
UNIVERSIDAD MICHOACANA DE
SAN NICOLÁS DE HIDALGO

División de Estudios de Posgrado de la
Facultad de Ingeniería Eléctrica

CHARACTERIZING THE PERFORMANCE OF
EVOLUTIONARY ALGORITHMS TO SOLVE
CONTINUOUS OPTIMIZATION PROBLEMS

TESIS

Que para obtener el grado de:
DOCTOR EN CIENCIAS EN INGENIERÍA ELÉCTRICA

Presenta:
NOEL ENRIQUE RODRÍGUEZ MAYA

Director de Tesis

Dr. Juan José Flores Romero

Co-Director de Tesis
Dr. Mario Graff Guerrero

Morelia, Michoacán, Julio 2016

RESUMEN

En el campo de Algoritmos Evolutivos (AE), ¿qué constituye un problema de
optimización difícil?, ¿por qué ciertos problemas de optimización son más difíciles
de resolver? Las respuestas a estas preguntas pueden proveer información
importante, por ejemplo, la predicción del éxito de los AE. Para predecir el éxito de
los AE muchos enfoques han sido desarrollados; siendo el estudio de Fitness
Landscape (FL) uno de los más exitosos. Básicamente, FL es la forma geométrica
representada por la función de costo de los problemas de optimización; el FL
puede ser calculado de métricas para medir, por ejemplo, la tasa de rugosidad,
neutralidad, cuencas de atracción, entre otras. Fitness Landscape Analysis usa un
conjunto de métricas para la caracterización del FL: las características de los
problemas se pueden medir por medio de métricas descriptivas, mientras que las
métricas dinámicas están más relacionadas a las características del algoritmo.
Esta contribución presenta un procedimiento llamado Modelos de Clasificación de
Rendimiento (PCM) el cual crea modelos para predecir el rendimiento exhibido por
los Algoritmos Genéticos (AG) en la solución de problemas de optimización en
dominios continuos. PCM clasifica el rendimiento en dos clases (fácil o difícil). El
conjunto de datos tiene características del FL como variables predictoras, y el
rendimiento exhibido por el AG como variable objetivo. Los problemas usados en
los experimentos son funciones de optimización de referencia. Un producto de
PCM, es un procedimiento para Recomendar Tamaño de Población (RPS): dado
un problema de optimización, RPS recomienda la población mínima para obtener
un nivel eficiente de rendimiento. Este trabajo puede ser fácilmente extendido para
usar otras métricas, se puede aplicar a un conjunto diferente de problemas, o usar
otro AE. El desarrollo de modelos de rendimiento para otros AE, puede llevar a la
solución de una instancia del problema de selección de algoritmo.

Palabras clave: Optimización, Fitness Landscape, Algoritmos Evolutivos,
Algoritmos Genéticos, Predicción.

ABSTRACT

In the field of Evolutionary Algorithms (EA), what does constitutes a hard op-
timization problem?, why certain optimization problems are more difficult to solve?
The answers to these questions can provide useful information, e.g., the prediction
of the success of EA. In order to predict the success of EA many approaches have
been developed; being the study of Fitness Landscape (FL) one of the most
successful. Basically, FL is the geometric form depicted by the cost function of
optimization problems; the FL can be computed by means of metrics to measure,
e.g., the rate of ruggedness, neutrality, basins of attraction, among others. Fitness
Landscape Analysis uses a set of metrics for the FL characterization: features of
problems can be measured by descriptive metrics, while the dynamic metrics are
more related to the features of the algorithm. This contribution presents a
procedure called Performance Classification Models (PCM), which creates models
to predict the performance exhibited by Genetic Algorithms (GA) in the solution of
optimization problems in continuous domains. PCM classifies the performance in
two classes (easy and difficult). The dataset has FL features as predictor variables,
and the performance exhibited by GA as the target variable. The problems used in
experiments are benchmark optimization functions. A product of PCM, is a
procedure to Recommend Population Size (RPS): given an optimization problem,
RPS recommends the minimal population size to get an acceptable level of
performance. This work can be easily extended to use other metrics, it can be
applied to different set of problems, or use other EA. Developing performance
models for other EA, can lead to the solution of an instance of the algorithm
selection problem.

CHARACTERIZING THE PERFORMANCE OF

EVOLUTIONARY ALGORITHMS TO SOLVE

CONTINUOUS OPTIMIZATION PROBLEMS

TESIS

Que para obtener el grado de

DOCTOR EN CIENCIAS EN INGENIERÍA ELÉCTRICA

presenta

Noel Enrique Rodŕıguez Maya

Juan José Flores Romero

Director de Tesis

Mario Graff Guerrero

Co-Director de Tesis

Universidad Michoacana de San Nicolás de Hidalgo

Julio 2016

Dedication

A mi esposa Mónica por el apoyo incondicional,

a mis hijas Valeria y Noelia por su paciencia y comprensión,

a mis padres Ofelia y Ascención por sus consejos y cuidados,

a mis hermanos Maira, Erick y Ericka por estar siempre presentes,

a toda mi familia por su alegŕıa y motivación.

a mis amigos por hacerme ver mis errores.

Acknowledgements

Quiero agradecer primeramente a mi alma máter el Instituto Tecnológico de Zitácua-

ro por darme la oportunidad de continuar mis estudios de posgrado.

Agradezco al Dr. Juan José Flores Romero por su apoyo y consejos durante los

estudios de doctorado, al Dr. Mario Graff Guerrero por sus atinadas observaciones para el

desarrollo del presente trabajo y al Dr. Sébastien Verel por su tiempo.

También quiero agradecer a CONACYT por el soporte económico durante todo el

periodo que comprendió esta investigación.

Abstract

In the field of Evolutionary Algorithms (EA), what does constitutes a hard op-

timization problem?, why certain optimization problems are more difficult to solve? The

answers to these questions can provide useful information, e.g., the prediction of the success

of EA. In order to predict the success of EA many approaches have been developed; being

the study of Fitness Landscape (FL) one of the most successful. Basically, FL is the geome-

tric form depicted by the cost function of optimization problems; the FL can be computed

by means of metrics to measure, e.g., the rate of ruggedness, neutrality, basins of attraction,

among others. Fitness Landscape Analysis uses a set of metrics for the FL characterization:

features of problems can be measured by descriptive metrics, while the dynamic metrics

are more related to the features of the algorithm. This contribution presents a procedure

called Performance Classification Models (PCM), which creates models to predict the per-

formance exhibited by Genetic Algorithms (GA) in the solution of optimization problems in

continuous domains. PCM classifies the performance in two classes (easy and difficult). The

dataset has FL features as predictor variables, and the performance exhibited by GA as the

target variable. The problems used in experiments are benchmark optimization functions.

A product of PCM, is a procedure to Recommend Population Size (RPS): given an optimi-

zation problem, RPS recommends the minimal population size to get an acceptable level of

performance. This work can be easily extended to use other metrics, it can be applied to

different set of problems, or use other EA. Developing performance models for other EA,

can lead to the solution of an instance of the algorithm selection problem.

Resumen

En el campo de Algoritmos Evolutivos (AE), ¿qué constituye un problema de optimiza-

ción dif́ıcil?, ¿por qué ciertos problemas de optimización son más dif́ıciles de resolver? Las

respuestas a estas preguntas pueden proveer información importante, por ejemplo, la pre-

dicción del éxito de los AE. Para predecir el éxito de los AE muchos enfoques han sido

desarrollados; siendo el estudio de Fitness Landscape (FL) uno de los más exitosos. Bási-

camente, FL es la forma geométrica representada por la función de costo de los problemas

de optimización; el FL puede ser calculado de metrics para medir, por ejemplo, la tasa de

rugosidad, neutralidad, cuencas de atracción, entre otras. Fitness Landscape Analysis usa

un conjunto de métricas para la caracterización del FL: las caracteŕısticas de los problemas

se pueden medir por medio de métricas descriptivas, mientras que las mĺetricas dinámigas

están más relacionadas a las caracteŕısticas del algoritmo. Esta contribución presenta un

procedimiento llamado Modelos de Clasificación de Rendimiento (PCM) el cual crea mode-

los para predecir el rendimiento exhibido por los Algoritmos Genéticos (AG) en la solución

de problemas de optimización en dominios continúos. PCM clasifica el rendimiento en dos

clases (fácil o dif́ıcil). El conjunto de datos tiene caracteŕısticas del FL como variables pre-

dictoras, y el rendimiento exhibido por el AG como variable objetivo. Los problemas usados

en los experimentos son funciones de optimización de referencia. Un producto de PCM, es

un procedimiento para Recomendar Tamaño de Población (RPS): dado un problema de

optimización, RPS recomienda la población mı́nima para obtener un nivel eficiente de ren-

dimiento. Este trabajo puede ser fácilmente extendido para usar otras métricas, se puede

aplicar a un conjunto diferente de problemas, o usar otro AE. El desarrollo de modelos de

rendimiento para otros AE, puede llevar a la solución de una instancia del problema de

selección de algoritmo.

Content

Abstract . ix

Resumen . xi

Content . xiii

List of Figures . xvii

List of Tables . xix

List of Acronyms . xxi

List of Symbols . xxiii

1. Introduction 1

1.1. Problem Statement . 4

1.2. Motivation . 4

1.3. Hypothesis . 5

1.4. Objectives . 6

1.4.1. Particular Objectives . 6

1.5. Contributions . 6

1.6. Publications . 7

1.6.1. Journal Papers . 7

1.6.2. Conference Papers . 7

1.7. Thesis Outline . 7

xiii

xiv Content

2. Related Work 9

2.1. Introduction . 9

2.2. Approaches Based on Descriptive Problem Features 10

2.3. Approaches Based on EA’s Dynamics . 11

2.4. Approaches Based on Problem and Algorithm Features 13

2.5. Summary . 14

3. Real-Coded Genetic Algorithms for Optimization 15

3.1. Introduction . 15

3.2. Evolutionary Algorithms . 16

3.2.1. Real-Coded Genetic Algorithms . 17

3.2.2. Objective Function . 19

3.3. Summary . 20

4. Fitness Landscape Analysis 21

4.1. Introduction . 21

4.2. Descriptive metrics . 22

4.2.1. Neutrality . 22

4.2.2. Ruggedness . 23

4.2.3. Basins of Attraction . 25

4.2.4. Epistasis . 25

4.3. Dynamic metrics . 26

4.3.1. Fitness Distance Correlation . 27

4.3.2. Negative Slope Coefficient . 28

4.4. Fitness Landscape Computation . 29

4.5. Summary . 32

Content xv

5. Performance Classification Models 33

5.1. Introduction . 33

5.1.1. Problem statement . 34

5.1.2. Average Performance . 36

5.1.3. Dataset . 39

5.1.4. Model . 40

5.2. Procedure to Recommend Population Size 41

5.3. Summary . 42

6. Experimental Results 43

6.1. Benchmark Problems . 43

6.2. Parameters Settings . 44

6.2.1. Learning Models . 45

6.3. Random Forest Models . 47

6.4. Recommend Population Size . 48

6.5. Study Case . 49

6.5.1. University Course Timetabling Problem 50

6.5.2. UCTP Instances . 52

6.5.3. Characterization and Prediction . 52

6.6. Summary . 53

7. Conclusions and Future Work 55

7.1. Conclusions . 55

7.2. Future Work . 57

A. Optimization Problems 59

xvi Content

A.1. Benchmark Functions . 59

A.2. Features of Functions . 77

B. Models 83

B.1. M50 . 83

References 87

List of Figures

1.1. Schwefel’s function. 2

1.2. Easom Function. 2

1.3. Randompeaks function. 2

1.4. Sphere function. 2

4.1. Rastrigin function. 30

4.2. Sphere Function. 30

4.3. Easom Function. 30

5.1. Average performance for ech f ∈ F considering different population sizes. . 38

6.1. M50, Random Tree 1 . 48

6.2. Population sizes recommended by the RPS procedure. 49

B.1. M50, Random Tree 1 . 83

B.2. M50, Random Tree 2 . 84

B.3. M50, Random Tree 3 . 84

B.4. M50, Random Tree 4 . 84

B.5. M50, Random Tree 5 . 84

B.6. M50, Random Tree 6 . 85

xvii

xviii List of Figures

B.7. M50, Random Tree 7 . 85

B.8. M50, Random Tree 8 . 85

B.9. M50, Random Tree 9 . 86

B.10.M50, Random Tree 10 . 86

List of Tables

4.1. Input parameters for the Fitness Landscape metrics. 31

4.2. FLA on the UCTP instances. 32

6.1. Parameters of Fitness Landscape metrics. 44

6.2. Parameters to determine the performance GA on problems in F 44

6.3. RMSE of regression models varying the population size (n) and using different
predictor variables: descriptives, dynamics, and all metrics. 46

6.4. Accuracy of classification models varying the population size (n) and using
different predictor variables: descriptives, dynamics, and all metrics. 46

6.5. Confusion matrix for the most accurate model (n = 50) — input variables
are all metrics and target value is performance. 47

6.6. Confusion matrix for the worst model (n = 500) — input variables are all
metrics and target value is performance. 47

6.7. Tasks and resources available for each UCTP instance. 52

6.8. FLA on the UCTP instances. 52

6.9. Recommended population size for the UCTP instances. 53

A.2. Main features of functions. 77

A.2. Main features of functions. 78

A.2. Main features of functions. 79

A.2. Main features of functions. 80

xix

xx List of Tables

A.2. Main features of functions. 81

List of Acronyms

ANOVA Analysis of Variance

ASP Algorithm Selection Problem

BBOB Black Box Optimization Benchmark

CEC Congress of Evolutionary Computation

COCO COmparing Continuous Optimizers

CUP Closed Under Permutation

EA Evolutionary Algorithm

FC Fitness Cloud

FDC Fitness Distance Correlation

FL Fitness Landscape

FLA Fitness Landscape Analysis

GA Genetic Algorithms

GECCO Genetic and Evolutionary Computation Conference

GP Genetic Programming

ITTG Instituto Tecnologico de Tuxtla Gutierrez

ITVM Instituto Tecnologico del Valle de Morelia

ITZ Instituto Tecnologico de Zitacuaro

ML Machine Learning

MLP Multilayer Perceptron

NB Naive Bayes

xxi

xxii List of Acronyms

NFL No Free Lunch

NSC Negative Slope Coefficient

PCM Performance Classification Models

RCGA Real-Coded Genetic Algorithms

RF Random Forests

RPS Recommend Population Size

SS Sum of Square

UCTP University Course Timetabling Problem

WEKA Waikato Environment for Knowledge Analysis

List of Symbols

d Problem dimension.

Ω Search space on the Rd domain.

S Set of points sampled from the search space (S ⊂ Ω).

s A point from S .

f Function in the continuous domain.

E Equality constraints.

I Inequality constraints.

F Set of functions in the continuous domain.

Mn Classification model.

ε Precision required in GA.

n Population size.

nT Number of independent executions of GA.

NS(s, δ) The neighborhood function defined on S , where δ is the maximum
euclidean distance between s and its neighbors.

dE(x, y) Euclidean Distance defined in Ω.

δ Radius of a neighborhood.

γ Maximum distance between two fitness values considered similar.

xxiii

xxiv List of Symbols

Lb Lower bound of a search space.

Ub Upper bound of a search space.

fmax The highest fitness value.

f(x∗) The minimum fitness value.

M Sequence of fitness landscape features.

P Sequence of performances values.

D Dataset.

Chapter 1

Introduction

When practitioners try to solve optimization problems, generally, the first step is

to determine the type of problem. That is, the encoding, the complexity (e.g. NP problems),

the number and type of constraints, etc. The second step is the selection of a solver; when

traditional solvers are unable to tackle the optimization problem, the best options is the use

of different flavours of Evolutionary Algorithms (EA) [Knjazew12]. In literature, we can find

many EA, each algorithm with its specific heuristic and associated parameters. Generally,

users adopt the most popular EA using parameters suggested by literature. Clearly, following

this procedure is not the best way to solve a particular problem, so it is necessary to

develop methods that can select the best algorithm and its associated parameters to solve

a particular optimization problem, that is, select the best optimization algorithm based

on the difficulty of the optimization problem. One of the most prominent methodologies

to tackle this task is the use of Fitness Landscape (FL). Basically, FL is defined as the

geometric form depicted by the fitness function (or cost function) of optimization problems.

The FL can be mathematically defined as follows:

LS = (f,S,N) (1.1)

1

2 Chapter 1: Introduction

where f is the optimization problem, S is the sample search space, and N (x) is the neigh-

borhood associated to a point x in the search space. The neighborhood uses some type of

distance metric, like euclidean distance or genetic distance (number of genetic steps).

Figures 1.1, 1.2, 1.3, and 1.4 show the FL associated to some benchmark functions,

and these functions represent minimization problems in two dimensions in the continuous

domain.

Figure 1.1: Schwefel’s function. Figure 1.2: Easom Function.

Figure 1.3: Randompeaks function. Figure 1.4: Sphere function.

As we can see, Figure 1.1 is a rugged function with multiple local minima, Figure

1.2 presents a smooth landscape with a wide neutral area (equal values of fitness), Figure

1.3 is an example of deceptiveness, due to some attractors (local optima) make difficult the

search (deceive the search) to get the global optimum. Finally, Figure 1.4 is a monotonic

decreasing function, the function presents a global funnel structure with a single attractor

(global optimum).

A characterization of landscapes is performed by Fitness Landscape Analysis

(FLA). FLA uses a set of metrics to determine whether a particular problem is easy or hard

to solve by a particular EA. At the beginning, the first works related to FLA based their

approach on only one FL metric the results were not satisfactory because the metrics only

3

characterized correctly some problems [Grefenstette92, Naudts00b, Reeves95, Horn94]. Per-

haps, the closest metrics related with the difficulty of optimization problems are the metrics

that measure the evolvability of EA, that is, in an EA process, the capacity of individuals

to improve their fitnesses has a direct relation with the difficulty of the problem.

Recently, the majority of works [Caamaño10, Caamaño13, Malan09, Malan13,

Trujillo12b, Trujillo11, Muñoz15] use a set of FL metrics to try to capture the majority

of the features of problem and algorithm. These features can give some insight about the

difficulty of optimization problems, being possible the creation of learning models to predict

performance of the algorithm. The dataset to make the learning models, can take as predic-

tor values, FL measures, and as target values, the performance obtained by the algorithm.

The dataset will be composed by the sequences M and P as in Equation 1.2.

〈(m1, p1), . . . , (mk, pk)〉 (1.2)

where m ∈M is an N-dimensional vector in RN containing the FL features, p ∈ P in [0, 1]

is the performance obtained by the algorithm in the solution of the optimization problems,

and k is the number of instances (optimization problems).

This work presents an approach to predict the difficulty of solving optimization

problems in the continuous domain in two dimensions using GA. This approach is called

Performance Classification Models (PCM) [Rodriguez-Maya14a]. The difficulty of optimiza-

tion problems is approximated to GA performance; the performance values are categorized

in two: easy and difficult [Mersmann13, Trujillo12a]. Models use as predictor variables the

features: neutrality, ruggedness, basins of attraction, epistasis, fitness distance correlation,

and negative slope coefficient. Target variable is the performance obtained by GA. The

models map from a set of problems to a set of difficulty indicators:

M : F → {easy, difficult}

where F is the set of optimization problems in the continuous domain in two dimensions,

4 Chapter 1: Introduction

and easy and difficult are the possible values of performance.

PCM can be used to build a recommender-system, that is a procedure to Recom-

mend Population Size (RPS), which given an optimization problem, suggests the smallest

efficient population size to be used by GA in the solution of that problem.

1.1. Problem Statement

Given this optimization function f defined as follows:

min f(x), f : RN → R

Ub ≤ xi ≤ Lb, i ∈ [1, N]

where x is a candidate solution defined in RN within the simple boundary constraints Ub

and Lb (upper and lower boundaries, respectively), and problem consist in minimization.

Consider a finite dataset D = 〈M,P〉 where M is a sequence of FL features

defined in RN and P is a sequences of performance values defined in R. The objective is

the creation of a supervised learning model M using the dataset D to predict the difficulty

of f :

M : f → difficulty

where difficulty is the hardness presented by f when is solved by GA. Features refer to the

structural properties of f and GA, and performances is defined as the rate of successful GA

executions.

1.2. Motivation

A large variety of real-life problems are in the continuous domain, hence the special

interest to solve them [Haupt04]. Some examples of real-life problems are: in agriculture, in

the automobile industry, and in the renewable energies, among others.

1.3. Hypothesis 5

In optimization, especially in combinatorial optimization, the well known No Free

Lunch (NFL) theorem [Wolpert97] establishes that there is not an algorithm superior to

another, to solve distinct types of optimization problems. Basically, NFL establishes that

there is not an algorithm superior to others for the solution of all optimization problems;

fortunately, NFL theorems do only apply to classes of problems that are closed under

permutation (CUP), so the door is still open for algorithms working on classes of problems

that are not (CUP).

It is clear that for a given optimization problem there exist more appropriate

algorithms to solve it. The selection of the more appropriate algorithm could be based

on a prediction process where the aim is the a priori knowledge of the success or failure

(performance) of algorithms before running them; even, this knowledge can also guide us in

the determination of the best input parameters. To make the prediction task, an option is the

construction of learning models; to construct such models it is necessary the establishment

of a dataset containing predictor and target values; the predictor values can be related to the

most important features of problems and the target values with the difficulty (performance)

of algorithm to solve the problems.

