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A  Tm magnetic vector potential 

Ai  –– magnetic vector potentials of the conductor region 

Aj  –– magnetic vector potentials of the non-conductor region 

Ax  –– 
magnetic vector potentials, planar and axisymmetric  
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Az  Tm magnetic vector potential, planar symmetry 

Aρ  Tm magnetic vector potential, axisymmetric symmetry 

[Af], [Lf], [Uf]  –– matrices of equation Ax=b 
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[AT](t), [AT], [LT], [UT]    –– matrices of equation Ax=b 

[A](t), [L](t), [U](t)    –– matrices of equation Ax=b 

[Az]
e  –– vector of a triangle finite element, planar symmetry 

[Aρ]
e  –– 

vector of a triangle finite element, axisymmetric  

symmetry 

{Ax}, {AX,T}  –– 
magnetic vector potentials vector, planar and  

axisymmetric symmetries 

a,b,c  –– 
components of the interpolation function of triangular  

finite element 

B  T magnetic flux density 

{bf}, {bT}, {bT}(t)   –– vector solution of equation Ax=b 

D  C/m2 electric displacement 

Dxi, Dxi+1  –– variational variables of Newton method 

Ez  V/m electric field, planar symmetry 

E  V/m electric field 

Ec  V/m coulombian electric field 

Ei  V/m induced electric field 

Em  V/m motional electric field 
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Eρ  V/m electric field, axisymmetric symmetry 

Fi  –– component i-th of excitation vector 

f  –– forcing functional 

fJ  –– 
excitation of field equation, planar and axisymmetric   

symmetry 

fρ  –– excitation of field equation, axisymmetric symmetry 

fi  –– subvector of the proposed method 

ft, {fT}, {FT}, {FT,x}  –– vector of the proposed method 

f1, f2  –– subvectors of the proposed method 

[f1,x], [f2,x]  –– subvectors of the proposed method 

{fb
(I)}  –– Neumann boundary conditions vector 

{fb
(II)}  –– Dirichlet boundary conditions vector 

{fgj}, fgu}, {fg}, {fU}  –– excitation vector derived by finite element analysis 

{fx}  –– excitation vector, planar and axisymmetric symmetry 

{fz}
e  –– excitation of a triangle finite element, planar symmetry 

{fρ}
e  –– 

excitation of a triangle finite element, axisymmetric  

symmetry 

Fi  –– component i-th of excitation vector 

{F}  –– excitation vector 

{F}(t+Δt), {F}(n+1)  –– variable discretized in time domain 

{F}(t), {F}(n)  –– variable discretized in time domain 

{F}(t-Δt), {F}(n-1)  –– variable discretized in time domain 

{FT}(t+Δt), {FT}(n+1)  –– variable of proposed method discretized in time domain 

{FT}(t), {FT}(n)  –– variable of proposed method discretized in time domain 

{FT}(t-Δt), {FT}(n-1)  –– variable of proposed method discretized in time domain 

[G]  –– stiffness matrix derived by finite element analysis 

Gt, [GT], [GT,x], [GT](t)   –– matrix of the proposed method 

G11, G12  –– submatrices of the proposed method 

[G11,x], [G12,x]  –– submatrices of the proposed method 

H  A/m magnetic field strength 
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l, lx, lt m conductor length 

I A current 

{I} –– currents vector 

Ic A conductor current 

Iz A current, planar symmetry 

Iρ A current, axisymmetric symmetry 

H A/m magnetic field strength 

J, Jtot A/m2 current density 

Jz A/m2 current density, planar symmetry 

Jρ A/m2 current density, axisymmetric symmetry 

J(t) –– jacobian matrix of Newton method 

k1,k2,k3,k4 –– coefficients of Runge Kutta methods 

K12, K12, K21, K22 –– submatrices of the proposed method 

[K12,x], [K12,x], [K21,x], 

[K22,x] 

–– submatrices of the proposed method 

Kt, [KT], [KT,x], [KT](t)  ––  matrix of the proposed method 

[K] –– stiffness matrix derived by finite element analysis 

{k1}, {k2}, {k3}, {k4} –– coefficients vectors of Runge Kutta methods 

{k1,T}, {k2,T}, {k3,T}, {k4,T} –– proposed method, oefficients vectors of Runge Kutta 

methods 

{k1T}(t), {k2T}(t), {k3T}(t), 

{k4T}(t) 

–– proposed method, oefficients vectors of Runge Kutta 

methods 

L –– generic differential operator 

[L] –– inductances matrices 

L1, L2, L3, L4, L5, L6 –– components of the interpolation function of triangular 

finite element 

[Mc], [Mi], [Mc
x] –– matrix derived by Newton Cotes analysis 

[Mc
z] –– matrix derived by Newton Cotes analysis, planar 

symmetry 

[Mc
ρ] –– matrix derived by Newton Cotes analysis, axisymmetric 

symmetry 
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[Mc]
e –– vector of a triangle finite element, planar symmetry 

{Mc} –– matrix derived by Newton Cotes 

nx, ny –– normal unit vector, planar symmetry 

nr, nz –– normal unit vector, axysimmetric symmetry 

Ni, Nj –– i-th and j-th weight function 

Nmj –– j-th weight function of interpolating function 

Np, Nq –– p-th and q-th weight function 

{Nmj}, {Ni} –– j-th weight function vector 

{Ni} –– i-th weight function vector 

{Nz
e}, {Nρ

e} –– weight function vector of a triangle finite element 

r,z,ρ m cartesian Coordinates axisymmetric symmetries 

rD,zD m integration limits along surface, planar symmetry 

ri, rf, zi, zf m limits of the integration surface τr 

r1,r2,r3, z1,z2,z3 m coordinates of the triangle finite element, axisymmetric 

symmetry 

P –– dependence on the point P, e.g. on the coordinate (x,y,z) 

or (r,z, ρ) 

q C electric charge 

Rc, Re ohms conductors resistance 

[R] –– resistances matrix 

Sc, S m2 area 

   

Sij 

 

–– component i-th, j-th of the matrix [S] 

Sii, Sij, Sjj –– submatrices of the proposed method 

[S], [T] –– stiffness matrices derived by the finite element analysis 

[Sx], [Tx] –– stiffness matrix derived by finite element analysis 

[Sz]
e –– stiffness matrix of a triangle finite element, planar 

symmetry 
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[Sρ]
e –– stiffness matrix of a triangle finite element, axisymmetric 

symmetry 

t s time 

tn,tn+1 s discretized time 

Tii –– submatrix of the proposed method 

[TT,x] –– matrix of the proposed method 

[Tz]
e –– stiffness matrix of a triangle finite element, planar 

symmetry 

[Tρ]
e –– stiffness matrix of a triangle finite element, axisymmetric 

symmetry 

Uc V conductor voltage 

{Uc} –– voltage vector 

v m/H magnetic permetivity 

u,v m coordinates of isoparametric finite element 

vq m/s speed of the electric charge 

vm m/s speed of the medium on which the charge is bound 

vρ m/seg speed of the electrical charge density 

{V} –– excitation voltage vector 

w rad/seg angular velocity 

wi, wj –– i-th, j-th weight function 

x,y,z m cartesian Coordinates 

xi, xf, yi, yf m limits of the integration surface τ 

x1,x2,x3,y1,y2,y3 m coordinates of triangle finite element, planar symmetry 

xD,yD m integration limits along surface, planar symmetry 

X(t+Δt), X(n+1) –– variable discretized in time domain 

X(t), X(n) –– variable discretized in time domain 

x,y,z m cartesian Coordinates 

X(t-Δt), X(n-1) –– variable discretized in time domain 

X∞ –– vector of the cycle finite 

x1, x2 –– subvectors of the proposed method 
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XT –– variable of proposed method 

{X}(t+Δt), {X}(n+1) –– vector discretized in time domain 

{X}∞ –– cycle limit of vector 

{XT}∞ –– cycle limit of vector of proposed method 

{Xf}, {Xg}, {XT} –– vector solution of equation Ax=b 

{X} –– vector that contains magnetic vector potentials or currents 

{XT} –– vector of proposed method that contains magnetic vector 

potentials or currents 

{X}(t+Δt), {X}(n+1) –– vector discretized in time domain 

{X}(t), {X}(n) –– vector discretized in time domain 

{X}(t-Δt), {X}(n-1) –– vector discretized in time domain 

{XT}(t+Δt), {XT}(n+1) –– vector of proposed method discretized in time domain 

{XT}(t), {X T}(n) –– vector of proposed method discretized in time domain 

{XT}(t-Δt), {XT}(n-1) –– vector of proposed method discretized in time domain 

{Yf}, {Yg}, {YT} –– vector solution of equation Ax=b 
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Nomenclature (Greek symbols) 

 

αx, αy, αz, β  –– parameters of field equation, planar symmetry 

αi, βi, αsi, βsi     ° phase angle 

αr, αz, αρ, β  –– parameters of field equation, axisymmetric symmetry 

Δ  m2 conductor area, planar symmetry 

Δd  m2 
determinant of the triangle finite element, planar  

symmetry 

Δd
r  m2 

determinant of the triangle finite element,  

axisymmetric symmetry 

Δe , Δr  V/A equivalent of resistance, axisymmetric 

Δr  –– ratio V and I, axisymmetric symmetry 

Δx, Δxi  –– variables of Newton method 

[Δx]  –– 
vector of ratio V and I, planar and axisymmetric  

symmetry 

ϕk  –– general potential, planar and axisymmetric symmetry 

ϕρ  –– potentials of field equation, axisymmetric symmetry 

ϕz  –– potentials of field equation, planar symmetry 

ϕ  –– unknown potential to be determined 

ϕ1, ϕ2, ϕ3  Tm 
magnetic vector potentials of triangle finite element,  

planar symmetry 

ϕ*  –– function that approaches the unknown potential 

ϕj  –– j-th coefficient to approach the potential ϕ 

ϕi, ϕj  –– unknown coefficients 

ϕm  –– interpolating function of finite element 

ϕm
*  –– interpolating function 

ϕmj  –– j-th unknown potential 

{ϕmj}  –– unknown potential vector 
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{ϕj}  –– vector of the unknown coefficients ϕ 

{ϕm}  –– 
magnetic vector potentials vector in the triangle finite  

element, planar symmetry 

Φ  –– matrix of Newton method 

[ΦT]  –– matrix of Newton method of proposed method 

Γ, Γd   m 
boundary of the domain, planar and axisymmetric  

symmetry 

μ  H/m magnetic permeability 

μr   –– relative magnetic permeability 

ρ  c/m2 volume density of electric charge 

σ  S/m electric conductivity 

τ, τD  m2 surface, planar symmetry 

τr, τrD  m2 surface, axisymmetric symmetry 
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Abstract 
 

An alternative method for the solution of finite element (FEM) equations is presented. The 
solution of the equation is based on deriving an uncoupled equation which is expressed, in 
terms of the time varying variables of the FEM equations. It has been considered FEM 
equations derived from planar or axisymmetric symmetries assumptions. The method 
consists on performing a nodal reordering of the FEM Equations, and performing a reduced 
number of matrix operations. These steps permit to get an equation defined in terms of the 
time varying variables. The equation can be solved in the frequency and the time domain. 
The method developed has been also implemented in the CUBLAS parallel computing 
platform, in order to reduce the computing times of solving the matrix equation.  

The method has been applied to several devices modelled by a planar and an axisymmetric 
symmetry assumption. The method permits to obtain accurate results in the frequency and 
the time domain but do not consider non-linear materials properties. The advantages of using 
the method are evident when large FEM equations are meant to be solved. The results 
obtained by the method agree well with results obtained by other investigations.  

Keywords: Finite element analysis, finite element method, frequency-domain analysis, time-
domain analysis, parallel processing.  
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Resumen 
 

En esta tesis se presenta un método de solución de ecuaciones de elemento finito (ecuaciones 
FEM por sus siglas en inglés). La solución de las ecuaciones está basado en obtener una 
ecuación desacoplada, misma que está expresada en término de las variables de las 
ecuaciones FEM, que tienen derivación no nula respecto al tiempo. Las ecuaciones FEM 
consideradas han sido obtenidas a partir de una simplificación de simetría plana o 
axisimétrica. El método desarrollado consiste en realizar un reordenamiento nodal de las 
ecuaciones FEM, y realizar al mismo tiempo, un reducido número de operaciones matriciales. 
Los pasos antes mencionados permiten obtener una ecuación definida en términos de las 
variables con derivación no nula respecto al tiempo. La ecuación puede resolverse tanto en 
el dominio del tiempo como en el dominio de la frecuencia. Al mismo tiempo, el método 
desarrollado ha sido implementado en la plataforma de cómputo paralelo CUBLAS, con el 
objetivo de reducir el tiempo de cómputo requerido para resolver las ecuaciones matriciales.  
El método ha sido aplicado a varios dispositivos modelados por una simetría plana o 
axisimétrica. El método permite obtener resultados precisos en el dominio del tiempo y la 
frecuencia, pero no considera las propiedades no lineales de los materiales. La ventaja del 
uso del método es evidente cuando es utilizado para resolver ecuaciones FEM de gran 
dimensión. Los resultados obtenidos por el método concuerdan con aquellos resultados 
obtenidos por otros trabajos de investigación.  
 

Palabras clave: Análisis de elemento finito, método de elemento finito, análisis en el 
dominio de la frecuencia, análisis en el dominio del tiempo, procesamiento en paralelo. 
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1 Introduction 

1.1 Solution of electromagnetic fields of electrical machines or devices 

In the actual times, it is very important to have electrical machines which have been 

properly optimized in their design, since an optimized design permits to have devices with 

high energy efficiency (Manna and Marwaha 2008). Thus, it is possible to use a lesser amount 

of materials on them. Moreover, it is also very important to assure the reliability in the 

performance of the devices. Although the Maxwell electromagnetic laws have been well-

known for many years, the analysis and solution of their electric and magnetic equations that 

model an electrical machine or devices, have been difficult to achieve. The main reason is 

the geometry or the complexity of the device to be modeled (Manna and Marwaha 2008), 

(Chari and Sylvester 1980), (Arkkio 1987). 

In order to overcome this situation, several forms of solution of the field equations. For 

example have been proposed; some methods of solution permit to calculate some parameters 

of the device, or models have been developed to allow the modeling of specific machines or 

devices (Engleman and Middendorf 1995), (Brauer, Sadegui and Oerterlei 1999). The recent 

computation advances have allowed the development of numerical methods, which can solve 

the magnetic and electric field equations (Chari and Sylvester 1980), (Engleman and 

Middendorf 1995), (Brauer, Sadegui and Oerterlei 1999).  

The Finite Element Method (FEM) is a numerical method which has become a powerful 

tool, to solve the steady state and transient field equations of electrical machines or devices 

(Reece and Preston 2000), (Wang and Xie 2009), (Lubin, Mezani and Rezzoug 2011), (Li, 

Ho and Fu 2012), (Ho, Fu and Wong 1997), (Bianchi 2005). The method is now an important 

technique which supports the design of large machines, i.e. power transformers, large 

induction and synchronous motors; since it can solve the magnetic or electrical field of 

difficult geometries or configurations. Thus, the finite element method has allowed the 

improvement of the machines or devices efficiency, by optimizing their respective designs 

(Lubin, Mezani and Rezzoug 2011), (Li, Ho and Fu 2012), (Mihai and Benelghali 2012).   

Nevertheless, the finite element method is still difficult to use in three-dimension cases 

(Wang and Xie 2009), (Lubin, Mezani and Rezzoug 2011), (Li, Ho and Fu 2012), (Mihai and 

Benelghali 2012). An important simplification, is to assume that the magnetic field behavior 

is the same across the axis of the machine or device (Arkkio 1987), (Bianchi 2005). Thus, it 

is necessary to perform some simplifications i.e. a plane symmetry or an axisymmetric 

assumption, to reduce the complexity of the problem, and being able to solve the field 

expressions, by using FEM matrix equations (Arkkio 1987), (Bianchi 2005), (Li, Ho and Fu 

2012). The plane symmetry allows to model induction machines, while the axisymmetric 

symmetry permits to model transformers or components with round coils (Arkkio 1987), 

(Konrad, Chari and Csendes 1982), (Preiss 1983). 

The FEM equations are derived by taking into account several assumptions on the electric 
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and magnetic fields. Because of this, it is very important that some basic concepts of magnetic 

and electric fields would be outlined. The aim is to furnish a good treatment and to derive a 

practical formulation. It is important to say that it is not an exhaustive treatment. There are 

other references that contain a precise exhaustive treatment of these electromagnetic concepts 

(Stratton 1941), (Bianchi 2005), (Cheng 1993), (Jianming 2002). The assumptions and 

considerations assumed for these variables, permits to derive a field equation of the device.  

 

1.1.1 Variables of electric and magnetic fields 

1.1.1.1 Current density field  

The movement of the electric charges is described by means of the electric current density. 

Referring to a volume charge density ρ moving at a velocity vρ, the electric current density 

vector J can be defined as (Bianchi 2005), (Cheng 1993), (Jianming 2002),  

 

� = ���                            (1.1) 

 

Whose reference positive direction is that of the positive charges. Its magnitude is measured 

in (A/m2). The vector J defines a vector field, called the current field. Let Sc be an open 

surface, then the current intensity I is given by (Bianchi 2005), (Cheng 1993), (Jianming 

2002),  

 

� = � ����	
                         (1.2) 

 

If the displacement current density vector is null  (�
/�� = 0), it is possible to define the 

total current density vector as follows (Bianchi 2005), (Cheng 1993), (Jianming 2002),  

 

���� = �                              (1.3) 

 

1.1.1.2 Magnetic flux density field 

The movement of the electric charges causes effects in the points of the surrounding space, 

so that it is possible to define the magnetic flux density field B. Its magnitude is measured in 

Teslas (T). The fundamental property of the field B is this: the flux associated to this field, 

through any closed surface Sc is null. Thus the flux is given by (Bianchi 2005), (Cheng 1993), 

(Jianming 2002),  

 

∮ � ⋅ ����	 = � (� ⋅ �)��� = �                                             (1.4) 
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If (1.4) is expressed in a differential form, i.e.,   

 

� ⋅ � = �                    (1.5) 

 

1.1.1.3 Magnetic vector potential field  

Observing (1.5) it can be seen that B is solenoidal in the whole space; thus, it is suitable 

to define a vector magnetic potential A. The vector B is solenoidal since its divergence is null 

in the domain defined by � ��� . The relationship between B and A is defined by (Bianchi 

2005), (Cheng 1993), (Jianming 2002) 

 

� = ���                    (1.6) 

 

This relationship defines the field A apart from a generic irrotational field. A vector field 

is irrotational if its rotational is null in the domain defined by � � !"
. The divergence of A can 

be defined in an arbitrary way; the positions that are commonly adopted for stationary and 

quasi-stationary magnetic fields are known as the Coulomb’s position, (Bianchi 2005), 

(Cheng 1993), (Jianming 2002). It is defined by, 

 

� ⋅ � = �                     (1.7) 

 

1.1.1.4 Magnetic field strength 

Together with the flux density vector B, the magnetic field strength vector H is introduced. 

The measure unit of its magnitude is A/m. The two vector fields are linked by the constitutive 

law defined by (Bianchi 2005), (Cheng 1993) , (Jianming 2002),  

 

� = #$                                    (1.8) 

 

where μ (H/m) is the magnetic permeability of the medium. Within a uniform medium, the 

two fields B and H are proportional (i.e., they have same direction and proportional 

magnitude), while in an anisotropic medium their link exhibits a tensorial nature. In 

stationary or quasi-stationary magnetic condition, i.e. when the displacement current density 

is neglected, the fundamental property of the field H is defined by the Ampere’s law (Bianchi 

2005), (Cheng 1993) , (Jianming 2002),  

 

��$ = �                     (1.9) 
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1.1.1.5 Electric fields 

Forces of various natures can exist on the electric charges. Let δFk be any force on a test 

positive charge δq, the specific electric field Ek is defined as (Bianchi 2005), (Stratton 1941), 

(Bianchi 2005), (Cheng 1993) , (Jianming 2002) 

 

%& = '()
*+→�

*-&
*+                       (1.10) 

 

Whose magnitude is measured in N/C.  A useful classification of the specific electric field 

is given in Table 1.1  

 

TABLE 1.1 

CLASSIFICATION OF THE ELECTRICAL FIELDS  

Electric 

Field Ek 

Electromagnetic 

conservative Ec Coulomb E Electric Field 

Non-conservative 

Ei  Induced 

 EL Lorentz 

Em motional 

Non-electromagnetic Ene 

 

 

1.1.1.5.1 Maxwell’s electrical field 

Since there is no constraint on the divergence of Ei, it is generally assumed that it is a 

solenoidal field. By means of this assumption, together with the Coulomb electrical field Ec 

shown in Table 1.1, the induced electric field Ei is given by (Bianchi 2005), (Cheng 1993), 

(Jianming 2002),  

 

%( = − *�
*�                    (1.11) 

 

This relationship is particularly useful in the computation of the induced currents in 

conductive media. The electric field E, also called Maxwell’s electric field, corresponds to 

the sum of the Coulomb electric field Ec and the induced electric field Ei (Bianchi 2005), i.e.,  

 

% = %	 + %( = −∇  � − *�
*�                              (1.12) 
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1.1.1.5.2 Lorentz electrical field 

The Lorentz specific electric force EL acts on the electric charges moving in a magnetic 

flux density field B at a velocity vq with respect to the adopted reference system. It is given 

by (Bianchi 2005), (Cheng 1993) , (Jianming 2002),  

 

%0 = �+��                              (1.13) 

 

1.1.1.5.3 Motional electric field 

The motion specific electric force Em acts on the electric charges on a conductor moving 

at a velocity vm with respect to the adopted reference system. It can be calculated using 

(Bianchi 2005), (Cheng 1993) , (Jianming 2002),  

 

%) = �)��                              (1.14) 

 

1.1.1.5.4 Total electric field 

The total specific electric field Et is the sum of the field E and the Lorentz’s motion, and 

external specific forces. It gives (Bianchi 2005), (Cheng 1993) , (Jianming 2002),  

 

%� = % + %0 + %) + %�1                  (1.15) 

 

In a conductive medium, characterized by the conductivity σ, the field Et is linked to the 

current density vector field J by means of the constitutive relationship (Cheng 1993), 

(Bianchi 2005),  

 

� = 2%�                    (1.16) 

 

1.1.1.6 Total current density  

If it is only considered a Maxwell’s electric field, (1.16) can be defined by,  

 

%� = −∇  � − *�
*�                        (1.17) 

 

If (1.17) is substituted in (1.16) gives (Bianchi 2005), (Cheng 1993) , (Jianming 2002),  

 

� = 2 3−∇ � − *�
*�4                         (1.18) 
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1.1.2 Summary of main features of variables  

After having explained all the variables, it is important to explain the main features that 

would lead to formulate a field equation. A brief summary of the most important features of 

these variables will be explained next. This summary contains the main field aspects 

considered in this investigation.   

 

1.1.2.1 Coulomb’s position 

It is mainly used in stationary and quasi-stationary magnetic fields that correspond to a 

planar or an axisymmetric symmetry assumption. It is defined by,  

 

� ⋅ � = �                         (1.19) 

 

1.1.2.2 Displacement current neglected 

If the displacement current is null, it is possible to formulate the next expression that 

relates the magnetic field strength and the current density,  

 

��$ = �                  (1.20) 

 

1.1.2.3 Defining magnetic vector potential 

The flux of a field density B, through any closed surface Sc is null. Thus it is possible to 

define a magnetic vector potential defined by,  

 

� = ���                  (1.21) 

 

1.1.2.4 Defining electric field 

The electric field E, also called Maxwell’s electric field, corresponds to, 

 

%� = −∇  � − *�
*�                     (1.22) 

 

1.1.2.5 Defining total current density 

Using (1.16) the total current density J is defined by,  
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� = 2 3−∇ � − *�
*�4                                   (1.23) 

 

All the variables explained before, permit to derive a Helmoltz field equation, which 

consists on a partial differential equation with the current density J or the electrical field            

-∇ V as the forcing function. The magnetic vector potential is the variable to be solved. 

Laplace, Poisson and Helmoltz field equations will be discussed next. 

  

1.1.3 Field equations 

1.1.3.1 Laplace and Poisson field equations 

Let us refer to a magnetostatic field, described by equations (1.19)-(1.23). The field 

problem is described by the quasi-harmonic equation defined by (Stratton 1941), (Arkkio 

1987), (Cheng 1993), (Jianming 2002), (Bianchi 2005),  

 

∇�5�(∇��)6 = �                             (1.24) 

 

If the materials are homogeneous, the reluctivity v is constant, thus equation (1.24) is 

reduced to the Poisson equation. The Poisson equation is finally defined by (Stratton 1941), 

(Arkkio 1987), (Cheng 1993), (Jianming 2002), (Bianchi 2005),  

 

−�5∇  7�6 = �                                     (1.25) 

 

If the current density field J is null in the considered domain, the problem is described by 

the Laplace equation, defined by (Stratton 1941), (Arkkio 1987), (Cheng 1993), (Jianming 

2002), (Bianchi 2005),  

 

−�5∇   7�6 = �                     (1.26) 

 

1.1.3.2 Helmoltz field equation  

The Helmoltz equation can be obtained if a uniform medium is considered. The first step 

consists on considering that the total current density J is defined by (Jianming 2002), (Bianchi 

2005),  

 

� = 2%�                             (1.27) 
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The total current density defined in (1.27) can be reformulated if the electrical field is 

taking into account. Thus (1.27) can be finally defined by (Jianming 2002), (Bianchi 2005), 

 

� = 2(−∇  �) − 2 *�
*�                           (1.28) 

 

If (1.28) is substituted in (1.25) gives,  

 

−�5∇ 7�6 = 2(−∇  �) − 2 *�
*�                       (1.29) 

 

If the terms of (1.29) are rearranged, the Helmoltz equation can be finally obtained. It is 

defined by (Arkkio 1987), (Jianming 2002), (Bianchi 2005),  

 

−� 5∇   7�6 + 2 *�
*� = 2(−∇  �)                          (1.30) 

 

The Helmoltz and the Laplace field equations permits to model a device, using a 

magnetostatic formulation.  If the magnetic fields are defined in two dimensions, it is 

assumed a planar and an axisymmetric symmetry and the conductor voltage is chosen as the 

forcing function; it is possible to formulate a transient FEM field equation which models the 

behavior of the conductor magnetic field (Arkkio 1987), (Chari and Sylvester 1980), 

(Jianming 2002).  It is also possible to choose the conductor current as the forcing function, 

thus an alternative field FEM equation known as the integro-differential approach can be 

formulated (Arkkio 1987), (Konrad 1981), (Konrad 1982). Moreover, it is also possible to 

use the FEM field equation with the voltages as the forcing function to determine the 

magnetic vector potentials of the device when the conductors currents are known. This can 

be achieved by coupling the equation that relates the magnetic vector potentials with the 

conductors voltages and currents (Arkkio 1987), (Konrad 1981), (Konrad 1982), (Ho, Li and 

Fu 1999).  

Nevertheless, the conductors currents or voltages of electrical machines or devices are not 

always known. Moreover, although the symmetry simplification of the field behavior reduces 

the complexity of the problem, it does not include some effects. For example, the end effects 

of the stator end windings or the end effects of the rotor end rings of an induction machine. 

If these effects are not included, the modeling of the field would not become accurate (Lubin, 

Mezani and Rezzoug 2011), (Li, Ho and Fu 2012). To tackle this problem it is necessary to 

couple external circuit equations which includes resistances and inductances, into the field 

FEM equation, in order to form a FEM-circuit coupled equation. Thus, electric parameters 

coupled with magnetic fields analysis using the finite element method have been widely used 

to simulate magnetic systems (Tsukerman et al. 1993), (Wang et al. 1985), (Arkkio 1987), 

(Wang and Xie 2009), (Ho, Li and Fu 1999), (Lubin, Mezani and Rezzoug 2011). 

The FEM field and the FEM-circuit coupled expression derived by the finite element 
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method can be solved in the frequency domain (Shen et al. 1985) or in the time domain 

systems (Lubin, Mezani and Rezzoug 2011), (Wenliang et al. 2012), (Li, Ho and Fu 2012). 

The solution in the frequency domain is simple, since implies to calculate a simple matrix 

equation (Shen et al. 1985). For the specific case of a time domain solution, the most widely 

used method is the Backwards Euler (Arkkio 1987), (Okamoto, Fujiwara and Ishihara 2010). 

If the FEM-circuit coupled equation to be solved is nonlinear, the Newton Method can be 

used (Fu and Ho 2009), (Dlala and Arkkio 2010). 

Nevertheless, the FEM equations may consist on matrices of larger order, may be difficult 

to obtain, or it may need of a considerable computation time. It is possible to overcome this 

situation, by using the parallel computing platform. Several methods have been developed 

for the finite element analysis based on the domain decomposition methods (Lavers, Boglaev 

y Sirotkin 1996). The finite element decomposition method is capable of solving a field 

problem by forming subdomains, it is an iterative process which coordinates the solution 

between adjacent subdomains by using their Neumann and boundary condition. The method 

permits that the problems on the subdomains are independent each other (Lavers, Boglaev y 

Sirotkin 1996), (Butrylo et al. 2003), (Mukades and Uragani 2008), (Wang et al. 2014). 

Parallel computing has been used this method, specifically it has been implemented on a 

distributed computing environment (Iwano et al. 1994), (Mukades and Uragani 2008); in the 

MPI platform (Butrylo et al. 2003) or in a Workstation Cluster (C. Fu 2008).  

One tendency in the parallel computing is to establish a programming which executes the 

sequential parts of the algorithm in the CPU cores, while those steps that can be executed in 

a parallel way by using the GPUs (Kiss et al. 2012), (Luebke 2008), (Jalili-Marandi, Zhiyin 

and Dinavahi 2012). The NVIDIA CUDA (CUDA toolkit 5.0 2014) is a hardware-software 

platform that can be used to execute parallel algorithms using a program coded in C. Thus, 

there are several commands easy to implement which permit to conveniently use the GPU 

hardware. The sequential parts of an algorithm can be calculated in the CPU or host, while 

the parts that are mean to be calculated by a parallel way are executed by using kernels in the 

GPUs (NVIDIA 2012), (Luebke 2008). When a kernel is executed, blocks with an equal 

number of threads are created to execute the parallel function; blocks of thread form a grid 

(Owens , Houston and Luebke 2008), (Luebke 2008). Recently, the addition of the CUBLAS 

library in CUDA has become an excellent choice. This library is an equivalent computer 

parallel platform of the Basic Linear Algebra Subprograms (BLAS) library. These routines 

permits to easily implement a solution of a FEM equation using parallel computing 

(Barrachina et al. 2008). 
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1.2 Justification of the present research 

In the actual times, it is very important to build electric machines optimized in their design, 

in order to get a high energy efficiency. Optimized designs permits to use a lesser amount of 

materials, and it requires less effort in the manufacturing and maintenance process. 

Moreover, it is very important to assure a reliable and secure operation. Because all these 

reasons, it is very important to have a reliable modelling of the electrical machines or devices 

(Brauer, Sadegui and Oerterlei 1999), (Manna and Marwaha 2008), (Bianchi 2005), (Wang 

and Xie 2009).   

Maxwell equations allow an accurate modeling of electric and magnetic fields of electrical 

machines or devices. However the equation solution could be very difficult to obtain if 

conventional methods of solution are used. Computing technology development has allowed 

the development of several numerical method which allows an approximate solution of the 

Maxwell equations. Specifically, the Finite Element Method (FEM) has become a powerful 

tool to solve the field equation of electrical machines or devices (Arkkio 1987), (Ho, Fu and 

Wong 1997), (Jianming 2002). The FEM method is been extensively used in the design of 

several electrical machines: transformers, induction machines, synchronous machines, etc.  

Although the FEM equations to be solved would be linear, and the planar and the 

axisymmetric symmetry assumptions would permit to simplify the finite element analysis; 

the matrix equations to be solved could be of large order, especially if it is required a details 

model of a device. For some cases, it is necessary to consider a large number of finite 

elements in order to know the behavior of the magnetic or electric field, in a specific region 

of a device (Arkkio 1987), (Bianchi 2005), (Jianming 2002). This could imply a frequency 

or time domain solution of a large order FEM equation, which could be very difficult to 

achieve.  

Since the solution of some FEM equation can be difficult to obtain, it could be necessary 

to have optimized methods of solutions which allows deriving faster and accurate solutions 

in the frequency or the time domain. Moreover, these methods of solution can be 

implemented by using a parallel solution, since there are several actual computing platforms 

that allows, a fast and easy parallel implementation of an algorithm. One example is the 

NVIDA CUDA-CUBLAS (CUDA toolkit 5.0 2014) (Barrachina et al. 2008),  (Jalili-

Marandi, Zhiyin and Dinavahi 2012). 
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1.3 Objectives 

This investigation covers the solution of FEM field equations with voltages or currents 

known, and the solution of a FEM-circuit coupled equation. All these FEM expressions have 

been derived from a planar or an axisymmetric symmetry assumption. The main goal is to 

develop a methodology which permits to apply the Newton or other solution techniques, to 

obtain a faster and accurate solution of the FEM equations in the frequency and the time 

domain. The implementation by using modern sequential and parallel computing platforms 

is highly desirable. The specific objectives are: 

• Developing a methodology which permits to analyze and solve electrical machines of 

devices by using the finite element method. The objective is to formulate an alternative 

method of solution, to derive a faster and accurate solution in the frequency and the 

time domain; by using the Newton method or other methods or solution forms. 

• Implementing the proposed methodology by using actual sequential and parallel 

computing platforms. Conventional sequential platforms as Matlab or GSL will be 

used. The methodology will be also implemented in a parallel computing platform, 

i.e. CUBLAS- CUDA. 

• Testing the proposed method in several devices or electrical machine components. 

Specifically, devices and tested which can be simplified by a planar or an 

axisymmetric symmetry assumptions will be analyzed. These symmetries can be used 

in a finite element analysis, in order to model a large number of electrical machines 

and devices.  

• Testing the results derived from the proposed method. Since an alternative method of 

solution of FEM equations is proposed, it is extremely important to conduct a 

performance and results comparison, by analyzing and solving different devices or 

components. Thus, it is highly desirable to compare the results derived from the 

methodology with those results derived from a widely accepted FEM software, such 

as ANSYS, or those derived from another investigations.   
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1.4 Description of the Methodology 

The developed a methodology that permits to solve FEM equations is based in the 

following methodology steps:  

FEM field with voltage or current known, and a FEM-circuit coupled equation are solved. 

These FEM expressions are derived from a planar or an axisymmetric symmetry assumption 

of the field equations of a device. The methodology consists on performing several steps 

which leads to derive a reduced equivalent equation of a FEM equations of a device. The 

equation derived by the proposed method is expressed in terms of the time varying variables 

of the device.  

The developed method consists on reordering the nodes of the FEM equation, performing 

an arrangement of the variables; and finally, performing some few simple matrix operations 

on the FEM equations. These actions allow getting a reduced equivalent equation, which is 

expressed in terms of time varying variables of the ordinary FEM expressions. The equation 

derived by the methodology can be solved in the frequency or the time domain. The solution 

in the frequency domain is similar to the solution of an ordinary FEM equation; since it only 

implies to calculate a simple matrix equation. For the specific case of a time domain solution, 

the equation can be solved by the Backwards Euler; but it can be obtained an approximate 

solution by using the Euler, the 4th order Runge Kutta and the Newton Methods. 

Although the methodology permits to obtain a faster solution of the FEM equations, in 

some cases the proposed equation could be still difficult to solve, especially if a conventional 

sequential computing is used. Because of this, a parallel form of solution of the equation 

derived from the methodology, by using the LU method has been developed. The parallel LU 

method developed has been implemented in CUDA, since this computing platform already 

contains several standard matrix routines which can be easily used to perform several matrix-

vector operations; and it can easily solved large scale matrix equations. 
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1.5 Thesis Content 

The investigation has been organized as follows:  

Chapter 1 explains how is organized the information contained in this thesis.   

Chapter 2 explains the features of a 2D finite element analysis. The field equations, the 

basic principles of the finite element analysis, the FEM equation to be solved and their 

method of solution, the incorporation of parallel computing implementation of these 

equations by using CUDA are detailed.  

Chapter 3 explains the proposed method of this investigation. How this method is able to 

get an equivalent equation from the FEM equations covered by this investigation is 

explained.  

Chapter 4 explains several case studies in which the proposed methodology has been 

tested. Case studies are derived from a finite element analysis which considers a symmetry 

assumption.  

Chapter 5 details how the proposed methodology and the ordinary FEM equations have 

been implemented in a sequential and a parallel computing platform, respectively.  

Chapter 6 gives the main conclusions drawn from this investigation. Suggestions for 

future research work in the same field of knowledge are given.  

And finally, Appendix A, B and C provide specific information about the finite element 

matrices and vectors; methods of solution of the FEM equations; and the programs used in 

study cases 3 and 5, respectively.  
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2 Finite element analysis and 

computational techniques 

2.1 Introduction 

The finite element analysis is a powerful tool that permits to solve the magnetic transient 
equation of an electrical machine or device. Although the equation derived can be difficult 
to solve when complex geometries or 3D analysis are used, the finite element analysis can 
be simplified by a symmetry simplification, i.e. a planar or an axisymmetric symmetry 
assumption.  

Using this 2D simplification and other assumptions, the field equation complexity can be 
highly reduced. The use of this symmetry assumption, allows that simple but effective finite 
elements represent a good solution for the devices field equation.  

The equation derived is named as FEM field equation. It is important that the FEM field 
equations are formulated in terms of the currents or voltages of the device. This is necessary 
since the primary FEM equation has the current density as the forcing function, and this 
parameter is not always known.  

Nevertheless, the currents or voltages of the devices are not also always known. In some 
cases, it is necessary to add some parameters such as resistances or inductances, which are 
connected to the conductors to get a more precise model of the electrical machine or device. 
The electrical parameters mentioned before, can be taken into account by one or several 
voltage-current equations, thus the current-voltage and the FEM field equations can be 
coupled into a FEM-circuit coupled equation. The FEM-circuit coupled equation permits to 
accurately model a device.  

The solution of the FEM field and FEM circuit coupled equations can be performed in the 
frequency or in the time domain. The solution of the frequency domain is very simple and 
easy to calculate, since it is considered that the state variables of the equation have a complex 
behavior in the time domain.  

For the case of the time domain method, several methods can be used, i.e. the Euler, the 
Backwards Euler and the fourth order Runge Kutta methods. The solution in the time domain 
can be also achieved by the use of the Newton fast approach method, which can solve the 
periodic solution of a set of differential equation defined in the time domain.  

The solution in the frequency and time domain can be also obtained in a faster way, if it is 
solved in a parallel computing platform. The recent technological advances in the parallel 
processing area, permits an easy and fast implementation of an equation parallel solution. 
Specifically the NVIDIA CUDA platform (CUDA toolkit 5.0 2014) allows the use of 
graphical processing units (GPUs) that can perform several computing calculations in a 
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parallel way (Luebke 2008), (Jalili-Marandi, Zhiyin and Dinavahi 2012). On this computing 
platform, a sequential processing can be performed in some stages, while other operations 
can be easily parallelized by using the GPUs as independent processing units. Since several 
matrix operations are continuously used in engineering problems, the CUBLAS library 
(Barrachina  et al. 2008), (CUDA toolkit 5.0 2014) has been developed. This library contains 
routines that can perform basic matrix operations in a parallel way using the GPUs.   

In this chapter the fundamentals of the finite element analysis based on a 2D symmetry 
simplification will be explained. The main assumptions and the main aspects of the Galerkin 
finite element analysis and the Galerkin weak FEM formulation will be detailed. These 
formulations permit to derive the FEM field and the FEM-circuit coupled equation covered 
in this investigation.  

After that, the solution methods of these FEM equations, in the frequency domain and in 
the time domain will be discussed. Conventional methods in time domain, such as Euler, 
Backwards Euler, and fourth order Runge Kutta will be explained. A Newton method that 
allows a fast periodic solution of a set of equations in the time domain will be also explained.  

After explaining the solution of the equation in the frequency and in the time domain, the 
main advantages of the CUBLAS and CUDA computing platforms will be described. They 
are a powerful computing platform that enables to perform an easy but powerful 
implementation of a parallel computing process, since several routines have been already 
implemented in the CUBLAS library. 

 

2.2 The Galerkin finite element method 

In this chapter the main fundaments of the Galerkin finite element analysis will be 
explained. First, it will be covered the field equations that are being considered for this 
investigation. These equations assume a magnetostic formulation, and it has been considered 
a magnetic field defined in two dimension. By taking into account these assumptions, the 
Helmoltz and the Laplace field equation permit to model an electrical machine or device 
(Bianchi 2005), (Arkkio 1987), (Konrad 1982), (Chari and Sylvester 1980), (Jianming 2002). 
The two dimensional fields can be defined in a planar and an axisymmetric symmetry. The 
finite element analysis that considers this symmetries and a two dimensional field will be 
explained next.  

