.0333 353 0.45 0.55 563  0.6833 0.3167
144  0.3167 0.6833 354 0.4 0.6 564 0.6333 0.3667
145 0.9667 0.0333 355 0.35 0.65 565 0.5833 0.4167
146 0.2667 0.7333 356 0.3 0.7 566  0.5333 0.4667
147 0.9667 0.0333 357 0.25 0.75 567 0.4833 0.5167
148 0.2167 0.7833 358 0.8833 0.1167 568 0.7667 0.2333
149  0.9667 0.0333 359 0.8833 0.1167 569 0.7667 0.2333
150  0.1667 0.8333 360 0.8333 0.1667 570 0.7167 0.2833
151 0.9667 0.0333 361 0.8833 0.1167 571 0.7667 0.2333
152 0.1167 0.8833 362 0.7833 0.2167 572 0.6667 0.3333
153 0.9667 0.0333 363 0.8833 0.1167 573 0.7667 0.2333
154 0.0667 0.9333 364 0.7333 0.2667 574 0.6167 0.3833
155 0.9167 0.0833 365 0.8833 0.1167 575 0.7667 0.2333
156  0.8667 0.1333 366 0.6833 0.3167 576 0.5667 0.4333
157 0.8167 0.1833 367 0.8833 0.1167 577 0.7667 0.2333
158  0.7667 0.2333 368 0.6333 0.3667 578 0.5167 0.4833
159 0.7167 0.2833 369 0.8833 0.1167 579 0.7667 0.2333
160 0.6667 0.3333 370 0.5833 0.4167 580 0.4667 0.5333
161 0.6167 0.3833 371 0.8833 0.1167 581 0.7167 0.2833
162 0.5667 0.4333 372 0.5333 0.4667 582 0.6667 0.3333
163 0.5167 0.4833 373 0.8833 0.1167 583 0.6167 0.3833
164 0.4667 0.5333 374 0.4833 0.5167 584 0.5667 0.4333
165 0.4167 0.5833 375 0.8833 0.1167 585 0.5167 0.4833
166  0.3667 0.6333 376 0.4333 0.5667 586 0.75 0.25

167 0.3167 0.6833 377 0.8833 0.1167 587 0.75 0.25

168 0.2667 0.7333 378 0.3833 0.6167 588 0.7 0.3

169 0.2167 0.7833 379 0.8833 0.1167 589 0.75 0.25

170 0.1667 0.8333 380 0.3333 0.6667 590 0.65 0.35

171 0.1167 0.8833 381 0.8833 0.1167 591 0.75 0.25

172 0.95 0.05 382 0.2833 0.7167 592 0.6 0.4

173 0.95 0.05 383  0.8833 0.1167 593 0.75 0.25
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174 0.9 0.1 384 0.2333 0.7667 594 0.55 0.45
175 0.95 0.05 385  0.8333 0.1667 595 0.75 0.25
176 0.85 0.15 386  0.7833 0.2167 596 0.5 0.5
177 0.95 0.05 387 0.7333  0.2667 597 0.7 0.3
178 0.8 0.2 388  0.6833 0.3167 598 0.65 0.35
179 0.95 0.05 389  0.6333 0.3667 599 0.6 0.4
180 0.75 0.25 390 0.5833 0.4167 600 0.55 0.45
181 0.95 0.05 391 0.5333  0.4667 601 0.7333 0.2667
182 0.7 0.3 392 0.4833 0.5167 602 0.7333 0.2667
183 0.95 0.05 393  0.4333 0.5667 603 0.6833 0.3167
184 0.65 0.35 394  0.3833 0.6167 604 0.7333 0.2667
185 0.95 0.05 395  0.3333 0.6667 605 0.6333 0.3667
186 0.6 0.4 396 0.2833 0.7167 606 0.7333 0.2667
187 0.95 0.05 397 0.8667 0.1333 607 0.5833 0.4167
188 0.55 0.45 398 0.8667 0.1333 608 0.7333 0.2667
189 0.95 0.05 399 0.8167 0.1833 609 0.5333 0.4667
190 0.5 0.5 400 0.8667 0.1333 610 0.6833 0.3167
191 0.95 0.05 401 0.7667 0.2333 611 0.6333 0.3667
192 0.45 0.55 402  0.8667 0.1333 612 0.5833 0.4167
193 0.95 0.05 403  0.7167 0.2833 613 0.7167 0.2833
194 0.4 0.6 404  0.8667 0.1333 614 0.7167 0.2833
195 0.95 0.05 405 0.6667 0.3333 615 0.6667 0.3333
196 0.35 0.65 406  0.8667 0.1333 616 0.7167 0.2833
197 0.95 0.05 407 0.6167 0.3833 617 0.6167 0.3833
198 0.3 0.7 408 0.8667 0.1333 618 0.7167 0.2833
199 0.95 0.05 409  0.5667 0.4333 619 0.5667 0.4333
200 0.25 0.75 410 0.8667 0.1333 620 0.6667 0.3333
201 0.95 0.05 411 0.5167 0.4833 621 0.6167 0.3833
202 0.2 0.8 412 0.8667 0.1333 622 0.7 0.3
203 0.95 0.05 413 0.4667 0.5333 623 0.7 0.3
204 0.15 0.85 414 0.8667 0.1333 624 0.65 0.35
205 0.95 0.05 415 0.4167 0.5833 625 0.7 0.3
206 0.1 0.9 416  0.8667 0.1333 626 0.6 0.4
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207 0.9 0.1 417  0.3667 0.6333 627 0.65 0.35

208 0.85 0.15 418 0.8667 0.1333 628 0.6833 0.3167

209 0.8 0.2 419 0.3167 0.6833 629 0.6833 0.3167

210 0.75 0.25 420  0.8667 0.1333 630 0.6333 0.3667

631 0.6667 0.3333

Table D.3: 631 directions for the case of three groups.

