
���������	�
����	�	�	
��
�	�
�������
��
��	���

�������������������������

��������
��
��������
��
�����	��
��
�	
�	����	�
��
���������	
��������	

�������	
�������	
���
��������	�
��
�	���
��
�	���
��
��	�
�	�	��

�����
��
������	��

���
�	�	
�������
��
������
��

������
��
������	�
��
���������	
��������	
������
��
������	�
������	����	���

�������	


���
����
�	���
������
	���	

	�����


���
���	�
������
�����
��������

������	0
����	���0
1����
��
2342



·I. "-<: I 4f" .., . 

\ ·,,: 

PRACT ICi\.L J>ROXIi\11TY SEARCHING 1\i LARGE f\1ETRIC 
DAT ABASE.' 

! O!:> M iembros del Jurado de Examcn de {j rado aprucban 
Ia 'f(·. i · de IJoctoratlo en Cit•t cias en lngenieria Elt'c.trka de Eric Sa lit Ti!llez Aviltr 

i }r. Jose .Antonio C:w1arcna lbarrola 
t, n.::,identc 

Ur. 1::dgar Leonel Chavez (}onzr:llez 
!);rector de Tesis 

Ur. h ?lix Calderon Solorio 
Vncal 

i )r. Mario GrafT ucrrcro 
VocJI 

U1. !{ o lJ• 'tiJo \ lenchaca Vlendcz 
R ·vi c,or i:::\h.'n o 
lnstillJto Folitecmcu Ntlcional 

Dr, J .\ urelio Medina Rios 
Jcfc de Ia ) ivisi(m de !·:studios de Posgrado 
Ln !1 g ·n k ria Llcctrica. 

l AD , DL ' i\ICO I. J\S DL: I ii DJ\ 1 <iO 
Junio 2012 

·. ,: . 

) ,. I 

, ''•""' 

i ,,.,._ · .. ,l 
l·l 

•: 1 \ .. ! 
; 1 

:; ·. " :J 

.. 1 

J 

"1, .', · . . 

j ... 

J 



2



Contents

List of Symbols 17

I Introduction 23

1 Introduction 25
1.1 Contributions to Exact Techniques . . . . . . . . . . . . . . . 28
1.2 Contribution to Approximate Techniques . . . . . . . . . . . 29
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3.1 Cost Measures and Our Practical Perspective . . . . . 30
1.3.2 Developing and Running Environment . . . . . . . . . 31
1.3.3 Description of the Datasets . . . . . . . . . . . . . . . 32
1.3.4 Computation Model . . . . . . . . . . . . . . . . . . . 37

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 Foundations 39
2.1 Searching in Metric Spaces . . . . . . . . . . . . . . . . . . . 39
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.1 Pivot Based Indexes . . . . . . . . . . . . . . . . . . . 40
2.2.2 Compact Partition Indexes . . . . . . . . . . . . . . . 41
2.2.3 Approximate Proximity Searching . . . . . . . . . . . 45

2.3 Indexing Sequences . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.1 Statement of the Problem . . . . . . . . . . . . . . . . 49
2.3.2 Storage Requirements . . . . . . . . . . . . . . . . . . 50
2.3.3 Final Notes . . . . . . . . . . . . . . . . . . . . . . . . 51

II Exact Proximity Searching 53

3 The Reverse Nearest Neighbor List of Clusters 55

3



4 CONTENTS

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 The Reverse Nearest Neighbor List of Clusters . . . . . . . . 57
3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Construction Time . . . . . . . . . . . . . . . . . . . . 59
3.3.2 Searching Performance . . . . . . . . . . . . . . . . . . 60

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Parallelizing the List of Clusters 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Parallel Preprocessing algorithm . . . . . . . . . . . . . . . . 66
4.3 Parallel Searching algorithm . . . . . . . . . . . . . . . . . . . 66

4.3.1 Parallel k-nn Searching algorithm . . . . . . . . . . . . 67
4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Polyphasic Metric Index 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 The Polyphasic Metric Index (PMI) . . . . . . . . . . . . . . 77
5.3 Range Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 Nearest Neighbor Search . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Expected Performance . . . . . . . . . . . . . . . . . . 82
5.4.2 Revisiting LC . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.1 Build Time . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5.2 Searching Performance . . . . . . . . . . . . . . . . . . 85

5.6 Summary and Perspectives . . . . . . . . . . . . . . . . . . . 88

6 Compressing Metric Indexes 93
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Compressed Metric Indexes . . . . . . . . . . . . . . . . . . . 94
6.3 Revisiting the Data Structure . . . . . . . . . . . . . . . . . . 94

6.3.1 Operations of the LC . . . . . . . . . . . . . . . . . . 95
6.3.2 Storage Requirements . . . . . . . . . . . . . . . . . . 95
6.3.3 Implementing LC Operations . . . . . . . . . . . . . . 96

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 97
6.4.1 Performance on Synthetic Datasets . . . . . . . . . . . 99

6.5 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5.1 Polyphasic Metric Index with Compressed Indexes . . 105

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



CONTENTS 5

III Approximate Proximity Searching 109

7 Locality Sensitive Classification 111
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.1.1 Locality Sensitive Hashing . . . . . . . . . . . . . . . . 112
7.2 Sequence Representation . . . . . . . . . . . . . . . . . . . . . 114

7.2.1 Solving Approximate Nearest Neighbors with T . . . . 114
7.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 117
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8 Neighborhood Approximation 123
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.2 Neighborhood Approximation . . . . . . . . . . . . . . . . . . 124

8.2.1 The Core Idea . . . . . . . . . . . . . . . . . . . . . . 124
8.2.2 Retrieval Quality Considerations . . . . . . . . . . . . 125

8.3 Proximity Searching with the K Nearest References . . . . . 126
8.4 Describing Existing Proximity Indexes using K-nr . . . . . . . 127

8.4.1 Permutation Index (PI) . . . . . . . . . . . . . . . . . 127
8.4.2 Brief Permutation Index (BPI) . . . . . . . . . . . . . 128
8.4.3 Metric Inverted File (MIF) . . . . . . . . . . . . . . . 129
8.4.4 Prefix Permutations Index (PP-Index) . . . . . . . . . 130

8.5 Using the K-nr Framework to Create Proximity Indexes . . . 130
8.5.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.5.2 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.5.3 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.6 Indexing K-nr Sequences . . . . . . . . . . . . . . . . . . . . . 132
8.6.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 133
8.6.2 Final Notes on Creating K-nr Indexes . . . . . . . . . 137

8.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 137
8.7.1 Quality of the Results . . . . . . . . . . . . . . . . . . 138
8.7.2 Size of the Indexes . . . . . . . . . . . . . . . . . . . . 139
8.7.3 Enhancements to the K-nr Indexes . . . . . . . . . . . 140
8.7.4 Searching with Sequence Indexes . . . . . . . . . . . . 143
8.7.5 The Performance on Increasing Intrinsic Dimensions . 148

8.8 Summary and Perspectives . . . . . . . . . . . . . . . . . . . 149

9 Succinct Nearest Neighbor Search 153
9.1 The NAPP Inverted Index . . . . . . . . . . . . . . . . . . . . 153
9.2 The Compressed NAPP Inverted Index . . . . . . . . . . . . 154

9.2.1 Inducing Runs in the Index . . . . . . . . . . . . . . . 156



6 CONTENTS

9.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 157
9.3.1 General Performance . . . . . . . . . . . . . . . . . . . 159
9.3.2 Proximity Ratio as a Measure of Retrieval Quality . . 161
9.3.3 Experimental Results on the Compressed NAPP In-

verted Index . . . . . . . . . . . . . . . . . . . . . . . 163
9.3.4 The Dimensionality Effect . . . . . . . . . . . . . . . . 166

9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10 Conclusions 169
10.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

10.1.1 Exact Techniques . . . . . . . . . . . . . . . . . . . . . 170
10.1.2 Approximate Techniques . . . . . . . . . . . . . . . . . 171

10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A Sequences on (Very) Large Alphabets 175
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.1.1 Indexing Bitmaps . . . . . . . . . . . . . . . . . . . . . 177
A.1.2 Indexing Sequences with Larger Alphabets . . . . . . 180

A.2 Sets as Lists of Differences . . . . . . . . . . . . . . . . . . . . 182
A.2.1 DiffSet bitmap . . . . . . . . . . . . . . . . . . . . . . 183
A.2.2 DiffSet + Run-Length . . . . . . . . . . . . . . . . . . 184

A.3 Indexing Sequences with a Single Permutation . . . . . . . . 184
A.3.1 Efficient Access on Unraveled Sequences . . . . . . . . 186

A.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 186
A.4.1 XLB with DiffSet Bitmaps . . . . . . . . . . . . . . . 188
A.4.2 Comparison Against other Techniques . . . . . . . . . 194
A.4.3 Dependency on the Alphabet’s Size . . . . . . . . . . . 201

A.5 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205



List of Figures

1.1 Histograms of distances of our datasets. . . . . . . . . . . . . 34

1.1 Histograms of distances of our datasets. . . . . . . . . . . . . 35

2.1 The influence zones of three centers taken in this order: c1, c2,
c3. On the right, the list arrangement for the data structure.
On both figures cov(ci) = ri. . . . . . . . . . . . . . . . . . . . 43

2.2 An illustration of the three cases of query ball versus center
ball. For q1 we need to consider the current bucket and the
rest of centers. For q2 we can prune the search inside the rest
of the partitions. For q3 we can avoid considering the current
bucket. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Performance of the LC for the nearest neighbor search for
increasing intrinsic dimension. . . . . . . . . . . . . . . . . . . 62

3.1 Performance of Rev-LC for the nearest neighbor search for
increasing intrinsic dimension. . . . . . . . . . . . . . . . . . . 63

4.1 Performance of the parallel preprocessing of the List of Clus-
ters for our real world benchmarks. . . . . . . . . . . . . . . . 72

4.2 Performance of the parallel range searching algorithm. Col-

ors searches a radius recovering 0.02% of the database, and
CoPhIR-1M recovers 0.01% of the database. . . . . . . . . . . 73

4.3 Performance of the parallel k-nn searching algorithm . . . . . 74

5.1 next best on a single pivot P . r∗⊥ and r∗top starts being oppo-
site, and finalizes when both converge. . . . . . . . . . . . . 82

5.2 PMI’s review of the database, searching for the nearest neigh-
bor with an increasing intrinsic dimension and several n. . . 90

7



8 LIST OF FIGURES

5.3 PMI’s real time performance on increasing intrinsic dimension
and increasing n on Random vectors (RVEC) databases. nn

searching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Performance of the PMI on two real world datasets. . . . . . 92

6.1 Performance of the compressed LC index for the Colors dataset.100

6.2 Memory usage of the permuted Colors . . . . . . . . . . . . . 101

6.3 Searching time of the permuted Colors . . . . . . . . . . . . . 101

6.4 Performance of the compressed LC on the permuted Colors

database. The permutation was induced with an LC with
n/m = 128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 Performance of the compressed LC index on CoPhIR-1M . . . 102

6.6 Searching times of the compressed LC index on RVEC-*-1000000103

6.7 Memory requirement of the compressed LC index on RVEC-

*-1000000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1 An example of the LSH hash table representation . . . . . . . 115

7.2 An example of the LSH sequence representation LSH, and its
operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3 Comparison between recall and the required memory on dif-
ferent LSH families. The recall barely vary at each point
because random H where selected. . . . . . . . . . . . . . . . 118

7.4 Comparison between the proximity ratio and the required
memory on different LSH families . . . . . . . . . . . . . . . . 119

7.5 Comparison between the searching time and the required mem-
ory on different LSH families . . . . . . . . . . . . . . . . . . 120

8.1 An example showing shared references as proximity predictor.
Smaller balls are objects in S, bigger ones are references. . . . 126

8.2 Recall performance of K-nr mappings . . . . . . . . . . . . . . 138

8.3 Memory requirements for the indexes for the CoPhIR-10M

objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.4 Joining K-nr Documents and Colors-hard, searching 30-nn. The
accumulated curves uses the union of current and smaller σ
results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.5 Recall and time performances for different γ and searching-K
values. The building configuration is σ = 2048 and K = 7. . . 144



LIST OF FIGURES 9

8.6 Comparison between recall and searching time on our real-
world datasets. Note that σ grows in points from right to
left, such that, as sigma grows most K-nr indexes increment
their recall and reduce their searching time. . . . . . . . . . . 145

8.7 Comparison between proximity-ratio and searching time on
our real-world datasets . . . . . . . . . . . . . . . . . . . . . . 146

8.8 Comparison among recall, searching time, and memory re-
quirements on our real-world datasets. σ grows from right to
left (one point per σ value on the curves). . . . . . . . . . . . 147

8.9 Performance on CoPhIR-10M with σ = 2048. Each point cor-
responds to γ in 1000, 3000, 6000, 9000, 12000, 15000, 30000, 45000, 60000,
appearing in increasing order from left to right. . . . . . . . . 148

8.10 Performance of the K-nr indexes on varying dimensionality,
RVEC-*-1000000. σ grows from right to left (one point per σ
value on the curves) . . . . . . . . . . . . . . . . . . . . . . . 151

9.1 Example of the induction of runs for plain, differences and
run-length encoding of lists. Here σ = 5, n = 21. . . . . . . . 158

9.2 CoPhIR-10M, n = 107, K = 7. Recall and searching time
performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.3 Compression ratio as a percentage of the plain inverted index
for our experimental data sets. . . . . . . . . . . . . . . . . . 164

9.4 Behavior of the NAPP compressed index as the dimension
increases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A.1 Construction time on sequence indexes for several (n,σ) setups.190
A.2 The cost of Access on sequence indexes for several (n,σ) setups.191
A.3 The cost of Rank on sequence indexes for several (n,σ) setups. 192
A.4 The cost of Select on sequence indexes for several (n,σ) setups.193
A.5 The cost of consecutive Select on sequence indexes for several

(n,σ) setups. . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
A.6 Construction time . . . . . . . . . . . . . . . . . . . . . . . . 196
A.7 Access time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
A.8 Rank time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
A.9 Select time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
A.10 Select time on consecutive arguments . . . . . . . . . . . . . . 202
A.11 Construction time on varying σ. . . . . . . . . . . . . . . . . 203
A.12 Access time on varying σ. . . . . . . . . . . . . . . . . . . . . 204
A.13 Rank time on varying σ. . . . . . . . . . . . . . . . . . . . . . 206
A.14 Select time on varying σ. . . . . . . . . . . . . . . . . . . . . . 207



10 LIST OF FIGURES

A.15 Select time with consecutive arguments on varying σ. . . . . . 208



List of Tables

1.1 Statistics of our datasets. The mean and the standard de-
viation, µ and ρ respectively, are relatives to dmax.

µ
2ρ2 is

the intrinsic dimension as described by Chavez et al. [Chávez
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Resumen

En este trabajo presentamos una serie de ı́ndices alcanzando excelentes com-
promisos entre eficiencia en tiempo y memoria. Presentamos ı́ndices exactos,
es decir, aquellos que recuperan el conjunto que satisface completamente la
consulta data. Adicionalmente, creamos ı́ndices aproximados, es decir, al-
goritmos y estructuras que a costa de la exactitud de la consulta, alcanzan
mayores velocidades de búsqueda. En ambas áreas, nuestros ı́ndices son
rápidos y pequeños, y notablemente, algunos de ellos alcanzan un tamaño
cercano al mı́nimo posible para cada representación.

Nuestros ı́ndices exactos realizan cerca de la mitad de cálculos de distan-
cia que el estado del arte (usando memoria dentro de los limites prácticos).
Aśı mismo, el tiempo de construcción se reduce de manera sustancial de
O(n2) a O(λn1+α), donde n es el tamaño de la base de datos, λ es valor
pequeño que depende de la complejidad de los datos (comúnmente entre 1 y
12), y α < 1. También introducimos una técnica para compresión de ı́ndices
métricos que para reduce los requerimientos de almacenamiento hasta la
mitad de la versión descomprimida.

En la parte de algoritmos métricos aproximados creamos varios ı́ndices,
todos ellos alcanzando excelentes tiempos y costo en memoria. La calidad de
los resultados es muy alta en términos de recall y proximity ratio (definidos
en el siguiente caṕıtulo).

En particular, creamos una nueva representación para el ı́ndice Locality
Sensitive Hashing (LSH), basada en una secuencia de śımbolos. El ı́ndice
necesita un espacio cercano al mı́nimo requerido (éste ĺımite inferior también
es parte de nuestra contribución), esta representación es de vital importan-
cia ya que LSH requiere múltiples instancias para mejorar la calidad de los
resultados. Es de remarcar que la velocidad no se ve afectada debido a esta
nueva representación. También, estudiamos y caracterizamos una nueva
familia de ı́ndices aproximados para búsqueda por proximidad. La hemos
llamado Aproximación por Vecindad (NAPP, por sus nombre en inglés) y
una simplificación utilizable en la práctica la llamada las K referencias cer-
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canas (K-nr). Los métodos K-nr producen secuencias que al ser comparadas
inducen una noción de proximidad. Variando los métodos de comparación
y generación de secuencias K-nr creamos una gran cantidad de métodos de
búsqueda por proximidad. Todos ellos con un excelente equilibrio entre
tiempo de búsqueda, requerimientos de memoria, y la calidad en los resulta-
dos. Creamos una representación común a la mayoŕıa de esos métodos, que
además engloban a varios ı́ndices en la literatura. Además, como resultado
de nuestro estudio y caracterización, hemos reducido los requerimientos en
memoria de algunos de los ı́ndices existentes. Finalmente, a partir de K-nr

creamos un nuevo ı́ndice llamado NAPP compressed inverted index, éste
ı́ndice es aproximado y comprimido, aśı mismo, describimos e implementa-
mos varias heuŕısticas para acelerar las búsquedas y aumentar la compresión
de los ı́ndices.

Hacemos notar que todos nuestros ı́ndices y técnicas incluyen exten-
sos estudios experimentales validando nuestras pretensiones y comentarios.
Finalmente, todos nuestros algoritmos, estructuras, y bases de datos se en-
cuentran disponibles como software de libre distribución en la biblioteca
natix, www.natix.org.



Abstract

This work discusses a serie of proximity searching methods reaching excel-
lent tradeoffs between time and memory. We present exact indexes, i.e.,
those retrieving the exact set of meeting the query’s constraints. Also, we
create approximate indexes, i.e., algorithms and structures trading time and
memory performances with the quality of the result. In both fields, our
indexes are fast and small. Remarkably, some of them achieve storage sizes
really close to the minimum of its representation.

Our exact indexes perform half the distance computations of the state
of the art methods (using practical amounts of memory). Furthermore,
we experimentally demonstrate that the construction cost is reduced from
O(n2) to O(λn1+α), where n is the size of the database, λ is a small value
dependent of the data’s complexity (commonly between 1 and 12), and
α < 1. Also, we introduce a metric compression technique saving half the
storage requirements of the uncompressed index.

In the part of approximate methods, we propose several indexes. All
of these new indexes achieve excellent tradeoffs between time and memory
costs. Also, the quality of the results is quite high, in both recall and prox-
imity ratio. For instance, we created a new representation of the Locality
Sensitive Hashing (LSH), based on sequences of symbols. This index needs
a storage space close to the minimum (this lower bound is part of our contri-
bution). The new representation is important because LSH requires several
instances to improve the quality of its results. Furthermore, we study and
characterize a new family of approximate metric indexes. This new family
is called as Neighborhood Approximation (NAPP). Also, a simplification
allowing to bound several parameters of NAPP, being of use in practice, is
presented and dubbed as K-nr. The point of K-nr is to create sequences with
a proximity semantic. Sequences are compared to hint about proximity.
Varying the comparison methods we create several approximate searching
methods, all of them with an excellent equilibrium between searching time,
memory requirements, and result’s quality. Moreover, we create a common
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representation for the majority of these methods, and some mentioned in
the literature. As a result of our study, we reduced the memory storage
of some of the methods already available on the literature. Finally, based
on a K-nr method, the K-nr-Jaccard index, we created a new representation
called the NAPP compressed inverted index. This new index is approximate
and compressed, and it implements a set of new heuristics to accelerate and
improve the compression ratio of these indexes.

Please note that all of our indexes and techniques are extensively tested,
validating our claims. Finally, our algorithms, data structures, and databases
are freely available as open source software as the natix library, www.natix.
org.



Part I

Introduction
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Chapter 1

Introduction

Proximity or similarity searching is a pervasive problem in computer science,
from pattern recognition to textual and multimedia information retrieval,
machine learning, streaming compression, lossless and lossy compression,
biometric identification and authentification, bioinformatics.

A direct application of proximity search is the searching by content in
large multimedia databases. Here, the basic operation consist of retrieving
a set of similar objects of the database to a query object. Searching by
content in multimedia databases (containing either audio, images, or video
objects) requires to represent each item in the database in a way that it
can be easily searched. This representation is independent of the original
multimedia data, yet, it contains attributes describing the content of the
objects. These attributes are commonly stored as vectors of real numbers,
sets, strings of symbols, etc. Searching on these data requires the use of
techniques like metric searching, where a metric distance function is defined
between any two items. The complication comes in two folds, (i) on the
complexity of the representation, and (ii), on the size of the dataset. The
complexity of the representation produces high dimensional datasets, and
in general, proximity searching is exponentially difficult on this parameter
(Chavez et al. [Chávez et al., 2001], and Samet [Samet, 2006]). On the
other side, large time and memory overheads per object are induced on the
majority of metric searching methods, since these are traditionally optimized
to reduce the number of distance computations performed to solve a query,
regardless of both memory and real time costs. It is important to notice that
many techniques literately abuse of these tradition (like AESA [Vidal Ruiz,
1986] or the Permutation based index [Chavez et al., 2008]), inducing large
overheads on both time and memory per object.
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Our approach is practical, in the sense that our techniques are ready to
use on large datasets with high dimensions on real world systems. We care
about the number of computed distances, memory cost, and real time cost
on both preprocessing and searching steps.

As previously commented, our chosen paradigm for proximity searching
is the metric space model, where objects are treated as a black box. So, there
is not additional knowledge of the internal composition of the item (i.e. the
object’s structure is not available), and there is a pairwise metric distance
function. From a general perspective, given a (large) database S of objects
and a metric d : S×S → �, the problem is to retrieve from S the items closer
to a given query q. Traditionally, d is considered to be expensive. As a result,
every searching method should try to reduce the number of evaluations of
d.1 The common solution consists in preprocessing the database to create an
index providing the necessary machinery to efficiently solve queries [Chávez
et al., 2001].

The objects can be on any data model, for example, vectors, sets, XML
data, trees, graphs, vertices or edges in a graph, text documents, strings,
etc. The sole restriction is the existence of a well defined metric function
measuring the distance between any pair of objects. In the particular case of
vectors, each object is composed of δ numerical coordinates, this is the ex-
plicit dimension of the vector. In datasets produced by real world processes,
some coordinates are highly related, such that the minimum necessary co-
ordinates are commonly less than δ. This value is known in the literature
as the intrinsic dimension [Chávez et al., 2001]. Contrary to the explicit
notion, this complexity measure of the dataset is extended for any metric
space, regardless of the data model of the object. Proximity searching tech-
niques based on the object’s structure, like KD-Trees or R-trees [Samet,
2006], are tightly dependent of the explicit dimension. On the other hand,
metric access methods depend on the intrinsic dimension. As commented,
the intrinsic dimension is embedded in a larger explicit dimension data,
hence this is the reason that expensive cost of d, since d works directly with
the explicit representation of the objects. Our present work is dedicated to
methods being directly dependent of the intrinsic dimension.

Chavez et al. [Chávez et al., 2001] show a simple way to measure the
intrinsic dimension using the histogram of distances of a query object to
a set of objects. This complexity is a function of the mean µ, and the
standard deviation ρ. The precise quantification of the intrinsic dimension of

1Our work shows more than this criterion of performance, as will be stated in next
sections.
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a dataset, as shown by Chavez et al., is µ
2ρ2 . The idea behind this formula is

to capture the effect of the intrinsic dimension on the histogram of distances,
that is, high intrinsic dimension dataset produces a large µ and small ρ, while
small dimensions produce small µ and large ρ values.

This work is devoted to create indexes for proximity searching in high
intrinsic dimensional objects and large datasets. The goal is to maintain
the computing and storage requirements in practical terms, in the sense
that they remain useful on the current power of computing and storage.
Naturally, these constraints lead us to work with very robust exact metric
indexes (since the majority of them rapidly degrades to an exhaustive review
of the dataset), and ultimately, to approximation techniques. Let us define
what we mean with exact and approximate proximity searching algorithms.

• An exact method retrieves the exact set of objects meeting the query’s
constraint.

• In order to speed up the searching process and to reduce the storage
requirements, it is a common practice to change the paradigm from
exact methods to approximate ones. In such methods, we afford either
to lose some relevant objects, or it allows to retrieve some not (too)
relevant objects to the exact query’s constraint.

Exact indexes are of use on databases with a small and moderated in-
trinsic dimension. On high intrinsic dimensions, it is impossible to avoid the
linear scanning of S. This non scalability issue is dubbed as the Curse of Di-
mensionality (CoD) or the concentration effect, Chavez et al. [Chávez et al.,
2001]. Basically, the CoD implies that any exact index based on the triangle
inequality degrades to an exhaustive search as the intrinsic dimension grows.
On the next chapter, we will detail our discussion about CoD.

This work is divided on three parts. The first one is dedicated to intro-
duce to the problem, state our methodology, list and describe our datasets,
and briefly review the state of the art. The second part describes our contri-
bution to exact proximity searching methods. The last part, introduces our
approximate techniques solving similarity queries. The work is finished with
Chapter 10, that is dedicated to summarize and conclude our contributions.
Also, this document contains in Appendix A a review of indexed sequences,
introducing some new structures, being of use in the majority of our metric
indexes. Below, we list our contributions in a roadmap format.
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1.1 Contributions to Exact Techniques

Chapter 3 partially relieves the complexity issues of the List of Cluster (LC)
(Chavez and Navarro [Chávez and Navarro, 2005]). Here we introduce a
variation of it with smaller preprocessing time. We dubbed as the Reverse
Nearest Neighbor List of Clusters (Rev-LC), partially reported in [Tellez
and Chavez, 2012]. The Rev-LC is based on a completely different per-
spective than LC, but using the same data structure. The payment for the
preprocessing speed up is a small increment on the searching complexity,
particularly noticeable on low dimension datasets. Also, this chapter show
us how to parallelize the List of Clusters, and the resulting techniques are
developed and applied in Chapter 4. The parallelization of the LC is of great
help on moderated sized datasets and modern multi-core architectures.

In Chapter 5 we introduce a new metric index overcoming many of the
limitations of LC. This contribution has been dubbed as Polyphasic Metric
Index (PMI), partially reported in [Tellez et al., 2012]. The improvement
comes in several folds:

• PMI produces indexes that are more robusts to the intrinsic dimension
than LC, yielding to faster searching times.

• The preprocessing time is dramatically reduced, even on high intrinsic
dimension datasets. It goes from O(n2) distance computations of the
LC to O(λn1+α), where α < 1 and λ is a small integer dependent of
the dataset.

As will be shown, the PMI improves by far all known tradeoffs prepro-
cessing time, memory space and searching time complexities.

Finally, Chapter 6 introduces a new compact representation of metric
indexes, particularly, we focus on those based on LC (e.g. Rev-LC and
PMI). We create indexes using close to optimal space, that is nH0 + nαfd
bits. Here H0 (smaller or equal than αn logn) is the zero order entropy of
an alternative representation of LC, and fd is the number of bits required to
store any value of d. Notice that n/nα = O(1) for LC, but it is expressed on
this detail for technical convenience that will be evident in next paragraphs.
Also, we introduce two variations for special cases, using only nH0 bits or
nαfd bits. Remarkably, the compressed LC, has a small searching time
overhead. For compression, we use compact and compressed indexes for
sequences [Navarro and Mäkinen, 2007; Claude and Navarro, 2008; Golynski
et al., 2006].
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Using the compressed LC technique, the PMI becomes a metric index
using λ(nH0+nαfd) bits, where fd is the number of bits required to represent
a distance value.

As the intrinsic dimension increases, sooner or later all exact techniques
are condemned to degrade to exhaustive review of the database. For those
cases, approximation techniques are the only affordable option.

1.2 Contribution to Approximate Techniques

On the approximate proximity searching problem, we found several indexes
performing excellent tradeoffs between preprocessing time, searching time,
memory cost, and result’s quality.

A new implementation of the well known Locality Sensitive Hashing
(Gionis et al. [Gionis et al., 1999]) is introduced in Chapter 7. Our LSH
implementation is represented in close to optimal space. This new imple-
mentation is particularly efficient in situations requiring multiple indexes;
which is quite common when high quality results are necessary. Also, we
introduce two new primitives (SuccCtx and PredCtx, retrieving the context
of an object) supported by our representation without requiring additional
memory.

Chapter 8 shows a novel technique called Neighborhood Approximation
(NAPP). Also it is simplified in a simple framework named K nearest ref-
erences (K-nr). The last simplification is used to create several indexes, all
of them sharing interesting properties in quality’s results, preprocessing and
searching time, and compression capabilities. At the best of our knowledge,
our indexes are the very first metric indexes on the literature to be primary
designed to be compressed. Those indexes were partially reported in [Tellez
et al., 2009; Tellez and Chavez, 2010; Tellez et al., 2011a,b]. Even when our
indexes are designed to work on general metric spaces, the majority of them
do not use the metric properties of d, such that similarity spaces can be used
as well.

Knr indexes allow us to solve searches efficiently, while achieves recalls
bigger than 90% reviewing less than a 1% of the database. On recall terms,
our approximated similarity search techniques achieves performances reach-
ing the state of the art methods [Chavez et al., 2008; Amato and Savino,
2008; Esuli, 2009; Gionis et al., 1999; Andoni and Indyk, 2008], and better
than the majority in searching time. The construction cost of our indexes
require σn computations of d, and at most Kn log σ bits of storage; where
K is a small constant (e.g. 7), and σ is a parameter denoting the cardinality
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of a set of objects called references. Notice that σ � n.
Finally, Chapter 9 shows an alternative representation of a K-nr index.

Based on compressed inverted indexes, where each sorted list is in fact a
compressed bitmap, this new approach achieves better compression ratios
while introduce several new speed enhancements being times faster than the
original NAPP indexes.

1.3 Methodology

Due to the diversity of solutions addressed in this work, and our practical
perspective, we show the behaviors of our techniques in situ, i.e., we in-
troduce a vast number of experimental evidence in the presenting chapter.
So, we describe here the datasets that will be used along chapters, and the
methodology followed by our experiments.

1.3.1 Cost Measures and Our Practical Perspective

In Chavez et al.[Chávez et al., 2001] the performance of indexes is measured
in terms of distance computations, since it is considered to be the most
expensive operation. The inner distances are computed navigating the index
to obtain a set of candidate objects. This set of candidates is sequentially
scanned to obtain the set of relevant objects. The distances computed to
obtain the last set are named outer distances. From this perspective the
CoD comes in the form of having a very large set of candidate objects for a
given query, i.e. it shows a low filtering power.

For most practical applications the distance is not too expensive to be
considered as the unique countable operation [Skopal, 2010]. For example,
real world metric databases/applications require relatively low-cost distance
functions like edit distance for dictionaries (with small words), hamming
spaces, vector spaces with some Minkowski’s norm, etc.

Counting only distance computations is specially problematic when n
is sufficiently large such that the linear scanning of the database and the
(at least) super-linear space requirements of a table of pivots is prohibitive,
even when the number of final candidates is very small. For example, the
most efficient algorithm in terms of distance computations (i.e. AESA [Micó
et al., 1994]) needs O(1)δ distance computations for a δ-dimensional space
with n objects [Chávez et al., 2001; Navarro, 2009]. Nevertheless, it requires
O(n2fd) bits of space, where fd is the number of bits required to represent
a d’s computed value; and O(n2) numeric and logical operations, [Chávez
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et al., 2001; Micó et al., 1994]. Hence, it is unpractical, even for medium
sized databases.

The main product of our work is a set of indexes for proximity search-
ing, that successfully deal with real world scenarios allowing to be used in
practice. Thus, we show the cost of our indexes with several indicators:

— The number of distances computed to perform an operation (e.g. con-
struct and index or solve a query).

— The real time is shown, even when it is not always a fair comparison, since
it depends on many parameters (e.g. hardware, programming language
/ compilers, operating system, etc.). In contrast, the real time is an
excellent criterion to judge if some technique is practical. This is the
main indicator for practitioners, and in equality of testing conditions, it
can be used as an important comparison among different techniques.

— Memory usage is given. The storage requirement is an important factor
to considere in practice. It is important to notice that many metric
indexes are not aware of the space requirements, using a few integers per
object (i.e. pointers plus satellite data) which can be considered a high
overhead per object. In contrast, most of our indexes are compressed
and its average cost is of just a few bits per object.

— For our approximate indexes, the recall is an important quality measure.
We define recall as the ratio of retrieved items that are part of the exact
result, i.e., |A ∩ E|/|E| where A is the set of approximate results and E

the exact result.

— In the same way, the proximity ratio is presented. We define the prox-
imity ratio as the quotient of the approximate covering radius versus the
exact covering radius of result, i.e.,

maxu∈Ad(u,q)

maxv∈Ed(v,q)
. This is a relaxed mea-

sure of the quality that is quite popular in both practical and theoretical
approaches. For example, in most multimedia information retrieval ap-
plications, a result is considered good if retrieved objects are simply close
to the query, and they do not need to be part of the exact set of closer
objects .

1.3.2 Developing and Running Environment

All the algorithms were written in C#, with the Mono framework (http:
//www.mono-project.org). Algorithms and indexes are available as open
source software in the natix library (http://www.natix.org, and http:
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//github.com/sadit/natix/). Unless another setup is indicated, all ex-
perimentations were executed in a 16 core Intel Xeon 2.40 GHz worksta-
tion with 32GiB of RAM, running CentOS Linux. The entire databases
and indexes were maintained in main memory and without exploiting mul-
tiprocessing capabilities of the workstation, except for parallel algorithms
(explicitly mentioned).