 

2.2.1 Application of finite element method in two-dimensional fields 

In 2D field problems, the domain is considered to be a surfaceτ, and its boundary Γ is a 
curve. Let φ be the unknown function that it is to be determined. It is a scalar function of the 
space coordinates. There are two types of unknown function, a function which represents the 
solution of a field equation derived from a planar symmetry; and a function that represents 
the solution of a field equation derived from an axisymmetric symmetry. In this investigation 
two dimension fields based on these symmetry assumptions will be solved. The details of the 
two dimension fields will be explained next.  
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2.2.1.1 Two-Dimension Field defined by a planar symmetry 

2.2.1.1.1 Poisson equation, current density as the forcing function 

In the case of the planar symmetry, φz is a scalar function of the space coordinates x and 
y, i.e., φz=φz(x,y). In a first stage, the time dependence is omitted. Let fJ be the forcing 
function, which is independent of time. The 2D field problem of a planar symmetry is defined 
for the next partial differential equation (Bianchi 2005), (Chari and Sylvester 1980),  

 − ��� ��� �φ��� � − ��� ��� �φ��� � + 
φ� = �
                              (2.1) 

 

Together with the boundary conditions that are imposed to the boundary Γ of the domain, 
there are Dirichlet boundary conditions on the portion Γ1 of the boundary, and a Neumann 
boundary condition on the remaining portion Γ2 of the boundary. They are defined by (2.2) 
and (2.3), respectively (Bianchi 2005), (Chari and Sylvester 1980),  

 

φ� =  φ� on Γ1                        (2.2) 

 �φ��� = �   on  Γ2                         (2.3) 

 

It is important to remark that the boundary Γ of the domain is defined by the next 
relationship between Γ1 and Γ2,  

 

Γ1 ∪ Γ2 = Γ                         (2.4) 

 

In the particular case of a Poisson equation and a homogeneous material, the parameters 
of (2.1) are given by (Bianchi 2005),  

 

φ� = �� ; �
 = 
�  

 �� = �� = � ; 
 = �                      (2.5) 

 

The Poisson equation of a device with a planar symmetry can be defined by a simplified 
equation defined in (2.1) and the parameters defined in (2.5).  It yields, (Chari and Sylvester 
1980), (Silvester and Ferrari 1983), (Bianchi 2005),   
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− ��� �� ����� � − ��� �� ����� � = 
�                       (2.6) 

 

2.2.1.1.2 Current density defined by an electrical field 

The forcing function of (2.6) is the current density Jz. Nevertheless, the conductors of a 
device are not being supplied by a current density energy source, they are supplied by one or 
several voltage sources. Therefore, there is an electric field associated to such conductor 
voltage (Konrad 1982). In the conductors, the electrical field corresponds to the sum of the 
Coulomb electric field Ec and the induced electric field Ei e.g. (Bianchi 2005), (Konrad 1982), 

 �� = �� + �� = −∇  � − �����                        (2.7) 

 

The relationship between the electrical field and the current density in the conductors is 
given by (Bianchi 2005), (Konrad 1982),   

 
� = ���                                   (2.8) 

 

If the electrical field Ec along the conductor length is constant along the axis z, the term 
Ec= –∇V can be defined by the ratio of the voltage Uc applied along the conductor and the 
conductor’s length l. Thus (2.8) can be redefined by (Bianchi 2005), (Konrad 1982),   

 
� = � ��� − � �����                                (2.9) 

 

2.2.1.1.3 Poisson equation, voltage as the forcing function 

Taking into account (2.9), if this expression is substituted in (2.6), it is possible to derive 
an equation in which the voltage applied to the conductors is the forcing function. The 
equation can be written by, (Silvester and Ferrari 1983), (Bianchi 2005),  

 − ��� �� ����� � − ��� �� ����� � = � ��� − � �����                     (2.10) 

 

2.2.1.1.4 Defining the current as the forcing function 

It is possible to define the current as the forcing function of (2.6). This can be achieved by 
obtaining the current Iz associated to the current density Jz defined in (2.9). If (2.9) is 
integrated through the region τ of the conductor, it yields (Konrad 1982),    
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����� �� − ! � �����τ
"τ = #�                     (2.11) 

 

Where Rc is defined as the resistance of the conductors, and it can be calculated using (Konrad 
1982), (Escarela-Perez, Melgoza and Alvarez-Ramirez 2009),  

 �� = � �$                          (2.12) 

 

Where Δ is the conductor’s area, defined by its region τ. It can be seen that if the currents in 
the conductor are known; this can be defined as the forcing function. The equations involved 
are the expressions defined in (2.10) and (2.11), respectively. For the particular case of a 
planar symmetry, the region τ is given by (Konrad 1982),  

 

τ → ! ! "��&�& "�                           (2.13) 

 

2.2.1.2 Two-Dimension field defined by an axisymmetric symmetry 

2.2.1.2.1 Poisson equation, current density as the forcing function 

For the case of axisymmetric symmetry, φρ is a scalar function of the space coordinates r 
and z, i.e., φρ=φρ(r,z). In a first stage, the time dependence is omitted. Let fρ be the forcing 
function, which is independent of time. The 2D field problem of an axisymmetric symmetry 
is defined for the differential equation (Preiss 1983), (Jianming 2002), 

 

−  ' ��' ��' �φ(�' � −  ' ��� ��� �φ(�' � + 
φ( = �(                           (2.14) 

 

Together with the boundary conditions that are imposed on the boundary Γ of the domain. 
There are a Dirichlet boundary conditions on the portion Γ1 of the boundary, and a Neumann 
boundary condition on the remaining portion Γ2 of the boundary. They are defined by (2.15) 
and (2.16), respectively. 

 

 φ( =  φ� on Γ1                         (2.15) 

 �φ(�� = �   on Γ2                             (2.16) 

The relationship between the portions Γ1 and Γ2, with the total boundary Γ was previously 
defined in (2.4) for the particular case of a homogeneous material, and an axisymmetric 
symmetry. The parameters of (2.14) are defined by, 
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φ( = �( ;   �
 = 
( 

  �' = �� = �' ;   
 = �')                  (2.17) 

 

The Poisson equation of a device with an axisymmetric symmetry can be defined by the 
simplified equation (2.14) and the parameters given by (2.17).  The Poisson equation 
expressed in a single expression is given by, (Konrad, Chari and Csendes 1982), (Preiss 
1983), (Jianming 2002),  

 −  ' ��' ��' ��(�' � −  ' ��� ��' ��(�� � + � �(') = 
(                            (2.18) 

 

2.2.1.2.2 Current density defined by an electrical field  

The forcing function of (2.18) is the current density. Nevertheless, the conductors of a 
device with an axisymmetric symmetry are not also being supplied by a current density 
energy source, they are supplied by one or several voltage sources. Therefore, there is also 
an electric field associated to such conductor voltage (Konrad 1982), (Konrad, Chari and 
Csendes 1982), (Preiss 1983). In the conductors exists an electric field that corresponds to 
the sum of the Coulomb electric field Ec and the induced electric field Ei (Konrad 1982), 
(Konrad, Chari and Csendes 1982), (Preiss 1983). 

If Ec along the conductor length is constant along a specific value or the r-coordinate, the 
term  –∇ V can be defined by the ratio of the voltage Uc applied along the conductor and the 
conductor’s length along the r-coordinate (2πr). Thus, the current density Jρ is defined by 
(Konrad 1982), (Konrad, Chari and Csendes 1982), (Preiss 1983), 

 
( = � ��)*' − � ��(��                             (2.19) 

 

2.2.1.2.3 Poisson equation, voltage as the forcing function 

Taking into account (2.19), if this expression is substituted in (2.18), it is possible to derive 
an equation in which the voltage applied in the conductor is the forcing function. The 
equation can be written by (Konrad 1982), (Konrad, Chari and Csendes 1982), (Preiss 1983), 

 −  ' ��' ��' ��(�' � −  ' ��� ��' ��(�� � + � �(') = � ��)*' − � ��(��                             (2.20) 
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2.2.1.2.4 Defining the current as the forcing function 

It is possible to define the current as the forcing function of (2.20). This can be achieved 
by obtaining the current Iρ associated to the current density Jρ defined in (2.19). If (2.19) is 
integrated though the region τ of the conductor results on (Konrad 1982), (Preiss 1983), 

 �$'�� ���� − ! � ��(��τ
"τ = #(                    (2.21) 

 

Where Δr can be calculated using (Preiss 1983),  

 

$' = )*� +�! "τ''τ' �,� 
                   (2.22) 

 

It can be seen that if the current in the conductor is known, this can be defined as the 
forcing function. The equations involved are the expressions defined in (2.20) and (2.21), 
respectively. For the particular case of an axisymmetric symmetry, the region τr is given by 
(Preiss 1983).   

 

τ' → )* ! ! '"��&'& "'                            (2.23) 

 

After having explained the two dimension field equations, derived from a planar or an 
axisymmetric symmetry, the basic principles of the finite element analysis will be explained 
in the next section.  

 

2.2.2 Solution of field equations using Galerkin method 

The requirement of more and more accuracy during the process of design and analysis of 
the electrical machine fostered the spreading of numerical models appropriate for computing 
electric and magnetic fields. These numerical methods are essentially based on the 
determination of the distribution of the electric and magnetic fields in the structures under 
study, based on the solution of the Maxwell’s equations. An analytical solution is barely 
achieved, because of the complex geometrical machine structures and the nonlinear 
characteristics of the material. Then, in most cases, only a numerical solution is possible 
(Bianchi 2005), (Reece and Preston 2000). In this section will be explained the main features 
of the Galerkin method when it is used to solve field problems.  

2.2.2.1 Field problems with boundary conditions 

Generally, a vector field problem is described by a differential equation, defined in the 
domain D as, (Bianchi 2005),  
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-.�/, �� = ��/, ��                           (2.24) 

 

Together with the boundary conditions, the latter constrain in the fields along the boundary 
Γ of the domain under analysis. In equation (2.24), L is a differential operator, φ is the 
unknown function to be determined, and f is the forcing function. For the case of a planar 
symmetry (Bianchi 2005), equation (2.24) highlights that both φ  and f are functions of the 
position in the space P(x,y,z) and of the time t. For the case of an axisymmetric symmetry 
(Preiss 1983), equation (2.24) highlights that both φ  and f are functions of the position in the 
space P(r,z,ρ) and of the time t. 

In general, L might be any differential operator. Usually represents a linear operator, 
satisfying the property of addition and the property of product by a constant. In the 
electromagnetic problems, (2.24) is given by the Poisson, Laplace or Helmoltz equation, in 
which φ is a scalar or vector field. As an example, for the case of the Poisson equation, φ  
indicates the magnetic vector potential A, the forcing function is the total current density J. 
Then (2.24) is rewritten as (Bianchi 2005), 

 - = −�1∇ )2                    (2.25) 

 

In which a homogenous medium is considered. The boundary conditions of the field equation 
shown in (2.24) will be explained next.  

 

2.2.2.1.1 Boundary conditions of field equations 

The field problem shown in (2.24) admits a solution not only if the differential equation 
that describes its distribution is known in all the points of the domain D, but also if the 
unknown function φ is given on the boundary Γ of the domain D itself (Bianchi 2005). In 
addition, it can be verified that once the solutions has been found, this solution is unique (this 
is the unicity theorem).  

The conditions that express the behavior of the solution φ on the frontier Γ are called 
constraint, or boundary conditions. Among these conditions, one can assign a Dirichlet 
condition which is when a given constant value of φ is assigned to the boundary Γ, or a 
Neumann condition, when a value of the derivative of φ normal to the boundary Γ is assigned  
(Konrad 1982), (Reddy 1984), (Bianchi 2005).  They will be explained next.  

 

2.2.2.1.1.1 Dirichlet boundary condition 

If we let Γ1 be a portion of the boundary Γ, the Dirichlet condition is defined by (Bianchi 
2005),  

Homogeneous condition: . = � on Γ1                       (2.26) 
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Nonhomogeneous condition: . = .� on Γ1                        (2.27) 
 
 

2.2.2.1.1.2 Neumann boundary condition 

If we let Γ2 be the remaining portion of the total boundary Γ, the Neumann’s condition 
can be a Homogeneous condition which is defined by (Bianchi 2005),   

 �.�� = � on Γ2                         (2.28) 

 

2.2.2.2 Solution of field problems using residual equation (Galerkin method) 

Let the field problem be expressed by (2.24) and by suitable boundary conditions, as given 
in (2.26) and (2.28). The Galerkin method which permits to solve field problems is now 
illustrated. The method aims to define a function φ* that approximates the unknown function 
φ as closely as possible. Specifically, it solves the field problem by reducing the residual of 
the differential equation (2.24); by using a function φ

* that better approaches the exact 
solution φ correspond to a residual (Bianchi 2005), (Jianming 2002),  

 ' = -.∗ − �                        (2.29) 

 

Equation (2.29) equates to zero (or at least very low) in the whole analysis domain. Fixing 
some weight wi, the residual method forces the integral of the residuals, weighed by wi, to be 
zero over the domain volume τD. The following condition is forced, (Bianchi 2005), 
(Jianming 2002),   

 

� = ! 4�-φ∗ − ��"τ
τ&                                 (2.30) 

 

The features of the function φ
* that approximates the unknown function φ will be 

explained in next Section; while the features of the weight function wi will be explained in 
Section 2.2.2.2.2.  

 

2.2.2.2.1 Defining an approximate solution of residual equation 

It is defined a function φ* that approximates the unknown function φ as closely as possible 
Such a function is commonly expressed by a linear combination of a basic function, as 
(Bianchi 2005), (Jianming 2002), (Bastos 2003), (Reece and Preston 2000),  

 .∗�/, �� = ∑ 67�/, ��.7678                   (2.31) 
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It is possible to express (2.31) in a matrix-vector form (Kwon and Bang 1997),  

 

φ∗ = 96 6)   . . 6�;<9φ φ)   . . φ�; = =67> ?φ7@<
                         (2.32) 

 

Where Nj are interpolating functions (that are also called expansion functions or base 
functions), while φj are unknown coefficients that have to be determined during the 
computation process. Such a combination has to be approximated to the exact solution, 
satisfying the differential operator and the boundary conditions at the same time (Arkkio 
1987), (Kwon and Bang 1997), (Reece and Preston 2000). 

 

2.2.2.2.2 Defining the weight functions of the residual equation 

In the Galerkin method, the weight-base functions wi are chosen equal to the interpolating 
function Ni; it yields, (Arkkio 1987), (Kwon and Bang 1997), (Reece and Preston 2000),  

 4� = 6�    i=1,2,3… m                                  (2.33) 

 

If (2.33) is described in a matrix-vector form gives,  

 4 = 96 6)   . . 6�;< = 96�;<                     (2.34) 

 

2.2.2.2.3 Substitution of approximate solution and weight function in residual 

equation  

Taking into account (2.32) and (2.34) and the operator defined in (2.24), the residual 
equation (2.30) can be defined by (Bianchi 2005).   

 

+! A96�;<-=67>B"τ
τ& , ?φ7@< = +! 96�;<"τ

τ& , �                              (2.35) 

 

2.2.2.2.4 Deriving matrix equation from residual expression   

The development of (2.35) can lead to a system of equations that can be expressed as 
(Bianchi 2005), (Jianming 2002),  

 CDE9φ; = 9F;                         (2.36) 
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Where [S] is a matrix that depends on the interpolating functions, {φ} is the column vector 
of the unknown coefficients φi. If the left side of (2.36) is developed, their elements are 
defined by (Bianchi 2005), (Jianming 2002),  

 D�7φ7 = +! �6�-67τ& �"τ, φ7                                 (2.37) 

 

Finally, {F} in equation (2.36) is the column vector whose elements depend on the forcing 
function f. They are given by (Bianchi 2005), (Jianming 2002),    

 F� = ?! 6�τ& "τ@ �                           (2.38) 

 

The Galerkin method permits to solve the field equations defined in (2.1) and (2.20). 
Nevertheless, the method requires interpolating functions Nj, and unknown coefficients ϕj 
that have to be determined during the computation process. Moreover, the functions Nj are 
defined in the whole domain. The a combination has to be approximated to the exact solution, 
satisfying the differential operator and the boundary conditions at the same time (Bianchi 
2005), (Reece and Preston 2000).   

Conversely, in the finite element method the whole domain is divided into subdomains, 
then the function φ

* is a combination of functions Nj that are defined in the subdomains. 
Consequently, since the subdomains are of reduced dimensions, the interpolating functions 
Nj can be very simple (Reddy 1984), (Bianchi 2005), (Reece and Preston 2000). The finite 
element method/analysis will be outlined next.  

 

2.2.3 Solution of field equations using the finite element 

method/analysis  

An analytical solution of field problems is barely achieved, because of the complex 
geometries on the electrical machines or devices. Then, in most cases, only a numerical 
solution is possible. The finite element method is a numerical technique that is suitable for 
this purpose. It allows a field solution to be obtained, even with time-variable fields and with 
materials that are nonhomogeneous, anisotropic, or nonlinear. Using the finite element 
method, the whole analysis domain is divided into elementary subdomains, which are called 
finite elements, and the field equation are applied to each of them (Bianchi 2005), (Reddy 
1984), (Reece and Preston 2000), (Arkkio 1987).  

The study of the field distributions, and in particular of electromagnetic field problems, 
exhibits the following advantages. It allows a meticulous local analysis to be carried out, 
highlighting dangerous field gradient, magnetic field strength, saturation and so on. It allows 
a good estimation of the performance of the electromagnetic devices under analysis. Finally, 
it permits one to reduce substantially the number of prototypes (Arkkio 1987), (Bianchi 
2005).  
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However, the method has some drawbacks, too. Because of its numerical nature, the 
solution is necessarily approximate. Then, if the method is not correctly applied, it might 
generate inaccurate results. Finally, since the computed quantities are distributed in the space, 
the required computation time is generally long (Bianchi 2005), (Arkkio 1987), (Reddy 
1984). 

In order to reduce the computation time, and to improve the analysis at the same time, 
each symmetry (both geometric and electromagnetic symmetry) of the structures is used. The 
resulting accuracy is influenced by the dimensions of the finite element and by the uniformity 
of the subdivision. To increase the accuracy, a fine subdivision of the structure is carried out, 
adopting finite elements of smaller dimension (Bianchi 2005), (Arkkio 1987), (Reddy 1984). 
Nevertheless, an excessive subdivision of the analysis domain causes an aggravation of the 
computation time.  

The finite element method is essentially based on the subdivision of the whole domain in 
a fixed number of subdomains. Despite of the classical methods described above, where the 
interpolating functions Nj are defined in the whole domain, in the finite element method they 
are defined only on each subdomain (Bianchi 2005). It follows that, because of the small 
dimensions of these subdomains, the function φ is approximated by simple interpolating 
functions whose coefficients are the unknown quantities. The finite element analysis is 
organized in the following steps (Bianchi 2005), (Arkkio 1987), (Reddy 1984), (Reece and 
Preston 2000),  

1. Partition of the domain. The domain is divided into subdomains of reduced dimensions 
2. Choice of the interpolations functions: the functions Nj are chosen. As said earlier, with 

the small dimensions of the subdomains, these functions can be very simple.  
3. Formulation of the system to solve the field problem: The set of equations representing 

the field solution is developed by means of the Galerkin method.  
4. Solution of the problem. The solution is obtained by solving the resulting set of equations. 

In this investigation, the FEM equations will be solved in the frequency and the time 
domain. Specific details about the FEM equation solution, can be consulted in Appendix 
B.  

These steps will be outlined next.  

 

2.2.3.1 Partition of the domain 

The first step of the finite element method is to divide the domain. The whole domain is 
subdivided in Nm elements Dm (m=1,2,3,..., Nm). The way to achieve such subdivision greatly 
affects the solution accuracy. Moreover, it influences the memory space required by the 
computer (Bianchi 2005), (Reddy 1984), (Reece and Preston 2000). 

In one-dimensional problems, the domain is a curve and such subdomains are segments. 
The connection of the different segments form the original curve. In two-dimensional 
problems, the domain is a surface and each subdomain is a polygon, usually a triangle or a 
rectangle. In three-dimensional problems, the domain is a volume and each subdomain is a 
tetrahedron, a triangular prism or a rectangular solid (Bianchi 2005). On this investigation, 
specifically one and two dimensional problems will be solved. 
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2.2.3.2 Choice of the interpolating function 

The second step consists of the choice of the interpolating function to approximate the 
unknown function in each m-th element. If a first order polynomial is chosen, a lineal 

interpolation is achieved. With a second-order polynomial, a quadratic interpolation is 
achieved. Also a high-order polynomial can be chosen; however, although they yield to a 
higher accuracy in the interpolation, they require a more complex formulation and, thus, are 
barely adopted (Bianchi 2005), (Jianming 2002), (Reddy 1984), (Reece and Preston 2000). 
On this investigation linear interpolation functions will be solved, although for the specific 
case of a planar symmetry quadratic functions will be formulated. Once the order of the 
polynomial is chosen, the unknown solution for each m-th element is written as (Bianchi 
2005), (Jianming 2002),  

 .G∗ �/, �� = ∑ .G76G7�/, ��678                       (2.39) 

 

Where N is the number of the nodes of the element, φmj is the value of φ in the j-th node of 
the m-th element. Finally, Nmj is the interpolating function referred to the j-th node of the m-
th element.  

The function solution φm
* could correspond to the solution of a field equation derived from 

a planar symmetry assumption, thus P=(x,y). For the case of a function solution φm
* of a field 

equation derived from a an axisymmetric symmetry, P=(r,z). The highest order of the 
function defines also de order of the element. If equation (2.39) is expressed in a matrix way, 
results on (Kwon and Bang 1997), (Jianming 2002),  

 .G∗ �/, �� = 96G �/, �� 6G)�/, ��   … 6G7�/, ��;=φG φG)   … φG7><
               (2.39a) 

 

Finally, (2.39a) can be expressed in a reduced form given by (Kwon and Bang 1997), 
(Jianming 2002) 

 

.G∗ = =6G7> ?φG7@<
                         (2.40) 

 

Finite elements for a planar and axisymmetric symmetry are used in this thesis. Using 
these finite elements, it is possible to use the Galerkin method in order to solve field equations 
on each subdomain of reduced dimension. The different types of finite element used in this 
investigation for a planar symmetry will be explained next. Further details of these elements 
can be consulted in Appendix A.  
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2.2.3.2.1 Finite elements for a planar symmetry  

It can be seen that the finite element analysis requires that the 2D domain of the device to 
be subdivided in a finite and sufficiently high number of elements. For the simplest case, 
they are elements of triangular form, not necessary equal, but not intersecting each other. 
Each vortex is called a node, and all of them set up the mesh (Bianchi 2005), (Silvester and 
Ferrari 1983), (Reece and Preston 2000). Let us assume that the structure has been divided 
into Nm finite elements, and the total number of nodes is Nn. Each of them assumes the value 
φi of the potential function φ. Thanks to the small dimensions of the elements, the 
interpolating functions Ni(x,y) may be simple. Triangular finite elements were considered for 
a planar symmetry. They will be outlined next.  

 

2.2.3.2.1.1 Triangular finite element in planar symmetry with three nodes 

It is possible to define triangular elements, and define a linear interpolation of the function 
φ(x,y) assumed for each m-th triangular elements, given by (Bianchi 2005), (Kwon and Bang 
1997), (Jianming 2002),   

 

φG��, �� = I + J� + ��                    (2.41) 

 

In particular in the three nodes of the triangular, the three i-th values are given by, 

  

φ �� , � � = I + J� + ��     

 

φ)��), �)� = I + J�) + ��)  

 

φK��K, �K� = I + J�K + ��K                       (2.42) 

 

It can be observed that knowing the value of the function in the three nodes φ1, φ2, φ3; by 
means of (2.42), it is possible to compute the scalar function at any point of the element. If 
the three values of the potentials are given in each node, it is possible to solve the system 
(2.41) in order to calculate the unknown parameters a,b,c, (Bianchi 2005), (Kwon and Bang 
1997),  

 

LIJ�M = N � �  �) �) �K �KO� Pφ 
φ)
φK

Q                      (2.43) 

 

After several operations, the values a, b, c are defined as follows,  
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 I =  $" A��)�K − �K�)�φ + ��K� − � �K�φ) + �� �) − �)� �φKB   
 J =  $" A��) − �K�φ + ��K − � �φ) + �� − �)�φKB   
 � =  $" A��K − �)�φ + �� − �K�φ) + ��) − � �φKB                (2.44) 

 

The value of Δd is defined by (Kwon and Bang 1997), (Bianchi 2005), 

 $" = � �) − �)� + �)�K − �K�) + �K� − � �K               (2.45) 

 

It is possible to express (2.41) taking into account the values a, b, c defined in (2.44) and 
the potentials defined in three nodes. The resultant equation can be expressed in a vector 
form by (Kwon and Bang 1997), (Jianming 2002),   

 

φG��, �� = 96G;9φG}                              (2.46) 

 

Where the vectors of (2.46) can be defined by,  

 96G; = 96 6) 6K;  

 9φG; = 9φ φ) φK;<                  (2.47) 

 

The values of N1, N2, N3 of (2.47) can be consulted in Appendix A.  It can be seen that the 
three nodes of the triangular finite element can be defined by the values of ϕ1, ϕ2 and ϕ3 at 
each node, and by the interpolating functions defined in (2.47). These functions depend on 
the nodes and their position along the x-y plane. 

  

2.2.3.2.1.2 Triangular finite element in planar symmetry with six nodes 

Another kind of linear interpolation of the function φ can be assumed for each m-th 
triangular elements of the structure. It is given by (Kwon and Bang 1997), (Bianchi 2005),  

 

φG��, �� = I + J� + �� + "�) + R�� + ��)                (2.48) 
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In particular in the six nodes of the triangular element, the six i-th values are given by 
(Kwon and Bang 1997), (Bianchi 2005), 

I + J� + �� + "� ) + R� )� ) + �� ) = φ  I + J�) + ��) + "�)) + R�))�)) + ��)) = φ) I + J�K + ��K + "�K) + R�K)�K) + ��K) = φK  I + J�S + ��S + "�S) + R�S)�S) + ��S) = φS  I + J�T + ��T + "�T) + R�T)�T) + ��T) = φT  I + J�U + ��U + "�U) + R�U)�U) + ��U) = φU                           (2.49) 

 

 If the six values of the potentials are given in each node, it is possible to solve the system 
(2.49) in order to calculate the unknown parameters a, b, c, d , e and f, (Kwon and Bang 
1997), (Bianchi 2005),  

 

VWX
WYIJ�"R�ZW[

W\ =
]
^̂̂
_̂ � �  �) �) �K �K

� ) � )� ) � )�)) �))�)) �))�K) �K)�K) �K) �S �S �T �T �U �U
�S) �S)�S) �S)�T) �T)�T) �T)�U) �U)�U) �U)`

aaa
ab

� 

VWW
X
WWY
φ 
φ)
φK
φS
φT
φUZWW

[
WW\

                  (2.50)  

 

For this kind of finite element, it is also possible to express (2.48) taking into account the 
values a, b, c, d, e and f and the potentials defined in six nodes. The resultant equation can 
be expressed in a vector form by (Kwon and Bang 1997), (Bianchi 2005), (Jianming 2002), 

 

φG��, �� = 96G;9φG}                     (2.51) 

 

Where the vectors of (2.51) can be defined by,  

 96G; = 96 6) 6K 6S 6T 6U; 

 9φG; = 9φ φ) φK φS φT φU;<                 (2.52) 

 

The values of N1, N2, N3, N4, N5 and N6 of (2.52) can be consulted in Appendix A. It can be 
seen that this six nodes triangular finite element can be defined by the values of ϕ1, ϕ2, ϕ3, ϕ4, 



30 
 

ϕ5 and ϕ6 at each node, and by the interpolating functions defined in (2.52). These functions 
depend on the nodes and their position along the x-y plane.  

2.2.3.2.2 Finite elements for an axisymmetric symmetry  

For the case of an axisymmetric symmetry, the 2D domain is also subdivided in a finite 
high number of nodes. It also assumed that the structure is divided into Nm finite elements, 
and the total number of nodes is Nn. Each finite element assumes the value φi of the potential 
function φ. 

 
2.2.3.2.2.1 Triangular finite element in an axisymmetric symmetry with three 

nodes 

It is possible to define triangular elements, and define a linear interpolation of the function 
φ(r,z) assumed for each m-th triangular elements, given by (Preiss 1983), (Bianchi 2005),  

 

φG�', �� = I + J' + ��                    (2.53) 

 

In particular, for the three nodes of the linear triangular element, the three i-th values are 
given by φ1, φ2 and φ3. Taking these values into account, it is possible to compute the scalar 
function at any point of the element, thus, it is also possible to calculate the unknown 
parameters a, b, c, i.e.  

 

LIJ�M = N ' �  ') �) 'K �KO� Pφ 
φ)
φ)

Q                  (2.54) 

 

After several operations, the values a, b, c are defined as follows (Preiss 1983), (Bianchi 
2005),  

 I =  $"' A�')�K − 'K�)�φ + �'K� − ' �K�φ) + �' �) − ')� �φKB   
 J =  $"' A��) − �K�φ + ��K − � �φ) + �� − �)�φKB   
 � =  $"' A�'K − ')�φ + �' − 'K�φ) + �') − ' �φKB                  (2.55)  

 

Where the value of Δr
d is defined by,  

 $"' = ' �) − ')� + ')�K − 'K�) + 'K� − ' �K                (2.56) 
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It is possible to express (2.53) taking into account the values a, b, c defined in (2.55) and 
the potentials defined in the three nodes. The resultant equation can be expressed by (Preiss 
1983), (Bianchi 2005), (Kwon and Bang 1997),     

 

φG�', �� = 96G;9φG}                   (2.57) 

 

The values of N1, N2, N3 can be consulted in Appendix A. The three nodes of the triangular 
finite element can be defined by the values of ϕ1, ϕ2 and ϕ3 at each node, and by the 
interpolating functions defined in (2.57). These functions depend on the nodes and their 
position along the r-z plane. 

After having explained the main features of the triangular finite elements for the planar 
and axisymmetric symmetry, it will be explained the use of an alternative system of 
coordinates, which permits to calculate the parameters of these finite elements in a simple 
way.   

2.2.3.2.3 Using alternative systems of coordinates for finite element’s 

calculation  

The higher order (second or third order) triangular elements are also called high-precision 
elements. There are many other finite elements but the triangular element with three and six 
nodes will be used on this investigation. Although the square element is widely used, it can 
be easily obtained by splitting two triangular elements (Bastos 2003).  

The finite element analysis requires to perform several operations in the interpolating 
functions, in order to generate the matrices and vector that are part of the FEM equations. 
This cannot be easily achieved by using the normal system of coordinates of a planar or an 
axisymmetric symmetry. It is necessary to switch, from a conventional system of coordinates, 
to other allowing an easy calculation. The change of the system of coordinates will be 
performed on the planar and the axisymmetric symmetry. This will be explained next.  

2.2.3.2.3.1 Reference and local finite elements, planar symmetry  

As a first step, the idea of a “reference” or “local” element and the reference or local 
system of coordinates or space is introduced. Figure 2.1 shows an example and the 
relationship between the local and global system of coordinates (Bastos 2003) in a planar 
symmetry.   

 

 
Figure 2.1. A finite element defined in a local system of coordinates (u,v) and 

mapping to a global system of coordinates (x,y) 
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The relation needed to define a finite element are generated in the local system of 
coordinates because it is easier to do so. Then, a unique transformation is established which 
transforms the element from the local coordinate system into the global coordinate system. 
This transformation is performed by the so-called “geometric transformation functions” or 
“mapping functions” which express the real coordinates (x,y) in terms of the local coordinates 
(u,v), (Bastos 2003). 

2.2.2.3.2.3.1.1 Triangular linear finite element with three nodes 

In Figure 2.1 the triangle in local coordinates is defined as follows,  

 c ≥ � 

 � ≥ �  

 c + � ≤ �                    (2.58) 

 

The approximation within the triangle can be written in terms of the shape functions, 
N(u,v), (Kwon and Bang 1997), (Bastos 2003),  

 ��c, �� = 96 �c, �� 6)�c, �� 6K�c, ��;9� �) �K;<                             (2.59) 

 

For a first order triangle, the shape functions in local coordinates are (Kwon and Bang 
1997), (Bastos 2003),  

 6 �c, �� =  − c − �                   (2.60) 

 

 6)�c, �� = c                    (2.61) 

 6K�c, �� = �                  (2.61a) 

 

It is possible to replace (2.60), (2.61) and (2.61a) in (2.59), i.e. (Bastos 2003),   

 ��c, �� = 9 − c − � c ��;9� �) �K;<             (2.62) 

 

Identical transformations apply to the y coordinates, it yields 

 ��c, �� = 9 − c − � c ��;9� �) �K;<             (2.63) 
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This means that the functions N1, N2 and N3 are valid for x and y. The net effect is that 
node (u=0, v=0) is mapped onto (x1,y1). Node (u=1, v=0) is mapped onto (x2,y2) and the node 
at (u=0, v=1) is mapped onto (x3,y3). Thus, for any point (u, v), there corresponds a unique 
point (x, y); it is possible to establish a relation between the derivatives of Ni respect to u and 
v; with the derivatives of Ni respect to x and y. The partial derivate of Ni respect to x or y are 
required to derive the matrices included in the Galerkin weak formulation in a planar 
symmetry. Further details about how the matrices of the Galerkin weak formulation are 
calculated, it can be seen in Section 2.2.3.3.1.1. The partial derivatives can be calculated by 
using the chain derivative rule (Bastos 2003),  

 �6��c = �6��� ���c + �6��� ���c                    (2.64) 

 �6��� = �6��� ���� + �6��� ����                     (2.65) 

 

If (2.64) and (2.65) are disposed in a matrix way, and the derivatives of x and y respect to 
u and v are performed yields (Bastos 2003),   

 

VX
Y�6���

�6��� Z[
\ = f�) − � 

�K − �     �) − � 
�K − � g� h�6��c

�6���
i                           (2.66) 

 

If the matrix inverse is developed, (2.66) can be written by, 

 

VX
Y�6���

�6��� Z[
\ =  $" f�K − � 

� − �K    � − �)
�) − � g h�6��c

�6���
i               (2.67) 

 

All the weighting functions with derivative respect to x and y, can be calculated using 
(2.67). If the triangular finite element defined in 2.2.3.2.1.1 is used, we obtain (Bastos 2003),  

  

VX
Y�6 �� �6)�� �6K��

�6 �� �6)�� �6K�� Z[
\ =  $" f�K − � 

� − �K    � − �)
�) − � g h�6 �c �6)�c �6K�c

�6 �� �6)�� �6K��
i                   (2.68) 

 

The variable Δd was already defined in (2.45). The equation (2.68) permits to obtain the 
derivatives of any Ni that belong to the triangular finite element defined in 2.2.3.2.1.1 in an 
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easier way. Using (2.68), and by using the Galerkin weak formulation, the partial derivatives 
can be calculated and used to derive the FEM matrices.  

2.2.2.3.2.3.1.2 Triangular quadratic finite element in planar symmetry 

with six nodes 

In Figure 2.2 the triangle with six nodes in local coordinates is defined in the same way, 
as the three-node finite element does,  

 

 
Figure 2.2. A finite element of six nodes defined in a local system of coordinates (u,v) and mapping to a global system 

of coordinates (x,y) 

 

The approximation within the triangle can be written in terms of the shape functions, N(u, 
v). It yields, (Bastos 2003),   

 ��c, �� = 96 6) 6K 6S 6T 6U;9� �) �K �S �T �U;<                 (2.69) 

 

For a first order triangle the shape functions in local coordinates are (Bastos 2003),  

 6 �c, �� = �)c +  )� −   ��c +  � −   � 

 6)�c, �� = c�)c −   �  

 6K�c, �� = ��)� −   �  

 6S�c, �� = −c�Sc +  S� −  S� 

 6T�c, �� = Sc� 

 6U�c, �� = −��Sc +  S� −  S�                (2.70) 
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This means that the functions N1, N2 and N3 are valid for x and y. The net effect is that 
node (u=0, v=0) is mapped onto (x1,y1). The same effect can be observed in the last three 
nodes of the triangle. The partial derivate of Ni respect to x or y are also required to derive 
the matrices included in the Galerkin weak formulation in a planar symmetry. All the 
elements with derivative respect to x and y, can also be calculated using (2.71). It results on 
(Bastos 2003),  

 

VX
Y�6 �� �6)��

�6 �� �6)��
    

�6K�� �6S��
�6K�� �6S��

    
�6T�� �6U��
�6T�� �6U�� Z[

\ =  $" f�K − � 
� − �K    � − �)

�) − � g h�6 �c �6)�c
�6 �� �6)��

    �6K�c �6S�c
�6K�� �6S��

    �6T�c �6U�c
�6T�� �6U��

i     

(2.71) 

 

The variable Δd was already defined in (2.45). The equation (2.71) permits to obtain the 
derivatives of the quadratic triangular finite element defined in Section 2.2.3.2.1.2 in an 
easier way. Using (2.71) the partial derivatives can be calculated and used to derive the FEM 
matrices, by using the Galerkin weak formulation. 

 

2.2.3.2.3.2 Reference and local finite elements, axisymmetric symmetry  

For the case of a finite element defined for an axisymmetric symmetry, a unique 
transformation is also established which transforms the element from the local coordinate 
system into the global coordinate system. This transformation is accomplished by the so-
called “mapping functions” which express the real coordinates (r, z) in terms of the local 
coordinates (u, v) (Bastos 2003).  

2.2.3.2.3.2.1 Triangular linear finite element with three nodes 

In Figure 2.3 shows a triangle in local coordinates r and z,  

 

 

Figure 2.3. A finite element defined in a local system of coordinates (u,v) and 
mapping to a global system o coordinates (r,z)  

The approximation within this triangle can be written in terms of the shape functions, 
N(u,v), (Bastos 2003),  
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'�c, �� = 96 �c, �� 6)�c, �� 6K�c, ��;9' ') 'K;<                       (2.72) 

 

For a first order triangle the shape functions in local coordinates were defined in (2.60), 
(2.61) and (2.61a). If these shape function are substituted in (2.72) gives,  

 '�c, �� = 9 − c − � c ��;9' ') 'K;<                 (2.73) 

 

If (2.73) is taken into account, an identical transformation apply to the z-coordinate,  

 ��c, �� = 9 − c − � c ��;9� �) �K;<                (2.74) 

 

This means that the functions N1, N2 and N3 are valid for r and z. For any point (u,v), there 
correspond a unique point (r, z). It is possible to establish a relation between the derivatives 
of Ni respect to u and v; with the derivatives of Ni respect to r and z. This is possible to achieve 
by using the chain derivative rule (Bastos 2003), i.e. 

 �6��c = �6��' �'�c + �6��� ���c                    (2.75) 

 �6��� = �6��' �'�� + �6��� ����                   (2.76) 

 

If (2.75) and (2.76) are disposed in a matrix way, and the derivatives of r and z respect to 
u and v are performed, it yields, (Bastos 2003),  

 

h�6��'
�6���

i = f') − ' 
'K − '     �) − � 

�K − � g� h�6��c
�6���

i                         (2.77) 

 

Taking into account the matrix inverse, (2.77) can be written by, (Bastos 2003),  

 

h�6��'
�6���

i =  $"' f�K − � 
' − 'K    � − �)

') − ' g h�6��c
�6���

i                         (2.78) 

 

All the elements with derivative respect to r and z, can be calculated using (2.78). It results 
on, (Bastos 2003),  



37 
 

 h�6 �' �6)�' �6K�'
�6 �� �6)�� �6K��

i =  $"' f�K − � 
' − 'K    � − �)

') − ' g h�6 �c �6)�c �6K�c
�6 �� �6)�� �6K��

i                 (2.79) 

 

The variable Δd 
r was already defined in (2.56). The equation (2.79) permits to obtain the 

derivatives of any Ni that belong to the triangular finite element defined in Section 2.2.3.2.2.1 
in an easier way. 

2.2.3.3 Formulation of the system to solve a field equation derived from a planar 

and axisymmetric symmetry assumptions 

To solve the field problem, the values of φmj have to be computed in the nodes of each 
element. It is necessary to prepare a set of equations, whose solution correspond to the values 
of φmj. To develop this system, the residual method may be adopted. For the case of Galerkin 
equation explained in Section 2.2.2, this is applied to each finite element. Thus, the residual 
integral is set to zero. The residual integral of the m-th element is defined by (Bianchi 2005),  

 

��G = ! j=6G7>- k=6G7> ?φG7@<lm "τ
τ

− ! =6G7>�G"τ
τ

                    (2.80)   

 

A set of n equations with the n unknown φmj is obtained. By applying the Galerkin method 
to all the Nm elements that form the domain, and considering the relationships that link the 
adjacent elements, a system of this kind is obtained as (Bianchi 2005); 

 CDE9φ; − 9F; = �                          (2.81) 

 

The equation (2.81) is formed by Nn equations, with Nn unknown φj. The residual and the 
matrix equations (2.80) and (2.81) depends of the kind of symmetry assumption. The residual 
and the matrix equation for a planar and an axisymmetric symmetry will be explained next.  