No. d; ds ds  No. d ds ds  No. d ds ds
1 1 0 0 211 0.05 0.65 0.3 421 0.1333  0.1333  0.7333
2 0.95 0.05 0 212 0.05 0.6 0.35 422 0.1333 0.6833 0.1833
3 0.95 0 0.05 213 0.05 0.55 0.4 423  0.1333 0.6333 0.2333
4 0.9 0.1 0 214 0.05 0.5 0.45 424 0.1333  0.5833 0.2833
5 0.9 0 0.1 215 0.05 0.45 0.5 425 0.1333 0.5333 0.3333
6 0.85 0.15 0 216 0.05 0.4 0.55 426  0.1333  0.4833 0.3833
7 0.85 0 0.15 217 0.05 0.35 0.6 427 0.1333 0.4333 0.4333
8 0.8 0.2 0 218 0.05 0.3 0.65 428 0.1333 0.3833 0.4833
9 0.8 0 0.2 219 0.05 0.25 0.7 429  0.1333  0.3333 0.5333
10 0.75 0.25 0 220 0.05 0.2 0.75 430 0.1333 0.2833 0.5833
11 0.75 0 0.25 221 0.05 0.15 0.8 431  0.1333 0.2333 0.6333
12 0.7 0.3 0 222 0.05 0.1 0.85 432 0.1333  0.1833 0.6833
13 0.7 0 0.3 223  0.8667 0.0667 0.0667 433 0.7 0.15 0.15
14 0.65 0.35 0 224 0.8167 0.1167 0.0667 434 0.65 0.2 0.15
15 0.65 0 0.35 225 0.8167 0.0667 0.1167 435 0.65 0.15 0.2
16 0.6 0.4 0 226 0.7667 0.1667 0.0667 436 0.6 0.25 0.15
17 0.6 0 0.4 227 0.7667 0.0667 0.1667 437 0.6 0.15 0.25
18 0.55 0.45 0 228 0.7167 0.2167 0.0667 438 0.55 0.3 0.15
19 0.55 0 0.45 229 0.7167 0.0667 0.2167 439 0.55 0.15 0.3
20 0.5 0.5 0 230 0.6667 0.2667 0.0667 440 0.5 0.35 0.15
21 0.5 0 0.5 231 0.6667 0.0667 0.2667 441 0.5 0.15 0.35
22 0.45 0.55 0 232 0.6167 0.3167 0.0667 442 0.45 0.4 0.15
23 0.45 0 0.55 233 0.6167 0.0667 0.3167 443 0.45 0.15 0.4
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24 0.4 0.6 0 234 0.5667 0.3667 0.0667 444 0.4 0.45 0.15
25 0.4 0 0.6 235 0.5667 0.0667 0.3667 445 0.4 0.15 0.45
26 0.35 0.65 0 236 0.5167 0.4167 0.0667 446 0.35 0.5 0.15
27 0.35 0 0.65 237 0.5167 0.0667 0.4167 447 0.35 0.15 0.5
28 0.3 0.7 0 238 0.4667 0.4667 0.0667 448 0.3 0.55 0.15
29 0.3 0 0.7 239 04667 0.0667 0.4667 449 0.3 0.15 0.55
30 0.25 0.75 0 240 0.4167 0.5167 0.0667 450 0.25 0.6 0.15
31 0.25 0 0.75 241 04167 0.0667 0.5167 451 0.25 0.15 0.6
32 0.2 0.8 0 242 0.3667 0.5667 0.0667 452 0.2 0.65 0.15
33 0.2 0 0.8 243 0.3667 0.0667 0.5667 453 0.2 0.15 0.65
34 0.15 0.85 0 244 03167 0.6167 0.0667 454 0.15 0.7 0.15
35 0.15 0 0.85 245 0.3167 0.0667 0.6167 455 0.15 0.15 0.7
36 0.1 0.9 0 246 0.2667 0.6667 0.0667 456 0.15 0.65 0.2
37 0.1 0 0.9 247 0.2667 0.0667 0.6667 457 0.15 0.6 0.25
38 0.05 0.95 0 248 0.2167 0.7167 0.0667 458 0.15 0.55 0.3
39 0.05 0 0.95 249 0.2167 0.0667 0.7167 459 0.15 0.5 0.35
40 0 1 0 250  0.1667 0.7667 0.0667 460 0.15 0.45 0.4
41 0 0 1 251 0.1667 0.0667 0.7667 461 0.15 0.4 0.45
42 09667 0.0167 0.0167 252 0.1167 0.8167 0.0667 462 0.15 0.35 0.5
43 0 0.95 0.05 253 0.1167 0.0667 0.8167 463 0.15 0.3 0.55
44 0 0.9 0.1 254 0.0667 0.8667 0.0667 464 0.15 0.25 0.6
45 0 0.85 0.15 255 0.0667 0.0667 0.8667 465 0.15 0.2 0.65
46 0 0.8 0.2 256 0.0667 0.8167 0.1167 466 0.6667 0.1667 0.1667
47 0 0.75 0.25 257  0.0667 0.7667 0.1667 467 0.6167 0.2167 0.1667
48 0 0.7 0.3 258 0.0667 0.7167 0.2167 468 0.6167 0.1667 0.2167
49 0 0.65 0.35 259 0.0667 0.6667 0.2667 469 0.5667 0.2667 0.1667
50 0 0.6 0.4 260 0.0667 0.6167 0.3167 470 0.5667 0.1667 0.2667
51 0 0.55 0.45 261 0.0667 0.5667 0.3667 471 0.5167 0.3167 0.1667
52 0 0.5 0.5 262 0.0667 0.5167 0.4167 472 0.5167 0.1667 0.3167
33 0 0.45 0.55 263 0.0667 0.4667 0.4667 473 0.4667 0.3667 0.1667
54 0 0.4 0.6 264 0.0667 0.4167 0.5167 474 0.4667 0.1667 0.3667
95 0 0.35 0.65 265 0.0667 0.3667 0.5667 475 0.4167 0.4167 0.1667
56 0 0.3 0.7 266 0.0667 0.3167 0.6167 476 0.4167 0.1667 0.4167
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a7 0 0.25 0.75 267 0.0667 0.2667 0.6667 477 0.3667 0.4667 0.1667
38 0 0.2 0.8 268 0.0667 0.2167 0.7167 478 0.3667 0.1667 0.4667
99 0 0.15 0.85 269 0.0667 0.1667 0.7667 479 0.3167 0.5167 0.1667
60 0 0.1 0.9 270 0.0667 0.1167 0.8167 480 0.3167 0.1667 0.5167
61 0 0.05 0.95 271 0.8333 0.0833 0.0833 481 0.2667 0.5667 0.1667
62 0.9167 0.0667 0.0167 272 0.7833 0.1333 0.0833 482 0.2667 0.1667 0.5667
63 0.9167 0.0167 0.0667 273 0.7833 0.0833 0.1333 483 0.2167 0.6167 0.1667
64 0.8667 0.1167 0.0167 274 0.7333 0.1833 0.0833 484 0.2167 0.1667 0.6167
65 0.8667 0.0167 0.1167 275 0.7333 0.0833 0.1833 485 0.1667 0.6667 0.1667
66  0.8167 0.1667 0.0167 276 0.6833 0.2333 0.0833 486 0.1667 0.1667 0.6667