One of the most successful techniques to face the prediction problem is the Fitness

Landscape Analysis (FLA). FLA uses a set of Fitness Landscape (FL) metrics to measure

different aspects of the landscape depicted by the cost function of the optimization problems.

The main questions to be answered with respect to the use of FL metrics are: what are the

most accurate metrics?, what are the most desirables metrics, metrics focused in the problem

or in the algorithm?, and what is the best method for the usage of a set of metrics?

1.3. Hypothesis

It is possible to create a model that predicts the peformance exhibited by Genetic

Algorithms solving continous optimization problems.

6 Chapter 1: Introduction

1.4. Objectives

The main objective is to develop models capables of predicting the performance of

Genetic Algorithms on optimization problems in the continuous domain in two dimensions.

1.4.1. Particular Objectives

To generate the dataset is necessary the usage of fitness landscape features which

serve as predictors, and GA performance values for the target values, in both cases, the

computation of features and the GA performances are based on benchmark functions in

the continuous domain. Once the dataset is conformed, the next step is the selection of the

most accurate learning models. A direct output of the learning models is an application to

Recommend Population Size (RPS).

1.5. Contributions

The main contributions of this work are the following.

• The development of learning models using as predictor variables, a set of fitness lands-

cape metrics and GA input parameters, and as target variables, GA performance

values. In this case, the models obtained an accuracy of 90%.

• The construction of learning models considering only fitness landscape measures as

predictive variables, and performance values (averaging the performance on a set of

different precisions) as target values. The learning models were based on a set of

population sizes with an accuracy around of 72%.

• A direct application of the models is a procedure to recommend population for the GA:

for a given optimization problem, the procedure recommends the minimal population

size to get an acceptable approximation to the optimal solution.

• A Fitness Landscape Analysis on a real life application was performed. The analysis

was performed on three instances of the University Course Timetabling Problem;

Based on the analysis, a recommendation of population size for the GA was performed.

1.6. Publications 7

1.6. Publications

1.6.1. Journal Papers

• Models to Classify the Difficulty of Genetic Algorithms to Solve Continuous Optimi-

zation Problems. Noel Rodriguez, Juan J. Flores, Mario Graff, Sébastien Verel. Sent

to Soft Computing, Springer, ISSN 1432-7643, Impact factor 1.271.

1.6.2. Conference Papers

• Predicting the RCGA Performance for the University Course Timetabling Problem.

Noel Rodriguez, Juan J. Flores, Mario Graff. An International Symposium on Inte-

lligent Computing Systems (ISICS), Communications in Computer and Information

Science (CCIS) series, Springer. Merida, Mexico, on March 16th - 18th, 2016.

• Performance Classification of Genetic Algorithms on Continuous Optimization Pro-

blems. Noel Rodriguez, Mario Graff, Juan J. Flores. In Nature-Inspired Computation

and Machine Learning, Springer International Publishing, pp. 1-12, Vol. 8857, ISSN

0302-9743, DOI 10.1007/978−3−319−13650−9 1. Mexican International Conference

on Artificial Intelligence (MICAI) 2014. Tuxtla Gutierrez, Chiapas, Mxico.

• Solving a Scholar Timetabling Problem Using a Genetic Algorithm Study Case: Ins-

tituto Tecnolgico de Zitcuaro. Noel Rodriguez, Jose Martinez, Juan J. Flores, Mario

Graff. In Artificial Intelligence (MICAI), 2014 13th Mexican International Conference

on, IEEE, pp. 197-202, DOI 10.1109/MICAI.2014.36. Mexican International Confe-

rence on Artificial Intelligence (MICAI) 2014. Tuxtla Gutierrez, Chiapas, Mxico.

1.7. Thesis Outline

Chapter 1 introduces the main concepts and definitions used in this work. Firstly,

the problem and motivation are established, followed by the hypothesis and the main ob-

jectives, finally the main contributions and related publications are presented.

Chapter 2 establishes the main research works related with two schemas of fitness

landscape metrics (descriptive and dynamic) used in this work are also presented.

8 Chapter 1: Introduction

Chapter 3 defines all the concepts and metrics used in this work. The chapter firstly

presents a brief introduction on fitness landscape analysis, then, descriptive and dynamic

metrics are defined.

Chapter 4 introduces to optimization methods based on local and global search.

Firstly, a definition of optimization tasks is presented, secondly, some methods based on

local search are presented, finally, the main method used in this work based on global search

(RCGA) is described.

Chapter 5 presents the main contribution of this work, the models to classify

the performance of RCGA. The first part states the problem, the second part defines the

equations to support the computation, the third part shows the procedure to construct the

dataset followed by the Random Forest procedure, and finally is presented the Procedure

to Recommend Population size.

Chapter 6 shows the results obtained by the proposal. Firstly, the benchmark

problems and parameter setting used are presented. Secondly, the accuracy obtained by the

models are described. Thirdly, the algorithm and results of the procedure to recommend

population size are analyzed. Finally, a real life application of fitness landscape metrics is

presented; the application is based on the characterization and prediction of the University

Course Timetabling Problem.

Chapter 7 presents a brief discussion on the results obtained. The main conclusions,

and further research are also presented.

Chapter 2

Related Work

This chapter presents some of the most important work for the prediction of the

performance exhibited by EA in the solution of optimization problems. Section 2.1 presents

a brief introduction, Section 2.2 presents some of the most representatives measures based

on problem’s characteristics, Section 2.3 reviews some of the most representative measures

based on algorithm’s evolvability, Section 2.4 presents some representative approaches based

on a set of measures to characterize optimization problems, and finally, Section 2.5 presents

a brief summary.

2.1. Introduction

The first effort to try to predict the hardness of problems was introduced by Wright

in 1932 in the theoretical genetics field [Wright32]. Wright studied evolution through the

relationship between the genotype space (organism) and its reproductive success. Wright’s

approach can be viewed as a metaphor of an optimization process: searching through the

search space to find the optimal solution. This metaphor was called Fitness Landscape

(FL): where for each point in the search space, corresponds a fitness value, those values

depict peaks, valleys, smooth areas, etc. Basically, the FL represents a geometric form of an

optimization problem. To perform FL analysis, different features of optimization problems

9

10 Chapter 2: Related Work

are considered, e.g., rate of smoothness, and rate of ruggedness, among others. It is clear, for

example, that a smooth landscape with a single optimum will be relatively easy to search

for many algorithms, while a very rugged landscape, with many local optima, may be more

problematic [Horn95, Kauffman91].

A natural way to establish the success or failure of EA in the solution of optimiza-

tion problems is related to its performance. In this work, we define performance as the rate

of success to find the global optimal in a set of trials. In the beginning, researchers tried to

predict the performance exhibited by EA using a single FL feature [Grefenstette92], e.g.,

they tried to predict the performance with the rate of ruggedness of the landscape. In the

last decades, researchers have tried to predict the EA’s performance with algorithms featu-

res [Vanneschi06a], i.e., they tried to relate the performance with the capacity of evolution

of individuals in a particular metaheuristic. In both cases, there are no general conclusions,

in the majority of approaches, the prediction was acceptable only for some problems. Re-

cently, a large number of works suggest for prediction, the use of a set of metrics to obtain

the major features of problems and algorithms. In this sense, thre is necessary the use of

metrics to capture the description and dynamic of the search process.

2.2. Approaches Based on Descriptive Problem Features

Deb and Goldberg [Deb93] analized the level of deceptiveness on trap functions

using GA; they relate the level of deceptiveness with the hardness of problems. Grefenstette

[Grefenstette92] demonstrated that deceptiveness in isolation is not determinant to relate

it with the difficulty of optimization problems for GA. Naudts and Kallel [Naudts00b] used

epistatis variance and fitness distance correlation as difficulty metrics; they concluded that

metrics in isolation are not capable of distinguishing between easy and hard problems.

Reeves and Wright [Reeves95] used epistasis as problem difficulty in bit-string problems

using GA, their conclusions showed a low relation between problem difficulty and the level

of epistasis. Horn and Goldbert [Horn94] performed the first experiments for the relation

between the level of multimodality in optimization problems and the difficulty in GA to

solve the problems; they concluded that the ruggedness itself, is not determinant of the

2.3. Approaches Based on EA’s Dynamics 11

difficulty presented by the search space.

In the field of Genetic Programming (GP), there are many models to predict

the performance of GP systems on different types of problems. Graff and Poli proposed a

performance model [Graff10]; the main idea is that the performance of a GP system for

a given problem can be estimated using a set of points from the search space. Later on,

Graff et al. proposed another performance model [Graff12], based on the discrete derivative

of functions, and, consequently, it has only been tested on symbolic regression problems.

These two models have been successfully applied to symbolic regression, boolean induction,

and time series forecasting [Graff13], among other types of problems.

In [Huang09], the authors perform an optimization process to find the best alloca-

tion in a wireless communication problem (a combinatorial problem); the authors performed

a fitness landscape analysis (using ruggedness and fitness distance correlation as FL me-

trics) to find the appropriate local search, and the appropriate genetic operator within a

Memetic Algorithm process; the results confirm the adequacy of fitness landscape analysis

to the study of combinatorial problems.

2.3. Approaches Based on EA’s Dynamics

EA dynamics (evolvability) refers to the efficiency of the evolutionary search

[Vanneschi04a], that is, the level of improvements to find the optimal, in an evolutionary

process. One of the first tools to measure the level of improvements in an EA process, was

the Fitness Cloud (FC), proposed by Verel et al. [Verel03]; FC measures the level of evolva-

bility depicted by the fitness of individuals against the fitness of its corresponding neighbors

in a search process.

Jones proposed a landscape graph-based model [Jones94], basically, the model is

a labeled graph (vertex and edges) which is designed to study landscapes from the point

of view of the EA evolvability (capacity to walk through the landscape). Jones suggests

[Jones95b] that each genetic operator in a GA process describes its own landscape (one

operator, one landscape), this implicates that in the evolvability of a search algorithm, it

12 Chapter 2: Related Work

is necessary the consideration of the genetic operators associated to such algorithm; in the

case of GA, the associated genetic operators are: selection, mutation, and crossover.

Jones and Forrest proposed Fitness Distance Correlation (FDC) [Jones95c] as a

metric to measure the level of deceptiveness on problems coded as binary strings using GA

as solver. Their main proposal relates the difficulty of the search with the deceptiveness of

problems: the more deceptive problem, the harder to solve. To compute the deceptiveness,

FDC measures the correlation between a set of fitnesses and its corresponding distances to

the global optimum; to compute the distances, it is necessary to know a priori the global

optimum. FDC was tested in some families of optimization problems with good results,

however, there are counter examples about the use of FDC. Müller et al. [Müller11] used

FDC as an indicator of the global structure for the problems proposed in the CEC2005

(Congress of Evolutionary Computation) contest, which consisted on the solution of black

box optimization problems. They proposed the use of euclidean distances to set the distances

in FDC; the results showed that FDC is able to distinguish some global structures and can

serve as landscape descriptor.

Related to the concepts of evolvability and Fitness Cloud (FC), Vaneschi et al.

[Vanneschi06a, Vanneschi06c] propose the use of Negative Slope Coefficient (NSC) to try

to predict the hardness of Genetic Programming problems. NSC tries to determine the

evolvability in a search process, such evolvability is related to the hardness of optimi-

zation problems. To determine the evolvability, NSC uses slope values plotted on a FC;

the hypothesis is summarised as follows: the more negative the slope, the harder the pro-

blem [Vanneschi04a]. Vanneschi used the NSC [Vanneschi08] to characterize the difficulty of

real life applications (pharmaceutical applications) to select the best Genetic Programming

configuration, among a set of configurations. The results showed a reliable GP configuration

for all the experiments. Picek et al. [Picek09] proposed an improvement of the Negative Slo-

pe Coefficient called New NSC. The proposal is based on the assumption that the original

NSC failed to get the difficulty of some discrete optimization problems (unitation functions);

the New NSC recalculates the negative slopes through the use of two single points for each

segment in the FC. These results showed a strong relation between problem difficulty and

2.4. Approaches Based on Problem and Algorithm Features 13

the slope value on the proposed problems.

2.4. Approaches Based on Problem and Algorithm Features

To get a more accurate prediction about the hardness associated to optimization

problems using EA, some authors suggest the use of a mixture of features of problems and

algorithms. Caamaño et al. [Caamaño10, Caamaño13] used a set FL features (modality

and deceptivity) to characterize optimization problems in the continuous domains using

three different optimization solvers; the results showed the correlation between separability

and multimodality, and the performance obtained by the solvers. Malan et al. [Malan09,

Malan13] proposed to characterize problems before trying to predict their performance;

based on the problem’s characteristics the users can select the best EA to solve the problem.

In some works the authors used FL features to construct learning models to try

to predict the hardness associated to optimization problems using a particular optimization

solver. Trujillo et al. [Trujillo12b, Trujillo11] made a learning model based on a black box

process: from a set of Genetic Programming problems, their FL features were passed as

predictor variables and the performance obtained by the solver as the target value. In their

study, they used dynamic and static FL features, and concluded that the static features

were more correlated with the performance. Mario Muñoz et al. [Muñoz15] proposed a clas-

sification model based on a data driven method, Information Content of Fitness Sequences

(ICoFiS). They efficiently categorized real optimization problems. Malan et al. [Malan14]

created a learning model for the classification of the performance of 7 different PSO variants

in two classes. The dataset consists of 24 benchmark functions with different dimensionality,

having a total of 116 problem instances. As predictive attributes, the model uses 11 fitness

landscape features (including the dimensionality) and four kinds of performance measures.

The results showed accurate models with an accuracy above 90%.

Recently many works have been emerging due to the popularity of the Genetic

and Evolutionary Computation Conferenc (GECCO) workshop Black Box Optimization

Benchmark (BBOB) [Auger12] and more recently at the IEEE Congress on Evolutionary

14 Chapter 2: Related Work

Computation (CEC’2015), where the participants test the performance of their heuristics

COmparing Continuous Optimisers (COCO) [Hansen10]. COCO is a real-parameter optimi-

zation platform where the users can prove systematically diverse optimization solvers on a

set of real-optimization problems (benchmark functions). Olaf Mersman et al. [Mersmann11]

proposed the use of a reduced number of fitness landscape features (low-level features) for

the classification of the BBOB, they classified efficiently the problems into 6 categories.

More recently Bischl et al. [Bischl12] suggested the use of low-level features proposed by

Mersman et al. [Mersmann11] to characterize the fitness landscape of BBOB functions. For

the characterization they used the Exploratory Landscape Analysis (ELA) where the cha-

racterization is performed prior to optimize. Another approach is based on cell mapping

techniques (global behavior of non linear dynamical system) [Kerschke14], the experiments

showed interesting dynamic characteristics of fitness landscapes. In [Asmus14] the authors

propose the use of Formal Concept Analysis, and the set of functions contained in BBOB for

the construction of a recommended system for black optimization. They use fitness distance

correlation [Jones95c] and ICoFiS [Muñoz15] as fitness landscape metrics. Their goal is the

recommendation of the most suitable algorithm for the solution of a given problem.

2.5. Summary

This chapter introduced some of the most relevant work on the characterization

of optimization problems, and the prediction of performance of EA. Currently, there is not

a final conclusion about the best set of features for the characterization and prediction

of performance; the most accurate approaches are based on a set of features of problems

and algorithms. The majority of approaches try to determine the most representative fitness

landscape features for characterization and prediction, generally on a small set of predefined

functions, while in this work we perform the characterization using a large set of benchmark

functions. Additionally, we employ the resulting models for the construction of a system to

recommend population size.

Chapter 3

Real-Coded Genetic Algorithms

for Optimization

Optimization is the process of finding the best element, between a set of alternati-

ves, that maximizes a profit criterion. Solvers are algorithms that perform the optimization

process. Some of the most popular and efficient solvers are based on populations, particu-

larly on EA; hence the interest for the study of its behavior. In this chapter, Section 3.1

introduces to the optimization concept, Section 3.2 provides a brief introduction to EA,

particularly to GA, finally, a brief summary is presented in Section 3.3.

3.1. Introduction

Optimization is the process of finding the best value or set of values that maximize

or minimize a given criteria, generally, specified as a function (optimization problem). The

first step for the establishment of optimization problem is to model it (artificial or real).

Modeling is the process of identifying the objective, variables, and constraints for a given

problem; once a model has been formulated, an optimization algorithm can be used to find

its solution [Nocedal06].

Formally, for a given function f , subject to the constraints ci, optimization is the

15

16 Chapter 3: Real-Coded Genetic Algorithms for Optimization

process to find the variable x that maximizes or minimizes the function (see Equation 3.1).

arg min
x∈RN

f(x)

subject to

ci = 0, i ∈ E

ci ≥ 0, i ∈ I (3.1)

where x is defined in the RN domain, E and I are set of indices for equality and inequality

constraints, respectively.

Generally, optimization problems are classified within discrete, continuous and

hybrid search spaces. The variables in the discrete optimization problems are integers from

a finite set (often very large), while for continuous optimization problems, the variables

are uncountably infinite, e.g. the set of real numbers [Nocedal06], and hybrid search spaces

which combining both types of variables. In literature we can find optimization methods

based on local search and others based on global search; in the first case the solver finds

only local solutions without taking into consideration global solutions, in the second case

the solver considers the global properties of the search within the predefined bounds. The

following section describes one of the most popular global search methods: Evolutionary

Algorithms.

3.2. Evolutionary Algorithms

Evolutionary Algorithms (EA), are population-based methods; to perform the

search process, these methods use a set of individuals or candidate solutions, those in-

dividuals evolve through time until an approximation to the optimum is reached [Blum03].

EA use mechanisms inspired by biologic evolution such as: reproduction, mutation, recombi-

nation, and selection. Generally, EA perform well approximating solutions to different types

of problems, because they do not make any assumption about the underlying fitness lands-

3.2. Evolutionary Algorithms 17

cape. At the beginning of the computation, the population are randomly initialized, the

objective function is evaluated for these individuals, then, the first generation is produced;

if the optimization goal is not reached, a new generation is produced.

EA include a group of several global optimization methods inspired by the Dar-

winian principle of nature’s capability to evolve through time to adapt to the environ-

ment [Boussäıd13]. Some of EA’s most representative methods are: Genetic Algorithms,

Evolutionary Strategies, Evolutionary Programming, Genetic Programming, Differential

Evolution, and Cultural Algorthms.

3.2.1. Real-Coded Genetic Algorithms

Genetic Algorithms (GA) were invented by John Holland in the 1960s at the

University of Michigan. Holland’s original goal was not to design algorithms to solve specific

problems, but rather to formally study the phenomenon of adaptation as it occurs in nature

and develop ways in which the mechanisms of natural adaptation might be imported into

computer systems. Holland’s GA is a method for moving from one population of individuals

represented by chromosomes -binary strings- to a new population by using a kind of natural

selection together with the genetics-inspired operators of crossover, mutation, and selection.

Each chromosome consists of genes (i.e., bits), each gene is an instance of a particular allele

(i.e., 0 or 1). The selection operator chooses those chromosomes in the population that

will be allowed to reproduce, and on average the fitter chromosomes produce more offspring

than the less fit ones. Crossover exchanges subparts of two chromosomes, roughly mimicking

biological recombination between two single-chromosome (haploid) organisms. Mutation

randomly changes the allele values of some locations in the chromosome [Mitchell96].

GA were originally developed to operate on bit-strings, if a GA user wants to solve

a continuous optimization problem, a codification-decodification process is necessary. Due

to its discrete representation, GA have difficulties when dealing with continuous search spa-

ces with large dimensions and high precision [Herrera98]. Generally, real-life optimization

problems are coded using continuos domains; for these types of problems, several optimiza-

tion algorithms have been developed. Some examples of evolutionary algorithms using real

18 Chapter 3: Real-Coded Genetic Algorithms for Optimization

encoding are: ant colony optimization, artificial bee colony algorithm, evolution strategies,

differential evolution, and particle swarm optimization, among others. GA with a continuous

encoding is known as the Real-Coded Genetic Algorithms (RCGA), where its variables are

a direct representation of the continuous search space.

Literature reports that, for some problems, the real-coded representation and as-

sociated techniques outperform the conventional binary representation [Yoon12]. RCGAs

have shown their ability to solve a wide variety of real-world problems, they have been

applied to parameter estimation, neural networks, aerospace design, biotechnology, econo-

mics, and constrained parameter optimization problems [Ortiz-Boyer07]. The performance

of GA depends on the operators selection, mutation (type and rate), and crossover (type

and rate). Population size plays a crucial role in the performance of GA: a small population

finds good solutions, but it often gets stuck on local optima [Spears91].

Algorithm

The general operation of GA starts with a random population (chromosomes) se-

lected from the search space, the population advances toward better individuals by applying

genetic operators (selection, mutation, and crossover), then the population is replaced by

the new one; this iterative process is called generation [Herrera98]. The GA general process

consists of three basic operations [Herrera98]: evaluation of individual fitness, formation

of a gene pool (intermediate population) through a select mechanism, and recombination

through crossover and mutation operators. Finally, the best solution is returned. Algorithm

1 shows the general GA process.