 

2.2.3.3.1 Formulation of the system to solve a field equation derived from a 

planar symmetry assumption 

For the case of a device with a planar symmetry assumption, if the operator L defined in 
(2.25) along the interpolating and weigh functions defined in (2.32) and (2.34) are 
considered; and finally, a planar symmetry is considered on (2.80); it yields (Bianchi 2005),  

 

! j=6G7>- k=6G7> ?φG7@<lm "τ
τ

− ! =6G7>�G"τ
τ

=  

�! 6� +− ��� ��� �67�� � − ��� ��� �67�� �,
τ& "τ� φ7 − �! 6�τ& "τ� �  (2.82) 
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If a Poisson equation is being formulated, the variable φj; the forcing function F, and the 
parameters αx and αy of the right side of (2.82) are all defined by (Bianchi 2005),   

 

φ7 = ����, ��;  � = 
� 

 �� = �� = �                   (2.82a) 

 

Where Az is the magnetic vector potential defined along the z-axis. The region τ was 
previously defined in (2.13). 

 

2.2.3.3.1.1 Solution of a field equation derived from a planar symmetry 

using the Galerkin weak formulation  

The Galerkin weak formulation can be applied to the solution of partial differential 
equations derived from a planar symmetry assumption. In order to develop the Galerkin weak 
formulation of the first term of the right side of (2.82), integration by parts is applied to 
reduce the order of differentiation within the integral (Kwon and Bang 1997). The subsequent 
explanation shows the integration by parts. The next step consists on separating the first term 
of the right and left sides of (2.82). It yields,  

 

j! j96�;<- k=67> ?φ7@<lm "τ
τ& m = �! 6� +− ��� ��� �67�� � − ��� ��� �67�� �,

τ& "τ� φ7                   (2.83) 

 

After that, it is possible to substitute the interpolating function (2.32) and the weigh 
functions (2.34) in the right side of (2.83). On the first step of the Galerkin weak formulation, 
the term with derivate respect to x can be separated from the term with derivate respect to y 
to develop them separately. Thus, the term with derivate respect to x can be evaluated first 
by performing an integration by parts respect to x (Kwon and Bang 1997), (Bianchi 2005). 
After that, an integration respect to y can be done. The result of these operations is given by 
(Arkkio 1987), (Kwon and Bang 1997), (Jianming 2002),  

 

k! 96�;< j− ��� k�� �=67>�� lm
τ& "τl φ7 = − j! �−96�;<�� �φ�����

������ "�m +  

n! ! o�� �96�;<�� �=67>�� p "����� "����� q ?φ7@<
    

(2.84) 

 

Where xi, xf, yi, yf are limits of the integral area τ. The area τ  is shown in Figure 2.4  
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Figure 2.4. Two dimension domain of a planar symmetry assumption 

It is possible to rewrite the boundary integration of (2.84), by defining it in terms of the 
boundary Γ, it yields (Kwon and Bang 1997), (Bianchi 2005),  

 

j! �−96�;<�� �φ�����
������ "�m = − +! 96�;<�� �φ�� ��Γ) "Γ, + +! 96�;<�� �φ�� ��Γ "Γ,           (2.85) 

 

Where nx is the unit normal vector, which is assumed to be positive in the outward direction 
as shown in Figure 2.4. Finally combining the two boundary integrals of (2.85) gives (Kwon 
and Bang 1997), (Bianchi 2005),  

 − +! 96�;<�� �φ�� ��Γ) "Γ, + +! 96�;<�� �φ�� ��Γ "Γ, = ∮ �−96�;<�� �φ�� ���
Γ" "Γ            (2.86) 

 

If the right side of (2.86) is substituted in (2.84) it gives,  

 

k! 96�;< j− ��� k�� �=67>�� lm
τ& "τl φ7 = ∮ �−96�;<�� �φ�� ���

Γ" "Γ +  

n! ! o�� �96�;<�� �=67>�� p "����� "����� q ?φ7@<
  

(2.87) 

It is possible to perform the same integration in the term with derivate respect to y of 
(2.83). The boundary terms derived from this integration by parts can be modified according 
to (2.84), (2.85), (2.86) and (2.87). The result of these operations is given by (Kwon and 
Bang 1997), (Bianchi 2005),   

 

k! 96�;< j− ��� k�� �=67>�� lm
τ& "τl φ7 = ∮ �−96�;<�� �φ�� ���

Γ" "Γ +  

n! ! o�� �96�;<�� �=67>�� p "����� "����� q ?φ7@<
   

(2.88) 
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 Taking into account (2.87) and (2.88); (2.83) be written by (Kwon and Bang 1997), 
(Bianchi 2005),  

 

j! j96�;<- k=67> ?φ7@<lm "τ
τ& m = ∮ �−96�;<�� �φ�� �� − 96�;<�� �φ�� ���

Γ" "Γ       
 + n! o�� �96�;<�� �=67>�� + �� �96�;<�� �=67>�� p "τ

τ& q ?φ7@<
  (2.89) 

 

The boundary terms of (2.89) can be expressed in terms of the normal direction of the 
boundary (Green’s theorem); thus (Kwon and Bang 1997), (Bianchi 2005), (Jianming 2002),  

 

j! j96�;<- k=67> ?φ7@<lm "τ
τ& m = ∮ k−96�;<�� �=67>�� l

Γ" "Γ  

+ n! o�� �96�;<�� �=67>�� + �� �96�;<�� �=67>�� p "τ
τ& q ?φ7@<

    

(2.90) 

The first term of the right side of (2.90) contains the boundary conditions on the frontier 
Γ. This term contains the Neumann and the Dirichlet boundary conditions. It gives (Kwon 
and Bang 1997), (Bianchi 2005), (Jianming 2002),  

 

j! j96�;<- k=67> ?φ7@<lm "τ
τ& m = +! �−96�;<�� �φ����#�

Γ" "Γ, + +! �−96�;<�� �φ����##�
Γ" "Γ, +  

n! o�� �96�;<�� �=67>�� + �96�;<�� �=67>�� p
τ& "τq ?φ7@<

 (2.91) 

 

The first and second terms at the left side of (2.91) represent the Neumann and Dirichlet 
boundary conditions, respectively.  

 

2.2.3.3.2 Formulation of the system to solve a field equation derived from an 

axisymmetric symmetry assumption  

For the case of a device with an axisymmetry assumption, if the operator L defined in 
(2.25) along the interpolating and weigh functions defined in (2.32) and (2.34) are 
considered; and finally, an axisymmetric symmetry is considered on (2.80); it yields (Bianchi 
2005),    

           

! j=6G7>- k=6G7> ?φG7@<lm "τ'τ' − ! =6G7>�G"τ'τ
=  

�! 6� +− ��' ��' �67�' � − ��� ��� �67�� � + 
67,
τ'& "τ'� φ7 − �! 6�τ'& "τ'� � (2.92) 
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If a Poisson equation is being formulated, the variable φj, the forcing function F, and the 
parameters β, αr and αz of (2.92) are defined by (Bianchi 2005), (Preiss 1983),   

 

φ7 = �(�', �� ; � = 
(  

 �' = �� = �'  ; 
 = �'                    (2.93) 

 

Where Aρ is the magnetic vector potential defined along the ρ-axis. The region τr was 
previously defined in (2.23). 

 

2.2.3.3.2.1 Solution of a field equation derived from an axisymmetric 

symmetry using the Galerkin weak formulation  

For an axisymmetric symmetry, the next steps consists on separating the first term of the 
right and left sides of (2.92). It yields,  

 

j! j96�;<- k=67> ?φ7@<lm "τ'τ'& m = �! 6� +− ��' ��' �67�' � − ��� ��� �67�� � + 
67,
τ'& "τ'� φ7  

  (2.94) 

After that, it is possible to substitute the interpolating function (2.32) and the weigh 
functions (2.34) in the right side of (2.94). At the same time, the term with derivate respect 
to r can be separated from the term with derivate respect to z, to develop them separately. 
Thus, the term with derivate respect to r can be evaluated by first performing an integration 
parts respect to r. After that, an integration respect to z can be done. The result of these 
operations is given by (Preiss 1983), (Kwon and Bang 1997), (Jianming 2002),  

 

�! 96�;< +− ��' ��' �67�' �,
τ'& "τ'� φ7 = − j! �−96�;<�' �φ�'�'�

'����� "�m +  

n! ! o�' �96�;<�' �=67>�' p "''�'� "����� q ?φ7@<
  (2.95) 

 

Where ri, rf, zi, zf are limits of the integral area τr. The area τr can be seen in Figure 2.5 

 



42 
 

 
Figure 2.5 Two dimension domain of an axisymmetric symmetry assumption 

It is possible to rewrite the boundary integration part of (2.95), by defining it in terms of 
the boundary Γ. It yields (Preiss 1983), (Kwon and Bang 1997),  

 

j! �−96�;<�' �φ�'�'�
'����� "�m = − +! 96�;<�' �φ�' �'Γ) "Γ, + +! 96�;<�' �φ�' �'Γ "Γ,                          (2.96) 

 

Where nr is the unit normal vector, which is assumed to be positive in the outward direction 
as shown in Figure 2.5. Finally combining the two boundary integrals of (2.96) gives (Preiss 
1983), (Kwon and Bang 1997),  

 − +! 96�;<�' �φ�' �'Γ) "Γ, + +! 96�;<�' �φ�' �'Γ "Γ, = ∮ �−96�;<�� �φ�' �'�
Γ" "Γ                          (2.97) 

 

If the right side of (2.97) is substituted in (2.96) gives (Preiss 1983), (Kwon and Bang 
1997),  

 

k! 96�;< j− ��' k�' �=67>�� lm
τ'& "τ'l φ7 = ∮ �−96�;<�� �φ�� ���

Γ" "Γ +  

n! ! o�� �96�;<�� �=67>�� p "''�'� "����� q ?φ7@<
 (2.98) 

 

It is possible to perform the same integration of (2.94) in the terms with derivate respect 
to z. The boundary terms derived by this integration can be modified according to (2.96), 
(2.97) and (2.98). The result of these operations is given by (Preiss 1983), (Kwon and Bang 
1997),  

 

k! 96�;< j− ��� k�� �=67>�� lm
τ'& "τ'l φ7 = ∮ �−96�;<�� �φ�� ���

Γ" "Γ +  

n! ! o�� �96�;<�� �=67>�� p "����� "''�'� q ?φ7@<
    (2.99)  
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Taking into account (2.98) and (2.99); (2.94) can be written by (Preiss 1983), (Kwon and 
Bang 1997), 

 

j! j96�;<- k=67> ?φ7@<lm "τ'τ'& m = ∮ �−96�;<�' �φ�' �' − 96�;<�� �φ�� ���
Γ" "Γ     

 + n! o�' �96�;<�' �=67>�' + �� �96�;<�� �=67>�� p "τ'τ'& q ?φ7@< + +! 96�;<
=67>
τ'& "τ' , 9φ7;   (2.100) 

 

The boundary terms of (2.100) can be expressed in terms of the normal direction of the 
boundary (Green’s theorem (Kwon and Bang 1997)), thus, 

 

j! j96�;<- k=67> ?φ7@<lm "τ'τ'& m = ∮ k−96�;<�� �=67>�� l
Γ" "Γ  

+ n! o�' �96�;<�' �=67>�' + �� �96�;<�� �=67>�� p "τ'τ'& q ?φ7@< + +! 96�;<
=67>
τ'& "τ' , 9φ7;   

(2.101) 

The first term of the right side of (2.101) contains the boundary conditions on the frontier Γ. 
This term contains the Neumann and the Dirichlet boundary conditions. It gives (Preiss 
1983), (Kwon and Bang 1997),   

 

j! j96�;<- k=67> ?φ7@<lm "τ'τ'& m = +! �−96�;<�� �φ����#�
Γ" "Γ, + +! �−96�;<�� �φ����##�

Γ" "Γ, + 

n! o�' �96�;<�' �=67>�' + �96�;<�� �=67>�� p
τ'& "τ'q ?φ7@< + +! 96�;<
=67>

τ'& "τ' , 9φ7; (2.102) 

 

The first and second terms of the right side of (2.102) represent the Neumann and Dirichlet 
boundary conditions, respectively. 

 

2.2.3.4 Deriving final matrix equation that contains the solution of the problem 

Equations (2.91) or (2.102) can be developed by performing the respective integration 
process, thus it is possible to compute the values {φj} in the Nn nodes of the domain. At the 
same time, the second term of the right side of (2.82) and (2.92) can also be developed by 
perming an integrating process. It yields (Preiss 1983), (Kwon and Bang 1997), 

 ?�J�#�@ + ?�J�##�@ + CDE9φ7; = 9�s7;�                        (2.103) 

 



44 
 

The vector {fb
(I)} contains the Neumann boundary conditions;  the Dirichlet boundary 

conditions are contained in the vector {fb
(II)}; and the terms [S] and {fgj} were derived by the 

Galerkin formulation. All these terms correspond either to the planar or the axisymmetric 
symmetry assumption. Further details about the matrices and vectors derived for the planar 
and axisymmetric symmetries can be consulted in Appendix A.  

The set of equations (2.103) can be solved by means of common numerical algorithms, 
but it can be seen that have been considered field equations that do not have terms that depend 
in time. They will be derived next.  

 

2.2.3.5 Deriving field equation with time varying terms 

The inclusion of the time varying terms can be achieved, by redefining the current density 
of the Poisson equation, in order to include the electric field that considers the coulomb 
electrical field Ec and the induced electric field Ei. This action will be performed for the field 
equations of a planar and an axisymmetric symmetry assumption. This will be explained 
next.  

2.2.3.5.1 Time varying terms of the planar symmetry, current and voltage as the 

forcing function 

For the case of the planar symmetry, the electrical field included in (2.1) can substituted 
in the Poisson equation defined in (2.6). The resultant equation is shown in (2.10). It is 
possible to represent that equation in a general form defined by,  

 − ��� ��� �φ��� − ��� ��� �φ��� = �� − �� �φ��                             (2.104) 

 

The Galerkin method was already developed for the right side of (2.104), specifically the 
Galerkin weak formulation that can be seen in (2.91) was used. If the Galerkin method is 
applied to the right side of (2.104), and the equation is decomposed in two terms (Konrad 
1982), (Arkkio 1987),   

 ! 6� ��� − �� �φ��� "τ = ! 6���"τ
τ&τ& − ! 6� ��� �φ��� "τ

τ&                   (2.105) 

 

According to the Galerkin method, the function Ni is defined by an interpolating function. 
Thus, (2.105) is given by,  

 ! 6��"τ
τ& → +! 96�;<"τ

τ& , ����                (2.106) 
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If the interpolation function defined in (2.34) is replaced in the second term of the right 
side of (2.106), and if at the same time the term Ni, is modified according to the Galerkin 
method; it yields,  

 

− ! 6� ��� �φ��� "τ
τ& → − +! ��96�;<=67> "τ

τ& , "9φ7;"�                     (2.107) 

 

Finally, if the terms defined in (2.106) and (2.107) are substituted in (2.105) and the 
Galerkin weak formulation terms defined in (2.91) are included; it yields (Konrad 1982), 
(Arkkio 1987),  

 +! �−96�;<�� �φ����#�
Γ" "Γ, + +! �−96�;<�� �φ����##�

Γ" "Γ, +  

n! o�� �96�;<�� �=67>�� + �96�;<�� �=67>�� p
τ& "τq 9φ7;  

+ +! ��96�;<=67> "τ
τ& , "9φ7;"� = +! �96�;<� "τ

τ
, ����  (2.108) 

 

Equation (2.108) can be developed and will result on a matrix equation of the next form, 
(Konrad 1982), (Arkkio 1987), (Jianming 2002), (Reece and Preston 2000),     

 ?�J�#�@ + ?�J�##�@ + CDE9φ7; + C<E ""� 9φ7; = 9�sc;��                                          (2.109) 

 

The vector {fb
(I)} contains the Neumann boundary conditions;  the Dirichet boundary 

conditions are contained in the vector {fb
(II)}; and the terms [S] and {fgu} were derived by the 

Galerkin weak formulation. All these terms correspond to a planar symmetry assumption. 
Further details of the matrix [T] and the vector {fgu} can be consulted in Appendix A. For the 
case of a Poisson equation, the variables φj and fU are given by (Konrad 1982), (Arkkio 1987),    

 

φ7 = ��;  �� = ��                 (2.110) 

 

It is possible to define the current as a forcing function; this can be achieved by using the 
expression defined by (Konrad 1982), (Arkkio 1987),   

 

����� ���� − ! � �φ7��τ
"τ = �#                (2.111) 

 

If the interpolation function defined in (2.34) is replaced in the second term of the left side 
of (2.111) yields, (Konrad 1982), (Arkkio 1987),  
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����� ���� − +! �967;
τ

"τ, "9φ7;"� = �#               (2.112) 

 

If (2.112) is represented in a matrix way (Konrad 1982), it takes the form, 

 ����� ���� − =�sI> "9φ7;"� = �#                 (2.113) 

 

For the case of a Poisson equation of a planar symmetry, the variables φj, fU and fI are 
substituted by,  

 

φ = �� ; �� = �� ; �# = #�                (2.114) 

 

Using (2.109) and (2.113), it is possible to formulate a coupled equation that has the 
conductors’ current as the forcing function.  

It is very important to mention that it is necessary to formulate a specific finite element in 
each subdomain, and apply the finite element analysis to derive the respective matrices and 
vector of it. The different types of finite element used in this investigation can be consulted 
in the Section 2.2.3.2. If these finite element are used, it is possible to derive the matrices and 
vector shown in (2.109) and (2.113). The matrices and vectors can be consulted in Appendix 
A of this thesis.  

2.2.3.5.2 Time varying terms of the axisymmetric symmetry, current and 

voltage as the forcing function 

For the case of axisymmetric symmetry, the current density included in (2.19) can 
substituted in the Poisson equation defined in (2.18). The resultant equation is shown in 
(2.20). It is possible to represent that equation in a general form defined by,  

 −  ' ��' ��' �φ�'� −  ' ��� ��� �φ��� + 
φ = � ��)*' − �� �φ��                   (2.115) 

 

It is possible to apply the Galerkin weak formulation in the left side of (2.115). Moreover, 
if the Galerkin method is applied in the right side of (2.115), and the equation is decomposed 
in two terms yields,  

 ! 6� �� − �� �φ��� "τ' = ! 6� �� ��)*'� "τ'τ'&τ'& − ! 6� ��� �φ��� "τ'τ'&                        (2.116) 

 

If the first term of the right side of (2.115) is modified, by replacing the weight function 
Ni, it gives,  
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! 6��"τ'τ'& → +! � 96�;<�)*'� "τ'τ'& , ����                     (2.117) 

 

If the interpolation function defined in (2.34) is replaced in the second term of the right 
side of (2.117). It yields,  

 

− ! 6� ��� �φ��� "τ
τ'& → − +! ��96�;<=67> "τ'τ'& , "9φ7;"�                     (2.118) 

 

Finally, if the terms defined in (2.117) and (2.118) are substituted in (2.116) and the 
Galerkin weak formulation terms defined in (2.102) are included, results in (Preiss 1983), 
(Arkkio 1987),  

 +! �−96�;<�� �φ����#�
Γ" "Γ, + +! �−96�;<�� �φ����##�

Γ" "Γ, +  

n! o�' �96�;<�' �=67>�' + �� �96�;<�� �=67>�� p
τ'& "τ'q 9φ7; + +! 96�;<
=67>

τ'& "τ' , 9φ7;   

+ +! ��96�;<=67> "τ'τ'& , "9φ7;"� = +! � 96�;<�)*'� "τ'τ'& , ����   (2.119) 

 

Equation (2.119) can be developed, resulting on a matrix equation defined by, (Preiss 
1983), (Arkkio 1987), (Jianming 2002), (Reece and Preston 2000),  

 ?�J�#�@ + ?�J�##�@ + �CDE + CD##E�9φ7; + C<E ""� 9φ7; = 9�sc;����                     (2.120) 

  

The terms [S], [SII], {fb
(I)} and {fb

(II)} were derived using the Galerkin weak formulation. 
In the case of a Poisson equation, the variables φ and fU are given by,  

  

φ = �( ;  �� = ��                (2.121) 

 

It is possible to define the current as a forcing function, this can be achieved by using the 
expression defined by (Preiss 1983), (Arkkio 1987),     

 �$R�� ���� − ! � �φ��τ
"τ = �#                            (2.122) 

 

If the interpolation function defined in (2.34) is replaced in the second term of the left side 
of (2.122), we obtain (Preiss 1983), (Arkkio 1987),  
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�$R�� ���� − +! �967;
τ

"τ, "9φ7;"� = �#                     (2.123) 

 

If (2.123) is represented in a matrix way gives (Preiss 1983), (Arkkio 1987),  

 

�$R�� ���� − =�sI> "9φ7;"� = �#                 (2.124) 

 

In the case of a Poisson equation and an axisymmetric symmetry, the variables φ, fU and 
fI, are substituted by (Preiss 1983), (Arkkio 1987),  

 

φ = �( ; �� = �� ; �# = #(                (2.125) 

 

Using (2.120) and (2.124), it is possible to formulate a coupled equation that has the 
conductors’ current as the forcing function. 

It is very important to mention that it is necessary to formulate a specific finite element 
on each subdomain, and apply the finite element analysis to derive the respective matrices 
and vector of that subdomain. The different types of finite element used in this investigation 
can be consulted in the Section 2.2.3.2. If these finite element are used, it is possible to derive 
the matrices and vector shown in (2.120) and (2.124). These matrices can be consulted in 
Appendix A of this thesis. 

After having explained the finite element analysis, the main basic fundaments of the three 
kind of FEM equations used will be explained in the next section.   

 

2.3 FEM equations features 

After having explained all the main features of the FEM equations, it is important to 
describe in an easier and faster way, the FEM equations that will be solved on this 
investigation. The FEM field equations (with voltages or currents known) and a FEM circuit 
coupled equation that could model an electrical machine or device will be solved. It is 
important to mention that specific details of the FEM field equations were extensively 
detailed in Section 2.2, but further details of the FEM-circuit coupled equation will be 
explained in this Section.  

 

2.3.1. Assumptions of the FEM equations 

1. Plane or axisymmetric symmetry on behavior of the magnetic field 

For the case of the devices with a planar symmetry assumption, it is considered that the 
magnetic field behavior through the z-axis of the conductor is the same. Because of this 
assumption, the magnetic vector potential is only defined in the z-axis (Ho, Li and Fu 1999). 
For the case of the device with an axisymmetric symmetry assumption, it is considered that 
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the field behavior is the same along the ρ-axis. This allows assuming that the magnetic vector 
potentials is defined in the plane formed by the r and z axis (Preiss 1983). 

2. Displacement current neglected 

The frequency of the voltage sources is low enough, to neglect the displacement current 
in the Maxwell field equations (Arkkio 1987), (Ho, Li and Fu 1999). 

3. Constant permeability and conductivity 

The permeability over all the regions and the conductor conductivity are considered to be 
all constant.  

4. Unique voltage applying though the conductor regions 

It is assumed that there are no voltage differences at all points of conductor regions. The 
source current density of the conductors is constant over each cross-sectional surface (Konrad 
1982), (Escarela-Perez, Melgoza and Alvarez-Ramirez 2009). After explaining the 
assumptions, the main features of the FEM equation field equations will explained next. 

 

2.3.2 FEM field equation of a device with voltages known 

It is important to correctly model the conductors´ skin effects of the electrical machine or 
device; and it is also necessary to formulate the forcing function of the FEM field equation 
in terms of the voltages or currents of the conductor, since the electrical machines or devices 
are supplied by either voltage or current sources (Arkkio 1987). The FEM field equation that 
corresponds to planar and axisymmetric devices with the conductors’ voltage known is given 
by,   

 CD�E9��; + C<�E ""� 9��; = 9��;9��;                    (2.126) 

 

Where Ax represents the magnetic vector potentials. For the case of a device with a planar 
symmetry assumption, Ax is defined by Az. On the other hand, for the case of a device with 
an axisymmetric symmetry assumption, Ax is defined by Aρ. The matrices [Sx], [Tx] and the 
vector {fx} that correspond to a planar or an axisymmetric symmetry assumption can be 
consulted in Appendix A of this thesis.   

 

2.3.3 FEM field equation of a device with currents known 

A device with the conductors’ currents known can be solved by the FEM field equation 
and by an expression that relates the voltage, the current and the magnetic vector potential of 
the conductors. This FEM equation is given by (Konrad 1982), (Preiss 1983), (Escarela-
Perez, Melgoza and Alvarez-Ramirez 2009), (Ho, Li and Fu 1999),  

 C$�E� 9��; − Ct�E "��"� = 9#;                 (2.127) 
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The matrix [Mc] that corresponds to a planar and an axisymmetric symmetry assumption 
can be consulted in the Appendix B of this thesis. Each element contained in the matrix [Δx], 
is defined by a planar or the axisymmetric symmetry of (2.128) and (2.129), respectively.  

 

$� = �� = �� �∬ "DD� �� 
                        (2.128) 

 

$� =  $' = )*� �∬ "D'D� �� 
                                               (2.129)  

 

Where Rc is the conductor resistance. The FEM equations (2.126) and (2.127) can be coupled 
in a unique equation given by,  

 

jCD�E −9��;� C$�E� m v9��;9��;w + j C<�E �−Ct�E �m ""� v9��;9��;w = v �9#;w                 (2.130) 

 

It can be seen that (2.130) permits to calculate the magnetic vector potentials of {Ax} and 
the conductor voltages of {Uc}. It is important to mention that it is also possible to directly 
calculate the magnetic vector potentials of {Ax} using the integro-differential approach 
(Konrad 1982). The solution of the equations (2.126) and (2.130) can be seen in Appendix B 
of this thesis.  

 

2.3.4 FEM-circuit coupled of a device  

The FEM-circuit coupled equation permits to accurately model an electrical machine or 
device. A typical example is the magnetic model of an induction machine. The field equation 
of the machine is defined in two dimensions by a plane symmetry (Ho, Li and Fu 1999), or 
an axisymmetric symmetry assumption (Preiss 1983). Some effects as the stator end winding 
and the rotor end rings are taken into account by adding end-winding resistances and 
inductances. These parameters are included in the form of a voltage-current circuit equation, 
which can be coupled into the FEM field equation; in order to form a unique FEM-circuit 
coupled equation (Arkkio 1987), (Ho, Li and Fu 1999),  (Ho, Shuangxia and Fu 2011). 

As a first step the features of the voltage-current circuit equation that will be coupled to a 
FEM-circuit coupled equation will be explained.  

2.3.4.1 Voltage-current circuit equation  

In some cases, it could be proper to couple into the FEM field equations, a voltage-current 
circuit equation which contains several resistances and inductances that allow a more 
accurate model of the device (Arkkio 1987), (Ho, Li and Fu 1999), ( (Ho, Shuangxia and Fu 
2011). Equation to be coupled can be defined by, 
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 C�E9#; + C-E "9#;"� + 9��; = 9�;                          (2.131) 

 

Where [R] is the matrix resistance, [L] is the inductance resistance and {V} is a vector which 
contains each voltage source applied in the conductors of the device.  

2.3.4.2 Deriving the FEM-circuit coupled equation  

The FEM-circuit coupled equation results of coupling the equations (2.126) and (2.127), 
with the voltage-current circuit equation defined in (2.131). It yields (Tsukerman et al. 1993), 
(Arkkio 1987), (Ho, Li and Fu 1999), ( (Ho, Shuangxia and Fu 2011), 

 

xCD�E � −9��;� C�E   9 ;� −9 ;    C$�E� y P9��;9#;9��;Q + x C<�E � �� C-E �−Ct�E � �y ""� P9��;9#;9��;Q = z �9�;� {            (2.132) 

 

The solution of the FEM-circuit coupled equation in the frequency or in the time domain 
is explained in the Appendix B. The FEM field and the FEM-circuit coupled equations can 
be solved in the frequency and the time domain using the methods of solution explained in 
Appendix B. Nevertheless, the FEM equations may consist on matrices of larger order, may 
be difficult to obtain, or it may need of a considerable computation time. It is possible to 
overcome this situation, by using the parallel computing platform. The CUDA parallel 
computing platform enables to solve these equations in an easy and efficient way. This will 
be explained next.  

 

2.4 Parallel processing  

The Finite Element Method (FEM) is a very powerful tool to solve the electric and 
magnetic field equations of electrical machines or devices. The method has been widely used, 
since the computational technological advances have allowed the application of the method 
on the modeling and simulation of devices with complex geometries of configurations 
(Arkkio 1987), (Bianchi 2005) (Ho, Shuangxia and Fu 2011).The finite element analysis 
permits to derive a FEM matrix equation which can be solved in the frequency and in the 
time domain.  

In this investigation, the equations are mainly solved in the frequency domain, since the 
proposed method can easily derive the voltage and currents of a device in a faster way, and 
the advantage of the proposed method is evident in a frequency analysis. Nevertheless, it is 
important to mention that it is possible to calculate the solution in the time domain in a shorter 
time. The parallel computing platform named CUDA (Compute Unified Device 
Architecture) (CUDA toolkit 5.0 2014) and several already-implemented library routines that 
access the graphical processing units (GPUs) (Luebke 2008), (Jalili-Marandi, Zhiyin and 
Dinavahi 2012) were used in this investigation. A brief explanation of the CUDA and 
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CUBLAS parallel computing platform is given next. 

2.4.1 The CUDA platform 

The NVIDIA CUDA (CUDA toolkit 5.0 2014) is a hardware-software platform that can 
be used to execute parallel algorithms using a program coded in C. The sequential parts of 
an algorithm can be calculated in the CPU or host, while the parts that are mean to be 
calculated by a parallel way are executed by using kernels in the GPUs (NVIDIA 2012). 
When a kernel is executed, blocks with an equal number of threads are created to execute the 
parallel function; blocks of thread form a grid (Owens , Houston and Luebke 2008).  

The CUBLAS (CUDA Basic Linear Algebra Subprograms) library permits to easily 
calculate vector and matrix operations in the GPU device using the CUDA parallel computer 
platform (Barrachina et al. 2008), (CUDA toolkit 5.0 2014). These routines permits to easily 
implement a solution of a FEM equation using parallel computing.  

Nevertheless, the parallel programing using CUDA requires a continuous exchange of 
information, between the CPU and the GPUs (Luebke 2008), (Cisneros-Magaña and Medina 
2013). It is required to send information, from the CPU to the GPUs and backwards. Because 
of this, it can be seen that when the dimensions of the FEM matrix equations to be solved are 
large, a parallel computing of the algorithm can obtain the solution of the equation in a 
considerable shorter time, since the GPUs performs parallel computing that represents a 
significant saving in the total computing time (Luebke 2008), (Cisneros-Magaña and Medina 
2013). This situation will be evident, when several study cases will be solved using the 
CUDA computing platform. 

 

2.4.2 Using the CUDA platform to solve a FEM matrix equation  

The FEM equation to be solved could correspond either to a planar or to an axisymmetric 
symmetry configuration. In order to recognize the kind of FEM equations to be solved, the 
ordinary FEM equation will be named as conventional FEM equation. On the other hand, the 
uncoupled equation derived from the proposed methodology explained in this investigation 
is named reduced FEM equation. The FEM equation may correspond either to a FEM field 
equations with voltages or currents known, or to a FEM field coupled equation. The features 
of these equations were previously defined in Section 2.3. 

The solution of the conventional FEM equation in the frequency domain using parallel 
computing process will be explained next.  

2.4.2.1. General form of the conventional FEM equation  

It is possible to express in a general form, the equations that represents either FEM field 
equations of a FEM-circuit coupled equation. It yields,    

 C|E9}; + C~E ""� 9}; = 9F;                (2.133) 

 

The values of the matrices, vectors and elements of (2.133) depend on if they belong either 
to FEM field equations or to a FEM-circuit coupled equation. The equation defined in (2.133) 



53 
 

can also be solved in the frequency domain or in the time domain. The solution of (2.133) in 
the frequency domain is simple, since implies to calculate a simple expression given by 
(Bastos 2003),   

 �C|E + 7�)*��C~E�=}�> = =F�>                               (2.134) 

 

Where the variable 9��; and the voltage included in the vector 9��; defined in (2.134), are 
harmonic variables defined in a frequency f.  Moreover, (2.134) can be represented in a 
simpler way, i.e. 

  C�FE=}�F> = 9J�F;                                                                 (2.135) 

 

It can be recognized, two specific steps in the process of calculating (2.135) in the 
frequency domain, i.e. a preprocessing and a calculating steps. These stages will be 
explained next.  

 

2.4.2.2. Preprocessing step of the FEM equation 

The preprocessing step of the conventional FEM method consists on deriving the matrices 
[K] and [G] and the vector {F} of the expression defined in (2.135). The process consists on 
first calculating the FEM matrices and vectors of one finite element,  integrate them into the 
global matrices and vectors that model the device (Arkkio 1987), (Bianchi 2005), (Reddy 
1984), (Reece and Preston 2000). After this, the required boundary conditions that permit to 
define a unique solution will be applied. This process has been discussed in Section 2.2.2. 
The preprocessing step of the conventional FEM equation is shown in Figure 2.6 

 

 

Figure 2.6. Preprocessing steps of the FEM equation 
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2.4.2.3. Calculating step of the FEM equation 

Once the matrices and vector of the conventional FEM equation has been derived, it is 
possible to calculate their solution in the frequency domain. The conventional FEM equation 
has the form of the expression previously defined in (2.135).  This matrix equation can be 
solved by using the LU method, thus, the calculating process of the equations is performed 
by the LU method. Thus, the first step consists on performing a decomposition of the matrix 
[Af] into two matrices [Lf] and [Uf], respectively. It yields,  

 A��B = A-�BA��B                                                                   (2.136) 

 

Although this decomposition process have been not implemented in the CUBLAS library; 
if the matrices [Lf] and [Uf] were known, the solution of A��B=���> = =���> could be easily 
achieved by a triangular decomposition LU using routines already implemented in the 
CUBLAS library. The decomposition process of the matrix [Af] will be discussed in the 
chapter 3. Having the matrices [Lg] and [Ug], the solution =���> can be obtained by solving the 
next equations in the CUBLAS computing platform,  

 A-sB=��s> = =J�s>                                                           (2.137) 

 A�sB=��s> = =��s>                                                           (2.138) 

 

Equation (2.137) is solved in CUBLAS, specifying that the equation to be solved 
corresponds to a triangular matrix stored in lower mode (NVIDIA 2012); while (2.138) is 
also solved in CUBLAS, but specifying that the equation to be solved corresponds to a 
triangular matrix stored in upper mode (NVIDIA 2012). It can be seen that the solution of 
the complex equation A��B=���> = =���> can be easily derived by implementing the LU method 
by a parallel computing in CUBLAS.  

 

2.5 Conclusions 

In this chapter has been covered the main characteristics of the finite element analysis: the 
main electric and magnetic variables, and the field equations that can be derived by a 
symmetry assumptions. These field equations permits to derive FEM equations using the 
finite element analysis. Specifically the Galerkin method and its weak formulation can be 
used to derive these FEM field equations. Specific details of the finite element analysis has 
been also analyzed on this chapter.  

The FEM field equations derived have the voltage or the current of the device as a forcing 
function. Using these FEM equations, a FEM-circuit coupled equation can be derived. This 
equation permits to model a device in a more accurate way. In these chapter the FEM field 
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and the FEM circuit coupled equations have been described. At the same time, it has been 
discussed the main assumptions that allows their respective formulation.   

If the FEM equations are formulated, they can be solved in the frequency and the time 
domain. The solution on both domains can be achieved by several methods. Most of the time, 
the solution can be easily obtained. Nevertheless, when the device to be modeled is complex 
or the number of finite element used is large, it could be necessary to formulate FEM matrices 
equations of a large order that cannot be easily solved.   

In this chapter has been also described the use of the CUDA parallel computing platform. 
CUDA is an excellent choice, since permits to easily derive and implement the solution of a 
FEM equation using the parallel processing. Using the CUDA computing platform, the 
CUBLAS library which contains a collection of several matrices-vector common operations 
can be easily used. The CUBLAS library allows the solution of an equation using the LU 
decomposition.   

Summarizing, in this chapter the main fundaments of the FEM equations have been widely 
explained. It has been included an explanation of how the solution of the equation can be 
implemented in the parallel computing platform. The FEM equations to be solved, are 
conventional and can be derived using a standard finite element analysis.  

This investigation proposes the use of a methodology that permits to derive an alternative 
FEM equation. This equation can directly solve the time varying variables of a FEM field 
and a FEM-circuit coupled equations. It is an equation of lesser order that can be solved in 
the frequency or the time domain. On the next chapter will be explained the proposed 
methodology of this investigation.  
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3 Proposed Methodology 

3.1 Introduction 

The Finite Element Method can solve the steady state and the transient field equations of 
electrical machines or devices (Ho, Li and Fu 1999), (Wang and Xie 2009), (Lubin, Mezani 
and Rezzoug 2011), (Li, Ho and Fu 2012), (Bianchi 2005), . In order to reduce the complexity 
of the finite element analysis, sometimes it is possible to perform a symmetry simplification, 
i.e. a planar or an axisymmetric symmetry (Arkkio 1987), (Bianchi 2005), (Bastos 2003). 
Along this symmetry assumption, it is important to correctly model the conductors’ skin 
effect of the conductors of the device. Thus, it is necessary to formulate the forcing function 
of the FEM equations in terms of the voltages or currents of the conductors, since the 
electrical machines or devices are supplied by both kind of sources. These FEM field 
equations can be solved if the voltages or the currents in the conductors are known (Arkkio 
1987), (Ho, Li and Fu 1999),(Bastos 2003). 

Nevertheless, the conductors’ currents or voltages are not always known. In some cases, 
it is necessary to add some parameters such as resistances or inductances, which are 
connected to the conductors to get a more precise model of the electrical machine or device, 
(Arkkio 1987), (Ho, Li and Fu 1999), (Fu and Ho 2009), (Ho, Shuangxia and Fu 2011). The 
electrical parameters mentioned before, can be taken into account by one or several voltage-
current equations, thus the current-voltage and the FEM field equations can be coupled into 
a FEM-circuit coupled equation (Arkkio 1987), (Tsukerman et al. 1993), (Ho, Li and Fu 
1999), (Ho, Li and Fu 1999), (Fu and Ho 2009), (Ho, Shuangxia and Fu 2011). Thus, a FEM-
circuit coupled equation can accurately model an electrical machine or device. 

In this investigation, FEM-field with currents or voltages known and a FEM-circuit 
coupled equations, in the frequency and the time domain will be solved. They will be solved 
using a methodology that allows deriving a reduced equation of lesser order; moreover, the 
time varying variables can be directly solved. The equation derived can be solved either in 
the frequency and the time domain.  

In order to get a quick understanding of the FEM equations, the main features of them will 
be explained next. It is important to mention that further details of these FEM equations can 
be consulted in the Chapter 2 of this thesis. 

 

3.1.1 Field equations 

If a plane symmetry is considered, the magnetic vector potential is constant along the z-
axis and varies in the x-y plane, then the magnetic vector potential is defined in two-
dimensions (Bianchi 2005), (Arkkio 1987), (Ho, Li and Fu 1999). It is also assumed that the 
source electrical field along the z-axis of the conductors is also constant (Arkkio 1987), (Ho, 
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Li and Fu 1999). This assumption assumes that only exist one current associated to each 
voltage applied in a particular region of the device. 

For the case of axisymmetric symmetry, this assumption permits to define a two-
dimension magnetic field which is constant though the r-coordinate (Konrad 1982), (Preiss 
1983), This consideration allows the magnetic vector potentials are to be dependent of the 
plane formed by the r and z axis. It is also assumed that the electrical field along a certain 
value of the r-axis is also constant (Konrad 1982), (Konrad, Chari and Csendes 1982), (Preiss 
1983). This assumption also allows only one current and voltage associated to a particular 
region of the device.  

Taking into account the symmetry assumptions, it is possible to derive two types of field 
equations,   

1) Field equation with voltage as the forcing function 
2) Field equation with current as the forcing function.  

It is possible to derive a FEM field equation by applying the finite element analysis in 
these field equations. The FEM equations will be described next, while the features of the 
FEM-circuit coupled equation will be outlined in the Section 3.1.3. It is important to remark 
that boundaries conditions are necessary to be applied to the field equations; in order to 
properly define the model, and to have a unique solution for the finite element analysis. The 
considered boundaries are the Dirichlet and the Neumann boundary conditions. They were 
previously defined in Section 2.2.2.1.  