1.3.3 Description of the Datasets

Metric access methods are independent of the underlaying representation of
the objects. The same is true for particular metric functions. However, in
the end, objects must be represented in some way, and distances need to be
well defined too.

Vectors are tuples of δ numbers. They are commonly measured with the
Minkowski’s Lp family of distances, defined as:

Lp(u, v) =

�
δ�

i=1

|ui − vi|
p

�1/p

(1.1)

An Lp evaluation requires O(δ) basic operations. For instance, the L1 dis-
tance corresponds to theManhattan distance, since in two dimensions resem-
bles the distance necessary to travel between points in a city of rectangular
blocks. L2 is better known as the Euclidean distance, and it corresponds
to our notion of spatial distance. Finally, another prominent Minkowski’s
distance is L∞ = max1≤i≤δ |ui − vi|.

In information retrieval, TFIDF vectors are representations of documents
in the measured with the cosine similarity,

simC(u, v) =

�δ
i=1

uivi��δ
i=1

u2i ·
��δ

i=1
v2i

(1.2)

Metric methods should use dC(u, v) = arccos simC , that is, the angle between
vectors.

The Hamming’s distance is applied to strings of fixed size �. The strings
are aligned and the distance counts how many corresponding symbols are
different.

dH(u, v) =
��

i=1

�
ui = vi 0

ui �= vi 1
(1.3)

An evaluation requires a O(�) operations. For instance, binary Hamming’s
distance simply counts the number of differences between two bit strings.
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However, the binary case can be efficiently computing defining x as the
bit vector resulting of bitwise xor-ing u and v, processing log n items at
once. Then, dC(u, v) is computed summing up the number of enabled bits
(popcount) of all non overlapping substrings of x of size w ≤

logn
2

. So,
popcount is a table of 2w entries. It stores the number of enabled bits for
each bit-string of w bits, such that it requires 2w log (w + 1) bits (at most
√
n log (1 + log n) bits). Since w bits can be processed in constant time in a

RAM machine, the time cost of dH(u, v) is of O(�/w).
The Jaccard distance for any two sets u, v requires O(|u|+|v|) operations

in the worst case. Is defined as:

dJ(u, v) = 1−
|u ∩ v|

|u ∪ v|
(1.4)

List of Datasets

In order to give a rich description of the behavior of our techniques, we select
several real world databases and generate synthetic ones, as detailed below.
It is worth noticing that even if our datasets are vector spaces, we are not
using the coordinates to discard elements. We use the distance as a black
box. This allows to work with the data disregarding its representation, all
we need is a distance function to index the data.

Name µ
2ρ2 dmax µ ρ

Documents 982.99 1.571 0.985 0.022
Colors 8.59 1.38 0.302 0.032
Colors-hard 36.32 1.73 0.39 0.073
CoPhIR 19.31 32682 0.357 0.096
Audio 142.04 560.0 0.637 0.047
RVEC-4-* 11.22 1.80 0.426 0.138
RVEC-8-* 20.21 2.19 0.509 0.112
RVEC-12-* 29.78 2.55 0.546 0.096
RVEC-16-* 38.21 2.81 0.580 0.087
RVEC-20-* 45.39 2.95 0.607 0.082
RVEC-24-* 55.17 3.21 0.615 0.075

Table 1.1: Statistics of our datasets. The mean and the standard deviation,
µ and ρ respectively, are relatives to dmax.

µ
2ρ2 is the intrinsic dimension as

described by Chavez et al. [Chávez et al., 2001].
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Figure 1.1: Histograms of distances of our datasets.

— Documents This database is a collection of 25157 short news articles
in the TFIDF format from TREC-3 collection of the Wall Street
Journal 1987 − 1989 (taken from the SISAP project [Figueroa et al.,
2009], http://www.sisap.org). We use the angle between vectors as
distance measure [Baeza-Yates and Ribeiro-Neto, 1999] and extracted
100 random documents from the collection as queries (note: these
documents were not indexed). The objects are vectors of hundred of
thousand of coordinates. Figure 1.1a shows the histogram of distances,
we must remark that this dataset has a high intrinsic dimension in
the sense described by Chavez et al. [Chávez et al., 2001], i.e., µ

2ρ2

where µ is the mean and ρ is for the standard deviation. The intrinsic
dimension of our datasets is shown in Table 1.1. Even single nearest
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Figure 1.1: Histograms of distances of our datasets.
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neighbor queries require to review the entire database in most exact
metric indexes. As a reference, a sequential scan needs 0.23 seconds.

— Colors The second benchmark is a set of 112682 color histograms (112-
dimensional vectors) from sisap, under the L2 distance. This dataset
is distributed by the SISAP project [Figueroa et al., 2009], available
at http://www.sisap.org.

Each query q is created with a simple linear composition of two ran-
domly selected objects of the database. For example, let u, v be in the
dataset such that qi = (ui + vi)/2.

An alternative set of queries is used for approximate algorithms. We
choose randomly 200 histogram vectors and applied a perturbation of
±0.5 on one random coordinate. Figure 1.1c shows the histogram of
distances. In this case, the difficulty comes from our perturbed query
set, since the perturbation is a third of the maximum distance. Also,
the intrinsic dimension grows four times, Table 1.1. We dubbed this
mixture (data and query set) as Colors-hard.

— CoPhIR We use two subsets of the CoPhIR database, of 1 and 10 mil-
lion objects selected from the CoPhIR project [Bolettieri et al., 2009],
dubbed as CoPhIR-1M and CoPhIR-10M respectively. Each object is
a 208-dimensional vector and we use the L1 distance. Each vector
is a linear combination of five different MPEG7 vectors as described
in [Bolettieri et al., 2009]. We choose 200 vectors (not indexed) as que-
ries. Figure 1.1d shows the histogram of distances. The complexity of
this database comes from its size, since the concentration around the
mean is not so large. A sequential scan takes approximately 60 sec-
onds. The intrinsic dimension as described by Chavez et al. [Chávez
et al., 2001] is of 19.31.

— Audio A set of more than 55 million bit-strings obtained from the audio
fingerprinting process of Camarena and Chavez [Ibarrola and Chávez,
2006]. The intrinsic dimension is of approximately 142, Table 1.1, yet
each object is composed of 720 boolean attributes. The closeness is
measured with the Hamming distance. We randomly choose 256 bit-
streams from the database as queries. In order to prepare the queries
we flip 3% of its bits such that the expected distance is of at most 21.
The distance function is quite fast, a sequential scan on the 55 million
objects takes 120 seconds. The intrinsic dimension is high, µ

2σ2 = 142.
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— RVEC In order to show behaviors parametrized by the dimensionality
of the datasets, we generate three vector databases of 250000, 500000,
and 1000000 objects, over six different dimensions; i.e. 4, 8, 12, 16,
20, and 24 coordinates. These databases are dubbed with the pattern
RVEC-dimension-n. We allow us to use the symbol * as wildcard, in
order to refer to sets of datasets. Each vector was generated randomly
in the unitary hypercube of the appropriate dimension. In our table of
dataset’s statistics, the intrinsic dimension (as shown in Table 1.1) is
larger than two times the number of explicit coordinates. The query
set contains 200 random vectors. Query sets and databases are disjoint
sets with high probability.

1.3.4 Computation Model

As integral part of our approach, we also analyze most of our metric indexes
and data structures. Unless another premise is given, we suppose that our
algorithms are running on a RAM machine, that is, we can access logn bits
in O(1) time, on a memory that can represent n values per cell. Also, all
basic arithmetic and logic operations have a constant time cost.

When metric indexes are analyzed, we suppose the distance evaluation
as the unitary cost. Other operations can be ignored. Commonly, in this
work, this paradigm is switched to comment a more realistic cost, since this
is historically overexploited in the literature. This is particularly self-evident
as distance computations time are overwhelm by other basic operations.

As commented before, our approach is quite practical, so, our experi-
mental sections will address both computation measures counting distances
and real time.

1.4 Summary

In this chapter we introduces the proximity searching problem, and lists
our contributions to the area. Furthermore, we state the methodology that
will be followed in the rest of this thesis, and briefly describe the properties
of our datasets, like size, source, intrinsic dimensionality, query sets, and
their data models. Also, we give a small discussion of the major distance
functions used in this work.

The next chapter discuss the state of the art in the field, and introduces
the basic tools to create our new metric indexes.
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Chapter 2

Foundations

This work is aimed to data-structures and algorithms performing proximity
searches, on large and high intrinsic-dimensional datasets. These require-
ments set a complicated scenario for most traditional techniques, thus we try
to find adequate tradeoffs among memory, preprocessing time and searching
time, such that our techniques can be used on current systems. This is a
very simple (yet vague) definition of our goals, but it is enough to say that
we are interested on proximity searching techniques performing well with
the current power of computers.

In this work, we review a set of proximity searching algorithms and tech-
niques achieving and surpassing the current state of the art. This chapter
discuss the foundations on proximity searching, and review the current state
of the art on the field. Also, since our algorithms and data structures can
be stated as indexed sequences (and its operations), so, we include a short
review of this kind of indexes and list its properties and operations at the
end of this chapter.

2.1 Searching in Metric Spaces

A metric space is a tuple (U, d) where U is a domain, S ⊆ U is a finite
subset (the database) of U with size n = |S|, and d : U × U → � is a
distance function. Formally, d obeys the following properties ∀u, v, w ∈ U .

— It is positive, d(u, v) ≥ 0 and d(u, v) = 0 ⇐⇒ u = v.

— It is symmetric, i.e. d(u, v) = d(v, u).

— It holds the triangle inequality, d(u,w) + d(w, v) ≥ d(u, v).

39
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In this work we are interested in two proximity operations over the
database:

— Searching for the k nearest neighbors k-nnU,S,d(q). Retrieves (at most) k
closest objects to q in S, for q ∈ U and S ⊆ U . Formally, it retrieves the
set k-nnU,S,d(q) = {u | d(u, q) ≤ d(v, q) ∀u, v ∈ S} where | k-nnU,S,d(q)| =
k, since k ≤ n for our purposes.

For technical reasons, to be used later on this work, we define a version
of the k-nn problem slightly more restrictive than the one usually found
in the literature. Let k-nnU,S,d(q) = [u1, u2, · · · , uk] such that d(u1, q) ≤
d(u2, q) ≤ · · · ≤ d(uk, q) and d(ui, q) ≤ d(v, q) ∀v ∈ S \ k-nnU,S,d(q). In
other words, we care about the order of the elements.

— Range query (q, r)U,S,d. This query retrieves objects in S intersecting
the ball of radius r centered on q, for q ∈ U and S ⊆ U i.e. (q, r)U,S,d =
{u ∈ S | d(q, u) ≤ r}.

Our exact techniques are attending both problems, while our approximate
techniques are focused on the k-nn problem.

In order to simplify our notation, we allow us to write k-nnS,d, (q, r)S,d;
k-nnd, (q, r)d; and k-nn, (q, r) whenever the context provide enough infor-
mation to avoid confusions, or when a generic reference to the operation is
required. With the same purpose, we define nnU,S,d(q) as 1-nnU,S,d(q).

2.2 Related Work

There exists two main classes of indexes for general metric spaces: pivot
based and compact partition indexes.

2.2.1 Pivot Based Indexes

The purpose of an index is to avoid a sequential scan. The pivot trick con-
sist in filtering the database S by using repeatedly the triangle inequality
to bound the distance from an object to the query. A set of distinguished
points P = {p1, p2, · · · , pm} ⊆ U (the pivots) are used to define a filter-
ing distance, always bounded from above by the original distance d. Let
D(u, v) = max1≤i≤m |d(u, pi) − d(v, pi)|. Using the triangle inequality, it is
inmediate D(u, v) ≤ d(u, v) and hence it implies (q, r)d ⊆ (q, r)D as detailed
by Chavez et al. [Chávez et al., 2001].

The index retrieve (q, r)D using only m distance computations, just dis-
tances to the pivots. When the intrinsic dimension of the data set is high,
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the CoD implies that even a significant increase in the number of pivots
(say to the limits of the available memory to store the distance matrix),
barely decreases (q, r)D \ (q, r)d. For easier instances of metric spaces the
decrease may be significant, implying that a pivot based index will have a
single parameter for the end user, i.e., if the time to get an answer is not
satisfactory, the number of pivots should be increased.

The above simple rule can be used as long as the cost of obtaining (q, r)D
and the amount of memory used to maintain the distances is bounded. A
plain table of m pivots is neither efficient for processing (q, r)D nor efficient
in space usage.

In a tree data structure as the Fixed Height Fixed Queries tree by Baeza-
Yates and Navarro [Baeza-Yates and Navarro, 1998] the time is sublinear but
this comes with the overhead of maintaining pointers in addition to the mn
distances. Other pivot based tree data structures like that presented by
Ullman [Uhlmann, 1991], and Burkhard and Keller [Burkhard and Keller,
1973] cannot use more pivots because they can only represent as much dis-
tances as the path length (the sum of the paths from every node to the root).
One interesting alternative is the Fixed Queries Array (FQA) of Chavez et
al. [Chávez et al., 2001] which uses a few bits per pivot, and a logarithmic
penalty over a tree data structure.

The limit in the number of pivots usable for indexing is the size of the
database (unless pivots outside the database are used for indexing). Vi-
dal [Vidal Ruiz, 1986] introduces AESA, an index using all objects in the
database as pivots. The index consists of a n(n + 1)/2 array of distance
values. Obviously, the preprocessing time has the same order (counting
computed distances). AESA exposes experimental evidence that the num-
ber of computed distances to solve a query is independent of the size of the
database, but with an exponential dependency on the intrinsic dimension.
However, it requires a quadratic number of arithmetic and logical opera-
tions. Linear-AESA (LAESA) [Micó et al., 1994] is a memory improvement
over the n pivots of AESA, it uses m fixed number of pivots (dependent on
the intrinsic dimension). AESA and LAESA store n2fd bits and mnfd bits,
respectively, these spaces are unpractical, and they are only of use for small
databases.

2.2.2 Compact Partition Indexes

Another approach to proximity searching consist in partitioning the database
in compact regions. Most of the compact partitioning indexes in the liter-
ature are hierarchical, with a recursive rule as follows: A set of centers
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c1, c2, · · · , cm ∈ S is selected per node, such that every ci is the center
of a subtree Ti. The set of centers are used to partition the database
such that each Ti is spatially compact. For example, u ∈ S is linked to
the subtree Ti such that i = argmin1≤i≤m d(ci, u). The covering radius
cov(ci) = maxu∈Ti d(ci, v) is stored for each node. This construction is ap-
plied recursively. A query (q, r)d is solved recursively starting from the
root node. If d(q, ci) ≤ r then ci ∈ (q, r)d, and Ti must be explored if
|d(q, ci)− cov(ci)| ≤ r.

In general the recursion can be stopped at any level, and objects below
that level in each node are stored together in a bucket. In this type of
indexes there is not a simple recipe to increase the searching performance
as in the case of pivot indexing. Below, a list of seminal work is presented.

Kalantari and McDonald [Kalantari and McDonald, 1983] propose a bi-
nary tree called Bisector Tree (BST). Let w be the root node, the left child
is associated with the center c1, and the right child with c2. For each u
in S \ {c1, c2} if d(u, c1) ≤ d(u, c2) then u is inserted into the left subtree
recursively, otherwise it is inserted into the right subtree in the same way.
Each child stores its covering radius, so cov(·) gives the pruning information.
The procedure is recursively applied. Uhlmann [Uhlmann, 1991] introduces
the Generalized Hyperplane Tree (GHT). The construction is identical to
BST, but it does not stores the covering radius. At query time, (q, r)d, the
left subtree is visited if d(q, c1)− r < d(q, c2)+ r. In the same way, the right
tree requires to be reviewed if d(q, c2)− r < d(q, c1) + r.

Brin [Brin, 1995] introduces the Geometric Near-neighbor Access Tree
(GNAT), which is similar to GHT, but with nodes of a large arity m. Notice
that a GNAT is quite similar to a recursive Voronoi partition of vector
spaces. In addition to the basic structure, a table ofO(m2) entries containing
the minimum and maximum distances of each center to all items in all
subtrees. This table is used like a pivot filtering table, that is, at query time
a ci is selected and d(q, ci) is evaluated; this distance is used to filter subtrees
with the information of this table and the tringle inequality constraints. The
index requires O(nm2) identifiers and distances. Experiments performed by
Chavez et al. [Chávez et al., 2001], suggest that only large arities are of use,
this implies a very large memory overhead per object.

Ciaccia et al. [Ciaccia et al., 1997] introduces the M-Tree, a dynamic and
disk based metric index. The preprocessing step resembles to GNAT, yet
only the covering radius is stored at each node. The searching procedure
is similar to BST. However, the dynamic operations are the distinguishing
property of the M-Tree, those algorithms take similar decisions to B-Tree or
R-Tree [Cormen et al., 2001].
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The List of Clusters

Chavez and Navarro [Chávez and Navarro, 2005] present a robust and mem-
ory efficient alternative, dubbed as the List of Clusters (LC). The LC needs
O(n) integers for the index and mfd bits to store distance values, where
m the number of centers and fd is the number of bits required to store
a distance value. The preprocessing step requires close to mn/2 evalua-
tions of the distance function. Nevertheless, as explained by Chavez and
Navarro [Chávez and Navarro, 2005], high intrinsic dimensional datasets
must follow that n/m = O(1). So, with this setup, the LC computes O(n2)
distances on the preprocessing step. On the other side, the searching time is
O(nβ), for some β ≤ 1 dependent of the database. At equality of memory,
it is unbeatable on datasets with high intrinsic dimension.

The original idea of LC was to unbalance a tree data structure until it
becomes a linked list. While this is a very bad idea for exact searching; where
achieving balance is a paramount and a myriad of balancing algorithms
exist, in the case of approximate searching it has proven to be of use. The
drawback of the approach is a quadratic construction time and has the same
origin of its unmatched performance.

Let explore with more detail the construction and the searching algo-
rithms of the LC (taken from [Chávez and Navarro, 2005]). Define IS,c,cov(c) =
{u ∈ S \ {c} | d(c, u) ≤ cov(c)} as the bucket of internal elements, which
lie inside center ball of c, and ES,c,cov(c) = {u ∈ S | d(c, u) > cov(c)} as
the rest of the elements (the external ones). Now the process is repeated
recursively inside E. The construction procedure returns a list of triples
(ci, ri, Ii) (center,radius,bucket) and it is shown in Figure 2.1 and formal-
ized in Algorithm 1.

c1

c2

c3

r1

r2

r3

u

E
(c1,r1)

I

(c2,r2) (c3,r3)
E E

I I

Figure 2.1: The influence zones of three centers taken in this order: c1,
c2, c3. On the right, the list arrangement for the data structure. On both
figures cov(ci) = ri.

Please note that the number of centers in the Algorithm 1 is unknown
beforehand. There are two possible parameters, the number of objects inside
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algorithm 1: The construction algorithm of the LC. The operator :: is the list

constructor. It is not hard to remove the tail recursion to make it iterative.
Input: The set of objects to be indexed, m.
Output: The list of clusters.
Build(S)

1: if S = ∅ then
2: return empty list
3: end if
4: Select c ∈ S
5: Select a radius cov(c)
6: I ← {u ∈ S \ {c}, d(c, u) ≤ cov(c)}
7: E ← S \ I
8: return (c, cov(c), I)::Build(E)

a ball, or the radius of the ball. This defines indirectly the number of centers.
As proposed in the original paper, we select the number of centers, i.e. n/m,
as a simple way to select the required parameters.

algorithm 2: The search algorithm. The main loop (line 2) visits triples in the

order specified on L.

Input: The list of clusters L, the query (q, r)d.
Output: The result set R.

1: Let R ← ∅

2: for all (c, cov(c), I) ∈ L do
3: Let dcq = d(c, q)
4: R ← R ∪ {c} if dcq ≤ r
5: if dcq ≤ cov(c) + r then
6: for all u ∈ I do
7: R ← R ∪ {u} if d(u, q) ≤ r
8: end for
9: end if

10: stop loop if dcq < cov(c)− r
11: end for

The searching procedure is described in Algorithm 2, here the focus is to
solve three cases on each node. Let us define (c, cov(c)) as the ball centered
at c with radius cov(c), then there are three possible cases on each center,
as follows.

(i) The query ball is intersecting (c, cov(c)), in such case we need to review
all objects in Ic.
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q1

q2
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r

Figure 2.2: An illustration of the three cases of query ball versus center ball.
For q1 we need to consider the current bucket and the rest of centers. For
q2 we can prune the search inside the rest of the partitions. For q3 we can
avoid considering the current bucket.

(ii) The query ball is completely contained by (c, cov(c)), in such case we
can stop the searching algorithm.

(iii) The query ball is not intersection (c, cov(c)), so Ic cannot contains any
result object.

These cases are illustrated in Figure 2.2. When the intrinsic dimensionality
of the data is high, then most of the balls need to be reviewed.

Chavez and Navarro [Chávez and Navarro, 2005] use a set of probabilistic
arguments to show the complexity of the searching, showing that it must
be O(nβ) distance computations, for some β ≤ 1 which depend on the
distribution of the data.

2.2.3 Approximate Proximity Searching

As intrinsic dimension grows, the linear scanning of S becomes mandatory.
This non scalability issue is dubbed as the Curse of Dimensionality (CoD)
or the concentration effect. This effect has been researched in depth (among
others) by Pestov [Pestov, 2010b,a, 2007, 2008], Volnyansky and Pestov [Vol-
nyansky and Pestov, 2009], Shaft and Ramakrishnan [Shaft and Ramakrish-
nan, 2006], and nicely surveyed by Indyk [Indyk, 2004], Samet [Samet, 2006],
Hjaltason and Samet [Hjaltason and Samet, 2003], Chavez et al. [Chávez
et al., 2001], Böhm et al. [Böhm et al., 2001], and Skopal and Bustos [Skopal
and Bustos, 2011], just to mention some of the most influential literature on
the area. The CoD is a statistical condition present in every high intrinsic
dimensional data set describing a non desirable characteristic: most of the
data looks far and equally distant to any given query, then it is practically
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impossible to avoid sequential scanning only using the triangle inequality. A
relaxed characterization uses the histogram of distances, here a small stan-
dard deviation and a large mean indicate a high intrinsic dimension [Chávez
et al., 2001]. Up to the best of our knowledge no exact index can overcome
the CoD.

In this case a metric index should be tweaked to support approximation
techniques in searches when the users can afford loosing relevant answers,
or receive irrelevant ones. A common approach to alleviate the CoD is to
use approximate proximity search algorithms trading speed for accuracy.
One way is to convert an exact algorithm to an approximate one using the
procedure described by Chavez and Navarro [Chávez and Navarro, 2003],
Zezula et al. [Zezula et al., 2006], and Bustos & Navarro [Bustos and Navarro,
2004] that consists in aggressively reducing the radius by multiplying it by a
stretching constant. This technique is specially useful for tree based indexes.

Skopal [Skopal, 2007] shows an alternative model unifying both exact and
approximate proximity search algorithms. Also, he introduces the TriGen
algorithm, a method to envelop a (dis)similarity function into a metric func-
tion with high probability. This technique allows to index general similarity
spaces using metric indexes.

Kyselak et al. [Kyselak et al., 2011] observed that most of approximate
methods optimize the average accuracy of the indexes, but it is common to
find very bad performances on individual queries. So, they propose a simple
solution to stabilize the accuracy. The idea is to reduce the probability of
a poor-quality result using multiple independent indexes solving a query in
parallel, so, with high probability at least one index achieves good quality
on a result. Nevertheless, this technique increases both the searching time
and memory costs.

Even with these probabilistic techniques, the internal cost of the searches
and the number of distance computations is sometimes too high for practical
applications. Other techniques are designed to be approximate from the
beginning, and commonly scale better in both the size and the intrinsic
dimensionality of the database. Recently, a novel branch of approximate
algorithms has emerged reaching amazing performance in large databases
and high intrinsic dimensions. The following techniques are tightly related
to our indexes, and they are considered the state of the art, so we will discuss
them below in detail.
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Comparing Permutations

Chavez et al. [Chavez et al., 2008] shown a new proximity search method
based on comparing permutations, it is called the Permutation Index (PI).
The main idea is to describe objects as its perspective of a set of references
(R). Chavez et al. named R as the set of permutants. The proximity is com-
puted using the relative movements of the permutants. |R| is very small,
this makes it particularly efficient for expensive distance computations, and
small databases. The scalability remains as a main problem, even consider-
ing the efforts of Figueroa and Frediksson [Figueroa and Frediksson, 2009],
and Tellez and Chavez [Tellez and Chavez, 2010].

The index uses the inverse of the permutation to create a vector space,
using the Minkowski’s L1 or L2 distances (i.e. Spearman Footrule and
Spearman-ρ, respectively) [Chavez et al., 2008].1). Please note that each
permutation requires |R| distances, a linear sort O(|R|),2 and a linear pass
to find the inverse. In order to find the candidate list, one needs to perform
n permutation distance comparisons (L1 or L2) each one of them requires
O(|R|) basic arithmetic operations. This yields to a total cost of O(n|R|) ba-
sic operations. The space complexity is n|R| log |R| bits. The final number
of candidates is specified with the querying parameter γ.

The Brief Permutation Index

Another algorithmic solution to compute an approximate distance between
permutations is the Brief Permutation Index (BPI), introduced by Tellez et
al. [Tellez et al., 2009]. The main idea is to encode the permutation vectors
using fixed-size bit-strings and compare them using the Hamming distance.
This produces a smaller representation which can be filtered out faster than
the original permutations space. Nevertheless the set of candidate objects
after filtering with the brief version of the permutations is larger, and this is
relevant for expensive distance functions. The advantage against the original
algorithm is the reduction of some CPU cost and smaller requirements of
memory, yielding faster searches for large databases.

The resulting Hamming space encodes each permutant with a single
bit using the information about how much it deviates from the original
position. If the permutant is displaced by more than m positions (which
is a parameter) the corresponding bit is set to 1, else it is set to 0. The

1Another option is Kendall-τ [Chavez et al., 2008], but its usage is limited by the high
cost of the computation

2In general, if distances cannot be discretized, we need a comparison based sorting, i.e.
O(|R| log |R|).



48 CHAPTER 2. FOUNDATIONS

number of bits then matches the number of permutants. A fair choice for
m is |R|

2
. One observation is that the central positions are assigned mostly

0’s because the central permutants have less room for displacement. This is
solved using an inline central permutation [Tellez et al., 2009].

Although computing the Hamming distance is faster than computing
L2, a sequential scan can be too high for large databases. The same authors
presented later a version indexed with Locality Sensitive Hashing [Tellez and
Chavez, 2010]. Unfortunately, the recall dropped as the speed increased.

Metric Inverted File

Amato and Savino [Amato and Savino, 2008] present an scalable proximity
search index, based on [Chavez et al., 2008] and the simplification of the
Spearman Footrule. The main idea is to use of only the first K references
closer to an object and its positions in the full permutation. This information
is used to compute approximately the Spearman Footrule (L1) distance of
the permutations. The memory requirement is smaller since K � |R|.

Since many permutants cannot be found to compute L1, the blank po-
sitions should be filled with a penalization constant ω (e.g. ω = |R|/2).
To provide a scalable representation, the set of references is used as the
thesaurus of an inverted file, and list of tuples (object, position) as posting
lists. Baeza-Yates and Ribeiro-Neto provide a detailed explanation about
inverted indexes [Baeza-Yates and Ribeiro-Neto, 1999].

The computational cost to represent each object is equivalent to the
permutation based index; however, in this case the plain mapping (without
inverted index representation) requires Kn log (K|R|) bits i.e., each object is
represented with K tuples (referenceId, position). These tuples are sorted
by referenceId (adding an additional sort over K items). Using an inverted
index, requires Kn log(Kn) bits of space, and the total cost is driven by the
cost to obtain the candidate list plus γ distance computations.

Prefix Permutations Index: PP-Index

The last approach using the permutations idea is the PP-Index [Esuli, 2009].
It stores only the prefixes of the permutations and hints the proximity be-
tween two objects with the length of its shared prefix (if any). Longer shared
prefixes hint high proximity and short length prefixes reflect low proximity.
This strict notion of proximity yields very low recalls. This condition is
somewhat alleviated by using several permutations sets, several indexes, and
tricks like randomly perturbing the query, which end up increasing the num-
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ber of queries to the index and affecting the searching speed, i.e., the main
advantage of the index. The index consists in a compact trie [Baeza-Yates
and Ribeiro-Neto, 1999] representing the space of permutation prefixes. A
plain representation needsKn log σ bits. The compact trie is usually smaller,
and the storage usage depends on the amount of shared prefixes. The first
levels in the trie are stored in main memory and the lower levels in secondary
memory.

In order to overcome the low recall, several strategies are possible, in-
creasing the searching time and memory usage (see [Esuli, 2009]). For ex-
ample the PP-Index needs up to eight indexes and expand the query on each
to achieve perfect recall on the 106 million MPEG7 vectors of the CoPhIR
data set [Bolettieri et al., 2009].

2.3 Indexing Sequences

In this Thesis, we introduce several new metric indexes, the majority of them
require a simple organization of the involved information. Fortunately, this
simplicity allow us to implement our indexes as sequences of symbols, that
can be indexed in close to optimal space, while basic operations are efficiently
solved.

In this section we introduce the basic representation, notation, and op-
erations on a sequence.

2.3.1 Statement of the Problem

There exists several Indexes of Sequences (IoS), since each one puts a dif-
ferent tradeoff between the necessary memory, and the complexity of its
operations.

The basic problem is as follows. Let T = s1s2 · · · sn be a sequence of
symbols on the alphabet Σ of size σ, i.e. si ∈ Σ. Without loose of generality,
let Σ be a set of integers, that is Σ = {1, 2, · · · ,σ}. The i-th symbol in T is
denoted as Ti.

An IoS provides three basic operations:

• Rankc(T, pos) counts how many c’s occurs in T until pos, c ∈ Σ.

• Selectc(T, r) returns the smaller position pos such that Rankc(T, pos) =
r.

• Access(T, pos) retrieves the symbol stored at the position pos in T ,
i.e., Tpos.
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Notice that an IoS replaces T , since we can reconstruct it using Access(T, pos),
but our notation requires to put T in the arguments even when it is not ac-
tually stored.

There exists several indexes solving these operations efficiently. For ex-
ample, for binary alphabets, it is possible to solve all operations in constant
time using n+ o(n) bits, as surveyed by Navarro and Mäkinen [Navarro and
Mäkinen, 2007].

Gonzalez et al. [González et al., 2005] present a fast practical approach,
it solves Rankc in O(logn) time, and stores n+ o(n) bits. This is one of the
fastest bitmap indexes.

Larger alphabets are solved reducing the problem to the binary case.
Grossi et al. [Grossi et al., 2003] introduce the Wavelet Tree (WT), it uses
n log σ + O(σ logn) bits solving all operations in O(log σ) time. Very large
alphabets are problematic with this scheme since all times are dependent on
σ. Golinsky et al. [Golynski et al., 2006] introduce a fast index, robust to
large σ. It uses n log σ+o(n log σ) bits, it solves Selectc in constant time, and
both Rankc and Access on O(log log σ) time. Claude and Navarro [Claude
and Navarro, 2008] implement this index applying practical decisions, this
implementation solves Rankc and Access on O(log σ) time.

2.3.2 Storage Requirements

Let nc be the number of symbols c in T , then we require at least

log

�
n

n1, n2, · · · , nσ

�
= log

n!

n1!n2! · · ·nσ!
bits

to represent any instance of T with these statistics. From information theory
we can obtain the following formulation, using a fixed code word for each
symbol, we require at least nH0(T ) ≤ n log σ bits, here, H0(T ) is the order
zero empirical entropy of T , i.e.

nH0(T ) = n
�

c∈Σ
pc log

1

pc
=

�

c∈Σ
nc log

nc

n
bits

Where pc is the probability of occurrence of c in T , empirically, pc = nc/n.
There exists several index achieving close to this optimal space for bi-

nary alphabets. For example, Raman et al. [Raman et al., 2002], its prac-
tical implementation by Claude and Navarro [Claude and Navarro, 2008],
Okanohara and Sadakane [Okanohara and Sadakane, 2007], and our bitmaps
based on differences (Appendix A). For σ > 2 there exists several variants
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of the Wavelet Tree (WT) by Grossi et al. [Grossi et al., 2003]. For example,
the WT with Huffman shape or with internal bitmaps compressed to nH0,
like surveyed by Navarro and Mäkinen [Navarro and Mäkinen, 2007].

2.3.3 Final Notes

The objective of this work is to produce fast and small proximity searching
indexes. However, understanding techniques behind indexing sequences is
required because they are part of our indexes, and new representations. A
review of the basic techniques on indexed bitmaps and sequences is given at
Appendix A. Also, the appendix introduces new structures taking advantage
of the access patterns of our techniques, and in general, they introduce a set
of powerful indexes for large alphabets.
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Part II

Exact Proximity Searching
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Chapter 3

The Reverse Nearest
Neighbor List of Clusters

One of the most efficient index for similarity search is the so called List of
Clusters detailed in Section 2.2.2, introduced by Chavez and Navarro [Chávez
and Navarro, 2005]. This data structure has a counterintuitive construction
that can be seen as an extremely unbalanced tree, contrasting balanced data
structures for exact searching. In practice, there is no better alternative for
exact indexing, when every search return all the incumbent results; as op-
posed to approximate similarity search. The major drawback of the list of
clusters is its quadratic time construction.

In this chapter we revisit the List of Clusters (LC) aiming at speeding up
the construction time without sacrificing its efficiency. With this improve-
ment we obtain the same storage cost with similar searching times while
gaining a significant amount of time in the construction phase.