3.2. Evolutionary Algorithms 19

Algorithm 1 Genetic Algorithm.

GA()
1 t← 0
2 initialize P (t)
3 evaluate P (t)
4 WHILE not termination
5 P ′(t)← recombine P (t) //crossover and mutation
6 evaluate P ′(t)
7 P (t+ 1)← select P ′(t)
8 t← t+ 1
9 return best solution

Representation is a key in the GA process, related with the level of expresive-

ness [Herrera98]. Some examples of GA representation are: Vectors of floating point num-

bers, vectors of integer numbers, and ordered list, among others.

3.2.2. Objective Function

In GA the objective function or cost function is the objective of problem; in mini-

mization problems is the model where we want to find its minimum value [Chipperfield94]:

f : RN → R

where f is the objective function, RN is the N-dimensional input parameter on the conti-

nuous space, and R is the output value on the continuous space.

Genetic Operators

The genetic operators guide the search towards solutions to a given optimization

problem. Generally, GA are related with three genetic operators: selection, mutation, and

crossover.

• Selection determines which individuals are chosen for recombination and how many

20 Chapter 3: Real-Coded Genetic Algorithms for Optimization

offspring each selected individual produces. There are many types of selection methods

[Mitchell96]: Fitness-Proportionate Selection, Sigma Scaling, Elitism, among others.

• Crossover is a method for sharing information between chromosomes, through the

mating of two parent chromosomes to form two offsprings [Herrera98]. Different types

of crossover operator have beed developed for RCGA [Ortiz-Boyer07, Chipperfield94,

Magalhaes-Mendes13, Kaya11]: Multi-point crossover, Flat crossover, Arithmetical

crossover.

• Mutation alters some components (genes) of a selected chromosome to increase the ex-

ploration capacities of population [Herrera98]. There are two types of mutations: boun-

ded and unbounded; for bounded, the most used are creep mutation and single-variable

mutation, and for the unbounded, the Gaussian mutation is the most used [Yoon12].

3.3. Summary

This chapter introduces to optimization and Evolutionary Algorithms. In a special

manner, the Real-Coded Genetic Algorithm (RCGA) was described, since RCGA is the

solver to be used in this work. To make an evolutionary algorithm efficient, it is necessary

to characterize the problem to be optimized. There are some guides to characterizate the

optimization problems; the following chapters establish some of the basis for this porpuse.

Chapter 4

Fitness Landscape Analysis

One of the first steps to predict the success or failure of EA is the characterization

of the optimization problem to be solved. One of the most successful techniques to charac-

terize an optimization problem is by performing a Fitness Landscape Analysis. This chapter

presents a general description of FLA, and the definition of the metrics used in this work.

Section 4.1 introduces to FLA, Section 4.2 defines the descriptive FL metrics, and Section

4.3 defines the dynamic FL metrics.

4.1. Introduction

In optimization and particularly in the field of EA, one of the most important

questions to be answered is, what features or set of features make an optimization problem

difficult to solve? In a natural way, the user generally makes assumptions about the hard-

ness of optimization problems; problems with a funnel structure (as the sphere function)

generally are easy to solve and problems with many local optimal (as Schwefel’s function)

are difficult to solve. To predict the complexity presented by the optimization problems, it

is necessary the understanding of global and local structures presented in landscapes; this

understanding is commonly known as characterization. If we are able to characterize most

features of optimization problems, we can construct a learning model to predict the success

21

22 Chapter 4: Fitness Landscape Analysis

or failure of the solvers (e.g. GA).

Currently, there is not a successful technique in the EA field, that ensure an ac-

curate estimation of difficulty for the majority of optimization problems [Malan09]. Fitness

Landscape Analysis (FLA) groups a set of FL metrics for the characterization of optimi-

zation problems. Those metrics are capable of measuring different features of problem and

solver, for the purpose to provide insights about the hardness presented by the solver in the

solution of optimization problems [Malan09].

Ruggedness, smoothness, basins of attraction, and deceptiveness appear as some

of the most important features to relate the difficulty of optimization problems. However, in

isolation, these features are not sufficient to describe the difficulty of optimization problems

when they are solved by EA [Caamaño10, Jones95a]. It is necessary the usage of a set of

FL features, that ensure a more accurate prediction. This approach uses different difficulty

metrics to measure different features of optimization problems. The set must capture the

most representative features of problems and the evolutiveness of EA. To do this, this

work proposes the use of two types of FL metrics: descriptive and dynamic [Malan09,

Merkurjeva11, Reidys02]. Descriptive metrics focus on the problem’s features while dynamic

metrics focus mainly on the algorithm.

4.2. Descriptive metrics

The descriptive metrics used in this paper are: Ruggedness, Neutrality, Basins of

attraction, and Epistasis. The rest of the sub-section describes those metrics.

4.2.1. Neutrality

Neutrality was introduced in biological evolution theory by Kimura [Kimura83].

In the field of EA, neutral regions are areas of the FL that have similar fitness values

[Galván-López06], i.e. similar fitness values within a neighborhood. Neutrality is the rate

of neutral areas in S ; in Equation 4.1 we compute an estimation of neutrality based on the

sample S . To compute neutrality, we estimate the rates of equal fitness (neutral regions)

4.2. Descriptive metrics 23

contained in the neighborhoods of S .

neutralityS(δ, γ) =

∑
s∈S

|NN S (s,δ,γ)|
|NS (s,δ)|

|S | (4.1)

where S is a set of points from the search space, δ is the maximum distance between

neighbors, and γ is the maximum distance between two fitnesses considered as similar,

NN S(·) is the neutral neighborhood function (defined in Equation 4.2), and NS(·) is the

neighborhood function defined in Equation 4.3.

NN S(s, δ, γ) = {∀s′ ∈ S |s 6= s′ ∧ dE(s, s′) ≤ δ ∧ dE(f(s), f(s′)) ≤ γ} (4.2)

NS(s, δ) = {s′ ∈ S |s 6= s′ ∧ dE(s, s′) ≤ δ} (4.3)

High rates of neutrality, are not desirable in an FL to produce a suitable evolutive

environment [Smith02], i.e. neutrality can affect the distribution of local optima and as a

consequence the success of searching [Malan13].

4.2.2. Ruggedness

Ruggedness is a measure related to the number of peaks surrounded by valleys in a

FL; a problem has a high degree of ruggedness when the fitness function in the search space

has a high rate of changes [Vassilev99, Lobo04, Pitzer12]. In a rugged FL, the individuals

of many EA can get trapped in local optima as a consequence of premature convergence

[Malan13]; generally, the more rugged a function is, the harder to optimize it [Weise09].

There are many techniques to measure the level of ruggedness [Weinberger90, Lipsich91],

however the information retrieved is be considered as basic and not reflect problem difficulty

[Mattfeld99]. Vassilev et al. [Vassilev00] propose the use of information theoretic technique

24 Chapter 4: Fitness Landscape Analysis

for analyzing the ruggedness of discrete fitness landscapes based on entropy, Malan et al.

take the Vassilev’s proposal to be used in continuous domain [Malan09]; this work is based

on the adaptation of Vassilev’s work proposed by Malan on the continuous domain.

Entropy measures ruggedness by means of three-point paths; a three-point path is:

neutral when the points have similar fitnesses, smooth when the fitnesses of points change

in one direction, and rugged when the fitnesses of points change in two directions [Malan09].

To compute the rate of ruggedness it is necessary to consider the sequence {φt}nt=0 of fitness

values picked from a simple random walk on Ω. The aim is to extract information from

the sequence of shapes. The information is represented by a string S(γ) = s1s2s3...sn of

symbols si ∈ {1̄, 0, 1} obtained by Equation(4.4).

si = Ψφt(i, γ) =

1̄, if φi − φi−1 < −γ

0, if |φi − φi−1| ≤ γ

1, if φi − φi−1 > γ

(4.4)

Parameter γ is a real number that determines the accuracy of the calculation for S(γ).

Equation (4.5) estimates the ruggedness rate through the entropic measure H(γ) exhibited

by the sequence S.

H(γ) = −
∑
p6=q

P[pq]log6P[pq] (4.5)

where p and q are elements from the set {1̄, 0, 1}, and the number 6 in the log function

represents all possible shapes of the sequence (rugged shapes). P[pq] is defined according to

Equation 4.6.

P[pq] =
n[pq]

n
(4.6)

4.2. Descriptive metrics 25

where n[pq] is the number of sub-blocks pq in the sequence S(γ). For each rugged element,

P[pq] calculates the probability of occurrence of that element. H(γ) ∈ [0, 1] is a rate of the

variety of shapes present in the Fitness Landscape. The higher the value of H(γ), the wider

the variety of rugged shapes in S [Malan09].

4.2.3. Basins of Attraction

Basins of attraction are areas in the search space that lead to a local optimum

[Pitzer10]. That is, a basin of attraction is a region containing a single locally optimal

attractor, where all the points contained in it, are attracted by the basin [Xin09]. In this

work, it is approximated the set of basins of attractions by the proportion of local optima

found in S ; Equation 4.7 computes the proportion of local optima found in S , based on the

neighborhood NS .

BS(δ) =
|{s ∈ S |H(s, δ)}|

|S | (4.7)

δ is the maximum distance between neighbors, H(·) is a hill-climber algorithm that calcu-

lates the number of local optima (attractor) for each point in S (see Equation 4.8).

H(s, δ) = {s′ ∈ NS(s, δ)|f ′∗ ≤ f(s′)} (4.8)

where NS(·) is the neighborhood function defined in Equation 4.3, and f ′∗ is the minimum

fitness value found in the neighborhood. A procedure for determining the attractors is

mentioned in [Ochoa08].

4.2.4. Epistasis

Epistasis was introduced in GA by Davidor [Davidor90] as an indication of problem

difficulty. Epistasis is defined as the effect of one gene being dependent on the presence

of one or more modifier genes, that is, the effects of a set of genes caused on another

26 Chapter 4: Fitness Landscape Analysis

set of genes (the gene interaction); in a fitness function, this metric measures the level of

separability of variables. It is possible to measure the level of epistasis through an Analysis of

Variance (ANOVA). An analysis of variance measures the level of the contribution of factors

(variables) in a model (fitness function); in this case we are interested in the interaction

between factors. Chan et al. [Chan03] have adapted ANOVA on optimization problems in

continuous domains. To measure the variance, the variability of fitness values are measured

by the sum of square deviations from the mean fitness (SS), partitioned in its orthogonal

components. To measure the level of epistasis in optimization problems (in two dimensions),

we are interested in getting to know the level of interaction between variables x and y.

Equation 4.9 measures the level of epistasis (contribution) of the variables x and y in a cost

function f .

SSxy =
1

|S |
∑
x∈S

∑
y∈S

f(x, y)− 1

|S |2 (
∑
x∈S

∑
y∈S

f(x, y))2 − SSx − SSy (4.9)

where SSx and SSy are the level of contribution of factors x and y into the model, and

SSxy is the contribution for both variables x and y. Equations 4.10 and 4.11 compute the

level of contribution for the variables x and y, respectively.

SSx =
1

|S |
∑
x∈S

(
∑
y∈S

f(x, y))2 − 1

|S |2 (
∑
x∈S

∑
y∈S

f(x, y))2 (4.10)

SSy =
1

|S |
∑
y∈S

(
∑
x∈S

f(x, y))2 − 1

|S |2 (
∑
x∈S

∑
y∈S

f(x, y))2 (4.11)

4.3. Dynamic metrics

Dynamic metrics try to capture the difficulty of optimization problems from the

point of view of the algorithm, that is, the level of algorithm’s evolvability. Wagner and Al-

4.3. Dynamic metrics 27

tenberg [Wagner96] define evolvability as the genome’s ability to produce adaptive variants1

on genetic systems; the adaptive changes depends critically on the genotype-phenotype map.

To measure the hardness of problems, this approach considers the intrinsic features of EA,

e.g. genetic distance between individuals, rate of improvement in neighbors of individuals,

etc. All those features are expressed in terms of genetic operators (e.g. selection, mutation,

and crossover) or evolvability (the level of improvements between individuals and their

neighbors). This work uses two of the most successful metrics: Fitness Distance Correla-

tion, and Negative Slope Coefficient. The following subsections describe these metrics.

4.3.1. Fitness Distance Correlation

Fitness Distance Correlation (FDC), was developed by Jones and Forrest [Jones95c];

it was one of the first metrics devised to predict the difficulty of EA to solve optimization

problems. FDC measures the level of deceptiveness of optimization problems; generally, de-

ceptiveness mislead the search to local optima rather than to global optima [Chen08]. The

main advantage of FDC is that it has been proved, as a suitable indicator of problem diffi-

culty in GA and Genetic Programming [Vanneschi02, Vanneschi06a, Vanneschi05, Pitzer12].

Its main disadvantage is that the optimal solutions must be known a priori, which is unrealis-

tic in most applications [Vanneschi04b, Altenberg97, Naudts00a, Vanneschi05]. Nonetheless,

this work uses this metric because the global optimum is known for all the problems in the

training and test sets.

Let f be the function to optimize (with a global optimum located at x∗), S a set of

n individuals scattered through the function’s domain, Φ = {φ1, ..., φn} the corresponding

evaluations of the objective function at those points, and D = {d(x1, x
∗), ..., d(xn, x

∗)} the

distance of the individuals to the global optimum: fdc is defined by Equation 4.12.

fdc =
CΦD

σΦσD
(4.12)

1Variation is the present differences among the individuals in a population [Wagner96]

28 Chapter 4: Fitness Landscape Analysis

CΦD =
1

n

n∑
i=1

(φi − φ̄)(di − d̄) (4.13)

where σΦ and σD are standard deviations, φ̄ and d̄ are means of Φ and D, respectively, and

the covariance of Φ and D is defined by Equation 4.13.

Jones proposes the use of the Hamming distance as the distance associated with

individuals and the optimal solution in a bit-string GA context. In a more general evolutio-

nary computation context, they suggest as measure of distance the use of genetic operators

that count the number of steps of indiviuals to reach the global optimum [Jones95c].

4.3.2. Negative Slope Coefficient

NSC was developed by Vanneschi et al. [Vanneschi06a] to capture the evolvability

of EA; evolvability is the capacity of genetic operators to improve the fitness quality of

individuals [Pitzer12]. To measure evolvability, NSC uses the concept of Fitness Cloud

(FC): the fitnesses of individuals against the fitnesses their neighbors are plotted creating a

cloud of evolvability (the level of improvement between individuals and neighbors) [Verel07].

In a FC each set of individuals (bins) creates a cloud, that cloud represents the neighbors’

improvements; all the clouds have a centroid (the mean of fitness for the x and y axis), those

centroids serve as points to trace a line and its related slope is the key of this measure. The

main disadvantages of the usage of NSC is the fact that its values are not normalized

[Pitzer12, Vanneschi06a, Vanneschi06b], and that NSC does not converge for large samples

[Vanneschi09].

To compute NSC, we use S as an approximation of the search space Ω. Let S be a

set of individuals, f is a fitness function that assigns a real value to each individual x, and

Vxj = {vj1, v
j
2, ..., v

j
mj} the set of neighbors of a given individual xj , ∀j ∈ [1, n]. The neighbors

are obtained by applying one step of a genetic operator. The FC can be visualized as a

plot where abscissas are the set of all individuals’ fitnesses, and the ordinates the fitnesses

of their neighbors, see Equation (4.14).

4.4. Fitness Landscape Computation 29

FC = {(f(xj), f(vjk)), ∀j ∈ [1, n],∀k ∈ [1,mj]} (4.14)

where n is the number of individuals and m is the number of predefined neighbors for each

individual.

Once the fitness cloud is determined, each element of abscissas and ordinates

are split into k segments {I1, I2, ..., Ik}, {J1, J2, ..., Jk}. Then, the averages of abscissae

{M1,M2, ...,Mk} and ordinates, {N1, N2, ..., Nk} are calculated. The segment set S =

{S1, S2, ..., Sk−1}, where each Si connects the points (Mi, Ni) to point (Mi+1, Ni+1) is crea-

ted. The slope set P is calculated, where Pi = (Ni+1 − Ni)/(Mi+1 −Mi), ∀i ∈ [1, k − 1].

The Negative Slope Coefficient is computed by Equation 4.15.

nsc =
k−1∑
i=1

min(0, Pi) (4.15)

Vanneschi et al. [Vanneschi06a] proposed the following hypothesis with respect to

nsc: negatives values correspond to difficult problems, and values equal to 0 correspond to

easy problems.

4.4. Fitness Landscape Computation

To illustrate the metrics described in this section, we performed a Fitness Lands-

cape Analysis on three benchmark functions (complete definition in Appendix A.1); the

following figures represent functions in two dimensions: Rastrigin, sphere and Easom.

30 Chapter 4: Fitness Landscape Analysis

Figure 4.1: Rastrigin function. Figure 4.2: Sphere Function.

Figure 4.3: Easom Function.

Figure 4.1 presents a rugged landscape, Figure 4.2 presents a single funnel struc-

ture, and Figure 4.3 presents a smoothness landscape. To compute the FLA on continuous

domains, it is necessary sample the search space for each function. E.g. the Rastrigin fun-

ction is defined within the boundaries [−5.12, 5.12], then we select 1000 points using random

uniform distribution and we calculate its fitness. The next step is the calibration of input

parameters for the FL metrics, based in our experiments, the following Table 4.1 shows the

parameters and its corresponding values for each metric.

4.4. Fitness Landscape Computation 31

Table 4.1: Input parameters for the Fitness Landscape metrics.

FL metric Parameter-value

Neutrality
δ = dE(Lb, Ub)× 0.1,
γ = |fmax − fmin| × 0.001

Ruggedness γ = |fmax − fmin| × 0.001

Basins of attraction δ = dE(Lb, Ub)× 0.1

Epistasis no parameters

Fitness Distance Correlation
distances = number of genetic
steps to reach the optimal

Negative Slope Coefficient
evolvability = one step of genetic
operators, FC=10 bins

Neutrality, Ruggedness and Neutrality use δ and γ parameters: the δ parameter

refers to the euclidean distance between individuals to be considered as neighbors within the

boundaries of the search space. In this case we set the distance to 10 % of lower and upper

bounds, the γ parameter refers to the level of sensibility of fitness values to be considered

as equals, we considered 1
1000 of the maximum distance between the lowest and maximum

fitness values. fmin and fmax are the minimum and maximum fitness values, respectively.

Epistasis needs only the fitness function to compute the level of interaction between varia-

bles. FDC uses a set of distances which are related to the number of genetic steps (genetic

operators) to reach the global optimum; to calculate such distances, we multiply the eucli-

dean distance of individuals and the global optimum by the euclidean distance of the fitness

of individuals and global optimum. NSC uses a set of individuals’ fitness values and the fit-

ness values of their neighbors (the neighbors are calculated using one step of generation of

GA). This set of fitnesses of individuals and their corresponding neighbors is called Fitness

Cloud (FC). The FC is divided into bins (10 bins) which serve as centroids to calculate a

set of slopes (in this case 9 slopes), and finally calculate the NSC.

Once the input parameters are calculated, the next step is the computation of the

metric, e.g., to compute NSC it is necessary the determination of 10 neighbors for each

individual (point). The neighbors are obtained applying genetic operators (mutation and

crossover) on each individual. Then we organize the fitness of individuals against fitness of

its neighbors in a two-dimensional space which is called Fitness Cloud. Next it is divided

32 Chapter 4: Fitness Landscape Analysis

the FC into bins: the boundaries of x-axis is divided into 10 bins (equally spaced), then,

for each bin is calculated its corresponding centroid (the medium point in x and y axis).

Finally, the centroids serve as points to calculate sum of the slopes (NSC) between the bins,

staring from the largest to the smallest fitness in the x-axis.

The following Table 4.2 summarizes the computation of the features.

Table 4.2: FLA on the UCTP instances.
Ruggedness Neutrality Epistasis B. of attrac. NSC FDC
µ σ µ σ µ σ µ σ µ σ µ σ

Rastrigin 0.57 0.02 0.02 0.0 0.0 0.0 0.32 0.09 -0.73 0.57 0.90 0.0

Sphere 0.52 0.02 0.03 0.0 0.0 0.0 0.17 0.028 0.0 0.0 0.98 0.0

Easom 0.0 0.0 0.97 0.0 0.98 0.0 0.76 0.01 -36.43 4.20 0.02 0.06

The experiments were repeated 100 times using 1000 points picked randomly from

uniform distribution over the search space for each function.

4.5. Summary

This chapter described the metrics used for the characterization of fitness landsca-

pe. In this work we proposes the categorization of fitness landscape metrics into two types:

descriptives and dynamics. Descriptive metrics measure the problems’ features, while dy-

namic metrics measures the behaviour of the searching process in GA. To visualize in more

detail the Fitness Landscape Analysis, a characterization of three benchmark functions were

performed using the proposed metrics, these metrics are the basis to support this work.

Chapter 5

Performance Classification Models

Predicting the performance of EA is a difficult task, literature presents a vast

number of works related to the prediction of performance of EA on optimization problems.