67  0.8167 0.0167 0.1667 277 0.6833 0.0833 0.2333 487 0.1667 0.6167 0.2167
68  0.7667 0.2167 0.0167 278 0.6333 0.2833 0.0833 488 0.1667 0.5667 0.2667
69 0.7667 0.0167 0.2167 279 0.6333 0.0833 0.2833 489 0.1667 0.5167 0.3167
70 0.7167 0.2667 0.0167 280 0.5833 0.3333 0.0833 490 0.1667 0.4667 0.3667
71 0.7167 0.0167 0.2667 281 0.5833 0.0833 0.3333 491 0.1667 0.4167 0.4167
72 0.6667 0.3167 0.0167 282 0.5333 0.3833 0.0833 492 0.1667 0.3667 0.4667
73 0.6667 0.0167 0.3167 283 0.5333 0.0833 0.3833 493 0.1667 0.3167 0.5167
74 0.6167 0.3667 0.0167 284 0.4833 0.4333 0.0833 494 0.1667 0.2667 0.5667
75 0.6167 0.0167 0.3667 285 0.4833 0.0833 0.4333 495 0.1667 0.2167 0.6167
76 0.5667 0.4167 0.0167 286 0.4333 0.4833 0.0833 496 0.6333 0.1833 0.1833
77 0.5667 0.0167 0.4167 287 0.4333 0.0833 0.4833 497 0.5833 0.2333 0.1833
78 0.5167 0.4667 0.0167 288 0.3833 0.5333 0.0833 498 0.5833 0.1833 0.2333
79 0.5167 0.0167 0.4667 289 0.3833 0.0833 0.5333 499 0.5333 0.2833 0.1833
80  0.4667 0.5167 0.0167 290 0.3333 0.5833 0.0833 500 0.5333 0.1833 0.2833
81  0.4667 0.0167 0.5167 291 0.3333 0.0833 0.5833 501 0.4833 0.3333 0.1833
82  0.4167 0.5667 0.0167 292 0.2833 0.6333 0.0833 502 0.4833 0.1833 0.3333
83  0.4167 0.0167 0.5667 293 0.2833 0.0833 0.6333 503 0.4333 0.3833 0.1833
84 0.3667 0.6167 0.0167 294 0.2333 0.6833 0.0833 504 0.4333 0.1833 0.3833
85  0.3667 0.0167 0.6167 295 0.2333 0.0833 0.6833 505 0.3833 0.4333 0.1833
86  0.3167 0.6667 0.0167 296 0.1833 0.7333 0.0833 506 0.3833 0.1833 0.4333
87 0.3167 0.0167 0.6667 297 0.1833 0.0833 0.7333 507 0.3333 0.4833 0.1833
88  0.2667 0.7167 0.0167 298 0.1333 0.7833 0.0833 508 0.3333 0.1833 0.4833
89 0.2667 0.0167 0.7167 299 0.1333 0.0833 0.7833 509 0.2833 0.5333 0.1833
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90  0.2167 0.7667 0.0167 300 0.0833 0.8333 0.0833 510 0.2833 0.1833 0.5333
91  0.2167 0.0167 0.7667 301 0.0833 0.0833 0.8333 511 0.2333 0.5833 0.1833
92  0.1667 0.8167 0.0167 302 0.0833 0.7833 0.1333 512 0.2333 0.1833 0.5833
93 0.1667 0.0167 0.8167 303 0.0833 0.7333 0.1833 513 0.1833 0.6333 0.1833
94 0.1167 0.8667 0.0167 304 0.0833 0.6833 0.2333 514 0.1833 0.1833 0.6333
95 0.1167 0.0167 0.8667 305 0.0833 0.6333 0.2833 515 0.1833 0.5833 0.2333
96 0.0667 0.9167 0.0167 306 0.0833 0.5833 0.3333 516 0.1833 0.5333 0.2833
97  0.0667 0.0167 0.9167 307 0.0833 0.5333 0.3833 517 0.1833 0.4833 0.3333
98  0.0167 0.9667 0.0167 308 0.0833 0.4833 0.4333 518 0.1833 0.4333 0.3833
99  0.0167 0.0167 0.9667 309 0.0833 0.4333 0.4833 519 0.1833 0.3833 0.4333
100 0.0167 0.9167 0.0667 310 0.0833 0.3833 0.5333 520 0.1833 0.3333 0.4833
101 0.0167 0.8667 0.1167 311 0.0833 0.3333 0.5833 521 0.1833 0.2833 0.5333
102 0.0167 0.8167 0.1667 312 0.0833 0.2833 0.6333 522 0.1833 0.2333 0.5833
103 0.0167 0.7667 0.2167 313 0.0833 0.2333 0.6833 523 0.6 0.2 0.2
104 0.0167 0.7167 0.2667 314 0.0833 0.1833 0.7333 524 0.55 0.25 0.2
105 0.0167 0.6667 0.3167 315 0.0833 0.1333 0.7833 525 0.55 0.2 0.25
106 0.0167 0.6167 0.3667 316 0.8 0.1 0.1 526 0.5 0.3 0.2
107 0.0167 0.5667 0.4167 317 0.75 0.15 0.1 527 0.5 0.2 0.3
108 0.0167 0.5167 0.4667 318 0.75 0.1 0.15 528 0.45 0.35 0.2
109 0.0167 0.4667 0.5167 319 0.7 0.2 0.1 529 0.45 0.2 0.35
110  0.0167 0.4167 0.5667 320 0.7 0.1 0.2 530 0.4 0.4 0.2
111 0.0167 0.3667 0.6167 321 0.65 0.25 0.1 531 0.4 0.2 0.4
112 0.0167 0.3167 0.6667 322 0.65 0.1 0.25 532 0.35 0.45 0.2
113 0.0167 0.2667 0.7167 323 0.6 0.3 0.1 533 0.35 0.2 0.45
114 0.0167 0.2167 0.7667 324 0.6 0.1 0.3 534 0.3 0.5 0.2
115 0.0167 0.1667 0.8167 325 0.55 0.35 0.1 935 0.3 0.2 0.5
116 0.0167 0.1167 0.8667 326 0.55 0.1 0.35 536 0.25 0.55 0.2
117 0.0167 0.0667 0.9167 327 0.5 0.4 0.1 537 0.25 0.2 0.55
118 0.9333 0.0333 0.0333 328 0.5 0.1 0.4 538 0.2 0.6 0.2
119 0.8833 0.0833 0.0333 329 0.45 0.45 0.1 539 0.2 0.2 0.6
120  0.8833 0.0333 0.0833 330 0.45 0.1 0.45 540 0.2 0.55 0.25
121 0.8333 0.1333 0.0333 331 0.4 0.5 0.1 541 0.2 0.5 0.3
122 0.8333 0.0333 0.1333 332 0.4 0.1 0.5 542 0.2 0.45 0.35
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123 0.7833 0.1833 0.0333 333 0.35 0.55 0.1 543 0.2 0.4 0.4