3.1 Introduction

In general, there is a gradation of the different complexities of the data.
From a practical point of view, we can classify the indexes as effective in a
region of the complexity spectrum. A long standing index, with asymptotic
optimal performance (counting computed distances), is AESA [Vidal Ruiz,
1986; Micó et al., 1994] which can be seen as a pivot-based index using all
the database objects as pivots. This optimal performance can be of use in
relatively small databases because of a quadratic dependance on the size of
the database. As a rule of thumb, in the pivot based indexes with linear
space usage such as LAESA [Micó et al., 1994], one can trade speed at query
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method preprocessing searching memory
distances distances

List of clusters (LC) O(n2) O(nβ) O(n logn+mfd) bits
AESA O(n2) O(1) O(n2fd) bits
Linear AESA (LAESA) O(n�) O(nβ) O(n�fd) bits

Table 3.1: Complexities of the faster proximity searching algorithms for a
fixed dimensionality dataset.

time for the size of the index. One way to obtain a good speed/space tradeoff
is by using a compact index such as the Fixed Queries Array (FQA) [Chávez
et al., 2001], or the Fixed Queries Trie [Chávez and Figueroa, 2004].

Another way to cope with the space usage is the technique of the List
of Clusters [Chávez and Navarro, 2005], which is faster than LAESA or the
FQA for any practical space bounds, specially when the data is high dimen-
sional. Table 3.1 compares complexities among search-efficient indexes, m
the number of centers in the LC (following m < n), � the number of pivots
used by LAESA, and β is a value between 0 and 1, and depends on the
intrinsic dimension of the database. Summarizing, indexes that allow fast
searches are highly expensive at the preprocessing step and/or in memory
requirements.

In this chapter we propose a new index for metric searching allowing fast
searches, using O(nβ) distances per query, and O(n logn+mfd) bits of space,
and a preprocessing time of O(nmβ), with β ≤ 1. Our index is inspired on
the LC data structure, and use the same searching procedure hence it can
be plug into applications already using the LC without modification.

The key difference on the approach is in the construction phase. The LC
have a quadratic construction time which limits its usage on large databases,
probably in the same way AESA cannot be used in practice. With our
proposal it is possible to index large databases. Furthermore our index can
be built in parallel, making efficient use of modern hardware. Bottom line
our approach is faster to build than the original LC with a very small penalty
in the searching complexity, which makes the index usable for complex search
pattern analysis and data mining in very large datasets.

Here we introduce a simple and effective metric index, the Reverse Near-
est Neighbor list of clusters (Rev-LC). The preprocessing time of Rev-LC is
way smaller than the LC in most cases. The central idea is to select the cen-
ters beforehand (say m of them) instead of obtaining them in the recursive
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construction of the list.
Our construction time is in worst case O(nm), but it is likely to achieve

O(nmβ) for some β ≤ 1.
Contrasting with the LC, Section 2.2.2, all the centers are selected be-

forehand, once certain order is established, the population of balls around
each center can be done in parallel. This particular feature make the in-
dex suitable for taking advantage of modern hardware. We conducted a
thorough experimentation to demonstrate the efficiency of the new index.

3.2 The Reverse Nearest Neighbor List of Clusters

Algorithm 2 works with any partition of the database. It should be clear
that if we have an arbitrary partition in the mathematical sense, S = ∪Ii
and Ii ∩ Ij = ∅, then querying each Ii is equivalent to searching the entire
database S. The key is to avoid buckets not being relevant to the query.
As pointed out by Chavez et al. [Chávez et al., 2001], this schema fits most
metric indexes, since the majority of them differ on the application of the
rule that discard partition elements.

If we want to improve the O(n2) construction complexity of the LC then
we need to examine the origin of the problem. Please notice that in the LC,
illustrated in Figure 2.1, the next center is chosen from the set of unassigned
objects and that the tail recursion is responsible for the quadratic behavior.

A solution is to choose m centers beforehand and define a Dirichlet do-
main, just as if it where a GNAT (Brin [Brin, 1995]) of one level with very
large arity. For convenience, we unzip LC’s triplets into its three compo-
nents, i.e. the centers C = c1, c2, · · · , cm, the buckets I = I1, I2, · · · , Im, and
the covering radii COV = cov(c1), cov(c2), · · · , cov(cm). In order to simplify
algorithms, both I and COV are indexed with its entry number i, and with
the corresponding ci center.

The construction of Rev-LC is depicted by Algorithm 3. If we assume
no ties for the nearest neighbor, an alternative succinct definition is Ic =
{u ∈ {S \ C} | nnS,C,d(u) = c}, and cov(c) = max{d(c, u) | u ∈ Ic}, i.e.,
buckets are populated with the reverse neighbors of each c ∈ C.

The searching procedure is very similar to the original LC since the dis-
carding rule is similar. We can apply the searching algorithm (Algorithm 2),
only avoiding the last condition (line 10). This is because the Rev-LC divides
S into m regions, contrary to the recursive binary division of the LC.

With the right setup, C can be chosen to be large enough to be considered
a representative sample of the distribution of S, such that the average value
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algorithm 3: Construction of the Rev-LC

Input: The number of centers, m.
Output: The Rev-LC index, i.e. C, I’s, and COV.

1: C is initialized selecting m random centers from S
2: for all i = 1 to m do
3: Ii ← ∅

4: COVi ← 0
5: end for
6: for all u ∈ S \ C do
7: Let ci to be the nearest neighbor of u in C
8: Ii ← Ii ∪ {u}
9: COVi ← max {COVi, d(ci, u)}

10: end for

of cov(c) corresponds to a small percentile of the cumulative distribution
function of the distances. Under these circumstances, we would have the
same performance conditions of the LC, and hence Theorem 3.2.1 also holds.

Theorem 3.2.1 (Chavez and Navarro [Chávez and Navarro, 2005])
The number of distance computations performed by the (Rev-)LC to solve
some query is O(nβ) for some β ≤ 1.

Notice this theorem follows if m = O(nβ), for some β < 1, and in fact,
close to 1, such that n/m = O(n1−β) is quite small, and enough to produce
compact buckets (in the radii sense). Nevertheless, the resulting β is larger
than the exposed by the LC. Based on this theorem, we can produce the
following conclusion about the construction of the Rev-LC.

Theorem 3.2.2 The preprocessing cost of the Rev-LC is O(nmβ +m3/n)
for some β ≤ 1.

Proof. From Algorithm 3, the preprocessing step for high intrinsic di-
mensional datasets requires O(nm−m2) distance computations, which is a
very pessimistic assumption. For the construction we need n − m nearest
neighbor searches over C. We can use the Rev-LC index for this smaller
set. Based on Theorem 3.2.1, we need n nearest neighbor searches in the
smaller set C with cost O(mβ). The additional O(m3/n) term comes from
the construction of the Rev-LC index for C, but this time using a sequential
search to retrieve the nn and using the same proportion of centers. �

Please notice that the term m3/n should be small enough, i.e. m3/n <
nm/2, this implies n/m >

√
2. If γbsize = n/m this can be expressed as
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n3/(nγ3
bsize

) � n2/(2γbsize), yielding to the simplified formulae n2/γ3
bsize

�

n2/(2γbsize).

Even if γbsize = O(1) the cost would be small enough. For example,
if γbsize = 12 (i.e. a suggested value of the bucket size for high intrinsic
dimensional data sets according to [Chávez and Navarro, 2005]), we obtain
that n2/1728 � n2/24. Thus, the O(m3/n) overhead is negligible, we can
take only the significant term O(nmβ) as the processing time for building
the Rev-LC index for S.

The parallelization of the construction is straightforward, unlike the LC
algorithm (to be addressed on the Chapter 4). A simple modification of the
Algorithm 3 is required at line 6, here we must search the nearest neighbor
in C in parallel, line 7. Finally, the rest of the lines inside the loop must be
serialized. We call this version of the algorithm as Parallel Rev-LC (PRev-
LC).

3.3 Experimental Results

As we commented in Section 1.3.1, the entire databases and indexes are
maintained in main memory and without exploiting any parallel capabilities
of the workstation, excepting for the PRev-LC. On the parallel version, the
setup was left to the default configuration of the parallel tasks of the mono’s
framework.

We present an experimental comparison of our Rev-LC index against the
LC, in both preprocessing and querying time. As it is customary we count
the number of distances computed in each one of them to compare. We also
measured the total time elapsed in the construction.

3.3.1 Construction Time

We selected a low-cost distance for testing the construction. Our choice
is a four dimensional dataset of one million vectors under the L2 distance
(RVEC-4-1000000, Section 1.3.3). The results are reported in Table 3.2. The
time to build the LC is more than twice larger than the Rev-LC for n/m of
1024 and 128, and 17.5 times for n/m = 16. The parallel algorithm (PRev-
LC) have the faster preprocessing times, it runs close to 10 times faster than
the LC for n/m = 1024, and more than 46 times faster for n/m = 16.
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method n/m m preprocessing time
seconds human readable

LC 1024 976 331.13 5 min 31.13 sec.
LC 128 7812 2056.5 34 min 16.52 sec.
LC 16 62500 16163.16 4 hours 29 min.
Rev-LC 1024 976 168.65 2 min 48.65 sec.
Rev-LC 128 7812 895.41 14 min 55.41 sec.
Rev-LC 16 62500 920.61 15 min 20.61 sec.
PRev-
LC

1024 976 35.50 35.50 sec.

PRev-
LC

128 7812 327.57 5 min 27.57 sec.

PRev-
LC

16 62500 348.11 5 min 48.11 sec.

Table 3.2: Construction time for random vectors of dimension 4 and n = 106.

3.3.2 Searching Performance

In Figures 3.1 and 3.1, the number of distance computations to retrieve the
nearest neighbor in different intrinsic dimensional datasets is shown. The
LC have fixed bucket size while the Rev-LC has a fixed number of centers,
m. Each plot title is composed of the bucket size (or the expected bucket
size in the case of Rev-LC), and its number of centers (in this order), e.g.
“16-62500”.

From Figures 3.1 and 3.1, we learn that there is a small penalty in the
Rev-LC when compared to the LC. The number of distances is shown in
Figures 3.1b and 3.1d, for LC and Rev-LC respectively. We must notice
that the behavior of the Rev-LC is more faithful to the LC for larger m
(smaller n/m values), this is an effect of Theorem 3.2.1. Furthermore, the
real time behavior is more tight than the cost driven on counting distance
computations. Please remember that Rev-LC never reaches the performance
of the LC, however, this can be improved by increasing the number of cen-
ters, and hence we can make the difference as small as desired. In addition,
the faster preprocessing step makes the Rev-LC and PRev-LC a competitive
real option for large datasets with high intrinsic dimensions.
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3.4 Summary

In this chapter, we introduced a new index for general metric spaces. This
index uses a searching algorithm quite similar to the well known List of
Clusters. The key difference is a better construction time, and the trivial
parallelization of the preprocessing step. This last feature makes the index
a good option to run on modern hardware.

A dynamic index supporting insertions and deletions, seems to be simpler
to maintain for the Rev-LC than for the LC. More detailed, Rev-LC only
needs to locate items into its nearest center, while LC needs to maintain a
set of n/m nearest neighbors of each center. The dynamic Rev-LC promises
to be useful even on highly transactional environments. However, dynamic
operations over metric indexes are beyond the scope of this work. There is
no doubt that more work it is necessary to take full advantage of the Rev-LC
and is properties.

Even with this enhancements over the LC, m should be really large
to achieve a similar performance to LC. However, the universe of Rev-LC
indexes over a fixed database with n objects and selecting m centers is
quite smaller than the universe of LC indexes, with the same n and m
parameters. This is a core advantage of the LC that will be exploited in
our main contribution to the exact metric indexes 5. Nevertheless, Rev-
LC remains as a good option by itself, specially on large and high-intrinsic
dimension datasets. Also, the Rev-LC show us how to break the rule that
serializes the searching step of the List of Cluster, i.e., line 9, Algorithm 2.
Using this basis, the next chapter is dedicated to parallelize both searching
and preprocessing algorithms of the List of Clusters.
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Figure 3.1: Performance of the LC for the nearest neighbor search for in-
creasing intrinsic dimension.
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Figure 3.1: Performance of Rev-LC for the nearest neighbor search for in-
creasing intrinsic dimension.
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Chapter 4

Parallelizing the List of
Clusters

With excellent searching times, and O(n) identifiers stored by its data struc-
ture, the main obstacle limiting the practical usage of the List of Clusters
(LC) is its expensive preprocessing step, i.e. O(n2) distance computations
for high intrinsic dimensions.

Here, we apply the learned lessons of the previous chapter, parallelizing
both construction and searching algorithms of the LC. We obtained a both
faster constructions and searching procedures.

We already introduce the Rev-LC, a new metric index with fast prepro-
cessing. The Rev-LC is very fast to construct, also it is trivially parallelized.
Even with these advantages, the Rev-LC never reaches the searching perfor-
mance of the LC, since the searching time is similar only when the number
of centers is very large. Remarkably, when the number of centers is quite
large, n/m = O(1), matches the requirements of the LC on high intrinsic
dimensional datasets. Also, Rev-LC can handle large databases, a domain
not reached by LC. The reason of this scaling properties are that the set of
centers of Rev-LC are selected and indexed at the beginning of the prepro-
cessing step. Nevertheless, its behavior in not so high intrinsic dimensions
is quite bad, without mention that never surpasses the LC’s performance.
Also, the number of possible instances of Rev-LC for a given database of
size n, and m centers, is smaller than for LC.

In this chapter we speed up both preprocessing and searching algorithms
of the LC, taking advantage of the new multi-core hardware.
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4.1 Introduction

As evinced in the former chapter, the LC algorithms can be deserialized
with a small effort. We apply the techniques of Rev-LC and PRev-LC to
parallelize the preprocessing algorithm of the LC. The preprocessing step
is conveniently simple, and not modifies the conceptual process of the LC
metric index. On the other hand, the searching algorithm destroys the
idea of an unbalanced binary tree (modifying the searching algorithm). So,
conceptually, the structure is being replaced by a Voronoi partition [Chávez
et al., 2001], as for Rev-LC. These changes are carried out just replacing
parts of the sequential preprocessing (and searching) algorithms by code
blocks with parallel execution. Our suppositions are abstractions of real
world systems, i.e., we suppose that parallel blocks are executed in multiple
threads with shared memory, with exclusive write and multiple readers as
memory access.

About our algorithm’s pseudo-coding style. The syntax of our pseudo-
code uses locks (that can be acquired and released) defining regions that
must be processed sequentially (only one thread can access at the same
time). Please note that locks work on a shared resource, not in regions of
code. For example, two threads working on the same code region may not
be serialized if the threads are working on different resources.

4.2 Parallel Preprocessing algorithm

Algorithm 4 shows a simple parallelization of the range searching algo-
rithm. An exhaustive k-nn algorithm is quite similar but storing only k
nearest items in Qh collections of Algorithm 4, and the last union stores
only the k nearest items to q (i.e. k = n/m).

4.3 Parallel Searching algorithm

An elaborate range searching algorithm is presented in alg. 5. It uses the
LC structure to avoid unnecessary distance computations. A simple mod-
ification to the original algorithm is applied, we remove the last condition
(line 10 of Algorithm 2), i.e. the second condition of Figure 2.2 is not con-
sidered. This condition serializes the searching process. This small change
barely increases the number of distance computations (since it occurs with
very low probability).
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algorithm 4: Exhaustive parallel range searching

Input: A set of objects S, a query (q, r)d, and t as the number of threads to
process the database.
Output: The set of objects intersecting the ball of radius r centered on q.

1: Let Q[1, t] be a collection of empty sets
2: begin parallel execution
3: for all u ∈ S do
4: Let h be a random number between 1 and t.
5: if d(c, u) ≤ r then
6: adquire lock on Qh

7: Qh ← Qh ∪ {u}
8: release lock on Qh

9: end if
10: end for
11: end parallel execution (wait all threads to commit)
12: return

�
1≤h≤t Qh

4.3.1 Parallel k-nn Searching algorithm

The k-nn searching algorithm is shown in alg. 6. It is more complex than
the parallelized range searching algorithm. The algorithm is composed of
two parallelized regions, the first one is dedicated to select related centers,
and bound r∗. The second one uses the information collected at the first
step to determine buckets that will be reviewed. As in the parallelized range
searching, we remove the bucket contention case of the original searching
algorithm.

4.4 Experimental Results

Our parallelized algorithms have a high dependency on the distance cost,
and low-cost distances are not showing important speed up factors, thus
we omit a deeper study on this configurations, simply remarking the low
performance exposed on this datasets. Most of real datasets contains many
times more attributes than the strictly necessaries to represent the same
information. So, distances of real world datasets are costly, compared to
synthetic datasets generated uniformly. In order to give a real description
of the behavior of our techniques, we select two real world databases (Colors
and CoPhIR-1M, described in section 1.3.3), as detailed below. It is worth
noticing that even if our datasets are vector spaces, we are not using the
coordinates to discard elements. We use the distance as a black box. This
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algorithm 5: Parallel range searching on the LC

Input: A set of objects S, the list of clusters L with m centers, a query (q, r)d,
and t as the number of threads to process the database.
Output: The set of objects that satisfies (q, r)d.

1: Let Q[1, t] be a collection of empty sets
2: begin parallel execution
3: for all (c, cov(c), I) ∈ L (serialized access) do
4: Let h be a random number between 1 and t
5: if d(q, c) ≤ r then
6: adquire lock on Qh

7: Qh ← Qh ∪ {c}
8: release lock on Qh

9: end if
10: if d(q, c) ≤ r + cov(c) then
11: for all u ∈ I do
12: if d(q, u) ≤ r then
13: adquire lock on Qh

14: Qh ← Qh ∪ {u}
15: release lock on Qh

16: end if
17: end for
18: end if
19: end for
20: end parallel execution
21: return

�
1≤h≤t Qh

allows to work with the data disregarding its representation, all we need is
a distance function to index the data.

All experiments were performed in a workstation with Intel(R) Xeon(R)
CPU E5462 @ 2.80GHz, with eight cores (two quad-core processors), and
2GiB of main memory. The workstation runs the 9.8.0 Darwin Kernel.
All indexes and databases were stored in main memory. Our implemen-
tations was written in the C# programming language and on the Mono
(www.mono-project.com) framework.

Figure 4.1 shows the behavior of our parallel LC preprocessing step, for
several fixed bucket sizes (n/m). The left column presents results for the
Colors database, and the CoPhIR-1M result set is located on the right one.
The first row, the total construction time, is clearly improved using our
parallelized construction. The speed up varies directly with n, and the cost
of the distance function; and inversely with m. As n/m decreases (m grows
on a fixed n) the speed up for our indexes increase (Figures 4.1c and 4.1d, for
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Colors and CoPhIR-1M). This example illustrates the actual limits of the LC
on real world applications. The sequential implementation is quite costly,
since large high cost distances and large databases like occurs for CoPhIR-

1M. On these cases, our parallel techniques increase the chances that the LC
can be applied to large and high dimensional datasets. As we can observe
on the last row of Figure 4.1, our partitioning and joining policies have a
higher performance on large m and n values. The efficiency per core (the
ratio between the ideal performance over the real obtained) ranges from 15%
to 42% for Colors, and 43% to 71% for CoPhIR-1M. This difference is mainly
due to the cost of the distance function (208 coordinates for CoPhIR-1M vs
112 coordinates for Colors).

Figure 4.2 compares the performance of the parallel algorithm with re-
spect to the plain implementation. On the left side of Figure 4.2, the per-
formance of the LC parallel range search on Colors database. The speed up
reaches up to 4 times the serial version, holding a core efficiency close to
50%. On the right side of Figure 4.2 the performance of the parallel LC
range searching algorithm on CoPhIR-1M benchmark is studied. Here the
speed up is much better, since it achieves close to 85% of efficiency (an speed
up of close to 7, using 8 cores). The query time is drastically reduced as
shown in Figure 4.2b.

The performance of our parallel k-nn searching procedure is shown in
Figure 4.3. As expected, the speed up is higher on expensive distances, and
large m. Nevertheless, the efficiency of the parallelized algorithm is lower
than both preprocessing and range searching algorithms. We state that
this reduction in performance is a consequence of the need of global shared
information of R (since the final r∗ is unknown beforehand), Algorithm 6.

4.5 Summary

This chapter introduces a parallelization of the well known List of Clusters.
Up to the best of our knowledge, this is the first attempt to reduce the pre-
processing time of the LC using parallel techniques. We presented parallel
algorithms for the preprocessing step, range searching, and k-nn searching.
Our research objective is to bring support for high intrinsic dimensional
datasets and large databases.

In the construction step, notice that complex configurations achieve
higher speed ups. For example, CoPhIR-1M performances are better than
those obtained with Colors, right side and left side respectively of Figure 4.3.
This behavior is consequence of the higher distance cost (208 vs 112 coor-
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dinates), large m, and large n values. Also, we presented a parallel range
search algorithm for the LC. Achieving peak efficiencies (peer core) going
from 50% to 85%, for our testing databases. We remark that this difference
comes from the variations on the size of the database, and the cost of the
distance function.

On the downside, our k-nn searching algorithm has a lower performance
than the serial version, the probable reason is the global lock needed to
maintain the bounds of the searching radius. There is not doubt that more
work is required to improve partitioning and joining (i.e. locking) policies
for our algorithms. The large performing differences in our datasets show
that our locking policies are expensive (for example the bad behavior of our
algorithms on low-cost distances). For our immediate purposes, the speed
ups of this chapter are enough. Yet, these costs should be reduced, however,
a deeper study of parallel techniques is beyond the scope of this work.

In the following chapter, we introduce a new metric index dubbed as
Polyphasic Metric Index (PMI). PMI uses a set of Lists of Clusters metric
indexes as building blocks. This is the reason of the emphasis on improving
LC’s performance, allowing to the PMI index to be of use in practice.
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algorithm 6: Parallel k-nn searching on the LC

Input: A set of objects S, the list of clusters L with m centers, a query
k-nnd(q, S), and t as the number of threads to process the database.
Output: R as the k-nn set.

1: Let M [1,m] be a collection of tuples (d(q, c), c, cov(c), I)
2: Let Q[1, t] be a collection of empty sets
3: begin parallel execution
4: for all i = 1 to m (serialized access) do
5: M [i] = (d(q, c), c, cov(c), Ii)
6: end for
7: end parallel execution (wait for all threads to commit)
8: Sort M in ascending order using the first entry in the tuple as key
9: Initialize R as the first k centers in M (second entry in tuples).

10: Define r∗ = maxu∈R d(q, u), it dynamically follows R. {It is implemented
accessing the first entry in M [k]}

11: begin parallel execution
12: for all (d(q, c), c, cov(c), I) ∈ M (serialized access) do
13: if d(q, c) ≤ r∗ + cov(c) then
14: for all u ∈ I do
15: if d(q, u) ≤ r∗ then
16: adquire lock on R
17: R ← R ∪ {u}
18: remove the farthest item on R
19: update r∗

20: release lock on R
21: end if
22: end for
23: end if
24: end for
25: end parallel execution (wait for all threads to commit)
26: return R
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Figure 4.1: Performance of the parallel preprocessing of the List of Clusters
for our real world benchmarks.
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Figure 4.2: Performance of the parallel range searching algorithm. Colors

searches a radius recovering 0.02% of the database, and CoPhIR-1M recovers
0.01% of the database.
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Figure 4.3: Performance of the parallel k-nn searching algorithm



Chapter 5

Polyphasic Metric Index

5.1 Introduction

Proximity searching is a challenging problem since exact indexes (those re-
turning exactly the objects satisfying a query) have a linear worst case on
the size of the database, even when the query output set has O(1) size. This
behavior was described in Chapter 1.

In this chapter we introduce a new metric index very robust to the
intrinsic dimension growth, with very good tradeoffs among memory, real
search time, and number of computed distances.

In general, a metric index can be regarded as a partition of the space.
The index then guides the search by filtering some partition elements for each
particular query. The unfiltered elements are then exhaustively checked.
Our algorithmic idea is to use several indexes, several partitions, applying
the corresponding filters and then search in the intersection of all the non-
filtered partition elements. One key aspect of the above idea is to efficiently
implement union/intersection operations to quickly obtain the answer.

We propose novel algorithms for proximity searching, based on fast
union-intersection operations. Specifically, we introduce algorithms to solve
range and k-nn searches (Section 2.1). Our algorithm is optimal in the same
sense given by Samet et al. [Samet, 2006], where the cost of searching for
the k-nn is the same as the cost of a range search with the proper searching
radius.

Since our index is composed of several underlaying indexes, a basic re-
quirement should be to build on the better brick. We have to select the
better index, appropriate for intrinsically high dimensional data. Unfortu-
nately the options are scarce. The most robust indexes are expensive either

75
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in memory usage or preprocessing time (or both), as detailed below:

• AESA [Vidal Ruiz, 1986] need to store O(n2) distances. The cost of
construction is of the same order. Moreover, it requires a quadratic
number of arithmetic and logical operations at query time. If we count
the number of computed distances, the searching cost is O(1) but with
an exponential dependency on the intrinsic dimensionality.

• The List of Clusters (LC) [Chávez and Navarro, 2005], use O(n) inte-
gers for the index, and O(m) distance values, with m the number of
centers. In general, it requires roughly mn/2 evaluations of the dis-
tance, O(mn). Nevertheless, as explained by Chavez and Navarro [Chávez
and Navarro, 2005], high intrinsic dimensional datasets require n/m =
O(1) to be useful. Hence the LC needs O(n2) distances on the prepro-
cessing step. Its searching time is O(nα), for some α ≤ 1 dependent
of the database.

The above costs are even worst for our case, since we need to create
several metric indexes. In practice, this restrict us to low-cost indexes, in
both space and preprocessing time. Neither AESA nor the LC are suitable
for the task for the prohibitive construction time, also, the storage costs
definitely removes AESA as a possible backend.

Thus, we select LC as our building block, due to its speed and linear
number of identifiers, yet not using its optimal configuration n/m = O(1),
we focus on larger values, i.e., like m = o(n). We call this non optimal
construction of the LC as LC− to clarify the context. Furthermore, we
randomize the construction algorithm of the LC to provide different points
of view of the database. All these points will be cleared below. The storage
cost is already linear. We also provide a probabilistic model on the searching
performance of our index, and this is experimentally verified.

Summarizing our contribution, we obtain a powerful metric index with
O(n1+β) preprocessing time, O(nα) searching time, for α ≤ 1 and β <
1. Also, our index requires O(n) identifiers for a fixed dataset, or O(λn)
identifiers (λ ≥ 1) if the intrinsic dimension of the dataset is taken into
account.

One final remark is that our algorithmic proposal is general enough to
support any mixture of indexes, beyond our proposed modifications of the
LC. Moreover, the index may not be based of the triangle inequality, as will
be clear later.
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5.2 The Polyphasic Metric Index (PMI)

Let Λ be a collection of metric indexes of size λ = |Λ|. Each T ∈ Λ will
produce a partition ΠT of the database, as it is standard for metric indexes.
Li ∈ ΠT denotes the i-th part of ΠT .

We must encourage that most metric indexes fall on this categorization,
since all of them are based on equivalence classes as described by Chavez et
al. [Chávez et al., 2001]. Nevertheless, not all of them have a well described
structure that can be easily exploited. But due to its organization, the LC
naturally fits the methodology, since each bucket Ici is in fact a part. The set
of centers, C, can be seen as another element of the partition. The details
and definition of LC were described in Section 2.2.2.

We can take advantage of the representation of a metric index based
on the resulting partition to produce smaller metric indexes. The compact
representation will be tackeld in the next chapter.

5.3 Range Search

Solving a radius query (q, r)U,S,d requires the computation of the set of can-
didates, C. Then, exhaustively review C, dropping objects not intersecting
the ball radius r centered at q. C is the intersection of all CT , i.e. the can-
didate set of the underlying indexes T ∈ Λ. CT is computed retrieving all
partition elements not discarded by the triangle inequality, and then joining
them. Algorithmically speaking, the range search is a set union-intersection
algorithm. Formally, we must compute the following set operations.

CT =
�

L∈LT,(q,r)

L

Where LT,(q,r) is the set of all parts in ΠT such that the triangle inequality
cannot discard them. Finally, the complete candidate list is computed as

C =
�

T∈Λ
CT

Please notice that a center can be shared by some backend indexes,
specially whenm is large, such that the we can duplicate distance evaluations
against centers. We can select centers to be disjoint at built time. In our
implementation, we decide to use a simpler and flexibler solution: we add a
cache of distances per query such that a performed distance is only evaluated
one time. As expected, only centers can be optimized with this cache.
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Since we always need to compute the union, we cannot guarantee effi-
ciency in the worst case, then we prioritize real time performance using a
specialized union and intersection algorithm for our problem using the fact
that our lists are composed of integer identifiers. Additionally, the structure
of this algorithm is used to solve the k-nn searching with dynamic program-
ing, Section 5.4.

Algorithm 7 implements a fast Θ(
�

T∈Λ |CT |) union and intersection al-
gorithm. On the code, the array A is explicitly stored because n is not so
large in practice, i.e. a few millions at most. If the plain storage of A is not
feasible, it can be easily replaced by a hash table, the complexity holds on
average. The idea behind the algorithm is to perform the union of all ele-
ments of the partitions, per index, and then intersect these unions to obtain
a final candidate set C.

algorithm 7: Union-intersection algorithm

Input: LT,(q,r) for all T ∈ Λ, i.e. the set of buckets that cannot be discarded
using the triangle inequality.
Output: The candidate set C.

1: Let A[1, n] be an array of integers initialized to zero, each item has
�log (λ− 1)� bits.

2: for T ∈ Λ do
3: for L ∈ LT,(q,r) do
4: for u ∈ L do
5: if A[u] + 1 = λ then
6: C ← C ∪ {u}
7: else
8: A[u] ← A[u] + 1
9: end if

10: end for
11: end for
12: end for

5.4 Nearest Neighbor Search

Our algorithm is based on the best first strategy described in [Samet, 2006]
and our union-intersection algorithm (alg. 7).

The nearest neighbor algorithm is a sequence of range searches, such
that each query stretches the covering radius r∗�. Eventually the nearest
neighbor will be contained in the result set. Thus, the naive solution per-
forms many union-intersection operations, as required by the algorithm of
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range search. Fortunately, a cleaver algorithm arises noticing that subse-
quent range searches composed in terms of the previous ones, hence we can
use our union-intersection Algorithm 7 without losing the information of the
previous computations.

algorithm 8: Best first nearest neighbor search

Input: A query object q.
Output: r∗� = d(q, nn(q)) and q∗ = nn(q).

1: Let A[1, n] be an array of integers initialized to zero, each item has
�log (λ− 1)� bits.

2: Let q∗ be the best candidate at any moment of the nearest neighbor,
q∗ ← undefined.

3: Let r∗⊥ = 0
4: Let r∗� be the best guest at any moment of d(q, nn(q)), r∗� ← ∞.
5: while r∗⊥ ≤ r∗� do
6: advance bottom ← true

7: for T ∈ Λ do
8: {Inside next best both r∗� and q∗ should be adjusted if it is necessary.}
9: L ← next best(T )

10: for u ∈ L do
11: advance bottom ← false

12: if A[u] + 1 = λ then
13: if d(q, u) ≤ r∗� then
14: r∗� ← d(q, u)
15: q∗ ← u
16: end if
17: else
18: A[u] ← A[u] + 1
19: end if
20: end for
21: if advance bottom then
22: Increase r∗⊥ to the minimum radius such that at least another

candidate (in any T ∈ Λ) list will be available.
23: end if
24: end for
25: end while

Nearest neighbor queries are solved using Algorithm 8, here there are
three special variables, r∗�, r

∗
⊥ and q∗; r∗� is the best upper bound of the

covering radius for our query at any moment, r∗⊥ the best known lower
bound, and q∗ is the best known candidate to be nn(q). At the beginning,
r∗� = ∞, r∗⊥ = 0, and q∗ = undefined; at the end of the procedure, r∗� =
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r∗⊥ = d(q, nn(q)),1 d(q, q∗) = d(q, nn(q)), and q∗ is nn(q).
The objective of Algorithm 8 is to convert the nn search in a sequence

of range searches. In each internal range search the covering radius r∗� can
be reduced, while r∗⊥ is increased. The algorithm follows the constraint
r∗⊥ ≤ r∗�. Under the schema, the complication comes because we need to
perform several times the union-intersection operations over the same parts,
as required by the algorithm of range search. More detailed, let r∗⊥ be de-
composed in its steps in the algorithm, thus let r∗h⊥ be h-th value of r∗⊥ at
the h step. Since r∗1⊥ ≤ r∗2⊥ ≤ · · · ≤ r∗s⊥ , after s steps, then follows that
(q, r∗1⊥ )d ⊆ (q, r∗2⊥ )d ⊆ · · · ⊆ (q, r∗s⊥ )d. Fortunately, range searches can be
decomposed in terms of the previous ones, hence we can use our union-
intersection (Algorithm 7) since it stores in A the cardinality of the inter-
section of previous steps. So, while the algorithm advance on the partition
elements, it can arise new information testifying that the intersection exists.

Let us define next best(T ) as the procedure that returns at each call a
list not yet visited, such that this list intersects the current query ball, i.e.
(q, r∗⊥). It is necessary to remark that next best(T ) adjusts r∗� and q∗ as
needed. next best(T ) accesses L ∈ ΠT in the same order than consecutive
range searches (q, r∗⊥). So, at each step r∗⊥ is increased (Algorithm 8, line 22)
to the minimum necessary to obtain another L.

Please notice that the efficiency of next best(T ) is linked to the imple-
mentation. For example, when T is a tree, next best(T ) procedure should be
implemented using a stack to emulate recursive calls. Another point to be
careful is that objects of the partition ΠT should be in S \

�
T∈Λ T , following

that
�

T∈Λ T = ∅, i.e. ensuring that the machinery used to partition is not
indexed again, so, at most we review n items. The cache scheme presented
in section 5.3 is a flexibler alternative solution.