 

3.1.2 FEM field equations 

It is possible to perform a finite element analysis (Wang and Xie 2009), (Lubin, Mezani 
and Rezzoug 2011), (Preiss 1983) on the field equation defined in (2.10) and (2.20). The 
assumptions considered for these field equation can be seen in Section 2.3.1. At the same 
time, a Newton Cotes analysis (Konrad 1982), (Konrad 1981), (Reece and Preston 2000) can 
be performed on (2.11) and (2.21). Thus, it is possible to derive the FEM equations covered 
by this investigation. The FEM field equations will be outlined next.  

3.1.2.1 FEM field equation with voltages known  

If a finite element analysis is applied in field equation with voltages known results on,  

 �������� + �	�� 

� ���� = �
������                                        (3.1) 

 

Where vectors {Uc} contain each voltage and to the conductors; it is defined by,  

 ���� = ���� ��� ���. .     ����� ����                     (3.2) 
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The matrices [Sx], [Tx] and the vector {fx} for a planar and an planar and an axisymmetric 
symmetry assumption were previously defined in Section 2.2.2.  

 

3.1.2.2 FEM field equation with currents known  

For the case where the conductors’ currents are known, the FEM field equation is defined 
by, (Arkkio 1987), (Konrad 1981),  

 

����� −�
��� ������� ���������� + � ���� �−���� �� 

� ���������� = � �� ��               (3.3) 

 

Where vector {I} contain each current applied to the conductors; it is defined by,  

 � � = � �  �  �. .      ���  ��                             (3.4) 

 

The matrices [Δx], and [Mc] for the planar and the axisymmetric symmetry were previously 
defined in (2.127). After having defined the FEM field equations (3.1) and (3.3), the features 
of a FEM-circuit coupled equation will be explained next.        

 

3.1.3. FEM-circuit coupled equation 

The FEM-circuit coupled equation permits to accurately model an electrical machine or 
device. Some effects as the stator end winding and the rotor end rings are taken into account 
by adding end-winding resistances and inductances. These parameters are included in the 
form of a voltage-current circuit equation, which can be coupled into the FEM field equation 
in order to form a unique FEM-circuit coupled equation (Arkkio 1987), (Tsukerman et al. 
1993), (Ho, Li and Fu 1999), (Dlala and Arkkio 2010).  Further details about this equation 
can be consulted in the Chapter 2. The FEM-circuit coupled equation is defined by,  

 

!���� � −�
��� �"�   ���� −���    ������# $����� �����% + ! ���� � �� �&� �−���� � �# 

� $����� �����% = ' ��(�� )                     (3.5) 

 

Until now, several FEM equations derived by the finite element analysis have been 
described. These equations can be solved in the frequency and the time domain, and they 
represent the solution of a field equation of an electrical machine or device.  

In this investigation, these FEM equations can be solved with alternative method of 
solution in the frequency and the time domain. Specifically, a methodology that permits to 
derive an equation of a lesser order, to directly solve the time varying variables of the 
equations is proposed. Thus, it is possible to obtain a faster solution in the frequency and the 
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time domain. The details of the proposed methodology of this investigation will be explained 
next.  

3.2 Proposed methodology 

The methodology starts by identifying the non-conductor and the conductor region of the 
device. If the conductor voltage is chosen as the forcing function, it is possible to derive a 
field equation of the non-conductor and the conductor regions; and using the finite element 
analysis, it possible to formulate a single FEM field equation (Arkkio 1987), (Ho, Li and Fu 
1999), (Preiss 1983).  

The FEM field equation will be modified by the proposed methodology. The main 
modification consists on using the difference of the conductor and the non-conductor regions, 
by identifying and associating the magnetic vector potentials of each region. This change 
permits to derive a completely new equation, in which the magnetic vector potentials of the 
conductor region are separated from those that correspond to the non-conductor region.  

The next step of the methodology consists on using the FEM equation, derived through 
several and simple matrix operations. These steps permit to derive a reduced equation which 
has the following important features: 

1) It can directly calculate the time varying variables, i.e. the magnetic vector potentials 
in the conductor regions and the conductor currents. 

2) It is easy to calculate; it only requires of a nodal reordering of the equations and can be 
derived performing some simple matrix operations. 

The methodology can also be applied to obtain reduced equations, from a FEM field 
equation with currents known, or from a FEM-circuit coupled equation. It is very important 
to mention that the equation derived by the methodology shares the same assumptions of 
these FEM equations. Further details about the assumption considered can be consulted in 
Chapter 2.  

Although a brief summary of the methodology has been discussed, the main details will 
be covered next. The solution of the FEM equations in the frequency and the time domain 
can be consulted in the Appendix B.  

 
 

3.2.1 Methodology applied on a FEM field equation with voltages 

known 

3.2.1.1 Renumbering the nodes of the FEM field Equations 

After taking into account the conductor and the non-conductor regions, the first step 
consists on renumbering the conductor and non-conductor region magnetic vector potentials 
of the FEM field equation previously defined in (3.1) in order to make them consecutive. It 
gives,  

 �* = ��� ��. .     �+��                                   (3.6) 
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 �, = ��+-� �+-�. .     �.��                                              (3.7) 

 

Where Ai and Aj are the vectors which contain the magnetic vector potentials of the 
conductor and the non-conductor regions, respectively; l and k-l are the number of nodes of 
the conductor and non-conductor region, respectively; and k is the total number of nodes.  

 

3.2.1.2. Deriving a new FEM field equation based on the nodal renumbering 

If the FEM field equation defined in (3.1) is reformulated using the criterion of nodes re-
numbering used in the vectors shown in (3.6) and (3.7); it can be expressed by, 

 

/ �** �*,�*,� �,,0 ��*�,� + ��** �� � � 

� ��*�,� = 1�
*������ 2                                  (3.8) 

 

Where the matrices Sii, Tii and the vector {fi} are associated with the vector Ai; Sjj is related 
with Aj; Sij and Sji are associated with common regions of the conductor and the non-

conductor regions, respectively. Notice that in (3.8), the magnetic vector potentials of the 
conductor region have been associated and separated from the magnetic vector potentials of 
the non-conductor region.  

 

3.2.1.3. Identifying submatrices and formulating matrix equations  

The equation defined in (3.8) can be represented in a partitioned way by,   

 

�3�� 3��3�� 3��� 1����2 + �	�� �	�� �� 

� 1����2 = �
�
��                                  (3.9) 

 

Where the submatrices of (3.9) are defined by,  

 3�� = �**                                     (3.10) 

 3�� = �*,                                     (3.11) 

 3�� = �*,�                                     (3.12) 

 3�� = �,,                                     (3.13) 
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 	�� = �**                                           (3.14a) 

 	�� = �                                           (3.14b) 

 

Where the subvectors of (3.9) are defined by, 

 �� = �*                                                            (3.15) 

 �� = �,                                                            (3.16) 

 
� = �
*�����                                                   (3.17a) 

 
� = �                                                         (3.17b) 

 

3.2.1.4. Deriving two matrix equations 

It can be noticed that it is possible to generate two matrix equations from (3.9), i.e.  

 3���� + 3���� + 	�� 

� �� = 
�                               (3.18) 

 3���� + 3���� + 	�� 

� �� = 
�                                  (3.19) 

 

3.2.1.5. Calculating the reduced equation 

After having obtained the two matrix equations (3.18) and (3.19) from the FEM field 
equation (3.9); it is possible to solve (3.19) in terms of x2, and the result of such algebraic 
operation can be substituted into (3.18). Thus, a single equation can be derived. It gives, 

 3��� + 	� 

� �� = 
�                                            (3.20) 

 

The matrices Kt and Gt and the vector ft are given by, 

 3� = 3�� − 3��3����3��                                          (3.21) 
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	� = 	�� − 3��3����	��                                        (3.22) 

 
� = 
� − 3��3����
�                                                                (3.23) 

 

Once the vector Ai has been calculated, the vector Aj can be derived using,  

 �*,��* + �,,�, = �                                                                   (3.24) 

 

Please notice that (3.24) can be obtained from (3.8), which in turn was obtained from the 
renumbering of the magnetic vector potentials in the conductor and the non-conductor 
regions. Thus, the magnetic vector potentials of the non-conductor region can be derived 
using the potentials of the conductor regions as Dirichlet boundary conditions. After knowing 
the magnetic vector potentials defined in (3.8), the conductors’ currents can be calculated 
using Equation (2.127).  

 

3.2.2 Methodology applied on a FEM field equation with currents 

known 

The proposed methodology also permits to derive a reduced equation from a FEM field 
equation with the currents known, using the same re-numbering criteria used on (3.6) and 
(3.7) for the magnetic vector potentials nodes of the conductor and the non-conductor region, 
respectively. The next steps will be explained next. 

3.2.2.1. Deriving a new FEM field equation based on the nodal renumbering 

The numbering criteria used on (3.6) and (3.7) permits to reformulate the equation that 
relates the magnetic vector potentials with the conductors voltages and currents. Thus, this 
equation can be only defined in terms of the magnetic vector potentials of the conductor 
region (Ai). It yields,  

 ���������� − ��*� 
�*
� = � �                     (3.25) 

 

3.2.2.2. Performing an arrangement of the time varying variables  

It is possible to take the FEM equations (3.8) and (3.25) and combine them in order to 
form a coupled equation. At the same time, it is possible to perform a rearrangement of this 
new expression by grouping the time varying variables. For the case of the FEM field 
equation with currents known, their time varying variables are the magnetic vector potentials 
of the conductor region. It yields,   
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4 �** −�
*� �*,� ������ ��*,� � �,,
5 $ �*�����, % + 6 �** � �−��*� � �� � �7 

� $ �*�����, % = ' �� �� )                         (3.26) 

 

Please observe that (3.26) has been arranged to separate the time varying variables (Ai) 
from those variables which do not have time derivative terms (Aj and {Uc}). The next step 
consists on performing a partition matrix on (3.26).   

 

3.2.2.3. Identifying submatrices and formulating matrix equations 

The equation defined in (3.26) can be also represented in a partitioned way as,   
 

�3�� 3��3�� 3��� 1����2 + �	�� �	�� �� 

� 1����2 = � �
��                  (3.27) 

 

The matrices K11 and G11 have been defined in (3.10) and (3.14a), respectively. The matrices 
of (3.27) are defined by,  

 3�� = �−�
*� �*,�                                    (3.28) 

 

3�� = � ��*,��                                           (3.29) 

 

3�� = /������ �� �,,0                                    (3.30) 

 

	�� = 8−��*�� 9                                     (3.31) 

 

Where the subvectors of (3.27) are defined by, 

 �� = �*                                                            (3.32) 

 

�� = ������, �                                                            (3.33) 

 


� = 8� �� 9                                                      (3.34) 
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Notice that the time varying variables of (3.26) have been associated and separated from 
those variables which do not have time derivative terms.  

 

3.2.2.4. Deriving matrix equations  

Two matrix equations can be obtained from (3.27). The equations were previously defined 
in (3.18) and (3.19).  
 

3.2.2.5. Calculating the final reduced equation 

It is also possible to derive a reduced equation of the expression shown in (3.27), using 
the two matrix equations (3.18) and (3.19).  The reduced equation derived can be calculated 
using (3.20). The matrices Kt and Gt and the vector ft can be calculated using,  

 3� = 3�� − 3��3����3��                                        (3.35) 

 	� = 	��                                               (3.36) 

 
� = −3��3����
�                                                                           (3.37) 

 

Once the vector Ai is obtained, the vector Aj can be derived using (3.24), while the 
conductor voltages {Uc} can be calculated using (3.25). The proposed method can be easily 
applied to calculate an equation of lesser dimension from a FEM field equation which has 
the voltage or current as the forcing function. Moreover, it can be applied to derive a similar 
expression from a FEM-circuit coupled equation. This will be discussed next.  

  

3.2.3 Methodology applied on a FEM-circuit coupled equation 

The proposed method also permits to derive a reduced expression from a FEM-circuit 
coupled equation. The process is the same to that applied in the FEM field equations 
mentioned earlier. The process will be explained next.  

3.2.3.1. Performing an arrangement of the time varying variables  

After performing a nodal renumbering in the magnetic vector potentials of the conductor 
and the non-conductor regions; it is also possible to derive a new equation. It is also possible 
to perform a rearrangement of the time varying variables, i.e. the magnetic vector potentials 
of the conductor region and the conductors’ current. It yields, 
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:;;
;< �**   �  �    �"�    −�
*� �*,  ���   � � �������*,� � −���   �   � �,, =>>

>?
@A
B �*� ������, CD

E + 4     �**  ��   �&� � �� �−��*� �   � � � �� �5 

� @A
B �*� ������, CD

E = F ��(��� G            (3.38) 

 

Notice that (3.38) has been arranged to separate the time varying variables (Ai and {I}), 
from those variables which do not have time derivative terms (Aj and {Uc}). It is possible to 
perform a matrix partition in (3.38). This will be discussed next.  

 

3.2.3.2. Identifying submatrices and formulating matrix equations 

The equation defined in (3.38) can also be represented in a partitioned way as,   
 

�3�� 3��3�� 3��� 1����2 + �	�� �	�� �� 

� 1����2 = 1
�� 2                  (3.39) 

 

Where the submatrices of (3.39) are defined by,  

 

3�� = �  �** �� �"��                                    (3.40) 

 

3�� = �−�
*� �*,���   ��                                    (3.41) 

 

3�� = /   � �������*,� � 0                                    (3.42) 

 

3�� = � −��� �� �,,�                                    (3.43) 

 

	�� = �  �** �� �&��                                    (3.44) 

 

	�� = 8 −���� �� �9                                    (3.45) 

 

Where the subvectors of (3.39) are defined by, 

 



66 
 

�� = � �*� ��                                                            (3.46) 

 

�� = ������, �                                                            (3.47) 

 


� = � ��(��                                                      (3.48) 

 

The time varying variables of (3.38) have been also associated and separated from those 
variables which do not have time derivative terms. 

 

3.2.3.3. Calculating the matrix equations  

It is possible to generate two matrix equations from (3.39). The equations were previously 
defined in (3.18) and (3.19).  
 

3.2.3.4. Calculating the reduced equation 

An uncoupled equation from the FEM-circuit coupled equation (3.38) can be obtained 
using (3.20). The matrices Kt and Gt and the vector ft can be calculated using,  

 3� = 3�� − 3��3����3��                                          (3.49) 

 	� = 	�� − 3��3����	��                                      (3.50) 

  
� = 
�                                                     (3.51) 

 

Once the vector Ai is obtained, the vector Aj can be calculated from (3.24). The conductor 
voltages {Uc} can be obtained using (3.25). 

 

3.3 Solution of the equation derived by the methodology 

The equation derived from the methodology can be expressed in a general form. All the 
reduced equations derived from the FEM equation have the form,  

 

�3�� 3��3�� 3��� 1����2 + �	�� �	�� �� 

� 1����2 = �
�
��                 (3.52) 
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The submatrices K11, K12, K21, K22, G11, G21, along the subvectors f1 and f2 depend on if the 
equation obtained by the methodology has been derived, either from a FEM field equation or 
from a FEM-circuit coupled equation. The expression defined in (3.52) can be written in a 
simplified form as, 

 �3���H�� + �	�� 

� �H�� = �I��                    (3.53) 

 

Where the matrices [KT], [GT] and the vector {FT} can be calculated using,  

 �3�� = 3�� − 3��3����3��                                          (3.54) 

 �	�� = 	�� − 3��3����	��                                         (3.55) 

 �I�� = 
� − 3��3����
�                                         (3.56) 

 

The equation defined in (3.53) can be solved in the frequency domain or in the time 
domain. The solution in the frequency domain is simple, since implies to calculate a simple 
matrix equation (Shen et al. 1985). For the specific case of a time domain solution, the most 
widely used method is the Backwards Euler method (Ho, Li and Fu 1999), (Arkkio 1987), 
(Kwon and Bang 1997), (Jianming 2002). The solution in both domains is discussed next. 

 

3.3.1 Time domain solution 

It is possible to calculate the periodic behavior of an electrical network or a FEM equation 
in the time domain by integrating the differential equation set that describes the dynamics of 
the system (Semlyen and Medina 1995). For the specific case of the expression shown in 
(3.53), the solution in the time domain can be obtained as,   

 
�H��
� = �	����J�I�� − �3���H��K                                           (3.57) 

 

The numerical method for the solution of (3.57) in the time domain can be classified into 
explicit and implicit methods. They will be outlined next. 

 

3.3.1.1 Explicit methods 

In these methods, the solution depends on the solution of an earlier time step. There are 
several explicit methods but the most widely used are concisely described next. 
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3.3.1.1.1 Euler method (forward difference) (Jianming 2002) 

The Euler method consists on dividing the time axis uniformly into a number of time 
intervals. A function XT(t+Δt) can be expanded into a Taylor series about t. Using this series 
expansion and neglecting some terms, it is possible to express the derivate respect the time 
as, 

   
�H��
� ≈ �H��J�M��K��H��J�K��                                 (3.58) 

 

Further details about how (3.58) was calculated, can be consulted in Appendix B. Taking 
into account (3.58), the solution of (3.53) in the time domain with the Euler method is defined 
by,  

 �H��J�-��K = J��K�	����N�I��J�K − �3���H��J�KO + �H��J�K                                    (3.59) 

   

The Euler method enables to obtain a solution of the equation derived from the proposed 
methodology. Nevertheless, the equation (3.59) cannot be solved in an accurate way because 
of this: the matrix inversion of [GT] cannot be achieved since this matrix has a bad 
conditioned number. The equation derived by the methodology is an equivalent equation and 
therefore cannot be accurately solved neither. The equation can be solved using an almost 
identical expression defined by, 

 �HP��J�-��K = J��K�	P����N�I��J�K − �3���HP��J�KO + �HP��J�K                                     (3.60) 

 

Where the matrix �Q̅S� is calculated using,   

 �	P�� = 	�� − 3��3����	P��                            (3.61a) 

 	P�� ≤ 	��                           (3.61b) 

 

In (3.61a) and (3.61b), the elements of Q̅UV are of lesser value than the elements of QUV. 
The approximate solution of (3.60) is defined by the vector �WXS�.  

3.3.1.1.2 Backwards Euler method (backward difference) (Jianming 2002) 

The Backwards Euler method is an alternative to the Euler method. It consists on 
uniformly dividing the time axis into a number of time intervals. A function XT(t-Δt) can be 
expanded into a Taylor series about t, but for this case, a different expansion that the used for 
the Euler method will be used. The derivate respect the time is defined by, 
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H�
� ≈ H�J�K�H�J�Y��K��                                         (3.62) 

 

Further details about how (3.62) was calculated can be consulted in Appendix B. Taking 
into account (3.62), the solution of (3.53) in the time domain is defined by,    

 

�H��J�K = Z�3�� + �	���� [�� Z�I��J����K + �	���� �H��J����K[                      (3.63) 

 

The Backwards Euler method enables to obtain an accurate solution of the equation 
derived from the methodology. Specifically, it permits to accurately obtain the time varying 
variables of a FEM field or from a FEM-circuit coupled equation. This is possible to achieve, 
since the equation derived by the method is an equivalent expression of an equation that can 
be accurately solved using the Backwards Euler method. 

 

3.3.1.1.3 Runge Kutta method (Jianming 2002) 

Further details about the calculating process of this method can be consulted in Appendix 
B. The solution in the time domain of (3.53) using this method is given by,  

 �H���-�� = �H��� + �\ N�.�,�� + ��.�,�� + ��.�,�� + �.^,��O                                      (3.64) 

 

Where the values of {k1,T}, {k2,T}, {k3,T} and {k4,T} are defined by,  

 �.�,�� = J��K�	���N�I��J�K − �3��H��J�KO                                (3.65) 

 �.�,�� = Z�_ + ��� [ �	��� Z�I��J�K − �3��H��J�K − �� �3�`.�,�a[                         (3.66) 

 �.�,�� = Z�_ + ��� [ �	��� Z�I��J�K − �3��H��J�K − �� �3�`.�,�a[                         (3.67) 

 �.^,�� = J�_ + ��K�	���N�I��J�K − �3��H��J�K − �3�`.�,�aO                       (3.68) 

 

Appendix B gives additional details about how (3.64) was calculated. After obtaining 
{XT}t+Δt, the rest of calculating process implies that the value of {XT} t+Δt will be become the 
value {XT}t, necessary to derivate the value for the next step. The solution of the equation 
derived by the proposed methodology in the time domain using this method is not exact. 
Nevertheless, an approximate solution can be achieved using, 



70 
 

 �HP���-�� = �HP��J�K + �\ N�.P�,�� + ��.P�,�� + ��.P�,�� + �.P^,��O                                         (3.69) 

 

Where the values of �bXV,S�, �bXU,S�, �bXc,S� and �bXd,S� are defined by, 

 �.P�,�� = J��K�	P����N�I��J�K − �3���HP��J�KO                              (3.70) 

 �.P�,�� = Z�_ + ��� [ �	P���� Z�I��J�K − �3���HP��J�K − �� �3���.P�,��[                             (3.71) 

 �.P�,�� = Z�_ + ��� [ �	P���� Z�I��J�K − �3���HP��J�K − �� �3���.P�,��[               (3.72) 

 �.P^,�� = J�_ + ��K�	P����N�I��J�K − �3���HP��J�K − �3���.P�,��O                                  (3.73) 

 

The Runge Kutta method can be only used in an approximate way because of this: the 
matrix inversion of [GT] cannot be achieved due to the null elements along its main diagonal. 
The matrix can calculated using the expressions defined in (3.61a) and (3.61b).  

3.3.1.2 Implicit method: Newton method (Semlyen and Medina 1995) 

The traditional method to determine the steady state of the equation (3.53); can be 
determined by integrating over a period of time, the differential equations that represent the 
dynamics of the system; by using the initial conditions. Equation (3.53) can be solved using 
the brute force method (Semlyen and Medina 1995).  

The brute force method consists on first assuming initial conditions. After that, equation 
(3.53) is integrated along a time period. The results obtained at the end of such period are 
compared to the assumed initial conditions, in order to verify the maximum error or 
difference among them. If there is a significant difference, it is performed a second 
integrating process in an additional time period; by assuming as initial conditions, the results 
obtained by the first integrating process. The integrating process continues until there is no 
significant difference, between the results at the end of the integrating process with those at 
the beginning of such process (Semlyen and Medina 1995).  

The equation derived in this thesis, contains voltage or current sources that have a periodic 
behavior. Because of this, the stable state solution of the proposed equation {XT(t)}is also 
periodic; and it can be represented as a limit cycle defined in terms of a periodic function 
(Semlyen and Medina 1995). All the maps near from the limit cycle are quasi-linear. This 
permits to use the Newton methods to estimate a point at the beginning of the limit cycle 
(Semlyen and Medina 1995); thus, this method can be used to determine a stable state 
solution of equation (3.53), by using the limit cycle. It yields,  
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�H��e = �H��� + J� �� − �f��K��J�H��� − �H���K                                              (3.74) 

 

Where [IT] is an identity matrix; [ΦT] is defined by,  

 �f�� = g�h Zi �jJ�K�
��*M��* [ ��H��*                               (3.75) 

 

In order to use the equation (3.74), it is necessary to calculate the elements of the matrix 
[ΦT]. The numerical difference approach (ND) permit to calculate these elements (Semlyen 
and Medina 1995). They can be derived by a calculating process which begins by defining 
an initial perturbation vector �WXS�k, which is formed by perturbing just one element of {XT} 
at a time. Specifically, if an i-element of �WS� is affected by a factor ε, the perturbing vector �WXS�k is calculated by using,  

 �HP��* = �H��* + JεK�g�                         (3.76) 

 

The elements of the vector {e} of (3.76) are null, except the row that correspond to the i-
element which has a value of 1.0. The variable ε is defined by a small value, i.e. 1x10-6. The 
perturbation vector �WXS�k is used to perform an integrating process along a period, in order to 
derive a new vector defined by `WlSak. After deriving the vector `WlSak, the elements of the i-
column of the matrix [ΦT] can be calculated by using,  

 �f��* = �
ε

Z`Hm�a*−�H��*[                                                     (3.77) 

 

The calculating process is repeated for all the variables contained in {XT}, in order to 
obtain all the columns of [ΦT]. The Figure 3.1 shows the calculating process of the ND 
method. It can be seen the details of how the columns of [ΦT] are calculated.  
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Figure 3.1. Calculating process of the Newton method using ND approach 

Further details about the Newton and the ND method can be found in (Semlyen and 
Medina 1995). Summarizing, the expressions that permits to perform the integrating process, 
by using the Euler, Backwards Euler and the Runge Kutta method, can be seen in the 
expressions (3.78), (3.79) and (3.80), respectively.  

 �HP��J�-��K = J��K�	P����N�I��J�K − �3���HP��J�KO + �HP��J�K                                 (3.78) 

 

�H��J�K = Z�3�� + �	���� [�� Z�I��J�K + �	���� �H��J����K[                               (3.79) 

 �HP���-�� = �HP��J�K + �\ N�.P�,�� + ��.P�,�� + ��.P�,�� + �.P^,��O                                   (3.80) 

 

Further details about the main features of these methods are given in Appendix B of this 
thesis.                                             

3.3.2 Frequency domain solution 

The equation (3.53) can be solved in the frequency domain if it is considered that the 
source excitations contained in {FT} are sinusoidal and the materials are linear (Bastos 2003), 
(Shen et al. 1985), 
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 �I�J�K� = �In* opqJr� + sn*K�                         (3.81) 

 

The vector {FT(t)} is formed by each current or voltage source Fsi, and βsi represents the 
phase angle of each source. If the complex notation t = √−1 is used, (3.81) can be redefined 
by,  

 �I�J�K� = "gN�In*g,Jr�-sn*K�O                       (3.82) 

 

Where w is the angular velocity; the system response to this excitation voltage is also in 
sinusoidal steady state and out of phase. With (3.53), the system response {XT(t)} is (Bastos 
2003), 

 �H�J�K� = "gN�Hn*g,Jr�-wn*K�O                       (3.83) 

 

Where αsi is the phase angle of each vector’s component Xsi. Taking into account (3.82) and 
(3.83), the solution of (3.53) can be defined by,  

 �3���Hn*g,r�g,wn*� + �	�� 

� �Hn*g,r�g,wn*� = �In*g,r�-,sn*�                       (3.84) 

 

If the term with derivative respect to t is developed in (3.84), it yields (Shen et al. 1985), 
(Bastos 2003),  

 �3���Hn*g,wn*� + ,r�	��`Hn*g,wn*a = �In*g,sn*�                               (3.85) 

 

The equation (3.85) can be written using, 

 J�3�� + ,J�x
K�	��K`Hy�a = `Iy�a                       (3.86) 

 

Where the excitation vector �z{S� is defined by (Bastos 2003),   

 `Iy�a = `I�Jg,s*Ka                                                        (3.87) 

 

After solving for �W{�, the components of this vector are, 
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`Hy�a = `Hn*g,wn*a                         (3.88) 

 

The vector �W{S� contain each magnitude Xsi and angle phase αsi.  It is possible to express 
(3.86) in a simpler way using,  

 �����H�� = �|��                                         (3.89) 

 

The equation (3.89) will be named as reduced equation, since it is of lesser order than the 
original expression from which it was derived. The expression (3.86) has a preprocessing 
step, where their matrices are formed by a finite element analysis in order to get a FEM 
equation; and by a calculating step, in which the solution of (3.89) is obtained in the 
frequency domain using the LU method. 

 

3.3.2.1 Preprocessing step 

The preprocessing step consists on deriving submatrices and subvectors from the final 
matrices and vectors obtained from the conventional FEM equation, in order to calculate the 
matrices of the reduced equation. The preprocessing step of a conventional FEM equation 
was covered in Chapter 2; it is shown in flowchart of Figure 3.2. 

 

                           

Figure 3.2. Preprocessing step of the conventional FEM equation 
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The preprocessing step of the reduced equation consists on performing the operations 
required to calculate the matrices and vectors of (3.89). The preprocessing step of the 
reduced equation can be seen in Figure 3.3.           

                        

                                     

Figure 3.3. Preprocessing step of the reduced FEM equation 

Further details about how the matrices KT, GT and the vector FT were calculated can be 
consulted in the Section 3.2 of this thesis.   

3.3.2.2 Calculating step 

Once the matrices and the vector of the reduced equation are computed, it is possible to 
obtain its solution in the frequency domain. The process of calculating the solution of the 
equation is named calculating step. It can be seen that the reduced equation can be solved by 
using the LU method. The first step consists on performing a decomposition of the matrix 
[AT] into two matrices [LT] and [UT], respectively, i.e. 

 ���� = �&������                                                          (3.90) 

 

After having matrices [LT] and [UT], the solution of [AT]{xT}={bT} can be achieved 
through triangular decomposition LU; and thus, the reduced FEM equation can be solved. 

 The calculating process of the reduced FEM matrix equations and some steps of the 
preprocessing step can be implemented by parallel computing. This will be explained next.   

 

3.3.2.3 Parallel computing using the LU method 

Although the reduced equation derived by the methodology can reduce the computation 
time since it is a lower order matrix equation; the solution in the frequency domain can be 
still difficult to obtain, since a large computing time to obtain the solution is still necessary.  
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It is possible to overcome this situation by using the CUDA parallel computing platform. 
This platform enables to solve the reduced equation in an easier way, using the routines 
already included in the CUBLAS library. Further details about the CUDA platform and the 
routines of the CUBLAS library can be consulted in (NVIDIA 2012), (CUDA toolkit 5.0 
2014).  

In this investigation, several stages of the preprocessing step were performed in the CUDA 
platform, using the routines of the CUBLAS library. Moreover, most of steps of the 
calculating step can be performed by parallel computing. These two actions permit to derive 
a significant time reduction of the computing time to solve the reduced equation in the 
frequency domain 

 

3.3.2.3.1 Preprocessing steps implemented by a parallel computing 

The preprocessing step can be implemented using parallel programming. Specifically, the 
matrix-matrix operations that calculate the matrices [KT], [GT] can be executed with parallel 
computing using the CUBLAS routine cublasSgemm (CUDA toolkit 5.0 2014). The matrix-
vector operations that calculate the vector {FT} can be also performed with parallel 
computing using the CUBLAS routine cublasSgemv (CUDA toolkit 5.0 2014).The 
operations correspond to the stage III of the preprocessing step of the reduced equation. The 
preprocessing step of the reduced equation is shown in Figure 3.4. 

 

 

Figure 3.4 Preprocessing step of the proposed FEM equation 

It is important to mention that stages I and II of the preprocessing step, which correspond 
to the determination of submatrices and vectors, are implemented using sequential 
computation. Parallel computing of stages I and II was implemented, however, no time 
reduction was achieved. It was not possible to get a time reduction, since the parallel 
computing of each finite element requires receiving and sending information to GPU’s, 
which involved computing time. Because of this, the parallel computing of the stages I and 
II requires more time than the required for the sequential computing.  
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3.3.2.3.2 Calculating steps implemented by a parallel computing 

Once the matrix [AT] and vector {bT} have been derived by the preprocessing step, the 
solution of [AT]{XT}={bT} by the calculating step can be obtained. The calculating step 
consists on first performing a LU decomposition to obtain the matrices [LT] and [UT]; after 
having these matrices the vector solution {XT} is calculated. Parallel processing is applied 
for the LU decomposition process. 

3.3.2.3.2.1 CUBLAS decomposition LU  

The decomposition process implies to calculate the pivot located in the main diagonal of 
[AT]. This pivot is used to multiply the elements of the next rows, in order to form the 
triangular matrix [LT]. Finally, a Gauss eliminating process to form the matrix [UT] will be 
performed. Figure 3.5 shows the decomposition process implemented by parallel computing 
in CUBLAS. 

           

           

Figure 3.5 LU decomposition process implemented in CUBLAS 

The CUBLAS routines used for the parallel computation ot the LU decomposition 
correspond to matrices and vectors composed of single precission complex numbers 
(NVIDIA 2012). Once the matrix [AT] is decomposed into the matrices [LT] and [UT], the 
equation �}S��WS� = �~S� can be solved. 

3.3.2.3.2.2 Final solution of equation using CUBLAS 

The vector solution {XT} can be calculated by solving the following equations using the 
CUBLAS computing platform, 
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�&������ = �|��                                                                       (3.91) 

 �����H�� = ����                                                                       (3.92) 

 

The expression shown in (3.91) is solved by using the CUBLAS routine cublasCstrv, 
specifying that the equation to be solved corresponds to a triangular matrix stored in lower 
mode (NVIDIA 2012); while the expression (3.92) is also solved using the CUBLAS routine 
cublasCstrv, but specifying that the equation to be solved corresponds to a triangular matrix 
stored in upper mode (NVIDIA 2012).  

It can be seen that the solution of the complex equation �}S���S� = �~S� can be easily 
derived by implementing the LU method using parallel computing in CUBLAS. The results 
and the performance of this method of solution will be described in the next chapter. 

 

3.4 Comparison between the conventional and the proposed 

method 

The main characteristics of the FEM field equation and the FEM-circuit coupled equation 
have been explained in Section 3.2. The main features of the equation proposed by the 
methodology of Section 3.3 has been also covered. However, it is convenient to compare 
both approaches in order to discuss their main advantages and disadvantages. In this section 
a general comparison between the approaches will be explained; after that a comparison of 
their solution in the time domain and in the frequency domain will be explained.   

 

3.4.1. General aspects 

3.4.1.1 FEM field equation with voltages or currents known 

For this case, the conventional differential equation permits to directly calculate the 
magnetic vector potentials of the conductor and the non-conductor regions, when the 
voltages or currents are known. After having the magnetic vector potentials, the equation 
(3.25) can be used to calculate the voltages or currents. However, it is necessary to calculate 
all the magnetic vector potentials, in order to derive the voltages or currents.   

The equation derived from the methodology, permits to directly calculate the magnetic 
vector potentials of the conductor region using a lower order equation. Moreover, the same 
numbering criteria to reformulate the equation (3.25) that relates the magnetic vector 
potentials, the voltage and currents can be used; in order to get a reduced order expression to 
calculate the currents or voltages in a faster way. The magnetic vector potentials of the non-

conductor regions can be calculated using (3.20). 

 

3.4.1.2 FEM-circuit coupled equation 

For this case, the FEM-circuit coupled equation permits to directly calculate the magnetic 
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vector potentials of the conductor and the non-conductor regions. Thus, the equation requires 
that all the time varying variables (magnetic vector potentials of the conductor region and 
currents) and the autonomous variables (magnetic vector potentials of the non-conductor 
region and voltages); need be calculated at the same time.  

Moreover, the reduced equation permits to directly calculate the time varying variables, 
i.e. the magnetic vector potentials of the conductor region and the conductors’ currents. Thus, 
it is not necessary to calculate the magnetic vector potentials of the non-conductor regions 
and the voltages. However, these variables can be calculated using (3.25) that relates the 
magnetic vector potentials with the conductors’ voltages and currents. Nevertheless, in order 
to calculate the matrices and vectors of the equations, several matrix-vector operations are 
necessary to be performed and this can lead to a considerable computation effort.  

A comparison between the solution in the time and the frequency domain of the 
conventional and the proposed approaches will be explained next.   

 

3.4.2 Comparison in the time domain  

Both the conventional and the reduced FEM equation, can be solved in the time domain, 
using the Euler, Backwards Euler, Runge Kutta and the Newton methods. This will be 
discussed next.  

3.4.2.1 Euler method  

The solution in the time domain of the original FEM equation, using the Euler method is 
given by,  

 �H�J�-��K = J��K�	���N�I�J�K − �3��H�J�KO + �H�J�K                                            (3.93) 

 

The equation (3.93) cannot be solved in an accurate way because the matrix inversion of 
[G] cannot be achieved since the matrix has null elements along the main diagonal. Thus, it 
is not possible to get an accurate solution using (3.93).  

For the case of the reduced equation, an accurate solution using the Euler method cannot 
also be obtained, but an approximate solution can be derived using, 

 �HP��J�-��K = J��K�	P����N�I��J�K − �3���HP��J�KO + �HP��J�K                                       (3.94) 

 

The Euler method can be only used in an approximate way in the reduced equation, since 
this expression has been derived from an equation that cannot be accurately solved by the 
Euler method. Nevertheless, the reduced equation is of lower order and can directly solve the 
time varying variables included in (3.93). 
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3.4.2.2 Backwards Euler method  

The solution in the time domain of the original FEM equation, using the Backwards Euler 
method is given by,  

 

�H�J�K = Z�3� + �	��� [�� Z�I�J�K + �	��� �H�J����K[                               (3.95) 

 

While the solution of the reduced equation by the Backwards Euler method is defined by   

 

�H��J�K = Z�3�� + �	���� [�� Z�I��J�K + �	���� �H��J����K[                                   (3.96) 

 

Equations (3.95) and (3.96) are almost identical. The solution obtained in the time domain 
is accurate, since an approximate equation to get a solution has not been used. The matrix to 
be inverted for the case of the conventional expression is defined by the sum of [K] and (ΔT-

1)[G]; and for the case of the reduced equation by the sum of matrices[KT] and (ΔT-1)[GT]. 
The main difference between the conventional and the reduced expression is the order of the 
matrix equation to be solved.  

 

3.4.2.3 Runge Kutta method  

The solution in the time domain of the original FEM equation using the Runge-Kutta 
method is obtained as,  

 �H�J�-��K = �H�J�K + �\ J�.�� + ��.�� + ��.�� + �.^��K                                              (3.97) 

 

Equation (3.97) cannot be accurately solved in an accurate, since the matrix inversion of 
[G] involves the inversion of an ill-conditioned matrix. Although it is possible to use an 
approximation of (3.97), it is also still necessary to derive all the magnetic vector potentials 
at the same time.  

For the case of the reduced order equation, its approximate solution in the time domain 
using the Runge Kutta method is quite similar to (3.97), i.e.  

 �HP��J�-��K = �HP��J�K + �\ N�.P�,�� + ��.P�,�� + ��.P�,�� + �.P^,��O                                        (3.98) 

 

The equation (3.97) and (3.98) are almost identical. However, the method can be only 
used in an approximate way in the reduced equation, since this one has been derived from an 
expression that cannot be accurately solved by the Runge Kutta method. Nevertheless, the 
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equation derived by the methodology is of lesser order and its solution in the time domain 
can be rapidly achieved.  

 

3.4.2.4 Newton method based on Poincaré map and extrapolation to the limit 

cycle 

The solution in the time domain of the original FEM equation using the Newton method 
based on Poincaré map and extrapolation to the limit cycle is defined by, 

 �H�e = �H�� + J − fK��J�H��-�� − �H��-��K                                        (3.99) 

 

While the solution of the reduced equation using the Newton method is given by,  

 �H��e = �H��� + J � − f�K��J�H���-�� − �H���-��K                                          (3.100) 

 

The difference between (3.99) and (3.100) relies on the order of the matrix equation to be 
solved. The Newton method used in this investigation, consider that the matrix Φ will be 
calculated using the ND method (Semlyen and Medina 1995). The ND method requires to 
integrate along a period of time, or Base Cycle, using the Euler, Backwards Euler or the 
Runge Kutta method. The precision of the Newton methods would depend of the accuracy 
of these methods and the step size selected. While the Backwards Euler provides an excellent 
solution, the Euler and the Runge Kutta provide an approximate solution in the time domain. 

 
 

3.4.2.5 Summary of the time domain comparison  

The reduced equation can be solved in the time domain using several methods. The 
equation can provide a good solution when the Backwards Euler is used. On the other hand, 
the Euler and the Runge Kutta can be used to get an approximate solution. The equation can 
be also solved using the Newton method described in the previous section.  The solution of 
the time domain can be easily achieved using the equation derived by the methodology, 
although it is necessary to perform several matrix operation in order to derive it; these 
matrices and vector are required to be calculated only once, therefore, it can be provide a 
faster time domain solution. 

 

3.4.3 Comparison in the frequency domain 

The solution of a conventional FEM equation in the frequency domain is defined by,  

 J�3� + ,J�x
K�	�K`Hya = `Iya                              (3.101) 
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While the solution of the equation derived by the methodology is given by,  

 J�3�� + ,J�x
K�	��K`Hy�a = `Iy�a                   (3.102) 

 

The equations (3.101) and (3.102) are quite similar. The main difference between them is 
the order of the matrix equation to be solved. The solution of both equation requires of 
solving an equation of the form Ax=b. Although the reduced equation is of lower order, it is 
necessary to perform additional matrix operations in order to obtain its matrices and vectors.   