Nonetheless, there is not a final conclusion about this topic. This chapter states the main

contribution of this work, the models to predict the performance of GA on continuous

optimization problems in two dimensions. Section 5.1 introduces to the proposed model,

sub-Section 5.1.1 presents the problem statement, sub-Section 5.1.3 describes the procedure

for the generation of the dataset used by the models, sub-Section 5.1.4 shows the generated

models, and Section 5.2 describes the Procedure to Recommend Population Size.

5.1. Introduction

Predicting the performance of EA when solving optimization problems, is a difficult

problem. The predictor must consider different aspects that affect the search, e.g., which

are the most desirables problem features to perform a good search?, or what are the most

successful algorithm parameters for a given problem?.

This chapter presents a procedure called Performance Classification Models (PCM),

which creates models to classify the performance obtained by GAs on continuous optimiza-

tion problems in two dimensions. The models are based on supervised methods, particularly

33

34 Chapter 5: Performance Classification Models

Random Forests1. The models use FL features as predictor variables; those features are de-

rived from the objective function of optimization problems. We use FL metrics described

in the previous section: neutrality, ruggedness, basins of attraction, epistasis, fitness dis-

tance correlation and negative slope coefficient. These metrics capture both, problems’ and

algorithms’ features.

The optimization method used to derive performance and therefore difficulty is

the Real-Coded Genetic Algorithm (RCGA). To assign a difficulty measure for each pro-

blem, difficulty is approximated by the performance obtained by the GA to solve it. In

this work, performance is defined as the success rate for reaching the global optimum given

an error margin; to perform the experiments, the performance is discretized and classified

into two categories: easy, and difficult. Then, the target values for the learning models are

the discretized performances. The following paragraphs explain in more detail the proposed

procedure.

5.1.1. Problem statement

This work proposes a solution to the following problem: given an optimization

problem involving function f , derive models capable of predicting the difficulty encountered

by GA when solving it. We propose the use of several supervised learning models, the models

are related to population size and precision (error margin computation). The problem can

be solved by means of two approaches: using regression models or classification models. In

the first approach the idea is to find a regression model capable to predict the performance

of a given optimization function as in Equation 5.1.

Mn : F → p (5.1)

where Mn is a regression model related to a certain population size n, F are optimization

functions on the continuous domain, and p is the performance obtained by the GA in the

1Several learning methods were tested: Näıve Bayes, Multilayer Perceptron, Decision Trees, and Random
Forests, being Random Forests the most accurate.

5.1. Introduction 35

solution of F . The second approach is based on classification models (PCM); formally, the

models Mn are supervised models that map from a set of problems F to a set of difficulty

levels. See Equation (5.2).

Mn : F → {easy, difficult} (5.2)

where Mn refers to learning models related to a certain population size n, F is a set of

optimization functions on the continuous domain, and [easy and difficult] are the difficulty

of the GA in the solution of F .

The two approaches make use the concept of performance, in this work performance

is defined as the rate of successful GA trials, where the global optimum was found: the

number of trials, nT , is set to 100 and each trial contain a maximum of 1000 generations for

the GA. Due to performance is related with the GA operation, we related the performance P

with two GA input parameters: population size (n) and precision (ε); for different population

sizes and/or different precisions, we get different performances. For each f ∈ F , we consider

population sizes N = {50i}, i ∈ [1, 10] and precisions E = {10−i}, i ∈ [5, 10]. Perfomance is

defined by Equation 5.3.

Pn,ε(f) =
|{x|x = GAn,ε(f) and |f(x)− f(x∗)| ≤ ε}|

nT
(5.3)

where x is the solution returned by GAn,ε(f) — the GA-based problem solver with a popula-

tion size n and a required precision ε — and nT is the number of trials, that is, performance

is the rate of successful trials to find the global optimal according to certain population size

and precision. To discretizes the performance values, we make use the Function DI(·) defi-

ned in Equation (5.4). Basically DI(·) cathegorize: easy, to problems where its performance

is less than or equal to 0.5, and difficult, to problems where its performance is greater than

0.5.

36 Chapter 5: Performance Classification Models

DI(p) =

difficult, if 0 ≤ p ≤ 1

2

easy, if 1
2 < p ≤ 1.0

(5.4)

To construct the learning models it is necessary the computation of the FL features

on F ; the function Metrics of Difficulty (MoD) defined in Equation 5.5 computes the FL

features for a given problem specified by its objective function f .

MoD : F → R6 (5.5)

where F are optimization problems specified as functions on the continuous domain, and R6

is a six-dimensional vector in the continuous domain, the vector contains the corresponding

computation of FL features (ruggedness, neutrality, epistasis, basins of attraction, negative

slope coefficient and fitness distance correlation). FL metrics are defined in Chapter 4.

5.1.2. Average Performance

GA may or may not be successful in determining the optimum of a given problem;

since both the domain and range of the set of problems addressed in this work are real-

valued, it is very unlikely that any metaheuristic used for this optimization process to get the

exact optimum. Given that, we need to relax the optimization problem and obtain a quasi-

optimal value, to a given precision. In this scenario it is necessary take into consideration

different levels of precision, according to the optimization problem, to measure the search

ability in a more integral form, i.e. for a given problem where its optimal global value is

f(x∗) = 0 we can set the precision to 10−1 or 10−2, etc. and we measure the algorithm

capacities according to different levels of requirement.

Another important input parameter for GA is the population size, it is clear that

varying this value we can get different outputs: generally, to more population size we get

better results, that is, varying the population size we get different approximation to the

global optimum. For instance for a given optimization problem with a single-funnel global

5.1. Introduction 37

optimum (easy problem) varying the population size perhaps is not relevant than in op-

timization problems with multiple global optima (hard problem). In this work we set the

crossover and mutation rates to 70 % and 30 % respectively, depending the GA search ability

to only two parameters: precision and population size.

In previous work [Rodriguez-Maya14a] we performed different performance values

considering different population size and precision values: for a given optimization function f

we computed the performance using different population sizes (PS), PS = {50, 100, ..., 500}

and different precision values (PV), PV = {10−i}, i ∈ [1, 10] for the GA. Then, the perfor-

mances obtained were discretized into three categories and we called to these values Relative

Difficulty (RD). RD(·) discretized a performance value into three categories as in Equation

5.6.

RD(p) =

difficult, if 0 ≤ p ≤ 1

3

medium, if 1
3 < p ≤ 2

3

easy, if 2
3 < p ≤ 1.0

(5.6)

To construct the learning model, the training used as predictor variables the six

FL features described in section 4 and the combination of PS and PV , and as objective

values, the discretized performance values, those values were performed on 110 benchmark

optimization problems containing a total of 11, 000 rows (110×10×10 functions, PS and PV,

respectively). The experiments were performed using different machine learning techniques

implemented in WEKA [Hall09], using 10-fold cross-validation to measure its accuracy.

The results showed that Random Forest obtained the best accuracy with 96 % of correct

classification.

Despite the accuracy of models created from the data described above, an ideal

data set must consider only FL features as predictors and its corresponding performance va-

lue as objective. As we have discussed the performance associated to optimization problems

is relative to the input parameters to the algorithm, in this case, the input parameters to

38 Chapter 5: Performance Classification Models

the GA. Then, it is necessary a mechanism to extract the most valuable information rela-

ted with the performance: average performance. The average performance is the mean of

performances obtained in a set of performances computed through a fixed population size

and different precision errors, that is, the performance for a population size is the mean of

performance considering different precision errors (ε = 1× 10−i, i ∈ [5, 10]). We considered

the average performance as an measure of performance since the variation of population

size and error margin (precision) affects the final performance, then an indicator of perfor-

mance considering those variations is the average performance. For instance, the following

Figure 5.1 shows the computation of average performance for different population sizes on

110 benchmark optimisation problems.

Figure 5.1: Average performance for ech f ∈ F considering different population sizes.

where the x axis are the population sizes, and, the y axis the normalized average perfor-

mance. The figure shows that the performance for some problems does not tend to improve

(maintaining the performance below 0.5), while others, its performance increases at the

same time that population size. This behavior in the majority of bins (dotted lines), the

performances are grouped into two groups, between 0.0 ≤ p ≤ 0.5 and 0.5 < p ≤ 1.0 ap-

proximately; we can consider this as an indication of problem’s difficulty. This fact leads to

5.1. Introduction 39

grouping functions is two classes, according to difficulty: difficult and easy.

5.1.3. Dataset

The dataset D is defined by the couple D = 〈M,P〉, where M are the fitness

landscape features of F (see Equation 5.5), and P are the performance values of GA when

solving functions in F (see Equation 5.4). The idea is to make as many models as population

sizes; i.e., 10 learning models. To make a learning model Mn which considers a specific

population size n, its predictor variables Mn are the fitness landscape features of F , and

its target values Pn are the average performances. The average performance is computed

from the set of performances described by GAn,ε for ε ∈ E . Algorithm 2, Dataset, generates

the training set to produce a model Mn.

Algorithm 2

Dataset(n)
1 F = {110 optimization problems };
2 E = {1× 10−5, 1× 10−6, ..., 1× 10−10};
3 M = 〈〉;
4 P = 〈〉;
5 FOR ALL f ∈ F
6 sum = 0;
7 FOR ALL ε ∈ E
8 sum = sum+ Pn,ε(f);
9 avg = sum

|E| ;

10 M = append (M,MoD(f));
11 P = append (P , avg) or append (P , DI(avg)); //regression or classification
12 return 〈M,P〉;

F , and E are the sets of optimization problems, and level of precisions, respectively

(lines 2 and 3). M and P are the initial sequences (predictor and target) to be computed

(initialized in lines 3 and 4). For each f ∈ F and for each ε ∈ E the average of performance

is computed (lines 5-9). For each f ∈ F , a 6-dimensional array representing its FL features

is mapped through the MoD function (see Function 5.5) and stored in M (line 10), and

40 Chapter 5: Performance Classification Models

its corresponding average performance is established (in the case of classification, the per-

formance is discretized through DI function (see Equation 5.4)) and stored in P (line 11),

when, all the functions are considered to form the dataset, the dataset 〈M,P〉 is returned

by the procedure (line 12).

5.1.4. Model

The models (Mn) generated by PCM are based on Random Forest (RF) technique;

basically RF is an ensemble of random decision trees generated from the input dataset, the

final output is a combination of votes between the trees. The following Algorithm 3 shows

the basic operation of RF according to [Breiman01].

Algorithm 3 Random Forest method.

RF Ensemble(D)
1 FOR b = 1 to B
2 select a bootstrap sample d of size m from D
3 build a random decision tree Tb using d :
4 recursively repeat the following steps for each terminal node of Tb :
5 a. pick the best variable and set it as split-point.
6 b. split the node into two child nodes.
7 return the ensemble of trees {Tb}B1

The ensemble of decision trees are composed by B decision trees (Line 1), to build the

decision trees is necessary sampling the training data (Line 2). The samples are selected

in random and the size is an input parameter. For each decision tree, is selected (from the

set of variable) the best variable (according to different criterion), and it is set as the split

node (Line 5), and the node is split into two child nodes (Line 6). The process is repeated

recursively for each node (Line 4). Finally the ensemble of random trees is returned (Line 7).

In the case of regression, the predicted value at a node is the average response variable for

all observations in the node, and for classification, the predicted class is the most common

class in the node (majority vote).

5.2. Procedure to Recommend Population Size 41

5.2. Procedure to Recommend Population Size

One of the major problems when EA users face a new optimization problem is

the establishment of the input parameters, generally, they use the most used in literature

or the most successful on their projects. Some of the most common input parameters in

GA are: crossover rate, mutation rate, and population size [Stanhope98, Vasconcelos01].

Particularly, population size is a parameter related with the performance of GA (number

of function evaluations) being necessary its correct assignment. The following paragraphs

describe the proposal to compute the optimal population size for a given optimization

problem.

Based on the learning models generated by PCM, we can compute the population

size necessary to solve a particular optimization problem. The idea behind this proposal is

the parameter associated to the learning models: population size n. If models are capable of

determining the level of hardness associated to certain population sizes, we can construct a

procedure to determine the optimal population size where the problem is categorised as easy

problem. The procedure to Recommend Population Size (RPS) for GA (Algorithm 4) re-

commend an optimal population size for a given optimization problem, the recommendation

is based on the capacity of models to predict the hardness of optimization problems.

Basically, for a given optimization problem f , PCM finds the model Mn where f

is categorized as easy problem (see Equation 5.2), then, the population size n related with

the model M will be the population size recommend by the procedure.

Algorithm 4

RPS(f)
1 FOR n = 50 to 500 step 50
2 dataset = DATASET (n) //according to Algorithm 2.
3 Mn = RF Ensemble(dataset) //according to Algorithm 3.
4 IF Mn(f) = easy
5 THEN return n
6 return undef

42 Chapter 5: Performance Classification Models

RPS has as input parameter f which is an optimization problem, an iterative process is

performed taking into consideration different population sizes (line 1), the dataset is created

considering the current population size (line 2), using the dataset created in the last step,

the learning model is built (line 3), the models’ output is compared with the easy label, if

some output matches with the easy label then, the population associated to the model is

returned (line 5), otherwise, undef is returned (line 6).

According to the Algorithm 4, the optimization problem is tested through different

models; to construct the models, it is created its dataset associated to a particular popula-

tion size. Then the problem is passed to the model and tested, if the result is easy, then the

associated population size n is returned. The returned population size can be considered as

optima (in the range 50−500): the problem is tested into the models Mn, n ∈ [50, 500], and

is selected the smallest n where the problem is classified as easy.

5.3. Summary

This chapter stated the proposal to perform the performance prediction of GA.

The predictions are based on learning models, the models use as predictor variables, fitness

landscape features, and as target variables, performance values of GA. Based on the capa-

bilities of models, this contribution proposes a Procedure to Recommend Population Size;

for a given optimization problem, the procedure proposes a minimum population size that

solve efficiently the problem.

Chapter 6

Experimental Results

This chapter presents the main experimental results of this contribution; the first

part describes the optimization problems used in the experiments, and the parameters

settings for both, Fitness Landscape metrics and for the GA metaheuristic. The second

part shows the accuracy and confusion matrices obtained by the learning models. Finally,

it presents the results of FLA tests applied to RPS. Section 6.1 defines the problems used

in the experiments, Section 6.2 shows the parameter setting used by the metrics and GA,

Section 6.2.1 shows the main results obtained by the models, Section 6.4 presents the results

obtained by the Procedure to Recommend Population Size), and Section 6.5 presents a study

case of the usage of models.

6.1. Benchmark Problems

Generally in the majority of works, researchers use a small set of optimization

problems, in the majority of cases are benchmark optimization functions [Xin09, Pitzer10,

Malan09]. To avoid possible biases in computation, we consider a set of 110 benchmark

optimization functions, the functions contain different characteristics and in all the cases

the problem consist in minimization task. Details about its definition in Appendix A.1, and

details about its general characteristics in Appendix A.2.

43

44 Chapter 6: Experimental Results

6.2. Parameters Settings

Table 6.1 shows the main parameters settings used to compute the Fitness Lands-

cape metrics (defined in Section 4).

Table 6.1: Parameters of Fitness Landscape metrics.

FL metric Parameter-value

Neutrality
δ = dE(Lb, Ub)× 0.1,
γ = |fmax − fmin| × 0.001

Ruggedness γ = |fmax − fmin| × 0.001

Basins of attraction δ = dE(Lb, Ub)× 0.1

Epistasis no parameters

Fitness Distance Correlation
distances = number of genetic
steps to reach the optimal

Negative Slope Coefficient
evolvability = one step of genetic
operators

fmax and fmin are the maximum and minimum fitness values, respectively, of

functions f ∈ F within the search space, Lu and Ub are the lower and upper bounds of

its search space. All the FL metrics use a sample of 1, 000 points picked at random using

uniform distribution within each problem’s domain.

GA performances were obtained varying the population size and precision; Ta-

ble 6.2 shows the parameters setting used by GA.

Table 6.2: Parameters to determine the performance GA on problems in F .

Parameter Value

Population Size (n) {50i}, i ∈ [1, 10]
Precision (ε) {1× 10−i}, i ∈ [5, 10]

Number of Generations 1, 000
Crossover type Arithmetical
Crossover rate 70 %
Mutation type random (uniform)
Mutation rate 30 %

Selection Tournament of size 10
Codification Real

We set the crossover and mutation rate to 70 % and 30 % and number of generations

6.2. Parameters Settings 45

to 1000, and we are focusing only in two degrees of freedom: population size and precision.

To get a statistically significant measure, the experiments were repeated 100 times and the

mean was reported.

6.2.1. Learning Models

Although several learning methods were tested, we are only reporting results ob-

tained by Random Forests [Breiman01], since this was the most accurate method. This work

uses the WEKA framework (using 10 trees, and descriptive and dynamic features) [Hall09]

for developing the models. The effectiveness of models were tested using different sets of in-

put variables in the dataset: only descriptive metrics, only dynamic metrics, and all metrics.

The target values (GA’s performance) for the dataset were determined, for f ∈ F , compu-

ting the average of performance obtained for the precisions ε = 1× 10−i, i ∈ [5, 10], given a

population size n ∈ N . We considered the average performance as measure of performance

since the variation of population size and error margin affects the final performance, then

an indicator of performance considering those variations is the average performance.

The following Tables 6.3 and 6.4 show the error (Root Mean Squared Error RM-

SE) and accuracy (Correctly Classified Instances) of regression and classification models,

respectively; the first column is the population size (n), considered to form the models Mn,

the last three columns are the RMSE and accuracy obtained by the derived models using

three sets of metrics (descriptive, dynamic, and all). To train and validate the classification

models, a 10-fold cross-validation was used. The fittest models are highlighted in boldface.

46 Chapter 6: Experimental Results

Table 6.3: RMSE of regression models varying the population size (n) and using different
predictor variables: descriptives, dynamics, and all metrics.

Fitness Landscape Metrics

n Descriptive Dynamic All

50 0.38 0.37 0.32

100 0.37 0.38 0.33

150 0.39 0.40 0.36

200 0.40 0.41 0.36

250 0.37 0.40 0.33

300 0.40 0.41 0.34

350 0.40 0.41 0.34

400 0.41 0.42 0.37

450 0.41 0.41 0.35

500 0.41 0.41 0.36

Mean 0.39 0.40 0.35

Table 6.3 shows high levels of error for the regression models, obtaining the best

model 0.32 of error.

Table 6.4: Accuracy of classification models varying the population size (n) and using dif-
ferent predictor variables: descriptives, dynamics, and all metrics.

Fitness Landscape Metrics

n Descriptive Dynamic All

50 66 % 68 % 76 %

100 70 % 67 % 75 %

150 68 % 68 % 70 %

200 65 % 66 % 74 %

250 70 % 72 % 71 %

300 70 % 72 % 71 %

350 70 % 73 % 70 %

400 67 % 66 % 73 %

450 67 % 66 % 73 %

500 70 % 65 % 65 %

Mean 68.3 % 68.3 % 71.8 %

Table 6.4 shows that the most accurate models are those based on both descrip-

tive and dynamic FL metrics. According to the table, apparently, the population size is

uncorrelated to the accuracy of models, this fact can be an indication about the inbalan-

ce of dataset, that is, for some cases there are more instances of one class than the other

6.3. Random Forest Models 47

class. E.g. the confusion matrix (Table 6.6) for the model generated from population size

(n = 500) there are more instances classified as easy than instances classified as difficult.

To measure the quality of models, Tables 6.5 and 6.6 show the confusion matrices for the

most accurate and worst models (n = 50 and n = 500 respectively) in both cases using all

FL metrics.

Table 6.5: Confusion matrix for the most accurate model (n = 50) — input variables are
all metrics and target value is performance.

class/predict difficult easy Recall Precision ROC Area

difficult 47 13 0.78 0.78 0.81

easy 13 37 0.74 0.74 0.81

Mean 0.76 0.76 0.81

Table 6.6: Confusion matrix for the worst model (n = 500) — input variables are all metrics
and target value is performance.

class/predict difficult easy Recall Precision ROC Area

difficult 20 20 0.5 0.51 0.72

easy 19 51 0.73 0.72 0.72

Mean 0.65 0.64 0.72

Tables 6.5 and 6.6 show the details on the precision (column 5) to classify the

hardness of the problems: easy problems present rates between 72% and 74%, while difficult

problems exhibit rates between 51% and 78%. These results indicate that in the worst case,

models can predict the difficult problems with a precision of 51% (random capacities), and in

the best case, models can predict the easy problems with a precision of 74%. It is important

to mention that in average, the models can predict both easy and difficult problems with a

precision of 72%.

6.3. Random Forest Models

The models are based on the Random Forest technique implemented on WEKA

framework [Hall09]. To construct the models, we use the set of predictor variables specified

in Table 6.4 without a pre-selecting phase (selecting the best variables); to ensure an optimal

48 Chapter 6: Experimental Results

number of tree in each model, we tested different number of trees in each model (100 trees,

50 trees, and 10 trees) and we observed a minimal accuracy difference between models,

and finally we decided 10 trees for each model. To schematize a Random Forest model, the

following Figure 6.1 shows one tree of the model M50.