124 0.7833 0.0333 0.1833 334 0.35 0.1 0.55 544 0.2 0.35 0.45

125 0.7333 0.2333 0.0333 335 0.3 0.6 0.1 545 0.2 0.3 0.5

126 0.7333 0.0333 0.2333 336 0.3 0.1 0.6 546 0.2 0.25 0.55

127 0.6833 0.2833 0.0333 337 0.25 0.65 0.1 547  0.5667 0.2167 0.2167
128 0.6833 0.0333 0.2833 338 0.25 0.1 0.65 548 0.5167 0.2667 0.2167
129  0.6333 0.3333 0.0333 339 0.2 0.7 0.1 549  0.5167 0.2167 0.2667
130  0.6333 0.0333 0.3333 340 0.2 0.1 0.7 550  0.4667 0.3167 0.2167
131  0.5833 0.3833 0.0333 341 0.15 0.75 0.1 551 0.4667 0.2167 0.3167
132 0.5833 0.0333 0.3833 342 0.15 0.1 0.75 552 0.4167 0.3667 0.2167
133 0.5333 0.4333 0.0333 343 0.1 0.8 0.1 553  0.4167 0.2167 0.3667
134 0.5333 0.0333 0.4333 344 0.1 0.1 0.8 554  0.3667 0.4167 0.2167
135  0.4833 0.4833 0.0333 345 0.1 0.75 0.15 555 0.3667 0.2167 0.4167
136 0.4833 0.0333 0.4833 346 0.1 0.7 0.2 556  0.3167 0.4667 0.2167
137 0.4333 0.5333 0.0333 347 0.1 0.65 0.25 557  0.3167 0.2167 0.4667
138 0.4333 0.0333 0.5333 348 0.1 0.6 0.3 558  0.2667 0.5167 0.2167
139 0.3833 0.5833 0.0333 349 0.1 0.55 0.35 559  0.2667 0.2167 0.5167
140 0.3833 0.0333 0.5833 350 0.1 0.5 0.4 560 0.2167 0.5667 0.2167
141 0.3333 0.6333 0.0333 351 0.1 0.45 0.45 561 0.2167 0.2167 0.5667
142 0.3333 0.0333 0.6333 352 0.1 0.4 0.5 562  0.2167 0.5167 0.2667
143 0.2833 0.6833 0.0333 353 0.1 0.35 0.55 563  0.2167 0.4667 0.3167
144 0.2833 0.0333 0.6833 354 0.1 0.3 0.6 564 0.2167 0.4167 0.3667
145 0.2333 0.7333 0.0333 355 0.1 0.25 0.65 565 0.2167 0.3667 0.4167
146 0.2333 0.0333 0.7333 356 0.1 0.2 0.7 566  0.2167 0.3167 0.4667
147 0.1833 0.7833 0.0333 357 0.1 0.15 0.75 567 0.2167 0.2667 0.5167
148 0.1833 0.0333 0.7833 358 0.7667 0.1167 0.1167 568 0.5333 0.2333 0.2333
149  0.1333 0.8333 0.0333 359 0.7167 0.1667 0.1167 569 0.4833 0.2833 0.2333
150  0.1333 0.0333 0.8333 360 0.7167 0.1167 0.1667 570 0.4833 0.2333 0.2833
151  0.0833 0.8833 0.0333 361 0.6667 0.2167 0.1167 571 0.4333 0.3333 0.2333
152 0.0833 0.0333 0.8833 362 0.6667 0.1167 0.2167 572 0.4333 0.2333 0.3333
153  0.0333 0.9333 0.0333 363 0.6167 0.2667 0.1167 573 0.3833 0.3833 0.2333
154 0.0333 0.0333 0.9333 364 0.6167 0.1167 0.2667 574 0.3833 0.2333 0.3833
155 0.0333 0.8833 0.0833 365 0.5667 0.3167 0.1167 575 0.3333 0.4333 0.2333
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156 0.0333 0.8333 0.1333 366 0.5667 0.1167 0.3167 576 0.3333 0.2333 0.4333
157 0.0333 0.7833 0.1833 367 0.5167 0.3667 0.1167 577 0.2833 0.4833 0.2333
158 0.0333 0.7333 0.2333 368 0.5167 0.1167 0.3667 578 0.2833 0.2333 0.4833
159 0.0333 0.6833 0.2833 369 0.4667 0.4167 0.1167 579 0.2333 0.5333 0.2333
160 0.0333 0.6333 0.3333 370 0.4667 0.1167 0.4167 580 0.2333 0.2333 0.5333
161 0.0333 0.5833 0.3833 371 0.4167 0.4667 0.1167 581 0.2333 0.4833 0.2833
162 0.0333 0.5333 0.4333 372 0.4167 0.1167 0.4667 582 0.2333 0.4333 0.3333
163 0.0333 0.4833 04833 373 0.3667 0.5167 0.1167 583 0.2333 0.3833 0.3833
164 0.0333 04333 0.5333 374 0.3667 0.1167 0.5167 584 0.2333 0.3333 0.4333
165 0.0333 0.3833 0.5833 375 0.3167 0.5667 0.1167 585 0.2333 0.2833 0.4833
166 0.0333 0.3333 0.6333 376 0.3167 0.1167 0.5667 586 0.5 0.25 0.25
167 0.0333 0.2833 0.6833 377 0.2667 0.6167 0.1167 587 0.45 0.3 0.25
168 0.0333 0.2333 0.7333 378 0.2667 0.1167 0.6167 588 0.45 0.25 0.3
169 0.0333 0.1833 0.7833 379 0.2167 0.6667 0.1167 589 0.4 0.35 0.25
170 0.0333 0.1333 0.8333 380 0.2167 0.1167 0.6667 590 0.4 0.25 0.35
171 0.0333 0.0833 0.8833 381 0.1667 0.7167 0.1167 591 0.35 0.4 0.25
172 0.9 0.05 0.05 382 0.1667 0.1167 0.7167 592 0.35 0.25 0.4
173 0.85 0.1 0.05 383 0.1167 0.7667 0.1167 593 0.3 0.45 0.25
174 0.85 0.05 0.1 384 0.1167 0.1167 0.7667 594 0.3 0.25 0.45
175 0.8 0.15 0.05 385 0.1167 0.7167 0.1667 595 0.25 0.5 0.25
176 0.8 0.05 0.15 386 0.1167 0.6667 0.2167 596 0.25 0.25 0.5
177 0.75 0.2 0.05 387 0.1167 0.6167 0.2667 597 0.25 0.45 0.3
178 0.75 0.05 0.2 388  0.1167 0.5667 0.3167 598 0.25 0.4 0.35
179 0.7 0.25 0.05 389 0.1167 0.5167 0.3667 599 0.25 0.35 0.4
180 0.7 0.05 0.25 390 0.1167 0.4667 0.4167 600 0.25 0.3 0.45
181 0.65 0.3 0.05 391 0.1167 0.4167 0.4667 601 0.4667 0.2667 0.2667
182 0.65 0.05 0.3 392 0.1167 0.3667 0.5167 602 0.4167 0.3167 0.2667
183 0.6 0.35 0.05 393 0.1167 0.3167 0.5667 603 0.4167 0.2667 0.3167
184 0.6 0.05 0.35 394 0.1167 0.2667 0.6167 604 0.3667 0.3667 0.2667
185 0.55 0.4 0.05 395  0.1167 0.2167 0.6667 605 0.3667 0.2667 0.3667
186 0.55 0.05 0.4 396 0.1167 0.1667 0.7167 606 0.3167 0.4167 0.2667
187 0.5 0.45 0.05 397 0.7333 0.1333 0.1333 607 0.3167 0.2667 0.4167
188 0.5 0.05 0.45 398  0.6833 0.1833 0.1333 608 0.2667 0.4667 0.2667
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189 0.45 0.5 0.05 399  0.6833 0.1333 0.1833 609 0.2667 0.2667 0.4667
190 0.45 0.05 0.5 400 0.6333 0.2333 0.1333 610 0.2667 0.4167 0.3167
191 0.4 0.55 0.05 401 0.6333 0.1333 0.2333 611 0.2667 0.3667 0.3667
192 0.4 0.05 0.55 402  0.5833 0.2833 0.1333 612 0.2667 0.3167 0.4167
193 0.35 0.6 0.05 403  0.5833 0.1333 0.2833 613 0.4333 0.2833 0.2833
194 0.35 0.05 0.6 404 0.5333 0.3333 0.1333 614 0.3833 0.3333 0.2833
195 0.3 0.65 0.05 405 0.5333  0.1333 0.3333 615 0.3833 0.2833 0.3333
196 0.3 0.05 0.65 406  0.4833 0.3833 0.1333 616 0.3333 0.3833 0.2833
197 0.25 0.7 0.05 407 0.4833 0.1333 0.3833 617 0.3333 0.2833 0.3833
198 0.25 0.05 0.7 408 0.4333 0.4333 0.1333 618 0.2833 0.4333 0.2833
199 0.2 0.75 0.05 409 0.4333 0.1333 0.4333 619 0.2833 0.2833 0.4333
200 0.2 0.05 0.75 410 0.3833 0.4833 0.1333 620 0.2833 0.3833 0.3333
201 0.15 0.8 0.05 411 0.3833 0.1333 0.4833 621 0.2833 0.3333 0.3833
202 0.15 0.05 0.8 412 0.3333 0.5333 0.1333 622 0.4 0.3 0.3
203 0.1 0.85 0.05 413 0.3333  0.1333  0.5333 623 0.35 0.35 0.3
204 0.1 0.05 0.85 414 0.2833 0.5833 0.1333 624 0.35 0.3 0.35
205 0.05 0.9 0.05 415 0.2833 0.1333 0.5833 625 0.3 0.4 0.3
206 0.05 0.05 0.9 416  0.2333  0.6333 0.1333 626 0.3 0.3 0.4
207 0.05 0.85 0.1 417 0.2333 0.1333 0.6333 627 0.3 0.35 0.35
208 0.05 0.8 0.15 418 0.1833 0.6833 0.1333 628 0.3667 0.3167 0.3167
209 0.05 0.75 0.2 419  0.1833 0.1333 0.6833 629 0.3167 0.3667 0.3167
210 0.05 0.7 0.25 420 0.1333 0.7333 0.1333 630 0.3167 0.3167 0.3667
631 0.3333 0.3333 0.3333
Table D.4: 631 directions for the case of four groups.
No. d; dy ds d, No. d dy ds dy
1 0.5 0 0 0.5 316 0.4 0.1 0.1 0.4
2 0.475 0.05 0 0475 317  0.375 0.15 0.1 0.375
3 0.475 0 0.05 0.475 318 0.375 0.1 0.15 0.375
4 0.45 0.1 0 0.45 319 0.35 0.2 0.1 0.35
5 0.45 0 0.1 0.45 320 0.35 0.1 0.2 0.35
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6 0.425 0.15 0 0.425 321 0.325 0.25 0.1 0.325
7 0.425 0 0.15 0.425 322 0.325 0.1 0.25 0.325
8 0.4 0.2 0 0.4 323 0.3 0.3 0.1 0.3