 

3.4.3.1 Summary of the frequency domain comparison  

The equation derived by the proposed methodology requires of several matrix operations 
in order to obtain the respective matrices and vectors. This calculating process requires of an 
additional computing time. Because of this, the reduced equation cannot always represent a 
better method of solution in the frequency domain. However if an analysis is performed 
which involves several calculations in the frequency domain, the method can represent an 
excellent way of solution. This will be shown in the case studies discussed in the next chapter 
of this thesis.  

 

3.5 Conclusions 

In this chapter, a methodology, which permits to derive a reduced equation expressed in 
terms of time varying variables of a FEM field or a FEM-circuit coupled equation has been 
presented.  

Although these FEM equations were widely covered in Chapter 2, a summary of the most 
important features of these equations has been included, in order to get a quick understanding 
of them.  

The proposed methodology consists on perform a renumbering of the magnetic vector 
potentials of the FEM equation; this permits to derive an equivalent expression. Using this 
equation and performing a rearrangement of its variables along several matrix-vector 
operations; permits to get a reduced equation of lower order, which can be solved in the 
frequency and the time domain. 

The solution in the time domain can be performed using several methods, i.e. Euler, 
Backwards Euler and the Runge Kutta method. The Newton method based on Poincaré map 
and extrapolation to the limit cycle can be used. These methods have their own advantages 
or disadvantages when they are used to get a solution in the time domain.  

Moreover, the equation derived can be solved in the frequency domain. Although the 
solution of the frequency domain can be easy to derive, it can involve the solution of a large 
matrix equation. This can be overcome by using a LU method, implemented in a parallel 
computing platform. The use of the CUDA and the routines used in the CUBLAS library 
were covered and performed in this investigation. They offer an excellent choice of 



83 
 

implementing the LU method. The use of a LU decomposition method implemented in 
CUBLAS, which permits to solve an equation in the frequency domain using parallel 
computing has been proposed.  

Although the reduced equation is of lower order, it is necessary to perform several matrix 
operations in order to derive the components which form the expression. Because of this, the 
solution in the frequency or the time domain may require of additional computing time. This 
will depend of the problem to be solved. This will be discussed in the Chapter 5, where 
several case studies will be presented.  
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4 Proposed sequential and parallel 

routines used in the methodology 
 

 

4.1 Introduction 

In this chapter, how the FEM equations of this investigation were performed using 

sequential and the parallel computing platforms will be detailed. The FEM equations are 

derived from finite element analysis which can be simplified by a planar or an axisymmetric 

symmetry assumption. As a first step, how the conventional FEM equations were solved 

using sequential computing will be explained. Besides, the solution of these equations using 

the CUBLAS parallel computing platform will be explained. After that, how the equations 

derived from the proposed methodology are solved using the sequential and parallel 

computing platforms will be described. Three stages in the implementation of conventional 

and the equation derived from the methodology can be recognized:  

1. Preprocessing FEM Stage. All the devices are modeled using the FEM software ANSYS. 

Thus, this stage consists on modeling the geometry of the device, by entering the 

magnetic and electric properties, by assigning the boundary conditions; and finally, by 

performing the geometry meshing. After doing all this, it is possible to generate the 

information of the finite elements, specifically, the element numbers, the nodes and the 

electric and magnetic properties.  

 

2. Preprocessing Stage. This stage consists on deriving the FEM matrices and vectors by 

performing a finite element analysis. The information provided by the Preprocessing 

FEM Stage will be used. The final goal of this stage is to generate the FEM matrix 

equation.  

 

3. Calculating process. This stage consists on solving the FEM equation, either in the 

frequency or in the time domain.  

The stages that correspond to conventional FEM equations and to equations derived from 

the proposed methodology will be detailed next.   

4.2 Conventional FEM equations 
4.2.1 Preprocessing FEM stage 

The preprocessing FEM stage consists on first modeling the geometry of the device, i.e. 

the keypoints, elements and areas. Then, the magnetic and electric properties of the different 

sections will be set up. With the geometry model finished, it is possible to perform a meshing 
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to perform a partition of the device domain in small finite elements. For the case of 

conventional FEM equations, the automatic meshing functions of ANSYS are used. The next 

step consists on introducing the boundary conditions; since 2D finite element analysis is 

considered, it is only necessary to set the Dirichlet boundary conditions. With all this 

information, it is possible to generate three data file: the Element Data File that contains the 

elements, their nodes and the electric and magnetic properties; the Nodes Data File that 

contains the coordinates of each node the geometry modeled; and finally, the Boundary 

Conditions Data File that contains the boundary conditions. The Preprocessing FEM stage 

is shown in Figure 4.1 

 

 

Figure 4.1 Preprocessing FEM stage of a conventional FEM equation performed by ANSYS 

 

With the information of elements and nodes contained in the data files derived from the 

Preprocessing FEM stage; it is possible to derive the FEM matrices and vectors of each finite 

element. These will correspond to three specific FEM expressions: a FEM field equation with 

voltages or currents known, and a FEM-circuit coupled equation.  

 

4.2.1.1 FEM field equation with voltages known 

If a device with voltages known is modeled, it is possible to derive the FEM matrices and 

vectors using the element and node information included in the data files of the preprocessing 

FEM stage. The matrices and vectors can be calculated using a finite element analysis which 

considers a planar or an axisymmetric symmetry. The different steps that lead to derive a 

FEM field equation with voltages known is shown in Figure 4.2. The platforms that allow to 

derive each specific step shown in Figure 2 are indicated in Table 4.1.  
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Figure 4.2. Preprocessing stage of a FEM field equation with voltages known 

 

TABLE 4.1. ROUTINES AND PLATFORMS USED IN THE PREPROCESSING STAGE OF A FEM FIELD 

EQUATION WITH VOLTAGES KNOWN 

Operation Performed 
MATLAB  

Platform 

GSL  

Platform 

1. Preprocessing FEM Stage  ANSYS 

2. Reading information of 

preprocessing FEM stage 
ANSYS/Windows XP 

3. Calculating the FEM matrix & 

vector of the i-finite element 

Matlab own-routines 

C own-routines 

4. Assembling FEM matrices & 

vectors 
gsl_matrix_set 

gsl_vector_set 
5. Applying boundary conditions 

and deriving final matrices and 

vectors of the FEM expression 

4.2.1.2 FEM field equation with currents known 

The preprocessing FEM stage explained in the Section 4.2.1, also permit to derive the 

FEM matrices and vectors of a device with currents known.  For this case, it has also been 

used a finite element analysis which considers a planar or an axisymmetric symmetry 

assumption. The matrices and vectors are also obtained, by considering the node and element 

information; but this preprocessing FEM stage is different. It consists on deriving the 

matrices and vectors of a FEM coupled equation, which models a device with currents 
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known. The FEM coupled equation is formed by a FEM field expression with voltage as the 

forcing function; and by the FEM expression that relates the voltage, current and magnetic 

vector potentials of the device. Thus, on this preprocessing stage, the matrices and vectors 

of these two FEM expressions are calculated; and finally, they are used to derive the matrices 

and vector of the FEM coupled equation.  

Figure 4.3 shows the different steps that lead to derive a FEM equation with currents 

known, while the platforms and routines that allow each specific step of Figure 4.3 are shown 

in Table 4.2. It can be seen that it is necessary to use the preprocessing stage shown in Figure 

4.2.                

   

 

Figure 4.3. Preprocessing stage of a FEM field equation with currents known 

TABLE 4.2. ROUTINES AND PLATFORMS USED IN THE PREPROCESSING STAGE OF A FEM FIELD 

EQUATION WITH CURRENTS KNOWN 

Operation Performed 
MATLAB  

Platform 

GSL  

Platform 

1. Preprocessing FEM stage of a 

FEM equation with voltages known 
See Table 4.1 See Table 4.1  

2. Forming FEM coupled equation Matlab own-routines C own-routines 

 

4.2.1.3 FEM circuit coupled equation 

If a device using a FEM-circuit coupled equation is modeled, the preprocessing FEM 

stage covered in Section 4.2.1, also permits to derive the FEM matrices and vectors. These 

matrices and vectors are also derived by a finite element analysis, which considers a planar 

or axisymmetric symmetry assumption.  

The FEM-circuit coupled expression is formed by a FEM-field equation with voltages as 

the forcing function; by the FEM equation that relates voltage and currents with the magnetic 

vector potentials; and finally, by a voltage-current equation. On this preprocessing stage, the 

matrices and vectors of these three expressions are calculated in order to derive the FEM-

circuit coupled equation. The different steps that lead to derive the preprocessing stage of a 
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FEM-circuit coupled equation are shown in Figure 4.4, while the platforms and routines that 

allow each specific step are given in Table 4.3. It can be seen that it is necessary to use the 

preprocessing stage shown in Figure 4.3.                   

                                                       

              

Figure 4.4. Preprocessing stage of a FEM-circuit coupled equation 

 

TABLE 4.3. ROUTINES AND PLATFORMS USED IN THE PREPROCESSING STAGE OF FEM-CIRCUIT 

COUPLED EQUATION 

Operation Performed 
MATLAB  

Platform 

GSL  

Platform 

1. Preprocessing FEM Stage of a 

FEM equation with currents known 
See Table 4.2 See Table 4.2  

2. Forming the FEM-circuit 

coupled Equation 
Matlab own-routines C own-routines 

 

Summarizing, the preprocessing stage permits to derive all the FEM equations described 

in the Sections 4.2.1.1, 4.2.1.2 and 4.2.1.3. The FEM equations can be solved either in the 

frequency and the time domain. The process of solving the FEM equation is named 

calculating stage and will be explained next.   

 

4.2.2. Calculating stage 

The preprocessing stage permits to obtain a FEM field equation with voltages or currents 

known, and a FEM-circuit coupled equation. These equations can be represented in a general 

form as,  

 

������ � �
�	 �
���� � ���                                                         (4.1) 
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The expression (4.1) can be solved in the frequency and in the time domain. Specific 

details on the solution methods can be consulted in Appendix B.  

 

4.2.2.1 Solution in the frequency domain 

If (4.1) is solved in the frequency domain, it has the form,   

 


��� � �
�����
������ � ����                                                 (4.2) 

 

Moreover, (4.2) can be represented in a simpler way using,  

 

������� � ����                                                                                  (4.3) 

 

The Equation (4.3) can be solved in the frequency domain using the LU decomposition 

method. The LU method can be solved using sequential and parallel computing platforms. 

For the case of a sequential solution, the Matlab (MATLAB 2010) and the GSL (GNU 

Scientific Library 2013) platforms were used. For the case of a parallel solution, the 

CUBLAS platform was used (NVIDIA 2012), (Barrachina et al. 2008), (CUDA toolkit 5.0 

2014). The method is concisely illustrated by Figure 4.5. Further details of the parallel and 

the sequential implementation of the LU method can be consulted in Chapter 3. All the 

routines used by each platform are given in Table 4.4. 

 

 

Figure 4.5 Calculating process for the conventional FEM equations in the frequency domain 
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TABLE 4.4. ROUTINES AND PLATFORMS USED IN THE FREQUENCY DOMAIN SOLUTION OF A 

CONVENTIONAL FEM EQUATION 

Method Operation Performed 

MATLAB 

Platform 

GSL  

Platform  

CUBLAS 

Platform  

Routine used Routine used Routine used 

LU  

decomp. 

[A]= 

[L][U] 

1.Defining matrix complex [A] MatLab Routine gsl_matrix_set Cublas Routine 

2. Calculating pivot p on r-row 

NA 
gsl_linalg_comple

x_LU_decomp 

cuCdivf 

3. Modifying rows & columns 

of [L] using pivot p 
cublasCscal 

4. Modifying rows & columns 

of [U] using Gauss Elimination 
cublasCgeru 

Final 

solution  

������� � 

���� 

5. Solving the 1st Matrix 

equation 

������� � ���� 
 

linsolve 
gsl_linalg_comple

x_LU_solve 

cublasCtsv 

6. Solving the 2nd matrix 

equation 

������� � ���� 
 

cublasCtsv 

 

4.2.2.2 Solution in the time domain 

The equation shown in (4.1) can be represented in a different way using,  

 

�
� �
�	 ��� � ��� − ������                                                               (4.4) 

 

It is possible to solve the expression shown in (4.4) in time domain, using the Backwards 

Euler method. It gives,  

 

���� � �
�
 	 ! ���
	� � �"�
	# 	� � 
 	�#$�
����
	# 	�                                                    (4.5)  

 

Moreover, (4.5) can be represented in a general form, i.e.  

 

���
	����
	� � ���
	# 	�                                                                           (4.6) 

 

Where the matrix [A](t) and the vector {b}(t-Δt) are given by,  

 

���
	� � ���� � �
�
 	 !                                (4.7) 

 

���
	# 	� � �"�
	# 	� � 
 	�#$�
����
	# 	�                                  (4.8) 
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It is possible to solve (4.6) using the LU decomposition method. For the particular case of 

the time domain solution, a sequential computing platform will be used. Specifically, the 

Matlab (MATLAB 2010) and the GSL (GNU Scientific Library 2013) platforms were used. 

The routines used by these platforms are listed in Table 4.5. 

 
TABLE 4.5. ROUTINES AND PLATFORMS USED IN THE TIME DOMAIN SOLUTION OF A CONVENTIONAL 

FEM EQUATION USING THE BACKWARDS EULER METHOD 

Method Operation performed 
MATLAB platform GSL platform 

Routine used Routine used 

LU  

Decomposition 

[A](t)= 

[L](t)[U](t) 

1.Defining matrix complex [A](t) MatLab Routine gsl_matrix_set 

2. Calculating pivot p on r-row 

NA 
gsl_linalg_complex_LU_d

ecomp 

3. Modifying rows & columns of 

[L](t) using pivot p 

4. Modifying rows & columns of 

[U](t) using Gauss elimination 

Final Solution  

���
%����
%� � 

���
%#&%� 

5. Solving the 1st Matrix 

Equation 

���
%����
%#&%� � ���
%#&%� 
 

linsolve 
gsl_linalg_complex_LU_s

olve 6. Solving the 2nd Matrix 

Equation 

���
%����
%#&%� � ���
%#&%� 
 

 

4.3 Proposed methodology 
4.3.1 Preprocessing FEM Stage 

The preprocessing FEM stage of the methodology consists on first modeling the geometry 

of the device. Specifically, it models the keypoints, elements and areas that form the 

geometry of the device. After that, the magnetic and electric properties are set up. With the 

geometry modeled, it is possible to perform a meshing, that allows a partition of the domain 

in small finite elements. 

For the specific case of the proposed methodology, it is necessary to perform the meshing 

in the conductors of the device first. Thus, each conductor will be consecutively meshed. 

After having meshed the conductors, this process is performed for the other parts of the 

geometry. It is important to take into account the number of nodes that correspond to the 

conductor region, and the number of nodes that correspond to the non-conductor region. The 

number of nodes of the conductor region is nnodeC, while the number of nodes of the non-

conductor region is nnode-nnodeC, where nnode is the total node numbers of the geometry. 

Using these node numbers, it is possible to perform the proposed methodology, which 

consists on deriving a reduced FEM equation.  

After having performed the meshing process, the boundary conditions of the device is set 

up. Since a 2D finite element analysis is considered, it is only necessary to set the Dirichlet 

boundary conditions. With all this information, it is also possible to generate three data file: 

the Element Data File that contains the elements, their nodes and the electric and magnetic 

properties; the Nodes Data File that contains the coordinates of each node of the device; and 
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finally, the Boundary Conditions Data File that contains the Dirichlet boundary conditions. 

The Preprocessing FEM stage of the proposed methodology is shown in Figure 6.  

 

 

Figure 4.6. Preprocessing FEM stage of the proposed methodology using ANSYS 

 

4.3.1.1 FEM field equation with voltages known 

The proposed methodology permit to derive a reduced FEM equation, from a FEM field 

equation with voltages known. The preprocessing FEM stage which permit to derive the 

matrices and vector of the FEM field equation with voltages known, was previously covered 

in Section 4.2.1.1.  

The preprocessing stage of the reduced equation, consists on deriving its FEM matrices 

and vectors; specifically it is used a calculating process, which takes into account the node 

number of the conductor and the non-conductor regions of the FEM field equation. The 

different necessary steps to perform the preprocessing stage of the proposed methodology, 

in a FEM field equation with voltages known; are shown in Figure 4.7. The platforms to 

derive each specific step shown in Figure 4.7 are listed in Table 4.6. 
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Figure 4.7. Preprocessing stage of the methodology applied to a FEM-field equation with voltages known 
 

 

TABLE 4.6. ROUTINES AND PLATFORMS USED IN THE PREPROCESSING STAGE OF THE PROPOSED 

METHOD FOR A FEM-FIELD EQUATION WITH VOLTAGES KNOWN | 

Operation Performed 
MATLAB 

platform 

GSL 

platform 

CUBLAS 

platform 

1. Preprocessing FEM Stage  ANSYS 

2. Reading information of 

preprocessing FEM stage 

Matlab own-routines 

C own-routines 
3. Calculating the FEM matrix & 

vector of the i-finite element 

4. Assembling FEM matrices & vectors 

gsl_matrix_set 

gsl_vector_set 
5. Applying boundary conditions  

6. Deriving FEM arrays of the FEM 

field equation with voltages known 

7. Deriving submatrices & subvectors 
gsl_matrix_get, gsl_vector_get 

gsl_matrix_set, gsl_vector_set 

8. Deriving final matrices & vectors of 

the proposed method 

Matlab standard 

matrix routines 

gsl_blas_dgemm 

gsl_blas_dgmev 

gsl_linalg_LU_solve
1 

cublasSgemm, 

cublasSgemv 

cublasSger1  

cublasStrsm1 
1 These routines are used to calculate the matrix inversion shown in Figure 4.7. 
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4.3.1.2 FEM field equation with currents known  

It is also possible to use the proposed methodology, to derive a reduced equation from a 

FEM field equation with currents known. The preprocessing FEM stage of this FEM field 

equation was covered in Section 4.2.1.2.  

For this case, the preprocessing FEM stage of the reduced equation can also be derived 

by the calculating process, which takes into account the nodes of the conductor and the non-

conductor regions of the FEM coupled equation. The different necessary steps to perform the 

proposed methodology in a FEM field equation with currents known, are shown in Figure 

4.8. The platforms to derive each specific step shown in Figure 4.8 are listed in Table 4.7. It 

can be seen that it is necessary to use the preprocessing stage shown in Figure 4.7. 

                      

 

Figure 4.8. Preprocessing stage of the methodology applied to a FEM-field equation with currents known 

 
TABLE 4.7. ROUTINES AND PLATFORMS USED IN THE PREPROCESSING STAGE OF THE PROPOSED 

METHOD FOR A FEM-FIELD EQUATION WITH CURRENTS KNOWN 

Operation performed 
MATLAB 

platform 

GSL 

platform 

CUBLAS 

platform 

1. Deriving FEM arrays of the FEM 

field equation with voltages known 
See Table 4.6 See Table 4.6 

2. Forming FEM coupled equation 
Matlab own-routines 

gsl_matrix_get, gsl_vector_get 

gsl_matrix_set, gsl_vector_set 3. Deriving submatrices & subvectors 

4. Deriving final matrices & vectors of 

the proposed method 

Matlab standard 

matrix routines 

gsl_blas_dgemm 

gsl_blas_dgmev 

gsl_linal_LU_solve1 

cublasSgemm, 

cublasSgemv 

cublasSger1 

cublasStrsm1 

Note. 1 These routines are used to calculate the matrix inversion shown in Figure 4.8. 
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4.3.1.3 FEM circuit coupled equation  

For a device modeled using a FEM-circuit coupled equation, the FEM matrices and 

vectors can be obtained using the element and node information provided by ANSYS. The 

FEM-circuit coupled equation consists on a FEM field equation with voltages as the forcing 

function; the FEM expression that relates the voltage, current and magnetic vector potentials; 

and finally, a voltage-current equation.  

The proposed methodology can be applied in order to get a reduced equation from a FEM-

circuit coupled equation. The preprocessing FEM stage of the reduced equation, uses the 

calculating process based on the node numbers of the conductor and the non-conductor 

regions. The different steps in which is based the proposed methodology is shown in Figure 

4.9. Table 4.8 shown the platforms and routines used. 

       

 

 Figure 4.9. Preprocessing stage of the methodology applied to a FEM-circuit coupled equation 

 

TABLE 4.8. ROUTINES AND PLATFORMS USED IN THE PREPROCESSING STAGE OF THE PROPOSED 

METHOD FOR A FEM-CIRCUIT COUPLED EQUATION 

Operation performed 
MATLAB 

platform 

GSL 

platform 

CUBLAS 

platform 

1. Deriving FEM arrays of the FEM 

field equation with currents known 
See Table 4.6 See Table 4.6 

2. Forming FEM coupled equation 
Matlab own-routines 

gsl_matrix_get, gsl_vector_get 

gsl_matrix_set, gsl_vector_set 3. Deriving submatrices & subvectors 

4. Deriving final matrices & vectors of 

the proposed method 

Matlab standard 

matrix routines 

gsl_blas_dgemm 

gsl_blas_dgmev 

gsl_linal_LU_solve1 

cublasSgemm, 

cublasSgemv 

cublasSger1 

cublasStrsm1 

Note. 1 These routines are used to calculate the matrix inversion shown in Figure 4.8. 

 



96 
 

4.3.2. Calculating Stage 

The proposed methodology represents an alternative of solution to a FEM field equation 

with voltages or currents known, and a FEM-circuit coupled equation. Reduced expressions 

from these FEM equations can be obtained, which can be represented in a general form 

defined by,   

 

��'���'� � �
�	 �
'���'� � ��'�                                                           (4.9) 

 

The Equation (4.9) can be solved in the frequency and in the time domain. Specific details 

on the solution methods can be consulted in Appendix B of this thesis. 

 

4.3.2.1 Solution in the frequency domain 

If (4.9) is solved in the frequency domain, it yields, 

 


��'� � �
�����
'�����'� � ���'�                                           (4.10) 

 

Moreover, (4.10) can be represented in a simpler way using,   

 

��'����'� � ���'�                                                        (4.11) 

 

The reduced equation (4.11) can also be solved in the frequency domain using the LU 

decomposition method. The LU method can be solved using sequential and parallel 

computing platforms. For the case of a sequential solution, the Matlab (MATLAB 2010) and 

the GSL (GNU Scientific Library 2013) platforms were used. For the case of a parallel 

solution, the CUBLAS platform was used (NVIDIA 2012), (Barrachina et al. 2008), (CUDA 

toolkit 5.0 2014). The method is briefly shown in Figure 4.10. Further details of the parallel 

and the sequential implementation of the LU method are given in Chapter 3. All the routines 

used by each platform are indicated in Table 4.9. 
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Figure 4.10. Calculating process of the proposed method in the frequency domain 

 
TABLE 4.9. ROUTINES USED IN THE FREQUENCY DOMAIN SOLUTION OF THE REDUCED EQUATION 

DERIVED FROM THE PROPOSED METHOD 

Method Operation performed 

MATLAB 

Platform 

GSL  

Platform  

CUBLAS 

Platform  

Routine used Routine used Routine used 

LU  

decomp. 

[AT]= 

[LT][UT] 

1.Defining matrix complex [AT] MatLab Routine gsl_matrix_set Cublas Routine 

2. Calculating pivot p on r-row 

NA 
gsl_linalg_comple

x_LU_decomp 

cuCdivf 

3. Modifying rows & columns of 

[LT] using pivot p 
cublasCscal 

3. Modifying rows & columns of 

[UT] using Gauss Elimination 
cublasCgeru 

Final 

solution  
��(��)*(� � 

���(� 

5. Solving the 1st matrix equation 

��(��+*(� � ���(� 
 linsolve 

gsl_linalg_comple

x_LU_solve 

cublasCtsv 

6. Solving the 2nd matrix equation 

��(��)*(� � �+*(� 
 

cublasCtsv 

 

4.3.2.2 Solution in the time domain 

The Equation (4.9) can be represented in a different way using, 

 

�
'� �
�	 ��'� � ��'� − ��'���'�                                                        (4.12) 

 

It is possible to solve the expression shown in (4.12) in time domain, using the Backwards 

Euler and the Euler methods. It yields,  
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Where matrix [A](t) and vector {b}(t) for the Backwards Euler method are given by,   
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Where the matrix [A](t) and the vector {b}(t) for the Euler method are given by, 
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The expression (4.14) can be also solved by using the 4th order Runge Kutta method, 

yielding, 

 

��'�
	/ 	� � ��'�
	� � $
2 .�3�$'�
	� � ��3��'�
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Where the vectors �6�7(�
%�, �6�8(�
%�, �6�9(�
%�, and �6�:(�
%� are calculated by solving the next 

four equations,  
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>
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�'-
	�? �3�5'�
	� � �"'�
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	� − ��'��3�4'�
	�                         (4.23) 

 

Observing the equations derived from the Backwards Euler, Euler and 4th order Runge 

Kutta methods, it can be seen that can also be represented in a general form defined by,  

 

���
	����
	� � ���
	�                                                                                          (4.24) 

 

It is possible to solve (4.24) using the LU decomposition method. For the particular case 

of the time domain solution, a sequential computing platform will be used. Specifically, the 

Matlab (MATLAB 2010) and GSL (GNU Scientific Library 2013) platforms were used. 

Table 4.10 gives the routines used by these platforms. The solution of the reduced equation 

derived from the methodology is quite similar to the solution of the conventional FEM 

equation. 

 
TABLE 4.10. ROUTINES USED IN THE TIME DOMAIN SOLUTION OF AN CONVENTIONAL FEM 

EQUATION USING THE BACKWARDS EULER, EULER AND THE 4TH ORDER RUNGE KUTTA METHODS 

Method Operation Performed 
MATLAB Platform GSL Platform 

Routine used Routine used 

LU  

Decomposition 

[A](t)= 

[L](t)[U](t) 

1.Defining matrix complex 

[AT](t) 
MatLab Routine 

gsl_matrix_set 

2. Calculating pivot p on r-row 

NA gsl_linalg_LU_decomp 

3. Modifying rows & columns 

of [L](t) using pivot p 

4. Modifying rows & columns 

of [U](t) using Gauss 

Elimination 

Final Solution  
���
%����
%� � 

���
%� 

5. Solving the 1st matrix 

equation 

���
%����
%� � ���
%� 
 

linsolve gsl_linalg_LU_solve 
6. Solving the 2nd matrix 

equation 

���
%����
%� � ���
%� 
 

 

4.4 Conclusions 

In this chapter the different routines and platforms used, to solve the conventional FEM 

expression and the equations derived from the proposed methodology have been discussed. 

For both cases, three specific type of FEM equations have been solved, i.e. a FEM field 

equation with voltages known, a FEM field equation with currents known; and finally, a 

FEM-circuit coupled equation. These FEM expressions are formed by matrices and vectors 

which are calculated by a preprocessing stage. 

 The different computing platforms and routines that allow defining the processing stage 

of the conventional and the proposed FEM equation have been explained. For the case of the 
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conventional FEM equations, the sequential computing platforms Matlab and GSL have been 

used. Besides, for the case of the proposed methodology, the sequential computing platforms 

Matlab and GSL have been used; as well as the parallel computing platform CUBLAS.  

It is important to mention, that the ANSYS FEM software has been used. This software 

can model the geometry of the device using the finite element analysis; thus, it is possible to 

generate the information of the finite element and the nodes used in the modeling of the 

device. Using this information the matrices and vectors that form the FEM equations can be 

calculated. The process of forming the finite elements in the modeling of the device using 

ANSYS has been identified as the processing FEM stage. The preprocessing FEM stage of 

the proposed method is slightly different, since it requires the consecutive meshing of the 

conductor region.  

Finally in this chapter has been shown, the platforms and routines used in the frequency 

and the time domain solution of the FEM equations. The process of solving the conventional 

FEM and the equation derived by the methodology, is named as calculating stage. The 

solution of the conventional FEM equations and those equations derived from the proposed 

methodology are quite similar. The difference relies on the order of the matrix equation to be 

solved.  
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5 Case studies 

 

5.1 Introduction 

In this chapter, several case studies of devices whose field equation have been simplified 
either by a planar or an axisymmetric symmetry assumption will be presented. Using the 
finite element analysis, it is possible to solve these field equations in an easier way, since the 
symmetry assumption simplifies the complexity of the analysis. The finite element analysis 
permits to derive a FEM field or a FEM-circuit coupled equation, which can solved in the 
frequency and the time domain. However, these equations may be difficult to solve because 
their matrix order can be of large dimensions. 

This investigation proposes a methodology which allows to simplify the FEM equations 
in order to solve them in the time or in the frequency domain. Although the time domain 
solution was a priority of this investigation, the advantages of applying the methodology in 
the frequency domain was evident during the development of this investigation.  

Further details about the methodology are given in Chapter 3. However, a brief summary 
is as follows: it consists on performing a renumbering of the magnetic vector potentials of 
the conductor regions. Using this new criterion and a performing a reordering of the variables 
with non-null derivate respect the time, it is possible to derive a new FEM equation. Using 
this equation and performing several matrix operations, it is possible to derive a completely 
new FEM expression. This equation is of lower order and is defined in terms of the time 
varying variables.  

Although the proposed methodology has been widely explained in Chapter 3, in this 
chapter this methodology will be applied to the solution of several devices. These devices 
will be analyzed by conventional finite element analysis, but they will be also analyzed using 
the proposed methodology. It is important to mention, the assumptions made in the finite 
element analysis: 

1. Plane or axisymmetric symmetry on behavior of the magnetic field 

For the case of the devices with a planar symmetry assumption, it is considered that the 
magnetic field behavior though the z-axis of the conductor is the same. Because of this 
assumption, the magnetic vector potential is only defined in the z-axis (Ho, Li and Fu 1999), 
(Arkkio 1987), (Bianchi 2005). For the case of device with an axisymmetric symmetry 
assumption, it is considered that the field behavior is the same though the ρ-axis. This allows 
assuming that the magnetic vector potentials is defined by the plane formed by the r and z 
axis (Preiss 1983), (Konrad, Chari and Csendes 1982). 
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2. Displacement current neglected 

The frequency of the voltage sources is low enough, to neglect the displacement current 
in the Maxwell field equations (Ho, Li and Fu 1999), (Arkkio 1987), (Bianchi 2005). 

3. Constant permeability and conductivity 

The permeability over all the regions and the conductor conductivity are considered to be 
all constant.  

4. Unique voltage applied through the conductor regions 

It is assumed that there are no voltage differences at all points of conductor regions. The 
source current density in the conductors is constant over each cross-sectional surface (Preiss 
1983), (Konrad 1982).  

After explaining the main assumptions made for the analysis of the devices, the study 
cases related to devices modelled by a planar or an axisymmetric symmetry assumption will 
be explained and the main conclusions drawn.  

 

5.2 Planar symmetry assumption cases 
5.2.1 Case study 1. Slot embedded conductors modeled by a one-

dimension finite element analysis and by a FEM-circuit coupled 

equation 

5.2.1.1 Introduction  

The example to be analyzed consists on solving a FEM-circuit coupled equation that 
models three identical slot conductors, coupled with a two loop circuit that contains several 
resistances and inductances. A Finite Element Analysis can be performed in the three 
conductors. It is considered that the conductors have a Neumann boundary along their 
vertical walls. This assumption permits to consider the conductors independent from each 
other. Further details about the conductors´dimension and their characteristics can be 
consulted in (Konrad 1981), (Konrad 1982), (Jafari-Shapoorabadi, Konrad and Sinclair 
2002), (ANSYS 2010). The conductors are shown in Figure 5.1, the two-loop circuit in 
Figure 5.2. 
 

 

Figure 5.1. Scheme of the three slot embedded conductors. 
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Figure 5.2. Two loop circuit used for the Example. 

 

It is assumed that the embedded conductors can be modeled through plane symmetry, to 
allow a one dimension finite element analysis. The one dimension FEM discretization 
considered for the conductors is shown in Figure 5.3.  Further details about the conductors´ 
one dimension finite element model are given in (Konrad 1981), (Konrad 1982), (Jafari-
Shapoorabadi, Konrad and Sinclair 2002), (ANSYS 2010). The electrical and magnetic 
parameters of the conductors are listed in Table 5.1. 

 

 

Figure 5.3. FEM discretization of the conductors 
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TABLE 5.1 
PARAMETERS OF THE CONDUCTORS AND THE VOLTAGE-CURRENT EQUATION 

 Parameter Symbol Value 

Voltage-

Current 

Equation’s 

Parameters 

Voltage vector,  {V} 
V1 36.6sin(t-75º) V 
V2 36.6sin(t-45º) V 

Voltage angular speed w 1 rad/s 

Elements of [Rij] 
R11, R22 0.60 Ω 
R12,R21 -0.20 Ω 

Elements of [Lij] 
L11, L22 0.06 H 
L12, L21 -0.01 H 

Conductors 

Parameters 

Resistance Rc
(1), Rc

(2), Rc
(3) 0.25 Ω 

Length l 1 m 
Area Sc 4 m2 

Conductivity � 1.0 Ω-1·m-1 
 

5.2.1.2 Two-loop circuit voltage-current equation 

If a circuit voltage-loop analysis is performed for the two loop circuit, a voltage-current 
equation can be obtained, i.e. 

 �����{	} + ����� 

� {	} + [�]{��} = {�}                  (5.1) 

 

Where [b] is given by,  

 [�] = ��   � �� −� ��                    (5.2) 

 

And {I} and {Uc} are the unknown currents and voltages; [Rij] and [Lij] are the resistance and 
inductance matrices; {V} is the voltage vector, all defined in Table 5.1. The components of 
these matrices and vectors are in Table 5.1. 

5.2.1.3 Field equations of the device 

If the assumptions mentioned at the beginning of this chapter are considered in the 
conductor modelling; two regions can be identified: a non-conductor region, where there is 
no voltage excitation; and a conductor region, which is supplied with a voltage source and 
includes the skin effect (Escarela-Perez, Melgoza and Alvarez-Ramirez 2009). The field 
equations of these regions is defined by the field equation shown in (2.10).  

5.2.1.4 Finite Element Analysis 

It is possible to perform a finite element on the field (2.10), in order to derive a FEM 
equation, with the conductor voltage as the forcing function. At the same time, a Newton 
Cotes Analysis can be performed on (2.11) in order to derive another FEM equation. Details 
about the finite element equations can be consulted in Chapter 2. The FEM expressions 
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derived from these analysis are defined by, 

 ����� �{��} + ����� � 

� {��} = −(��!�){�#�� }{��}                                                              (5.3) 

 (��)[�]�{	} + {�#�� } 
{�}
� = {��}                                                      (5.4) 

 

The vectors Ak and {Uc} of (5.3) and (5.4) are defined by the magnetic vector potentials and 
the voltages applied on terminals of each conductor,  

 �� = $��(�) ��(%) ��(#)&�
                                    (5.5)  

 {��} = $��(�) ��(%) ��(#)&�
                                      (5.6) 

     

The matrices [S11
G], [T11

G] and [T31
G] of (5.3) and (5.4) are defined by,   

 

���� = ����(�) ���(%) ���(#)�#'#
�()
                          (5.7) 

 

���� = ����(�) ���(%) ���(#)�#'#
�()
                                         (5.8) 

 

�#�� = (��)�{*}�(�) {*}�(%) {*}�(#)�#'#
�()
                                (5.9) 

 

The notation [ ](n) and { }(n) indicates that the matrix [ ] and the vector { } respectively; 
are associated to the conductor n, where n=1,2,3. The matrices Skk

(i), Tkk
(i) and {M}k

(i) are 
obtained from applying the finite element and the Newton Cotes analysis on each i-embedded 
conductor. The FEM discretization shown in Figure 5.3 has been considered. The matrices 
Skk

(n), Tkk
(n) {M}k

(n) of conductors can be consulted in (Konrad 1981). 

 

5.2.1.5 FEM-circuit coupled equation 

It is possible to obtain the FEM-circuit coupled equation of the two-loop circuit and the 
embedded conductors. This can be achieved by coupling the FEM equations (5.3) and (5.4) 
with the voltage-current equation defined in (5.1). It yields, 
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+���� � ,−(��!�)�#�� -�
� ����� [�]� (��)[�]� −{�} . / ��{	}{��}0 + 1���� � �� [���] ��#�� � �2 

� / ��{	}{��}0 = 3 �{�}� 4            (5.10) 

 

5.2.1.6 Solution derived by the proposed methodology 

It is possible to use the method explained in Chapter 3 to obtain the vector of magnetic 
potentials and currents of conductors. As a first step, it is necessary to perform a nodal 
renumbering in the vector of magnetic potentials of the conductor region and the non-

conductor region of conductors. The proposed FEM discretization for the conductors is 
shown in Figure 5.4. Please notice that nodes have been renumbered in the conductor and 
the non-conductor regions, to make them consecutive. 

 

 

Figure 5.4. Proposed FEM discretization of the conductors. 

Taking into account the FEM discretization shown in Figure 5.4, it is possible to obtain a 
new FEM circuit-coupled equation, by deriving new FEM field equations for each conductor 
and by coupling them with the voltage-current equation defined in (5.1). It is also possible to 
redefine (5.4). The new FEM equations are now defined by,  

 

5��� ������� ���6 7����8 + 5��� �� �6 

� 7����8 = 9,(��!�)�#�-�: {��}                                 (5.11) 

 (��)[�]�{	} + {�#�} 
��
� = {��}                                                    (5.12) 

 

Where the vectors Ai and Aj of (5.11) and (5.12) are defined by,   

 

�� = $��(�) ��(%) ��(#)&�
                             (5.13) 
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�� = 9��(�) ��(%) ��(#):�
                              (5.14) 

 
And the matrices of (5.11) and (5.12) are given by,  

 

��� = ����(�) ���(%) ���(#)�#'#
�()
                                  (5.15) 

 

��� = ���%(�) ��%(%) ��%(#)�#'#
�()
                                  (5.16) 

 

��� = ��%%(�) �%%(%) �%%(#)�#'#
�()
                                 (5.17) 

 

��� = ����(�) ���(%) ���(#)�#'#
�()
                                    (5.18) 

 �#� = (��)[{*�}(�) {*�}(%) {*�}(#)]#'#
�()                               (5.19) 

 

If the equations (5.11) and (5.12) are coupled to the voltage-current equation (5.1), a new 
FEM-circuit coupled equation can be obtained. Besides, time varying variables can be 
reordered, in order to separate them from the variables whose derivative respect the time is 
zero. It yields, 

 

;<<
<= ����    ������ ,−(��!�)�#�-�[�] ��� �    � ���� (��)[�]��       −{�}   �             ���� >??

?@
AB
C ��{	}{��}�� DE

F + 1����    ��   �  �  � ��#� �   ��  ��   � �2 

� AB
C ��{	}{��}�� DE

F = G �{�}�� H  

(5.20) 
  

It is possible to perform a matrix partition on (5.20), i.e.  

 

IJ�� J��J�� J%%K 9'�'%: + I��� ��%� �K 

� 9'�'%: = 7L�L%8                 (5.21) 

 

The submatrices and subvectores of (5.21) have been previously defined in (3.40)-(3.45) 
and (3.46)-(3.48), respectively. It is possible to derive the reduced equation from (5.21). It 
yields,  

 J�'� + �� 

� '� = L�                                          (5.22) 



108 
 

Where the matrices KT and GT and the vector fT of (5.22) can be calculated using (3.49), 
(3.50) and (3.51), respectively.  

The time varying variables of (5.10) are the vectors Ai and {I}. These variables can be 
directly calculated using (5.22). Once the FEM-circuit coupled and the equation derived by 
the method are obtained, both approaches can be solved in the frequency and the time 
domain. Thus, a comparison results can be made on both approaches. These results can be 
compared with those derived by a FEM simulation performed in ANSYS, as explained next. 

5.2.1.7 Comparison results in frequency domain 

A first comparison of results is performed in the frequency domain. Details about how a 
FEM equation is solved in the frequency domain are given in Appendix B. In order to know 
if the magnetic potentials and currents calculated with (5.10), and those calculated with the 
proposed methodology are correct; a FEM simulation was performed in ANSYS. Some of 
the results of conductors magnetic potentials and currents, obtained with the FEM-circuit 
coupled equation that assumes the FEM discretization shown in Figure 5.4 are included in 
Table 5.2. Table 5.2 also included the results obtained with proposed equation which assumes 
the same FEM discretization. 