S

fdc >= 0.92

epi >= 0.22

easy

epi < 0.22

epi >= 0.08

difficult

epi < 0.08

bas >= 0.08

neu >= 0.03

easy

neu < 0.03

difficult

bas < 0.08

fdc >= 0.98

rug >= 0.29

difficult

rug < 0.29

fdc >= 0.98

easy

fdc < 0.98

fdc >= 0.98

difficult

fdc < 0.98

easy

fdc < 0.98

rug >= 0.1

epi >= 0.01

epi >= 0.04

difficult

epi < 0.04

easy

epi < 0.01

difficult

rug < 0.1

easy

fdc < 0.92

difficult

Figure 6.1: M50, Random Tree 1

As we can see the model presents a set of test for the FL features (attributes)

where each branch represents the outcome of the test and each leaf represents a class label

(easy or difficult). When a new optimization problem arrives to the model the FL measures

are tested to finally establish its difficulty. One example of the Random Forest models (M50)

is presented in Appendix B.

6.4. Recommend Population Size

To validate the procedure to Recommend Population Size (RPS) (Algorithm 4)

we compare the optimal population size against the population size recommended by RPS,

both values were obtained from the set of 110 benchmark optimization functions mentioned

above. We called optimal population size to such population size where its related average

performance (discretized in easy or difficult according to Equation 5.4) is classified as easy,

in other words, the smallest populations where its average performance is categorized as

easy. E.g., given the function f and its pairs of (population size, discretized performance):

(50,difficult), (100,easy), (150, easy), etc., in this case the optimal population size will be

6.5. Study Case 49

100 due that population size is the lowest where the problem was classified as easy. Figu-

re 6.2 shows a scatter plot between the optimal population size against the recommended

population size by RPS for the F set.

Figure 6.2: Population sizes recommended by the RPS procedure.

Points in Figure 6.2 show a strong positive correlation (Pearson’s Correlation, r = 0.92) and

an accuracy of prediction of 95% between the optimal population size and the recommended

population size for the F set. This indicates the accuracy exhibited by the learning models;

the majority of problems in F are classified correctly.

6.5. Study Case

This section presents an empirical study to characterize and predict the minimum

population size required by Real-Coded Genetic Algorithms to solve three different instances

of the University Course Timetabling Problem (UCTP). We use the Random Forest models

described before, the models are based on optimization function on the continuous domain

in two dimensions; the UCTP instances presented here are on the continuous domain in

four dimensions. Despite the difference of dimensions between the models and the UCTP

50 Chapter 6: Experimental Results

instances, the models require as input parameters only the FL features of problems, being

the models able to predict the hardness of problems in different dimensions. To perform the

characterization a FLA was performed on the UCTP instances using the landscape features

described in Chapter 4. Once the FL were computed, the RPS procedure predicted the

optimal population required by GA to solve the instances.

6.5.1. University Course Timetabling Problem

The University Course Timetabling Problem (UCTP) is a combinatorial problem

whose general objective is to find the best combination of resources covering certain needs

and satisfying a set of constraints. Resources are represented by lecturers, classrooms, and

time slots, among others, and needs, generally, are the academic courses offered by the

university.

The UCTP can be defined as follows. Given the following preliminary definitions:

C is a set of courses ci ∈ C, i ∈ [1, NC], L is a set of lecturers lj ∈ L, j ∈ [1, NL], R

is set of classrooms rk ∈ R, k ∈ [1, NR], T1 is a set of available times in the week (from

monday to thursday) al ∈ T1, l ∈ [1, NT1], T2 is a set of available times on friday bm ∈ T2,

[m ∈ 0, 1, ..., NT2]. All the indices start at 1, except the index for T2 which starts at 0, to

simplify the cases when a course does not occur in a given day (i.e., if does not have an

assigned time).

Constraints are represented by the following functions:

• H(·) is a function that returns the penalization for the hard constraints, constraints

are: 1) a classroom cannot be assigned to more than one course at the same time/day,

or a lecturer cannot be assigned to more than one course at the same time/day, 2)

the number of weekly hours assigned to a course must match the course’s needs.

• S(·) is a function that returns the penalization for the soft constraints, constraints

6.5. Study Case 51

are: 1) classrooms must be assigned consecutively (no holes in schedule), 2) check the

suitable classroom (theory or practice), 3) chek if teacher not pass his/her assignment

hours 4) the lecturer profile must match the course requirement, 5) the assigned

classrooms must satisfy the needs of course capacity, and 6) check the preference of

lecturers’s time,

The objective is to minimize the penalization of hard constraints (H) and soft

constraints (S); the hard constraints must be fulfilled and the soft constraints must be mi-

nimized [Abdullah12]. A mathematical formulation can be represented by:

Determine an assignment [Xl,r,t1,t2]NC that minimizes:

f(X) = H(X) + S(X) (6.1)

Subject to:

x ∈ [a, b] is the interval, a ≤ x ≤ b (6.2)

∀j ∈ [1, NL],∀k ∈ [1, NR],∀l ∈ [1, NT1],∀m ∈ [1, NT2],
∑
c∈C
H(xj,k,l,m) = 0 (6.3)

f(X) computes the total penalization for a given X (Equation 6.1), Equation (6.2) checks

the interval values for each dimension, the soft constraints can be violated, and Equa-

tion (6.3) prevents the hard constraint violations for all c ∈ C. Details of the solution of

UCTP using GA can be found in [Rodriguez-Maya14b].

52 Chapter 6: Experimental Results

6.5.2. UCTP Instances

The characterization and prediction was performed on three UCTP instances: Ins-

tituto Tecnologico de Zitacuaro (ITZ), Instituto Tecnologico del Valle de Morelia (ITVM),

and Instituto Tecnologico de Tuxtla Gutierrez (ITTG). Table 6.7 shows the sets of tasks

and resources for each university.

Table 6.7: Tasks and resources available for each UCTP instance.

Task ITZ ITVM ITTG

Courses (C) 181 112 180
Lecturers (L) 69 122 218

Classrooms (R) 34 38 102
Available times per week, from monday to thursday (T1) 12 12 12

Available times on friday (T2) 12 12 12

6.5.3. Characterization and Prediction

The parameters used by the FL metrics are the same that Table 6.1. A numerical

characterization of the UCTP instances is shown in Table 6.8.

Table 6.8: FLA on the UCTP instances.

FL metrics

Instance Ruggedness Neutrality Epistasis B. of attraction NSC FDC

ITZ 0.835 0.422 0.0 0.001 -0.871 0.941

ITVM 0.872 0.321 0.0 0.217 -1.832 0.862

ITTG 0.860 0.362 0.0 0.25 -2.400 0.905

In general, all the instances present similar values of ruggedness and neutrality: the lands-

cape is rugged with some neutral areas. Due to the nature of fitness function (separable

function) all the instances have the same epistasis. On the other hand, according to NSC

the ITTG is most difficult, while ITZ the easiest. FDC determines that instances are not

deceptive.

To perform the population size recommendation, RPS uses the FL features cal-

culated in Table 6.8 and the experiments were repeated 10 times. Table 6.9 shows the

population size recommended by the RPS on the UCTP instances.

6.6. Summary 53

Table 6.9: Recommended population size for the UCTP instances.

Instance min max avg σ

ITZ 100 200 140.0 51.63

ITVM 150 500 315.0 177.09

ITTG 100 500 200.0 118.90

According to results, in average, the ITVM instance needs a larger population size than the

other instances, this is an indication about hardness of instances: the more population size,

the more difficult to solve. On the other hand, the ITZ instance should be the most difficult

instance due to it contains a major number of needs (courses) to be covered and minus

resources (lecturers and classrooms) to be assigned (according to Table 6.7). However, the

ITZ appears as the easiest instance, maybe from its landscape form (low level of basins of

attraction) can give us some insights about its difficulty.

6.6. Summary

This chapter presents the main results of this work. The models are based on

descriptive and dynamic features; the most accurate models were the models based on a

mixture of descriptive and dynamic features, and models based only in dynamic features. A

direct application of models was the Procedure to Recommend Population Size (RPS), for

a given optimization problem. RPS recommends the minimal population size for an optimal

solution for that problem. A study case of application of FLA to characterize and predict

the difficulty of some instances of University Course Timetabling Problem was presented.

Chapter 7

Conclusions and Future Work

7.1. Conclusions

Generally, many approaches use only Fitness Landscape metrics in isolation to pre-

dict the hardness of Evolutionary Algorithms when solving optimization problems, being the

results not very persuasive in the majority of cases. The performance of some metaheuristics

is closely related to the geometric form of the problem’s landscape, e.g., rugged landscapes

generally are difficult to solve. What happens when a landscape contain low levels of rugged-

ness and high levels of deceptiveness?, surely users could categorize such problems, as easy.

However, some deceptive problems are categorized as hard problems. To perform an accu-

rate categorization (characterization) it is necessary to use a set of FL metrics that capture

the majority of aspects of optimization problems: multimodality, neutrality, separability,

evolvability, etc.

This contribution presents a procedure called Performance Classification Models

(PCM) to construct learning models to predict the difficulty of GA in the solution of con-

tinuous optimization problems in two dimensions. PCM uses a set of Fitness Landscape

metrics to perform a Fitness Landscape Analysis; these metrics are grouped into descriptive

and dynamic; while descriptive metrics measure the descriptive properties of optimization

problems, the dynamic metrics capture the evolvability of the heuristic. The models we-

55

56 Chapter 7: Conclusions and Future Work

re based on a supervised machine learning technique: Random Forests. The models used

Fitness Landscape features as predictor variables and the performance exhibited by GA,

expressed as success rate, as target variable, and, the experiments were performed on on

110 continuous optimization problems in two dimensions.

It is important to remark that given a new optimization problem, the generated

models can predict the performance of GA to solve it (easy or difficult), based uniquely on

the problem’s FL-metrics. The models that used all the FL metrics obtained a mean of 72%

of accuracy to classify the problems correctly. Contrary to our assumptions, in some cases,

the models generated by dynamic or by descriptive metrics (M250, M300, M350, and M500)

obtained slightly more accurate models than using all FL metrics. Our hypothesis about the

accuracy of the models generated by the dynamic features is about the intrinsic behaviour of

the metaheuristic, the larger the population size (in this case 250, 300, and 350) the greater

the opportunity (perhaps, due to increased diversity in genetic material) to converge to

global optimal. The number of instances considered in the dataset, play an important role

to construct accurate models; the more instances, the more accurate models. To support

the experimental results, this work used a set of 110 optimization problems, contrary to the

more limited number of benchmark functions reported in literature.

The hardness of GA to solve optimization problems is approximated with the

performance of GA to solve them. In this context, performance is defined as the rate of

successful trials, a trial is sucessful when the global optimum is reached. Literature reports

other types of performances as the number of function evaluations, the expected running

time, etc. In this work it is used the sucess rate because it is closer to the natural aim of

metaheuristics (to get the global optimum) and because the result is a number between

[0, 1]. Future works, will develop models using other performance measures.

Another proposal based on this work, is the procedure to recommend population

size (RPS). The proposed procedure uses the set of models to try to determine the smallest

population size for GA; the recommendation is based on a population where the problem is

classified as easy. The first results showed a strong correlation between the optimal popu-

7.2. Future Work 57

lation size and the recommended population size, having a correlation value equal to 0.92

and an accuracy of prediction of 95%. RPS was tested on a set of instances of the Uni-

versity Course Timetabling Problem (UCTP). Instances are based on mexican universities

which have different needs and resources. The results showed how RPS can predict optimal

population size in different domains; the methodology to develop the learning models and

RPS can be extended to other dimensions and other domains.

7.2. Future Work

This work represent an effort to solve a particular instance of the Algorithm Se-

lection Problem (ASP) [Rice76]: the Genetic Algorithms case on the continuous domain.

The original Rice’s model, establishes, for a given set of problems and its corresponding

best features, and a set of algorithms, he proposes the use of performance to select the

best algorithm to solve a particular problem. In this context, the performance prediction

is very important to support the selection process. For continuous domains, the solution

requires mainly the comprehension of: the search space through sampling, the optimization

problems, the algorithms, and performance. The following tasks are necessaries to extend

this work in the solution of other ASP aspects.

1. The study and use of different sampling methods. The analysis of the search spa-

ce, specially on continuous domains, requires the use of efficient sampling methods

to obtain the more representative configurations. For instance, the Latin hypercube

sampling (LHS) has been tested on different scenarios as an efficient sampling method;

LHS generates points, following a probability density function.

2. The development and use of other FL metrics. The metrics must capture the most

important features of optimization problems, the most representative features can

be selected to be incorporated as predictive variables into the learning models. For

instance, the usage of more innovative FL metrics as: Accumulated escape probability

[Lu11], the Information Content for continuous landscapes [Muñoz15], the Exploratory

Landscape Analysis (Low-Level Features) [Mersmann11], Cell Mapping Techniques

58 Chapter 7: Conclusions and Future Work

[Kerschke14], among others.

3. The incorporation of problems on higher dimensions. It is clear that the behavior of

problems in higher dimensions is very different that problems in lower dimensions, and

many real life applications are in higher dimensions. It is very important the study

of the most representative benchmark problems in higher dimensions. For instance,

some of the benchmark problems implemented in this work can be easily tested in

higher dimensions.

4. The implementation of finer classification, and/or regression. One of the most impor-

tant aims of ASP is the prediction of performance; the output of learning models must

be too close to the objective, that is, ideally, the prediction must be a regression task.

5. The incorporation of other Evolutionary Algorithms. The original ASP model con-

templates many different algorithms, those algorithms contain different characteristics

and behaviors, then, it is necessary the implementation of different algorithms and

the establishment of its main features to solve another ASP instances.

6. Propose a solution of the ASP problem, and a input-parameter selector for metaheu-

ristics. Once the above works have been resolved, can be proposed a possible solution

to the ASP. The solution must contain the basic elements (set of problems and its

features, set of algorithms and the corresponding performances) to create regression

learning models. The learning models can consider into the predictor variables, the

algorithm’s input parameters, and the user can select the best input parameters based

on its performance.

Appendix A

Optimization Problems

A.1. Benchmark Functions

The following table shows the definition of functions used in this work, more details

in [Jamil13].

59

6
0

A
p

p
en

d
ix

A
:

O
p

tim
ization

P
rob

lem
s

No. Name Function Lower and Upper

bounds

Global Optima

f1 Ackley f(~x) = 20 + e − 20 · e−
1
5

√
1
2

∑2
i=1 x

2
i −

e
1
2

∑2
i=1 cos(2πxi)

−15 ≤ xi ≤ 30, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(0, 0)

f2 Beale f(x1, x2) =
(
x1x

3
2 − x+ 2.625

)2
+(

x1x
2
2 − x1 + 2.25

)2
+ (x1x2 − x1 + 1.5)2

−4.5 ≤ xi ≤ 4.5, i ∈

[1, 2]

f(~x∗) = 0, ~x∗ =

(3, 0.5)

f3 Bohachevsky f(x1, x2) = x2
1 − 0.3 cos(3πx1) + 2x2

2 −

0.4 cos(4πx2)

−100 ≤ xi ≤ 100, i ∈

[1, 2]

f(~x∗) = −0.7,

~x∗ = (0, 0)

f4 Booth f(x1, x2) = (2x1 + x2 − 5)2 + (x1 + 2x2 − 7)2 −10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(1, 3)

f5 Branin f(x1, x2) =
(
−0.129185x2

1 + 5x1
π + x2 − 6

)2
+

10
(
1− 1

8π

)
cos(x1) + 10

−5 ≤ xi ≤ 15, i ∈ [1, 2] f(~x∗) = 0.397887,

~x∗ = (−π, 12.275)

f6 Dixon Price f(x1, x2) = 2
(
2x2

2 − x1

)2
+ (x1 − 1)2 −10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = 0,

~x∗ = (1, 1.707107)

f7 Goldstein Pri-

ce

f(x1, x2) = ((3x2
1 + 6x1x2− 14x1 + 3x2

2− 14x2 +

19)(x1 + x2 + 1)2 + 1)((12x2
1 − 36x1x2 − 32x1 +

27x2
2 + 48x2 + 18)(2x1 − 3x2)2 + 30)

−2 ≤ xi ≤ 2, i ∈ [1, 2] f(~x∗) = 3, ~x∗ =

(0,−1)

f8 Griewank f(x1, x2) =
x21

4000 +
x22

4000 − cos(x1) cos
(
x2√

2

)
+ 1 −600 ≤ xi ≤ 600, i ∈

[1, 2]

f(~x∗) = 0, ~x∗ =

(0, 0)

A
.1.

B
en

ch
m

a
rk

F
u

n
ctio

n
s

61

No. Name Function Lower and Upper

bounds

Global Optima

f9 Hump f(x1, x2) =
x61
3 −2.1x4

1 +4x2
1 +x1x2 +4x4

2−4x2
2 +

1.03163

−5 ≤ xi ≤ 5, i ∈ [1, 2] f(~x∗) = 0,

~x∗ =

(0.0898,−0.7126)

f10 Michalewicz f(x1, x2) = − sin(x1) sin20
(
x21
π

)
−

sin(x2) sin20
(

2x22
π

) 0 ≤ xi ≤ π, i ∈ [1, 2] f(~x∗) = −1.8013,

~x∗ =

(2.2023, 1.57073)

f11 Rastrigin f(x1, x2) = x2
1 + x2

2 − 10 cos(2πx1) −

10 cos(2πx2) + 20

−5.12 ≤ xi ≤ 5.12, i ∈

[1, 2]

f(~x∗) = 0, ~x∗ =

(0, 0)

f12 Rosenbrock f(x1, x2) = (x1 − 1)2 + 100
(
x2 − x2

)2 −5 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(1, 1)

f13 Schwefel f(x1, x2) = −x1 sin
(√
|x1|
)
− x2 sin

(√
|x2|
)

+

837.966

−500 ≤ xi ≤ 500, i ∈

[1, 2]

f(~x∗) = 0, ~x∗ =

(1, 1)

f14 Shubert f(x1, x2) = (cos(2x1 + 1) + 2 cos(3x1 + 2) +

3 cos(4x1 + 3) + 4 cos(5x1 + 4) + 5 cos(6x1 +

5))(cos(2x2 + 1) + 2 cos(3x2 + 2) + 3 cos(4x2 +

3) + 4 cos(5x2 + 4) + 5 cos(6x2 + 5))

−10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = −186.7309,

~x∗ = (−7.708309818,

−0.800371886)

f15 Sphere f(~x) =
∑n−1

i=0 x
2
i −5.12 ≤ xi ≤ 5.12, i ∈

[1, 2]

f(~x∗) = 0, ~x∗ =

(0, 0)

6
2

A
p

p
en

d
ix

A
:

O
p

tim
ization

P
rob

lem
s

No. Name Function Lower and Upper

bounds

Global Optima

f16 Trid f(x1, x2) = (x1 − 1)2 + (x2 − 1)2 − x1x2 + 1 −4 ≤ xi ≤ 4, i ∈ [1, 2] f(~x∗) = −1, ~x∗ =

(2, 2)

f17 Zakharov f(x1, x2) = (0.5x1 + 1.x2)4 + (0.5x1 + 1.x2)2 +

x2
1 + x2

2

−5 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(0, 0)

f18 Dropwave f(x1, x2) =
− cos

(
12
√
x21+x22

)
−1

0.5(x21+x22)+2
−5.12 ≤ xi ≤ 5.12, i ∈

[1, 2]

f(~x∗) = −1, ~x∗ =

(0, 0)

f19 Egg Holder f(x1, x2) = (−x2 − 47) sin(
√
|x12 + x2 + 47|) −

x sin(
√
|x1 − x2 − 47|)

−512 ≤ xi ≤ 512, i ∈

[1, 2]

f(~x∗) = −959.6407,

~x∗ = (512, 404.2319)

f20 Holder f(x1, x2) = −|e|1−
√
x21+x

2
2

π
| cos(x2) sin(x1)| −10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = −19.2085,

~x∗ =

(8.05502,9.66459)

f21 Levy13 f(x1, x2) = (x1 − 1)2(1 − sin2(3πx2)) +

sin2(3πx1) + (x2 − 1)2(sin2(2πx2) + 1)

−10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(1, 1)

f22 Styblinski

Tang

f(x1, x2) = 0.5(x4
1−16x2

1+5x1+x4
2−16x2

2+5x2) −5 ≤ xi ≤ 5, i ∈ [1, 2] f(~x∗) = −39.16599 ∗

2, ~x∗ = (−2.903534,

−2.903534)

A
.1.