Example 5.1 (next best(T ) over a single pivot) Consider a pivot P ∈

S, inducing a partition ΠP , using a discretizing function g(d(P, u)) for each
u ∈ S.

The first step is to localize the list which can contain q with radius zero,
i.e. |g(d(q, P )) − g(d(u, P ))| ≤ g(r∗⊥) = 0. Then, r∗⊥ grows as necessary to
advance and retrieve the next promising list, e.g. g(r∗⊥) = 1. In the pro-
cess, both r∗� and r∗⊥ are adjusted. The process is repeated until both bounds
converges. Figure 5.1 depicts the advance of next best(T ), with |ΠP | = 8.
Please notice that this is the gross procedure to be performed by any pivot
based index.

1Ideally, r∗⊥ will stop in r
∗
� it could overrun r

∗
� since it advance in ranges.
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algorithm 9: The next best(T ) procedure. General steps to solve next best(T )

Initialize: Let LT,(q,r∗⊥) be the set of partition elements intersecting the ball
(q, r∗⊥).
Input: Let r∗⊥ ← 0.
Output: A set containing objects intersecting the current query ball.
Procedure: At each call it proceeds as follows:

1: if r∗⊥ > r∗� then
2: return ∅

3: else
4: if r∗⊥ was incremented then
5: Retrieve the necessary lists to complete LT,(q,r∗⊥)

6: end if
7: if LT,(q,r∗⊥) has not visited lists then
8: Let L be a not visited lists from LT,(q,r∗⊥)

9: Mark L as visited
10: return L
11: else
12: return ∅

13: end if
14: end if

Note 1: At any moment, if it is possible (e.g. at line 5), r∗� is better bounded
and the corresponding q∗ must be set.
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Figure 5.1: next best on a single pivot P . r∗⊥ and r∗top starts being opposite,
and finalizes when both converge.

Example 5.2 (next best(T ) for the LC) We first find out the order to
visit all lists. In the process r∗� is better bounded, and give an initial value
to q∗. This step consist in evaluate d(q, ci) for all ci ∈ C, sorting ci’s in
ascending order of |d(q, ci)− cov(ci)|, because this is the order to be accessed
while r∗⊥ increases. Section 2.2.2 shows the details of searching in the LC
metric index.

Searching for k-nn is implemented converting q∗ to a max priority queue
of fixed cardinality k. In this variation, both r∗⊥ and r∗� are bounding the
covering radius of the k nearest neighbor.

5.4.1 Expected Performance

The cost of solving a query, in computed distances, is linked to the expected
performance in the internal indexes. A rule of thumb is that every index
must provide a diverse (low correlated) set of candidates, such that

�
T∈Λ CT

is quite close to the query answer, i.e. items not being in the result set should
be discarded by at least an index in Λ.

Let PT,u be the probability that a random object u needs to be reviewed
for some query (q, r)d in the metric index T . In the same sense, define Pu for
our PMI. Considere that all PT,u for T ∈ Λ are independent probabilities,
then Pu =

�
T∈Λ PT,u. If each T has been built ensuring that PA,u � PB,u

for all A,B ∈ Λ follows that P λ
A,u. This suggest that we can improve our

search simply adding independent Λ indexes, arbitrarily decreasing Pu. This
simplification can be seen as a probabilistic lower bound in the computing
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of the probability Pu.
A more precise model will considere that probabilities are not indepen-

dent. Let us concentrate on candidate sets, such that Pu = |
�

T∈Λ CT |/n.
So, the lower bound of Pu is 0, i.e. empty intersection. On the other hand,
the upper bound is Pu = minT∈Λ |CT |/n. The probabilistic lower bound is
found for independent probabilities under the uniform distribution. But,
a more precise model may considere the dependency between objects, that
can appear in several ways. For example, let A and B be LC indexes, then
it is quite probable that one of the following cases arise:

• u is a center on A and v ∈ Iu, then if v is a center on B it is probable
that u ∈ Iv.

• u, v ∈ Ic for a center c on A, then if c� is a center on B, it is probable
that u, v ∈ Ic� .

• the most common case is that a query ball intersects with centers and
buckets such that the previous cases are extended to set of centers and
buckets.

This model is highly dependent of both dataset and queries, such that a
detailed model is very complicated. At this point, our remaining work can be
summarized as an attempt to find indexes being small, with fast searching
and fast preprocessing, compromising any index into an increasing of the
independence of the presented probabilities. That is the main reason of
revisit the list of clusters.

5.4.2 Revisiting LC

Also, we have observed that the LC searching algorithm straightforwardly
transformed into k-nn searching algorithm does not perform as expected due
to the last condition. The trick is not to greedily review internal items if the
covering radius (which is being stretched) indicates, but advance to external
ones. The buckets are reviewed at the end of the procedure, only those not
discarded after the evaluation of the m centers.

As explained in Section 5.4.1, our method requires a high diversity in the
partitions of the underlying indexes. Thus, we must promote this behavior.
The LC’s original algorithm does not specify the order to select centers, since
it does not make sense for it, but since our index requires a high diversity
on the order, see Section 5.4.1, the original construction does not helps for
our index, thus we introduce a new randomized LC preprocessing algorithm.
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We replaces the deterministic selection of the center by a random selection
of c ∈ S. This modification is implemented applying Knuth’s Fisher-Yates
shuffle to the set of identifiers. The complexity remains untouched.

As a rule of thumb, in high dimension datasets, an optimal LC will follow
that n/m = O(1), that is prohibitive for most real world applications. An
alternative strategy is to produce non optimal LCs (called LC−), such that
its preprocessing step would be cheaper, as we will experimentally show, this
non optimal construction does not affect our index since at the combination
of several LC− we obtain a much better index than an optimal LC.

Let m = O(logb n) for some b ≥ 1. Under this approach, we require close
to nm/2 = O(n logb n) computations of the distance function. If b = 1 then
we obtain O(n logn) time, similarly to the Vantage Point Tree or Burkhard-
Keller Tree [Chávez et al., 2001].

Another possible approach is to define m = O(nβ), resulting in a pre-
processing step of O(n1+β), and n/m = O(n1−β).

Example 5.3 (Gaining three orders of magnitude) Let n = 106, sup-
pose that m = O(logb n), specifically b = 2, and an involved constant of 2.52,
thus m ∼ 1000. Finally, nm/2 becomes 5×108, which is much smaller than
5× 1011.

The same preprocessing cost for the example’s configuration is found
fixing m = n1/2, such that n/m � O(

√
n).

Using these configurations, solving a query with a single LC− performs
more distance computations than an optimal LC. But, as experimentally will
be shown, our PMI reduces the number of distance computations over the
optimal LC. In the following sections, we experimentally verify our claims,
obtaining excellent tradeoffs among space, search time, and preprocessing
time.

5.5 Experimental Results

In order to describe the performance of our index we use several datasets;
some synthetic, and some generated from a real life process. Synthetic
databases are used to describe the characteristics of the LC (and LC−)
under controlled properties of the intrinsic dimension, and the size of the
databases. This datasets are randomly generated vectors in the unitary
cube (Section 1.3.3) On the other side, it is well known that real world
datasets differs from the randomly generated ones, since they exhibit clus-
tering properties. All queries consist of searching for the nearest neighbor
of a not indexed query object.
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n/m real time
1024 43 min
128 6 hours 5 min
16 53 hours 21 min

Table 5.1: Real time required for the construction step of the LC on CoPhIR-

1M

The running hardware and operating system are the same than those de-
scribed at Section 1.3. Recall that the build time is critical for the LC, since
it requires O(nm) distance computations, and high dimensional datasets re-
quire that n/m = O(1), we got a O(n2) distance computations. Under this
perspective, LC is limited to lightweight distances or small databases. Our
approach is based on exploit configurations m = o(n), such as m = O(nβ)
with some 0 < β < 1, and take advantage of several indexes, and the diver-
sity found in their partitions.

5.5.1 Build Time

Since we select LC− as our backend, particularly, we are interested on large
n/m setups (e.g. 1024, or 128). See Table 3.2. This implies that creating
several λ indexes is cheaper than create a single optimal LC. Furthermore,
as indexes are independently created, each index can be built in a separate
computer, and each computer can process a single index in parallel as pre-
sented in Chapter 4. Thus, our PMI requires λ LC− indexes, each one with
a cost of roughly mn/2 distance evaluations, and with a high performance
parallelization if the distance function is time expensive, as described in
Section 4.4. Table 5.1 shows the real time spent by the construction step.
We found a clear advantage on large n/m values, even multiplied by λ. So,
based on the results of Section 4.4, and Figure 4.1, the parallel algorithm
of Chapter 4 do not achieve its best performance because n/m is relatively
large. An better solution is to construct an independent single LC− per
core, using shared memory to store the database. This scheme achieves a
high efficiency per core (Table 5.1), while the number of threads does not
surpasses the number of available cores.

5.5.2 Searching Performance

The complexity measured as the number of computed distances is useful to
estimate the performance of other distance functions (with a similar prop-
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erties of the database, i.e., intrinsic dimensions and size of the database),
independently of a particular distance function or the running hardware.
On the other hand, the real time quantifies performance in practical appli-
cations. Thus, we are interested in both parameters.

Synthetic Datasets

Figure 5.2 shows the average number of computed distances for the nn query
in Random vectors (RVEC) datasets. The real time cost is depicted in Fig-
ure 5.3. Notice that curves with λ = 1 are equivalent to the LC’s expected
performance in the specified configuration. In this serie of figures, there
exists four variables:

• The bucket size (n/m). Fixed for figures in a row, we present three
different values. n/m = 16, this is a typical value for high intrin-
sic dimensional datasets, a value close to the suggested value of LC
(n/m = 12, Chavez and Navarro [Chávez and Navarro, 2005]). The
other two are 128 and 1024, those values are outside of a typical value
for LC, yet they are useful for the PMI for both high and low intrinsic
dimensions.

• The size of the dataset (n). Three different lengths where used, (250000,
500000, and 1000000), the parameter is fixed for figures in a column.

• The number of partitions (λ). A curve per value on each figure, go-
ing from 1 to 12. Some values where ignored to preserve clarity in
the figures, the behavior of missing values can be easily inferred from
surrounding curves.

• Dimension of the dataset. The horizontal axis of each figure is marked
with the number of coordinates on the RVEC dataset.

One of the biggest debacle on proximity search is its tight dependency
on the intrinsic dimensionality. All exact metric indexes are condemned to
degrade its performance as intrinsic dimensionality grows. One of the most
robust indexes is the List of Clusters, being of particular interest due to its
simplicity and linear number of identifiers required to be stored. Even on
this scenario, our PMI surpasses the LC’s searching performance, and using
larger n/m is useful for smaller intrinsic dimensionality. For example, all
points for dimension 24 in Figure 5.2, observe that for any dimensionality
the PMI is unbeatable (considering ), particularly for n/m = 128, where we
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need to review 20% of the database (RVEC-24-1000000), compared against
38% of the best configuration achieved with the LC (n/m = 16).

For lower dimensions, it is natural to select large n/m, for example,
the PMI requires λ = 2 and n/m = 1024 to review 0.3% of the database
for dimension 4 and n = 106. (Figure 5.2i), while the plain LC (λ = 1,
n/m = 16), requires to review approximately 10% of the database.

For smaller databases, RVEC-*-250000 and RVEC-*-500000, we have a
similar behavior than the one exposed by indexes on RVEC-*-1000000. Nev-
ertheless, while n decreases, the ratio of computed distances increases. This
behavior is specially evident as dimension grows. The reason is the expres-
sivity of vectors, that is, the density and number of regions that defined
with a given intrinsic dimensionality, and the size of a database. We must
notice that randomly generated datasets (with an uniform distribution) are
commonly harder to index than databases generated by a real world pro-
cesses. The key on this performance differences is the clustering properties
exhibited by real world datasets, since the intrinsic dimensionality inside
clusters is smaller.

Summarizing, a PMI with fixed (large) n/m with varying λ can be opti-
mized for an unknown intrinsic dimensionality (as is common in real world
datasets), or a query with unknown complexity. A simple way to do this, is
to increase λ until the number of expected candidates does not significantly
decreases between two consecutive λ values. We consider that the adaptive
searching algorithm of PMI is beyond the scope of this work.

On the other side, Figure 5.3 shows the real time taken to solve nn

queries. Here, the figures are not showing the same dramatic performance
enhancement than those found on the reduction of the number of distance
evaluations. The reason is that time performances also reflect the cost of
the union-intersection algorithms (computed distances plus the complexity
of the index), and some effects of the cache. Even with this time over-
head the speed up induced by PMI is captured by figures with n/m = 128
(fig. 5.3d, 5.3e, and 5.3f), and figures with n/m = 1024 (fig. 5.3d, 5.3e, and 5.3f).
As in review-ratio’s figures, the differences are more noticeable as n grows.

Real World Datasets

Figure 5.4 shows performances for our real world databases, Colors and
CoPhIR-1M. The experiment shows the dependency of the performance with
n/m, i.e. the main parameter of the practical List of Clusters, and both
average total (internal + external) number of distances and real time (Fig-
ures 5.4a and 5.4b) required to solve a nearest neighbor query. In this set
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of figures, the left column is dedicated to show the number of distance com-
putations, while the right one shows the real time expending to solve a nn

query. This experiment varies λ and n/m, over two fixed size datasets.
The LC’s index over the Colors database minimizes the number of dis-

tance computations n/m = 32, for larger n/m values, there exists a speed
up (distance computations and real time) for all λ values, remarkable those
larger than 128 and λ ≥ 4. On those setups, the cost is the close the half of
the best LC. Also, our PMI has a cheaper preprocessing time. On CoPhIR-

1M, the performance behavior is quite similar, but we must remark that
preprocessing time set an enormous difference since n = 106 and each vec-
tor contains 208 coordinates that implies a very costly preprocessing time.
The LC (λ = 1) is optimized at n/m = 128, on larger values all setups
are better than the single LC, in both number of distance computations
and real time, see Figures 5.4c and 5.4d. A similar performance is found at
n/m = 64, but we omit the point (and smaller values) since preprocessing
time is much larger and it does not improves neither LC nor PMI.

5.6 Summary and Perspectives

We presented a new metric index for general metric spaces called the Polypha-
sic Metric Index (PMI). Our PMI is more robust to the dimension growth
than the well known List of Clusters (LC), one of the most robust indexes
with small memory requirements. The central idea of our index is the usage
of several backend indexes, where each one respond with a set of candidates
containing the exact result set of the proximity query. So, the final set of
candidates is obtained by intersecting all individual sets. We choose the List
of Cluster index as backend index. This selection is driven by the fact that
the LC is a fast metric index, with an small memory footprint. Those prop-
erties are inherited by our index, and even when our index is composed of
several LC− backend indexes, their configuration allows a very fast prepro-
cessing time, far away from the O(n2) time required by the original version
of the algorithm. So, for example, when n = 106 we obtain faster searches
than the LC when m =

√
n computing close to n1.5 distances to construct

its internal indexes (in both real world and synthetic databases).
Due to the composite functionality of our index, it is possible to adjust

the number of indexes at searching time. Such that hard queries are solved
with a complex machinery (several indexes), and easy ones with light weight
ones.

The above scheme is easily adapted to discover the better PMI configu-
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ration for the (unknown) intrinsic dimension of a dataset and a query. Based
in our experimental evidence, configurations with large n/m are quite good
for small dimensions, and several backed indexes with this setup are useful
for high intrinsic dimensions.

Based on our experimental results, we conjeture that λ is a function of
the intrinsic dimension, and for a fixed intrinsic dimension, there exists a
maximum λ that makes sense. Yet, our algorithms can handle a unbounded
and dynamic number of indexes; such that Λ (and consequently λ) can be
adjusted at query level. Nevertheless, the adaptive selection of indexes for
a particular query is beyond the scope of this work, and should be explored
in a dedicated work.

We presented algorithms solving range and nearest neighbor queries,
which are new in its type. Both algorithms are based on set union and set
intersection operations, then we present a fast union-intersection algorithm.
Nevertheless, there is a place for optimization of our algorithms using better
set union-intersection algorithms reducing the overhead introduced by these
operations in the PMI. However they should be aware that those algoritms
must support partial intersections, since they are the core of our dynamic
programing nearest neighbor algorithm.

The biggest complication of the PMI’s approach is that the required
space is multiplied by λ, even when the LC− is a light weight index and
λ seems to be O(1) for a fixed dataset, we still concerned about the repre-
sentation requirements. Trying to reduce this problem, the next chapter is
dedicated to describe and test a new representation of a metric index (we
work on particular with LC, but the approach is general enough to approach
many other indexes). The new representation allow us to describe a lower
bound on the memory requirements of the LC metric index and properly
bound the PMI storage requirements. Finally, we will give an implementa-
tion reaching this lower bound without practical reduction of the searching
speed.
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Figure 5.2: PMI’s review of the database, searching for the nearest neighbor
with an increasing intrinsic dimension and several n.
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Figure 5.3: PMI’s real time performance on increasing intrinsic dimension
and increasing n on Random vectors (RVEC) databases. nn searching.
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Figure 5.4: Performance of the PMI on two real world datasets.



Chapter 6

Compressing Metric Indexes

On the previous chapter, we introduced a powerful metric index, outper-
forming the List of Clusters (LC), one of the faster metric indexes available
on the literature. We called it the Polyphasic Metric Index (PMI). It holds
a fast construction, and fast searching times. Also, the PMI has a small
memory footprint compared to pivot indexes, yet, it requires to store λ LC
indexes where λ is a small value dependent on the intrinsic dimensionality
of the dataset.

In this chapter, we find the minimum number of bits required to represent
an LC of a database with n objects, and a bucket size of n/m. However,
the techniques that we use to describe the structure of the index are general
enough to implement other metric indexes, yet we limit ourselves to LC
since the metric information is highly dependent of the particular index.

6.1 Introduction

As already commented, pivot based indexes suffer from excessive space com-
plexity, particularly those exhibiting smaller time complexities on high in-
trinsic dimensions. The extra memory is used on the allocation of a linear
number of distance values from all database’s objects to some selected object
called pivot. As proved by Chavez et al. [Chávez et al., 2001] the optimal
number of pivots is too large on high intrinsic dimensional datasets. This
limits its applicability only to small datasets due to memory issues.

A less memory expensive family is based on creating a set of compact par-
titions of the database. Although a smaller performance is expected, it can
be really competitive in some exponents, such as LC [Chávez and Navarro,
2005] and the M-Tree [Ciaccia et al., 1997]. Typically, an LC requires O(n)

93
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identifiers and pointers to represent the tree structure, i.e., O(n logn) bits
in a RAM machine. On practice, each identifier (and pointer) uses a word
machine (an integer of either 32 or 64 bits on a modern computer) plus the
memory to represent all results of cov(·) (Section 2.2.2). In this chapter, we
introduce a lower bound of the LC’s memory requirement on a database of
size n using m centers, (n − m) log nm

n−m + m log n
m bits. Also, we present

an implementation closely achieving this bound. Finally, we study special
cases of interest consuming less memory than the general lower bound.

Our indexes require half the memory space of the plain representation
for the studied datasets, without a neither preprocessing nor searching time
penalty. This achievement can be straightforwardly applied to the Polypha-
sic Metric Index.

6.2 Compressed Metric Indexes

Compression of exact metric indexes is a novel technique, at the best of our
knowledge, this is the very first attempt to compress an exact metric index.
However, there are some successful efforts trying to reduce the necessary
memory of metric indexes, mostly, the idea is to increase the number of piv-
ots to be kept on memory. Under this approach, we found the Fixed Queries
Array (FQA) [Chávez et al., 2001], and the Fixed Queries Trie [Chávez and
Figueroa, 2004]. Both indexes try to reduce the memory footprint of the
Fixed Hight Fixed Queries Tree (FHFQT) [Baeza-Yates and Navarro, 1998].

6.3 Revisiting the Data Structure

The next statements apply for most metric indexes, yet we focus our efforts
on the LC, since it is a good example of a successful index for high dimen-
sions. Also it is used as backend in our Polyphasic Metric Index (Chapter 5).

Let us recall the basic properties and operations of the data structure
behind the LC index. The preprocessing step must deal with the following
issues, Section 2.2.2.

(a) It recognizes the set of centers C, i.e., m objects selected from n possible
candidates. The original implementation uses O(m) machine words,
mostly for pointers.

(b) Each one of the remaining n − m objects is assigned to a bucket of
the m possible centers. The buckets are plain arrays (or linked lists)
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containing all n − m object identifiers. Each identifier requires logn
bits, in practice a complete word machine is used.

(c) The function cov(ci) is defined for each center, i.e. cov(ci) for all ci ∈ C.
In the original structure, it is stored as satellite data in LC’s nodes.
Each distance requires fd bits, the necessary bits to represent any value
of d. So, all responses to cov(·) are stored with fdm bits.

Our main focus is to reduce the space requirements of (a) and (b). Fi-
nally, (c) is stored in some convenient order.

6.3.1 Operations of the LC

In order to solve queries, any LC structure must be able to retrieve centers
(C) in the same order as seen by the tree, retrieve items being internal to
center c, i.e. Ic. Finally, solve cov(ci).

An alternative view of the data structure is as follows. Under an enu-
merated database from 1 to n, each object u is labeled according to issues
(a) and (b), as follows:

tag(u) =

�
0 if u ∈ C

i if u ∈ Ici
(6.1)

Let T = tag(u1) tag(u2) · · · tag(un) be the string composed of the con-
catenation of all labels in the order of the database. Each label will be
manipulated as a symbol. An array COV[1,m] is stored to solve cov(·), such
that COV[i] = cov(ci). The order of the centers is the one found at the
database.

6.3.2 Storage Requirements

As a consequence of our mapping, the main part of our index is a text T over
an alphabet Σ = 0, 1, · · · ,m of size m+ 1. Consider that ni is the number
of items labeled with symbol i, then the lower bound based on Information
Theory to store a string of length n using a unique code per symbol is as
follows.

log

�
n

n0, n1, · · · , nm

�
= log

n!�
i∈[0,m]

ni!
(6.2)

= nH0(T ) bits. (6.3)
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Thus, we require at least this quantity of bits to be able to represent any
possible instance of an LC with n objects and m centers. H0(T ) is the order
zero entropy of T . A more convenient formula is the following:

nH0(T ) =
�

i∈[0,m]

ni log
n

ni
bits. (6.4)

In the particular case of the LC with buckets of fixed size, all ni =
(n−m)/m are equal excepting for n0 = m,1 hence the following formulation
arises (all terms are representing bits).

nH0(T ) =
�

i∈[0,m]

ni log
n

ni
(6.5)

=
�

i∈[1,m]

n−m

m
log

nm

n−m
+m log

n

m
(6.6)

= (n−m) log
nm

n−m
+m log

n

m
(6.7)

≤ n logm bits. (6.8)

Equation 6.7 is important on datasets with large intrinsic dimension-
ality since n/m should be set to O(1), as pointed out by Chavez and
Navarro [Chávez and Navarro, 2005]. So, we can expect smaller represen-
tations of T , however, taking advantage of this feature is only possible for
very high intrinsic dimensions, where LC (and any metric index) are useless.
Inequality 6.8 establishes the worst case, which is smaller or equal than a
carefully implemented Plain LC, i.e., n logm ≤ n logn bits. Contrasting
with our representation, the traditional implementation uses a complete
pointer/integer (32 or 64 bits) in the machine instead of logn bits.

Now, T requires at least nH0(T ) to represent any possible instance,
under the stablished terms. We will show an efficient way to index T while
kept close to optimal storage.

6.3.3 Implementing LC Operations

Using an Index of Sequences (IoS), Appendix A, it is possible to represent
the desired structure in the promised space, nH0(T ) bits. Also, the primitives
of an IoS reproduce all operations required by the LC. Our functionality is

1Another exception could arise, since the last bucket can be smaller than others. How-
ever, without lose generality, we ignore this exception.



6.4. EXPERIMENTAL RESULTS 97

strongly based on Select operation, and lesser on Rank. Even when Access is
not necessary to reproduce the functionality of the LC, it is of great help to
certain applications. For example, those applications recognizing the neigh-
borhood of an object in a timeline induced by the database enumeration,
i.e., it retrieves what center is owning any given object.

LC’s operations (Section 6.3.1) are implemented as follows:

(i) Iterate over C. It is solved with Select(T, 0, r) for 1 ≤ r ≤ m.

(ii) Solving cov(ci) simply returns COV[i]. An unknown i can be computed
as follows. Let us suppose p = ci, then i = Rank(T, 0, p).

(iii) Iterate over Ici . The bucket related to center ci is retrieved as Select(T, i, r)
for 1 ≤ r ≤ Rank(T, i, n).

Additionally, we can retrieve the context of the i-th object, i.e., the
center identifiers around it, using Access(T, i ± j) for some j = 0, 1, · · · .
For example, in a serie of events in time, we can retrieve the kind of event
(denoted by the center covering objects) that precede and follow an incident.
This behavior is specially welcome in forecast and forensic applications.

6.4 Experimental Results

The running hardware, operating system, and conditions are the same than
those described at Section 1.3. Our datasets are Colors, CoPhIR-1M, and the
synthetic datasets of RVEC-*-1000000.

Please note that the compressing time is worthless compared against
the preprocessing time necessary by the LC index, then it is not reported.
Even when m is the parameter that determines the space requirements in
the worst case, the parameter n/m is the one managed by the LC in the
literature, thus, we select n/m in order to allow an easy comparison (and
extrapolation) against to previous work.

All memory costs figures shows two special curves, nH0 and n logm. The
curve nH0 depicts the theoretic lower bounds, as determined in Equation 6.7.
In the same way, n logm shows the necessary storage of the worst case for
the given n and m (Equation 6.8). Also, the number of distances performed
by the LC is common to compressed and uncompressed versions, so, this
performance is not important for our current study. Also, on figures showing
searching times, the differences among Plain and other methods show the
payment for the compression techniques.
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On high intrinsic dimensions, LC needs setups where m follows n, such
that the alphabet of our sequences is large. In contrast, our PMI requires
setups with smaller m, but in any case, all LC primitives are (consecutive)
Select based operations in our compressed representation. So, we require
an indexed sequence (IoS) with good support for large alphabets, and fast
Select implementation. Accordingly to Appendix A, the best IoS for our
problem characteristics are the following ones.

• Golynski et al. [Golynski et al., 2006], an uncompressed but fast index.

• Our family of indexes called Extra Large Bitmaps, specifically XLB-
SArray and XLB-DiffSet (B = 31, 63, 127, 255).2 We fix t = 16 for all
indexes and configurations (see Appendix A).

Memory Usage and Searching Times on Colors

Figure 6.1 shows the performance on Colors. Both curves (nH0 and n logm)
are pretty closer, showing the incompresible case exposed by LC.

The LC’s memory requirements for the Colors dataset is depicted in
Figure 6.1a. Here we observe that GMR06 and XLB-SArray have a similar
performance for n/m ≤ 256, after this point XLB-SArray produces smaller
indexes. Yet, this behavior is expected since GMR06 is specially designed
for large alphabets, while XLB-SArray performs well for many other setups.
Even when GMR06 and XLB-SArray achieves n logm bits, and in the case
of LC we obtain that nH0 � n logm. However, a great difference arises on
searching times, since GMR06 is not benefited of the pattern accesses of the
LC’s searching algorithms, contrary to most XLB indexes. On the other side,
XLB-DiffSet perform pretty well for large B (sampling gap, Appendix A).
However, XLB-DiffSet indexes does not improves over worst case indexes
(GMR06 and XLB-SArray), meaning that the Colors dataset does not has a
strong correlation between object’s position and closeness. This is the worst
case of XLB-DiffSet (uniform distribution), Appendix A, since for this index
the memory space is dependent of the relation between order and closeness.
For instance, let us permute the database and re-index the dataset again
(using our randomized construction, Section 5.4.2), such that the relation
between locality and closeness is increased, without obtaining the LC. The
resulting behavior is shown by Figure 6.2. In this figure, both GMR06 and
XLB-SArray still have the same memory cost. This effect is an evidence
that both structures do not improve on this kind of instances. On the other

2DiffSet is called DSet inside figures in order to reduce the size of labels.
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hand, XLB-DiffSet is adaptive to the instance, and its memory requirements
become smaller (on this case we obtain a 20% reduction). Please note that
searching times remain untouched, even on our smallest index (B = 255).
Also, a small speed up induced by a better locality patterns is present on
the permuted dataset, Figure 6.3.

Memory Usage and Searching Times on CoPhIR

On this dataset, the XLB-DiffSet indexes already show competitive perfor-
mances, as compared to XLB-SArray and GMR06, indicating a correlation
between locality and closeness. As expected, both GMR06 and XLB-SArray
have a similar performance on the memory usage. However, they hold a great
difference on the searching time. This difference is a consequence of the ac-
cess pattern of the LC (consecutive arguments on Selectc calls). As shown
in Appendix A (and by the performance of Colors), this pattern access is
not well handled by GMR06, and exceptionally good by most XLB indexes.

6.4.1 Performance on Synthetic Datasets

Figure 6.6 shows the performance of the compressed LC on synthetic datasets
with varying dimensionality. Searching times are grouped by bucket size,
i.e. n/m = 16, 128, 1024. For instance, Figure 6.6a shows the performance
for n/m = 16. Here, GMR06 has the slower times, as on real-world datasets,
and XLB-DiffSet shows its dependency on B (i.e. large B values produce
smaller indexes). This dependence on B is less noticeable on real-world
databases due to the correlation between distance and item location on the
database. As n/m grows the impact of B decreases, since the number of oc-
currences of each symbol is large (n/m to be precise). This is a consequence
of the O(1) amortized time of the consecutive Select operations, as shown
in Figures 6.6b and 6.6c.

Finally, the memory requirements of the compressed LC are shown in
Figure 6.7. Here, we fix n/m since the memory requirements seems to be
independent of the dimensionality. However, the value of n/m is already
dependent of the dimension. The figure shows curves for several sequences.
Each curve has three points for n/m = 16, 128 and 1024. The XLB-SArray
and GMR06 have the better performance, while XLB-DiffSet indexes have
higher memory requirements. These results suggest that XLB-SArray is a
good option on random datasets, since it achieves compression ratios of 60%
to 50% against the uncompressed LC.
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Figure 6.1: Performance of the compressed LC index for the Colors dataset.
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Figure 6.4: Performance of the compressed LC on the permuted Colors

database. The permutation was induced with an LC with n/m = 128.
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Figure 6.6: Searching times of the compressed LC index on RVEC-*-1000000
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6.5 Special Cases

The LC creates a partition of the database, that can be represented as
a string of symbols T , represented with nH0(T ) ≤ n logm bits using the
tagging function of the Equation 6.1. Any associated metric information is
independent of this representation, but they are easily linked and accessed
using sequence’s primitives.

We observed that the compression ratio of XLB-DiffSet is directly de-
pendent of the preservation of the order of the database. Thus, in the limit,
the LC does not permute the database since the order induced by LC is the
same than the order of the dataset, using log

�n
m

�
= m log n

m + O(m) bits,
i.e., the necessary bits to mark centers and store the size of the buckets.
Notice that this is the case of buckets of variable size on the LC. In this case
we save up fdm bits, since we do not need to store cov(·), while T requires
m log n

m +O(m) bits (that is, a single bitmap). On the other side, only fdm
bits are necessary to store COV if the bucket size is fixed.

It is unlikely that a database hold the same order than the LC, but it is
really easy to construct this instance. The procedure is as simple as permute
the database’s objects in the order of the LC, and finally rewrite T ’s LC with
the new order.

Unfortunately, this construction is limited to databases that allow to
change the order, that is not the general case, but a large number of appli-
cations actually can do it. Furthermore, this permutation largely improves
the performance of a secondary memory index, since it increases the locality
inside buckets, and reduces the primary memory requirements, i.e., fdm or
log

�n
m

�
bits.

6.5.1 Polyphasic Metric Index with Compressed Indexes

Chapter 5 introduces a fast metric index, called Polyphasic Metric Index
(PMI). In practice, it is composed of λ LC indexes. Even when each in-
dividual index is created with n/m much larger (e.g. n/m =

√
n) than

the necessary value for a single optimal LC (n/m = O(1)), its memory
requirements increases considerably (i.e. λ times). Using the compressed
representation of the present chapter, we are able to reduce significantly the
memory overhead of the PMI, while kept a fast preprocessing and searching
steps.

Table 6.1 and 6.2 show the compression ratio of several compression
methods (sequences) on five n/m setups on our real-world datasets. CoPhIR-
1M compression ratios are shown in Table 6.1, here we can observe ratios
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n/m
64 128 256 512 1024

GMR06 0.636 0.597 0.562 0.53 0.503
XLB-SArray 0.622 0.592 0.561 0.531 0.500
XLB-DiffSet B = 31 0.604 0.564 0.525 0.490 0.457
XLB-DiffSet B = 63 0.540 0.500 0.461 0.426 0.393
XLB-DiffSet B = 127 0.509 0.469 0.430 0.395 0.362
XLB-DiffSet B = 255 0.494 0.453 0.414 0.379 0.346

Table 6.1: Ratio between the plain representation of the LC and the com-
pressed ones on the CoPhIR-1M dataset

n/m
32 64 128 256 512

GMR06 0.60177 0.55752 0.52212 0.49557 0.48673
XLB-SArray 0.57522 0.53982 0.51327 0.47788 0.45133
XLB-DiffSet B = 31 0.55752 0.52212 0.47788 0.44249 0.41593
XLB-DiffSet B = 63 0.49558 0.45133 0.41593 0.38053 0.35398
XLB-DiffSet B = 127 0.46903 0.42478 0.38053 0.35398 0.31858
XLB-DiffSet B = 255 0.45133 0.40708 0.37168 0.33628 0.30974

Table 6.2: Ratio between the plain representation of the LC and the com-
pressed ones on the permuted Colors dataset
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from 0.64 to 0.35, for GMR06 with n/m = 64 and XLB-DiffSet B = 255 with
n/m = 1024, respectively. The effectiveness of XLB-DiffSet suggest a tight
relation between distance and item location. This relation allow us to create
very small indexes. For instance, we can create close to three indexes using
XLB-DiffSet B = 255 with n/m = 1024 (the smallest compression ratio)
on the same space required by a Plain LC. So, the compression drastically
reduces the PMI’s memory requirements, for example and index requiring
λ = 12 only multiplies the memory usage in a factor of 4 not 12 as on the
previous approach. Remarkably, datasets with a small intrinsic dimension
will require large n/m and small λ values, Figure 5.3, this can yield to
indexes even smallers than the Plain LC.