9 0.4 0 0.2 0.4 324 0.3 0.1 0.3 0.3

10 0.375 0.25 0 0.375 325 0.275 0.35 0.1 0.275
11 0.375 0 0.25 0.375 326  0.275 0.1 0.35 0.275
12 0.35 0.3 0 0.35 327 0.25 0.4 0.1 0.25
13 0.35 0 0.3 0.35 328 0.25 0.1 0.4 0.25
14 0.325 0.35 0 0.325 329 0.225 0.45 0.1 0.225
15 0.325 0 0.35 0.325 330  0.225 0.1 0.45 0.225
16 0.3 0.4 0 0.3 331 0.2 0.5 0.1 0.2

17 0.3 0 0.4 0.3 332 0.2 0.1 0.5 0.2

18 0.275 0.45 0 0.275 333  0.175 0.55 0.1 0.175
19 0.275 0 0.45 0275 334 0.175 0.1 0.55 0.175
20 0.25 0.5 0 0.25 335 0.15 0.6 0.1 0.15
21 0.25 0 0.5 0.25 336 0.15 0.1 0.6 0.15
22 0.225 0.55 0 0.225 337  0.125 0.65 0.1 0.125
23 0.225 0 0.55 0.225 338 0.125 0.1 0.65 0.125
24 0.2 0.6 0 0.2 339 0.1 0.7 0.1 0.1

25 0.2 0 0.6 0.2 340 0.1 0.1 0.7 0.1

26 0.175 0.65 0 0.175 341  0.075 0.75 0.1 0.075
27 0.175 0 0.65 0.175 342  0.075 0.1 0.75 0.075
28 0.15 0.7 0 0.15 343 0.05 0.8 0.1 0.05
29 0.15 0 0.7 0.15 344 0.05 0.1 0.8 0.05
30 0.125 0.75 0 0.125 345 0.05 0.75 0.15 0.05
31 0.125 0 0.75 0.125 346 0.05 0.7 0.2 0.05
32 0.1 0.8 0 0.1 347 0.05 0.65 0.25 0.05
33 0.1 0 0.8 0.1 348 0.05 0.6 0.3 0.05
34 0.075 0.85 0 0.075 349 0.05 0.55 0.35 0.05
35 0.075 0 0.85 0.075 350 0.05 0.5 0.4 0.05
36 0.05 0.9 0 0.05 351 0.05 0.45 0.45 0.05
37 0.05 0 0.9 0.05 352 0.05 0.4 0.5 0.05
38 0.025 0.95 0 0.025 353 0.05 0.35 0.55 0.05
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39 0.025 0 0.95 0.025 354 0.05 0.3 0.6 0.05

40 0 1 0 0 355 0.05 0.25 0.65 0.05

41 0 0 1 0 356 0.05 0.2 0.7 0.05

42 0.4833 0.0167 0.0167 0.4833 357 0.05 0.15 0.75 0.05

43 0 0.95 0.05 0 358  0.3833 0.1167 0.1167 0.3833
44 0 0.9 0.1 0 359  0.3583 0.1667 0.1167 0.3583
45 0 0.85 0.15 0 360 0.3583 0.1167 0.1667 0.3583
46 0 0.8 0.2 0 361 0.3333  0.2167 0.1167 0.3333
47 0 0.75 0.25 0 362 0.3333  0.1167 0.2167 0.3333
48 0 0.7 0.3 0 363 0.3083 0.2667 0.1167 0.3083
49 0 0.65 0.35 0 364 0.3083 0.1167 0.2667 0.3083
a0 0 0.6 0.4 0 365 0.2833 0.3167 0.1167 0.2833
a1 0 0.55 0.45 0 366  0.2833 0.1167 0.3167 0.2833
92 0 0.5 0.5 0 367  0.2583 0.3667 0.1167  0.2583
93 0 0.45 0.55 0 368 0.2583 0.1167 0.3667 0.2583
o4 0 0.4 0.6 0 369 0.2333  0.4167 0.1167 0.2333
35 0 0.35 0.65 0 370 0.2333  0.1167 0.4167 0.2333
o6 0 0.3 0.7 0 371 0.2083 0.4667 0.1167 0.2083
o7 0 0.25 0.75 0 372 0.2083 0.1167 0.4667 0.2083
o8 0 0.2 0.8 0 373 0.1833 0.5167 0.1167 0.1833
99 0 0.15 0.85 0 374 0.1833 0.1167 0.5167 0.1833
60 0 0.1 0.9 0 375 0.1583  0.5667 0.1167  0.1583
61 0 0.05 0.95 0 376 0.1583 0.1167 0.5667 0.1583
62 0.4583 0.0667 0.0167 0.4583 377 0.1333 0.6167 0.1167 0.1333
63 04583 0.0167 0.0667 0.4583 378 0.1333 0.1167 0.6167 0.1333
64 04333 0.1167 0.0167 0.4333 379 0.1083 0.6667 0.1167 0.1083
65 0.4333 0.0167 0.1167 0.4333 380 0.1083 0.1167 0.6667 0.1083
66  0.4083 0.1667 0.0167 0.4083 381 0.0833 0.7167 0.1167 0.0833
67 0.4083 0.0167 0.1667 0.4083 382 0.0833 0.1167 0.7167 0.0833
68 0.3833 0.2167 0.0167 0.3833 383 0.0583 0.7667 0.1167 0.0583
69 0.3833 0.0167 0.2167 0.3833 384 0.0583 0.1167 0.7667 0.0583
70 0.3583 0.2667 0.0167 0.3583 385 0.0583 0.7167 0.1667 0.0583
71 0.3583 0.0167 0.2667 0.3583 386 0.0583 0.6667 0.2167 0.0583
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72 0.3333 0.3167 0.0167 0.3333 387 0.0583 0.6167 0.2667 0.0583
73 0.3333 0.0167 0.3167 0.3333 388 0.0583 0.5667 0.3167 0.0583
74 0.3083 0.3667 0.0167 0.3083 389 0.0583 0.5167 0.3667 0.0583
75 0.3083 0.0167 0.3667 0.3083 390 0.0583 0.4667 0.4167 0.0583
76 0.2833 0.4167 0.0167 0.2833 391 0.0583 0.4167 0.4667 0.0583
77 0.2833 0.0167 0.4167 0.2833 392 0.0583 0.3667 0.5167 0.0583
78  0.2583 0.4667 0.0167 0.2583 393 0.0583 0.3167 0.5667 0.0583
79 0.2583 0.0167 0.4667 0.2583 394 0.0583 0.2667 0.6167 0.0583
80  0.2333 0.5167 0.0167 0.2333 395 0.0583 0.2167 0.6667 0.0583
81  0.2333 0.0167 0.5167 0.2333 396 0.0583 0.1667 0.7167 0.0583
82  0.2083 0.5667 0.0167 0.2083 397 0.3667 0.1333 0.1333 0.3667
83 0.2083 0.0167 0.5667 0.2083 398 0.3417 0.1833 0.1333 0.3417
84 0.1833 0.6167 0.0167 0.1833 399 0.3417 0.1333 0.1833 0.3417
85 0.1833 0.0167 0.6167 0.1833 400 0.3167 0.2333 0.1333 0.3167
8  0.1583 0.6667 0.0167 0.1583 401 0.3167 0.1333 0.2333 0.3167
87 0.1583 0.0167 0.6667 0.1583 402 0.2917 0.2833 0.1333 0.2917
88 0.1333 0.7167 0.0167 0.1333 403 0.2917 0.1333 0.2833 0.2917
89  0.1333 0.0167 0.7167 0.1333 404 0.2667 0.3333 0.1333 0.2667
90  0.1083 0.7667 0.0167 0.1083 405 0.2667 0.1333 0.3333 0.2667
91 0.1083 0.0167 0.7667 0.1083 406 0.2417 0.3833 0.1333 0.2417
92  0.0833 0.8167 0.0167 0.0833 407 0.2417 0.1333 0.3833 0.2417
93 0.0833 0.0167 0.8167 0.0833 408 0.2167 0.4333 0.1333 0.2167
94 0.0583 0.8667 0.0167 0.0583 409 0.2167 0.1333 0.4333 0.2167
95 0.0583 0.0167 0.8667 0.0583 410 0.1917 0.4833 0.1333 0.1917
96 0.0333 0.9167 0.0167 0.0333 411 0.1917 0.1333 0.4833 0.1917
97  0.0333 0.0167 0.9167 0.0333 412 0.1667 0.5333 0.1333 0.1667
98  0.0083 0.9667 0.0167 0.0083 413 0.1667 0.1333 0.5333 0.1667
99  0.0083 0.0167 0.9667 0.0083 414 0.1417 0.5833 0.1333 0.1417
100  0.0083 0.9167 0.0667 0.0083 415 0.1417 0.1333 0.5833 0.1417
101 0.0083 0.8667 0.1167 0.0083 416 0.1167 0.6333 0.1333 0.1167
102 0.0083 0.8167 0.1667 0.0083 417 0.1167 0.1333 0.6333 0.1167
103 0.0083 0.7667 0.2167 0.0083 418 0.0917 0.6833 0.1333 0.0917
104 0.0083 0.7167 0.2667 0.0083 419 0.0917 0.1333 0.6833 0.0917
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105 0.0083 0.6667 0.3167 0.0083 420 0.0667 0.7333 0.1333 0.0667
106  0.0083 0.6167 0.3667 0.0083 421 0.0667 0.1333 0.7333 0.0667
107 0.0083 0.5667 0.4167 0.0083 422 0.0667 0.6833 0.1833 0.0667
108 0.0083 0.5167 0.4667 0.0083 423 0.0667 0.6333 0.2333 0.0667
109 0.0083 0.4667 0.5167 0.0083 424 0.0667 0.5833 0.2833 0.0667
110  0.0083 0.4167 0.5667 0.0083 425 0.0667 0.5333 0.3333 0.0667
111 0.0083 0.3667 0.6167 0.0083 426 0.0667 0.4833 0.3833 0.0667
112 0.0083 0.3167 0.6667 0.0083 427 0.0667 0.4333 0.4333 0.0667
113 0.0083 0.2667 0.7167 0.0083 428 0.0667 0.3833 0.4833 0.0667
114 0.0083 0.2167 0.7667 0.0083 429 0.0667 0.3333 0.5333 0.0667
115 0.0083 0.1667 0.8167 0.0083 430 0.0667 0.2833 0.5833 0.0667
116  0.0083 0.1167 0.8667 0.0083 431 0.0667 0.2333 0.6333 0.0667
117 0.0083 0.0667 0.9167 0.0083 432 0.0667 0.1833 0.6833 0.0667
118 0.4667 0.0333 0.0333 0.4667 433 0.35 0.15 0.15 0.35
119  0.4417 0.0833 0.0333 0.4417 434 0.325 0.2 0.15 0.325
120 0.4417 0.0333 0.0833 0.4417 435 0.325 0.15 0.2 0.325
121 04167 0.1333 0.0333 0.4167 436 0.3 0.25 0.15 0.3
122 0.4167 0.0333 0.1333 0.4167 437 0.3 0.15 0.25 0.3
123 0.3917 0.1833 0.0333 0.3917 438  0.275 0.3 0.15 0.275
124 03917 0.0333 0.1833 0.3917 439  0.275 0.15 0.3 0.275
125 0.3667 0.2333 0.0333 0.3667 440 0.25 0.35 0.15 0.25
126 0.3667 0.0333 0.2333 0.3667 441 0.25 0.15 0.35 0.25
127 0.3417 0.2833 0.0333 0.3417 442  0.225 0.4 0.15 0.225
128 0.3417 0.0333 0.2833 0.3417 443  0.225 0.15 0.4 0.225
129 0.3167 0.3333 0.0333 0.3167 444 0.2 0.45 0.15 0.2
130 0.3167 0.0333 0.3333 0.3167 445 0.2 0.15 0.45 0.2
131 0.2917 0.3833 0.0333 0.2917 446  0.175 0.5 0.15 0.175
132 0.2917 0.0333 0.3833 0.2917 447  0.175 0.15 0.5 0.175
133 0.2667 0.4333 0.0333 0.2667 448 0.15 0.55 0.15 0.15
134 0.2667 0.0333 0.4333 0.2667 449 0.15 0.15 0.55 0.15
135  0.2417 04833 0.0333 0.2417 450  0.125 0.6 0.15 0.125
136 0.2417 0.0333 0.4833 0.2417 451  0.125 0.15 0.6 0.125
137 0.2167 0.5333 0.0333 0.2167 452 0.1 0.65 0.15 0.1
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138 0.2167 0.0333 0.5333 0.2167 453 0.1 0.15 0.65 0.1