B
en

ch
m

a
rk

F
u

n
ctio

n
s

63

No. Name Function Lower and Upper

bounds

Global Optima

f23 Randompeaks f(x1, x2) = −2e−0.5((x1−21)2+(x2−25)2) −

2e−0.5((x1−8)2+(x2−25)2) +

5e−0.1((x1−15)2+(x2−20)2) +

2e−0.5((x1−25)2+(x2−16)2) −

2e−0.08((x1−20)2+(x2−15)2) +

2e−0.5((x1−5)2+(x2−14)2) +

3e−0.08((x1−25)2+(x2−10)2) +

2e−0.1((x1−10)2+(x2−10)2) −

2e−0.5((x1−5)2+(x2−10)2)−4e−0.1((x1−15)2+(x2−5)2)

0 ≤ xi ≤ 30, i ∈ [1, 2] f(~x∗) =

−3.98654, ~x∗ =

(15.01369, 4.9643)

f24 Sum of Diffe-

rent Power

f(x1, x2) = |x2|3 + |x1|2 −1 ≤ xi ≤ 1, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(0, 0)

f25 Levy f(x1, x2) = 1
16(x1 − 1)2(10 sin2(π(1

4(x1 − 1) +

1) + 1) + 1) + sin2(π(x1−1
4 + 1)) + 1

16(x2 −

1)2(sin2(2π(x2−1
4 + 1)) + 1)

−10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(1, 1)

6
4

A
p

p
en

d
ix

A
:

O
p

tim
ization

P
rob

lem
s

No. Name Function Lower and Upper

bounds

Global Optima

f26 Dejong a =

[[−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,

−32,−16, 0, 16, 32,−32,−16, 0, 16, 32], [−32,−16, 0, 16,

32,−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16, 0,

16, 32,−32,−16, 0, 16, 32]]

f(x1, x2) = (0.002 +∑25
i=1

1
i+(x1−a1i)6+(x2−a2i)6)−1

−65.536 ≤ xi ≤ 65.536,

i ∈ [1, 2]

f(~x∗) =

0.73008956798374342,

~x∗ = (−31.97855,

− 31.97855)

f27 Langermann A = [[3.0, 5.0, 2.0, 1.0, 7.0]], [5.0, 2.0, 1.0, 4.0, 9.0]]

c = [3.0, 5.0, 2.0, 1.0, 7.0]

f(~x) =
∑2

i=1 ci exp(− 1
π

2∑
j=1

(xj −

Aij)
2) cos(π

d∑
j=1

((xj −Aij)2))

0 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) =

−5.1197918057700552,

~x∗ =

(6.06958, 8.68035)

f28 Himmelblau f(x1, x2) = −
(
x1 + x2

2 − 7
)2−(x2

1 + x2 − 11
)2

+

200

0 ≤ xi ≤ 6, i ∈ [1, 2] f(~x∗) = −1986,

~x∗ = (6, 6)

f29 Sum squares f(x1, x2) = x2
1 + 2x2

2 −10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(0, 0)

f30 Schaffer2 f(x1, x2) =
sin2(x21−x22)−0.5

(0.001(x21−x22)+1)2
+ 0.5 −100 ≤ xi ≤ 100, i ∈

[1, 2]

f(~x∗) = 0,

~x∗ =

(−0.231665, 0.232741)

A
.1.

B
en

ch
m

a
rk

F
u

n
ctio

n
s

65

No. Name Function Lower and Upper

bounds

Global Optima

f31 Easom f(x1, x2) = − cos(x1) cos(x2) exp(−(x1 − π)2 −

(x2 − π)2

−100 ≤ xi ≤ 100, i ∈

[1, 2]

f(~x∗) = −1, ~x∗ =

(π, π)

f32 Matyas f(x1, x2) = 0.26
(
x2

1 + x2
2

)
− 0.48x1x2 −10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(0, 0)

f33 Cross in Tray f(x1, x2) = −0.0001(|e|100−
√
x21+x

2
2

π
|

sin(x1) sin(x2)|+ 1)0.1

−10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = −2.06261,

~x∗ =

(1.3492, 1.3491)

f34 Bukin f(x1, x2) = 0.01|x1 + 10|+ 100
√
|x2 − 0.01x2

1| −15 ≤ xi ≤ 3, i ∈ [1, 2] f(~∗) = 0, ~x∗ =

(−10, 1)

f35 Schaffer4 f(x1, x2) =
cos(sin(|x21−x22|))−0.5

(0.001(x21+x22)+1)2
+ 0.5 −100 ≤ xi ≤ 100, i ∈

[1, 2]

f(~x∗) = 0.500092,

~x∗ =

(−99.99634,−99.8942)

f36 Equal peaks f(x1, x2) = sin2(x2) + cos2(x1) 0 ≤ xi ≤ 5, i ∈ [1, 2] f(~x∗) = 0,

~x∗ = (1.5708, 0)

f37 Ackley2 f(x1, x2) = −200e−0.02
√
x21+x22 −32 ≤ xi ≤ 32, i ∈ [1, 2] f(~x∗) = −200,

~x∗ = (0, 0)

6
6

A
p

p
en

d
ix

A
:

O
p

tim
ization

P
rob

lem
s

No. Name Function Lower and Upper

bounds

Global Optima

f38 Ackley3 f(x1, x2) = 5esin(3x2)+cos(3x1) − 200e−0.02
√
x21+x22 −32 ≤ xi ≤ 32, i ∈ [1, 2] f(~x∗) = −195.629,

~x∗ =

(−0.682577,−0.360702)

f39 Ackley4 f(x1, x2) = 0.818731
√
x2

1 + x2
2 + 3(sin(2x2) +

cos(2x1))

−35 ≤ xi ≤ 35, i ∈ [1, 2] f(~x∗) =

−4.5901016341586682,

~x∗ =

(−1.50962,−0.75487)

f40 Adjiman f(x1, x2) = sin(x2) cos(x1)− x1
x22+1

−1 ≤ xi ≤ 2, i ∈ [1, 2] f(~x∗) = −2.02181,

~x∗ = (2, 0.10578)

f41 Alpine1 f(~x) =
∑D

i=1 |xisin(xi) + 0.1xi| −10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(0, 0)

f42 Alpine2 f(~x) =
∏D
i=1

√
xisin(x) 0 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = −6.1295,

~x∗ =

(7.91705, 4.81584)

f43 Bartels f(x1, x2) = |x2
1 + x2

2 + x1 ∗ x2| + |sin(x1)| +

|cos(x2)|

−500 ≤ xi ≤ 500, i ∈

[1, 2]

f(~x∗) = 1, ~x∗ =

(0, 0)

f44 Bigg exp2 f(x1, x2) =
∑10

i=1(exp(−0.1 ∗ i ∗ x1) − 5 ∗

exp(−0.1 ∗ i ∗ x2)− exp(−0.1 ∗ i)− 5 ∗ exp(10 ∗

0.1 ∗ i))2

0 ≤ xi ≤ 20, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(1, 10)

A
.1.

B
en

ch
m

a
rk

F
u

n
ctio

n
s

67

No. Name Function Lower and Upper

bounds

Global Optima

f45 Bird f(x1, x2) = sin(x1) ∗ exp((1 − cos(x2))2) +

cos(x2) ∗ exp((1− sin(x1))2) + (x1 − x2)2

−2π ≤ xi ≤ 2π, i ∈

[1, 2]

f(~x∗) =

−106.764537, ~x∗ =

(4.70104, 3.15294)

f46 Bohachevsky2 f(x1, x2) = x2
1 + 2 ∗ x2

2 − 0.3 ∗ cos(3 ∗ π ∗ x1) ∗

0.4 ∗ cos(4 ∗ π ∗ x2) + 0.3

−100 ≤ xi ≤ 100, i ∈

[1, 2]

f(~x∗) = 0, ~x∗ =

(0, 0)

f47 Bohachevsky3 f(x1, x2) = x2
1 + 2 ∗ x2

2− 0.3 ∗ cos(3 ∗ π ∗ x1 + 4 ∗

π ∗ x2) + 0.3

−100 ≤ xi ≤ 100, i ∈

[1, 2]

f(~x∗) = 0, ~x∗ =

(0, 0)

f48 Branin Rcos f(x1, x2) = (x2−(5.1∗x2
1)/(4∗π2)+(5∗x1)/π−

6)2 + 10 ∗ (1− 1/(8 ∗ π)) cos(x1) + 10

−5 ≤ xi ≤ 15, i ∈ [1, 2] f(~x∗) = 0.3978873,

~x∗ =

(3.14159, 2.275)

f49 Branin Rcos2 f(x1, x2) = (x2−(5.1∗x2
1)/(4∗π2)+(5∗x1)/π−

6)2 + 10 ∗ (1− 1/(8 ∗ π)) cos[x1) cos(x2) log(x2
1 +

x2
2 + 1) + 10

−5 ≤ xi ≤ 15, i ∈ [1, 2] f(~x∗) =

−39.195653917977752,

~x∗ =

(−3.1721, 12.58567)

f50 Brent f(x1, x2) = (x1+10)2+(x2+10)2+exp(−x2
1−x2

2) −10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(0, 0)

f51 Brown f(x1, x2) = (x2
1)(x22+1) + (x2

2)(x21+1) −1 ≤ xi ≤ 4, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(0, 0)

6
8

A
p

p
en

d
ix

A
:

O
p

tim
ization

P
rob

lem
s

No. Name Function Lower and Upper

bounds

Global Optima

f52 Bukin2 f(x1, x2) = 100∗(x2−0.01x2
1+1)+0.01(x1+10)2 −15 ≤ xi ≤ 3, i ∈ [1, 2] f(~x∗) = −1624.75,

~x∗ = (−15,−15)

f53 Bukin4 f(x1, x2) = 100x2
2 + 0.01 ∗ |x1 + 10| −15 ≤ xi ≤ 3, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(−10, 0)

f54 Three Hump

Camel fun-

ction

f(x1, x2) = 2x2
1 − 1.05x4

1 + x6
1/6 + x1x2 + x2

2 −5 ≤ xi ≤ 5, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(0, 0)

f55 Six Hump Ca-

mel function

f(x1, x2) = (4−2.1x2
1 +x2

1/3)x2
1 +x1x1 + (4x2

2−

4)x2
2

−5 ≤ xi ≤ 5, i ∈ [1, 2] f(~x∗) =

−1.0316, ~x∗ =

(−0.0898, 0.7126)

f56 Chen Bird f(x1, x2) = −0.001/(0.0012 + (x1 − 0.4x2 −

0.1)2)− 0.001/(0.0012 + (2x1 + x2 − 1.5)2)

−500 ≤ xi ≤ 500, i ∈

[1, 2]

f(~x∗) = −1000, ~x∗ =

(0.149371, 0.123427)

f57 Chenv f(x1, x2) = −(0.001/(0.0012 +(x2
1 +x2

2−1)2))−

0.001/(0.0012+(x2
1+x2

2−0.5)2)−0.001/(0.0012+

(x2
1 − x2

2)2)

−500 ≤ xi ≤ 500, i ∈

[1, 2]

f(~x∗) = −2000, ~x∗ =

(−0.5,−0.5)

f58 Chichinadze f(x1, x2) = x2
1 − 12x1 + 11 + 10 cos((πx1)/2) +

8 sin((5πx1)/2)− (1/5)0.5 exp(−0.5(x2 − 0.5)2)

−30 ≤ xi ≤ 30, i ∈ [1, 2] f(~x∗) =

−42.49717342349103,

~x∗ =

(6.18987, 0.75477)

A
.1.

B
en

ch
m

a
rk

F
u

n
ctio

n
s

69

No. Name Function Lower and Upper

bounds

Global Optima

f59 Chung Rey-

nolds

f(~x) = (
∑2

i=1 x
2
i)

2 −100 ≤ xi ≤ 100, i ∈

[1, 2]

f(~x∗) = 0, ~x∗ =

(0, 0)

f60 Cosine mixtu-

re

f(~x) = −0.1
∑2

i=1 cos(5πxi)−
∑2

i=1 x
2
i −1 ≤ xi ≤ 1, i ∈ [1, 2] f(~x∗) =

−1.7987686839243868,

~x∗ =

(0.9995, 0.99988)

f61 Csendes f(~x) =
∑2

i=1 x
6
i ∗ (2 + sin(xi)) −1 ≤ xi ≤ 1, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(0, 0)

f62 Cube f(x1, x2) = 100 ∗ (x2 − x3
1)2 + (1− x1)2 −10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(1, 1)

f63 Damavandi f(x1, x2) = (1 − |(sin(π(x1 − 2)) sin(π(x2 −

2)))/(π2(x1 − 2)(x[2 − 2))|5)/(2 + (x1 − 7)2 +

2(x2 − 7)2)

0 ≤ xi ≤ 14, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(2, 2)

f64 Deckkers

Aarts

f(x1, x2) = 105∗x2
1 +x2

2−(x2
1 +x2

2)2 +10−5(x2
1 +

x2
2)4

−20 ≤ xi ≤ 20, i ∈ [1, 2] f(~x∗) =

−24771.093749999996,

~x∗ = (0,−15)

7
0

A
p

p
en

d
ix

A
:

O
p

tim
ization

P
rob

lem
s

No. Name Function Lower and Upper

bounds

Global Optima

f65 El Attar Vid-

yasagar Dutta

f(x1, x2) = (x2
1 + x2 − 10)2 + (x1 + x2

2 − 7)2 +

(x2
1 + x3

2 − 1)2

−500 ≤ xi ≤ 500, i ∈

[1, 2]

f(~x∗) =

1.7127803597192561,

~x∗ =

(3.40919,−2.17143)

f66 Egg crate f(x1, x2) = x2
1 + x2

2 + 25(sin(x1)2 + sin(x2)) −5 ≤ xi ≤ 5, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(0, 0)

f67 Exponential f(~x) = − exp(−0.5 ∗
∑D

i=1 x
2
i) −1 ≤ xi ≤ 1, i ∈ [1, 2] f(~x∗) = 1, ~x∗ =

(0, 0)

f68 Exp2 f(x1, x2) =
∑9

i=0(exp(−(ix1)/10) −

5 exp(−(ix2)/10)− exp[−i/10] + 5 exp(−i)2

0 ≤ xi ≤ 20, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(1, 10)

f69 Freudenstein

roth

f(x1, x2) = (x1 − 13 + ((5 − x2)x2 − 2)x2)2 +

(x1 − 29 + ((x2 + 1)x2 − 14)x2)2

−10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(5, 4)

f70 Giunta f(~x) = 0.6 +
∑D

i=1(sin(16/15xi − 1) +

sin(16/15xi − 1)2 + 1/50 sin(4(16/15xi − 1)))

−1 ≤ xi ≤ 1, i ∈ [1, 2] f(~x∗) = 0.0644704,

~x∗ =

(0.46732, 0.46732)

f71 Hansen f(x1, x2) =
∑4

i=0(i+1) cos(ix1 +i+1)
∑4

j=0(j+

1) cos((j + 2)x2 + j + 1

−10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = −176.542,

~x∗ =

(−7.589893,−7.708314)

A
.1.

B
en

ch
m

a
rk

F
u

n
ctio

n
s

71

No. Name Function Lower and Upper

bounds

Global Optima

f72 Hosaki f(x1, x2) = (1 − 8x1 + 7x2
1 − 7/3x3

1 +

1/4x4
1)x2

2 exp(−x2)

0 ≤ xi ≤ 6, i ∈ [1, 2] f(~x∗) = −2.3458,

~x∗ = (4, 2)

f73 Jennrich Sam-

pson

f(x1, x2) =
∑10

i=1(2+2i−(exp(ix1)+exp(ix2)))2 −1 ≤ xi ≤ 1, i ∈ [1, 2] f(~x∗) =

124.96218236181409,

~x∗ =

(0.257825, 0.257825)

f74 Keane f(x1, x2) = (sin(x1−x2)2 sin(x1 +x2)2)/
√

(x2
1 +

x2
2)

0 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) =

2.4590189858452324e−

36,

~x∗ = (−8.69395e −

9, 8.69394e− 9)

f75 Leon f(x1, x2) = 100(x2 − x2
1)2 + (1− x1)2 −1.2 ≤ xi ≤ 1.2, i ∈

[1, 2]

f(~x∗) = 0, ~x∗ =

(1, 1)

f76 Mccormick f(x1, x2) = sin(x1 + x2) + (x1 + x2)2 − (3/2) ∗

x1 + (5/2) ∗ x2 + 1

−3 ≤ xi ≤ 4, i ∈ [1, 2] f(~x∗) =

−11.06537266363643,

~x∗ = (3.26783,−3.0)

f77 Mishra3 f(x1, x2) =
√
| cos(

√
|x2

1 + x2
2|)|+ 0.01(x1 + x2) −1 ≤ xi ≤ 1, i ∈ [1, 2] f(~x∗) =

0.3748970685702472,

~x∗ = (3.26783,−3.0)

7
2

A
p

p
en

d
ix

A
:

O
p

tim
ization

P
rob

lem
s

No. Name Function Lower and Upper

bounds

Global Optima

f78 Mishra4 f(x1, x2) =
√

(| cos(
√

(|x2
1 + x2

2|))|) + 0.01(x1 +

x2)

−1 ≤ xi ≤ 1, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(0, 0)

f79 Mishra5 f(x1, x2) = (sin(cos(x1 + cos(x2)))2 +

cos(sin(x1 + sin(x2)))2)2 + 0.01(x1 + x2)2

−1 ≤ xi ≤ 1, i ∈ [1, 2] f(~x∗) =

−0.01864212603865322,

~x∗ =

(−0.86535,−1.0)

f80 Mishra6 f(x1, x2) = − log(sin(cos(x1) + cos(x2))2 −

cos(sin(x1) + sin(x2))2 + x1)2 + 0.01((x1− 1)2 +

(x2 − 1)2)

1 ≤ xi ≤ 6, i ∈ [1, 2] f(~x∗) = −0.809819,

~x∗ = (2, 2)

f81 Mishra8 f(x1, x2) = 0.001(|x1
10−20x9

1 + 180x8
1−960x7

1 +

3360x6
1−8064x5

1 +1334x4
1−15360x3

1 +11520x2
1−

5120x1 + 2624||x4
2 + 12x3

2 + 54x2
2 + 108x2 + 81|)2

−10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(2,−3)

f82 Pen Holder f(x1, x2) = − exp(−| cos(x1) cos(x2) exp(|1 −

(x2
1 + x2

2)0.5/π|)|−1)

−11 ≤ xi ≤ 11, i ∈ [1, 2] f(~x∗) = −0.963535,

~x∗ =

(9.646168, 9.646168)

f83 Pathological f(x1, x2) = 0.5+(sin(
√

100x1 + x2
2)2−0.5)/(1+

0.001 ∗ (x2
1 − 2x1x2 + x2

2)2), i, 1, 1]

−100 ≤ xi ≤ 100, i ∈

[1, 2]

f(~x∗) = 0, ~x∗ =

(0, 0)

f84 Periodic f(x1, x2) = 1 + sin(x1)2 + sin(x2)2 −

0.1 exp[−(x2
1 + x2

2)]

−10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = 0.9, ~x∗ =

(0, 0)

A
.1.

B
en

ch
m

a
rk

F
u

n
ctio

n
s

73

No. Name Function Lower and Upper

bounds

Global Optima

f85 Powell sum f(~x) =
∑2

i=1 |xi|(i+1) −1 ≤ xi ≤ 1, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(0, 0)

f86 Price1 f(x1, x2) = (|x1| − 5)2 + (|x2| − 5)2 −500 ≤ xi ≤ 500, i ∈

[1, 2]

f(~x∗) = 0, ~x∗ =

(−5, 5)

f87 Price2 f(x1, x2) = 1 + sin(x1)2 + sin(x2)2 −

0.1 exp(−x2
1 − x2

2|

−10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = 0.9, ~x∗ =

(0, 0)

f88 Price3 f(x1, x2) = 100(x2 − x2
1)2 + 6(6.4(x2 − 0.5)2 −

x1 − 0.6)2

−500 ≤ xi ≤ 500, i ∈

[1, 2]

f(~x∗) =

1.43791935893e−11,

~x∗ =

(0.341308, 0.116491)

f89 Price4 f(x1, x2) = (2x3
1x2 − x3

2)2 + (6x1 − x2
2 + x2)2 −500 ≤ xi ≤ 500, i ∈

[1, 2]

f(~x∗) = 0, ~x∗ =

(0, 0)

f90 Qing f(~x) =
∑2

i=1(x2
i − 1)2 −500 ≤ xi ≤ 500, i ∈

[1, 2]

f(~x∗) = 0, ~x∗ =

(0, 0)

f91 Quadratic f(x1, x2) = −3803.84 − 138.08x1 − 232.92x2 +

128.08x2
1 + 203.64x2

2 + 182.25x1x2

−1 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) =

−3873.7241821830326,

~x∗ =

(0.19388, 0.48513)

7
4

A
p

p
en

d
ix

A
:

O
p

tim
ization

P
rob

lem
s

No. Name Function Lower and Upper

bounds

Global Optima

f92 Quartic f(~x) =
∑2

i=1 ix
2
i + rand[0, 1) −1.28 ≤ xi ≤ 1.28, i ∈

[1, 2]

f(~x∗) = 0, ~x∗ =

(0, 0)

f93 Quintic f(~x) =
∑2

i=1 |x5
i − 3x4

i + 4x3
i + 2x2

i − 10xi − 4| −10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(2, 2)

f94 Rosenbrock

modified

f(x1, x2) = 74 + 100(x2 − x2
1)2 + (1 − x1)2 −

400 exp(−((x1 + 1)2 + (x2 + 1)2)/0.1)

−2 ≤ xi ≤ 2, i ∈ [1, 2] f(~x∗) = 74, ~x∗ =

(1, 1)

f95 Rotated ellipse f(x1, x2) = 7x2
1 − 6

√
3x1x2 + 13x2

2 −500 ≤ xi ≤ 500, i ∈

[1, 2]

f(~x∗) = 0, ~x∗ =

(0, 0)

f96 Rotated ellip-

se2

f(x1, x2) = x2
1 − x1x2 + x2

2 −500 ≤ xi ≤ 500, i ∈

[1, 2]

f(~x∗) = 0, ~x∗ =

(0, 0)

f97 Rump f(x1, x2) = (333.75−x2
1)x6

2+x2
1(11x2

1x
2
2−121x4

2−

2) + 5.5x8
2 + x1/(2)

−500 ≤ xi ≤ 500, i ∈

[1, 2]

f(~x∗) =

−2.44021e18,

~x∗ = (500, 180)

f98 Salomon f(x1, x2) = 1−cos(2π
√∑2

i=1 x
2
i)+0.1

√∑D
i=1 x

2
i −100 ≤ xi ≤ 100, i ∈

[1, 2]

f(~x∗) = 0, ~x∗ =

(0, 0)

f99 Sargan f(~x) =
∑2

i=1 2 ∗ (x2
i + 0.4xix2) −100 ≤ xi ≤ 100, i ∈

[1, 2]

f(~x∗) = 0, ~x∗ =

(0, 0)

A
.1.