In general XLB-SArray is a good worst case solution, since it achieves a
good tradeoff between space and searching time. However, we can achieve
a better compromise with XLB-DiffSet if there exists a correlation between
the item’s location and the distance. This correlation does not necessarily
exists, yet we always can artificially increment this property as we did it
on the Colors dataset. Also, on the PMI, the following procedure can be of
help:

1. Permute the database by proximity using the LC itself, as demon-
strated for Colors. Notice that we obtain a much smaller index as
commented on the previous section.

2. For the resting λ− 1 indexes, we index them as usual yet using XLB-
DiffSet.

The first step actually increases the correlation between locality and
distance, and the second step takes advantage of this property to obtain
smaller (and faster) indexes, as shown in Figure 6.4 and Table 6.2. Finally,
when databases cannot be permuted it is impossible to avoid the storage of
the first LC (first step). The second stage should use the permutation of
the first step in order to obtain the desired properties.

6.6 Summary

In this chapter we tackle the compression of metric indexes, particularly, we
focus on the well known List of Clusters, i.e., the main building block of our
Polyphasic Metric Index (PMI), Chapter 5. At the best of our knowledge,
this is the first attempt to compress exact metric indexes. We state the
storage lower bounds to represent the index, our technique is to transform
the metric index into a sequence of symbols. Our method, is general and
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can be applied to metric indexes organizing the structure in disjoint classes
of equivalence (as most metric indexes, Chavez et al. [Chávez et al., 2001]).
Also, we reproduce all operations of the LC, and furthermore our repre-
sentation supports more primitive operations, like those being implemented
with Access.

Our representation has not noticeable speed payment, since compressed
representations take advantage of the memory hierarchy present in modern
hardware.

The compression problem behind the LC is quite complicated if modify-
ing the order of the database is prohibitive, since the underlying sequence
is compressed to H0. The cause is that buckets have the same length (or
similar size on fixed radius construction). Also, a higher entropy model Hh

cannot be used since we cannot ensure an appropriated context to exploit
this scheme. Even with this limits, our representation is smaller than half
the plain representation.

If we allow to change the order of the dataset, we obtain a very small
index of either mfd or log

�n
m

�
bits.

Finally, our PMI has a direct improvement with the compression of the
LC. The PMI requires λ indexes, but using compressed LC indexes reduces
memory requirements to λ(n log (m+ 1) + mfd) bits, in the worst case.
Thus, we obtain a smaller structure where the compression ratio against
the uncompressed PMI is of log (m+1)

logn , without a noticeable payment in the
searching time.
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Searching
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Chapter 7

Locality Sensitive
Classification

In this chapter we present a new representation for the Locality Sensitive
Hashing (LSH) index. This is our first contribution to the approximate
proximity searching indexes.

LSH is the industry standard for proximity searching tasks. It is a fast
approximate proximity searching technique giving probabilistic guarantees
on the quality of the result set. In practice, an LSH index applies a set of
hashing functions to the representation of an object to clustering proximal
objects, i.e., objects inside a cluster will be one another proximal with high
probability. Even that LSH is defined for general metric spaces, currently
the hashing functions preserving the required properties for any metric space
are unknown. Thus, hashing functions are based on the representation of
the objects. LSH is a powerful tool if the representation of an object is
available.

7.1 Introduction

In the literature, LSH indexes are typically organized as hash tables, such
that objects in the same bucket are closer under a distance function d with
high probability [Indyk, 2004; Andoni and Indyk, 2008; Gionis et al., 1999].

As commented, LSH offers quality guarantees if the hashing functions
hold some basic properties. Nevertheless, these guarantees are distance
based, not recall based. This is enough for several real-world applications.
Also, there exist a limit on the probabilistic guarantees that can be ensured
with a sigle instance of LSH. If higher quality is required, the simplest solu-
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tion is to use multiple LSH instances. In this context, high quality results
imply larger memory requirements. Our motivation is to reduce the space
requirements of high quality LSH indexes, while maintain a moderate time
overhead.

In this chapter we introduce a new representation of the Locality Sensi-
tive Hashing (LSH) indexes, for static datasets, with close to optimal stor-
age. Also, we extend primitives of LSH with the extraction of context of
a proximity search matches, without increase memory space. The idea is
to view hashes as labels on a classification process, such that items marked
with the same label will be proximal with high probability (in the same
sense that LSH does for items in the same bucket). The technique is similar
to that applied to compress the List of Clusters, Chapter 6.

Summarizing, the traditional hash table is replaced by a sequence T (in-
dexed with an index of sequences, Appendix A). Under this scheme, we
found several memory-time tradeoffs, and new interesting primitive opera-
tions.

7.1.1 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) is the default option for proximity search-
ing in most structured databases, as those described in vector spaces. LSH
is a fast index with tunable accuracy. It is simple to implement and it can
be used in very large databases and moderately high dimensions. But a
major disadvantage exists, since LSH needs a set of a hashing functions gi
with particular properties for each data model, and distance function. The
process of finding gi can be a hard problem by itself. Hence, LSH requires
an in-depth knowledge of the structure of the underlying metric space, and
indeed, of the database’s properties.

Definition 7.1.1 (Locality Sensitive Hashing, Gionis et al. [Gionis et al., 1999])
A family of hashing functions H = {g1, g2, · · · , gh}, gi : U → {0, 1} is called
(p1, p2, r1, r2)-sensitive, if for any p, q:

— if d(p, q) < r1 then Pr[hash(p) = hash(q)] > p1

— if d(p, q) > r2 then Pr[hash(p) = hash(q)] < p2

Where hash(u) is the concatenation of the output of individual hashing
functions gi, following a fixed order, i.e. hash(u) = g1(u)g2(u) · · · gh(u).

Let dmax be the maximum possible distance between objects in the met-
ric space; the probability that some gi computes the same hash for u, v ∈ U
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is determined as

Pr[gi(u) = gi(v)] = 1− d(u, v)/dmax

If hashing functions are defined independent, with replacement, and
equally probably to fail, we obtain

Pr[hash(u) = hash(q)] = 1− (d(u, v)/dmax)
h

In order to well defined LSH scheme, this formula should follow the proper-
ties of definition 7.1.1.

Example 7.1 LSH is naturally defined on Hamming spaces, here a hashing
function is simply defined as a randomly picked bit from the bit-vector, as
detailed by Gionis et al. [Gionis et al., 1999], Andoni and Indyk [Andoni
and Indyk, 2008].

Considere a binary Hamming space of height dimensions, and u, v, w ∈ U
defined as follows:

12345678
u = 10010101
v = 11010000
w = 01001101

Then, D(u, v) = 3, D(u,w) = 4, D(v, w) = 5. Let hash15 be the final
hash produced by family H15, that retrieve and concatenate the first and fifth
bits of an object. In the same way, we define hash74 (and H74). After the
application to our three testing objects we obtain

— hash15(u) = 10, hash15(v) = 10, hash15(w) = 01

— hash74(u) = 01, hash74(v) = 01, hash74(w) = 00

Under both families (H15 and H74) we classify u, v as equally items. Notice
that they are the real near neighbors. So, if we want to classify near neigh-
bors in the same equivalence class (defined by the equality of hashes) with
probability of 0.9, for u and v (i.e. d(u, v) = 3, and dmax = 8) h must be
log 0.1/ log 0.375 = 2.35.

In practice, without loose of generality, we can represent vector spaces
in Lp with integer coordinates, i.e., since we can multiply coordinates by
a sufficiently large integer. Then, we concatenate every coordinate repre-
sented as a fixed-size unary number finally L1 can be computed using the
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hamming distance. An explicit computation of the unary representation is
not required. Furthermore, the L2 norm can be embedded into L1 using
projections. In general Lp can be projected in any other Ls, for s < p using
random projections, as detailed by Gionis et al. [Gionis et al., 1999], and
Andoni and Indyk [Andoni and Indyk, 2008].

7.2 Sequence Representation

Consider the database S ⊆ U , S = {u1, u2, · · · , un}, and a family of hashing
functions H = {g1, g2, · · · , gh}, where h = |H| and gi : U → {0, 1}. A
tag of an object is defined as tag(u) = g1(u)g2(u) · · · gh(u). The set of
all possible values of tag(·) is called the alphabet, Σ = {0, 1, 2, · · · ,σ − 1}
where σ = |Σ| ≤ 2h. Even when tag(u) = hash(u), conceptually tag is an
atomic item (indivisible and recognized as a unit), and defines a sequence’s
symbol. Let us define T = tag(u1) tag(u2) · · · tag(un). We can store T using
log

� n
n1,n2,··· ,nσ

�
bits, where ni is the number of occurrences of the tag i in T .

Based on Information Theory, using an unique codeword per symbol, an
alternative lower bound on the storage of T is as follows:

nH0(T ) =
�

i∈Σ
ni log

n

ni
(7.1)

≤ n log σ (7.2)

The procedure is similar to the compressed representation of the List of
Clusters of Section 6.3.2.

This sequence can be represented with a Index of Sequences (IoS), Ap-
pendix A. The primitives of an IoS can reproduce all operations required by
LSH. Our functionality is strongly based on Selectc operation, and it has a
particularly large alphabet, i.e. O(n/σ) = 1. These both properties have an
important impact on the performance of our index, and in general of IoS,
as detailed on Appendix A.

7.2.1 Solving Approximate Nearest Neighbors with T

In short, a data structure for LSH needs to access to the clusters. In order to
solve a query the structure needs to count the number of items in a cluster,
and retrieve all items on it. Figure 7.1 shows a hash table of a fictitious
database of 16 objects. Each row is a cluster, represented by some hash

value.
In a way, T solves similarity queries using the same proximity properties

than LSH tables. Algorithm 10 solves the approximate nnd,S,U (q) queries.
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hash tag occurrences list
0000 0 → 11
0001 1 → 6, 12, 13, 14
0010 2 → 5
0011 3 → 7
0100 4 → 3, 10
0101 5 → 15
0110 6 → 4
0111 7 → 2
1000 8 → 1, 8, 9
1001 9 → 16

Figure 7.1: An example of the LSH hash table representation

The idea is of retrieving all items using Select marked with the computed
tag.

algorithm 10: Searching for the approximate nnd,S,U (q)

Input: The query q, the distance function d, and T .
Output: The approximate nearest neighbor nn∗(q)

1: Let c = tag(q)
2: Let nn∗(q) ← undefined

3: for i = 1 to Rankc(T, n) do
4: Define p as Selectc(T, i)-th object in T
5: nn∗(q) ← p if nn∗(q) is undefined or p is closer to q than the previous nn∗(q)
6: end for

The necessary operations on LSH are reproduced as follows.

— The number of items with the same hash is computed with Rankc(T, n)
(Figure 7.2b).

— All items with the tag are retrieved as Selectc(T, i) for i = 1, 2, · · · ,Rankc(T, n).

So, our implementation reproduces all basic operations of an LSH table.
Also, we introduce the SuccCtx and PredCtx operations, useful to recover
the context of an object on a time series application, defined as follows.
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
tag(ui) 8 7 4 6 2 1 3 8 8 4 0 1 1 1 5 9

(a) An LSC sequence T

Selectc(T, i)
1 2 3 4

Rank0(T, n) = 1 11
Rank1(T, n) = 4 6 12 13 14
Rank2(T, n) = 1 5
Rank3(T, n) = 1 7
Rank4(T, n) = 2 3 10
Rank5(T, n) = 1 15
Rank6(T, n) = 1 4
Rank7(T, n) = 1 2
Rank8(T, n) = 3 1 8 9
Rank9(T, n) = 1 16

(b) Reconstructing the LSH table

SuccCtx(T, 8, 4) = 4011
PredCtx(T, 8, 4) = 6213

(c) Retrieving context

Figure 7.2: An example of the LSH sequence representation LSH, and its
operations
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— SuccCtx(T, p, s) returns the s next tags after position p in T , that is, it
returns the string of labels SuccCtx(T, p, s) = Access(p + 1)Access(p +
2) · · ·Access(p+ s).

— PredCtx(T, p, s) returns the s previous tags before position p in T , i.e.,
PredCtx = Access(p− s)Access(p− s+ 1) · · ·Access(p− 1).

Those new primitives are of use in, for example, forensic and forecasting
techniques, that is given a set of ordered events (objects), those new primi-
tives retrieve the classification (hashes) of past and future events around a
given event.

7.3 Experimental Results

The running hardware, operating system, and conditions are the same than
those described at Section 1.3. We focus our attention on Audio dataset.
This dataset contains more than 55 million objects, and each object is a
bit-vector dimension 720. The intrinsic dimension is around 140. Details
are given in Section 1.3.3. Due to the large alphabet and our Selectc based
algorithms, we select three IoS (Appendix A) performing well under these
characteristics.

An important measure of the result quality is the recall, i.e. the number
of objects returned by the approximate algorithm being part of the exact
result set. If we want to preserve efficient searching times (one of our main
goals), the quality on LSH is proportional to the number of indexes. Fig-
ure 7.3 shows this quantification evaluated on hashing family functions of
different size (i.e. h = 16, 18, 20, 22), as a function of the necessary memory.
Each curve is composed of five points, from left to right, each point corre-
spond to indexes composed of 1 to 5 LSH instances. Each query consist on
objects at distance 26 of a database object (0.03 on the normalized distance).
Queries being farther yield to bad results. Nevertheless, our intention is not
to stress the LSH technique, but study LSH on domains being of interest to
most users.

Results obtained with a single LSH’s instance contain 60% of the real
results (when h = 16), 50% for h = 20, and a little more than 40% for h = 22.
On the other side, LSH achieves close to perfect recall on five instances, with
a clear inflection point on three instances. Here, GMR06 and XLB-SArray
maintain the better compromise with memory requirements. All figures are
validating this behavior, however the memory gain becomes smaller as h
increases. When h = 16, we obtain the smaller memory footprints and
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(d) h = 22
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Figure 7.3: Comparison between recall and the required memory on different
LSH families. The recall barely vary at each point because random H where
selected.

better recall, yet it has a searching time payment, as will be described on
advance. Also, when h = 22, the recall has a slower growth rate, and even
achieving faster searching times. For all h values, the compression ratio on
five LSH instances ranges between 70% and 80%. This improvement is of use
on practical applications since the Plain storage ranges 1050 to 1250 MiB
of memory, and this memory saving can be the difference on the possibility
of maintain indexes on memory or to create an on-disk structure.

Figure 7.4 mesures the quality from another perspective, the proximity
ration, i.e. the ratio between the obtained covering radius and the covering
radius of the exact result. The ratio ideally should be close to 1. So, while
memory increases, the proximity ratio decreases (with an improvement of
the result’s quality). This measure exposes the quality of results when the
exact result is not obtained (or not necessary as in the majority of practical
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Figure 7.4: Comparison between the proximity ratio and the required mem-
ory on different LSH families

applications). This is important since, our expected normalized distance
value is of 0.03. So, diverging 5 times, means a distance of 0.15, and this
difference becomes smaller as the memory increases. Thus, the response is
far from the mean, such that the retrieved object is on a small percentile of
the dataset, see Figure 1.1e.

Finally, the searching time is compared against the memory usage (Fig-
ure 7.5). Here, we find a great difference between GMR06 and XLB-SArray,
the smaller indexes. In short, XLB-SArray is several times faster (and a bit
smaller) than GMR06 because the operation patterns of our LSC increments
the number of cache’s misses, while the contrary occurs for XLB indexes.
This effect is well documented in Appendix A. Other alternatives, Plain
and XLB-DiffSet, are quite faster but hold a large memory footprint such
that their usage is limited to a pair of instances to be competitive against
smaller approaches.

It is clear than XLB-SArray is the best option for the LSC. However,
as in the Compressed List of Clusters (Section 6) the large memory cost of
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(a) h = 16
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(b) h = 18

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.0120

0.0140

 0  200  400  600  800  1000  1200  1400

se
ar

ch
in

g 
tim

e 
(s

ec
)

memory (MiB)

Plain
GMR06

XLB DiffSet
XLB SArray

(c) h = 20
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Figure 7.5: Comparison between the searching time and the required mem-
ory on different LSH families

XLB-DiffSet is because the location and the closeness is not related. XLB-
DiffSet is a very good option if a (strong) relation between location and
proximity can be ensured.

7.4 Summary

In this chapter we introduce a new representation for the Locality Sensi-
tive Hashing, where its proximity information is converted to a sequence of
hashes (tags). The proximity searching process is then transformed into a
set of IoS primitives. Remarkably, the new representation achieves space
close to the optimal one, with a surprisingly good searching times.

The new index was tested on environments with high quality require-
ments such that several instances were necessaries. Our approach demon-
strates to be a fast and small alternative compared to the traditional imple-
mentation. Nevertheless, as LSH does, the indexing is limited to databases
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with a well define structure, due to the requirements of the hashing func-
tions. Also, only a small difference on the queries is supported.

In the next chapters, we explore other techniques that are more robust
to the intrinsic dimensionality, and the remoteness of the nearest neighbors.
Also, those new approaches use abstract objects with a common distance
function acting as a black box, allowing proximity searching functionalities
for complex objects (e.g. objects without a fixed structure, or with a really
large number of coordinates), and complex distance functions as well.
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Chapter 8

Neighborhood
Approximation

In this chapter we introduce a new technique for approximate metric search-
ing, dubbed as Neighborhood Approximation (NAPP). Fixing the size of the
neighborhoods of NAPP we create the K nearest references (K-nr) frame-
work. This framework help us to produce several approximate metric in-
dexes, all of them holding excellent tradeoffs among preprocessing time,
searching time, result’s quality, and storage cost. Also, we describe several
indexes in the literature under the K-nr framework.

We provide an extensive set of experimental results, describing in depth
the behavior of the NAPP indexes on several real-world datasets and datasets
with controlled parameters.

8.1 Introduction

The general approach to solve any metric proximity problem (either range
or k-nn) is to map the objects in the original space into a simpler data space.
In the literature there are many examples of such representations. The first
generation of these representations used distances to selected points to map
objects [Chávez et al., 2001]. Recently, as described in Section 2.2.3, this
mapping shifted to an alternative representation using just the relative order
to a set of references. Here we generalize the last idea obtaining a new fam-
ily of indexes based on comparing references. We obtained several indexes
with competitive performances, with excellent tradeoffs between preprocess-
ing time, searching time, result’s quality, and space cost. Also, several of
the previous indexes based on comparing references are described with our

123
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framework.
We found that most of these indexes can be represented as a simple se-

quence of references. We index these sequences with an index of sequences,
Appendix A, obtaining simple and fast algorithms. Furthermore, most al-
gorithms of these indexes can be applied to the same sequence of references.
Such that a single index can be used with several searching techniques, al-
lowing to dynamically change the searching method as desired. We describe
those algorithms and present extensive experimental results.

8.2 Neighborhood Approximation

Most approaches described in the Section 2.2.3 are variants of the idea of
using permutations as object proxies. We will introduce a new formulation
of the technique which is more powerful and simple.

We call our approach Neighborhood Approximation (NAPP). In a way
NAPP is a generalization of the permutation idea and we believe it captures
the features responsible of the effectivity (high recall) of the permutations,
while simultaneously allowing a compact representation and fast searching.
We will reuse the notation of Section 2.2.3.

— A random sampling of the dataset S, R of cardinality σ � n, is dubbed
as the set of references. R is ordered.

— γ, the maximum allowed number of distance computations in the final
filtering step.

8.2.1 The Core Idea

We partition the space into a set of regions. Each region is represented by
an object of the database. An object representing a region will be called a
reference, and set R, is the set of all references, representing all regions.

Each object u ∈ U is represented by a set of objects, called the neigh-
borhood of u, defined as

Pu,ru = (u, ru)R,d

That is, the set of objects in R intersecting the ball centered at u of radius
ru. ru is a parameter to be discussed later. We assume Pu,ru to be an
ordered set. The default order will the proximity to u.

Now that the set of regions will act as database object proxies, just as
permutations did in permutation based indexes. We follow the same path:
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every object in the database is transformed into its neighborhood represen-
tation (a set of references) and to satisfy a query q we compute its repre-
sentation Pq,rq . As in any index, we will obtain a set of candidate objects
in S which need to be checked against the query. The list of candidates in
NAPP will be objects u such that Pu,ru ∩ Pq,rq �= ∅.

We believe the above framework captures the essence of the permutations
approach, yet it is simpler and provides an excellent tradeoff between space
usage, speed, and retrieval quality.

8.2.2 Retrieval Quality Considerations

Consider two objects q ∈ U , u ∈ S and their respective neighborhoods
Pu,ru , Pq,rq ⊆ R (see Figure 8.1). The next two observations follow immedi-
ately.

Observation 1 Let M = Pu,ru ∩ Pq,rq . If M �= ∅ then the distance d(q, u)
is lower and upper bounded as follows:

max
w∈M

|d(q, w)− d(u,w)| ≤ d(q, u) ≤ min
w∈M

d(q, w) + d(u,w)

Observation 2 If R ⊆ S and q∗ denotes the nearest neighbor of q in Pq,rq ,
then d(q, nnS,d(q)) ≤ d(q, q∗) = d(q, nnR,d(q)).

The upper and lower bounds depend on the selection of R. If R is dense
enough then Observation 2 becomes tighter. A final remark is that R
should have the same distribution of S. A rule of thumb is to have as many
references as one can handle without slowing down the process of comparing
q with the set of references (since we need to compute the distance between q
and all references), and select them uniformly at random from the database.

Figure 8.1 shows a bad case on the left, and a more realistic case on the
right. This is a core heuristic in our approximate technique.

The parameter ru defines a ball centered on u, and imposes several
problems around the technique. A large value imply large neighborhoods,
σ/|Pu,ru | = O(1). In contrast, small values can yield to retrieve empty sets
of references. Also, fixing the value to a global value is not convenient, since
large or empty Pu, ru sets will arise. A simple alternative consist on fix ru
to the covering radius of the K nearest neighbor of u in R. Thus, we al-
ways populate Pu,ru , and if K = O(1) then a small ru is expected. Using
K = O(1) simplifies the storage bounds, and in fact fix to a constant number
of integers per object, yielding to deterministic storage requirements.
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u uqq

Figure 8.1: An example showing shared references as proximity predictor.
Smaller balls are objects in S, bigger ones are references.

8.3 Proximity Searching with the K Nearest Ref-
erences

A simple way to tune NAPP is fixing the neighborhood radius to the covering
radius of the K-th neighbor on R. Thus, given some region Pu,ru we define
ru = maxw∈k-nnR,d

{d(u,w)}, such that Pu,ru = k-nnR,d. In advance, we
simplify our notation to simply our region notation to Pu, because K is
fixed.

Several different indexing schemata introduced recently in the literature
(see Section 2.2.3) can be understood and analyzed with the common frame-
work introduced here. The informal idea is to map the metric space to an
alternate space, that is easier to search than the original space.

We call this alternate space the K Nearest References space (K-nr space).
In the preprocessing stage, each database object is mapped to the K-nr space
using a set of references. The query object is also mapped to the K-nr space
and relevant objects are detected and reported for a subsequent verification.

Formally, our framework is composed by the tuple (encode, sim,K,R):

• R denotes a finite subset of objects randomly selected from the database
S (i.e., R ⊂ S) the reference objects, such that |R| = σ � n.

• K is the parameter to compute K-nnR,d(u), i.e. theK-Nearest-Neighbors
of u on R.

• encode is a function mapping an ordered set into an abstract set
Û . The domain U is converted to the K-nr space as: Û = {û =
encode(K-nnR,d(u)) | u ∈ U}. We can extend encode to a whole set of
objects in the usual way.
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• Finally, a similarity function sim : Û × Û → �.

The composition of encode and sim need to be a contractive mapping,
in other words proximity in the original domain U using d(·, ·) should imply
proximity in the mapped domain Û under sim(·, ·). This procedure is usual
on other metric techniques like pivots. The detailed analysis is provided by
Chavez et al. [Chávez et al., 2001]. More or less, the same properties are
followed by other approximate metric indexes [Chavez et al., 2008; Tellez
et al., 2009, 2011b].

Since R is a finite set it can be well ordered as R = r1, r2, . . . , rσ and we
can identify the objects in R with the respective indexes (r1, r2, · · · , rσ) ↔
(1, 2, · · · ,σ).

Within this framework a search is done by following this steps

1. Map the query to the K-nr domain.

2. Search for the closest γ candidates using sim in the mapped space.

3. Verify γ candidates using d in the original space.

The number of candidates γ is a parameter governing the ratio speed/recall.
A large number of candidates increase the recall, and slow down the query
time. This parameter is determined for each dataset and the desired number
of neighbors (k-nn) for a particular task.

8.4 Describing Existing Proximity Indexes using
K-nr

Our framework captures the behavior of at least four different indexes found
in the literature, namely, the Permutation Index (PI) [Chavez et al., 2008],
the Brief Permutation Index (BIF) [Tellez et al., 2009], the Metric Inverted
File (MIF) [Amato and Savino, 2008], and the PP-Index [Esuli, 2009]. In
the next paragraphs, we briefly describe those indexes.

8.4.1 Permutation Index (PI)

PI is the first K-nr index reported in the literature (see [Chavez et al., 2008]).
The main idea behind the PI is to capture a descriptive perspective of the
metric space. Instead of using the distances to a fixed set of pivots, as it
it customary in some type of indexes, they care about the relative order of
a reference set. The reference set is called the set of permutants. Every
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database element is transformed into a permutation and proximity is hinted
by a distance between permutations.

Within our framework we need to describe (encode, sim,K,R) for this
index. Here R is the set of permutants, K = σ, the encoding encode is
some permutation and sim is a Minkowsky distance over the inverse of the
permutation.

Let R = {x1, x2, · · · , xσ}. Let Ru the set R ordered by distance to
u ∈ U (with ties broken arbitrarily, but in a consistent order). This define
a permutation of the indexes of the set R. This permutation will enconde
u, hence encode(u) = Πu = (i1, i2, · · · , iσ) and sim(encode(u), encode(v)) =
||Π−1

u −Π−1
v ||1 will be the L1 distance between the inverse of the respective

permutations taken as integer vectors.

In order to analyze the complexity of PI, note that Πu requires the
computation of σ distances and then sorting the distances, this implies O(σ)
operations if the distances are integer, and O(σ log σ) if the distances are real
(because a comparison based sort is needed). To obtain the candidate list
we need to compute the distance sim(q̂, û) for all u in the database, this will
cost O(nσ) arithmetic operations. Finally, the space complexity requires σ
items to be represented. The required memory is of at least nσ log σ bits.

8.4.2 Brief Permutation Index (BPI)

This index is inspired by the PI above. The key difference is the encode and
sim functions. Let Π−1

u = (i1, i2, · · · , iσ) be the inverse permutation of the
indexes of the set R = {x1, x2, · · · , xσ}. The encoding of u returns a binary
vector (a1, a2, . . . , aσ) where

ai =

�
1 |Π−1

u [i]− i| ≥ m

0 otherwise
. (8.1)

with m a tuning parameter [Tellez et al., 2009] controlling the perfor-
mance of the index.

Finally, given that encode returns a binary vector a natural definition of
sim is the Hamming distance between the respective encodings.

The complexity of coding an element is of the same order of PI, i.e.,
O(nσ), the gain in speed comes from computing sim as a Hamming dis-
tance. Let us assume that w is the size of the computer word then the
computational cost of each distance sim is O( σ

w/2) using an additional table
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of size 2w/2 to pre-compute Hamming distance.1 That is, the complexity of
BPI is O(n σ

w/2).
The space usage footprint is very small: a single bit is produced by each

reference. So, it requires nσ bits for the entire mapping.

8.4.3 Metric Inverted File (MIF)

This index is also based on the PI. The algorithmic contribution of MIF [Am-
ato and Savino, 2008; Chavez et al., 2008] consist in an improved method
to compute an approximation to the L1 distance originally used in the PI.
This improvement allows to compute this distance approximation to all the
database object representations e(encode(q), encode(u)) at once. To achieve
this, only a fixed number (K) of references are used to compute the dis-
tance between object representations. The missing references will add a
fixed penalty each one.

More precisely, from R we select the K closest objects to the query
q, using K � σ. Then each one of this objects are located in all the
permutations to compute the distance. Since not all pairs will be found
when using only a subset of the permutations, a fixed penalty is added.

Let (r1, . . . , rK) the closest references to q. Let encode(u) = Πu and
encode(q) = Πq. The distance between representations is computed as
e(encode(u), encode(q)) =

�
ai with ai defined as follows

ai =

�
|Π−1

u [i]−Π−1
q [i]| if rai belongs to the K objects retrieved

σ/2 otherwise
, (8.2)

where rai correspond to the ai-th object in R.
The nice thing of this schema is that it can be implemented using an

inverted file [Baeza-Yates and Ribeiro-Neto, 1999; Witten et al., 1999]. The
set R is used as a thesaurus and list of tuples (ai, i) or (reference, position)
are used as posting lists [Amato and Savino, 2008]. In this data structure,
we need to store only the K tuples (ai, i) such that ai ∈ K-nnR,d(u).

The computational cost to represent each object is equivalent to PI;
however, in this case the plain mapping (without inverted index repre-
sentation) requires Kn logKσ bits i.e., each object requires K tuples of
(reference, position). These tuples are sorted by reference (adding an ad-
ditional sort over K items). The candidate list requires n evaluations of

1When w = 32 this scheme produces tables of 216 entries of 5 bits each one, i.e.
log (w/2 + 1) bits in general. For very large w one needs to divide w in smaller pieces.



130 CHAPTER 8. NEIGHBORHOOD APPROXIMATION

the partial Spearman Footrule distance which requires in the worst case
O(K) and in the best scenario it takes O(1) time. Please note that when
the objects are not related the best scenario (or something close to it) is
frequently found. This yields a worst case of O(nK) and a smaller average
worst case for obtaining the candidate list. Using an inverted index, requires
Kn log(Kn) bits of space, and the total cost is driven by the cost to obtain
the candidate list and O(γ) distance computations.

8.4.4 Prefix Permutations Index (PP-Index)

The encode function used in PP-index [Esuli, 2009] is equivalent to the one
used in PI; however, here one treats the result of encode as a string with
a word size of K. Here sim measures the similarity using the length of the
shared prefix, such that a long shared prefix means high proximity and a
zero length prefix reflects low proximity.

This stringent notion of closeness yields to low recall (ranging from 0.3
to 0.5) [Esuli, 2009]. In contrast, it is really fast and can be represented
efficiently using a compressed trie data structure [Baeza-Yates and Ribeiro-
Neto, 1999; Witten et al., 1999].

The computational cost of this index is similar to MIF; however, the
constants here are smaller and the best scenario (for sim) is even more
frequent in the PP-Index than in the Metric Inverted File.

8.5 Using the K-nr Framework to Create Proxim-
ity Indexes

The use of K-nr framework to describe the existing proximity indexes allows
to highlight the difference between these indexes. As mentioned previously,
these difference can be easily explained in terms of R, encode, sim and K.
Furthermore, it is evident that only a few combinations of the parameters
have been explored so far, once detected the correct parametrization of the
algorithms a very large number of alternatives can be discovered. In this
section, we start filling this gap by proposing a number of novel proximity
indexes.

Function encode maps each element of the database to another data
model (e.g., the PI transform elements into vectors). Given this charac-
teristic, we decided to group the new proximity indexes according to the
data model of the mapped space. So far, we have seen that encode maps
to vectors (e.g., PI) and to strings (e.g., PP-Index). In these data models,
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we tested the behavior of the index when different sim and small variations
over encode are used.

Both vectors and strings are ordered sets. One natural generalization is
to use sets for the encode function. This data model will be tested as well
in the experimental section. Below we give the details of the new proximity
indexes.

8.5.1 Vectors

For vectors we tried two different distance functions: the first one sim equals
to Spearman ρ (L2 over the inverses) for prefixes of permutations, and the
second sim is the cosine between the σ-dimensional vectors.

The cosine similarity is evaluated as:

simC(u, v) =

�σ
i=1

s(ri, u)s(ri, v)��σ
i=1

(s(ri, u))
2

i ×

��σ
i=1

(s(ri, v))
2

i

(8.3)

Where dmax is the maximum (possible or found) distance, ri the i-th
object of R, and s(a, b) = 1− d(a, b)/dmax.

Hence in K-nr cosine, encode(u) stores the sparse vector û, defined by
the tuples: û = {(i, 1−d(ri, u)/dmax) | ri ∈ K-nnR,d(u)}, which can be imple-
mented easily with an inverted index implementing the TF-IDF model [Baeza-
Yates and Ribeiro-Neto, 1999]. When the references are not in the sparse
vectors they are represented as zero values and can be skipped from com-
putation. This allows s to be implemented quite fast using a inverted index
and set union algorithms.

The time complexity is on the same order of magnitude than Spearman
Footrule; but the space complexity is nK(log σ + fd) bits, where fd is the
number of bits required by floating point numbers. Using an inverted index
increases the required space to nK(logn+ w) bits.

8.5.2 Strings

We use two distance functions on the mapping build by PP-Index’s encode
function. These two distance functions are the Levenshtein (edit distance)
and the Longest Common Subsequence (LCS).