139 0.1917 0.5833 0.0333 0.1917 454  0.075 0.7 0.15 0.075
140  0.1917 0.0333 0.5833 0.1917 455  0.075 0.15 0.7 0.075
141 0.1667 0.6333 0.0333 0.1667 456  0.075 0.65 0.2 0.075
142 0.1667 0.0333 0.6333 0.1667 457  0.075 0.6 0.25 0.075
143 0.1417 0.6833 0.0333 0.1417 458  0.075 0.55 0.3 0.075
144 0.1417 0.0333 0.6833 0.1417 459  0.075 0.5 0.35 0.075
145 0.1167 0.7333 0.0333 0.1167 460  0.075 0.45 0.4 0.075
146  0.1167 0.0333 0.7333 0.1167 461  0.075 0.4 0.45 0.075
147 0.0917 0.7833 0.0333 0.0917 462  0.075 0.35 0.5 0.075
148 0.0917 0.0333 0.7833 0.0917 463  0.075 0.3 0.55 0.075
149 0.0667 0.8333 0.0333 0.0667 464  0.075 0.25 0.6 0.075
150 0.0667 0.0333 0.8333 0.0667 465  0.075 0.2 0.65 0.075
151  0.0417 0.8833 0.0333 0.0417 466 0.3333 0.1667 0.1667 0.3333
152 0.0417 0.0333 0.8833 0.0417 467 0.3083 0.2167 0.1667 0.3083
153 0.0167 0.9333 0.0333 0.0167 468 0.3083 0.1667 0.2167 0.3083
154 0.0167 0.0333 0.9333 0.0167 469 0.2833 0.2667 0.1667 0.2833
155 0.0167 0.8833 0.0833 0.0167 470 0.2833 0.1667 0.2667 0.2833
156  0.0167 0.8333 0.1333 0.0167 471 0.2583 0.3167 0.1667 0.2583
157 0.0167 0.7833 0.1833 0.0167 472 0.2583 0.1667 0.3167 0.2583
158 0.0167 0.7333 0.2333 0.0167 473 0.2333 0.3667 0.1667 0.2333
159 0.0167 0.6833 0.2833 0.0167 474 0.2333 0.1667 0.3667 0.2333
160 0.0167 0.6333 0.3333 0.0167 475 0.2083 0.4167 0.1667 0.2083
161 0.0167 0.5833 0.3833 0.0167 476 0.2083 0.1667 0.4167 0.2083
162 0.0167 0.5333 0.4333 0.0167 477 0.1833 0.4667 0.1667 0.1833
163 0.0167 0.4833 0.4833 0.0167 478 0.1833 0.1667 0.4667 0.1833
164 0.0167 0.4333 0.5333 0.0167 479 0.1583 0.5167 0.1667 0.1583
165 0.0167 0.3833 0.5833 0.0167 480 0.1583 0.1667 0.5167 0.1583
166  0.0167 0.3333 0.6333 0.0167 481 0.1333 0.5667 0.1667 0.1333
167 0.0167 0.2833 0.6833 0.0167 482 0.1333 0.1667 0.5667 0.1333
168 0.0167 0.2333 0.7333 0.0167 483 0.1083 0.6167 0.1667 0.1083
169 0.0167 0.1833 0.7833 0.0167 484 0.1083 0.1667 0.6167 0.1083
170 0.0167 0.1333 0.8333 0.0167 485 0.0833 0.6667 0.1667 0.0833
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171 0.0167 0.0833 0.8833 0.0167 486 0.0833 0.1667 0.6667 0.0833
172 0.45 0.05 0.05 0.45 487 0.0833 0.6167 0.2167 0.0833
173 0.425 0.1 0.05 0.425 488 0.0833 0.5667 0.2667 0.0833
174 0.425 0.05 0.1 0.425 489 0.0833 0.5167 0.3167 0.0833
175 0.4 0.15 0.05 0.4 490 0.0833 0.4667 0.3667 0.0833
176 0.4 0.05 0.15 0.4 491 0.0833 0.4167 0.4167 0.0833
177 0.375 0.2 0.05 0.375 492 0.0833 0.3667 0.4667 0.0833
178 0.375 0.05 0.2 0.375 493 0.0833 0.3167 0.5167 0.0833
179 0.35 0.25 0.05 0.35 494  0.0833 0.2667 0.5667 0.0833
180 0.35 0.05 0.25 0.35 495 0.0833 0.2167 0.6167 0.0833
181 0.325 0.3 0.05 0.325 496 0.3167 0.1833 0.1833 0.3167
182 0.325 0.05 0.3 0.325 497 0.2917 0.2333 0.1833 0.2917
183 0.3 0.35 0.05 0.3 498  0.2917 0.1833 0.2333 0.2917
184 0.3 0.05 0.35 0.3 499  0.2667 0.2833 0.1833  0.2667
185  0.275 0.4 0.05 0.275 500 0.2667 0.1833 0.2833 0.2667
186  0.275 0.05 0.4 0.275 501 0.2417 0.3333 0.1833 0.2417
187 0.25 0.45 0.05 0.25 502 0.2417 0.1833 0.3333 0.2417
188 0.25 0.05 0.45 0.25 503  0.2167 0.3833 0.1833 0.2167
189  0.225 0.5 0.05 0.225 504 0.2167 0.1833 0.3833 0.2167
190  0.225 0.05 0.5 0.225 505 0.1917 0.4333 0.1833 0.1917
191 0.2 0.55 0.05 0.2 506  0.1917 0.1833 0.4333 0.1917
192 0.2 0.05 0.55 0.2 507  0.1667 0.4833 0.1833 0.1667
193 0.175 0.6 0.05 0.175 508 0.1667 0.1833 0.4833 0.1667
194  0.175 0.05 0.6 0.175 509 0.1417 0.5333 0.1833 0.1417
195 0.15 0.65 0.05 0.15 510 0.1417 0.1833 0.5333 0.1417
196 0.15 0.05 0.65 0.15 511 0.1167 0.5833 0.1833 0.1167
197 0.125 0.7 0.05 0.125 512 0.1167 0.1833 0.5833 0.1167
198 0.125 0.05 0.7 0.125 513 0.0917 0.6333 0.1833 0.0917
199 0.1 0.75 0.05 0.1 514  0.0917 0.1833 0.6333 0.0917
200 0.1 0.05 0.75 0.1 515  0.0917 0.5833 0.2333 0.0917
201 0.075 0.8 0.05 0.075 516 0.0917 0.5333 0.2833 0.0917
202 0.075 0.05 0.8 0.075 517 0.0917 0.4833 0.3333 0.0917
203 0.05 0.85 0.05 0.05 518 0.0917 0.4333 0.3833 0.0917
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204 0.05 0.05 0.85 0.05 519 0.0917 0.3833 0.4333 0.0917
205  0.025 0.9 0.05 0.025 520 0.0917 0.3333 0.4833 0.0917
206  0.025 0.05 0.9 0.025 521 0.0917 0.2833 0.5333 0.0917
207 0.025 0.85 0.1 0.025 522 0.0917 0.2333 0.5833 0.0917
208  0.025 0.8 0.15 0.025 523 0.3 0.2 0.2 0.3
209  0.025 0.75 0.2 0.025 524  0.275 0.25 0.2 0.275
210 0.025 0.7 0.25 0.025 525  0.275 0.2 0.25 0.275
211 0.025 0.65 0.3 0.025 526 0.25 0.3 0.2 0.25
212 0.025 0.6 0.35 0.025 527 0.25 0.2 0.3 0.25
213 0.025 0.55 0.4 0.025 528  0.225 0.35 0.2 0.225
214 0.025 0.5 0.45 0.025 529  0.225 0.2 0.35 0.225
215 0.025 0.45 0.5 0.025 530 0.2 0.4 0.2 0.2
216 0.025 0.4 0.55 0.025 531 0.2 0.2 0.4 0.2
217 0.025 0.35 0.6 0.025 532 0.175 0.45 0.2 0.175
218  0.025 0.3 0.65 0.025 533  0.175 0.2 0.45 0.175
219 0.025 0.25 0.7 0.025 534 0.15 0.5 0.2 0.15
220 0.025 0.2 0.75 0.025 535 0.15 0.2 0.5 0.15
221 0.025 0.15 0.8 0.025 536  0.125 0.55 0.2 0.125
222 0.025 0.1 0.85 0.025 537  0.125 0.2 0.55 0.125
223 0.4333 0.0667 0.0667 0.4333 538 0.1 0.6 0.2 0.1
224 0.4083 0.1167 0.0667 0.4083 539 0.1 0.2 0.6 0.1
225 0.4083 0.0667 0.1167 0.4083 540 0.1 0.55 0.25 0.1
226 0.3833 0.1667 0.0667 0.3833 541 0.1 0.5 0.3 0.1
227 0.3833 0.0667 0.1667 0.3833 542 0.1 0.45 0.35 0.1
228 0.3583 0.2167 0.0667 0.3583 543 0.1 0.4 0.4 0.1
229  0.3583 0.0667 0.2167 0.3583 544 0.1 0.35 0.45 0.1
230 0.3333 0.2667 0.0667 0.3333 545 0.1 0.3 0.5 0.1
231  0.3333  0.0667 0.2667 0.3333 546 0.1 0.25 0.55 0.1
232 0.3083 0.3167 0.0667 0.3083 547 0.2833 0.2167 0.2167 0.2833
233 0.3083 0.0667 0.3167 0.3083 548 0.2583 0.2667 0.2167 0.2583
234 0.2833 0.3667 0.0667 0.2833 549 0.2583 0.2167 0.2667 0.2583
235 0.2833 0.0667 0.3667 0.2833 550 0.2333 0.3167 0.2167 0.2333
236 0.2583 0.4167 0.0667 0.2583 551 0.2333 0.2167 0.3167 0.2333
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237 0.2583 0.0667 0.4167 0.2583 552 0.2083 0.3667 0.2167 0.2083
238 0.2333 0.4667 0.0667 0.2333 553 0.2083 0.2167 0.3667 0.2083
239 0.2333 0.0667 0.4667 0.2333 554 0.1833 0.4167 0.2167 0.1833
240 0.2083 0.5167 0.0667 0.2083 555 0.1833 0.2167 0.4167 0.1833
241  0.2083 0.0667 0.5167 0.2083 556 0.1583 0.4667 0.2167 0.1583
242 0.1833 0.5667 0.0667 0.1833 557 0.1583 0.2167 0.4667 0.1583
243 0.1833 0.0667 0.5667 0.1833 558 0.1333 0.5167 0.2167 0.1333
244  0.1583 0.6167 0.0667 0.1583 559 0.1333 0.2167 0.5167 0.1333
245 0.1583 0.0667 0.6167 0.1583 560 0.1083 0.5667 0.2167 0.1083
246 0.1333 0.6667 0.0667 0.1333 561 0.1083 0.2167 0.5667 0.1083
247 0.1333 0.0667 0.6667 0.1333 562 0.1083 0.5167 0.2667 0.1083
248 0.1083 0.7167 0.0667 0.1083 563 0.1083 0.4667 0.3167 0.1083
249  0.1083 0.0667 0.7167 0.1083 564 0.1083 0.4167 0.3667 0.1083
250  0.0833 0.7667 0.0667 0.0833 565 0.1083 0.3667 0.4167 0.1083
251 0.0833 0.0667 0.7667 0.0833 566 0.1083 0.3167 0.4667 0.1083
252 0.0583 0.8167 0.0667 0.0583 567 0.1083 0.2667 0.5167 0.1083
253 0.0583 0.0667 0.8167 0.0583 568 0.2667 0.2333 0.2333 0.2667
254 0.0333 0.8667 0.0667 0.0333 569 0.2417 0.2833 0.2333 0.2417
255 0.0333 0.0667 0.8667 0.0333 570 0.2417 0.2333 0.2833 0.2417
256 0.0333 0.8167 0.1167 0.0333 571 0.2167 0.3333 0.2333 0.2167
257 0.0333 0.7667 0.1667 0.0333 572 0.2167 0.2333 0.3333 0.2167
258 0.0333 0.7167 0.2167 0.0333 573 0.1917 0.3833 0.2333 0.1917
259 0.0333 0.6667 0.2667 0.0333 574 0.1917 0.2333 0.3833 0.1917
260 0.0333 0.6167 0.3167 0.0333 575 0.1667 0.4333 0.2333 0.1667
261  0.0333 0.5667 0.3667 0.0333 576 0.1667 0.2333 0.4333 0.1667
262 0.0333 0.5167 0.4167 0.0333 577 0.1417 0.4833 0.2333 0.1417
263 0.0333 0.4667 0.4667 0.0333 578 0.1417 0.2333 0.4833 0.1417
264 0.0333 0.4167 0.5167 0.0333 579 0.1167 0.5333 0.2333 0.1167
265 0.0333 0.3667 0.5667 0.0333 580 0.1167 0.2333 0.5333 0.1167
266  0.0333 0.3167 0.6167 0.0333 581 0.1167 0.4833 0.2833 0.1167
267  0.0333 0.2667 0.6667 0.0333 582 0.1167 0.4333 0.3333 0.1167
268 0.0333 0.2167 0.7167 0.0333 583 0.1167 0.3833 0.3833 0.1167
269 0.0333 0.1667 0.7667 0.0333 584 0.1167 0.3333 0.4333 0.1167
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270 0.0333 0.1167 0.8167 0.0333 585 0.1167 0.2833 0.4833 0.1167
271 0.4167 0.0833 0.0833 0.4167 586 0.25 0.25 0.25 0.25