B
en

ch
m

a
rk

F
u

n
ctio

n
s

75

No. Name Function Lower and Upper

bounds

Global Optima

f100 Schaffer3 f(x1, x2) = 0.5+(sin(cos(|x2
1−x2

2|))2−0.5)/(1+

0.001(x2
1 + x2

2)2)

−100 ≤ xi ≤ 100, i ∈

[1, 2]

f(~x∗) =

0.00123013247589431,

~x∗ = (0, 1.253115)

f101 Schumer Stei-

glitz

f(~x) =
∑2

i=1 x
4
i −10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(0, 0)

f102 Schwefel24 f(~x) =
∑2

i=1(xi − 1)2 + (x1 − x2
i)

2 0 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(1, 1)

f103 Schwefel222 f(~x) =
∑2

i=1 |xi]|+
∏2
i=1 |xi| −100 ≤ xi ≤ 100, i ∈

[1, 2]

f(~x∗) = 0, ~x∗ =

(0, 0)

f104 Schwefel236 f(x1, x2) = −x1x2(72− 2x1 − 2x2) 0 ≤ xi ≤ 500, i ∈ [1, 2] f(~x∗) = −3456,

~x∗ = (12, 12)

f105 Streched v sine

wave

f(x1, x2) = (x2
2 + x2

1)0.25(sin(50(x2
2 + x1)0.1)2 +

0.1)

−10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(0, 0)

f106 Testtube hol-

der

f(x1, x2) = −4(sin(x1) cos(x2) exp(|

cos((x2
1 + x2

2)/200)|))

−10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) = −10.872300,

~x∗ = (π/2.0, 0)

f107 Trecanni f(x1, x2) = x4
1 − 4x3

1 + 4x1x
2
2 −5 ≤ xi ≤ 5, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(0, 0)

7
6

A
p

p
en

d
ix

A
:

O
p

tim
ization

P
rob

lem
s

No. Name Function Lower and Upper

bounds

Global Optima

f108 Trefethen f(x1, x2) = exp(50 sin(x1)) + sin(60 exp(x2)) +

sin(70 sin(x1)) + sin(sin(80x2)) − sin(10(x1 +

x2)) + 1.0/4.0(x2
1 + x2

2)

−10 ≤ xi ≤ 10, i ∈ [1, 2] f(~x∗) =

−3.30686865,

~x∗ =

(−0.024403, 0.210612)

f109 Trigonometric f(~x) =
∑2

i=1(2−
∑2

j=1(cos(xj))+i(1−cos(xi)−

sin(xi)))
2

0 ≤ xi ≤ π, i ∈ [1, 2] f(~x∗) = 0, ~x∗ =

(0, 0)

f110 Trigonometric

2

f(~x) = 1 +
∑2

i=1 8(sin(7(xi − 0.9)2))2 +

6(sin(14(x1 − 0.9)))2 + (xi − 0.9)2

−500 ≤ xi ≤ 500, i ∈

[1, 2]

f(~x∗) = 1,

~x∗ = (0.9, 0.9)

A.2. Features of Functions 77

A.2. Features of Functions

Table A.2 indicates two of the most representative features: separability1 and mul-

timodality2 [Jamil13].

Table A.2: Main features of functions.

No. Function Features No. Function Features

1 Ackley Non-separable, mul-

timodal

56 Chen Bird Non-separable, mul-

timodal

2 Beale Non-separable, uni-

modal

57 Chen v Non-separable, mul-

timodal

3 Bohachevsky Separable, multimo-

dal

58 Chichinadze Separable, multimo-

dal

4 Booth Non-separable, uni-

modal

59 Chung Rey-

nolds

Partially-separable,

unimodal

5 Branin Non-separable, mul-

timodal

60 Cosine mix-

ture

Separable, multimo-

dal

6 Dixon Price Non-separable, uni-

modal

61 Csendes Separable, multimo-

dal

7 Goldstein

Price

Non-separable, mul-

timodal

62 Cube Non-separable, uni-

modal

8 Griewank Non-separable, mul-

timodal

63 Damavandi Non-separable, mul-

timodal

9 Hump Separable, unimodal 64 Deckkers

Aarts

Non-separable, mul-

timodal

10 Michalewicz Non-separable, mul-

timodal

65 El Attar Vid-

yasagar Dut-

ta

Non-separable, uni-

modal

1If variables in a function are independent, then the function is separable.
2Multimodality refers to such functions that have multiple local optima.

78 Appendix A: Optimization Problems

Table A.2: Main features of functions.

No. Function Features No. Function Features

11 Rastrigin Non-separable, mul-

timodal

66 Egg Crate Separable

12 Rosenbrock Non-separable, uni-

modal

67 Exponential Non-separable, mul-

timodal

13 Schwefel Partially-separable,

unimodal

68 Exp2 Separable

14 Shubert Separable, multimo-

dal

69 Freudenstein

Roth

Non-separable, mul-

timodal

15 Sphere Separable, unimodal 70 Giunta Separable, multimo-

dal

16 Trid Non-separable, mul-

timodal

71 Hansen Separable, multimo-

dal

17 Zakharov Non-separable, mul-

timodal

72 Hosaki Non-separable, mul-

timodal

18 Dropwave Non-separable, mul-

timodal

73 Jennrich

Sampson

Non-separable, mul-

timodal

19 Egg Holder Non-separable, mul-

timodal

74 Keane Non-separable, mul-

timodal

20 Holder Non-separable, mul-

timodal

75 Leon Non-separable, Uni-

modal

21 Levy13 Non-separable, mul-

timodal

76 Mccormick Non-separable, mul-

timodal

22 Styblinski

Tang

Non-separable, mul-

timodal

77 Mishra3 Non-separable, mul-

timodal

23 Random

peaks

Non-separable, mul-

timodal

78 Mishra4 Non-separable, mul-

timodal

A.2. Features of Functions 79

Table A.2: Main features of functions.

No. Function Features No. Function Features

24 Sum of diffe-

rent power

Non-separable, uni-

modal

79 Mishra5 Non-separable, mul-

timodal

25 Levy Non-separable, mul-

timodal

80 Mishra6 Non-separable, mul-

timodal

26 Dejong Non-separable, mul-

timodal

81 Mishra8 Non-separable, mul-

timodal

27 Langermann Non-separable, mul-

timodal

82 Pen Holder Non-separable, mul-

timodal

28 Himmelblau Non-separable, mul-

timodal

83 Pathological Non-separable, mul-

timodal

29 Sum squares Separable, unimodal 84 Periodic Separable

30 Schaffer2 Non-separable, uni-

modal

85 Powell sum Non-separable, Uni-

modal

31 Easom Separable, multimo-

dal

86 Price1 Separable, multimo-

dal

32 Matyas Non-separable, uni-

modal

87 Price2 Non-separable, mul-

timodal

33 Cross in Tray Non-separable, mul-

timodal

88 Price3 Non-separable, mul-

timodal

34 Bukin Non-separable, mul-

timodal

89 Price4 Non-separable, mul-

timodal

35 Schaffer4 Non-separable, uni-

modal

90 Qing Separable, multimo-

dal

36 Equal peaks Separable 91 Quadratic Non-separable

37 Ackley2 Non-separable, uni-

modal

92 Quartic Separable

80 Appendix A: Optimization Problems

Table A.2: Main features of functions.

No. Function Features No. Function Features

38 Ackley3 Non-separable, uni-

modal

93 Quintic Separable, multimo-

dal

39 Ackley4 Non-separable, mul-

timodal

94 Rosenbrock

modified

Non-separable, mul-

timodal

40 Adjiman Non-separable, mul-

timodal

95 Rotated

ellipse

Non-separable, uni-

modal

41 Alpine1 Separable, multimo-

dal

96 Rotated

ellipse2

Non-separable, mul-

timodal

42 Alpine2 Separable, multimo-

dal

97 Rump Non-separable, uni-

modal

43 Bartels Non-separable, mul-

timodal

98 Salomon Non-separable, mul-

timodal

44 Bigg exp2 Non-separable, mul-

timodal

99 Sargan Non-separable, mul-

timodal

45 Bird Non-separable, mul-

timodal

100 Schaffer3 Non-separable, uni-

modal

46 Bohachevsky2 Non-separable, mul-

timodal

101 Schumer

Steiglitz

Separable, unimodal

47 Bohachevsky3 Non-separable, mul-

timodal

102 Schwefel24 Separable, multimo-

dal

48 Branin Rcos Non-separable, mul-

timodal

103 Schwefel222 Non-separable, uni-

modal

49 Branin

Rcos2

Non-separable, mul-

timodal

104 Schwefel236 Separable, multimo-

dal

50 Brent Non-separable, uni-

modal

105 Streched v

sine wave

Non-separable, uni-

modal

A.2. Features of Functions 81

Table A.2: Main features of functions.

No. Function Features No. Function Features

51 Brown Non-separable, uni-

modal

106 Testtube

holder

Separable, multimo-

dal

52 Bukin2 Non-separable, mul-

timodal

107 Trecanni Separable, unimodal

53 Bukin4 Separable, multimo-

dal

108 Trefethen Non-separable, mul-

timodal

54 Three hump

camel fun-

ction

Non-separable, mul-

timodal

109 Trigonometric Non-separable, mul-

timodal

55 Six hump ca-

mel function

Non-separable, mul-

timodal

110 Trigonometric2 Non-separable, mul-

timodal

Appendix B

Models

The following are the ensemble of Random Forest trees generated by model M50;

the model use descriptive and dynamic fitness landscape features.

B.1. M50

S

fdc >= 0.92

epi >= 0.22

easy

epi < 0.22

epi >= 0.08

difficult

epi < 0.08

bas >= 0.08

neu >= 0.03

easy

neu < 0.03

difficult

bas < 0.08

fdc >= 0.98

rug >= 0.29

difficult

rug < 0.29

fdc >= 0.98

easy

fdc < 0.98

fdc >= 0.98

difficult

fdc < 0.98

easy

fdc < 0.98

rug >= 0.1

epi >= 0.01

epi >= 0.04

difficult

epi < 0.04

easy

epi < 0.01

difficult

rug < 0.1

easy

fdc < 0.92

difficult

Figure B.1: M50, Random Tree 1

83

84 Appendix B: Models

S

fdc >= 0.97

fdc >= 0.99

easy

fdc < 0.99

fdc >= 0.98

neu >= 0.14

easy

neu < 0.14

neu >= 0.03

neu >= 0.09

difficult

neu < 0.09

rug >= 0.18

easy

rug < 0.18

rug >= 0.14

difficult

rug < 0.14

rug >= 0.13

easy

rug < 0.13

difficult

neu < 0.03

easy

fdc < 0.98

neu >= 0.17

rug >= 0.16

easy

rug < 0.16

difficult

neu < 0.17

easy

fdc < 0.97

fdc >= 0.92

epi >= 0.48

easy

epi < 0.48

fdc >= 0.93

neu >= 0.03

difficult

neu < 0.03

rug >= 0.31

easy

rug < 0.31

difficult

fdc < 0.93

easy

fdc < 0.92

neu >= 0.03

difficult

neu < 0.03

rug >= 0.3

difficult

rug < 0.3

easy

Figure B.2: M50, Random Tree 2

S

fdc >= 0.97

neu >= 0.14

easy

neu < 0.14

bas >= 0.07

rug >= 0.43

easy

rug < 0.43

difficult

bas < 0.07

rug >= 0.18

easy

rug < 0.18

neu >= 0.03

rug >= 0.15

difficult

rug < 0.15

rug >= 0.13

easy

rug < 0.13

difficult

neu < 0.03

easy

fdc < 0.97

fdc >= 0.03

fdc >= 0.95

epi >= 0.29

neu >= 0.03

easy

neu < 0.03

difficult

epi < 0.29

neu >= 0.03

difficult

neu < 0.03

easy

fdc < 0.95

neu >= 0.03

difficult

neu < 0.03

rug >= 0.3

difficult

rug < 0.3

easy

fdc < 0.03

easy

Figure B.3: M50, Random Tree 3

S

fdc >= 0.96

bas >= 0.84

difficult

bas < 0.84

neu >= 0.19

easy

neu < 0.19

bas >= 0.07

bas >= 0.1

rug >= 0.36

difficult

rug < 0.36

easy

bas < 0.1

difficult

bas < 0.07

neu >= 0.16

difficult

neu < 0.16

neu >= 0.04

easy

neu < 0.04

neu >= 0.04

difficult

neu < 0.04

bas >= 0.02

difficult

bas < 0.02

easy

fdc < 0.96

fdc >= 0.75

neu >= 0.03

neu >= 0.36

nsc >= −0.01

difficult

nsc < −0.01

easy

neu < 0.36

epi >= 0.48

rug >= 0.32

difficult

rug < 0.32

easy

epi < 0.48

difficult

neu < 0.03

easy

fdc < 0.75

difficult

Figure B.4: M50, Random Tree 4

S

fdc >= 0.98

fdc >= 0.98

neu >= 0.11

easy

neu < 0.11

bas >= 0.03

difficult

bas < 0.03

rug >= 0.18

easy

rug < 0.18

neu >= 0.03

difficult

neu < 0.03

easy

fdc < 0.98

easy

fdc < 0.98

fdc >= 0.92

bas >= 0.09

bas >= 0.29

rug >= 0.4

difficult

rug < 0.4

easy

bas < 0.29

easy

bas < 0.09

difficult

fdc < 0.92

difficult

Figure B.5: M50, Random Tree 5

B.1. M50 85

S

fdc >= 0.97

rug >= 0.32

difficult

rug < 0.32

epi >= 0

epi >= 0.1

epi >= 0.19

bas >= 0.08

rug >= 0.23

easy

rug < 0.23

difficult

bas < 0.08

easy

epi < 0.19

difficult

epi < 0.1

easy

epi < 0

neu >= 0.03

rug >= 0.19

easy

rug < 0.19

fdc >= 0.98

rug >= 0.13

easy

rug < 0.13

difficult

fdc < 0.98

difficult

neu < 0.03

easy

fdc < 0.97

bas >= 0.37

easy

bas < 0.37

bas >= 0.05

epi >= 0.56

difficult

epi < 0.56

epi >= 0.3

easy

epi < 0.3

bas >= 0.25

epi >= 0.06

difficult

epi < 0.06

easy

bas < 0.25

neu >= 0.03

difficult

neu < 0.03

easy

bas < 0.05

difficult

Figure B.6: M50, Random Tree 6

S

fdc >= 0.92

epi >= 0.08

epi >= 0.29

rug >= 0.54

difficult

rug < 0.54

easy

epi < 0.29

difficult

epi < 0.08

bas >= 0.21

easy

bas < 0.21

rug >= 0.33

difficult

rug < 0.33

fdc >= 0.98

easy

fdc < 0.98

neu >= 0.09

neu >= 0.37

easy

neu < 0.37

bas >= 0.09

easy

bas < 0.09

difficult

neu < 0.09

fdc >= 0.98

rug >= 0.13

rug >= 0.15

difficult

rug < 0.15

easy

rug < 0.13

difficult

fdc < 0.98

easy

fdc < 0.92

neu >= 0.03

difficult

neu < 0.03

easy

Figure B.7: M50, Random Tree 7

S

fdc >= 0.92

rug >= 0.38

rug >= 0.44

rug >= 0.61

difficult

rug < 0.61

easy

rug < 0.44

difficult

rug < 0.38

rug >= 0.17

neu >= 0.03

easy

neu < 0.03

fdc >= 0.98

easy

fdc < 0.98

rug >= 0.19

difficult

rug < 0.19

neu >= 0.03

easy

neu < 0.03

difficult

rug < 0.17

neu >= 0.03

neu >= 0.09

rug >= 0.14

easy

rug < 0.14

rug >= 0.11

difficult

rug < 0.11

easy

neu < 0.09

difficult

neu < 0.03

easy

fdc < 0.92

epi >= 0

difficult

epi < 0

nsc >= −0.05

difficult

nsc < −0.05

easy

Figure B.8: M50, Random Tree 8

86 Appendix B: Models

S

fdc >= 0.96

fdc >= 0.99

easy

fdc < 0.99

neu >= 0.03

fdc >= 0.97

neu >= 0.03

neu >= 0.04

epi >= 0

neu >= 0.11

easy

neu < 0.11

rug >= 0.16

rug >= 0.2

difficult

rug < 0.2

easy

rug < 0.16

difficult

epi < 0

difficult

neu < 0.04

easy

neu < 0.03

difficult

fdc < 0.97

difficult

neu < 0.03

rug >= 0.42

difficult

rug < 0.42

easy

fdc < 0.96

epi >= 0

fdc >= 0.92

rug >= 0.24

easy

rug < 0.24

difficult

fdc < 0.92

difficult

epi < 0

rug >= 0.52

easy

rug < 0.52

rug >= 0.28

difficult

rug < 0.28

rug >= 0.2

neu >= 0.19

difficult

neu < 0.19

easy

rug < 0.2

difficult

Figure B.9: M50, Random Tree 9

S

fdc >= 0.96

fdc >= 0.98

easy

fdc < 0.98

fdc >= 0.98

neu >= 0.03

difficult

neu < 0.03

easy

fdc < 0.98

neu >= 0.06

bas >= 0.09

easy

bas < 0.09

epi >= 0

rug >= 0.2

difficult

rug < 0.2

easy

epi < 0

difficult

neu < 0.06

bas >= 0.27

difficult

bas < 0.27

easy

fdc < 0.96

rug >= 0.26

fdc >= 0.92

neu >= 0.05

difficult

neu < 0.05

rug >= 0.46

difficult

rug < 0.46

easy

fdc < 0.92

fdc >= 0.17

difficult

fdc < 0.17

easy

rug < 0.26

difficult

Figure B.10: M50, Random Tree 10

References

[Abdullah12] Abdullah, S., Turabieh, H., McCollum, B., y McMullan, P. A hy-

brid metaheuristic approach to the university course timetabling

problem. J. Heuristics, 18(1):1–23, 2012.

[Altenberg97] Altenberg, L. Fitness distance correlation analysis: An instructi-

ve counterexample. En T. Back, ed., ICGA, págs. 57–64. Morgan

Kaufmann, 1997.

[Asmus14] Asmus, J., Borchmann, D., Sbalzarini, I. F., y Walther, D. Towards

an fca-based recommender system for black-box optimization. En

S. O. Kuznetsov, A. Napoli, y S. Rudolph, eds., Proceedings of the

3rd International Workshop on ”What can FCA do for Artificial

Intelligence?”(FCA4AI’14), tomo 1257 de CEUR Workshop Pro-

ceedings, págs. 35–42. 2014.

[Auger12] Auger, A., Hansen, N., Heidrich-Meisner, V., Mersmann, O., Posik,

P., y Preuss, M. Gecco 2012 workshop on black-box optimization

benchmarking (bbob). En GECCO 2012: Genetic and Evolutionary

Computation Conference Companion. ACM, New York, NY, USA,

2012.

[Bischl12] Bischl, B., Mersmann, O., Trautmann, H., y Preuß, M. Algorithm

selection based on exploratory landscape analysis and cost-sensitive

learning. En Proceedings of the 14th Annual Conference on Genetic

87

88 References

and Evolutionary Computation, GECCO ’12, págs. 313–320. ACM,

New York, NY, USA, 2012. ISBN 978-1-4503-1177-9.

[Blum03] Blum, C. y Roli, A. Metaheuristics in combinatorial optimiza-

tion: Overview and conceptual comparison. ACM Comput. Surv.,

35(3):268–308, sep. 2003. ISSN 0360-0300.

[Boussäıd13] Boussäıd, I., Lepagnot, J., y Siarry, P. A survey on optimization

metaheuristics. Inf. Sci., 237:82–117, jul. 2013. ISSN 0020-0255.

[Breiman01] Breiman, L. Random forests. Machine Learning, 45(1):5–32, 2001.

ISSN 0885-6125.

[Caamaño10] Caamaño, P., Prieto, A., Becerra, J. A., Bellas, F., y Duro, R. J.

Real-valued multimodal fitness landscape characterization for evo-

lution. En Proceedings of the 17th International Conference on Neu-

ral Information Processing: Theory and Algorithms - Volume Part

I, ICONIP’10, págs. 567–574. Springer-Verlag, Berlin, Heidelberg,

2010. ISBN 3-642-17536-8, 978-3-642-17536-7.

[Caamaño13] Caamaño, P., Bellas, F., Becerra, J. A., y Duro, R. J. Evolutionary

algorithm characterization in real parameter optimization problems.