The edit distance between two strings a and b is the minimum number
of edit operations (insertion, deletion, or substitution of a single symbol at
a time) needed to transform a into b (or viceversa, since its symmetric).
The LCS is defined as the length of the longest common subsequence be-
tween a and b and can be found by allowing only insertions and deletions
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as edit operations on Levenshtein’s distance. Both distances are computed
using dynamic programming, so the complexity of computing any of them
is O(K2). We refer the reader to [Navarro, 2001] for a complete description
of these distances. The space complexity is nK log σ.

8.5.3 Sets

Here we push the K-nr idea even further by eliminating the requirement of
sequences being in the same order. Proximity will be hinted simply by the
number of shared references. This is at the same time more simple and more
efficiently computed. Each object in the database will be represented by the
set of its nearest references, among a relatively large set to choose from. We
will use the unordered K-nnR,d(u) as the set representing u.

In this space, we decided to test three different sim functions: Jaccard
distance, Dice coefficient and the cardinality of the intersection. Let û and
v̂ two sets, Jaccard is defined as dJ(û, v̂) = 1− |û ∩ v̂|/|û ∪ v̂|, this distance
gives values between [0, 1] where 0 means equality and 1 means disjointness.
Dice coefficient is computed as dD(û, v̂) = 2|û ∩ v̂|/(|û| + |v̂|) where a zero
value means disjointness. It is important to note that both Jaccard distance
and Dice coefficient are used in many information retrieval tasks [Grossman
and Frieder, 2004; Baeza-Yates and Ribeiro-Neto, 1999].

The computational cost is equivalent to MIF; however, this representa-
tion requires simpler operations since the only operation needed is the union.
The space complexity is smaller too, it is O(nK log(σ)) bits.

8.6 Indexing K-nr Sequences

The indexes described above need a proper implementation to be useful.
In this section we describe the details needed for achieving that. A data
structure must sit behind computing sim(encode(u), encode(q)) for all u. A
sequential computation of every pair (u, q) does not scale on n, so, we require
an index to skip unnecessary computations. In the same way, we care about
the amount of space used to store the index.

If the set of references R is seen as an alphabet then û can be con-
sidered as a string. Let T be the concatenation of all K-nr sequences, i.e.
T = û1û2 · · · ûn. Each ûi ∈ RK hence T ∈ RN with N = Kn. A plain
representation of T needs N log σ bits. Using an unique codeword for each
symbol, T can be represented optimally using H0(T ) =

�
c∈R

Nc
N log N

Nc
bits,

where Nc is the number of occurrences of c in T . This is the entropy of order
zero of T , as typically defined for general sequences [Navarro and Mäkinen,
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2007]. The result is that T requires at least NH0(T ) bits to be stored.
In the worst case, when a uniform distribution is found, i.e. Nc = N/σ,
nH0(T ) = N log σ bits.

A sequence can be represented in close to optimal space and with high
performance operations with a Index of Sequences (IoS). An extensive list
of IoS are reviewed in Appendix A Appendix A. The primitives of an IoS
are the following:

• Rankc(T, pos) counts how many c’s occurs in T until pos, c ∈ Σ.

• Selectc(T, r) returns the smaller position pos such that Rankc(T, pos) =
r.

• Access(T, pos) retrieves the symbol stored at the position pos in T .

Using this primitives we are able to implement the majority of the K-nr

searching algorithms.

8.6.1 Algorithms

Let P = p1 · · · pm be a sequence, m ≤ K, the following algorithms are
considered as basic operations in our K-nr procedures:

— FindSubString(T, P ). Retrieves all object identifiers, as K-nr representa-
tion, containing P as substring. We change the substring problem for a
conjunctive query as follows. Let Li,c be a sorted list, where each item
is defined as Li,c[j] = Select(T, c, j) − i + 1. The problem is a conjunc-
tive query, i.e., L1,p1 ∩ L2,p2 ∩ · · · ∩ LK,pK . Recently many fast solutions
to the set intersection problem have been studied, the interested reader
is referred to the recent surveys [Culpepper and Moffat, 2010; Barbay
et al., 2009; Baeza-Yates and Salinger, 2010]. Notice that if P is located
between two sequences, the occurrence must be ignored, hence false pos-
itives will not appear.

— Count(T, c) or Nc. It returns the number of occurrences of the symbol c
in T . It is computed as Rank(T, c,N).

MIF, K-nr Spearman Footrule and ρ

Algorithm 11 computes the K-nr Spearman Footrule (with an straight-
forward adaption to Spearman ρ). Here the accumulator A incrementally
computes all partial Spearman Footrule distances, using D+ values. MIF is
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algorithm 11: K-nr Spearman Footrule / MIF prefixes algorithm with an IoS

Input: The query k-nnS,d(q), T the sequence representing Ŝ, ω the penalty
constant, and the number of candidates γ.
Output: The set of candidate objects C.

1: Let q̂ = K-nr(q).
2: Let C ← ∅.
3: Let A be a hash table storing pairs (object identifiers, accumulated distance).
4: for all r ∈ q̂ do
5: for all s = 1 to Count(T, r) do
6: Define pos = Selectr(T, s)
7: Define objID = pos/K
8: if A contains key objID then
9: Define D− = Kσω

10: else
11: Define D− = A[objID]
12: end if
13: Define D+ = |r − (pos mod K) + 1| {+1 since sequences are starting on

index 1}
14: A[objID] ← D− +D+ − σω
15: end for
16: end for
17: Linearly sort A by value, and store the γ top candidates on C.



8.6. INDEXING K-nr SEQUENCES 135

implemented with an explicit inverted file, so it requires at least Kn lognK
bits, and it is implemented padding logn to the machine word (32 or 64
bits), and logK to a 16 bit integer. In contrast, our sequence based index
requires space close to Kn log σ bits (plus some small order terms). The
time complexity is

�
r∈q̂ Count(T, r) plus the γ distance computations.

PP-Index and K-nr Prefixes

algorithm 12: K-nr prefixes / PP-Index algorithm over the IoS

Input: The query k-nnS,d(q), T the sequence representing Ŝ, and the number of
candidates γ.
Output: The set of candidate objects C.

1: Let q̂ = K-nr(q)
2: Let Q be the list of all prefixes of q̂ from shortest to the largest one i.e.

q̂1, q̂1q̂2, . . . , q̂1 . . . q̂K
3: Let C and C� starts as two empty sets.
4: for all p ∈ Q do
5: C� ← FindSubString(T, p)
6: Delete all items s ∈ C� such that s mod K �= 1
7: if |C�| < γ then
8: Break the loop and let C ← C� if C is empty.
9: end if

10: C ← C�

11: end for

Note: After the first iteration C contains the result of the previous intersections,
thus C should be used by FindSubString instead of recompute the intersections.

After the ith call of FindSubString in Algorithm 12, C contains the result
for the i − 1th call, so we can speed up the computation of FindSubString
computing the intersection of the new symbol in p using the previous C.
With this small change, the cost is the same that computing the intersection
of K − 1 pairs, i.e. (· · · ((L1,q̂1 ∩ L2,q̂2) ∩ L3,q̂3) ∩ · · · ) ∩ �LK,q̂K . In the worst
case, all Count(T, qi) are equal, Count(T, qi) � N/σ, and the intersection
does not reduce the cardinality of C, so the number of comparisons to find

C is (K − 1) · O
�
log

�
2N/σ
N/σ

��
= O(K2n/σ). In our IoS implementation we

actually should care about the number of calls to Select, nevertheless this
number is closely related to the number of comparisons.
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Set K-nr

Our indexes support set theoretic operations, i.e. union and intersection
of q̂ and û, with the sequence representing a set collection. Defining Gc

as Gc[j] = �Select(T, c, j)/K� we can translate de problem to set union.
Since we only care for counting the cardinality of the intersection |q̂ ∩ û|, it
is enough to compute the cardinality of the union in our Gc lists because
|q̂ ∪ û| = |q̂|+ |û|− |q̂ ∩ û|, and |q̂| = |û| = K is fixed.

Counting union/intersection cardinality can be used as a filter, but actu-
ally computing them requires to visit all the items in the list. This coincide
with the worst case complexity of the intersection. For this reason we use a
simple dictionary based procedure. Algorithm 13 shows the basis for the all
set K-nr methods, which is counting the size of |q̂ ∩ û|, which in turn consist
in counting the union using Gc, for all c ∈ R, in the representation of T .

algorithm 13: Procedure to retrieve at least γ (if available) promising objects

under the intersection cardinality

Input: The query k-nnS,d(q), T the sequence representing Ŝ, and γ (the number
of candidates).
Output: The set of candidate objects C.
Pseudocode:

1: Let Q[1,K] be a list of empty sets
2: Initialize C as an empty set.
3: Let H be an empty dictionary mapping object identifiers to an integer

accumulator. Undefined keys are mapped to 0.
4: Compute q̂ as K-nr(q)
5: for all p ∈ q̂ do
6: for all s ∈ Gp do
7: H[s] ← H[s] + 1
8: end for
9: end for

10: for all (docid, cardinality) ∈ H do
11: Q[cardinality] ← Q[cardinality] ∪ {docid}
12: end for
13: for all cardinality = K down to 1 do
14: C ← C ∪Q[cardinality]
15: break the loop if |C| ≥ γ
16: end for
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K-nr Levenshtein and K-nr LCS

Here the problem is to find all the (sequences representing) u which are at
most κ edit operations from the representation of q. It is possible to filter
the collection by using set operations, the number of shared references serve
as a bound to the number of edit operations. The basic procedure is similar
to Algorithm 13.

Let ED(q̂, û) be the edit distance between the representations of q and
u respectively. We want to retrieve every u such that ED(q̂, û) ≤ κ. This
implies |q̂ ∩ û|− |q̂ ∪ û| ≤ 2κ, and hence objects violating this condition can
be excluded from comparison. In practice this procedure saves a very large
number of edit distance operations. This is a costly operation, since each
candidate sequence is retrieved using K calls to Access.

A fast searching algorithm for the list of candidates C requires κ < K,
i.e. (|q̂ ∩ û| − |q̂ ∪ û|)/2 ≤ κ < K. If we allow κ = K, then û will be
candidate even if |q̂ ∩ û| = 0. Supporting equality of K makes sense if we
want to approximate ED(·, ·), but this implies considering non intersecting
sequences. In other words, we want to avoid giving unrelated sequences
the same rank. Take for example accepting ED(01234, 34567) = 5, and
rejecting ED(01234, 56789) = 5. Even when both pairs of sequences have
the same edit distance, the former pair is more likely to be related. The
same arguments are valid for LCS, providing a good filter for both methods.

8.6.2 Final Notes on Creating K-nr Indexes

It is quite tempting to extend string and set K-nr methods to other combi-
nations of substring matching and proximity indicators. This exercise will
be excluded from this thesis because of the combinatorial explosion in con-
sidering all the options in the experimental part. We will show instead in
the experimental section, the faster variants of the techniques.

8.7 Experimental Results

In order to study the behavior of the K-nr indexes we performed a serie
of experiments using as benchmarks three real-world datasets (Documents,
Colors-hard, and CoPhIR-10M), and six randomly created databases (RVEC-
*-1000000). For a complete description of our datasets, please refer to Sec-
tion 1.3.3. The running hardware and implementation guidelines follows
the ones described in Section 1.3. We use 30 nearest neighbors because it
is a common value as an output in a multimedia information retrieval sys-
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tem. The entire databases and indexes are maintained in main memory and
without exploiting any parallel capabilities of the workstation.

8.7.1 Quality of the Results
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Figure 8.2: Recall performance of K-nr mappings

Figure 8.2 shows the recall rate when the number of references is varied.
The figure presents three K-nr mappings: vector, string and set mappings
(rows) on our three datasets (columns). As we can see from Figure 8.2c
the PI and the BPI have a perfect recall for a small σ. The other indexes
performed below these two. On the other hand, for Documents dataset
and Colors-hard, the lowest performance is presented by the PI and the BPI
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(Figure 8.2a). This behavior is consequence of the high concentration around
the mean for Documents and Colors-hard datasets, as seen in Figure 1.1.
On the other side MIF and Spearman ρ are quite good on all datasets.
Remarkably, the recall increases as σ grows.

String mappings (Figures 8.2d to 8.2f) expose a variety of performances.
That is, K-nr LCS has the highest recall rate in both datasets, closely fol-
lowed by K-nr Levenshtein. The worst performance is obtained by K-nr

prefixes, note that for this method the recall get worst as the number of
references increases. The same tendency is obtained in the three datasets.

In the set mappings, Figures 8.2g, 8.2h, and 8.2i, all the indexes have an
almost identical recall rate. This is an indicator that the set mapping is less
sensitive to the distance measured used, so, it can be used as default method
on unknown setups (when details of datasets and distances are unknown).

It can also be observed that K-nr set methods need larger values of σ
to achieve its optimal value. This is a good characteristic, because larger σ
means faster indexes (remember the algorithmic problem, Kn items are di-
vided on σ symbols), Section 8.6. Also, σ should be smaller than n (σ � n),
because computing the K-nr sequence has a cost of σ distance computations,
and R can be stored in RAM.

Furthermore, the recall rate for all the K-nr set methods (when σ = 2048)
and all the datasets is above 0.90. Comparing these recall rates against the
string mapping, one can note that the set mapping obtains better recall rates
in the 3 datasets tested and equals MIF and Spearman ρ on all setups. The
only dataset where the set mapping got a lower recall rate was in CoPhIR-

10M and only against the PI and BPI which obtained a perfect recall rate.

8.7.2 Size of the Indexes

The memory requirement is diverse for all the indexes as shown by Fig-
ure 8.3. This figure is in log-log scale to appreciate differences between large
indexes, such as PI and BPI, and smaller ones as K-nr strings and sets. So,
indexes with small overheads by object are quite good to be used in large
databases.

Figure 8.3, show plain (simple mappings without an index), inv. index
(implementations using an inverted index) and K-nr Strings, Sets, MIF, and
PP-Index are built over an index of sequences (IoS, see Section 8.6). From
Figure 8.3 it can be observed that the better indexes in terms of memory
usage are the set based mappings. We did not include the figures for the
other datasets because they exhibit a similar behavior, the only difference
is that range is scaled to the size of the problem.
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Figure 8.3: Memory requirements for the indexes for the CoPhIR-10M ob-
jects.

8.7.3 Enhancements to the K-nr Indexes

In this section, we present some enhancements to the indexes to increment
the recall rate (see Subsection 8.7.3). However this will increase the query
time and storage size. In order to provide a complete picture of this proce-
dure, Subsection 8.7.3 presents an analysis of the parameters used to control
the tradeoff between recall and time.

Increasing Recall Using Several K-nr Indexes

A general technique to increase the recall rate in K-nr methods is to use
several indexes, as reported by [Esuli, 2009; Amato and Savino, 2008]. Each
index will have independent results and hence the recall can only increase.
The downside is the increase in query time (partial results should be joined)
and the total amount of spent time. We analyzed a simplified version of this
procedure as follows.

Firstly, we build the indexes using different σ ∈ {64, 128, . . . , 2048}.
Then for each different value of σ the resultant of the query is the union
of the results of performing that particular query to the index having equal
or less σ. For example, the index with σ = 512 returns the union of subset
computed by the indexes working with σ equals to 64, 128, 256, and 512.
This will be the cummulative recall.

Figure 8.4 presents the recall of the traditional indexes and the cummu-
lative recall. We decided to include the recall of the bare bone indexes to
simplify the comparison. Figures on the left side, 8.4a, 8.4c, and 8.4e are
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presenting the base recall. Figures on the right side, 8.4b, 8.4d, and 8.4f, are
showing the cumulative recalls.

In Figure 8.4 it is observed that at σ = 64 the standard index and the
corresponding cumulative index have the same recall rate. The difference
between the recalls is increased when σ is incremented, in other words when
the number of indexes involved in the final result is incremented. A particu-
lar large improvement is found for K-nr Prefixes (PP-Index), which improves
dramatically the recall, transforming the index into an appealing option for
high quality requirements. Other indexes present a gain of 5− 15%, which
is still very important.

The same strategy is valid to speed up searches, using a partition of the
database (a disjoint collection of subsets) across several searching servers.
As usual, hybrid approaches can be used to achieve both recall and speed
enhancements.

Improvements with Parameters K and γ

It is expected that the use of several indexes to resolve a particular query
increases the time and memory complexities. Another option to tune the
tradeoff between time and recall is the optimization of the parameters K
and γ.

The parameter K appears in both preprocessing and searching steps. At
building time, K modifies the size of the index, so increasing K increases
N (see Section 8.6). On the other side, increasing K on the searching step
increases the recall without growing the index size and using the same index.
The cost of searching-K shows up in increasing the number of symbols to be
processed in our IoS, which impacts the real time used for searching. Due
to these characteristics, our experiments are focused on searching-K.2

In this experiment we used an index of sequences computing the K-nr

Jaccard method (see Section 8.5). The construction of the index uses seven
nearest references (K = 7). The selection of this particular index of se-
quences is important since we present real time results along with the recall
in the CoPhIR-10M database (which is a large database).

Figure 8.5 shows the behavior for K-nr Jaccard for our three datasets,
using several γ and K values. Those figures present the time and the recall
rate for each configuration of K and γ. It is observed that the recall rate
is high for large values of K even with moderate γ values. On the other
hand, for high values of γ we have a recall rate close to 0.9 when K = 6.

2Increasing searching-K is meaningless for K-nr prefixes, permutations and brief per-
mutations.
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(a) Documents. Original recalls
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(c) Colors-hard. Original recalls
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(e) CoPhIR-10M. Original recalls
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Figure 8.4: Joining K-nr Documents and Colors-hard, searching 30-nn. The
accumulated curves uses the union of current and smaller σ results.
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For intermediate values of γ the recall rate is rapidly stabilized and gives
low increments for larger γ.

From Figure 8.5 one can infer a particular set of parameters working
well in terms of recall rate and time. For all the datasets the best recall
rate is obtained with σ = 2048 and an adhoc γ for each case. For the case
of Documents an adequate value for γ is 400, for the case of Colors-hard is
1000, and for CoPhIR-10M is 15000.

Taking into consideration the recall rate and the time, the experiments
above suggest that large K values imply higher cost than increasing the
number of candidates (specially for large databases as CoPhIR), i.e. there
are more inverted lists (and objects) to compute the union operation. For
smaller databases, this problem is not noticeable. The tradeoff should be
found taking into account the cost of the distance function, the speed of
union algorithm, and the size of the database (i.e., n).

8.7.4 Searching with Sequence Indexes

In this section, we test the performance of our implementation based only
with an indexed sequence. Here, we avoid the comparison of K-nr Leven-
shtein and LCS, since both are complicated to implement and do not surpass
the performance of the K-nr set. The same case arises for BPI, PI, and K-nr

cosine, because they need a more complex representation.
Figure 8.6 shows the searching time required to obtain a particular recall.

The dataset Documents is tested on Figure 8.6a, here the majority of the
indexes (excepting for PP-Index) are showing more than 90% of recall for
points with more than 512 references. The main performance change among
these points is on the searching time, however those differences are negligible.
A similar behavior is found for Colors-hard and CoPhIR-10M, yet searching
time differences are more noticeable, exposing the simplicity of K-nr Jaccard.
In our figures, excepting for PP-Index, all techniques increase its recall and
decreases the searching time as σ grows. Naturally, this behavior should be
reversed on some point, not reached point yet.

Even on PP-Index, a lesser strict quality measure as the proximity ratio
(see Section 1.3) has a good performance relative to the searching time.
Almost points are quite good and close to 1. The reached percentiles are
quite close as shown by the histograms of Figure 1.1. The proximity ratio
becomes closer to 1 as σ grows. Remarkably, the searching time decreases,
as well. In contrast, PP-Index barely changes on the proximity ratio.

The performance is directly proportional to σ and consequently in our se-
quence representation to the storage cost, as showin in Figure 8.8. Again the
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Figure 8.6: Comparison between recall and searching time on our real-world
datasets. Note that σ grows in points from right to left, such that, as sigma
grows most K-nr indexes increment their recall and reduce their searching
time.



146 CHAPTER 8. NEIGHBORHOOD APPROXIMATION

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04  0.045

pr
ox

im
ity

 ra
tio

 (r
at

io
)

searching time (sec)

K-nr prefixes (PP-Index)
K-nr SFR (MIF)

K-nr Jaccard
K-nr SR

(a) Documents. γ = 1000.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

pr
ox

im
ity

 ra
tio

 (r
at

io
)

searching time (sec)

K-nr prefixes (PP-Index)
K-nr SFR (MIF)

K-nr Jaccard
K-nr SR

(b) Colors-hard. γ = 3000.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 0  2  4  6  8  10  12

pr
ox

im
ity

 ra
tio

 (r
at

io
)

searching time (sec)

K-nr prefixes (PP-Index)
K-nr SFR (MIF)

K-nr Jaccard
K-nr SR

(c) CoPhIR-10M. γ = 60000.

Figure 8.7: Comparison between proximity-ratio and searching time on our
real-world datasets
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Figure 8.8: Comparison among recall, searching time, and memory require-
ments on our real-world datasets. σ grows from right to left (one point per
σ value on the curves).



148 CHAPTER 8. NEIGHBORHOOD APPROXIMATION

exception is found for PP-Index since its optimal value resides on σ = 128.
The proximity ratio is not shown since it barely varies (Figure 8.7). In all
cases, our indexes require close to an half of an uncompressed index (com-
pression ratio is close to 50%, and much smaller for the Spearman Footrule
(MIF) and Spearman ρ) since they require to store the tuple (objID, position)
on the inverted index.
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Figure 8.9: Performance on CoPhIR-10M with σ = 2048. Each point corre-
sponds to γ in 1000, 3000, 6000, 9000, 12000, 15000, 30000, 45000, 60000, ap-
pearing in increasing order from left to right.

The quality of the result set parametrized to the searching time is de-
picted in Figure 8.9 for CoPhIR-10M with σ = 2048. Each point corresponds
to the maximum number of evaluations of the distance function in the last
searching step. For recall, Figure 8.9a, all indexes hold a monotonic growth
as γ grows, excepting for PP-Index. This is an indicator that PP-Index can-
not found more candidates. The proximity ratio, Figure 8.9b, has a similar
behavior, yet all indexes perform well under this quality measure. So, high
quality results (in proximity ratio terms) can be achieved performing just a
few distance computations. Remarkably, this behavior is enough for most
real-world applications.

8.7.5 The Performance on Increasing Intrinsic Dimensions

In the end, Neighborhood Approximation is based on the order induced by
distances, and as all techniques based on computing distances, it has a tight
relation with the intrinsic dimensionality. This relation is exposed in Fig-
ure 8.10. We show results for RVEC-*-1000000 datasets, Section 1.3.3. We
experimentally verify for n = 250000 and 500000, that the quality of results
is barely affected (yet the searching time has an important relation to n, but
we already learn this on previous experiments). The maximum number of
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computed distances was fixed to γ = 5000, since it is a value contrasting our
quality measures. We can observe that the recall rapidly degrades as dimen-
sion grows, going from 90% (dimension 4) to 60% (dimension 24). Please
notice that, excepting PP-Index, the searching time decreases and the recall
increases as σ grows. On the other side, we observe that proximity ratio
barely changes its performance, this enforces our previous conclusions on
fixed dimensionality (and Observation 2). Finally, a better performance on
recall can be obtained applying the techniques of Sections 8.7.4 and 8.7.3.

8.8 Summary and Perspectives

In this chapter, we presented a novel framework for approximate proxim-
ity search algorithms called Neighborhood Approximation (NAPP), and its
practical variant dubbed as K Nearest References (K-nr). This framework
consists in mapping the original proximity problem in a general metric space
to a simpler representation using K-nn queries in a set of references R.

Our framework allow us to analyze disparate proximity indexes such as:
Permutation Index, Brief Permutation Index, and Metric Inverted File. We
also used the framework to propose and test several novel indexes. Also, we
proposed using plain, unordered collection of sets as universal representa-
tions of arbitrary metric spaces. This idea has not been used before in the
literature, up to the best of our knowledge.

We also proposed and tested several mechanism to accelerate the prox-
imity searching. We implemented the majority of the K-nr indexes using
indexes of sequences, achieving close to optimal space and very competitive
searching times. In addition, we investigated how varying γ and searching-
K increase the recall rate without increasing the index size, yet impacting
the query speed.

On the final part of this chapter we study the relation between the
performance of the K-nr indexes and the intrinsic dimension of the dataset
and query set. We conclude that even when the recall is affected on growing
dimension, the quality measured with the proximity ratio is much more
robust, being of interest to the majority of real world applications.

Despite the searching improvements achievements, the method still present
several disadvantages, mostly in the construction of the K-nr indexes. In our
K-nr indexes, the construction time is dominated by the σn distances com-
puted, hence the preprocessing step is linear on σ for a fixed n and can be
large. For example, for CoPhIR-10M it ranges from 49 minutes to 32 hours,
for σ = 64 and 2048 respectively. For the documents database, it requires
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14.45 seconds using 64 references, and up to 9 minutes for σ = 2048. A
simple scheme to speed up the construction is to index the references and
then solve K-nn searches over R, speeding both search and building times.
In particular, we may use a NAPP index to index R. Notice that using a
larger R set produces a faster index; the sketched boosting technique may
allow a significant increase in the number of references. This is part of our
future research.

Another solution is a simple parallelization of the preprocessing algo-
rithms. We already implement it, achieving close to 100% efficiency per
core, meaning that the preprocessing step is divided by the number of ac-
tive threads (cores). However, in order to work on databases of internet
scale, we require algorithms taking advantage of computing power of large
distributed systems not just on single multi-core systems. Nevertheless, the
distributed techniques are beyond the scope of this thesis.

The searching of data-structures for small, fast, and simple K-nrmethods
yield us to indexed sequences. However, there exists other options to be
studied like Fulltext Self Indexes. Even when the PP-Index (K-nr prefixes) is
directly implemented with these indexes, other proximity predictors should
modify its algorithms to be able to work on the fulltext primitives.

On the next chapter we will present an alternative implementation of
the K-nr set indexes, based on inverted indexes. The chapter will deeply
study the set involved problems, producing faster variants of the searching
methods, and much smaller indexes.
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Figure 8.10: Performance of the K-nr indexes on varying dimensionality,
RVEC-*-1000000. σ grows from right to left (one point per σ value on the
curves)
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Chapter 9

Succinct Nearest Neighbor
Search

In the previous chapter we introduce NAPP, an approximate set of indexes
with high result’s quality, small memory footprint, and fast searching times.
On this chapter one of the best NAPP indexes, the K-nr Jaccard Index, is
studied and extended, obtaining faster and smaller indexes, while it pre-
serves the quality of the answers. This new index is dubbed as the com-
pressed NAPP inverted index.

In general, proximity in the NAPP framework is hinted by comparison
of its shared references, e.g., the size of the intersection of two sets, hence
the natural choice for an index is an inverted index. Each region in R will be
represented by an integer identifier, and as consequence the representation
of each object will be a list of integers.

9.1 The NAPP Inverted Index

As in the previous chapter, the size of R (the set of references) should be
way smaller than the database S, yet it should reflect the distribution of
objects in S. Hence we select σ � n objects for R uniformly at random.
Each element of S, and each element of R, will be denoted by an integer.
Actual objects may reside somewhere else, for example on disk. We have
R = {1, · · · ,σ} and S = {1, · · · , n}; it should be clear from context which
collection an index i refers to.

For our computations we define a list for each reference r, L[r] = {s1, s2, · · · , sk} ⊆

S such that r ∈ Psi . In other words, L[r] is the list of all elements having
reference r among their K nearest neighbors. Algorithm 14 gives the con-

153
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struction.

algorithm 14: Construction of the NAPP inverted index

1: R is the set of references of size |R| = σ.
2: Let L[1,σ] be an array of sorted lists of integers.
3: Let S = {1, · · · , n}
4: for i from 1 to n do
5: Compute Pi[1,K], the K nearest neighbors of i in R
6: for j from 1 to K do
7: L[Pi[j]] ← L[Pi[j]] ∪ {i}
8: end for
9: end for

Experimentally, we have observed that most objects with a small in-
tersection cardinality (1 or 2) appear very frequently in the candidate list
even though they are not always close to the query. It is then natural to
impose an additional condition about the minimum size of the intersection.
This strategy is implemented using a t-threshold algorithm, a generaliza-
tion of the set union/intersection problem of K sets, where the solution is
a collection of objects appearing in at least t sets. Setting t = 1 is equiv-
alent to the set union and t = K is equivalent to the set intersection. We
adapted the Barbay-Kenyon algorithm [Barbay and Kenyon, 2002] to obtain
the candidate list. This is described in Algorithm 15.

To represent R we need σ logn bits, using pointers to S, or σ objects
if they are represented explicitly. The storage requirements of the K-nr

Jaccard mapping is Kn log σ bits, see Section 8.6. Using the inverted index
the space cost increases to Kn logn bits, i.e., a total of Kn integers of log n
bits, distributed among the σ sorted lists. This expands over the previous
cost, yet it will simplifies involved searching algorithms and compression
techniques.

There are at most Kn
B samples overall and, as usual, the worst case in

space will arise when each list contains Kn
Bσ of them.

9.2 The Compressed NAPP Inverted Index

The space of our index is Kn integers. For a typical value like K = 7, this
is larger than the typical overhead introduced by some tree data structures
(like the List of Clusters, Section 2.2.2). Yet it is much smaller than Pivot
Indexes 2.2.1. Nevertheless, here there is room for improvement by com-
pressing the index using indexed bitmaps, with a very small speed penalty
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algorithm 15: Solve a k-nn query in the inverted index

1: Let t be the minimum allowed cardinality of the intersection, and Γ the
number of desired candidates to be checked with the distance.

2: Let L[1,σ] be an array of sorted lists of integers, i.e. the inverted index.
3: Compute Pq[1,K]
4: Let Q be the corresponding lists of the regions in Pq, computed as

Q[1,K] = L[Pq[1]], . . . , L[Pq[K]]
5: Let POS[1,K] be an array of pointers to the current position of the i-th list

on Q, starting in 1.
6: Let CND be a priority queue to store the set of candidates
7: while Q.Length ≥ t do
8: Ascending sort Q using Q[i][POS[i]] as key for 1 ≤ i ≤ Q.Length; identifiers

are permuted to follow the order of Q
9: if Q[1][POS[1]] �= Q[t][POS[t]] then

10: Advance all POS[i] for 1 ≤ t− 1 such that POS[i] is the smallest item
such that Q[i][POS[i]] ≥ Q[t][POS[t]]

11: Restart the loop
12: end if
13: Find the greatest k ≥ t such that Q[k][POS[k]] = Q[t][POS[t]], then k is the

cardinality of the intersection
14: if k = Q.Length then
15: Increment all POS[i] ← POS[i] + 1 for 1 ≤ i ≤ Q.Length
16: else
17: Advance all POS[i] for 1 ≤ k such that POS[i] is the smallest item such

that Q[i][POS[i]] ≥ Q[k + 1][POS[k + 1]]
18: end if
19: Append Q[t][POS[t]] to CND

20: Evaluate the distance between the query and Γ candidates (with the
highest priority from CND)

21: Return the k closest objects to the query
22: end while

Note 1: Increasing and advancing in POS and Q requires to checked for
overflows, in such case the entry must be removed from both POS and Q. This is
why we use Q.Length instead K.
Note 2: Advance means searching for the desired key in the list, in particular we
use doubling search [Knuth, 1998] since it makes the algorithm of Barbay-Kenyon
instance-optimal in the comparison model [Barbay and Kenyon, 2002].
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for set union and intersection computations, Appendix A.
Summarizing, we must handle σ lists. The s items of a list are distributed

in the range [1 · · ·n]; then ideally we can represent that list using log
�n
s

�
bits.

Using the SArray indexed bitmap of Okanohara and Sadakane [Okanohara
and Sadakane, 2007], we can represent such an inverted list using s log n

s +
2s + o(s) bits. As all the s items add up to Kn items overall, the worst
case arises when s = Kn/σ for each list, where the complete index takes
Kn log σ

K +2Kn+o(Kn) bits. The SArray supports constant access to every
position of every list.

9.2.1 Inducing Runs in the Index

The plain representation and the SArray encoding are enough to host med-
ium to large databases in main memory in a standard desktop computer. In
particular, when using the SArray the index is compressed to its zero-order
entropy and the extension to secondary memory is straightforward.

On the other hand, to handle very large databases or when using devices
with scarce memory (such as a mobile phone), better compression is needed.
The additional compression is obtained by renumbering objects (represented
by integers) so as to obtain proximal integers in the inverted lists L[r]. This
is done by observing that objects in any given inverted list L[r] share at
least the reference r, and hence cannot be much far apart from each other,
as described in Observation 1. The procedure starts computing the mapped
space, where each object u ∈ S is represented by Pu, i.e., implemented as
an array of integer identifiers of K-nnR,d(u). Also, Pu is sorted according
to the region identifiers, not by proximity to u. Secondly, the database is
lexicographically sorted, using a linear sort for the first levels and a three-
way quick sort for deeper levels, similarly to practical suffix array sorting
algorithms [Puglisi et al., 2007]. Thirdly, the permutation of S induced by
the sort is used to renumber the database S. Finally, the inverted index is
created using the permuted mapping.

The first step creates ranges inside inverted lists of consecutive integers
such that the i-th integer plus 1 is equal to the (i + 1)-th integer. These
regions are named runs, and are suitable to be encoded with a Run-Length
scheme. For ranges not in a run we aim at having small differences be-
tween consecutive elements. Although SArray does not profit from runs and
small differences, we can reduce space significantly by using the bitmaps
DiffSet and DiffSetRL, described on Appendix A. Those bitmaps are ba-
sically sorted lists encoded as differences between contiguous items. These
differences are encoded with Elias-γ or Elias-δ integer encoders. In order to
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ensure the efficiency on its basic operations, we store absolute values each
B differences. Details are provided in Appendix A.