272 0.3917 0.1333 0.0833 0.3917 587  0.225 0.3 0.25 0.225
273 0.3917 0.0833 0.1333 0.3917 588  0.225 0.25 0.3 0.225
274 0.3667 0.1833 0.0833 0.3667 589 0.2 0.35 0.25 0.2

275 0.3667 0.0833 0.1833 0.3667 590 0.2 0.25 0.35 0.2

276 0.3417 0.2333 0.0833 0.3417 591  0.175 0.4 0.25 0.175
277 0.3417  0.0833 0.2333 0.3417 592  0.175 0.25 0.4 0.175
278 0.3167 0.2833 0.0833 0.3167 593 0.15 0.45 0.25 0.15

279 0.3167 0.0833 0.2833 0.3167 594 0.15 0.25 0.45 0.15

280 0.2917 0.3333 0.0833 0.2917 595 0.125 0.5 0.25 0.125
281 0.2917 0.0833 0.3333 0.2917 596  0.125 0.25 0.5 0.125
282 0.2667 0.3833 0.0833 0.2667 597  0.125 0.45 0.3 0.125
283  0.2667 0.0833 0.3833 0.2667 598  0.125 0.4 0.35 0.125
284  0.2417 0.4333 0.0833 0.2417 599  0.125 0.35 0.4 0.125
285 0.2417 0.0833 0.4333 0.2417 600  0.125 0.3 0.45 0.125
286  0.2167 0.4833 0.0833 0.2167 601 0.2333 0.2667 0.2667 0.2333
287 0.2167 0.0833 0.4833 0.2167 602 0.2083 0.3167 0.2667 0.2083
288 0.1917 0.5333 0.0833 0.1917 603 0.2083 0.2667 0.3167 0.2083
289 0.1917 0.0833 0.5333 0.1917 604 0.1833 0.3667 0.2667 0.1833
290 0.1667 0.5833 0.0833 0.1667 605 0.1833 0.2667 0.3667 0.1833
291  0.1667 0.0833 0.5833 0.1667 606 0.1583 0.4167 0.2667 0.1583
292 0.1417 0.6333 0.0833 0.1417 607 0.1583 0.2667 0.4167 0.1583
293 0.1417 0.0833 0.6333 0.1417 608 0.1333 0.4667 0.2667 0.1333
294  0.1167 0.6833 0.0833 0.1167 609 0.1333 0.2667 0.4667 0.1333
295 0.1167 0.0833 0.6833 0.1167 610 0.1333 0.4167 0.3167 0.1333
296 0.0917 0.7333 0.0833 0.0917 611 0.1333 0.3667 0.3667 0.1333
297 0.0917 0.0833 0.7333 0.0917 612 0.1333 0.3167 0.4167 0.1333
298 0.0667 0.7833 0.0833 0.0667 613 0.2167 0.2833 0.2833 0.2167
299 0.0667 0.0833 0.7833 0.0667 614 0.1917 0.3333 0.2833 0.1917
300  0.0417 0.8333 0.0833 0.0417 615 0.1917 0.2833 0.3333 0.1917
301 0.0417 0.0833 0.8333 0.0417 616 0.1667 0.3833 0.2833 0.1667
302 0.0417 0.7833 0.1333 0.0417 617 0.1667 0.2833 0.3833 0.1667
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303 0.0417 0.7333 0.1833 0.0417 618 0.1417 0.4333 0.2833 0.1417
304 0.0417 0.6833 0.2333 0.0417 619 0.1417 0.2833 0.4333 0.1417
305 0.0417 0.6333 0.2833 0.0417 620 0.1417 0.3833 0.3333 0.1417
306 0.0417 0.5833 0.3333 0.0417 621 0.1417 0.3333 0.3833 0.1417
307 0.0417 0.5333 0.3833 0.0417 622 0.2 0.3 0.3 0.2
308 0.0417 0.4833 0.4333 0.0417 623  0.175 0.35 0.3 0.175
309 0.0417 0.4333 0.4833 0.0417 624 0.175 0.3 0.35 0.175
310 0.0417 0.3833 0.5333 0.0417 625 0.15 0.4 0.3 0.15
311 0.0417 0.3333 0.5833 0.0417 626 0.15 0.3 0.4 0.15
312 0.0417 0.2833 0.6333 0.0417 627 0.15 0.35 0.35 0.15
313 0.0417 0.2333 0.6833 0.0417 628 0.1833 0.3167 0.3167 0.1833
314 0.0417 0.1833 0.7333 0.0417 629 0.1583 0.3667 0.3167 0.1583
315 0.0417 0.1333 0.7833 0.0417 630 0.1583 0.3167 0.3667 0.1583
631 0.1667 0.3333 0.3333 0.1667

117



Bibliography

[Aggoune et al., 1991] M. Aggoune, M. A. El-Sharkawi, D. C. Park, M. J. Damborg, and R.
J. Marks II, “Preliminary results on using artificial neural networks for security

assessment,” IEEE Trans. on Power Systems, vol. 6, no. 2, pp. 252-258, May
1991.

[Ajjarapu and Cristy, 1992| V. Ajjarapu and C. Cristy, “The continuation power flow: a tool
for steady state voltage stability analysis,” IEEE Trans. on Power Systems, vol.
7, no. 1, pp. 416-423, February 1992.

|Avalos, 2008| R. J. Avalos, "Analysis and application of optimization techniques to power
system security and electricity markets," Ph.D. dissertation, Dept. of Elect. and
Computer Eng., University of Waterloo, Waterloo, ON, Canada, 2008.

[Avalos et al., 2008] R. J. Avalos, C. A. Canizares, and M. F. Anjos, “A practical voltage-
stability-constrained optimal power flow,” in Proc. IEEE-PES General Meeting,
July 2008.

[Avalos et al., 2009] R. J. Avalos, C. A. Canizares, F. Milano, and A. Conejo, "Equivalency
of continuation and optimization methods to determine Saddle-node and Limit-

induced bifurcations in power systems," IFEE Trans. on Circuits and Systems
I, vol. 56, no. 1, pp. 210-223, January 2009.

[Banakar and Galiana, 1981] M.H. Banakar and F.D. Galiana, “Power system security corri-
dors concept and computation,” IEEE Trans. on PAS, vol. 100, pp. 4524-4532,
1981.

[Bompard et al., 2000] E. Bompard, E. Carpaneto, G. Chicco, and G. Gross, “The role of
load demand elasticity in congestion management and pricing,” in Proc. IEEE-
PES SM, pp. 2229-2234, July 2000.

118



[Bruno et al., 2002| S. Bruno, E. D. Tuglie, and M. La Scala, “Transient security dispatch
for the concurrent optimization of plural postulated contingencies,” IEEE Trans.
on Power Systems, vol. 17, no. 3, pp. 707-714, August 2002.

[Canizares, 1995 C. A. Canizares, “Conditions for saddle-node bifurcations in AC/DC power
systems,” International Journal of Electrical Power and Enerqgy Systems, vol. 17,
no. 1, pp. 61-68, January 1995.

[Canizares and Alvarado, 1993] C. A. Canizares and F. L. Alvarado, “Point of collapse and
continuation methods for large AC/DC systems,” IEEE Trans. on Power Sys-
tems, vol. 8, no. 1, pp. 1-8, February, 1993.

|Canizares and Kodsi, 2006] C. A. Canizares and S. K. M. Kodsi, “Power system security in
market clearing and dispatch mechanisms,” in Proc. IEEE-PES General Meeting,
6 pp., June 2006.

[Canizares et al., 2001] C. A. Canizares, W. Rosehart, A. Berizzi, and C. Bovo, “Comparison
of voltage security constrained optimal power flow techniques,” in Proc. IEEE-
PES Summer Meeting, Vancouver, BC, Canada, pp. 1680-1685, July 2001.

[Chassiakos and Masri, 1996] A. G. Chassiakos and S. F. Masri, “Modelling unknown struc-

)

tural systems through the use of neural networks,” in Proc. Farthquake Engi-

neering and Structural Dynamics, vol. 25, pp. 117-128, 1996.

[DeMaio et al., 1976] J.A. DeMaio, and R. Fischl, “Fast identification of the steady-state
security regions for power system security enhancement,” IEEE Winter Power
Meeting, vol.95, no.3, p. 758, 1976.

[Demoth et al., 2008] H. Demoth, M. Beale, and M. Hagan, Neural network toolboz 6, The
Mathworks Inc., 2008.

[Dobson and Chiang, 1989| 1. Dobson and H. D. Chiang, “Towards a theory of voltage col-
lapse in electric power systems,” Systems € Control Letters, vol. 13, pp. 253—
262, 1989.

[Dobson and Lu, 1992] I. Dobson and L. Lu, “Voltage collapse precipitated by the immediate
change in stability when generator reactive power limits are encountered,” IEFE
Trans. Circuits Syst. I, vol. 39, no. 9, pp. 762-766, September 1992.

119



|[Eduards et al., 1996] A. R. Eduards, K. W. Chan, R. W. Dunn, and A. R. Daniels, “Tran-
sient stability screening using artificial neural networks within a dynamic security

assessment,” IKE Proc. on Generation, Transmission and Distribution, vol. 143,
no. 2, pp. 129-134, March 1996.

[Fischl et al., 1976] R. Fischl, G.C. Ejebe, and J.A. DeMaio, “Identification of power sys-
tem steady-state security regions under load uncertainty,” IEEE Summer Power
Meeting, vol.95, no.6, p. 1767, 1976.

[Fluek, 1996] A. J. Fluek, “Advances in numerical analysis of nonlinear dynamical systems
and the application to transfer capability of power systems,” PhDD Thesis, Cornell
University, August, 1996.

[Fourer et al., 2003] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: a modeling lan-

guage for mathematical programming, 2nd ed. Thomson, 2003.

[Fuerte-Esquivel et al., 1998] C. R. Fuerte-Esquivel, E. Acha, S. G. Tan, and J. J. Rico,
“Efficient object oriented power systems software for the analysis of large scale
networks containing FACTS-controlled branches,” IEEE Trans. Power Systems,
vol. 12, no. 2, pp. 464-472, May 1998.

[Gan et al., 2000] D. Gan, R. J. Thomas, and R. D. Zimmerman, “Stability-constrained op-
timal power flow,” IEEE Trans. on Power Systems, vol. 15, no. 2, pp. 535-540,
May 2000.