 
TABLE 5.2 

MAGNETIC VECTOR POTENTIALS (MVP) AND CURRENTS IN THE FREQUENCY DOMAIN 
MVP (Wb/m) 

Currents (A) 
ANSYS 

Conv. FEM-circ. 

coupled Equation 
% Error 

Proposed 

Method 
% Error 

A1 25.090 24.888 -0.805 24.888 -0.805 
A2 25.196 24.992 -0.809 24.992 -0.809 
A3 25.113 24.928 -0.737 24.928 -0.737 
A4 23.677 23.576 -0.427 23.576 -0.427 
A6 4.550 4.512 -0.835 4.512 -0.835 
A7 4.570 4.531 -0.833 4.531 -0.833 
A8 4.554 4.519 -0.769 4.519 -0.769 
A9 4.294 4.274 -0.466 4.274 -0.466 
A11 25.231 25.028 -0.804 25.028 -0.804 
A12 25.338 25.132 -0.813 25.132 -0.813 
A13 25.254 25.068 -0.737 25.068 -0.737 
I1 6.411 6.412 0.015 6.412 0.015 
I2 6.447 6.448 0.015 6.448 0.015 

 

An error percentage (%Error), for each magnetic vector potential or current included in 
Table 5.2 was calculated using, 

   %NOOPO = QRPOS! QTOPTQRPOS (���%)                        (5.23) 

 

Where Xnorm is the magnetic vector potential or current derived by ANSYS in the 
frequency domain; Xprop is the magnetic vector potential or current calculated by (5.22) or 
conventional FEM equation (5.10). Comparing the results, it can be observed that the 
proposed method permits to get an accurate solution in the frequency domain. Additionally, 
it was measured the computing time of solving the proposed equation. It was obtained a time 
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reduction of 5.0%, compared to time required for solving the conventional FEM equation 
(5.10).  A more detailed performance comparison was performed in the time domain solution 
that will be outlined next.  

5.2.1.8 Comparison results in time domain 

A second comparison is now performed in the time domain using the Backwards Euler 
method. Details of solution of the FEM equation in time domain using the Backwards Euler 
method are given in Appendix B. The results are given in Table 5.3. 

 
TABLE 5.3 

MAGNETIC VECTOR POTENTIALS (MVP) AND CURRENTS IN THE TIME DOMAIN USING THE 

BACKWARDS-EULER METHOD 

MVP (Wb/m) 

Currents (A) 
ANSYS 

Conv. FEM-circ.  

coupled Eq. 
% Error 

Proposed 

Method 
% Error 

A1 25.090 24.888 -0.805 24.888 -0.805 
A2 25.196 24.992 -0.809 24.992 -0.809 
A3 25.113 24.928 -0.737 24.928 -0.737 
A4 23.677 23.576 -0.427 23.576 -0.427 
A6 4.550 4.512 -0.835 4.512 -0.835 
A7 4.570 4.531 -0.833 4.531 -0.833 
A8 4.554 4.519 -0.769 4.519 -0.769 
A9 4.294 4.274 -0.466 4.274 -0.466 
A11 25.231 25.028 -0.804 25.028 -0.804 
A12 25.338 25.132 -0.813 25.132 -0.813 
A13 25.254 25.068 -0.737 25.068 -0.737 
I1 6.411 6.412 0.015 6.412 0.015 
I2 6.447 6.448 0.015 6.448 0.015 

The solution in the time domain considers that Δt=0.001s. Rms values of the variables are shown 
 

An excellent agreement was achieved with the results derived from the Backwards Euler 
method, a maximum error of 0.8% was obtained. The error percentage (%Error), for each 
magnetic vector potential or current calculated with the proposed methodology and with 
(5.10) has been included in Table 5.3. The variable Xnorm is the magnetic vector potential or 
current obtained with ANSYS; while Xprop is the magnetic vector potential or current obtained 
by solving the proposed equation (5.22) and the conventional equation (5.10) in the time 
domain. It has been obtained accurate results with lesser computer effort. A performance 
comparison was made between the conventional and the proposed method, and it will be 
covered in the next Section.   

The 4th order Runge Kutta and the Euler methods are also used to perform a comparison 
in the time domain. These methods can be used to derive an approximate solution of the 
proposed equation, given as,   

 J�'� + �U� 

� '� = L�                                    (5.24) 

 

Where the matrix V̅t shown in (5.24) is calculated using, 
 



110 
 

�U� = ��� − J�%J%%!��U%�                              (5.25) 

 �U%� = [�U#� �]%'%
�()
                              (5.26) 

 �UU#� ≨ �#�                                    (5.27) 

   

 The Euler and the 4th order Runge Kutta method consider a matrix �UU#� defined by (5.28) 
and (5.29), respectively.  

 �UU#� = �. ZZ[\ �#�                                                    (5.28) 

 �UU#� = �. ZZ]� �#�                                          (5.29|) 

 

The results obtained from solving the conventional and the proposed equation are given 
in Table 5.4. The error (%Error) shown in Table 5.4 was calculated using (5.23). Xnorm is the 
vector of magnetic potentials or currents obtained by solving (5.10) using the Backwards 
Euler method; Xprop is obtained by solving (5.22), using the Euler and the 4th order Runge 
Kutta methods. 

 
TABLE 5.4 

MAGNETIC VECTOR POTENTIALS (MVP) AND CURRENTS IN THE TIME DOMAIN USING THE 

BACKWARDS EULER AND THE RUNGE KUTTA METHODS 

MVP 

(Wb/m)  

Current (A) 

Back-Euler 

Conv. FEM-

Circ. Equation 

Euler 

Proposed 

Method 

% Error 

Runge K. 

Proposed 

Method 

% Error 

|A1| 25.090 24.887 -0.809 24.887 -0.809 
|A2| 25.196 24.991 -0.814 24.991 -0.814 
|A3| 25.113 24.927 -0.741 24.927 -0.741 
|A4| 23.677 23.574 -0.435 23.574 -0.435 
|A6| 4.550 4.517 -0.725 4.517 -0.725 
|A7| 4.570 4.535 -0.744 4.535 -0.744 
|A8| 4.554 4.523 -0.681 4.523 -0.681 
|A9| 4.294 4.278 -0.373 4.278 -0.373 
|A11| 25.231 25.031 -0.793 25.031 -0.793 
|A12| 25.338 25.136 -0.797 25.136 -0.797 
|A13| 25.254 25.071 -0.725 25.071 -0.725 
|A14| 23.811 23.710 -0.424 23.710 -0.424 
|I1| 6.411 6.412 0.015 6.412 0.015 
|I2| 6.447 6.449 0.015 6.449 0.015 

The solution in the time domain considers that Δt=0.001s. Rms values of the variables are shown 
 

Although the Euler and the 4th order Runge Kutta methods derive an approximate solution 
of (5.22) in the time domain, it can be seen that and excellent agreement was achieved when 
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they are used. An error of almost 0.8% was obtained when the 4th order Runge Kutta method 
was used. The Euler method allows a solution with a maximum error of almost 0.6%.  

It is important to mention that the time-domain solution of the equation derived by the 
methodology, requires lesser computer effort than the required for solving the conventional 
FEM equation (5.10). A performance comparison of the time domain solution will be 
outlined next.  

5.2.1.9 Performance comparison 

The proposed method allows to directly calculate the time varying variables. For the case 
of the example analyzed, the proposed equation is of 15 order; while the original FEM circuit 
coupled matrix is of 26 order. The derived equation by the proposed method is easier to solve 
either in the frequency or in the time domain. It is significantly faster, as will be demonstrated 
next. 

In order to quantify the performance of the equation derived by the proposed method, the 
simulation time was measured. The simulation time needed to solve a conventional FEM-
circuit coupled equation was measured in order to make a comparison. Both equations were 
solved with separate Matlab programs; a PC with 1GB RAM, AMD Turion-two cores 
1.90GHz processor, Windows®-XP 32 bit platform was used.  

The equations were solved in the time domain using the Backwards Euler method; a total 
simulation time of 63s and ΔT=0.001s were chosen. The proposed equation (5.22) and the 
conventional FEM-circuit coupled equation (5.10) were solved seven times in order to 
quantify the required solution time.  The simulation time was obtained using the Matlab 
cputime function. The results are listed in Table 5.5. It can be observed that the equation 
derived by the proposed method, allows a faster solution that the conventional equation 
(5.10). For the case study, it is more than 5% faster.  

The time varying variables can be calculated without knowing the magnetic vector 
potentials of the non-conductor region. It is also possible to calculate the conductors’ voltage 
since the magnetic vector potentials of the conductor region are already known. 

 

TABLE 5.5 
COMPUTING TIME TO SOLVE THE EQUATIONS IN THE TIME DOMAIN 

Simulation 

Number 

FEM-Circuit Coupled 

Equation 

Proposed 

Methodology 

% 

Diff 

1 284.97s 271.31s -4.79 
2 288.30s 269.78s -6.42 
3 286.52s 256.33s -10.53 
4 284.33s 263.20s -7.43 
5 274.97s 266.06s -3.24 
6 274.10s 270.30s -1.38 
7 290.48s 270.11s -7.01 

Average 283.38s 266.72s -5.87 
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5.2.2 Case study 2. Slot embedded conductors modeled by a two-

dimension finite element analysis, and by a FEM-circuit coupled 

equation 

5.2.2.1 Introduction  

The example to be analyzed consists on solving the same FEM-circuit coupled equation 
that models three identical and independent slot embedded conductors. In the last case study, 
a one-dimension Finite Element Analysis was considered; but now, a two-dimension finite 
element analysis will be used (Konrad 1981), (Konrad 1982), (ANSYS 2010).  Moreover, 
the same boundary conditions and the two-loop circuit will be considered. It is assumed that 
the conductors can be modeled by a plane symmetry, which allows to perform a two 
dimension finite element analysis (Konrad 1982), (Escarela-Perez, Melgoza and Alvarez-
Ramirez 2009). The parameters of the conductors can be shown in Table 5.1. The two-
dimension FEM discretization of the three slot embedded conductors is shown in Figure 5.5. 

 

 

Figure 5.5. FEM discretization of the three slot conductors. 

 

5.2.2.2 Two-loop circuit voltage-current equation  

The same voltage-current equation for the two-loop circuit is considered. The equation 
was already defined in (5.1). 

5.2.2.3 Field equations of the device   

It is considered the same field equations for the conductor and the non-conductor region 
of the embedded conductors. The same expression that relates the magnetic vector potentials, 
voltages and currents of the conductors is also considered.  

5.2.2.4 Finite element analysis 

It is possible to perform a two dimension finite element analysis in the field equation, in 
order to derive a unique FEM equation. At the same time, a Newton Cotes analysis can be 
performed in the field equation that relates the magnetic vector potentials with the conductors 
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voltages and currents. Further details about the Finite Element analysis can be consulted in 
Chapter 2. The FEM expressions has the same form of (5.3) and (5.4), respectively. However, 
it is important to remark that they correspond now to a two-dimension finite element analysis. 

5.2.2.5 FEM-circuit coupled equation  

The FEM-circuit coupled equation of the example, results from coupling the FEM 
equations with the voltage-current equation of the two-loop circuit. Although the FEM 
expression is the same as that used for the case study 1 (Section 5.2.1), it will be shown again, 

 

+���� � ,−(��!�)�#�� -�� [���] [�]� −[�]� [��]!� . / ��{	}{��}0 + 1���� � �� [���] ��#�� � �2 

� / ��{	}{��}0 = 3 �{�}� 4                         (5.30) 

 

The vectors Ak and {Uc} of (5.30) were previously defined in (5.5) and (5.6), while the 
matrices were defined in (5.7), (5.8), and (5.9). 

 

5.2.2.6 Solution derived by the proposed methodology 

It is possible to use the method explained in Chapter 3, in order to solve the vector of 
conductor magnetic potentials and currents of this case study. As a first step, it is necessary 
to perform a nodal renumbering on the magnetic vector potentials of the conductor region 
and the non-conductor regions of the three embedded conductors. The proposed FEM 
discretization for the conductors is illustrated in Figure 5.6. Please notice that the nodes have 
been renumbered in the conductor and the non-conductor regions, in order to make them 
consecutive. 

 

 

Figure 5.6. Proposed FEM discretization of the three slot conductors. 

 

Taking into account the FEM discretization shown in Figure 5.6, it is possible to get a new 
FEM circuit-coupled equation, by obtaining new FEM field equations on each conductor, 
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and coupling them with the voltage-current equation defined in (5.1). It is also possible to re-
defined the expression defined in (5.8) using the FEM discretization shown in Figure 5.6. 
The new FEM equations are now,  

 

5��� ������� ���6 7����8 + 5��� �� �6 

� 7����8 = 9,(��!�)�#�-�: {��}                                    (5.31) 

 (��)[�]�{	} + [�#�] 
��
� = {��}                                                                (5.32) 

 

If the expressions (5.31) and (5.32) are coupled to the voltage-current equation defined in 
(5.1), it is possible to get a new FEM-circuit coupled equation. Moreover, the time varying 
variables can be reordered, in order separate them from the variables whose derivative respect 
the time is zero, i.e. 

 

;<<
<= ����     ������ ,−(��!�)�#�-�[�] ��� �        �        ���� −(��)[�]��       −�      �              ���� >??

?@
AB
C ��{	}{��}�� DE

F + 1����    ��   �  �  � ��#� �   ��   � �  ��2 

� AB
C ��{	}{��}�� DE

F = G �{�}�� H 

(5.33) 
 

It is possible to perform a matrix partition on (5.33), i.e.  

 

IJ�� J��J�� J%%K 9'�'%: + I��� ��%� �K 

� 9'�'%: = 7L�L%8                 (5.34) 

 

Please observe that (5.34) has the same form of (5.21). Because of this it is possible to 
directly calculate the time varying variables using this equation. For this particular case, the 
vector x1 is defined by,   

 '� = (�� {	})�                                                                  (5.35) 

 

It can be seen that the magnetic vector potentials Ai and the current vectors {I} can be 
directly calculated using (5.22). Once the FEM-circuit coupled and the equation derived by 
the methodology are obtained, both approaches can be solved in the frequency and the time 
domain. Thus, a comparison results can be performed on both approaches. Additionally these 
results can be compared with those derived by a FEM simulation performed in ANSYS. This 
will be explained next. 
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5.2.2.7 Comparison results in frequency domain 

A first comparison of results is performed by solving the equations in the frequency 
domain. In order to know if the magnetic potentials calculated with (5.30) and those 
calculated by the proposed method are correct; a simulation was performed with the FEM 
software ANSYS. Some of the conductors magnetic potentials and the circuit currents results, 
obtained with the FEM-circuit coupled equation that assumes the FEM discretization shown 
in Figure 5.5, are included in Table 5.6. Table 5.6 include the results obtained with the 
proposed equation, which assumes the FEM discretization shown in Figure 5.6. An error 
percentage (%Error), for the magnetic potentials or currents, obtained with the proposed 
equation, has been calculated using the equation defined in (5.23).  

By comparing the results, it can be observed that the methodology permits to obtain an 
accurate solution in the frequency domain.  

 
TABLE 5.6 

MAGNETIC VECTOR POTENTIALS (MVP) AND CURRENTS IN THE FREQUENCY DOMAIN 

MVP (Wb/m) 

Currents (A) 
ANSYS 

Conventional 

FEM-Circuit 

Coupled 

Equation 

% Error Proposed Method % Error 

A1 25.101 24.891 -0.844 24.891 -0.844 

A2 25.123 24.959 -0.657 24.959 -0.657 

A3 25.060 24.888 -0.691 24.888 -0.691 

A11 4.542 4.513 -0.643 4.513 -0.643 

A12 4.550 4.525 -0.552 4.525 -0.552 

A13 4.539 4.512 -0.598 4.512 -0.598 

A21 25.222 25.031 -0.763 25.031 -0.763 

A22 25.267 25.100 -0.665 25.100 -0.665 

A23 25.203 25.028 -0.699 25.028 -0.699 

I1 6.411 6.412 0.015 6.412 0.015 

I2 6.447 6.448 0.016 6.448 0.016 

 

5.2.2.8 Comparison results in time domain 

A second comparison is now performed in the time domain. The Backwards Euler method 
was used, the results are given in Table 5.7. The error percentage (%Error) shown in this 
Table was calculated using (5.23). For this case Xord is the magnetic vector potential or 
current derived by ANSYS in the frequency domain; Xprop is the magnetic vector potential or 
current obtained, by solving in the time domain the proposed equation, or using (5.30). The 
results obtained from both approaches are practically identical. The maximum percentage of 
error is 0.8%. 
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TABLE 5.7 
MAGNETIC VECTOR POTENTIALS (MVP) AND CURRENTS IN THE TIME DOMAIN USING THE 

BACKWARDS EULER METHOD  

MVP (Wb/m) 

Currents (A) 
ANSYS 

Conventional 

FEM-Circuit 

Coupled 

Equation 

% Error Proposed Method % Error 

|A1| 25.101 24.889 -0.852 24.889 -0.852 

|A2| 25.123 24.957 -0.665 24.957 -0.665 

|A3| 25.060 24.886 -0.699 24.886 -0.699 

|A11| 4.542 4.513 -0.643 4.513 -0.643 

|A12| 4.550 4.524 -0.575 4.524 -0.575 

|A13| 4.539 4.511 -0.621 4.511 -0.621 

|A21| 25.222 25.030 -0.767 25.030 -0.767 

|A22| 25.267 25.099 -0.669 25.099 -0.669 

|A23| 25.203 25.028 -0.699 25.028 -0.699 

|I1| 6.411 6.411 0.000 6.411 0.000 

|I2| 6.447 6.447 0.000 6.447 0.000 

Rms values of the variables are shown, the solution in the time domain considers that Δt=0.001s.  
 

The 4th order Runge Kutta and the Euler method were also used to perform a comparison 
in the time domain. The results can be seen in Table 5.8. It is important to mention that these 
methods allow an approximate solution of the proposed equation to be obtained. Equations 
(5.24)-(5.27) were used. For this case, the Euler and the 4th order Runge Kutta method 
consider a matrix _̂_`a defined by (5.36) and (5.37), respectively. 

 �UU#� = �. Zb �#�                                                    (5.36) 

 �UU#� = �. Zc �#�                                            (5.37) 

 

The results obtained from solving the conventional and the proposed equations can be 
seen in Table 5.8. It can be observed that the Euler method allows a solution to be obtained 
with a maximum error of almost 9%. A maximum error of almost 5.0% is obtained with the 
4th order Runge Kutta method. 
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TABLE 5.8 
MAGNETIC VECTOR POTENTIALS (MVP) AND CURRENTS IN THE TIME DOMAIN USING THE EULER 

AND THE 4TH ORDER RUNGE KUTTA METHODS 

MVP (Wb/m) 

Currents (A) 

Backwards Euler 

Ord. FEM-Circuit 

Coupled Equation 

Euler Proposed 

Method 
% Error 

4th Runge Kutta 

Proposed Method 

% 

Error 

|A1| 24.889 23.852 -4.348 24.188 -2.898 

|A2| 24.957 24.255 -2.894 24.255 -2.894 

|A3| 24.886 24.185 -2.898 24.185 -2.898 

|A11| 4.513 4.381 -3.013 4.424 -2.012 

|A12| 4.524 4.436 -1.984 4.436 -1.984 

|A13| 4.511 4.423 -1.990 4.424 -1.967 

|A21| 25.030 24.308 -2.970 24.308 -2.970 

|A22| 25.099 24.375 -2.970 24.375 -2.970 

|A23 25.028 24.306 -2.970 23.306 -2.970 

|I1| 6.411 7.046 9.012 6.728 4.712 

|I2| 6.447 7.079 8.928 6.762 4.658 

RMS values of variables are shown in Table 5.8, the solution in the time domain was obtained with Δt=0.001s. 
 

5.2.2.9 Performance comparison 

The proposed equation defined in terms of the time varying variables, is significantly 
lower order than the FEM circuit coupled equation (5.30). In the tested example, the proposed 
matrix equation is of order 32, while the original FEM circuit coupled matrix equation is of 
order 53. As it will be shown, the equation derived with the proposed method, is faster and 
easier to solve either in the frequency or in the time domain.  

In order to quantify the performance of the proposed matrix equation, the simulation time 
was measured. The simulation time needed to solve an conventional FEM-circuit coupled 
equation, was in addition measured in order to make a comparison. Both equations were 
solved with separate Matlab® programs; it was used the same computing platform and 
operative system of the case study 1 (Section 5.2.1).  

The equations were solved in the time domain, using the Backwards Euler method. A total 
time simulation of 75s and a value of ΔT=0.001s were chosen. The proposed equation along 
with the expression (5.22), and the conventional FEM-circuit coupled equation (5.30) were 
solved seven times in order to quantify the required time to solve all the equations. The 
equation (5.32) is considered, since allows the derivation of the conductor voltages, which 
are not being calculated by the proposed equation.  

The simulation time was obtained using the Matlab® cputime function. The results are 
listed in Table 5.9. It can be observed than the proposed matrix equation (5.22), allow a faster 
solution than the original FEM-circuit coupled equation (5.30) to be obtained. For instance, 
for the case study, it is more than 12 % faster.  

It can be observed that the time varying variables can be directly calculated without 
knowing the magnetic potentials of the non-conductor region. Moreover, it is possible to 
calculate the conductor voltages, since the magnetic vector potentials of the conductor 

region, and the conductor currents are already known. 
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TABLE 5.9 
COMPUTING TIME TO SOLVE THE EQUATIONS IN THE TIME DOMAIN 

Simulation 

Number 

Conventional FEM-circuit 

Coupled Equation (5.30) 

Proposed Method 

Equation (5.22) 
%Diff 

1 471.33s 457.08s -3.024 

2 465.83s 432.63s -7.130 

3 471.33s 422.38s -10.390 

4 464.03s 445.44s -4.006 

5 459.67s 403.48s -12.224 

6 461.30s 453.09s -1.778 

7 488.16s 450.72s -7.669 

Average 467.80s 437.83s -6.602 
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5.2.3 Case study 3. T slot-embedded conductor modeled by a two-

dimension finite element analysis 

5.2.3.1 Introduction  

The case to be analyzed consists on a reverse “T” slot-embedded conductor with a copper 
conductor region and an air region (Konrad 1981), (Konrad 1982), (ANSYS 2010). In the 
conductor, the magnetic flux is normal to its vertical walls. The conductor has a zone of zero 
magnetic vector potential in the air region. In order to solve in an easier way the field 
equation, a planar symmetry is assumed. This symmetry allows considering that the magnetic 
field only has a component in the z-axis. It is assumed that the electric field has two 
components: one constant along the z-axis, and the second one varies with the frequency and 
produces eddy current losses (Konrad 1981), (Konrad 1982).  

The cross section of the single “T” conductor is supplied with a rms sinusoidal current of 
4A. As a result of the circulation of current, magnetic potentials will be present in the 
conductor and in the air regions. The sinusoidal current mentioned above is supplied in a 
range of frequency of 0.001Hz to 60Hz. The objective of the case study is to analyze how 
the total source current density of the conductor varies in this range of frequencies (Konrad 
1981), (Konrad 1982), (ANSYS 2010). 

The sketch of the conductor cross sections is shown in Figure 5.7. The physical 
dimensions of the conductor are given in Table 5.10.  

 

 

Figure 5.7. “T” slot-embedded conductor 

TABLE 5.10 
REVERSE “T” SLOT-EMBEDDED CONDUCTOR PHYSICAL DIMENSIONS 

Parameter Symbol Value 

Conductor Geometric 
Parameters 

a 6.450 x 10-3 m 

b 8.550 x 10-3 m 

c 8.450 x 10-3 m 

d 18.850 x 10-3 m 

e 8.950 x 10-3 m 

Conductor Area Δ 2.358 x 10-4 m2 
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Since the magnetic lines located in the vertical lines of the conductor are normal to them, 
these walls will be considered boundary conditions for the magnetic model. There is a zone 
of zero magnetic potential in the air region. The magnetic model of the conductor and its 
boundary conditions; the type of the finite elements used, the number of nodes and the FEM 
meshing, are all shown in Figure 5.8. The conductors´ magnetic and electric properties are 
all shown in Table 5.11. 

 

 

Figure 5.8. Magnetic model of the conductor, its boundary conditions and the FEM meshing. 

TABLE 5.11 
ELECTRIC AND MAGNETIC PROPERTIES OF THE “T” SLOT EMBEDDED CONDUCTOR 

Parameters of the Conductor Symbol Value 

Vacuum Permeability  μ0 4π x 10-7 H/m 
Relative Permeability in the  
Air and Conductor Regions 

μr 1.0 

Conductor Conductivity  � 58 x 106 Ω-1 m-1 
Conductor length l 1.0m 

 
 
In order to validate the results obtained with the proposed method, these will be compared 

against those calculated with the integro-differential finite element formulation (Konrad 
1981), (Konrad 1982).  
 

5.2.3.2 Field equation of the device 

The proposed example will be solved using the Finite Element Integro-differential 
approach, thus the field equation to be solved is given by (Arkkio 1987), (Konrad 1981), 
(Konrad 1982), 
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−d ⋅ (f(d�)) + g h�h� − �i ∬ g h�h��� 
� = 	�i                                   (5.38) 

 

Where Sc is the conductor area, Ic is the current passing though the conductor. 

It is possible to add a field equation for the device, specifically, the expression which 
relates its voltage, current and the magnetic vector potentials. This equation was previously 
defined in (2.13) 

 

5.2.3.3 Finite element analysis  

If the field equation defined in (5.38) is solved in the frequency domain using FEM, it 
gives (Arkkio 1987), (Konrad 1982), 

 k[�] + �(%lL)[�] − �(%lL) �i [�][m]n $�o& = [�] 	p�i                          (5.39) 

 

Where the matrices [S] and [T] are matrices derived by FEM analysis; the discretization is 
shown in Figure 5.8. Further details about Equation (5.39) can be consulted in (Konrad 1981), 
(Konrad 1982). The equation (5.39) can solve all the magnetic vector potentials in the 
conductor for a frequency f. If it is considered the field equation defined on (2.13), and if a 
Newton Cotes analysis is performed on it; it yields,  

 ��	p� + �(%lL)(��){*�}$�o& = �o�                                   (5.40) 

 

After having calculated the conductor voltage qor, the source current density is calculated 
as, 

 spt = g �o�u                                                     (5.41) 

 

There will be a specific source current density vwx for a frequency f. The objective of this 
case study consists on calculating this source current density for a specific frequency range.  

5.2.3.4 Solution obtained with the proposed methodology 

It is possible to use the method explained in Chapter 3, to solve the magnetic vector 
potentials of the conductor region of the slot conductor. After having these magnetic 
potentials, (5.40) and (5.41) can be used to calculate the conductor voltage qor and the source 
current density  vwx.  

 The first step of the methodology requires to perform a nodal renumbering on the 
magnetic vector potentials, of the conductor region and the non-conductor regions of the 
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conductors. Thus, it is possible to derive FEM equations that takes into account this nodal 
renumbering. It yields, 

 

5��� ������� ���6 7����8 + 5��� �� �6 

� 7����8 = {L�}(��)                                                      (5.42) 

 ��!��� − {*}� 
��
� = 	�                                                             (5.43) 

 

Where the magnetic vector potentials of the conductor and non-conductor regions of (5.42) 
and (5.43) are given by, 

 �� = {�� �% . . �%�\}                                   (5.44) 

 �� = {�%�] �%�b . . �%]\}                                    (5.45) 

 

If the equations (5.42) and (5.43) are combined in order to form a unique FEM equation, 
it yields,  

 

1 ��� −{L�} ���� ��!� ����� � ���
2 /������ 0 + 

� y ��� � �−{*}� � �� � �z /������ 0 = 3 �	�� 4                 |            (5.46) 

 

If (5.46) is partitioned and a frequency domain solution is considered; it gives,  

 

IJ�� J�%J%� J%%K 7'{�'{%8 + �| I��� ��%� �K 

� 7'{�'{%8 = 7 �Lp%8                     (5.47) 

 

Please notice that (5.47) has the same form of (5.22), if solved in the frequency domain, 
i.e. 

 (J� + �|��)'{� = Lp�                                                            (5.48) 

 

The matrices KT, GT, and the vector fT of this reduced equation are derived using (3.49), 
(3.50) and (3.51), respectively. These matrices are calculated by considering the matrices and 
vectors K11, K12, K21, K22, G21, G22 and F2 all shown in (5.47). The vectors }~a, }~� and �w� of 
(5.47) are defined by, 
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'{� = �o�                                               (5.49) 

 '{% = $�o� �o�&�
                                     (5.50) 

 Lp% = {	p� �}�                                       (5.51) 

 

After calculating the magnetic vector potentials �w�, the voltage qor can be calculated using 
(5.43).  If the conductor voltage qor is known, the source current density of the conductor vwx 
can be calculated using (5.41). Once the FEM equation and the expression derived by the 
methodology are used to calculate the conductor source density, a comparison of the results 
obtained from both approaches can be performed. Additionally these results were compared 
with those derived by an ANSYS FEM simulation (ANSYS 2010). The results derived by 
ANSYS are almost identical to the results obtained with the integro-differential approach. 
The results derived by the integro-differential and the proposed method will explained next.  

5.2.3.5 Comparison results 

The results obtained from the integro-differential approach, and those derived from the 
proposed methodology are given in Table 5.12. 

 
TABLE 5.12 

SOURCE CURRENT DENSITY IN THE FREQUENCY DOMAIN 

Frequency 
Integro-differential 

approach 
Proposed method %Error  

0.001 Hz 4,241+j0.700 4,241+j0.700 0.000% 

1.00 Hz 4,245+j701.0 4,245+j698.0 -0.023% 

5.00 Hz 4,352+j3,495 4,350+j3,483 -0.161% 

10.0 Hz 4,676+j6,937 4,668+j6,916 -0.263% 

15.0 Hz 5,190+j10,283 5,175+j10,255 -0.286% 

20.0 Hz 5,858+j13,498 5,832+j13,467 -0.258% 

25.0 Hz 6,641+j16,562 6,605+j16,553 -0.123% 

30.0 Hz 7,495+j19,469 7,455+j19,445 -0.177% 

35.0 Hz 8,391+j22,224 8,344+j22,206 -0.139% 

40.0 Hz 9,294+j24,832 9,245+j24,828 -0.079% 

45.0 Hz 10,183+j27,328 10,135+j27,325 -0.068% 

50.0 Hz 11,042+j29,710 10,998+j29,715 -0.030% 

55.0 Hz 11,863+j32,003 11,825+j32,015 -0.020% 

60.0 Hz 12,640+j34,224 12,609+j34,240 0.010% 
The results show the conductor source current density Js, if a sinusoidal current of 4A in a range of frequencies of 0.001Hz 
to 60Hz is supplied. 

The percentage of error between the results derived from the two approaches can be 
calculated using,   
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%NOOPO = st�R��)!stTOPTst�R��) (���%)                                  (5.52) 

 

Where Jsinteg is magnitude of the source current density when the integro-differential 
approach is used; Jsprop is the one obtained with the equivalent equation. The results obtained 
with the proposed method are in excellent agreement with those obtained with the integro-
differential approach. The maximum absolute error is clearly negligible, almost 0.286% 

 

5.2.3.6 Performance comparison 

The proposed method allows to directly calculate the time varying variables. For the case 
of the “T” planar conductor, the equation derived from the methodology is of order 205; 
while the original FEM field equation is of order 266. The proposed equation is easier to 
solver either in the frequency or in the time domain.  

In order to quantify the performance of the equation derived by the proposed method, the 
simulation time was measured. The simulation time needed to solve a conventional FEM-
circuit coupled equation, was measured in order to make a comparison. Both equations were 
solved with separate GSL-based program (GNU Scientific Library 2013). The programs were 
implemented in the same computer and operative system. A Dell Precision R5500 Rack 
Workstation, GPU NVIDIA® Quadro® 600, 1 GB RAM and an Ubuntu Operative System 
were used. 

The results of solving the conventional FEM equation and the expression derived by the 
methodology, in a sequential computing with GSL are shown in Figure 5.9.  

 

 
Figure 5.9. CPU times derived for the FEM equations solutions 

It can be observed that the proposed equation permits to derive a faster solution compared 
to the conventional FEM equation solution. Specifically, the CPU time of the conventional 
and the proposed equation are 1.9277sec and 0.8959sec, respectively. The difference 
between these CPU times is significant, nearly 217%. It is possible to perform a comparison 
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between the conventional and the proposed equation using a parallel computing with 
CUBLAS. This will be explained next. 

 

5.2.3.7 Parallel solution using CUBLAS 

The conventional FEM equation derived from the proposed methodology can be solved 
by a parallel solution of CUBLAS (CUDA toolkit 5.0 2014). For the particular case of the 
conventional FEM equation, it is possible to use other computing platform to calculate the 
conductor voltage and the source current density defined in (5.41). This can be achieved by 
using the FEM expressions, 

 ([�] + �(%lL)[�])$�o& = {L}(�o�)                       (5.53) 

 (��)!�(�o�) − �(%lL)[*�]$�o& = 	p�                           (5.54) 

 

Equation (5.53) is quite similar to (5.39), the difference relies in the forcing function used. 
Equations (5.53) and (5.54) can be coupled into a unique expression defined by, 

 

I[�] −{L}� (��)!�K �$�o&�o� � + �(%lL) I [�] �−[*�] �K �$�o&�o� � = 7 �	p�8                              (5.55)  

 

Equation (5.55) can be represented by,   

 [J]$Qo& + �(%lL)[�]$Qo& = Lp                                 (5.56) 

 

Moreover, (5.56) can be expressed by,  

 [�]$Qo& = {�o}                                   (5.57) 

 

For the case of the proposed equation (5.48), it can be represented by,  

  [��]{Qo�} = {�o�}                       (5.58) 

 

The FEM equation (5.57) is named as conventional FEM equation, while the expression 
shown in (5.58) is named as reduced FEM equation. The features of these FEM equations 
can be seen in Table 5.13. Please notice that these equations are required to be solved several 
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times for the respective frequency range, to obtain the source current density of the 
conductor.   

 
TABLE 5.13 

FEM EQUATIONS TO BE SOLVED IN A FREQUENCY RANGE 

Device to be analyzed 
Conventional FEM 

equation  
Reduced FEM equation 

Number of 

FEM equations 

to be solved 

“T” Planar conductor 
[��������]{�p���} = $�p���& 

���,��������$�p�,���& = $�p�,���& 
14 

 

Two specific steps in the process of calculating the solution in the frequency domain of 
FEM equations (5.57) and (5.58) can be identified, i.e. a preprocessing and a calculating 
step. The preprocessing step of the conventional FEM method consists on deriving the 
matrices and vectors [K], [G] and {f} that form (5.57); while the preprocessing step of the 
reduced FEM method consists on deriving submatrices and subvectors that form (5.58). The 
calculating process of the conventional and the reduced FEM equations consists on solving 
both equations using the LU method. The preprocessing and the calculating steps of the 
conventional and a reduced FEM equations were covered in Chapter 3.  

5.2.3.7.1 Performance comparison between the sequential and the 

parallel solutions 

In order to measure the performance of the method implemented in CUBLAS, the 
conventional and the reduced FEM equations were also solved in a sequential computing 
platform. The preprocessing and the calculating steps were entirely implemented in the 
sequential GSL platform (GNU Scientific Library 2013). 

For the parallel solution, some stages of the preprocessing step were calculated by a 
sequential computing in GSL (GNU Scientific Library 2013), while the calculating steps 
were completely implemented in the CUBLAS computing platform (Barrachina et al. 2008), 
(CUDA toolkit 5.0 2014). On the other hand, the calculating step of the conventional and the 
reduced FEM equation will be solved for each frequency by the LU method implemented in 
CUBLAS.  Specific details of the sequential and the parallel computing of the preprocessing 
and calculating steps can be consulted in Chapter 3. 

The conventional and the reduced FEM equations were solved in the computing platforms 
GSL and CUBLAS. The programs were implemented in the same computer and operative 
system. A Dell Precision R5500 Rack Workstation, GPU NVIDIA® Quadro® 600 with 96 
cores, 1 GB RAM and an Ubuntu Operative System were used. Specific details about the 
parallel and the sequential solution of this case study, can be found in Appendix C.  

The total computation time (CPU time) required to solve the planar “T” conductor in the 
correspondent frequency range was measured. Figure 5.10 shows the CPU times needed to 
solve these equations using the sequential and the parallel computing platforms.       
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Figure 5.10. CPU times derived for solving the “T” planar conductor 

It can be observed that the reduced FEM equation allows a faster solution compared to 
the conventional FEM equation solution. Specifically, when the sequential computing was 
used, the CPU time of the conventional and the reduced equation are 1.92sec and 0.89sec, 
respectively. Moreover, when the parallel computing was used, the CPU time for the 
conventional and the reduced equation are 6.36sec and 0.90sec, respectively. Although the 
reduced FEM equation allows a faster solution with both computing platforms, a reduction 
of CPU time was not obtained when parallel computing with CUBLAS was used. The reason 
is that the reduced and the conventional equations of the planar device are of low order, i.e. 
205 and 266, respectively. A CPU time reduction cannot be achieved, since the advantage of 
using the parallel platform is only evident when the order of system equations to be solved 
is of considerably larger scale. The ratio of sequential (ts) and parallel (tp) cputime of 
conventional and reduced equation confirms this situation. It can be seen in Figure 5.10a. 

                     
Figure 5.10a. Ratio ts/tp derived for solving the “T” planar conductor 
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5.3 Axisymmetric symmetry assumption cases 
5.3.1. Case study 4. Air series reactor modeled by a two-dimension 

finite element analysis 

5.3.1.1 Introduction 

It consists on analyzing in the frequency domain two small air-cored reactors with specific 
turn configuration. The example consists on analyzing how the reactors inductance ratio 
Lca/Lcd varies within a frequency range, defined from 0.15915Hz to 1000Hz. The original 
case study can be consulted in (Preiss 1983). 

The inductance ratio Lca/Lcd of reactors 1 and 2 can be derived by providing a rms 
sinusoidal current of 1.0A at a frequency range of 0.15915Hz to 1000Hz on both reactors. 
As a result of applying that current, a voltage appears at each turn i of both reactors.  

The voltage at turn i can be calculated by finite element analysis, since the current is 
known. It is assumed that all the points in each reactor turn has the same voltage. Once the 
voltage at each turn is known, it is possible to calculate the total voltage in both reactors, by 
adding all the voltage turns. Having the total voltage, and since the current is also known, it 
is possible to calculate the impedance and therefore, the inductance Lca at a frequency f. The 
inductance Lcd is calculated by injecting a current of 1.0 at a frequency of 0.15915Hz (w=1.0 
rad/s). 

The reactor to be analyzed are labeled as 1, and 2. The turns number i and the dimension 
of each reactor are all shown in Figure 5.11. The boundary conditions and the symmetry 
plane and symmetry axis are also shown in Figure 5.11, while the dimensions of both reactors 
can be consulted in Table 5.14. 

 

        

Figure 5.11. Air reactors to be analyzed. 
                                                  A) Reactor 1.               B) Reactor 2. 
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TABLE 5.14 
DIMENSIONS AND PROPERTIES OF AIR REACTORS 1 AND 2 

 Parameter 
Reactor 1 

(k=1) 

Reactor 2 

(k=2) 

Dimension 

Parameters 

Number of turns 10 5 

ak 1.0mm 10mm 

bk 200mm 20mm 

rk 100mm 

Electric and 

Magnetic 

Properties 

Permeability relative �r 1.0 

Conductivity � �(1)= �(2)=3x107�-1m-1 

 

The air series reactor 1 is an aluminum sheet-wound winding with 10 series turns; while 
the air series reactor 2 consists of 5 series turns of aluminum conductors. Since the exact 
dimensions of the reactors are not mentioned in the original study case (Preiss 1983), the 
dimensions shown in Figure 5.12 are assumed for the finite element analysis performed on 
both reactors. The electric and magnetic properties of reactors can be consulted in Table 5.14. 

 

    

 
Figure 5.12. Geometry of air reactors 

    A) Air Series Reactor 1.                               B) Air Series Reactor 2. 

After defining the characteristics of the air series reactors, the field equations, the finite 
element model used and the finite element analysis will be defined.  

5.3.1.2 Field equations  

If the assumptions mentioned in the beginning of this chapter are considered for the 
modelling of the air series reactor; two regions can be identified: a non-conductor region, 
where there is no voltage excitation; and a conductor region, supplied with a voltage source 
and includes the skin effect (Escarela-Perez, Melgoza and Alvarez-Ramirez 2009), (Ho, Li 
and Fu 1999). The field equation can be consulted in Chapter 2. 
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5.3.1.3 Finite element analysis  

An axisymmetric behavior of the magnetic field can be assumed by neglecting the pith of 
the turns of both reactors (Preiss 1983). It is also assumed that the reactors walls have a zero 
magnetic potential. A linear triangular finite element with three nodes has been considered. 
The number of finite elements for each turn of the air series reactors 1 and 2 are 126 and 44, 
respectively. The finite element number of the air zone of reactors 1 and 2, are 5658 and 
2990, respectively. The number of nodes for each turn of reactors 1 and 2, are 126 and 36 
respectively; the nodes used in the air zone of reactors 1 and 2, are 2250 and 1488, 
respectively. The finite elements and their nodes, along the boundary conditions for the center 
region of air series reactors 1 and 2 are all shown in Figure 5.13. 

 

          

Figure 5.13. Finite element model of air reactors. 
A) Air Series Reactor 1.                           B) Air Series Reactor 2. 