Since a lexicographic sort was applied (section 9.2.1) and R ⊂ S, then
we found at least σ runs in the whole inverted index.

In the worst case, each run has a length close to n/σ, induced by the first
position of Pu. These runs are stored in σ log n

σ bits. Moreover runs induced
by the first region of every Pu can be represented using

�
p∈R log#p bits,

where #p is for the number of objects sharing the region p. In general, the
minimum number of runs can be analized using a trie of the mapped space,
as follows:

• Suppose that every Pu (sorted numerically) has a unique suffix, e.g
appending the object id.

• Append every Pu to the trie.

• The number of leafs below a node defines the length of a run.

Yet, the parametrization to metric properties of a database is quite com-
plicate and beyond the scope of this thesis.

Each sorted list L (of size n1 with values in [1, . . . , n]) are represented
using DiffSet (Appendix A) using n1 log

n
n1

+ o(n/σ). If the L contains runs
(ranges of consecutive values) DiffSet-RL and DiffSet-RL2 can yield to a
significant reduction of both memory requirements and operation time cost,
Appendix A.

9.3 Experimental Results

As in Chapter 8, all experiments consist on querying the 30-nn on Doc-

uments, Colors-hard, CoPhIR-10M, and RVEC-*-1000000 synthetic datasets
(see Section 1.3.3 for details on these databases and the associate queries).
The entire databases and indexes are maintained in main memory and with-
out exploiting any parallel capabilities of the workstation, Section 1.3.

All our experiments were performed fixing K = 7 (are based on the K-nr
simplification of NAPP) and with several σ values. The selection ofK affects
the space required, the searching time, and the quality of the answer. We
observed experimentally that K = 7 is a good tradeoff between space, time
and recall. The support of this choice is based on the assumption that every
object in the database holds the same probability distribution. Thus, fixing
K to a constant will fix the covering radii of the references to a constant
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Id Pu

Orig. Num.
Sort

1 312 123
2 321 123
3 123 123
4 421 124
5 521 125
6 431 134
7 513 135
8 531 135
9 154 145

10 541 145
11 514 145
12 145 145
13 235 235
14 532 235
15 423 245
16 245 245
17 254 245
18 542 245
19 345 345
20 354 345
21 543 345

Inverted index

1 -> 1,2,3,4,5,6,7,8,9,10,11,12
2 -> 1,2,3,4,5,13,14,15,16,17,18
3 -> 1,2,3,6,7,8,13,14
4 -> 4,6,9,10,11,12,15,16,17,18,

19,20,21
5 -> 7,8,9,10,11,12,13,14,15,16,

17,18,19,20,21

Inverted index with differences

1 -> 1,1,1,1,1,1,1,1,1,1,1,1
2 -> 1,1,1,1,1,8,1,1,1,1,1
3 -> 1,1,1,3,1,1,5,1
4 -> 4,2,3,1,1,1,3,1,1,1,1,1,1
5 -> 7,1,1,1,1,1,1,1,1,1,1,1,1,1,1

Inverted index with differences + Run-Length

1 -> (1,12)
2 -> (1,5),8,(1,5)
3 -> (1,3),3,(1,2),(1,1)
4 -> 4,2,3,(1,3),3,(1,6)
5 -> 7,(1,14)

Figure 9.1: Example of the induction of runs for plain, differences and run-
length encoding of lists. Here σ = 5, n = 21.
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value, equivalent to a constant percentile of objects being covered. This
simplification reduces the complexity of fine tuning the parameters of the
index. Experimental results validating this choice are presented in [Esuli,
2009; Amato and Savino, 2008], and recently by [Tellez et al., 2011a]. The
particular value of K = 7 is not optimal for all datasets, but for simplicity
we used this fixed value, which in particular shows the robustness of the
methods. Moreover, using this fixed value enhances the recall quality of
some of the state of the art methods, yet it affects both time and space
performances.

9.3.1 General Performance

In this section we analyze the result’s quality, searching time, and the per-
centage of the reviewed database in the CoPhIR-10M database. Experi-
mental results are shown for two type of queries: t-threshold queries, and
1-threshold with fixed number of verified objects.

Here, our primary quality measure is the recall: the ratio between rel-
evant results in S and the relevant objects obtained, Section 1.3. Since
our queries are 30-nn, the recall is just the number of true 30-nn elements
returned, divided by 30. This measure ignores how close the non-relevant
objects are from the true 30-nn. In the next section we discuss this point.

Figure 9.2a shows how the recall evolves with the number of references.
Methods based on t-threshold show a decreasing recall as function of t;
smaller t gives better recall. Smaller σ values (number of references) give
better recall, but at the cost of distance computations and time, see Fig-
ures 9.2b and 9.2c respectively. Notice that in both figures, the points in
each curve are produced by indexes with different σ values. Then, when
t > 1 the order of σ is descending as the recall increases, and for t = 1,
σ is in ascending order. We put labels in selected curves of the figures to
increase readeability.

Larger σ values imply faster indexes. The speedup is produced because
the Kn objects are split into more inverted lists. We note that the distri-
bution of lengths (of inverted lists) is not Zipfian as in text inverted indexes
for natural languages.

All these parameters induce tradeoffs that can be used to effectively tune
real applications. For example, for t = 2 and σ = 2048 the index achieves
0.92 of recall, reviewing 0.6% of the database in about 0.4 seconds.

Large t values produce faster searches, since the algorithm skips parts
of the input lists, due to advance commands in Algorithm 15. Fixing γ, the
number of elements to be verified, restricts the percentage of verified ele-
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Figure 9.2: CoPhIR-10M, n = 107, K = 7. Recall and searching time
performance



9.3. EXPERIMENTAL RESULTS 161

σ γ max-ratio
mean stdev min max

64 15000 1.06 0.04 1.00 1.25
128 15000 1.05 0.03 1.00 1.25
256 15000 1.03 0.03 1.00 1.27
512 15000 1.02 0.02 1.00 1.12
1024 15000 1.02 0.01 1.00 1.06
2048 15000 1.01 0.01 1.00 1.10
64 30000 1.04 0.03 1.00 1.19
128 30000 1.03 0.02 1.00 1.16
256 30000 1.02 0.02 1.00 1.26
512 30000 1.01 0.01 1.00 1.11
1024 30000 1.01 0.01 1.00 1.04
2048 30000 1.01 0.01 1.00 1.07
64 60000 1.02 0.02 1.00 1.12
128 60000 1.02 0.02 1.00 1.09
256 60000 1.01 0.02 1.00 1.25
512 60000 1.01 0.01 1.00 1.07
1024 60000 1.01 0.01 1.00 1.04
2048 60000 1.00 0.01 1.00 1.06

Table 9.1: Statistics of the covering radius (30-th nearest neighbor) of
CoPhIR-10M

ments of the database and hence bounds the total time. See lines “15000”,
“30000” and “60000” of Figure 9.2. In this case t = 1 and the t-threshold
algorithm is equivalent to set union (being linear in the number of items
in the input lists). Notice that under this configuration, the performance
is driven by CND, i.e. the priority queue of Algorithm 15. Based on Fig-
ure 9.2c, this strategy (lines named “15000”, “30000” and “60000”) is useful
to control the search time, yet it needs to compute the entire set union.

Naturally, a hybrid configuration achieves better control of the perfor-
mance and quality, i.e. the combination of t-threshold and fixed γ. For
example, for σ ≥ 1024 pure t-threshold configurations yields to better times
than just fixing the cardinality, see Figure 9.2c. The inverse is true for
σ < 1024.

9.3.2 Proximity Ratio as a Measure of Retrieval Quality

In multimedia information retrieval applications, especially when some rel-
evance feedback is expected from the user, we want to measure how close
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σ γ max-ratio
mean stddev min max

64 100 1.14 0.17 1.00 2.01
128 100 1.11 0.14 1.00 1.87
256 100 1.10 0.17 1.00 2.27
512 100 1.05 0.07 1.00 1.58
1024 100 1.03 0.06 1.00 1.51
2048 100 1.02 0.02 1.00 1.10
64 500 1.08 0.14 1.00 1.86
128 500 1.05 0.10 1.00 1.80
256 500 1.03 0.09 1.00 1.77
512 500 1.01 0.02 1.00 1.12
1024 500 1.01 0.03 1.00 1.22
2048 500 1.00 0.01 1.00 1.07
64 1000 1.05 0.08 1.00 1.62
128 1000 1.02 0.03 1.00 1.14
256 1000 1.01 0.03 1.00 1.14
512 1000 1.01 0.02 1.00 1.12
1024 1000 1.00 0.01 1.00 1.06
2048 1000 1.00 0.01 1.00 1.07

Table 9.2: Radius statistics for Documents dataset.

the reported non-relevant objects (the false positives) are from the relevant
ones. To this end we show some statistics of the ratio between the covering
radius of the 30-th nearest neighbor and the distance given by NAPP in
Table 9.1. Note that large σ values produce results that are very close to
the real answers, supporting Observation 1, which bounds the distance to
the query, not the recall. Actual distances for the 30-th nearest neighbor
in our query set have the following statistics: mean=3958.16, standard de-
viation=930.24, minimum=1418, and maximum=6531. Even on the largest
ratios, the retrieved items are in a quite small percentile of the dataset, as
shown in Figure 1.1.

The same statistics are given for the database of Documents and Colors-

hard, respectively in Tables 9.2 and 9.3. Notice the indexes have worse
performance on these databases, probably because of the high intrinsic di-
mensionality of these datasets, especially for Documents, as shown in the
histograms of Figure 1.1 and Table 1.1

Note that, in all the experiments, the proximity ratios are very close to
1. Please notice that quality measured as proximity ratio is of use on the
majority of real world applications.
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σ γ max-ratio
mean stddev min max

1000 64 1.05 0.09 1.00 1.70
1000 128 1.03 0.06 1.00 1.28
1000 256 1.03 0.06 1.00 1.25
1000 512 1.02 0.05 1.00 1.24
1000 1024 1.01 0.04 1.00 1.25
1000 2048 1.00 0.02 1.00 1.15
2000 64 1.04 0.09 1.00 1.69
2000 128 1.03 0.06 1.00 1.26
2000 256 1.02 0.05 1.00 1.25
2000 512 1.02 0.04 1.00 1.24
2000 1024 1.01 0.03 1.00 1.25
2000 2048 1.00 0.02 1.00 1.14
3000 64 1.04 0.08 1.00 1.63
3000 128 1.02 0.05 1.00 1.25
3000 256 1.02 0.05 1.00 1.25
3000 512 1.01 0.04 1.00 1.24
3000 1024 1.01 0.03 1.00 1.25
3000 2048 1.00 0.02 1.00 1.14

Table 9.3: Radius statistics for the Colors-hard.

9.3.3 Experimental Results on the Compressed NAPP In-
verted Index

Our plain inverted index uses a fixed number of bits. For example, the index
for CoPhIR-10M uses 267 MiB, i.e., each object is represented with 224 bits,
using integers of 32 bits. The compressed representation uses from 10 to
80 bits per object for CoPhIR-10M, and 15 to 80 bits in Documents. For
Colors-hard, we found a behavior similar to CoPhIR-10M, yet requiring some
additional bits per object.

Our experiments confirm that the number of runs is large, and the index
is better compressed. The effect is that the smallest index is the run-length
based one and the largest compressed index is the SArray, as shown in
Figure 9.3. Note that even the space gain of SArray is considerable. σ is
also a crucial parameter for compression. Small σ values produce a small
index, yet it needs to review larger portions of the database.
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Figure 9.3: Compression ratio as a percentage of the plain inverted index
for our experimental data sets.
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type of searching time (sec)
encoding B CoPhIR-10M Documents Colors-hard

DiffSet 7 2.57 0.020 0.0057
DiffSet 15 3.34 0.020 0.0058
DiffSet 31 4.81 0.022 0.0061
DiffSet 63 7.69 0.025 0.0066
DiffSet 127 13.50 0.028 0.0075
DiffSet-RL 7 2.57 0.019 0.0054
DiffSet-RL 15 2.73 0.019 0.0055
DiffSet-RL 31 2.75 0.019 0.0056
DiffSet-RL 63 2.71 0.019 0.0054
DiffSet-RL 127 2.64 0.020 0.0055
SArray - 0.34 0.031 0.0056
plain (with runs) - 0.17 0.024 0.011
plain (original) - 0.42 0.029 0.014

Table 9.4: The average time necessary to search a query in the compressed
NAPP inverted index and the plain version. Indexes were configured using
σ = 2048, (t = 2)-threshold search. Indexes for CoPhIR-10M γ = 15000, and
γ = 1000 for Documents and Colors-hard.

Time Performance of the Compressed Index

In the experiment, all compressed indexes were produced with induced runs.
For the plain index we show the two encodings, with and without induced
runs because it affects the retrieval speed. For example, for the CoPhIR-10M
index the plain index working with the induced runs is about 2.5 times faster
than the original one. This is not surprising since the t-threshold algorithm
is instance optimal. For DiffSet and DiffSet-RL bitmaps, the parameter B
(section 9.3.3) manages the tradeoff between time and compression. DiffSet
and DiffSet-RL are still interesting methods since they achieve low compres-
sion ratios, as shown in Figure 9.3. Moreover, as depicted in Table 9.4 for
the CoPhIR-10M dataset, the run-length based indexes are just four times
slower than the NAPP inverted index (without runs).

This tradeoff is significant for the CoPhIR-10M database (Table 9.4),
where the search time increases several times, as compared with the plain
representation. The SArray coding is quite fast (faster than plain original)
and still compress significantly. This can be explained because the SArray
gives constant time access to the i-th element [Okanohara and Sadakane,
2007]. Contrasting with the CoPhIR-10M results, compressed indexes for
the Documents database are as fast as the plain representation, and even
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faster for some configurations (i.e., for SArray), see Table 9.4. Even more,
for the smaller Colors-hard dataset, all compressed indexes are twice as fast
compared to the original index, and it even surpass the plain index with
runs. Remarkably the run-length representation use close to constant time
in B.

Note that small compressed inverted indexes can fit in the CPU caches.
This applies to inverted lists involved in the solution of a particular query.
Also notice that the distribution of runs produces easier instances for the
t-threshold algorithm, taking advantage of the Barbay-Kenyon t-threshold
algorithm. Among the smaller databases, the most important difference is
the intrinsic dimensionality, see Figure 1.1, that produces fewer runs and
less compression as depicted in Figure 9.3.

9.3.4 The Dimensionality Effect

For this experiment, we produce databases in the real unitary hypercube
of dimensions 4, 8, 12, 16, 20, and 24; and all coordinates were selected
using a uniform distribution. Each dataset contains one million vectors, i.e.
n = 106. All results queries are allowed to review 1000 items, and all indexes
were built using 2048 references and K = 7. Under this configuration,
the number of reviewed objects is fixed to 0.3% of the database, in terms
of distance computations. We performed queries for the nearest neighbor
search of random vectors not indexed.

We can see the effects of the dimensionality in the compression ratio in
the Figure 9.4a. As expected the compression capabilities are significantly
diminished as the dimension increases. On searching behavior, we must
remark that only 0.3% of the possible number of distances are evaluated,
moreover we are achieving close to perfect recall for all configurations. The
search time is depicted in Figure 9.4b, we can observe the speedup (up to two
orders of magnitude) against sequential search, that is practically necessary
for large dimensional datasets (more than 20 dimensions) for the majority
of exact metric indexes.

The behavior of the proximity ratio of the nearest neighbor is shown in
Table 9.5. The mean is quite small, ranging from 1.0 to 1.02, and a very
small standard deviation. The maximum ratio is small too, but exposing a
solid increment in the dimension. Random uniform data is free of clusters.
Even on this setup, our index shows a good tradeoff among memory, space,
speed, recall, and proximity ratio. To put this in perspective, notice that
even if the Documents have intrinsic dimensionality higher than RVEC-24-*

(Table 1.1), it performs better on compression since its objects tend to form
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dim mean stddev min max

4 1.00 0.00 1.00 1.00
8 1.00 0.00 1.00 1.00
12 1.00 0.02 1.00 1.21
16 1.00 0.02 1.00 1.19
20 1.01 0.04 1.00 1.24
24 1.02 0.04 1.00 1.26

Table 9.5: Proximity ratio as affected by the dimensionality. The NAPP
uses a threshold of 2.

clusters.

9.4 Summary

In this chapter we introduced a new representation of the K-nr Jaccard
method, called NAPP inverted index. It consist on an inverted index created
over the set of regions (references) of each object of S. Also, we compressed
the NAPP inverted index yielding to a very efficient metric index with small
memory footprint. The plain index uses a few integers per object and the
compressed versions use a few bits per object, with a small penalty in search
speed for large databases, and a small speed up for small ones.

Our index is capable of achieving high quality results in sub-second que-
ries, even for large metric databases. This is a characteristic inherited by
K-nr methods (Chapter 8, yet here is fully exploited using even more heuris-
tics like t-threshold based pruning of the list of candidates.

We provide an extensive set of experimental evidence on both real-world
and synthetic datasets. Those results support our claims on quality of re-
sults, memory requirements, searching time, robustness to large datasets,
and increasing dimensions. Nevertheless, a lot of work is necessary to pro-
vide a better understanding of the K-nr technique, since proper theoretical
bounds (exact and probabilistic ones) in terms of recall and proximity ra-
tio are currently unknown. Also, K-nr indexes (including the ones studied
in this chapter) does not support dynamic operations. A set of effective
algorithms and structures are required to efficiently support insertions and
deletions on both S and R.



Chapter 10

Conclusions

In this work we study the proximity searching problem from a practical
perspective, the idea was to produce algorithms and data-structures working
with large databases (millions of objects) on high intrinsic dimensions, and
still working with current power of computing.

We encompass both exact and approximate proximity searching tech-
niques. From our practical perspective, we concern about several practical
properties of the indexes, namely, preprocessing time, searching time, and
storage requirements. Also, on approximate techniques, we care about re-
sult’s quality. This measure is presented on two fashions: recall and prox-
imity ratio.

We obtained solid improvements to the state of the art, and indeed our
indexes can be used in modest hardware setups. So, a set of possibilities
arrive since devices with relatively small computing power are becoming
more popular every day, i.e. smart phones, tablets, net-books, game con-
soles, etc. Our techniques bring efficient support for proximity searching in
these devices. In general, the majority of our indexes were stored in close
to the optimal space of its representation. The compression allows one to
efficiently use higher hierarchies of memory (RAM, L2 and L1 cache).1

1Source code, databases, testbeds, and a couple of demos are freely available from
http://www.natix.org, and http://github.com/sadit/natix/.
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10.1 Achievements

10.1.1 Exact Techniques

We introduce Rev-LC (Chapter 3) a fast metric index based on the List
of Clusters (LC). It has an efficient preprocessing time while maintain the
storage requirements of the LC. Compared with LC, the searching time is a
bit larger, yet similar on high intrinsic dimensions. It is specially good for
large datasets with high intrinsic dimensions.

We parallelize the LC index in Chapter 4. The objective is to take advan-
tage of the current multi-core hardware. We obtain high core efficiencies and
speed ups on preprocessing steps with hard setups, i.e., n/m = O(1), large
n, and time-expensive distance functions. On the other side, range search-
ing algorithm is quite good on the same setups, but nn searching algorithm
performs worse since dynamic information is shared among threads.

Chapter 5 presents the Polyphasic Metric Index (PMI), our main contri-
bution to exact metric indexes. The idea is to use several backend indexes
in order to speed up the searching process. In particular, we use LC as
backend index.

Surprisingly, given a λ small value depending on the intrinsic dimension
of the dataset, the PMI using λ LC indexes has sub-quadratic preprocess-
ing cost on databases requiring quadratic time by LC. This enhancement is
because underlying LC indexes are non-optimal by itself and they use large
n/m values. With these setups, the PMI performs less distance computa-
tions than the optimal LC, even for high intrinsic dimensions. Contrary to
LC, and the majority of the metric indexes, the PMI can gradually adapt
to the intrinsic dimensionality of a particular dataset using a fixed prepro-
cessing setup (i.e. fixed large n/m value). Also, it can be adapted to the
complexity of a particular query. Both optimizations are performed simply
varying λ at query time. We present range and k-nn searching algorithms,
the last one is of special interest since it becomes optimal on the number
of distances performed. Nevertheless, the PMI’s memory cost is multiplied
with respect to LC in a λ factor.

We reduce the impact of λ creating compressed representation of a met-
ric index in Chapter 6. If the PMI uses this compressed index as backend,
the memory cost reduces from 32λ bits to log (m+ 1)λ bits per object. So,
our PMI becomes 32

λ log (m+1)
larger/smaller than LC as a setup of m and λ.

At the best of our knowledge, this is the first attempt to produce an exact
compressed metric index. An additional strong conclusion on the compres-
sion of metric spaces is that the intrinsic dimensionality drives the memory
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cost per item, that is, datasets with low intrinsic dimensions require small
amounts of memory; contrary, high intrinsic dimensional datasets require
larger amounts of memory. At the best of our knowledge, we provide the
very first prove of this correlation between storage requirements and the
intrinsic dimensionality.

10.1.2 Approximate Techniques

Chapter 7 introduces the Locality Sensitive Classification (LSC), a new rep-
resentation of the Locality Sensitive Hashing. This new representation can
be easily represented in close to optimal space without significant speed
penalties. The objective applications are those requiring high quality in the
result set using multiple LSH indexes. Another case of use is to bring prox-
imity searching techniques into small computing devices like smart phones
and tables, and in general devices with relatively small storage capacities.

Chapter 8 introduces a new family of approximate metric indexes. The
basis technique is called Neighborhood Approximation (NAPP), since it ac-
tually map a metric space into a similarity space using a set of references,
and in some way, these references are defining neighborhoods. The map-
ping has a strict structure allowing faster searches on it. Also, the mapping
preserves the proximity between objects, such that comparing items in this
transformation gives a hint of its closeness in the original space. A simplifi-
cation of the technique is presented, called the K nearest references (K-nr).
Based on K-nr we describe other state of the art indexes, and create sev-
eral new metric indexes. In this sense, we introduce a representation based
on sequences of symbols where the majority of the K-nr searching methods
can be implemented, so a single instance gives support to several searching
methods.

Finally, in Chapter 9 we implement one of our best and simple K-nr

indexes, with an inverted index. This change allow us to introduce some
sophisticated algorithmic techniques allowing more searching variants like
those based on the t-threshold set operation. Also, we compress the inverted
index producing a fast and small approximate metric index with high quality
in the results. Furthermore, we introduced a novel technique able to induce
runs in the inverted index, usable in at least two scenarios: for speeding
up a plain index, and for inducing compression in compressed indexes. The
SArray index produces a fast compressed version and can be used with or
without induced runs. Differential encoding plus run-length compression
achieves high compression rates and at the same time very fast indexes.

We show the behavior of our techniques in three real world datasets, and
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a set of six different dimensions of synthetic databases (with three different
sizes each one). Experiments on each dataset increase our insight of NAPP
indexes for different situations. Real world databases show the performance
(time, compression, and retrieval quality) of what we can found for real
applications. On the other side, synthetic databases isolates (i) the effect
of the dimensionality in our index, that is one of the greatest challenges
of the metric indexes; and (ii) the dependency on n, a problem commonly
ignored by most metric indexes. In all cases, both our plain and compressed
NAPP index, arises as an exceptional good tradeoff between memory, time,
and result’s quality, making them excellent options for several real world
applications.

10.2 Future Work

In general, our indexes work on static collections of objects, and they do not
support insertions or deletions of items. A future research should extended
our indexes in order to support dynamic operations. Also, our techniques use
only main memory to store both the index and the database. Unfortunately,
even with compressed representations of the indexes the main memory is
relatively small on the current generation of computers. There exists two
main approaches solving this issue: (i) disk based compressed indexes, and
(ii) distributed indexes across a network of computers. Both solutions are
beyond the study of this thesis, but these should lead the next generation
of practical proximity indexes.

In the exact proximity searching methods, our study consider mainly
compact partition indexes because their innate low memory usage. However,
based on our techniques to compress metric indexes, pivot indexes can be
greatly improved (reducing its memory requirements). The basic idea is to
create really large pivot tables in a very small space. Also, new algorithms
for union-intersection (for the PMI) should arise on these new indexes.

On the other side, K-nr indexes should support dynamic operations not
just inserting and deleting objects from the database, also, they must sup-
port dynamic operations on the set of references. This is important for a
high transactional environment. Also, the preprocessing time of K-nr indexes
should be improved, a promising scheme is to index the set of references R.

The real time performance of our Compressed NAPP Inverted Index is
tightly linked to the underlying t-threshold algorithm, which is primarily
designed for uncompressed inverted indexes. So, the creation of faster ad-
hoc algorithms for the t-threshold problem for the compressed inverted lists,
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and in the optimization and scalability of the technique using parallel and
distributed techniques remains as an open problem.

Maybe the weakest part of our NAPP indexes is the lack of tight theo-
retical guarantees on the result’s quality. This is a hard challenge, and will
be part of our future research.
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Appendix A

Sequences on (Very) Large
Alphabets

The majority of the indexes for sequences will fail as σ grows. Unfortunately,
our metric indexes (and new representations) are sequences of size n with a
very large alphabet Σ (σ = |Σ|). Typically, σ = O(nα) for some α < 1 or
even n/σ = O(1), as is the case of the list of clusters (Chapter 6), or the
Locality Sensitive Classification (Chapter 7). Even more, in our indexes we
expect a high zero order entropy, i.e. H0 � log σ (Section 6), that is, there
is no a useful deviation on the symbols’ frequency that can be exploited to
reduce the memory usage. Indexes achieving entropy of higher order (Hh)
are promising alternatives to K-nr proximity indexes. Nevertheless other
indexes like the List of Clusters cannot take advantage of this property,
since we cannot ensure it. Thus, Hh techniques are beyond the scope of this
work. This kind of indexes (for text) are nicely surveyed by Navarro and
Mäkinen [Navarro and Mäkinen, 2007].

Due to the particularities of our proximity indexes, we pay special at-
tention to indexes of sequences achieving local H0, which is smaller or equal
than the global H0. On other application’s domain, local H0 is ensured by
many other kind of sequences, like those arising on the differences of the ψ
function on the Compressed Suffix Array [Navarro and Mäkinen, 2007], the
Borrows-Wheeler transform that is the core of the FM-Index [Navarro and
Mäkinen, 2007], and our K-nr sequences after the permutation by proximity
(Section 9).

Since our metric indexes are highly dependent on indexed sequences, we
are committed to improve indexes for large alphabets, while take advantage
of local H0 whenever is possible, since global statistics are not of use. As
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shown in Chapters 6, 7, and 9 our algorithms heavily use the Select opera-
tion. In particular, we are concerned about a set of Selectc(T, r) calls with
consecutive r.

Section A.1 explores a three new indexed bitmaps, achieving local en-
tropy. Section A.3 studies IoS based on a single permutation. Finally,
Section A.4 provides an extensive experimental comparison between our se-
quence indexes and some state-of-the-art indexes.

A.1 Introduction

There exists several Indexes of Sequences (IoS), since each one puts a dif-
ferent tradeoff between the necessary memory and the complexity of its
operations.

The basic problem is as follows. Let T = s1s2 · · · sn be a sequence of
symbols on the alphabet Σ of size σ, i.e. si ∈ Σ. Without loose of generality,
let Σ be a set of integers, Σ = {1, 2, · · · ,σ}. The i-th symbol in T is denoted
as Ti.

Let nc be the number of symbols c in T , then we require at least

log

�
n

n1, n2, · · · , nσ

�
= log

n!

n1!n2! · · ·nσ!
bits (A.1)

to represent any instance of T with those statistics. From information theory
we can obtain the following formulation, using a fixed code word for each
symbol, we require at least nH0(T ) ≤ n log σ bits. Where H0(T ) is the order
zero empirical entropy of T , i.e.

nH0(T ) = n
�

c∈Σ
pc log

1

pc
=

�

c∈Σ
nc log

nc

n
bits (A.2)

An IoS provides three basic operations:

— Rankc(T, pos) counts how many symbols c occurs in T until position pos,
c ∈ Σ.

— Selectc(T, r) returns the smaller position pos such that Rankc(T, pos) = r.

— Access(T, pos) retrieves the symbol stored at the position pos in T , Tpos.

Notice that an IoS replaces T , since we can reconstruct it using Access(T, pos),
but our notation requires to put T in the arguments even when it is not ac-
tually stored.
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Most IoS structures are in fact constructed using a cleaver reduction of
the problem to the binary case. A binary sequence, c ∈ Σ = {0, 1}, is dubbed
as (indexed) bitmap. So, we will present a review of binary sequences, and
finally a short review of IoS over larger alphabets.

A.1.1 Indexing Bitmaps

The operations supported over a binary sequence B are the same that
those found in larger alphabets, but in this case several interesting re-
lations arise. We only need to implement either Rank0 or Rank1 since
pos = Rank0(B, pos) + Rank1(B, pos). This duality is not found for Select0
and Select1, but another relation raises since Selectc is computed binary
searching over Rankc, using logn+1 ranks. In fact, the same technique can
be used to solve Rankc binary searching over Selectc. Better times that loga-
rithmic on the implemented operation can be achieved with additional struc-
tures, yet the binary searching is commonly enough for most practical appli-
cations. If the indexing structure does not support Access(B, pos) by itself, it
is solved using two Rank operations, i.e. Rank1(B, pos) and Rank1(B, pos−1)
operations, or checking the relation Selectb(B,Rankb(B, pos)) = pos ⇐⇒

Access(B, pos) = b.
It is possible to solve Rankc and Selectc (and consequently Access too), in

constant time using n+ o(n) bits [Jacobson, 1989; Clark, 1996] using n bits.
This is useful when the entropy of the bitmap is maximal, i.e. p0 = p1 = 0.5.
In order to solve Rank1 we split the entire bitmap B in small blocks of
t = 1

2
logn bits, then we obtain n/t small blocks. The rank inside each block

is computed using a precomputed table for all the 2t possible blocks of size
t, and store its t rank responses (one for each bit position), each response

requires log log
√
n bits, then we require a table of

√
n logn
2

log log
√
n bits. So,

miniblocks responds relative ranks, and we require absolute samplings, using
log n bits for each one, at the end we require n

t logn = 2n bits. This is very
costly. A solution consist on place absolute samples each log n mini blocks,
this yields to 2n/log2 n absolute samplings of logn bits each one, requiring
2n/log n bits. To be able to respond in O(1), we require log n relative

samplings between absolute samplings, being necessary log n log log
2 n
2

bits.
All those structures (i.e. mini blocks, blocks, and large blocks) sum up to
o(n) bits.

Both Selectc can be implemented in O(1) time using o(n) bits, but it
requires a complex structure with a large extra space and time, too much
for practice. Thus, we considere that it is beyond the scope of this work. The
interested reader is referred to [Jacobson, 1989; Clark, 1996]. As previously
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commented, in practice it is quite common to simply binary searching on
Rankc. A more simpler and efficient indexed bitmaps for Selectc will be
introduced below, but with payment on Rankc time.

Gonzalez et al. [González et al., 2005] introduce a practical bitmap
solving Rankc and Selectc in O(logn) time. The main idea is to store the
uncompressed bitmap along a table AbsRank of absolute Rank1 values com-
puted at fixed positions. Queries are solved first over the AbsRank and then
sequentially inside gaps between absolute samples (processing logn

2
bits at

a time). It requires n + o(n) bits. It is really fast on practice, yet it is
uncompressed.

In our metric indexes we requiere both uncompressed and compressed
bitmaps. A compressed bitmap is represented in space close to log

� n
n1

�
or

nH0(B).
Raman et al. [Raman et al., 2002] showed how to index a bitmap B in

nH0(B) + o(n) + O(log logn) bits. The procedure consist on split B into
blocks of t = 1

2
logn bits. Each block bi is represented using a tuple (ci, oi),

then it can be encoded into the local zero order entropy. Here local means
that the involved probabilities are taken from a smaller region that the whole
bitmap, such that it can take advantage of contiguous 0’s/1’s. The term ci
is the class of bi, that corresponds to the number of enabled bits in bi. The
offset oi is the position of bi in a numerically sorted list of all blocks of the
same class. Both Rankc and Selectc can be solved in O(1) time using a small
hierarchical structure of directories [Raman et al., 2002].

In practice, the tuple representation of [Raman et al., 2002] can be im-
plemented in a simpler way, as shown by Claude and Navarro [Claude and
Navarro, 2008], yet the small term cannot be neglected. The authors fixes
the size of the block to t = 15, then the bitmap is represented using classes
and offsets of the form Classes = c1c2· · ·c�n/15� and Offsets = o1o2· · ·c�n/15�,
since there are log (15 + 1) classes ci requires 4 bits fixing the required space
for a fixed n, independently of n or H0(B). Each entry in the table Offsets

requires a variable length of bits, i.e. log ci, it is necessary to add synchro-
nization points in Offsets.Rankc and Selectc are solved similarly to Gonzalez
et al. [González et al., 2005], saving an entry in AbsRank at regular positions
of B. This information is used to partially solve the problem and finally use
sequential scanning blocks between absolute samples. The size of Offsets is
at most nH0(B), the sampling gaps (in both Offsets and AbsRank) should
maintain the small term as o(n). The index uses precomputed tables to ob-
tain oi and ci using bi, i.e. oi requires a table of 215 items storing all possible
blocks, organized by class and ordered numerically inside each class using
15× 215 bits. Also, ci is computed using a table of all possible values using
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217 bits, as shown in [Claude and Navarro, 2008]. The inverse process, i.e.
reconstruct bi using (ci, oi), is solved with the same tables.