[Ghasemi and Maria, 2008] H. Ghasemi and A. Maria, “Benefits of employing an on-line
security limit derivation tool in electricity markets,” in Proc. IEEE-PES General
Meeting, 6pp., July 2008.

|Glendinning, 1994| P. Glendinning, Stability, instability and chaos: an introduction to the

theory of nonlinear differential equations, Cambridge University Press, 1994.

|Gomez-Exposito et al., 2009] A. Gomez-Exposito, A. J. Conejo, and C. A. Canizares, FElec-

tric enerqy systems: analysis and operation, CRC Press, 2009.

|Gu and Canizares, 2007| X. Gu, and C. A. Canizares, “Fast prediction of loadability margins
using neural networks to approximate security boundaries of power systems,”
IET Generation, Transmission and Distribution, vol. 1, no. 3, pp. 466-475, May
2007.

120



[Haykin, 1999| S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall, Sec-
ond Edition, 1999.

[Hill and Mareels, 1990] D. J. Hill and I. M. Y. Mareels, “Stability theory for differen-
tial /algebraic systems with application to power systems,” IEEE Trans. Circuits
Systems, vol. 37, no. 11, pp. 1416-1423, November 1990.

[Hines et al., 2008| P. Hines, J. Apt, and S. Talukdar, “Trends in the history of large black-
outs in the United States,” in Proc. IEEE-PES General Meeting, 8 pp., July
2008.

[Hirodontis et al., 2009| S. Hirodontis, H. Li, P. A. Crossley, “Load shedding in a distribu-
tion network,” International Conference on Sustainable Power Generation and
Supply, pp. 1-6, 2009.

[Hnyilicza et al., 1975] E. Hnyilicza, S.T.Y. Lee, and F.C. Schweppe, “Steady-state security
regions: set-theoretic approach,” in Proc. of Power Industry and Computer Ap-
plications Conference, pp. 347-355, June, 1975.

[Hornik et al., 1989] K. Hornik, M. Stinchcombe, and H. White, “Multilayered feedforward
networks are universal approximators,” Neural Networks, vol. 2, no. 5, 1989, pp.
359-366.

[IEEE/PES Tech. Rep., 2002 | “Voltage stability assessment: concepts, practices and tools,”
IEEE/PES Power System Stability Subcommittee, Tech. Rep. SP101PSS, Au-
gust 2002.

[TEEE Committee Report, 1981 TEEE Committee Report, “Excitation system models for
power system stability studies,” IEEE Trans. on Power Apparatus and Systems,
vol. PAS-100, no. 2, pp. 494-509, February 1981.

[Illic and Zaborszky, 2000| M. Ilic and J. Zaborszky, Dynamics and control of large electric
power systems, John Wiley & Sons Inc., 2000.

[Jayasekara and Annakkage, 2006| B. Jayasekara and U. Annakkage, “Derivation of an accu-
rate polynomial representation of the transient stability boundary,” IEEE Trans.
on Power Systems, vol. 21, no. 4, pp. 1856-1863, November 2006.

121



[Jarjis and Galiana, 1981| J. Jarjis and F. D. Galiana, “Quantitative analysis of steady state
stability in power networks,” IEEE Trans. on Power App. Syst., vol. PAS-100,
no. 1, pp. 318-326, January 1981.

[Kaye and Wu, 1982] R. Kaye and F. Wu, “Dynamic security regions of power systems,”
IEEE Trans. on Circuits and Systems, vol. 29, no. 9, pp. 612-623, 1982.

[KNITRO|] KNITRO. [Online|. Available: http://www.ziena.com.

[Kodsi and Canizares, 2007] S. K. M. Kodsi and C. A. Canizares, “Application of a stability
constrained optimal power flow to tuning of oscillation controls in competitive
electricity markets,” IEEE Trans. on Power Systems, vol. 22, no. 4, pp. 1944-
1954, November 2007.

[Kundur, 1994| P. Kundur, Power system stability and control. McGraw-Hill, 1994.

[Kundur et al., 2004] P. Kundur, et. al., "Definition and classification of power system sta-
bility," IEEFE Trans. on Power Systems, vol. 19, no. 2, pp. 1387-1401, May 2004.

[Lof et al., 1992] P. A. Lof, T. Smed, G. Andersson, and D. J. Hill, “Fast calculation of a
voltage stability index,” IEEFE Trans. on Power Systems, vol. 7, no. 1, pp. 54-64,
February 1992.

|Luzardo-Flores, 1997| J. A. Luzardo-Flores, "Neural networks for approximation and control
of continuous time nonlinear systems," Ph.D. dissertation, Graduate Faculty of
Engineering Mathematics, California State University, Long Beach, California,
USA, 1997.

[Makarov et al., 2010] Y. V. Makarov, S. Lu, X. Guo, J. F. Gronquist, P. Du, T. B. Nguyen,
and J. W. Burns, “Wide area security region,” Final Report, Pacific Northwest
National Laboratory, March 2010.

[McCalley et al., 1997] J. D. McCalley, S. Wang, R. T. Treinen, and A. D. Papalexopoulos,
“Security boundary visualization for power systems operation,” IEEE Trans. on
Power Systems, vol. 12, no. 2, pp. 940-947, May 1997.

[Milano, 2005] F. Milano, “An open source power system analysis toolbox,” IEEE Trans. on
Power Systems, vol. 20, no. 3, p. 1199-1206, August 2005.

122



[Miranda et al., 1995| V. Miranda, J. N. Fidalgo, J. A. Pecas Lopes, and L. B. Almeida,
“Real time preventive actions for transient stability enhancement with a hybrid
neural network optimization approach,” IEFEFE Trans. on Power Systems, vol.
10, no. 2, pp. 1029-1035, May 1995.

[Nayfeh and Balachandran, 2004] A. H. Nayfeh, and B. Balachandran, Applied nonlinear
dynamics: analytical, computational, and experimental methods, John Wiley and
Sons Inc., 2004.

[Nguyen, 1995 T. T. Nguyen, “Neural network load flow,” IEE Proc. Generation, Transmis-
ston and Distribution, vol. 142, no. 1, pp. 51-58, January 1995.

|Pizano-Martinez et al., 2007| A. Pizano-Martinez, C. R. Fuerte-Esquivel, H. Ambriz-Perez,
and E. Acha, “Modeling of VSC-based HVDC systems for a Newton-Raphson
OPF algorithm,” IEEE Trans. Power Systems, vol. 22, no. 4, pp. 1794-1803,
November 2007.

[Ritcher and Decarlo, 1983] S. L. Richter, R. A. Decarlo, “Continuation methods: theory
and applications”, IEEE Trans. on Circuits and Systems, vol. CAS-30, no. 6, pp.
347-352, June 1983.

[Rosehart et al., 1999] W. Rosehart, C. Canizares, and V. Quintana, "Optimal Power Flow
Incorporating Voltage Collapse Constraints," in Proc. IEEE-PES Summer Meet-
ing, pp. 820-825, July 1999.

[Sahari et al., 2003] S. Sahari, A. F. Abdin, and T. K. Rahaman, “Development of artifi-
cial neural network for voltage stability monitoring,” in Proc. National Power

Engineering Conference, pp. 37-42, December 2003.

[Sauer and Pai, 1988] P. W. Sauer and M. A. Pai, Power system dynamics and stability.
Prentice Hall, 1988.

[Sauer and Pai, 1990| P. W. Sauer and M. A. Pai, “Power system steady-state stability and
the load flow Jacobian,” IEEE Trans. on Power Systems, PWRS-5, pp. 1374-
1383, November 1990.

[Seydel, 2010] R. Seydel, Practical bifurcation and stability analysis, 3rd ed. Springer-Verlag,
2010.

123



[Sun et al., 1984 D. I. Sun, B. Ashley, B. Brewer, A. Hughes, and W. F. Tinney, “Optimal
power flow by Newton approach,” IEEE Trans. On Power App. and Syst., vol.
PAS-103, no. 10, pp. 2864-2880, October 1984.

[U. S., Canada, Power System Outage Task Force, 2004] “Final report on the August 14,
2003 blackout in the United States and Canada: causes and recommendations,”
U. S. — Canada Power System Outage Task Force, April 2004.

[UWPFLOW| UWPFLOW, April 2006. [Online|. Available:
http://thunderbox.uwaterloo.ca/~ claudio/software /pflow.htm

[Van Cutsem, 1991| T. Van Cutsem, “A method to compute reactive power margins with
respect to voltage collapse,” IEEE Trans. on Power Systems, vol. 6, no. 1, pp.
145 155, February 1991.

[Van Cutsem and Vournas, 2008] T.Van Cutsem and C. Vournas, Voltage stability of electric
power systems, Springer, 2008.

[Venkatasubramanian et al., 1995] V. Venkatasubramanian, H. Schittler, and J. Zaborszky,
“Dynamics of large constrained nonlinear systems - a taxonomy theory,” in Proc.
of the IEEFE, vol. 83, no. 11, pp. 1530-1560, November 1995.

|[Venkatasubramanian et al., 1995-1] V. Venkatasubramanian, H. Schéttler, and J.
Zaborszky, “Local bifurcations and feasibility regions in differential-algebraic
systems,” IEEE Trans. on Automatic Control, vol. 40, no. 12, pp. 1992-2013,
December 1995.

|[Vu and Liu, 1992] K. T. Vu and C. Liu, “Shrinking stability regions and voltage collapse in
power systems,” IEFEFE Trans. on Circuits and Systems I: Fundamental Theory
and Applications, vol. 39, no. 4, pp. 271-289, April 1992.

[Washington| Power systems test case archive, Electrical Engineering, University of Wash-

ington. [Online|. Available: http://www.ee.washington.edu/research/pstca/

[Wu and Kumagai, 1982] F. Wu and S. Kumagai, “Steady-state security regions of power
systems,” IEFE Trans. on Circuits and Systems, vol. 29, no. 11, pp. 703-711,
1982

|Zhu, 2001| T. Zhu, “Voltage stability analysis in the new deregulated environment,” PhD
Thesis, Texas A&M University, Texas, December, 2001.

124