It is assumed that there are no voltage differences at different turns of reactors, therefore, 
all points in a reactor turn have the same voltage. It is also assumed that the source current 
density is constant along the coordinate r (Preiss 1983), (Konrad 1981), (Konrad 1982), 
(Escarela-Perez, Melgoza and Alvarez-Ramirez 2009). 

It is important to mention that in order to perform a valid comparison, a finite element 
analysis will be performed between ANSYS, the conventional FEM equation, and by the 
equation derived from the proposed methodology. All these approaches consider the FEM 
model mentioned earlier. The finite element analysis derived from these approaches will be 
discussed next. 

5.3.1.3.1 Conventional Finite Element Analysis 

It is possible to perform a finite element analysis on the field equation (2.20), to derive a 
FEM equation with the voltage as the forcing function. Besides, a Newton Cotes analysis can 
be performed on (2.21) in order to derive an alternative expression. Details about the Finite 
Element are given in Chapter 2. The FEM expressions derived from these analysis are defined 
by, 



131 
 

[�]$��& + [�] 
$��&
� = {L}{��}(�)                                                                     (5.59) 

 [iO](�)!� {��}(�) − [*�] 
$��&
� = {	}                                                    (5.60) 

 

The matrices [Δr](k) of the air series reactor 1 and 2 are, 

 [iO](�) = �iO�(�) iO%(�) iO#(�) iO[(�) iO\(�)�\'\
�()
                                                     (5.61) 

 [iO](%) = �iO�(%) iO%(%) iO#(%) … iOZ(%) iO��(%) ���'��
�()
                                  (5.62) 

 

The vector voltage for the reactor 1 and 2 are defined by {Uc}(1) and {Uc}(2), respectively, 
as  

  {��}(�) = ����(�) ��%(�) ��#(�) ��[(�) ��\(�)�\'\
�()
                                                   (5.63) 

 {��}(%) = ����(%) ��%(%) ��[(%) … ��Z(%) ����(%) ���'��
�()
                                  (5.64) 

 

The vector value Uci
(k) corresponds to the voltage in the turn i of the reactor k; while the 

vector value Δri
(k) is the Δr value on the turn i of the reactor k. The variable Δri

(k) contained 
in vectors (5.61) and (5.62) is given in Table 5.15. 

 

TABLE 5.15 
PARAMETERS OF AIR REACTORS 1 AND 2 

 Reactor 1 

(k=1) 

Reactor 2 

(k=2) 

Δr1
(k) 0.00031673m-1 

0.00030340m-1 

Δr2
(k) 0.00031323m-1 

Δr3
(k) 0.00030994m-1 

Δr4
(k) 0.00030666m-1 

Δr5
(k) 0.00030344m-1 

Δr6
(k) 0.00030300m-1 

It does not 
apply 

Δr7
(k) 0.00029721m-1 

Δr8
(k) 0.00029419m-1 

Δr9
(k) 0.00029123m-1 

Δr10
(k) 0.00028833m-1 

Equations (5.59) and (5.60) can combined to form a unique FEM equation, which can be 
solved in the frequency domain as, 
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5[�] −{L}� [iO](�)!� 6 � $�o�&{�o�}(�)� + 

� I [�] �−[*�] �K � $�o�&{�o�}(�)� = 7 �{	p}8                               (5.65) 

 

Equation (5.65) permits to obtain the voltage vector {Uc}(k) in the frequency domain. The 
voltage vector contains the voltages at each turn of each reactor k. After explaining how the 
turn voltages of the reactors are obtained using the conventional equation shown in (5.65); 
how the proposed method can derive the voltage vectors on reactors will be now explained. 

5.3.1.3.2 Finite Element Analysis using the proposed methodology  

To perform a finite element analysis using the equation derived by the proposed 
methodology. This equation can directly calculate the magnetic potentials conductors at each 
reactor, since the current of both reactors is known. If the magnetic potentials are known, it 
is possible to calculate the turn voltages of reactors using as a base (5.59). The proposed 
methodology can derive alternative equations to (5.59) and (5.60), i.e.  

 5��� ������� ���6 7����8 + ���� ��  � � 

� 7����8 = 7{L�}{��}(�)� 8                                       (5.66) 

 [iO](�)!� {��}(�) − [*�] 
��
� = {	}                                                         (5.67) 

 

By combining (5.66) and (5.67) into a unique FEM equation and associating the time 
varying variables, results in,  

 

+ ��� −{L�} ���� [iO](�)!� ����� � ���
. / ��{��}(�)�� 0 + 

� y− ��� � �[*�] � �� � �z / ��{��}(�)�� 0 = 3 �{	}� 4                            (5.68) 

 

    By performing a matrix partition of (5.68), and considering a frequency domain solution 
yields,   

 

IJ�� J�%J%� J%%K 7'{�'{%8 + �(%lL) I��� ��%� �K 7'{�'{%8 = 7 �Lp%8  (5.69) 

 

Notice that two matrix equation can be derived from (5.69). Using these two matrix 
equation, it is possible to obtain the equation proposed in this investigation.  Further details 
of this expression can be consulted in Chapter 3. If this expression is solved in the frequency 
domain yields,  

 



133 
 

(J� + �|��)'{� = Lp�                                     (5.70) 

 

Matrices KT, GT, and the vector fT of (5.70) are derived using (3.35), (3.36) and (3.37); and 
considering the matrices and vectors K11, K12, K21, K22, G21, G22, F1 and F2 all shown in 
(5.69). The vectors }~a, }~� and �w� of (5.69) are defined by, 

 '{� = �o�                                                           (5.71) 

 '{% = ${��}(�) �o�&�
                                                       (5.72) 

 Lp% = {	p �}�                                    (5.73) 

 

After calculating the magnetic vector potentials �w� on each reactor, the voltage vector {qr}(�) of both reactors can be calculated using (5.67).   

5.3.1.3.3 Finite Element Analysis using ANSYS 

The finite element model explained earlier is simulated with the FEM software to obtain 
the turn voltages when a rms sinusoidal current of 1.0A is injected in both reactors. The 
voltage {qor}(�) is directly determined from the FEM software. The voltages which cannot be 
directly obtained with the software are calculated with (5.67), since the magnetic vector 
potential �w� can be easily determined with ANSYS. 

 

5.3.1.4 Calculating the Inductances of the reactors 1 and 2 

After calculating the voltage vector {qor}(�) by using finite element analysis, the total 
voltage at each reactor is calculated by adding the voltage on each turn. The total voltage of 
reactors 1 and 2 is calculated with (5.74) and (5.75), respectively. 

 �o��@L(�) = ∑ �o��(�)��\���                                                                  (5.74) 

 �o��@L(%) = ∑ �o��(%)�������                                                                (5.75) 

 

Where qo��@ (a)  and qo��@ (�)  are the total voltage at terminals of reactors 1 and 2. Since a rms 
current of 1A has been injected and since the reactors total voltage at frequency f on each 
reactor is known;  it is possible to calculate the inductance of both reactors at each frequency 
f using, 
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��(@L(�) = �S()(�o��@L(�) )%lL                                                                 (5.76) 

 

��(@L(%) = �S()(�o��@L(%) )%lL                                                                 (5.77) 

 

Where ¡r¢@ (a)  and ¡r¢@ (�)  are inductances at frequency f of reactors 1 and 2, respectively. The 
dc inductance for both reactors is calculated at frequency 0.1591Hz. It yields,  

 ��
(�) = �S()(�o��@�.�\Z�(�) )                                                           (5.78) 

 ��
(%) = �S()(�o��@�.�\Z�(�) )                                                           (5.79) 

 

Where ¡r£(a) and ¡r£(�) are the dc inductance of the reactors 1 and 2, respectively.  
 

5.3.1.5 Calculating the inductance Ratio 

Once the inductance for each reactor is known, the inductance ratio is calculated as, 

 

O(�) = ��(@L(�)
��
(�)                                                                       (5.80) 

 

O(%) = ��(@L(%)
��
(%)                                                                       (5.81) 

 

Where r(1) and r(2) are the inductance of reactors 1 and 2, respectively. The inductance ratio 
for both reactors will be determined for a frequency range from 0.15915Hz to 1000Hz. This 
parameter can be calculated with the conventional FEM equation (5.65), the proposed 
equation (5.70) and by the FEM software ANSYS. A comparison of results is discussed next.   

5.3.1.6 Comparison results 

In order to perform a first comparison, the voltages at some turns of the reactors 1 and 2 
were calculated using ANSYS and the proposed equation (5.70) along (5.65) at frequencies 
of 0.15915Hz, 500Hz and 1000 Hz, respectively. The voltage at turns of the reactor 1 is given 
in Table 5.16.   
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TABLE 5.16 
VOLTAGES AT EACH TURN OF REACTOR 1 

Frequency  
Voltage at 

turn i, Uci 

Proposed 

Method 
ANSYS %Error 

0.15915Hz 

Uc1 0.1099mV 0.1099mV 0.0000% 

Uc2 0.1099mV 0.1099mV 0.0000% 

Uc3 0.1099mV 0.1099mV 0.0000% 

Uc4 0.1099mV 0.1099mV 0.0000% 

Uc5 0.1099mV 0.1099mV 0.0000% 

500Hz 

Uc1 3.9159mV 3.9175mV -0.0408% 

Uc2 3.8359mV 3.8374mV -0.0391% 

Uc3 3.6448mV 3.6463mV -0.0411% 

Uc4 3.3169mV 3.3182mV -0.0392% 

Uc5 2.8155mV 2.8167mV -0.0426% 

1000Hz 

Uc1 7.6282mV 7.6315mV -0.0432% 

Uc2 7.4744mV 7.4775mV -0.0414% 

Uc3 7.1223mV 7.1252mV -0.0407% 

Uc4 6.5406mV 6.5433mV -0.0413% 

Uc5 5.6975mV 5.7002mV -0.0474% 

 

The same comparison is given in Table 5.17, but applied to the voltage at turns of reactor 
2. 

TABLE 5.17 
VOLTAGES AT EACH TURN OF REACTOR 2 

Frequency  
Voltage at 

turn i, Uci 

Proposed 

Method 
ANSYS %Error 

0.15915Hz 

Uc1 0.1053mV 0.1053mV 0.0000% 

Uc3 0.1076mV 0.1076mV 0.0000% 

Uc5 0.1099mV 0.1099mV 0.0000% 

Uc7 0.1122mV 0.1122mV 0.0000% 

Uc9 0.1145mV 0.1145mV 0.0000% 

500Hz 

Uc1 3.3309mV 3.3331mV -0.0660% 

Uc3 3.4662mV 3.4664mV -0.0635% 

Uc5 3.5503mV 3.5523mV -0.0563% 

Uc7 3.5872mV 3.5895mV -0.0641% 

Uc9 3.5729mV 3.5748mV -0.0532% 

1000Hz 

Uc1 6.6171mV 6.6215mV -0.0802% 

Uc3 6.8813mV 6.8856mV -0.0713% 

Uc5 7.0519mV 7.0560mV -0.0709% 

Uc7 7.1254mV 7.1296mV -0.1558% 

Uc9 7.0973mV 7.1074mV -0.1479% 

 

By observing Tables 5.16 and 5.17, it can be noticed that the voltages obtained with (5.65) 
and (5.70), are very close to those obtained with the FEM software ANSYS. A voltage 
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percentage error (%error) was calculated. This error was obtained by using as a base the 
voltages obtained with ANSYS, i.e.  

 

%NOOPO = ���,¤N*(�) !���,¥OPT(�)
���,¤N*(�) (���%)                                                  (5.82) 

 

Where qr�,¦§¨(�)  is the voltage at turn i of reactor k, obtained with ANSYS; qr�,©ª«¬(�)
 is the 

voltage at turn i of reactor k, obtained with (5.65) and (5.70). It can be observed that the 
voltage percentage error, obtained with these equations is almost negligible, i.e. around 0.2%. 
It can be concluded that (5.65) and (5.70) allow to calculate in an accurate way all the turn 
voltages of both reactors at frequencies 0.15915Hz, 500Hz, and 1000 Hz, respectively.  It is 
clear that they can be confidently used to calculate the inductance ratio defined in (5.80) and 
(5.81). The chart of the inductance ratio Lca/Lcd for that frequency range for reactors 1 and 2 
is shown in Fig 5.14 and 5.15, respectively. The inductance ratio was calculated on frequency 
steps of 20Hz. PropEq was obtained using (5.70) and (5.65) for each frequency.      

 

Figure 5.14. Inductances ratio of air reactor 1 
 

 

Figure 5.15. Inductances ratio of air reactor 2 
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It can be observed that the charts obtained by ANSYS and by the proposed equation (5.70) 
along (5.65), are almost identical for both reactors. These charts can be consulted in the 
original case study (Preiss 1983). It can be concluded that the magnetic vector potentials �w� 
have been calculated in an accurate way, by using the equation derived by the proposed 
methodology.  

5.3.1.7 Performance comparison 

A finite element analysis using a conventional approach and the proposed equation is now 
performed. Equations (5.70) and (5.65) are compared: for the case of reactor 1, the 
conventional equation is of order 3520×3520; while the conventional equation of reactor 2 
of 1668×1668. For the case of reactor 1, the proposed equation is of order 1260×1260; and 
for reactor 2 of 220×220. The matrix equation derived from the proposed methodology can 
obtain these voltages more efficiently, since their matrix equations are of smaller order.  

In order to quantify the performance efficiency of the proposed equation for reactors 1 
and 2, the computation time (CPU time) was measured. The conventional and the proposed 
equations were solved in the frequency domain, in separated MATLAB programs. The 
inductance ratio of reactors 1 and 2 are shown in Figure 5.14. A frequency range from 
0.15915Hz to 1000Hz was considered, with a frequency step of 20Hz.  

The CPU time of the programs was obtained using the MATLAB cputime function. A PC 
with 1GB RAM, Windows®-XP 32 bits platform, and an AMD® Turion 1.90GHz processor 
was used. The results of the total CPU time to determine the results shown in Figure 5.14 are 
given in Tables 5.18 and 5.19, respectively. In order to quantify the CPU time (Comp. time) 
in a more accurate way, the programs were run six times (#Sim). Timeind  is the average CPU 
time to obtain the inductance ratio for one frequency, and it is given in both tables. The 
difference, in percentage (%diff) between the CPU time needed to solve the equations of the 
two approaches for reactors 1 and 2 are given in Tables 5.18 and 5.19, respectively. The CPU 

time required to solve the conventional FEM equation was used as a reference. An average 
of all the variables mentioned before has been included in both tables. 

 
TABLE 5.18 

SIMULATION TIME TO SOLVE THE CONVENTIONAL AND THE PROPOSED EQUATION FOR REACTOR 1 
 Proposed Equation Conventional Equation  

#Sim Timeind CPU Time Timeind CPU Time %diff 

1 22.2616s 1135.34s 51.4062s 2622.72s -56.71% 

2 23.1298s 1179.63s 51.3900s 2620.89s -54.99% 

3 25.6179s 1306.52s 53.2755s 2716.95s -51.91% 

4 22.9566s 1170.79s 53.7079s 2743.65s -57.32% 

5 23.5788s 1202.52s 51.4975s 2626.37s -54.21% 

6 23.4688s 1196.91s 53.0837s 2707.27s -55.79% 

Average 23.5023s 1198.62s 52.3934s 2672.98s -55.15% 
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TABLE 5.19 
SIMULATION TIME TO SOLVE THE CONVENTIONAL AND THE PROPOSED EQUATION FOR REACTOR 2 

 Proposed Equation Conventional FEM Equation  

#Sim Timeind CPU Time Timeind CPU Time %diff 

1 1.5134s 72.00s 5.9063s 301.22s -76.10% 

2 1.5592s 74.35s 6.1979s 316.09s -76.48% 

3 1.4505s 69.27s 5.9818s 305.07s -77.29% 

4 1.5698s 75.00s 6.2057s 316.49s -76.30% 

5 1.5705s 74.87s 6.1953s 315.96s -76.30% 

6 1.6043s 76.56s 6.2377s 318.08s -75.93% 

Average 1.5446s 73.68s 6.1207s 312.15s -76.40% 

 

By observing the Table 5.18 and 5.19, it can be seen than the proposed equation permits 
to obtain a faster solution for reactor 1, i.e. it requires 44.8% of the time needed by the 
conventional equation to obtain Figure 5.14. On the other hand, it can be observed from Table 
5.19, that the proposed equation also allows the determination of a faster solution for the 
reactor 2, i.e. it only requires 23.6% of the time taken by the conventional equation obtain 
the solution shown in Figure 5.14. It can be concluded that the equation derived from the 
methodology allows the determination of a significantly faster solution for both reactors. 

 

5.3.2. Case study 5. Parallel solution of the air series reactors 

5.3.2.1 Introduction 

It consists on analyzing the air series reactors in the frequency domain, but using parallel 
computing with CUBLAS. For the case of the conductor analyzed in 5.2.3, it was not possible 
to get a faster solution using parallel computing. The reason is that the reduced and the 
conventional equations of this conductor are of low order, i.e. 205 and 266, respectively. A 
CPU time reduction cannot be achieved, since the advantage of using the parallel platform is 
only evident when the size of the equations to be solved is considerable. 

The FEM equations derived from the finite element analysis of the air series reactors of 
the study case 4 (Section 5.3.1) are of large dimension. Because of this, it should be possible 
to obtain a time reduction using parallel computing if the parallel solution using the LU 
method is used. This solution will be implemented in this study case.  

5.3.2.2 Parallel calculating process 

The conventional FEM equation shown in (5.65) and the reduced equation (5.70) can be 
solved by a parallel solution of CUBLAS. The conventional expression (5.65) can be also 
solved in the frequency domain as, 

 [J]$Qo& + �(%lL)[�]$Qo& = Lp                                             (5.83) 

 

Moreover, (5.83) can be also expressed by,  
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 [�]$Qo& = {�o}                                             (5.84) 

 

For the case of the equation derived from the proposed method and defined in (5.70), it 
can also be solved in the frequency domain and represented by,  

 [��]{Qo�} = {�o�}                     (5.85) 

 

The FEM equation (5.84) will be named conventional FEM equation, while the expression 
shown in (5.85) will be named reduced FEM equation. The main characteristics of these 
FEM equations are summarized in Table 5.20. Please notice that these equations are required 
to be solved several times for the respective frequency range, in order to obtain the respective 
inductance ratio for both reactors.   

TABLE 5.20 
FEM EQUATIONS TO BE SOLVED IN A FREQUENCY RANGE 

 

Device to be analyzed 
Conventional FEM 

equation  
Reduced FEM equation 

Number of 

FEM equations 

to be solved 

Air -cored Reactor 1 
[�`����`���]{}~`���} = $�p`���& 

���,a�­���a�­��$}~�,a�­�& = $�p�,a�­�& 
51 

Air-cored Reactor 2 
[�a�­`�a�­`]{}~a�­`} = $�pa�­`& 

���,a®��a®��$}~�,a®�& = $�p�,a®�& 

 

Two specific steps in the process of calculating the solution in the frequency domain of 
the equations (5.84) and (5.85) can be identified, i.e. a preprocessing and a calculating step. 
The preprocessing step of the conventional FEM method consists on deriving the matrices 
and vectors [K], [G] and {f} that form the equation shown in (5.84); while the preprocessing 
step of the reduced FEM method consists on deriving sub-matrices and sub-vectors that form 
the expression shown in (5.85). The calculating process of the conventional and the reduced 
FEM equations, consists on solving both equations using the LU method. The preprocessing 
and the calculating steps of the conventional and a reduced FEM equations were previously 
covered in Chapter 3. 

5.3.2.3 Performance comparison between the sequential and the parallel solutions 

In order to measure the performance of the method implemented in CUBLAS, the 
conventional and the reduced FEM equations were also solved in a sequential computing 
platform. The preprocessing and the calculating steps were entirely implemented in the 
sequential GSL platform (GNU Scientific Library 2013). 

For the parallel solution, some stages of the preprocessing step were calculated by a 
sequential computing in GSL (GNU Scientific Library 2013), while the calculating steps 
were completely implemented in the CUBLAS computing platform (Barrachina et al. 2008), 
(CUDA toolkit 5.0 2014). On the other hand, the calculating step of the conventional and the 
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reduced FEM equation will be solved for each frequency by the LU method implemented in 
CUBLAS.  Specific details of the sequential and the parallel computing of the preprocessing 
and calculating steps are described in Chapter 3. 

Conventional and reduced FEM equations were also solved in the computing platforms 
GSL and CUBLAS. The programs were implemented in the same computer and operative 
system. A Dell Precision R5500 Rack Workstation, GPU NVIDIA® Quadro® 600 with 96 
cores, 1 GB RAM and an Ubuntu Operative System were used.  

The total computation time (CPU time) required to solve air core reactors in the 
correspondent frequency range was measured. Figs. 5.16 and 5.17 show the CPU times 
needed to solve the equations of the air core reactors 1 and 2, using the sequential and the 
parallel computing platforms.  

                     

                    

Figure 5.16. CPU time derived for reactor 1     
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Figure 5.17. CPU time derived for reactor 2 

It can be observed that the reduced FEM equation allows to derive a faster solution 
compared to the conventional FEM equation solution. For the case of the reactor 1, when the 
sequential computing was used; the CPU time of the conventional and the reduced equation 
are 15298sec and 763sec, respectively. There is a large difference between these times. 
Moreover, when the parallel computing was used for reactor 1, the CPU time of the 
conventional and the reduced equation are 4365sec and 227sec, respectively. The proposed 
equation implemented in a parallel computing, can be solved in 227sec, while the sequential 
solution of the conventional equation requires of 15298sec, or almost 67 times more.  

For the specific case of the reactor 2, when the sequential computing was used; the CPU 

time of the conventional and the reduced equation are 1647sec and 13sec, respectively. There 
is also a big difference between this times, i.e. nearly 127 times. When the parallel computing 
was used for reactor 2, the CPU time of the conventional and the reduced equation are 505sec 
and 7.15sec, respectively, or less than 4 and 2 times. Besides, the proposed equation 
implemented by parallel computing, can be derived in only 7.15sec, compared to the 
sequential solution of the conventional equation that requires 1647sec; the difference is really 
huge.  

For both reactors the parallel solution can provide a reduction of nearly one third of the 
CPU time needed by the conventional FEM equation; and of almost one half of the time 
required by the proposed equation. It can be concluded that the proposed equation can be 
used in a parallel platform to obtain significantly faster solutions in the frequency domain. 

The developed parallel form of solution can be verified by the ratio of sequential (ts) and 
parallel cpu time (tp), for the conventional and the proposed method. Ratio ts/tp for reactors 1 
and 2 can be seen in Figure 5.18 and 5.19, respectively.  
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Figure 5.18. Ratio ts/tp derived for reactor 1 

            
Figure 5.19. Ratio ts/tp derived for reactor 2 

It can be seen that the ratio ts/tp indicates that the proposed parallel form of solution is 
slightly more efficient for the conventional FEM equation. Nevertheless, the use of the 
proposed methodology permits to use a lesser order equation, which permits to derive the 
solution in a faster way than the conventional FEM equation. Specific details about the 
parallel and the sequential solution of the reactors 1 and of this case study, can be found in 
Appendix C.2.  

 

5.4 Conclusions 

The resulted matrix equation from the proposed methodology for FEM analysis has been 
tested with several case studies. Three devices modelled by a finite element analysis derived 
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from a planar symmetry assumption and two by an axisymmetric symmetry were analyzed. 
The devices have been solved in the frequency and the time domain. A sequential and a 
parallel solution has been considered.  

The parallel solution was implemented using the CUBLAS platform. This platform 
permits a fast implementation of parallel computing. Although several routines already 
implemented in the platform were used, it was necessary to define a LU decomposition. Thus, 
it was possible to perform a parallel computing in some of the case studies. The advantage 
of using the parallel computing solution is evident when large equations are solved.  

All the devices can be modeled by a conventional finite element analysis, but they can 
also be analyzed by using the proposed methodology. This methodology permits to derive a 
reduced equation that can be solved in the frequency and the time domain. The proposed 
methodology consists on performing a renumbering of the magnetic vector potentials. Using 
this reordering it is possible to associate the time varying variables, and after performing 
some simple matrix operations, to obtain an equation that has several advantages, i.e.  

• It can be applied to FEM-field equations and FEM-circuit coupled equations.  

• It can directly calculate the time varying variables, i.e. the magnetic vector potentials in 
the conductor regions and the conductor currents. 

• It can be solved by parallel computing, such as the CUBLAS platform. 

Nevertheless, it is important to mention that several matrix operations are necessary to 
derive the equation. In the analyzed cases, the advantage of using the methodology was 
evident in the more complex problems  

Finally, it is important to mention, that an excellent agreement between the results derived 
with a conventional approach and the proposed method has been obtained. For all the case 
studies, the FEM software ANSYS has been used, in order to validate the reported results. 
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6 Conclusions 

6.1 Summary of results 

This investigation has covered the solution of a field equation by using FEM matrix 

equations, derived from a finite element analysis; which has been simplified by a planar or 

an axisymmetric symmetry assumption. A new form of solution of FEM field and a FEM-

circuit coupled equations has been proposed and solved. The fundaments and basic principles 

of these equations have been widely explained in this investigation, along their respective 

method of solution in the frequency and in the time domain.  

In this investigation a new methodology, which consists on performing several steps that 

lead to derive an alternative expression of a FEM field or a FEM-circuit coupled equation 

has been proposed. The equation derived by the proposed method has the important feature 

of being only defined in terms of the time varying variables; thus, these variables can be 

directly calculated. The equation derived is of lower order than the conventional and can be 

easier to solve in the frequency and in the time domain. For the case of the time domain 

solution, several methods have been used in the solution of the proposed equation i.e., the 

Euler, Backwards Euler, 4th order Runge Kutta and the ND Newton method. An effective 

form for the solution of the FEM equations has been obtained.  

Although the proposed method provides a faster solution of the FEM equations, it may 

still require of considerable computation effort, especially if large equations need to be 

solved. Because of this, it a parallel solution in CUBLAS has been implemented. The 

CUBLAS-CUDA is a powerful platform that allows a fast and powerful parallel computing, 

since it already contains several matrix routines that are very useful and efficient to derive 

faster solutions from the conventional and the proposed equation. After having explained the 

methodology, and after solving several case studies consisting on solving the ordinary FEM 

equation, along the expression derived by the proposed methodology; it can be concluded 

that the proposed method developed through this investigation has the following advantages: 

1) It permits to directly calculate in an easier and faster way, the time varying variables of a 

FEM field and a FEM-circuit coupled equations; by deriving a unique equation. Thus, it 

is possible to calculate these variables in the frequency or the time domain, by using a 

lower order matrix expression. For the specific case of the air series reactor 1 and 2 

covered in Section 5.3.2, the use of the proposed methodology requires 45% and 24% of 

the computing time required for the conventional FEM equation solution. Moreover, a 

computing time reduction has been also obtained for the T-slot conductor covered in 

Section 5.2.3, for this case the proposed methodology requires 45% of the computing time 

of the conventional FEM expression. It can be seen the proposed method allows a 

computing time reduction, even performing a sequential computing. 
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2) It consists on a simple calculating process, i.e. it requires of a nodal renumbering of the 

FEM field matrices equations in order to get a new FEM field equation; associating the 

time varying variables; and finally, on performing some simple matrix operations. These 

matrix operation requires computing time, but they are necessary to perform only time in 

order to derive the matrices of the equation derived by the explained methodology.  

3) It allows the solution in the time domain by using the Euler, the Newton and the 4th order 

Runge Kutta methods. Nevertheless, it is important to remark that an approximate solution 

is achieved. Moreover, an accurate solution in the time domain can be achieved, if the 

Backwards Euler method is used.  

4) It has been implemented on a parallel form of solution by using the CUDA platform. The 

CUDA platform was created as a computing platform for the videogames industry. 

Nevertheless, it has been extensively used in parallel computing, since it allows a faster 

implementation using a known computing platform (CUDA C).  

5) Since the proposed method requires of standard matrix-vectors operations; it has been 

easily implemented in CUBLAS-CUDA. This parallel computing platform already 

contains several tested routines, which have been used to derive the equations covered by 

this investigation. For the air series reactor 1 and 2 covered in Section 5.3.2, the use of the 

proposed methodology along the developed parallel solution, permit to get a faster 

solution, it requires 1.48% and 0.5% of the computing time required for the GSL 

sequential solution of the conventional FEM equation. 

6)  It allows a significant time reduction when a parallel computing with CUBLAS is used. 

A significant reduction of CPU time to solve larger order FEM equations in the frequency 

domain has been obtained. The CPU time for solving the equation derived from the 

methodology by using CUBLAs it is several times smaller than the time required for 

solving the normal FEM equation with GSL. Parallel computing permit to get a computing 

time reduction, when the dimension of the FEM matrix involved are large, i.e., the air 

reactor 1 and 2 are modeled by FEM matrix of order 3520 and 1673, respectively  

An excellent agreement between the results derived with a conventional approach and the 

proposal method has been obtained. Moreover, several study cases has been also simulated 

by ANSYS. The FEM simulation helped to prove the accuracy of the proposed method. The 

obtained results have been successfully validated.  
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6.2 Recommendations for Further Developments  

1) Although the method developed by this investigations provides a good alternative in the 

solution of the FEM equations, the method has some disadvantages. For example, it 

requires of performing several matrix operations. These operations could require of 

additional computing time, which could eliminate the advantage of having to solve a 

lower order matrix equation. Moreover, it could be proper to enhance the calculating 

process of the methodology, in order to require of lesser computing times. 

 

2) Another aspect to remark is that the non-linear properties of the materials have not been 

considered. For example, the permeability of the magnetic materials of the electrical 

machines or devices is clearly non-linear; and therefore, the FEM matrix equations are 

non-linear too. In the final stages of the investigation, the FEM equations of devices with 

non-linear parameters by using the Newton Method were solved; an interesting challenge 

could be exploring the possibility of solving a non-linear time-varying equation. The 

developed method of solution can be compared with others methods or forms of solution, 

i.e. those results obtained with ANSYS. In theory, the solution of the non-linear time-

varying equation can be obtained, since the methodology permits to derive a recursive 

equation which can be solved with the ND method. In theory this approach can be 

implemented, since the Backwards Euler method can be used as an integrating method.  

 

3) Another subject of possible future work is the possibility of analyzing other electric or 

magnetic devices. Specifically, those devices with more complex geometry or 

configuration. There are several elements that can be analyzed, such as induction rotating 

machines, synchronous machines, some components of the transformers, etc. 

 

4)  A parallel form of solution of a matrix equation by using CUDA-CUBLAS has been also 

developed. If the solution of non-linear equations is performed, it can be implemented, 

by using a new parallel method of solution. Moreover, it can be possible to engage the 

developed method in other sequential computing platform such as Matlab or GSL. Thus, 

a performance comparison can be performed.  
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Appendix A  FEM matrices and 

vectors derived by Finite Element Analysis 

 

A.1 Planar symmetry’s FEM matrices and vectors 
A.1.1 Finite elements 

A.1.1.1 Triangular linear finite element with three nodes 

 

�����, �� = 
�� �
 ���
��� ��
 �����                          (A.1) 

 

The values of N1, N2, N3 of (A.1) are defined by,  
 

 

�� = �
������
�� + �
����� � + ����
�� �                   (A.2) 

 

�
 = ����������� + ������� � + ������� �                   (A.3) 

 

�� = ���
��
���� + ����
�� � + �
����� �                      (A.4) 

 

The variable Δd is calculated using,  

 

�� = ���
 − �
�� + �
�� − ���
 + ���� − ����                       (A.5) 

 

A.1.1.2 Triangular linear finite element with six nodes 

 

�����, �� = 
�� �
 �� �� �� ��� 
��� ��
 ��� ��� ��� �����                      (A.6) 

 

The values of L1, L2 and L3 of (A.6) are defined by N1, N2 and N3, respectively. N1, N2 and 

N3 are defined in (A.2), (A.3) and (A.4), respectively. N4, N5 and N6 are given by,  

 

�� = ����
                      (A.7) 
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 �� = ��
��                      (A.8) 

 

 �� = �����                                                  (A.9) 

 

A.1.2 Field equation with current density as the forcing function  

 

− ��� �� ����� � − ��� �� ����� � = ��                     (A.10) 

 

A.1.2.1 Matrices and vectors derived from applying FEA  

 

 !"#"$%&'( ). +. , +  -,.���/ = .01�/� ���                                             (A.11) 

 

The matrices and vectors of (A.11) are defined by,  

 

 -, = 23 � 4�
�"��
�� �.��/�� + �
�"��

�� �.��/�� 5
τ! �τ6                                       (A.12) 

 


01�� = 73 �
�"���
τ! �τ8                                                 (A.13) 

 

A.1.1.2.1 Matrices and vectors for finite element of three nodes 

 

 -,��� = ��� 9��
 − ���
 + ��� − �
�
 ��
 − ������ − ��� + ��� − #
���� − ��� ��
 − ������ − �
� + ��� − �
���
 − ���:�; ��� − ���
 + ��� − ���
 ��� − ������ − �
� + ��� − �����
 − ���:�; :�; ��� − �
�
 + ��
 − ���
 <     

(A.14) 

 


01����� = ��� 
� � ���
                                                 (A.15) 
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A.1.1.2.2 Matrices and vectors derived for finite element of six nodes  

 

 -,��� = �
=>
>>
>?
-�� -�
 -��-
� -

 -
�-�� -�
 -��

-�� -�� -��-
� -
� -
�-�� -�� -��-�� -�
 -��-�� -�
 -��-�� -�
 -��
-�� -�� -��-�� -�� -��-�� -�� -��@A

AA
AB
                                (A.16) 

 


01���� = ��� 
C C C � � ���
                      (A.17) 

 

The elements of (A.16) are defined by,  
 -�� =  �D���
 + �D�
�
 + �D
��
 + �D

�
 + 
D��D�
 + 
D
�D

,/�
��� 

-�
 = -
� =  �D���
 + �D
��
 + D��D�
 + D
�D

,/����� 

-�� = -�� =  �D�
�
 + �D

�
 + D��D�
 + D
�D

,/����� 

-�� = -�� = −�-�
;   -�� = -�� = C;   -�� =  -�� = −�-��;  -

 =  �D���
 + �D
��
,/�
��� 

-
� = -�
 = − D��D�
 + D
�D

,/�����;  -
� = -�
 = −�-�
;  -
� = -�
 = −�-
�; -
� = -�
 = C 
-�� =  �D�
�
 + �D

�
,/�
���;  -�� = -�� = C; -�� = -�� = −�-
�; -�� = -�� = −�-�� 

-�� = � �D���
 + �D�
�
 + �D
��
 + �D

�
 + D��D�
 + D
�D

,/�����;  -�� = -�� = −�-�� 

-�� = -�� = −�-
�; -�� = -��; -�� = -�� = −�-�
; -�� = -�� 

 

The variables a11, a12, a21, a22 are defined by,  

 D�� = �� − �� ;  D�
 = �� − �
 

 D
� = �� − �� ;  D

 = �
 − ��                      (A.18) 
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A.1.3 Field equation with voltages as the forcing function 

 

− ��� �� ����� � − ��� �� ����� � + F ����( = F G$&                                     (A.19) 

 

A.1.3.1 Matrices and vectors derived from applying FEA 

 

 !"#"$%&'( ). +. , +  -,.���/ +  �, ��( .���/ = .01H/�G$�                                           (A.20) 

 

The matrix [S] was defined in (A.12). Matrices [T] and the vector {fgu} of (A.20) are defined 

by,  

 

 �, = 73 F
�"��.��/ �τ
τ! 8                             (A.21) 

 


01H� = 73 F& 
�"��
τ! �τ8                              (A.22) 

 

A.1.3.1.1 Matrices and vectors for finite element of three nodes  

The matrix [S]3x3 was defined in (A.14). Matrix [T]3x3 and vector {fgu}3x1 are defined by,  

 

 �,��� = F ��
� I
 � �� 
 �� � 
J                           (A.23) 

 


01H���� = F& ��� 
� � ���
                              (A.24) 

 

A.1.3.1.2 Matrices and vectors for finite element of six nodes 

The matrix [S]6x6  was defined in (A.16). The matrix [T] 6x6 and the vector {fgu}1x6 are defined 

by, 

 

 �,��� = F ����C
=>
>>>
?   � −� −�−�   � −�−� −�    �

   C −�    C   C    C −�−�    C    C   C    C −�−�    C    C   C −�    C
 �
 �� �� �� �
 �� �� �� �
 @A

AAA
B
                              (A.25) 

 


01H���� = F& ��� 
C C C � � ���
                              (A.26) 
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A.1.4 Field equation with currents as the forcing function 

 

− ��� �� ����� � − ��� �� ����� � + F ����( = F G$&                                      (A.27) 

 

�K$���G$ − 3 F ����(τ
�τ = L�                (A.28) 

 

A.1.4.1 Matrices derived from applying FEA and the Newton Cotes  

 

 !"#"$%&'( ). +. , +  -,.���/ +  �, ��( .���/ = .01H/�G$�                                      (A.29) 

 

�K$����G$� − .01D/ �
�����( = L�                              (A.30) 

 

The matrices [S] and [T] of (A.29) were previously defined in (A.12) and (A.21). The vector 

{fga} is defined by,  

 


01D� = 73 F
�"��
τ! �τ8                             (A.31) 

 

A.1.4.1.1 Vectors for finite element of three nodes 

 

.01D/��� = F ��� 
� � ��                              (A.32) 

 

A.1.4.1.2. Vectors for finite element of six nodes 
 


01D���� = F ��� 
C C C � � ��                                        (A.33) 

 

 

 

 

 

 

 

 

 



 

157 

 

A.2 Axisymmetric symmetry’s FEM matrices and vectors 

A.2.1 Finite elements 

A.2.1.1 Triangular linear finite element method with three nodes 

 

�M��#, �� = 
�� �
 ���
�M� �M
 �M���                             (A.34) 

 

The values of N1, N2, N3 of (A.34) are defined by,  

 

�� = #
���#��
��# + �
�����# # + #��#
��# �                     (A.35) 

 

�
 = #����#�����# + �������# # + #��#���# �                     (A.36) 

 

�� = #��
�#
����# + ����
��# # + #
�#���# �                               (A.37) 

 

 

A.2.2 Field equation with current density as the forcing function 

 

− �# ��# ��# ��M�# � − �# ��� ��# ��M�� � + � �φ#
 = �M                                             (A.38) 

 

A.2.2.1 Matrices derived from applying FEA 

 

 !"#"$%&'( ). +. , +  -,.�M�/ +  -LL,.�M�/ = .0�/� �M�                 (A.39) 

 

Where the matrices of (A.39) are defined by,  

 

 -, = 23 4� �
�"��
�# �.��/�# + � �
�"��

�� �.��/�� 5
τ#! �τ#6                                    (A.40) 

 

 -LL, = 73 �
�"��.��/
τ#! �τ# 8                               (A.41) 

 


0�� = 73 
�"��
τ#! �τ#8                                        (A.42) 
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A.2.2.1.1 Matrices and vectors derived for finite element of three nodes 

 

 -,��� = � N K$��# 9�#� − #
�
 + ��
 − ���
 �#� − #
��#� − #�� + ��
 − ������ − ��� �#� − #
��#
 − #�� + ��
 − ������ − �
�:�; �#� − #��
 + ��� − ���
 �#� − #���#
 − #�� + ��� − ������ − �
�:�; :�; �#
 − #��
 + ��� − �
�
 <         

(A.43) 

 -LL,��� = N ��
�#$� I
 � �� 
 �� � 
J                              (A.44) 

 


0����� = ��#�
 
�
O� + #
 + #�� �O� + 
#
 + #�� �O� + #
 + 
#����                          (A.45) 

 

The variable Δr
d of (A.43) and (A.45) is calculated using,  

 

��# = #��
 − #
�� + #
�� − #��
 + #��� − #���                                             (A.46) 

 

A.2.3 Field equation with voltages as the forcing function 

 

− �# ��# ��# ��M�# � − �# ��� ��# ��M�� � + � �φ#
 + F ��M�( = F G$
N#                      (A.47) 

 

A.2.3.1 Matrices derived from applying FEA to the partial differential equation 

 

 !"#"$%&'( ). +. , +  -,.�M�/ +  -LL,.�M�/ +  �, ��( .�M�/ = .01H/G$                              (A.48) 

 

Where the matrix [S] and [SII] were defined in (A.43) and (A.44). Matrix [T] and vector {fgu} 

are defined by,  

 

 �, = 73 F
�"��.��/ �τ#τ#! 8                                     (A.49) 

 


01H� = 73 F 
�"��
�
N#� �τ#τ#! 8                                        (A.50) 

 

  A.2.3.1.1 Matrices and vectors derived for finite element of three nodes 

 

The matrix [S]3x3 and [SII]3x3 were defined in (A.14). The matrix [T]3x3 and the vector {fgu}1x3 

are given by,  
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 �,��� = F ��#
� I
 � �� 
 �� � 
J                              (A.51) 

 


01H���� = F ��#� 
� � ���
                            (A.52) 

 

A.2.4. Field equations with currents as the forcing function 

 

− �# ��# ��# ��M�# � − �# ��� ��# ��M�� � + � �φ#
 + F ��M�( = F G$
N#                  (A.53) 

 

��#�−��G$� − 3 F ��M�(τ
�τ = LM                            (A.54) 

 

A.2.4.1. Matrices and vectors derived from applying FEA  

 

 !"#"$%&'( ). +. , +  -,.�M�/ + P-�L�Q.�M�/ +  �, ��( .�M�/ = R01HS �G$�                  (A.55) 

 

��#����G$� − .01D/ �
�M���( = LM                 (A.56) 

 

Where the matrix [S] and [SII] were defined in (A.43) and (A.44). Matrix [T] and vector {fgu} 

were defined in (A.49) and (A.50), respectively. The vector {fga} is defined by,   

 


01D� = 73 F
�"��

N# �τ

τ#! 8                                 (A.57) 

 

A.2.4.1.1. Vectors for finite element of three nodes 

 


01D���� = F ��#� 
� � ��                                (A.58) 
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Appendix B  Solution of FEM equations 

in the frequency and time domain 

 

The FEM equation to be solved could correspond to a FEM field equation with voltage or 

currents known, or to a FEM-circuit coupled equation. These equations can be represented 

in a general form given by,   

 

 T,
U� +  V, ��( 
U� = 
W�                                 (B.1) 

 

For the case of the expression which corresponds to a FEM field equation where the 

voltages are known, the variables of (B.1) will be defined by, 

 
U� = 
��� 

 
W� = 
0��
G$� 

  T, =  -�, 
  V, =  ��,                     (B.2) 

 

For the case of the expression that corresponds to a FEM field equation where the currents 

are known, the variables of (B.1) are defined by,  

  
U� = 

��� 
G$��� 

 
W� = 
C 
L��� 

 

 T, = X -�, −
0��C  ��,��Y 

 

 V, = X  ��, C− Z$, CY                               (B.3) 

 

For the case of a FEM-circuit coupled equation, the variables of (B.1 are defined by, 
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U� = 

��� 
L� 
G$��� 

 
W� = 
C 
[� C�� 

 

 T, = 9 -�, C −
0��C  K,    
��C −
��     ��,��< 

 

 V, = 9  ��, C CC  �, C− Z$, C C<                    (B.4) 

 

The equation defined in (B.1) can be solved in the frequency domain or in the time 

domain. The solution in the frequency domain is simple, since implies to calculate a simple 

matrix equation (Bastos 2005). For the specific case of a time domain solution, the mostly 

used method is the Backwards Euler method (Arkkio 1987), (Ho, Li and Fu 1999), (Ho, 

Shuangxia, and Fu 2011). If the equation to be solved is non-linear, the Newton Method can 

be used (Okamoto, Fujiwara and Ishihara 2010). The solution on both domains will be 

discussed next.  
 