Okanohara and Sadakane [Okanohara and Sadakane, 2007] introduce
Esp, RecRank, V Code, DArray and SArray bitmaps solving by separate
the cases when n0 ≈ n1 and when n1 � n. Bitmaps following the for-
mer constraint are called dense, and sparse for the later one. Specially,
we focus on SArray (we will interchange its name with OS07 in advance)
where n1 log

n
n1

+ 2n1 + o(n1) bits are enough to represent a sparse bitmap.
The OS07 solves Select1 in constant time, Rankc in O(logn1) in worst case,
and O(1) average time for uniformly distributed 1’s. The idea behind the
OS07 is to store all responses of Select1, using the division of B into two
bitmaps, H and L. L stores the log n

n1
least significant bits (LSD) concate-

nated for all Select1(B, r) for r from 1 to n1. The H bitmap cleverly stores
the resting logn1 most significant bits (MSD), i.e. logn − log n

n1
= logn1

bits. Then, we divide the space on at most 2logn1 = n1 different ranges,
or divisions of the space. For each range of the space a single 0 is stored
in H, followed by many ones as responses of Select1 are inside that range.
Therefore, H has at most n1 0’s and exactly n1 ones, so, H is classified as
dense and it is represented using the DArray which uses n + o(n) solving
Select1(H, ·) and Select0(H, ·) in constant time. Select1(B, r) is solved recon-
structing the response, i.e. in order to solve Select1(B, r) we need to perform
n
n1

Rank0(H, Select1(H, r)) obtaining the MSD. It requires logn1 bits. Then,
the LSD bits are read from the r-th entry in L (notice that each entry in
L has log n

n1
bits). Rank1(B, pos) is solved using Select0 on H of the MSD

of the desired position, then binary search is required between the entries
in L corresponding to the range. Bitmaps with uniformly spaced 1’s hold a
constant number of 1’s in each range in average, hence the average cost of
Rank1(B, pos) is O(1).

Table A.1 wraps up the presented tradeoffs. Summarizing, both RRR02
and CN08 are quite good if the bitmap contains long substrings of a single
symbol, GGMN05 is really fast in practice, but the bitmap is uncompressed.
On the other side, RRR02 has a small term depending on the length of
the bitmap. Consequently, CN08 has the same dependencies, furthermore
the small term does not vanishes as n grows. Finally, OS07 solves Select1

in constant time, with small terms dependent on the number of 1s; on the
other hand, Rankc and Access have O(1) average time if the 1’s are uniformly
distributed along the bitmap.
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Solution Time Memory

Rank Select
RRR02 [Raman et al., 2002] O(1) O(1) �H0(B) + o(n) +O(log logn)
CN08 [Claude and Navarro, 2008] O(logn) O(logn) n(H0(B) + 4/15) + o(n)
OS07 [Okanohara and Sadakane, 2007] O(log

n
n1

) O(1) n1 log
n
n1

+O(n1) + o(n1)

OS07† O(1) O(1) idem.

GGMN05 [González et al., 2005] O(logn) O(logn) n+ o(n)

Table A.1: Indexes for Rank, Select and Access for binary sequences. Where
n is the length of the bitmap, n1 is the number of 1’s in the sequence,
and † means for average in uniformly distributed 1’s along the bitmap.

A.1.2 Indexing Sequences with Larger Alphabets

As previously commented, most indexes for alphabets larger than 2 are
solved reducing the problem to binary sequences. A simple index for se-
quences is created using σ (indexed) bitmats. The idea is to simulate a
n×σ matrix, with a single one per column. The (i, c)-cell is 1 if the symbol
at the i-th position is the c symbol, and 0 otherwise. This kind of IoS will
be called a unraveled sequence.

For example, considere an unraveled sequence with a RRR02 bitmap per
symbol, it can be implemented using nH0(T ) + σ(o(n) + O(log log n)) bits,
solving Rankc and Selectc in constant time, but Access in O(σ) time [Navarro
and Mäkinen, 2007]. However, the small terms are quite large, and in prac-
tice, o(n) do not decrease, as exposed by CN08. On these terms, it is possible
to use OS07 to unravel the sequence, since the small terms are depending
on n1, such that it requires nH0(T )+O(n) bits in total. Solving operations
in the time listed in Table A.1. Unfortunately, a hidden space overhead
appears on practice, i.e., we require additional O(σ logn) bits to store the
headers of all bitmaps (one per row).

An elegant solution, with a small space overhead, and O(log σ) time for
all operations is the Wavelet Tree (WT) [Grossi et al., 2003; Navarro and
Mäkinen, 2007]. The WT is a balanced binary tree. Each inner node w
stores a bitmap Bw of size nw. At the root, the i-th bit of Bw is 0 if Ti is on
the first half of Σ, and 1 if it is on the second half. Then, the left child is a
WT node storing all symbols marked with zero, and the right one storing all
symbols marked with one. This process is recursively applied adjusting Σ to
each node, the division is stopped when a single symbol is found, creating a
leaf node. Bw is indexed to support Rankc, Selectc, and Access.

Rankc(T, pos) is decomposed into bitmap operations, in the first step we
retrieve the bit in the requested position, a = Access(Broot, pos), then pos
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is updated to Ranka(Broot, pos). If a = 0 then we recurse over the left child,
and to the right child if a = 1. The procedure finalizes when it arrives to
a leaf node, reporting pos as the desired rank. Access(T, pos) is similarly
solved to Rank but returning the number of reached leaf instead.

The Selectc(T, r) starts performing the inverse operations, it goes to the
parent of the c-th leaf, then we update r to Selecta(Bw, r) where w is the
parent of the r-th leaf, and a is 0 or 1 if b-th leaf is left or right child,
respectively. This process is recursively applied until we reach the root, the
procedure returns the r value at the root node.

Then, WT solves Rankc, Selectc, and Access in O(log σ). Since it is
binary and balanced by definition and there exists only σ leafs. These costs
suppose that the bitmap operations are O(1).

Since the WT is a balanced tree of log σ levels, (at each level there
exists n bits), thus if no compression is made, the bitmaps are stored in
n log σ+o(n log σ)+O(σ logn) bits. The last term is for pointers and satellite
data in nodes. As expected, any kind of indexed bitmaps can be used, then
RRR02 achieves local nH0(T ) as main term. Claude and Navarro [Claude
and Navarro, 2008] shown how to implement the WT without pointers re-
moving the O(σ logn) term, the main idea is to exploit the fixed shape of
the WT, i.e., paths from the root leafs are isomorphic to binary code.

The WT is a general concept, and the shape is not necessary to be
balanced, i.e. it supports any prefix code instead binary code. For example,
if a Huffman shape is used then the WT achieves n(1+H0(T ))+O(σ logn)+
o(n(1 + H0(T ))), even without compressed bitmaps. Here the O(σ logn)
term also includes the table of symbols. In this case, if underlying bitmaps
are supporting O(1) operations, the WT with Huffman shape has an average
cost of O(H0(T ) + 1) per operation. The worst case can be guaranteed to
be O(log σ) if after a γhuff log σ levels the Huffman tree is balanced, where
γhuff is a positive constant, such that WT’s has O(log σ) levels. On large σ
values, this cost can be of worth.

Golinsky et al. [Golynski et al., 2006] presents an uncompressed index re-
quiring n log σ+ o(n log σ) bits, designed primarily for large alphabets. The
technique unravels the sequence and partitioning each σ positions, trans-
forming T into n

σ blocks. The i-th block is a σ × σ binary matrix with σ
enabled bits (a single 1 per column), represented with the tuple (πi,Mi).
Where πi is a permutation and Mi is a bitmap of 2σ bits. They are created
as follows. We review the matrix in row-major order, we append to πi the
positions holding an enabled bit, we place a 0 inMi whenever we start a row,
and add as many 1’s as the number of 1’s in that row. πi is represented with
the indexed permutations presented by Munro et al. [Munro et al., 2003],
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being able to represent permutation and its inverse using (1+ �)σ log σ bits,
while solve πi(j) in O(1), and π−1

i (j) in 1/� for some 0 < � ≤ 1. For
practical purposes, we concatenate all Mi bitmaps in M = M1M2 · · ·Mn/σ.
Additionally, we store a bitmap L = L1L2 · · · �Lσ where each bitmap Lc is
created traveling the entire unraveled sequence in row-major order storing
a 0 whenever we enter a block followed by the number of 1’s in the current
block of the c-th symbol. Both M and L must support Rank, Select, and
Access queries. Then, bitmaps M and L requires2n+ o(n) bits for each one,
and all the permutations requires n log σ bits plus n

σo(σ log σ) bits to store
a Y -fast trie, necessary to solve Rankc in its promised time. Access requires
to inverse of the permutation [Munro et al., 2003]. Both Rankc and Access

are solved in O(log log σ) time. Also, Selectc(T, r) is solved in constant time.
This index is important for us since our metric indexes hold large alphabets
and Selectc is the most frequent operations.

Claude and Navarro [Claude and Navarro, 2008] report a practical imple-
mentation of the GMR06 index, using a cyclic representation by Munro et
al. [Munro et al., 2003], and binary searching to solve Rankc. Thus, Access
achieves a worst case time of O(1/�), Rankc in O(log σ), and Selectc still
need O(1) time. Basically, this implementation uses less memory due to
the deletion of the Y -fast trie. However, we observed a low locality in our
access pattern (mostly based on iterate Select consecutively, Section 6.3.3)
in the index of Golynski et al. We perform an extensive set of experimental
evidence supporting our claims in Section A.4.

The following sections expose our contributions. Firstly, we describe
our indexed bitmaps, they are a fundamenta brick in our family of indexed
sequences, to be exposed later.

A.2 Sets as Lists of Differences

A set L ⊆ {1, 2, 3, · · · , n} is straightforwardly represented using an indexed
bitmap. In a similar way, all bitmap primitives are easily represented with
a set and a few basic operations. Let the set L be stored as a sorted list
of integers. Select1(L, r) is equivalent to access to the r-th item on L with
Select1(L, 0) = 0. Rank1(L, p) is computed searching in L the insertion
position of p with Rank1(L, 0) = 0. Others operations are computed using
the existing relations with these primitives. In other words, the sorted list
is seen as the response to all possible Select1 calls, as SArray [Okanohara
and Sadakane, 2007].

We create three bitmaps based on represent a sorted list in a compressed



A.2. SETS AS LISTS OF DIFFERENCES 183

way. The first approach dubbed DiffSet (DSet), is a simple compression of
the sorted list using differences plus absolute values at each B positions
of the sorted list. The second one enhances DiffSet under the premise of
existence of runs in the sorted list (zones of consecutive items). This regions
are specially encoded with a run-length scheme. This approach is named
DiffSet-RL. Finally, we assume that runs can be quite large and frequent.We
dubbed this bitmap as DiffSet-RL2.

All of these bitmaps shares its worst case complexities, that is Select0,
Rankc, and Access in O(B + log n

B ); Select1 is solved in at most O(B) steps,
B ≥ 1. Finally, Select1 over s consecutive arguments is solved in O(B + s)
steps. So, each call is solved in O(B+s

s ) steps, in amortized time over s.
If B = O(s) we obtain O(1) amortized time for s consecutive Select1 calls.
This time is obtained using pointers to previous Select1 results.

Their worst case memory consumption is nH0(L)+2n1 log logn/n1) bits.
Our run-length bitmaps are opportunistic, in the sense that they take speed
up operations when small local H0 is found. Also, they achieve smaller
spaces than the worst case.

A.2.1 DiffSet bitmap

A sorted list encoded with differences is just the list of differences between
consecutive entries, as shown in the example of Figure 9.1. Each difference
is encoded using a prefix free integer encoding, like Elias-γ or Elias-δ [Elias,
1975]. Elias-γ is a variable-length integer encoding using 2 log (x+ 1) bits
to encode an integer x. The idea is to represent x with log (x+ 1) bits,
also we need to represent the length of the code in unary. It uses less space
than fixed-length binary encoding (which uses logn bits) if x ≤

�
n/2. We

have s integers in the range 1 to n (s = n1 for bitmaps). In the worst
case each difference is n/s and we need twice the optimal number of bits,
2s logn/s + 2s. This worst case can be of worth on large integers. For
these cases, Elias-δ encodes an integer x in log (x+ 1) + 2 log log (x+ 1). x
is represented in log (x+ 1) and the number of bits is encoded with Elias-γ.

All encoded integers are concatenated in a memory area L�, and a pointer
to L� is set every B positions of the original list L. So, we need (s/B) logn
bits for these pointers. Let B = Θ(logn). Accessing the i-th integer then
costs O(logn) decodings. Also, L� needs s/Θ(logn) = o(s) absolute samples.
Each sample needs log n bits, if samples are explicitly represented. Summing
up 2s bits for pointers (on L�) and absolute samplings. Notice that L� and
absolute samplings are sorted lists too, so, they can be represented in close
to optimal space using SArray.
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Finally, using Elias-δ encoding, our DiffSet bitmap requires n1 log
n
n1

+
2n1 log log

n
n1

+ 2n1 + o(n1) = n1 log
n
n1

+O(n1 log log
n
n1
) bits, in the worst

case (with ones uniformly distributed along the bitmap).

A.2.2 DiffSet + Run-Length

In a way, differential encoding of a sorted list represents runs with unary
coding, thus for long runs this method is suboptimal. A better option is to
encode the length of the run using either Elias-γ or Elias-δ code, yielding
to DiffSet-RL. As in DiffSet, we use regular samplings to get fast access
to the i-th integer. Figure 9.1 shows an example of run-length encoding of
the inverted index, where only differences of 1’s are run-length encoded as
a tuple (1, length). Since we always decode from left to right it is simple
to mix differences with run-length encodings. If an absolute sample falls
inside a sample, the run is cut. This is suboptimal in space, but allows
decompression without binary searching to locate the actual position.

A natural optimization is introduced as follows: if the j-th and the
(j + 1)-th absolute samples are separated by exactly B positions we say
that the range is filled, and no representation of the data inside the range
is necessary; just the sampling data is stored. We dubbed this variant as
DiffSet-RL2.

Notice that if the i-th integer lies in a filled range, it is decoded in
constant time. In the same way, even when the worst case requires B de-
compressions of items, the average time is way smaller if runs are found in
the road to the desired integer. On both DiffSet-RL and DiffSet-RL2, a run
being in the road means to advance its length in constant time.

The run-length increments the necessary space in 1 bit when runs are
not present (adding n1 bits to the space cost in the worst case).

A.3 Indexing Sequences with a Single Permuta-
tion

Let us start with an unraveled sequence, thus each symbol is a row in a n×σ
matrix. Rankc and Selectc are solved using the bitmap (row) corresponding
to symbol c. As detailed in Section A.1.2, the biggest problem comes from
Access since it needs O(σ) calls to row-bitmap’s Access. Furthermore, in
practice O(σ logn) bits are necessaries to store data-structure’s headers.

Our index is dubbed as Extra Large Bitmap (XLB) by reasons that
will be evident below. XLB is based on the well known observation that a
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row major order traversal on Selectc produces a permutation Π of [1, . . . , n].
Items corresponding to a single row are numerically sorted. This permuta-
tion can be encoded into a single bitmap P [1,σn] with n ones replacing each
entry of Π by cn + Π(i). Using this technique, we do not need to store a
header per symbol. However, other problems arise since P has the following
memory requirements under global statistics.

log

�
σn

n

�
= n log σ + n log e (A.3)

= n log σ +O(n) bits (A.4)

In particular, if P is indexed using SArray the necessary space is n log σ+
O(n) bits. Also, DiffSet produces n log σ + O(n log log σ) bits in the worst
case. Nevertheless, bitmaps achieving local entropy as DiffSet, DiffSet-RL,
and DiffSet-RL2 in fact achieve nH0(T )+O(n log log σ) since they adapt to
the local statistics ignoring the global ones.

In general P should be indexed with a compressed bitmap achieving
local entropy, and with an space dependent on the number of ones, not in
the length of the bitmap in both major and minor terms. If the bitmap only
achieves global entropy, then the major term is at least of n log σ.

Until now, we have encoded the matrix in a single large bitmap. With
this machinery, Rankc is solved as follows.

Rankc(T, p) = Rank1(P, cn+ p)− Rank1(P, cn− 1) (A.5)

On the other hand, Selectc has a similar procedure.

Selectc(T, r) = ((Select1(P, r + Rank1(P, cn− 1))− 1) mod n) + 1 (A.6)

As with unraveled sequences, the main problem is Access, but since Π is
present, the solution can be stated in terms of Π−1 (similarly to Golynski
et al. [Golynski et al., 2006]).

Access(T, p) =

�
Select1(P,Π−1(p))

n

�
(A.7)

However, Π and Π−1 are not directly available, but they are computed
in the following way.

Π(i) = Select1(P, i) mod n (A.8)

We compute Π−1 using the cyclic structure of the permutation with the
structure of Munro et al. [Munro et al., 2003]. Thus, we require at most
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n
t logn bits to solve Π−1 in at most t accesses to Π, with t ≥ 1. Finally,
if t = Θ(log n) then the memory cost becomes o(n) while solves Π(i) in
O(logn) calls to Select1(P, ·).

A.3.1 Efficient Access on Unraveled Sequences

The previous technique has a straightforward application to Unraveled Se-
quences. For both Rankc and Selectc the computation is simplified since
instead of compute the number of ones until a symbol region, the involved
bitmap (row in a matrix) is selected and the desired operation is directly
performed on it.

Access needs Π and Π−1 to be solved. Π−1 is solved using the same idea of
XLB, that is, taking advantage of the ciclic structure of the permutation. Π
is computed with an additional bitmap X, created in a row-major traversal:
each time we enter into a row we append a 0 into X, then we write 1 as
many 1’s are found in that row. X requires n+σ+o(n+σ) bits or log

�n+σ
n

�

bits if a compressed bitmap is applied. Π(p) is computed using X and the
unraveled sequence I (indexed by symbol) as follows:

Π(p) = Select1(Isym, p− Select0(X, sym) + sym) (A.9)

Where sym = Select1(X, p) − p. Finally, Access is detailed in Equa-
tion A.10.

Access(T, p) = Rank0(X, Select1(X,Π−1(p))) (A.10)

This technique becomes unfeasible for sequences with very large alpha-
bet, e.g., n

σ = O(1). The complication arises because of data-structure’s
headers. Notice that this breaking point varies depending on the underlying
bitmaps.

A.4 Experimental Results

We tested several generated sequences with n = 2i for i = 20, 22, 24, 26; and
σ = 2j for j = 6, 8, 10, 12, 16, 18, 20. With these setups we generate two
kinds of random sequences.

• Uniform random sequences. For each position, a randomly selected
symbol is placed.

• Skewed random sequences. For each position, a symbol is selected
with probability pprev to be equal to the previous symbol (the first
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symbol is uniformly selected). The objective is to induce runs into the
sequence. We generate sequences for pprev of 0.9 and 0.99.

Each query uniformly selects symbols and arguments from the valid
ranges, i.e., pos ∈ [1, . . . , n], rankc ∈ [1, . . . ,Rank(T, n)], and symbol ∈

[1, . . . ,σ]. Our time performances were averaged with 50000 calls. The
same setup is valid for symbols on consecutive Select calls, yet rank values
are consecutive, and the number of consecutive arguments is the entire set
of possible arguments of Select.

Our main set of results are exposed on terms of n and σ. In the first
set of experiments, we plot the operation’s time cost against the memory
of the indexes (implicit n). We show figures for three different σ values,
each row fixes σ. On the second part, we expose the performance in the
same explicit terms, operation’s time cost and memory, but memory cost
is implicitly showing σ. On this set of experiments we show three different
values of n, one fixed value per row.

All experiments were performed in a workstation with Intel(R) Xeon(R)
CPU E5462 @ 2.80GHz, with eight cores (two quad-core processors), and
2GiB of main memory. The workstation runs the 9.8.0 Darwin Kernel. All
indexes and databases were stored in main memory. Our implementations
was written in the C# programming language and on the Mono framework,
www.mono-project.com.

We presented an experimental comparison among our index and several
state of the art alternatives. Also we present some new variants of these al-
ternatives. The indexes being under review and comparison are the following
ones.

— GMR06. The index of Golynski et al. [Golynski et al., 2006] with the
following variants.

– GMR06. The original index, as implemented by Claude and Navarro [Claude
and Navarro, 2008].

– GMR06-RL. A variant of GMR06 with an special encoding of the
runs. The idea is to include an additional bitmap marking runs,
such that only run’s header is stored.

– GMR06-32. A variant of GMR06 using 32 bit integers for each
entry in the permutations instead of log σ.

— Wavelet Tree (WT) with the following flavors.

– WT GGMN05. WT using GGMN05 as backed bitmap.
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– WT RRR02. WT using RRR02 as backed bitmap.

– WT RRR02v2. WT using new variant of RRR02, the idea is to
represent the class’s identifier as a variable length code. The classes
are now sorted by its cardinalities. Pointers to starting positions are
stored synchronously with Offsets.

— XLB. This is our main contribution, we study specializations for Diff-
Set, DiffSet-RL, DiffSet-RL2, and SArray bitmaps. In the second
experimental part, we fix B = 31 for DiffSet-based bitmaps. So, we
obtained a fast index but with large memory requirements, as shown in
the previous set of experiments. Even with these extra cost our index
performs quite good.

Notice that bitmaps SArray, DiffSet, DiffSet-RL, and DiffSet-RL2 were
implemented supporting fast consecutive Select values storing pointers to
previous values such that the next call of Select is efficiently computed in
O(1) time. It is well known that WT can store pointers to previous values,
yet the technique’s implementation is quite sophisticated, contrasting with
the simple technique required by XLB. The reason is that instead of a com-
plex index of sequences like WT, our XLB is just a large bitmap. On the
other side, GMR06 (and its variants) does not suffer any modification since
it already requires O(1) time for Select.

A.4.1 XLB with DiffSet Bitmaps

Preprocessing Cost

Firstly we describe properties and performances of XLB with DiffSet like
bitmaps. These experiments show both the behavior of the DiffSet bitmap
(and its variants) as a unit, and the XLB sequences with a bitmap reaching
local entropy. Figure A.1 shows the construction time. Uniform datasets
are shown in left column. Each row has a fixed σ value. These bitmaps have
not runs, so all DiffSet variants are performing similar. The performances
are grouped by block size B. Notice that increasing σ does not imply a
change on the construction performance. On the other extreme, Skewed
0.99 (rightmost column) is a bitmap with many runs inside. Here, plain
DiffSet bitmap has the most expensive construction. This is behavior is
expected since DiffSet-RL and DiffSet-RL2 are handling runs efficiently in
both space and time terms. Again, σ changes are not noticeable in the
construction time. The middle column, Skewed 0.9, exposes a transition
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performance between Uniform and Skewed 0.99. So, the cost dependency of
DiffSet-RL and DiffSet-RL2 on the number of runs is noticeable.

Performance of Access

The average time cost of Access operation and the necessary memory of
the index are shown in Figure A.2. Each point corresponds to the average
time required to solve Access and the size in KiB of the index solving the
operation. The size is related to n. Uniform sequences, left column, are
directly depending on B, ignoring σ. DiffSet curves are consistently faster
than run-length based bitmaps since the decoding operation is simpler. Also,
the required memory is quite similar among all due to our log scale.

Column corresponding to Skewed 0.9 show a great speed and memory
cost reduction. This is because the existence of small runs. The performance
of all methods are quite similar, since runs are not too large to be of use for
run-length based bitmaps.

On the other side, Skewed 0.99, a large improvement for run-length
based indexes is found (rightmost column, Figure A.2). Here DiffSet have
the smallest speed up, and DiffSet-RL2 the biggest one. The memory cost is
reduced significantly for both DiffSet-RL and DiffSet-RL2, due to the better
encoding of runs.

Performance of Rank

Figure A.3 shows the performance of Rankc. Uniform datasets are barely
affected by σ, and have the worst performances since the bitmaps do not
contain runs. Column showing Skewed 0.9 datasets have a much better
performances than the first column, here smaller indexes are produced by
large B values, while better times are achieved by small B values and run-
length based indexes.

Finally, Skewed 0.99 sequences improve their time and memory per-
formances using run-length bitmaps. The improvements are particularly
important on time, being several times faster than the plain XLB DiffSet.

Performance of Select

Figure A.4 shows the average time per select operation on several sequences
of increasing size. Figures with the uniform dataset show a time performance
dependent onB, yet a clear speed up arise as σ grows (on small n). The cause
of this behavior is that the number of induced partitions by symbol increases
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Figure A.1: Construction time on sequence indexes for several (n,σ) setups.
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Figure A.2: The cost of Access on sequence indexes for several (n,σ) setups.
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Figure A.3: The cost of Rank on sequence indexes for several (n,σ) setups.
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Figure A.4: The cost of Select on sequence indexes for several (n,σ) setups.
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with fixed n. In other words, in many cases the expected Rankc(T, n) = n/σ
is smaller than B.

The time cost of Skewed 0.9 sequences are close to an half of the uniform
ones. Memory is several times smaller. Here the speed up is given mostly
by B, however run-length bitmaps are always faster.

The last column shows the behavior for Skewed 0.99 sequences. Both
speed up and memory performances are greatly improved, however the dif-
ferences are more noticeable than those found Skewed 0.9 column. The effect
of σ in the performance is barely noticeable.

Performance of Select with Consecutive Arguments

The performance of Select with consecutive arguments is shown in Fig-
ure A.5. Here, a huge time improvement is achieved compared to random
arguments on Select.

Please remember that consecutive arguments for Select in XLB indexes
is easily implemented in amortized time. For a fixed σ (row), we obtain
better times on large n values because of the cost is amortized. In contrast
to random arguments, the effect of σ is inversely on small n values, i.e.,
occurrences of a symbol do not provide enough support to amortize calls.

A.4.2 Comparison Against other Techniques

We have reviewed the behavior of DiffSet, DiffSet-RL, and DiffSet-RL2 with
XLB. However, the former study give us an isolated understanding of tech-
nique, we learned about B and the technique’s behavior on n and large σ.
Now we will discuss the performance among our index, GMR06, and WT
techniques.

Performance of the Preprocessing Step

The construction time for sequences of several lengths is presented in Fig-
ure A.7. Here, WT based indexes have the slower constructions, and the
more robust to n are GMR06 based indexes. On the other side, XLB-SArray
has the best performance for Uniform and Skewed 0.9. On the Skewed 0.99
column, the best times are performed by XLB with run-length bitmaps, yet
XLB-SArray performs quite good.
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Figure A.5: The cost of consecutive Select on sequence indexes for several
(n,σ) setups.
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Figure A.6: Construction time
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Figure A.7: Access time
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Performance of Access

Figure A.7 shows the average time of Access. The XLB-SArray produces
the smaller indexes for uniformly distributed sequences and still hold a com-
petitive time cost. On the same column, the best times are performed by
GMR06-32, GMR06, and WT-GGMN05. XLB with DiffSet-RL and DiffSet-
RL2, and WT with RRR02 and RRR02v2 are performing quite bad on se-
quences with uniform distribution. The reason behind bad performances are
that these methods reach their worst cases on the uniform distribution.

The right most column, Skewed 0.99, shows a great improvement of XLB
with run-length, and WT with RRR02 and RRR02v2 methods, in both time
and memory requirements. Nevertheless, the enhancements are larger for
XLB methods. Notice that GMR06 methods have a low sensitivity to the
distribution, yet GMR06-RL reduces its size in a similar behavior to other
run-length indexes.

The middle column basically is a transition between the commented
extremes. Here, XLB-SArray remains as an equilibrated alternative to the
smaller run-length indexes and the faster GMR06 methods.

Performance of Rank

Figure A.8 shows the average time of Rank. Here, XLB-SArray is the slower
alternative, but produces the smallest indexes on the uniform column. For
any other setup, XLB with DiffSet (and its run-length variants) is the best
choice: they are the smaller and faster indexes, only WT-GGMN05 is faster
for small n.

Performance of Select

Select’s performance is presented in Figure A.9. Note that GMR06 based
methods and XLB methods are barely sensitive to n, contrasting to WT
methods. Here, XLB with DiffSet methods are the faster and smaller in-
dexes. Nevertheless, we observed that WT can be really fast for small
sequences. As in other operations, XLB-SArray performs quite good on
uniform distributions.
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Figure A.8: Rank time
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Figure A.9: Select time
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Performance of Select with Consecutive Arguments

Figure A.10 shows the performance of Select with consecutive arguments.
Here, XLB methods are the smaller and faster indexes. The worst per-
formances are found for compressed WT sequences. Also, GMR06 based
indexes kept a similar performance for all setups.

A.4.3 Dependency on the Alphabet’s Size

Until now, we have exposed the behavior of our XLB indexes for relatively
large alphabets and several setups on n. In this set of experiments we
will use a bigger range of alphabet’s sizes, covering smaller alphabets. We
use the same indexes of Section A.4.2. Our main variable in figures is σ,
encoded as the size of the index. Also, figures in a row shares a fixed n (2i

for i = 22, 24, 26), and columns are denoting randomly generated sequences
with the same parameters. The memory axis wrap σ values corresponding
to σ = 2j for j = 6, 8, 10, 12, 16, 18, 20.

Performance of the Preprocessing Step

XLB methods have its construction time barely affected by σ. This contrast
with GMR06 and WT based indexes, that are quite dependent on σ, they
are pretty fast for small alphabets and slower on large ones. This is true for
small sequences, for large ones XLB methods become faster. The speed of
GMR06 and WT based methods rapidly degrades as n grows.

Notice that indexes with run-length based bitmaps are faster as the
number of runs increase (Skewed 0.9 and 0.99).

Performance of Access

Figure A.12 compares Access performance for our testing methods. The best
performance for Uniform sequences are the WT indexes. Particularly, the
compressed WT indexes are quite good for small σ, and they degrade their
performance as σ grows.

The existence of runs has a big impact on XLB DiffSet methods, as is
shown in the middle column of Figure A.12. Here, both time and memory
are barely varying with σ. On this column, WT-GGMN05 performs quite
faster than the majority. WT-RRR02 and WT-RRR02v2 are small and fast
indexes, specially for sequences with small σ. A similar performance is found
in the last column, Skewed 0.99.
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Figure A.10: Select time on consecutive arguments
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Figure A.11: Construction time on varying σ.
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Figure A.12: Access time on varying σ.
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On most configurations, GMR06 methods and XLB-SArray are showing
a small time dependency on σ, enforcing our previous conclusions.

Performance of Rank

Rank’s performance is shown in Figure A.13. For small alphabets we ob-
served a behavior similar to Access, i.e., excellent times for WT-GGMN05
and smaller indexes for WT-RRR02 and WT-RRR02v2. Nevertheless, as
σ grows, XLB and GMR06 indexes improve its performance. Also, on se-
quences with many runs like Skewed 0.9 and Skewed 0.99, our XLB indexes
with DiffSet (and its run-length variants) are faster and smaller for large
alphabets, and very robust to σ size.

Performance of Select

Figure A.14 shows the performance of Select on varying σ. Here, the faster
indexes are the XLB DiffSet-family of indexes. For small σ, the least memory
cost family is for the compressed WT (RRR02 and RRR02v2). The memory
cost on larger σ are clearly dominated by XLB methods. The behavior of
GMR06 and its variants is quite good for the majority of the setups.

Performance of Select with Consecutive Arguments

Figure A.15 shows the performance of Select with consecutive arguments on
varying σ. Here, the time of XLB methods is several times smaller than
other alternatives. As before, for small σ, the smaller indexes are those
produced by WT with compressed bitmaps. Yet this is rapidly surpassed
by XLB methods as σ grows.

A.5 Perspectives

Our XLB indexes are efficient alternatives to traditional sequences. They
perform pretty good on very large alphabets, with excellent performance in
sequences with many runs. In particular, our XLB provides efficient Access
operations. In general, provides excellent tradeoffs on memory and time for
Rank, Access, and Select operations. Also, our index is unbeatable on Select

operations in both XLB-SArray for non-compressible sequences; and XLB-
DiffSet(*) for compressed sequences. So, they have a promising application
domain on text information retrieval, as a replacement of inverted indexes
and the text itself.
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Figure A.13: Rank time on varying σ.
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Figure A.14: Select time on varying σ.
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Figure A.15: Select time with consecutive arguments on varying σ.
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Due to its good performance on sequences with many/large runs, our
XLB-DiffSet(*) indexes can be of use to FM-Indexes [Navarro and Mäkinen,
2007], the target is to index TBWT when σ is very large.

Remarkably, our XLB family hold the best performance on large alpha-
bets and large n for the majority of operations, specially on Select with
random and consecutive arguments. Further, our index becomes the faster
compressed index for Rank. On the other hand, Access is our slower opera-
tion, still exposing good times when compared against compressed indexes.
Also, on large σ values our indexes with a high number of runs, our run-
length based techniques (XLB and GMR06-RL) produce the smaller set of
indexes.

We introduce several alternatives for well known bitmap and sequences
indexes, as listed below.

— RRR02v2. A bitmap taking advantage of small local entropy values,
even more than RRR02. The idea is to reduce the class’s identifiers for
classes with a few number of blocks. The WT with RRR02v2 improves
the performance for small alphabets and large number of runs.

— GMR06-RL. This sequence takes advantage of the number of runs,
since it avoids the storage of full permutations. When a run is found, it
is marked in a special bitmap and the header of the run is stored. Again,
we can observe in figures of Skewed 0.99, a dramatic reduction of the
memory requirements.

Finally, we add efficient support to Access on Unraveled Sequences, us-
ing a simple variant of our technique. Thus, sequences with small to med-
ium sized alphabets can be improved too. So, with unraveled sequences a
whole set of bitmap’s mixtures are possible with our approach. For example,
dense bitmaps should be indexed either with fast uncompressed bitmaps or
with bitmaps taking advantage of local entropy, if this property is detected.
On the other hand, sparse rows can be indexed with efficient compressed
bitmaps. Also, the speed of operations can be optimized, for example fre-
quently retrieved symbols can be promoted to faster bitmap implementa-
tions, even if they suppose a memory waste.
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Barbay, J., López-Ortiz, A., Lu, T., and Salinger, A. (2009). An experimen-
tal investigation of set intersection algorithms for text searching. J. Exp.
Algorithmics, 14:3.7–3.24.
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