B.1 Frequency domain solution 

The purpose of this section is to explain how is solved the FEM equation (B.1) in the 

frequency domain. The equation to be solved is defined by,   

 

 T,
U� +  V, ��( 
U� = 
W�                    (B.5) 

 

However, if the excitation contained in {F} is sinusoidal and the materials are linear, we 

can use complex variables in {X}. On the FEM equations used in this investigation, {X} 

could contains complex magnetic vector potentials or complex currents or voltages. The 

excitation {F} could have current or voltages sources, thus this vector can be defined by 

(Bastos 2003), (Shen, et al. 1985),   

 
W�(�� = 
W: \]^�_( + `"��                      (B.6) 

 

Where βi represents the phase angle known of each excitation source contained in {F}. If the 

complex notation a = √−1 is used, (B.6) can be redefined by (Bastos 2003), (Shen, et al. 

1985),  

 
W�(�� = K'd
W:'��_(e`"��f                           (B.7) 
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Where w is the angular velocity. The system’s response to this excitation is also at stead state 

sinusoidal and out of phase, therefore, 

 
U�(�� = K'd
U:'��_(eg"��f                                 (B.8) 

 

Where {Xse
jαi} is the solution of (B.4) and αi is the phase angle of {X(t)}. Thus, (B.5) can 

be written as (Bastos 2003), (Shen, et al. 1985),  

 

 T,
U:'�_('�g"� +  V, ��( 
U:'�_('�g"� = 
W:'�_(e�`"�                     (B.9) 

 

If the term with derivative respect to t is developed on (B.9), yields, (Bastos 2003), (Shen, 

et al. 1985),  

   T,
U:'�g"� + �_ V,.U:'�g"/ = 
W:'�`"�                                       (B.10) 

 

The equation (B.10) can be written as (Bastos 2003), 

  T,
U:'�g"� + �_ V,.U:'�g"/ = 
W:'�`"�                    (B.11) 

 

The vector {Xse
jαi} contains complex variables denoted as 
hi�. The excitation vector 

{Fse
jβi} also contains complex variables 
hi�. It can be seen that the equation (B.11) can be 

written as,  

 

� T, + �_ V,�.Uj/ = .Wj/                                       (B.12) 

 

Where the excitation vector 
ki�  is defined by,   

 

.Wj/ = .W:'�`"/                    (B.13) 

 

After solving 
hi�, it can be seen that the components of this vector are defined by,  

 
U:'�g"� = .Uj/                                            (B.14) 

 

The vector {Xse
jαi} contains each magnitude and angle phase solution of the harmonic 

variables.  It is possible to express (B.14) in a simpler way as,  
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  �,.Uj/ = .lj/                     (B.15) 

 

After solving a single matrix system, the real and the imaginary parts of 
hi� can be 

derived, and therefore its magnitude and phase angle in relation to .mi/. However, we cannot 

include nonlinearity. If ferromagnetic materials are present, it is necessary to know a priori 

if the excitation current is low enough to avoid nonlinear effect such as saturation in the 

structure under study (Bastos 2003). If these conditions are not satisfied, the time 

discretization formulation can be used. For the latter, the time required for computation is 

longer (because an iterative calculation is performed for each step), the time discretization 

method is the only way to obtain results for nonlinear problems of this kind (Bastos 2003). 

The main results obtainable with the complex variables formulation are: a) Penetration 

effects can be seen graphically. b) Impedance calculation. 

B.2 Time domain solution 

The periodic behavior of an electrical network or a FEM equation can be calculated in the 

time domain, integrating the differential equation set that describe the dynamic of the system. 

They can be described in terms of a differential equation (Semlyen and Medina 1995), ,  

 

�U�( = 0�U, (�                                                    (B.16) 

 

The numerical method for the solution of (B.16) can be classified in explicit and implicit 

methods. They will be explained next.  

 

B.2.1 Explicit methods 

The solution of these methods depends on the solution of an earlier step. There are several 

implicit methods, the most widely used will be explained next. It is possible to employ several 

finite difference schemes to discretize x in the time domain. The explicit methods used will 

be explained next.   

 

B.2.1.1 Euler method (forward difference) (Jianming 2002) 

The Euler method is widely used. The method consists on dividing the time axis uniformly 

into a number of time intervals. A function X(t+Δt) can be expanded into a Taylor series 

about t as follows (Jianming 2002),  

 

U�( + �(� = U�(� + �U�( �( + �
U�(
 ��(�


! + o|��(��|                                            (B.17) 

 

Where O|(Δt)3| denotes the sum of all the remaining terms containing (Δt)P with p≥3. From 

(B.17), we can obtain,  
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�U�( = U�(q�(��U�(��( + o|��(�
|                               (B.18) 

 

The equation (B.18) can also be written as (Jianming 2002),  

 

�U�( r U�(q�(��U�(��(                                    (B.19) 

 

This approximation is of first order accurate in the sense that the truncation error contains 

(Δt)P with p>1. Using the notation X(t)=X(n Δt)=Xn, we can rewrite (B.19) as follows ,  

 �U�( r Usq��Us�(                                              (B.20) 

 

Taking into account (B.20), (B.16) can be written by,  

 Use� = Us + ��(�0�Us, (s�                              (B.21) 

 

Where xn represents the vector that contains variables stored in the time step n; tn represents 

the time in that step; and Δt is the integration step. The calculating process of the Euler 

method can be seen in Figure B.1  

 

 

Figure B.1. Calculating process of the Euler method 

The Euler Method can be used to solve the partial differential equation defined by,  
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 T,
U� +  V, ��( 
U� = 
W�                   (B.22) 

                   

If the term with derivate respect the time of (B.22) is isolated, it results on,  

 

�
U��( =  V,���
W� −  T,
U��                               (B.23) 

 

The equation (B.23) can be approximated by the Euler method results on,  

 


U��(q�(��
U��(��( =  V,��d
W��(� −  T,
U��(�f                                      (B.24) 

 

Finally (B.23) can be written by,  

 
U��(e�(� = ��(� V,��d
W��(� −  T,
U��(�f + 
U��(�                                 (B.25) 

 

If the notation shown of (B.21) is used on (B.25), it results on (Jianming 2002),  

 
U�se� = ��(� V,���
W�s −  T,
U�s� + 
U�s                         (B.26) 

 

B.2.1.2 Backwards Euler (backward difference) (Jianming 2002) 

The Backwards Euler method is widely used for solving an equation which has the form 

of (B.1). For this method, a function x(t-Δt) can be expanded into a Taylor series about t as 

(Jianming 2002),  

 

U�( − �(� = U�(� − �U�( �( + �
U�(
 ��(�


! + o|��(��|                                       (B.27) 

 

From which we can obtain,  

 

�U�( = U�(��U�.(t�(��( + o|��(�
|                            (B.28) 

 

Finally (B.28) can be defined by,  

 

�U�( r U�(��U�(t�(��(                                                             (B.29) 
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This approximation is called the backward difference representation but it is also known 

as the Backwards Euler method. Using the notation X(t)= u(nΔt)=Xn, we can rewrite (B.29) 

as,  

 

�U�( r Us�Ust��(                        (B.30) 

 

Taking into account the notation used in (B.21), (B.30) can be written by,  

 Us = Us�� + ��(�0�Us��, (s���                    (B.31) 

 

Where Xn represents the vector that contains variables stored in the time step n; tn represents 

the time in that step; and Δt is the integration step. The vector Xn-1 contains the vector in an 

earlier step tn-1. The calculating process of the Backwards Euler method is detailed in Figure 

B.2. 

 

 

Figure B.2. Backwards Euler Method 

 

The equation (B.22) can be approximated by the Backwards Euler Method. It results on,  


U�� (��
U��(t�(��( =  V,��d
W��(��(� −  T,
U��(��(�f                  (B.32) 
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Finally (B.32) can be written by,  

 


U��(� = � T, +  V,�( ��� �
W��(��(� +  V,�( U�(��(��                                       (B.33) 

 

If the notation shown in (B.31) is used on (B.33), yields,   

 
U��s� = � T, +  V,�( ��� �
W��s��� +  V,�( U�s����                                    (B.34) 

 
 

B.2.1.3 Fourth order Runge Kutta method (Jianming 2002) 

Another useful method is the fourth order Runge Kutta method. The method consists on 

calculating the variables in the time t+Δt using, 

 

Use� = Us + ���� �u� + 
u
 + 
u� + u��                                (B.35) 

 

Where the components of (B.35) are defined by,  

 

u� = ��(�0�Us, (s�                    (B.36) 

 

u
 = ��(�0 �Us + u�
 , (s + �(
 �                                          (B.37) 

 

u� = ��(�0�Us + u

 , (s + �(
 �                           (B.38) 

 

u� = ��(�0�Us + u�, (s + �(�                                                  (B.39) 

 

After calculating Xn+1, the calculating process for the next process implies that the value 

of Xn+1 will be become the value Xn which is necessary to derivate the value for the next step. 

The calculating process of the fourth order Runge Kutta method is shown in Figure B.3.  
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Figure B.3. Fourth order Runge Kutta method 

The equation (B.22) can also be approximated by the Runge Kutta method. The values k1, 

k2, k3 and k4 will be defined by,   

 


u��s = �( V,���
W�s −  T,
U�s�                        (B.40) 

 


u
�s = �(s + �(
 � V,�� �
W��s� −  T, RUs + u�
 S�                                            (B.41) 

 


u��s = �(s + �(
 � V,�� �
W��s� −  T, RUs + u

 S�                           (B.42) 

 


u��s = �(s + �(� V,��d
W��s� −  T,
Us + u��f                      (B.43) 

 

After calculating {k1}n, {k2}n, {k3}n and {k4}n, it is possible to calculate the vector {X}n+1. 

It yields,  

 


U�se� = �s + �� �
u��s + 

u
�s + 

u��s + 
u��s�                       (B.44) 

 

If the notation shown in (B.21) is used on (B.44) results on,  

 



 

169 

 


U�s = ��(� V,���
W�s�� −  T,
U�s��� + 
U�s��                          (B.45) 

 

B.2.2 Implicit methods 

The method described in the section B.2.1 are known as “A-stables” because the 

convergence does not depend of the choice of the integration step Δt. Because of this, these 

are mostly used for the analysis of stiff systems. The modified Euler method known as 

trapezoidal rule, is an example of an implicit method. The trapezoidal rule can be calculated 

using,  

 

�se� = �s + ��(
 � �0�(se�, �se�� + 0�(s, �s��                (B.46) 

 

From (B.46) can be seen that it is necessary to use a solution method to find an 

approximate solution to f(tn+1, xn+1) which is a feature of all the implicit methods. A good 

approximation to f(tn+1, xn+1) can be obtained using the Euler method or the Backwards Euler 

method. 

 

B.2.2.1 Newton method (Semlyen and Medina 1995)  

The traditional method to determine the stationary state of an equation, can be determined 

by integrating the set of differential equations that represent the dynamic of the system, over 

a period of time, using as a base the initial conditions. In a given period of time, the maximum 

error calculated between the vector of the variables at the beginning of the period and the 

vector of variables at the end of the period is compared against a tolerance for convergence. 

If the maximum error is larger, the process should be performed again. The process should 

be performed several times to obtain the stationary periodic time of the system. This process 

is named brute force. The method follows the steps that can be seen in Figure B.4. 

 

  

Figure B.4. Brute force method 
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There are several methods that permit to derive a fast solution of the periodic stationary 

state of a set of equations that model the dynamic of a system. This techniques can be 

classified as a shooting methods (Semlyen and Medina 1995). The main objective of these 

methods, is finding an solution x(T) =x(0), this condition implied that the initial conditions 

x(0) must be integrated into the equation set defined by x=f(x,t) over a period of time 

(Semlyen and Medina 1995).   

On this investigation, because of the nature of the FEM equations to be solved, the 

numerical differentiation method (ND) was applied, since it is amenable to the use of the 

Backwards Euler method. 

The impulse functions of the differential equations to be solved are represented by voltage 

or current sources. These sources are assumed to be periodic. Because of this, the stable state 

solution x(t) is also periodic and can be represented as a limit cycle for xk in terms of another 

periodic element of x, or in terms of the periodic function, for example sin(wt). 

The cycles of a transient orbit are near to the limit cycle before reaching it. The position 

can be properly described by a representation in the Poincare plane (Medina and Ramos-Paz 

2010). A single cycle maps the starting point xi to the final point xi+1 and maps a perturbing 

segment Dxi to Dxi+1. This can be seen in figure B.5. All the maps near from the limit cycle 

are quasi-linear. This permits to use the Newton methods to reach the point at the beginning 

of the limit cycle x∞ (Semlyen and Medina 1995). The periodic steady state solution is 

irrespective of the stability of the system  

 

 

Figure B.5. Orbit of a vector X 

 

It is possible to use linear property of the regions located near from a base cycle. Thus, 

the main equation can be considered to be linear in a solution x(t) from ti to ti+T. This can be 

represented by a variational problem (Semlyen and Medina 1995),  

 

��v = �0���(�, (� = !�0��(, (��� = ��(���               (B.47) 
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Where J(t) is a Jacobean matrix. The initial condition is defined as, 

 

���("� = ��"                   (B.48) 

 

The equation (B.47) is a linear ordinary differential equation which is time varying. Its 

solution is given by,  

 

���(� = '�w �3 ��(��(((" � ��"                      (B.49)  

 

It can be seen that (B.49) is a solution of (B.16). For the case of the expression t=ti+T, 

(B.49) can be defined by (Semlyen and Medina 1995),  

 

��"e� = x��"                           (B.50) 

 

Where Φ is defined by,  

 

x = '�w �3 ��(��(("q�(" � ��"                             (B.51) 

 

It can be seen that Φ remains almost equal for a value of ti, if the mapping near the limit 

cycle presents almost a linear behavior. The equation (B.51) shows that the input segments 

are mapping to correspond to the output segments using the matrix defined by Φ. According 

to the Poincaré map, it can be seen that,  

 

��" = �y − �"                              (B.52) 

 

If (B.52) is isolated in terms of x∞ results on 

 

�y = ��" + �"                           (B.53) 

 

Because of this, it can be concluded that, 

  

��"e� = �y − �"e�                       (B.54) 

 

If (B.54) is isolated in terms of x∞ results on 

 

�y = ��"e� + �"e�                       (B.55) 
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If the equations (B.53) and (B.54) are used, it can be concluded that,  

 

��" − ��"e� = �"e� − �"                                (B.56) 

 

If (B.54) is substituted in (B.56) and the result is isolated in terms of the variable Δxi, 

yields,   

 

��" = �L − x�����"e� − �"�                                 (B.57) 

 

If (B.52) is substituted in the left side of (B.57), and the result is isolated in terms of x∞, 

yields,  

 

�y = �" + �L − x�����"e� − �"�                                    (B.58) 

 

The equation (B.58) represents an approximate solution of the limit cycle location. It 

permits to get a Newton solution if matrices Φ and (1-Φ)-1 are updated on each iteration. This 

action leads to a linear convergent process if the matrix (1-Φ)-1 is kept constant, or if it is 

updated during a state of the iterative process after the first evaluation (Semlyen and Medina 

1995).  

The main problem to find the limit cycle in an efficient way resides on the identification 

of the matrix Φ (Semlyen and Medina 1995). The ND method is now concisely described 

B.2.2.2 Numerical Differentiation Method (Semlyen and Medina 1995) 

The method uses the increment defined by Δf instead of J(t)Δx . This action implied that 

is easy to integrate the equation defined in (219) using initial conditions xi to get the base 

cycle x(t).  At the same time, it is necessary to integrate using an initial perturbation value 

defined by xi+εei where ei is the i-column of the identity matrix I, ε is a small value, i.e. 1x10-

6. If the difference between the two values of X is calculated in the end of the cycle, it is 

possible to obtain the columns of ΔXi+1. For this case, the calculating process of the matrix 

Φ calculated requires m steps. This is the case of Jacobean matrix calculating processes. 

Figure B.6 shows the flux diagram of the ND method. 
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Figure B.6. Diagram of the ND Method. 

It can be seen that the FEM field and the FEM field equations can be solved in the 

frequency and the time domain using the methods of solution explained in this section. 

Nevertheless, the FEM equations may consist on matrices of larger order, may be difficult to 

obtain, or it may need of a considerable computation time. It is possible to overcome this 

situation, by using the parallel computing platform. The CUDA parallel computing platform 

enables to solve these equations in an easy and efficient way. 
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Appendix C  Main features of the 

CUDA programs used in case study 2 and 4 
 

C.1 Case study 2 

C.1.1 GSL program  
// Programer: Raul Dominguez 

// December 2013 

//Program name: VM185F45_6g.cu 

// 

// D E S C R I P T I O N   

// This program calculates the T-Slot Conductor.  

// It is used the reduced equation, dimensions: 205x205 

// 

// P R E P R O C E S S I N G   S T A G E : GSL AND C ROUTINES 

/// C A L C U L A T I N G   S T A G E : GSL ROUTINES 

// 

//   P  R E  P  R  O  C  E  S  S  I  N  G     S  T  A  G  E      

// 1. INPUT DATA: 

// 1.1             E L E M E N T S         // 

//  ELEMENTS NUMBER OF ANSYS MESHING: numel=457 

//  1.1.1 Element Data File: VM185F45_4_elem.txt 

//        Element File Structure: 

//   (ELEM No.) (Element Type) (NODE 1 No.)  (NODE 2 No.)  (NODE 3 No.)     

// 1.2             N O D E S                //    

//  Total Nodes of ANSYS Meshing: numnod=265 

//  Node number of conductor region: K11_wh=205 

//  Node number of non-conductor region: K22_wh=60 

//  1.2.1 Nodes Data File: VM185F45_3_nod.txt 

//  1.2.2 Node Data File Structure: 

//   (NODE No.) (Coordinate X) (Coordinate Y) 

// 1.3         B O U N D A R Y   C O N D I T I O N S  // 

//  Boundary conditions: numnodZ=9 

//  1.3.1 Boundary Condition Structure: Node and Magnetic Vector Potential 

//   NODE 206---- Az(206)=0; NODE 212---- Az(212)=0 

//   NODE 218---- Az(218)=0; NODE 219---- Az(219)=0 
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//   NODE 220---- Az(220)=0; NODE 221---- Az(221)=0 

//   NODE 222---- Az(222)=0; NODE 223---- Az(223)=0 

//   NODE 224---- Az(224)=0;  

// 2.       U S E   O F   F E M      R O U T I N E S     // 

//  2.1 C Routine: felp2d1 

//   It calculates the Finite Element Matrix of Three Nodes 

//   S[3,3] Plane Symmetry  (SEE APPENDIX A, EQUATION A.14) 

//   2.2 C Routine: felp2d2 

//   It calculates the Finite Element Matrix of Three Nodes 

//   T[3,3] Plane Symmetry  (SEE APPENDIX A, EQUATION A.23) 

//   2.3 C Routine: felp2d4 

//   It calculates the Finite Element Matrix of Three Nodes 

//         F[3] Plane Symmetry  (SEE APPENDIX A, EQUATION A.24) 

// 3.     D E R I V I N G   G L O B A L   M A T R I C E S   A N D   V E C T O R S 

/ Global Matrices of Plane Symmetry 

// kk[numnod,numnod], gg[numnod,numnod], ff[numnod] 

// 4.     C A L C U L A T I N G    U N C O U P L E D   E Q U A T I O N 

//  4.1  Deriving submatrices based on Global Matrices 

//   kk_11[K11_wh,K11_wh], kk_12[K11_wh,K22_wh], kk_21[K22_wh,K11_wh], //  

//  kk_22[K22_wh,K22_wh] 

//   gg_11[K11_wh, K11_wh], gg_21[K22_wh, K11_wh] 

//   ff_1[K11_wh], ff_2[K22_wh] 

//  4.2  Deriving matrices of Uncoupled Equation 

//   kk_11[K11_wh, K11_wh] (Use of GSL ruotine gsl_blas_dgemm) 

//   gg_11[K11_wh, K11_wh] (Use of GSL ruotine gsl_blas_dgemm) 

//   ff_t[K11_wh]          (Use of GSL ruotine gsl_blas_dgemv) 

//  4.3  Forming complex Uncoupled Equation 

//  freq: frequency 

//   A_matrix[K11_wh] 

//   X_vector[K11_wh]  (Magnetic vector potentials of conductor region)  

//   B_vector[K11_wh] 

//    

//   C  A  L  C  U  L  A  T  I  N  G      S  T  A  G  E     // 

// 1. Calculating (A_matrix)(X_vector)=B_vector 

// 2. GSL routines used  

//      gsl_permutation *p, gsl_linalg_complex_LU_decomp, gsl_linalg_complex_LU_solv 

// 3. Calculating voltage on Conductor Uc 
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C.1.2 CUBLAS program 
// Programer: Raul Dominguez 

// December 2013 

//Program name: VM185F45_6gC.cu 

// 

// D E S C R I P T I O N   

// This program calculates the T-Slot Conductor.  

// It is used the reduced equation, dimensions: 205x205 

// 

// P R E P R O C E S S I N G   S T A G E : GSL AND C ROUTINES 

// C A L C U L A T I N G   S T A G E : CUBLAS ROUTINES 

// 

//   P  R E  P  R  O  C  E  S  S  I  N  G     S  T  A  G  E      

// 1. (S E E   VM185F45_6c.cu) 

// 2. (S E E   VM185F45_6c.cu) 

// 3.  (S E E   VM185F45_6c.cu) 

// 4.     C A L C U L A T I N G    U N C O U P L E D   E Q U A T I O N 

//  4.1  Deriving submatrices based on Global Matrices 

//   kk_11[K11_wh,K11_wh], kk_12[K11_wh,K22_wh],  

//              kk_21[K22_wh,K11_wh], kk_22[K22_wh,K22_wh] 

//   gg_11[K11_wh, K11_wh], gg_21[K22_wh, K11_wh] 

//   ff_1[K11_wh], ff_2[K22_wh] 

//  4.2  Deriving matrices of Uncoupled Equation 

//   K11_cpu[K11_wh, K11_wh]  (Use of CUBLAS routine CublasSgemm) 

//       G11_cpu[K11_wh, K11_wh]  (Use of CUBLAS routine CublasSgemm) 

//   FT_cpu[K11_wh]           (Use of CUBLAS routine CublasSgemv) 

//  4.3  Forming complex Uncoupled Equation 

//   freq: frequency 

//   kkC_cpu[K11_wh,K11_wh]   (Matrix to be decomposed in L and U) 

//   bc_cpu[K11_wh] 

//    C  A  L  C  U  L  A  T  I  N  G      S  T  A  G  E     // 

// 1. Performing LU decomposion: kkC_cpu=(Lc_gpu)*(Uc_gpu) 

// 2. Solving [(Lc_gpu)*(Uc_gpu)]*X =bc_cpu 

//   2.1  Solving (Lc_gpu)*Y=bc_cpu    (Use of CUBLAS routine cublasctrsv) 

//   2.1  Solving (Lc_gpu)*Y=bc_cpu    (Use of CUBLAS routine cublasctrsv) 

// 3. Calculating voltage and current density on Conductor 

 

C.2 Case study 4 

C.2.1 Air series reactor 1  

C.2.1.1 GSL program  

// Programmer: Raul Dominguez 

// December 2013 

// Program name: Preiss_237_53.cu 

// 

// D E S C R I P T I O N   

// This program calculates the 10 turns Air Series Reactor   

// It is used the reduced equation, dimensions of reduced equation: 1260x1260 

// 

// P R E P R O C E S I N G   S T A G E: GSL AND C ROUTINES 

// C A L C U L A T I N G   S T A G E: GSL ROUTINES 

// 

//   P  R E  P  R  O  C  E  S  I  N  G     S  T  A  G  E     // 

// 1. INPUT DATA: 
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//  1.1             E L E M E N T S          

//  ELEMENTS NUMBER OF ANSYS MESHING: numel=6918 

//  1.1.1 Element Data File: Preiss2372_elem.txt 

//        Element File Structure: 

//  (ELEM No.) (Element Type) (NODE 1 No.)  (NODE 2 No.)  (NODE 3 No.)     

//  1.2             N O D E S                    

//  Total Nodes of ANSYS Meshing: numnod=1668 

//  Node number of conductor region: K11_wh=1260 

//  Node number of non-conductor region: K22_wh=2250 

//   1.2.1 Nodes Data File: Preiss2372_nod.txt 

//   1.2.2 Node Data File Structure: 

//    (NODE No.) (Coordinate X) (Coordinate Y) 

//  1.3         B O U N D A R Y   C O N D I T I O N S  // 

//  Boundary conditions: numnodZ=100 

//   1.3.1 Boundary Conditions Data File: Preiss2372_nodZ.txt 

//   1.3.2 Boundary Conditions File Structure: 

//    (NODE No.) Az(NODE No.)=0 

// 2.       U S E   O F   F E M      R O U T I N E S     // 

//  2.1 C Routine: felpaxt31 

//   It calculates the Finite Element Matrix of Three Nodes 

//   S[3,3] Axisymmetric Symmetry  (SEE APPENDIX A, EQUATION A.43) 

// 

//  2.2 C Routine: felpaxt31_d 

//   It calculates the Finite Element Matrix of Three Nodes 

//   SII[3,3] Axisymmetric Symmetry  (SEE APPENDIX A, EQUATION A.44) 

// 

//   2.3 C Routine: felpaxt33_a  

//   It calculates the Finite Element Matrix of Three Nodes 

//   T[3,3] Axisymmetric Symmetry  (SEE APPENDIX A, EQUATION A.51) 

// 

//   2.4 C Routine: felpaxt30N 

//   It calculates the Finite Element Vector of Three Nodes 

//         F[3] Axisymmetric Symmetry  (SEE APPENDIX A, EQUATION A.52) 

// 

// 3. D E R I V I N G   G L O B A L   M A T R I C E S   A N D   V E C T O R S 

// Global Matrices of Axisymmetric Symmetry 

//  kk[numnod+10,numnod+10], gg[numnod+10,numnod+10] 

//  fg1[numnod+10], fg2[numnod+10], fg3[numnod+10], fg4[numnod+10],  

//  fg5[numnod+10] 

//  fg6[numnod+10], fg7[numnod+10], fg8[numnod+10], fg9[numnod+10],  

//  fg10[numnod+10],  

// 

// 4.     C A L C U L A T I N G    U N C O U P L E D   E Q U A T I O N 

//  4.1  Deriving submatrices based on Global Matrices 

//   kk_11[K11_wh,K11_wh], kk_12[K11_wh,K22_wh], kk_21[K22_wh,K11_wh],   

//             kk_22[K22_wh,K22_wh] 

//   gg_11[K11_wh, K11_wh], gg_21[K22_wh, K11_wh] 

//             ff_t[K11_wh] 

//  4.2  Deriving matrices of Uncoupled Equation 

//   kk_11[K11_wh, K11_wh] (Use of GSL ruotine gsl_blas_dgemm) 

//   gg_11[K11_wh, K11_wh] (Use of GSL ruotine gsl_blas_dgemm) 

//   ff_t[K11_wh]          (Use of GSL ruotine gsl_blas_dgemv) 

//     4.3  Forming complex Uncoupled Equation 

//             freq: frequency 

//   A_matrix[K11_wh] 

//   X_vector[K11_wh]  (Magnetic vector potentials of conductor  

//          region)  

//   B_vector[K11_wh] 

// 
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//   C  A  L  C  U  L  A  T  I  N  G      S  T  A  G  E     // 

// 1. Calculating (A_matrix)(X_vector)=B_vector 

// 2. GSL routines used  

//      gsl_permutation *p, gsl_linalg_complex_LU_decomp,  

//      gsl_linalg_complex_LU_solve 

// 3. Calculating voltage on each turn Uci, Uc1, Uc2, Uc3, Uc4,  

//     Uc5, Uc6, Uc7, Uc8, Uc9, Uc10 

// 4. Calculating total voltage on Air Series Reactor  

//     Uct=Uc1+Uc2+Uc3+Uc4+…+Uc9+Uc10 

 

C.2.1.2 CUBLAS program 

// Programer: Raul Dominguez 

// December 2013 

// Program name: Preiss_237_61.cu 

// 

// D E S C R I P T I O N  // 

// This program calculates the 10 turns Air Series Reactor   

// It is used the reduced equation, dimensions: 1260x1260 

// 

// P R E P R O C E S S I N G   S T A G E: GSL AND C ROUTINES 

// C A L C U L A T I N G   S T A G E: CUBLAS ROUTINES 

// 

//   P  R E  P  R  O  C  E  S  I  N  G     S  T  A  G  E     // 

// 1.         (S E E   Preiss_237_53.cu) 

// 2.          (S E E   Preiss_237_53.cu) 

// 3.          (S E E   Preiss_237_53.cu) 

// 4.     C A L C U L A T I N G    U N C O U P L E D   E Q U A T I O N 

//  4.1  Deriving submatrices based on Global Matrices 

//   K11_cpu[K11_wh,K11_wh], K12_cpu[K11_wh,K22_wh]  

//             K21_cpu[K22_wh,K11_wh], K22_cpu[K22_wh,K22_wh] 

//   G11_cpu[K11_wh, K11_wh], G21_cpu[K22_wh, K11_wh] 

//   FT_cpu[K11_wh] 

//  4.2  Deriving matrices of Uncoupled Equation 

//   K11_cpu[K11_wh, K11_wh]  (Use of CUBLAS routine CublasSgemm) 

//     G11_cpu[K11_wh, K11_wh]  (Use of CUBLAS routine CublasSgemm) 

//          FT_cpu[K11_wh]           (Use of CUBLAS routine CublasSgemv) 

//  4.3  Forming complex Uncoupled Equation 

//   freq: frequency 

//   kkC_cpu[K11_wh,K11_wh]   (Matrix to be decomposed in L and U) 

//   bc_cpu[K11_wh] 

// 

//    C  A  L  C  U  L  A  T  I  N  G      S  T  A  G  E     // 

// 1. Performing LU decomposion: kkC_cpu=(Lc_gpu)*(Uc_gpu) 

// 2. Solving [(Lc_gpu)*(Uc_gpu)]*X =bc_cpu 

//   2.1  Solving (Lc_gpu)*Y=bc_cpu    (Use of CUBLAS routine cublasctrsv) 

//   2.1  Solving (Uc_gpu)*X=bc_cpu    (Use of CUBLAS routine cublasctrsv) 

// 3. Calculating voltage on each turn Uci, Uc1, Uc2, Uc3, Uc4, Uc5, Uc6,  

//     Uc7, Uc8, Uc9, Uc10 

// 4. Calculating total voltage on Air Series Reactor / 

//     Uct=Uc1+Uc2+Uc3+Uc4+…+Uc9+Uc10 

 

C.2.2 Air series reactor 2 

C.2.2.1 GSL program  

// Programmer: Raul Dominguez 

// December 2013 
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// 

// Program name: Preiss_218_345.cu 

// 

// D E S C R I P T I O N  // 

// This program calculates the 5 turns Air Series Reactor   

// It is used the reduced equation, dimensions: 205x205 

// P R E P R O C E S S I N G   S T A G E: GSL AND C ROUTINES 

// 

//  C A L C U L A T I N G   S T A G E: GSL ROUTINES 

//   P  R E  P  R  O  C  E  S  S  I  N  G     S  T  A  G  E     // 

// 1. INPUT DATA: 

// 1.1             E L E M E N T S         // 

//  ELEMENTS NUMBER OF ANSYS MESHING: numel=3210 

//  1.1.1 Element Data File: Preiss21831_elem.txt 

//        Element File Structure: 

//   (ELEM No.) (Element Type) (NODE 1 No.)  (NODE 2 No.)  (NODE 3 No.)     

// 1.2             N O D E S                //    

//  Total Nodes of ANSYS Meshing: numnod=1668 

//  Node number of conductor region: K11_wh=180 

//  Node number of non-conductor region: K22_wh=1488 

//  1.2.1 Nodes Data File: Preiss21831_nod.txt.txt 

//  1.2.2 Node Data File Structure: 

//   (NODE No.) (Coordinate X) (Coordinate Y) 

// 1.3         B O U N D A R Y   C O N D I T I O N S  // 

//  Boundary conditions: numnodZ=125 

//  1.2.1 Boundary Conditions Data File: Preiss21831_nodZ.txt 

//  1.2.2 Boundary Conditions File Structure: 

//   (NODE No.) Az(NODE)=0 

// 

// 2.       U S E   O F   F E M      R O U T I N E S     // 

//  2.1 C Routine: felpaxt31 

//   It calculates the Finite Element Matrix of Three Nodes 

//   S[3,3] Axisymmetric Symmetry  (SEE APPENDIX A, EQUATION A.43) 

//  2.2 C Routine: felpaxt31_d 

//   It calculates the Finite Element Matrix of Three Nodes 

//   SII[3,3] Axisymmetric Symmetry  (SEE APPENDIX A, EQUATION A.44) 

//   2.3 C Routine: felpaxt33_a  

//   It calculates the Finite Element Matrix of Three Nodes 

//   T[3,3] Axisymmetric Symmetry  (SEE APPENDIX A, EQUATION A.51) 

//   2.4 C Routine: felpaxt30N 

//   It calculates the Finite Element Vector of Three Nodes 

//         F[3] Axisymmetric Symmetry  (SEE APPENDIX A, EQUATION A.52) 

// 3.     D E R I V I N G   G L O B A L   M A T R I C E S   A N D   V E C T O R S 

//   Global Matrices of Plane Symmetry 

//   kk[numnod+5,numnod+5], gg[numnod+5,numnod+5] 

//  fg1[numno+5], fg2[numnod+5], fg3[numnod+5], fg4[numnod+5], fg5[numnod+5] 

// 4.     C A L C U L A T I N G    U N C O U P L E D   E Q U A T I O N 

//  4.1  Deriving submatrices based on Global Matrices 

//   kk_11[K11_wh,K11_wh], kk_12[K11_wh,K22_wh], kk_21[K22_wh,K11_wh],   

//                            kk_22[K22_wh,K22_wh] 

//   gg_11[K11_wh, K11_wh], gg_21[K22_wh, K11_wh] 

//                           ff_t[K11_wh]  

//  4.2  Deriving matrices of Uncoupled Equation 

//   kk_11[K11_wh, K11_wh] (Use of GSL ruotine gsl_blas_dgemm) 

//   gg_11[K11_wh, K11_wh] (Use of GSL ruotine gsl_blas_dgemm) 

//   ff_t[K11_wh]          (Use of GSL ruotine gsl_blas_dgemm) 

//     4.3  Forming complex Uncoupled Equation 

//   freq: frequency 

//   A_matrix[K11_wh] 
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//   X_vector[K11_wh]  (Magnetic vector potentials of conductor region)  

//   B_vector[K11_wh] 

//   C  A  L  C  U  L  A  T  I  N  G      S  T  A  G  E     // 

// 1. Calculating (A_matrix)(X_vector)=B_vector 

// 2. GSL routines used  

//      gsl_permutation *p, gsl_linalg_complex_LU_decomp, gsl_linalg_complex_LU_solve 

// 3. Calculating voltage on each turn Uci, Uc1, Uc2, Uc3, Uc4, Uc5 

// 4. Calculating total voltage on Air Series Reactor Uct=Uc1+Uc2+Uc3+Uc4+Uc5 

 

C.2.2.2 CUBLAS program 

// Program name: Preiss_218_347_6.cu 

// Programer: Raul Dominguez 

// December 2013 

 

// D E S C R I P T I O N  // 

// This program calculates the 5 turns Air Series Reactor   

// It is used the reduced equation, dimensions: 205x205 

// P R E P R O C E S S I N G   S T A G E: GSL AND C ROUTINES 

// C A L C U L A T I N G   S T A G E: GSL ROUTINES 

// 

//   P  R E  P  R  O  C  E  S  S  I  N  G     S  T  A  G  E     // 

// 1.         (S E E   Preiss_218_345.cu) 

// 2.          (S E E   Preiss_218_345.cu) 

// 3.          (S E E   Preiss_218_345.cu) 

// 4.     C A L C U L A T I N G    U N C O U P L E D   E Q U A T I O N 

//  4.1  Deriving submatrices and subvectors based on Global Matrices 

//   K11_cpu[K11_wh,K11_wh], K12_cpu[K11_wh,K22_wh]  

//             K21_cpu[K22_wh,K11_wh], K22_cpu[K22_wh,K22_wh] 

//   G11_cpu[K11_wh, K11_wh], G21_cpu[K22_wh, K11_wh] 

//   FT_cpu[K11_wh] 

/  4.2  Deriving matrices and subvector of Uncoupled Equation 

//   K11_cpu[K11_wh, K11_wh]  (Use of CUBLAS routine CublasSgemm) 

//        G11_cpu[K11_wh, K11_wh]  (Use of CUBLAS routine CublasSgemm) 

//         FT_cpu[K11_wh]           (Use of CUBLAS routine CublasSgemv) 

//  4.3  Forming complex Uncoupled Equation 

//   freq: frequency 

//   kkC_cpu[K11_wh,K11_wh]   (Matrix to be decomposed in L and U) 

//   bc_cpu[K11_wh] 

// 

//    C  A  L  C  U  L  A  T  I  N  G      S  T  A  G  E     // 

// 1. Performing LU decomposion: kkC_cpu=(Lc_gpu)*(Uc_gpu) 

// 2. Solving [(Lc_gpu)*(Uc_gpu)]*X =bc_cpu 

//   2.1  Solving (Lc_gpu)*Y=bc_cpu    (Use of CUBLAS routine cublasctrsv) 

//   2.1  Solving (Uc_gpu)*X=bc_cpu    (Use of CUBLAS routine cublasctrsv) 

// 3. Calculating voltage on each turn Uci, Uc1, Uc2, Uc3, Uc4, Uc5 

// 4. Calculating total voltage on Air Series Reactor Uct=Uc1+Uc2+Uc3+Uc4+Uc5 

 

 
 