Appl. Soft Comput., 13(4):1902–1921, 2013.

[Chan03] Chan, K. Y., Aydin, M. E., y Fogarty, T. C. An epistasis measure

based on the analysis of variance for the real-coded representation

in genetic algorithms. En IEEE Congress on Evolutionary Compu-

tation, págs. 297–304. IEEE, 2003.

[Chen08] Chen, Y., Hu, J., Hirasawa, K., y Yu, S. Solving deceptive problems

using a genetic algorithm with reserve selection. En Evolutionary

Computation, 2008. CEC 2008. (IEEE World Congress on Compu-

tational Intelligence). IEEE Congress on, págs. 884–889. 2008.

References 89

[Chipperfield94] Chipperfield, A., Fleming, P., Pohlheim, H., y Fonseca, C. Gene-

tic algorithm toolbox for use with matlab. Inf. téc., University of

Sheffield, 1994.

[Davidor90] Davidor, Y. Epistasis variance: Suitability of a representation to

genetic algorithms. Complex Systems, 4:369–383, 1990.

[Deb93] Deb, K. y Goldberg, D. E. Analyzing deception in trap functions.

Foundations of genetic algorithms, 2:93–108, 1993.

[Galván-López06] Galván-López, E. y Poli, R. Some steps towards understanding how

neutrality affects evolutionary search. En T. P. Runarsson, H.-G.

Beyer, E. K. Burke, J. J. M. Guervós, L. D. Whitley, y X. Yao, eds.,

PPSN, tomo 4193 de Lecture Notes in Computer Science, págs. 778–

787. Springer, 2006. ISBN 3-540-38990-3.

[Graff10] Graff, M. y Poli, R. Practical performance models of algorithms

in evolutionary program induction and other domains. Artificial

Intelligence, 174(15):1254–1276, oct. 2010. ISSN 0004-3702.

[Graff12] Graff, M., Poli, R., y Flores, J. J. Models of performance of evolutio-

nary program induction algorithms based on indicators of problem

difficulty. Evolutionary Computation, nov. 2012. ISSN 1063-6560.

[Graff13] Graff, M., Escalante, H. J., Cerda-Jacobo, J., y Avalos-Gonzalez, A.

Models of performance of time series forecasters. Neurocomputing,

122:375–385, dic. 2013. ISSN 0925-2312. 00001.

[Grefenstette92] Grefenstette, J. J. Deception considered harmful. En Foundations

of Genetic Algorithms 2, págs. 75–91. Morgan Kaufmann, 1992.

[Hall09] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., y

Witten, I. H. The weka data mining software: An update. SIGKDD

Explor. Newsl., 11(1):10–18, nov. 2009. ISSN 1931-0145.

90 References

[Hansen10] Hansen, N., Auger, A., Finck, S., y Ros, R. Real-parameter black-

box optimization benchmarking 2010: Experimental setup. Inf. Téc.

RR-7215, INRIA, Paris, France, September 2010.

[Haupt04] Haupt, R. L. y Haupt, S. E. Practical genetic algorithms. J. Wiley,

Hoboken, N.J., 2004.

[Herrera98] Herrera, F., Lozano, M., y Verdegay, J. L. Tackling real-coded ge-

netic algorithms: Operators and tools for behavioural analysis. Ar-

tificial Intelligence Review, 12:265–319, 1998.

[Horn94] Horn, J. y Goldberg, D. E. Genetic algorithm difficulty and the

modality of fitness landscapes. Urbana, 51:61801–2996, 1994.

[Horn95] Horn, J. y Goldberg, D. E. Genetic algorithm difficulty and the

modality of the fitness landscapes. En L. D. Whitley y M. D. Vose,

eds., FOGA-3, págs. 243–269. Morgan Kaufmann, 1995. ISBN 1-

55860-356-5.

[Huang09] Huang, D., Shen, Z., Miao, C., y Leung, C. Fitness landscape analy-

sis for resource allocation in multiuser ofdm based cognitive radio

systems. SIGMOBILE Mob. Comput. Commun. Rev., 13(2):26–36,

sep. 2009. ISSN 1559-1662.

[Jamil13] Jamil, M. y Yang, X.-S. A literature survey of benchmark functions

for global optimisation problems. IJMNO, 4(2):150–194, 2013.

[Jones94] Jones, T. A Model Of Landscapes. Inf. téc., Santa Fe Institute,

1994.

[Jones95a] Jones, T. Evolutionary Algorithms, Fitness Landscapes and Search.

Tesis Doctoral, University of New Mexico, 1995.

[Jones95b] Jones, T. One operator, one landscape. Inf. téc., Santa Fe Institute,

Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501,

USA, 1995.

References 91

[Jones95c] Jones, T. y Forrest, S. Fitness distance correlation as a measure

of problem difficulty for genetic algorithms. En Proceedings of the

6th International Conference on Genetic Algorithms, págs. 184–192.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1995.

ISBN 1-55860-370-0.

[Kauffman91] Kauffman, S. A. y Johnsen, S. Coevolution to the edge of chaos:

Coupled fitness landscapes, poised states, and coevolutionary ava-

lanches. Journal of Theoretical Biology, 149(4):467–505, 1991.

[Kaya11] Kaya, Y., Uyar, M., y Tekin, R. A novel crossover operator for

genetic algorithms: Ring crossover. CoRR, abs/1105.0355, 2011.

[Kerschke14] Kerschke, P., Preuss, M., Hernández, C., Schütze, O., Sun, J.-Q.,

Grimme, C., Rudolph, G., Bischl, B., y Trautmann, H. Cell map-

ping techniques for exploratory landscape analysis. En A. Tantar,

E. Tantar, J. Sun, W. Zhang, Q. Ding, O. Schtze, M. Emmerich,

P. Legrand, M. P. Del, y C. C. Coello, eds., EVOLVE — A Brid-

ge between Probability, Set Oriented Numerics, and Evolutionary

Computation V, tomo 288 de Advances in Intelligent Systems and

Computing, págs. 115–131. Springer International Publishing, 2014.

ISBN 978-3-319-07493-1. Publication status: Published.

[Kimura83] Kimura, M. The Neutral Theory of Molecular Evolution. Cambridge

University Press, Cambridge, 1983.

[Knjazew12] Knjazew, D. OmeGA: A competent genetic algorithm for solving

permutation and scheduling problems, tomo 6. Springer Science &

Business Media, 2012.

[Lipsich91] Lipsich, M. Adaptation on rugged landscapes generated by iterated

local interactions of neighboring genes. En R. K. Belew y L. B.

Booker, eds., Proc. of the Fourth Int. Conf. on Genetic Algorithms,

págs. 128–135. Morgan Kaufmann, San Mateo, CA, 1991.

92 References

[Lobo04] Lobo, J., Miller, J. H., y Fontana, W. Neutrality in technological

landscapes. Inf. téc., working paper, Santa Fe Institute, Santa Fe,

2004.

[Lu11] Lu, G., Li, J., y Yao, X. Evolutionary Computation in Combinatorial

Optimization: 11th European Conference, EvoCOP 2011, Torino,

Italy, April 27-29, 2011. Proceedings, cap. Fitness-Probability Cloud

and a Measure of Problem Hardness for Evolutionary Algorithms,

págs. 108–117. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

ISBN 978-3-642-20364-0.

[Magalhaes-Mendes13] Magalhaes-Mendes, J. A comparative study of crossover operators

for genetic algorithms to solve the job shop scheduling problem.

WSEAS Trans. Comput, 12(4):164–173, 2013.

[Malan09] Malan, K. y Engelbrecht, A. P. Quantifying ruggedness of conti-

nuous landscapes using entropy. En IEEE Congress on Evolutionary

Computation, págs. 1440–1447. IEEE, 2009.

[Malan13] Malan, K. M. y Engelbrecht, A. P. A survey of techniques for cha-

racterising fitness landscapes and some possible ways forward. In-

formation Sciences, 241(0):148 – 163, 2013. ISSN 0020-0255.

[Malan14] Malan, K. y Engelbrecht, A. Particle swarm optimisation failure

prediction based on fitness landscape characteristics. En Swarm

Intelligence (SIS), 2014 IEEE Symposium on, págs. 1–9. Dec 2014.

[Mattfeld99] Mattfeld, D. C. y Bierwirth, C. A search space analysis of the job

shop scheduling problem. Annals of Operations Research, 86:441–

453, 1999.

[Merkurjeva11] Merkurjeva, G. y Bolshakovs, V. Benchmark fitness landscape

analysis. International Journal of Simulation Systems, Science and

Technology, 12(2):38–45, 2011.

References 93

[Mersmann11] Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., y

Rudolph, G. Exploratory landscape analysis. En Proceedings of the

13th Annual Conference on Genetic and Evolutionary Computation,

GECCO ’11, págs. 829–836. ACM, New York, NY, USA, 2011. ISBN

978-1-4503-0557-0.

[Mersmann13] Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J.,

y Neumann, F. A novel feature-based approach to characterize algo-

rithm performance for the traveling salesperson problem. Annals of

Mathematics and Artificial Intelligence, 69(2):151–182, 2013. ISSN

1573-7470.

[Mitchell96] Mitchell, M. An Introduction to Genetic Algorithms. MIT Press,

Cambridge, MA, 1996.

[Müller11] Müller, C. L. y Sbalzarini, I. F. Global characterization of the

CEC 2005 fitness landscapes using fitness-distance analysis. En

C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekart, A. I.

Esparcia-Alcazar, J. J. Merelo, F. Neri, M. Preuss, H. Richter,

J. Togelius, y G. N. Yannakakis, eds., Applications of Evolutio-

nary Computing, EvoApplications 2011: EvoCOMPLEX, EvoGA-

MES, EvoIASP, EvoINTELLIGENCE, EvoNUM, EvoSTOC, tomo

6624 de LNCS, págs. 291–300. Springer Verlag, Turin, Italy, abr.

2011.

[Muñoz15] Muñoz, M. A., Kirley, M., y Halgamuge, S. K. Exploratory landsca-

pe analysis of continuous space optimization problems using infor-

mation content. IEEE Trans. Evolutionary Computation, 19(1):74–

87, 2015.

[Naudts00a] Naudts, B. y Kallel, L. A comparison of predictive measures of

problem difficulty in evolutionary algorithms. IEEE Transactions

on Evolutionary Computation, 4(1):1–15, 2000.

94 References

[Naudts00b] Naudts, B. y Kallel, L. A comparison of predictive measures of pro-

blem difficulty in evolutionary algorithms. Evolutionary Compu-

tation, IEEE Transactions on, 4(1):1–15, Apr 2000. ISSN 1089-

778X.

[Nocedal06] Nocedal, J. y Wright, S. J. Numerical Optimization, second edition.

World Scientific, 2006.

[Ochoa08] Ochoa, G., Tomassini, M., Verel, S., y Darabos, C. A study of

nk landscapes’ basins and local optima networks. En C. Ryan y

M. Keijzer, eds., GECCO, págs. 555–562. ACM, 2008. ISBN 978-1-

60558-130-9.

[Ortiz-Boyer07] Ortiz-Boyer, D., Hervás-Mart́ınez, C., y Garćıa-Pedrajas, N. Im-

proving crossover operator for real-coded genetic algorithms using

virtual parents. J. Heuristics, 13(3):265–314, 2007.

[Picek09] Picek, S. y Golub, M. The new negative slope coefficient measu-

re. En Proceedings of the 10th WSEAS International Conference

on Evolutionary Computing, EC’09, págs. 96–101. World Scientific

and Engineering Academy and Society (WSEAS), Stevens Point,

Wisconsin, USA, 2009. ISBN 978-960-474-067-3.

[Pitzer10] Pitzer, E., Affenzeller, M., y Beham, A. A closer look down the

basins of attraction. En Computational Intelligence (UKCI), 2010

UK Workshop on, págs. 1–6. Sept 2010.

[Pitzer12] Pitzer, E. y Affenzeller, M. A comprehensive survey on fitness lands-

cape analysis. En J. C. Fodor, R. Klempous, y C. P. S. Araujo,

eds., Recent Advances in Intelligent Engineering Systems, tomo 378

de Studies in Computational Intelligence, págs. 161–191. Springer,

2012. ISBN 978-3-642-23228-2.

[Reeves95] Reeves, C. R. y Wright, C. C. Epistasis in genetic algorithms: An

References 95

experimental design perspective. En Proc. of the 6th Internatio-

nal Conference on Genetic Algorithms, (pp 217–224, págs. 217–224.

Morgan Kaufmann, 1995.

[Reidys02] Reidys, C. M. y Stadler, P. F. Combinatorial landscapes. SIAM

Rev., 44(1):3–54 (electron, 2002. ISSN 0036-1445.

[Rice76] Rice, J. R. The algorithm selection problem. Advances in Compu-

ters, 15:65–118, 1976.

[Rodriguez-Maya14a] Rodriguez-Maya, N. E., Graff, M., y Flores, J. J. Nature-Inspired

Computation and Machine Learning: 13th Mexican International

Conference on Artificial Intelligence, MICAI 2014, Tuxtla Gu-

tiérrez, Mexico, November 16-22, 2014. Proceedings, Part II, cap.

Performance Classification of Genetic Algorithms on Continuous

Optimization Problems, págs. 1–12. Springer International Publis-

hing, Cham, 2014. ISBN 978-3-319-13650-9.

[Rodriguez-Maya14b] Rodriguez-Maya, N. E., Mart́ınez-Carranza, J., Flores, J. J., y Graff,

M. Solving a scholar timetabling problem using a genetic algorithm

- study case: Instituto tecnologico de zitacuaro. En 13th Mexican

International Conference on Artificial Intelligence, MICAI 2014,

Tuxtla Gutierrez, Mexico, November 16-22, 2014, Special Session

Proceedings, págs. 197–202. 2014.

[Smith02] Smith, T., Philippides, A., Husbands, P., y O’Shea, M. Neutrality

and ruggedness in robot landscapes. En Evolutionary Computation,

2002. CEC ’02. Proceedings of the 2002 Congress on, tomo 2, págs.

1348–1353. 2002.

[Spears91] Spears, W. M. y Anand, V. A study of crossover operators in genetic

programming. En Z. W. Ras y M. Zemankova, eds., Proceedings of

the Sixth International Symposium on Methodologies for Intelligent

96 References

Systems ISMIS 91, tomo 542 de Lecture Notes in Computer Science,

págs. 409–418. Springer-Verlag, October 16-19 1991. ISBN 3-540-

54563-8.

[Stanhope98] Stanhope, S. A. y Daida, J. M. Evolutionary Programming VII: 7th

International Conference, EP98 San Diego, California, USA, March

25–27, 1998 Proceedings, cap. Optimal mutation and crossover rates

for a genetic algorithm operating in a dynamic environment, págs.

693–702. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998. ISBN

978-3-540-68515-9.

[Trujillo11] Trujillo, L., Mart́ınez, Y., López, E. G., y Legrand, P. Predicting

problem difficulty for genetic programming applied to data classifi-

cation. En GECCO, págs. 1355–1362. 2011.

[Trujillo12a] Trujillo, L., Martinez, Y., Galvan-Lopez, E., y Legrand, P. A com-

parison of predictive measures of problem difficulty for classification

with Genetic Programming. En ERA 2012. Tijuana, Mexico, nov.

2012.

[Trujillo12b] Trujillo, L., Mart́ınez, Y., López-Galván, E., y Legrand, P. A

comparative study of an evolvability indicator and a predictor of

expected performance for genetic programming. En Proceedings

of the Fourteenth International Conference on Genetic and Evolu-

tionary Computation Conference Companion, GECCO Companion

’12, págs. 1489–1490. ACM, New York, NY, USA, 2012. ISBN 978-

1-4503-1178-6.

[Vanneschi02] Vanneschi, L. y Tomassini, M. A study on fitness distance correla-

tion and problem difficulty for genetic programming. En S. Luke,

C. Ryan, y U.-M. O’Reilly, eds., Graduate Student Workshop, págs.

307–310. AAAI, New York, 8 July 2002.

References 97

[Vanneschi04a] Vanneschi, L., Clergue, M., Collard, P., Tomassini, M., y Verel, S.

Fitness clouds and problem hardness in genetic programming. En

K. Deb, ed., Genetic and Evolutionary Computation GECCO 2004,

tomo 3103 de Lecture Notes in Computer Science, págs. 690–701.

Springer Berlin Heidelberg, 2004. ISBN 978-3-540-22343-6.

[Vanneschi04b] Vanneschi, L., Clergue, M., Collard, P., Tomassini, M., y Verel,

S. Fitness clouds and problem hardness in genetic programming.

En K. Deb, ed., Genetic and Evolutionary Computation - GECCO

2004, tomo 3103 de Lecture Notes in Computer Science, págs. 690–

701. Springer Berlin Heidelberg, 2004. ISBN 978-3-540-22343-6.

[Vanneschi05] Vanneschi, L., Tomassini, M., Collard, P., y Clergue, M. A sur-

vey of problem difficulty in genetic programming. En S. Bandini

y S. Manzoni, eds., AI*IA 2005: Advances in Artificial Intelligen-

ce, tomo 3673 de Lecture Notes in Computer Science, págs. 66–77.

Springer Berlin Heidelberg, 2005. ISBN 978-3-540-29041-4.

[Vanneschi06a] Vanneschi, L., Tomassini, M., Collard, P., y Vérel, S. Negative slope

coefficient: A measure to characterize genetic programming fitness

landscapes. En Genetic Programming, 9th European Conference,

EuroGP 2006, Budapest, Hungary, April 10-12, 2006, Proceedings,

págs. 178–189. Springer, 2006.

[Vanneschi06b] Vanneschi, L., Tomassini, M., Collard, P., y Verel, S. Negative slo-

pe coefficient: A measure to characterize genetic programming fit-

ness landscapes. En Genetic Programming, págs. 178–189. Springer,

2006.

[Vanneschi06c] Vanneschi, L., Tomassini, M., Pirola, Y., Vérel, S., y Mauri, G. A

quantitative study of neutrality in gp boolean landscapes. En Pro-

ceedings of the Genetic and Evolutionary Computation Conference,

GECCO’06, págs. 895–902. ACM Press, 2006.

98 References

[Vanneschi08] Vanneschi, L. Investigating problem hardness of real life applica-

tions. En R. Riolo, T. Soule, y B. Worzel, eds., Genetic Program-

ming Theory and Practice V, Genetic and Evolutionary Compu-

tation Series, págs. 107–124. Springer US, 2008. ISBN 978-0-387-

76307-1.

[Vanneschi09] Vanneschi, L., Verel, S., Tomassini, M., y Collard, P. Nk landsca-

pes difficulty and negative slope coefficient: How sampling influences

the results. En M. Giacobini, A. Brabazon, S. Cagnoni, G. Di Ca-

ro, A. Ekrt, A. Esparcia-Alczar, M. Farooq, A. Fink, y P. Machado,

eds., Applications of Evolutionary Computing, tomo 5484 de Lecture

Notes in Computer Science, págs. 645–654. Springer Berlin Heidel-

berg, 2009. ISBN 978-3-642-01128-3.

[Vasconcelos01] Vasconcelos, J. A., Ramirez, J. A., Takahashi, R. H. C., y Saldan-

ha, R. R. Improvements in genetic algorithms. Magnetics, IEEE

Transactions on, 37(5):3414–3417, 2001.

[Vassilev99] Vassilev, V. K., Miller, J. F., y Fogarty, T. C. Digital circuit evo-

lution and fitness landscapes. En P. J. Angeline, Z. Michalewicz,

M. Schoenauer, X. Yao, y A. Zalzala, eds., Proceedings of the Con-

gress on Evolutionary Computation, tomo 2. IEEE Press, Mayflower

Hotel, Washington D.C., USA, 6-9 jul. 1999. ISBN 0-7803-5536-9

(softbound).

[Vassilev00] Vassilev, V. K., Fogarty, T. C., y Miller, J. F. Information characte-

ristics and the structure of landscapes. Evolutionary Computation,

8(1):31–60, 2000.

[Verel03] Verel, S. y Clergue, M. Where are bottleneck in nk fitness landsca-

pes. En Gedeon (Eds.), Proceedings of the 2003 Congress on Evolu-

tionary Computation CEC2003, IEEE, págs. 273–280. Press, 2003.

References 99

[Verel07] Verel, S., Collard, P., y Clergue, M. Where are bottlenecks in nk

fitness landscapes? CoRR, abs/0707.0641, 2007.

[Wagner96] Wagner, G. P. y Altenberg, L. Complex adaptations and the evolu-

tion of evolvability. Evolution, 50(3):967–976, 1996.

[Weinberger90] Weinberger, E. Correlated and uncorrelated fitness landscapes and

how to tell the difference. Biological Cybernetics, 63(5):325–336,

1990. ISSN 1432-0770.

[Weise09] Weise, T. Global Optimization Algorithms – Theory and Applica-

tion. it-weise.de (self-published): Germany, 2009.

[Wolpert97] Wolpert, D. H. y Macready, W. G. No free lunch theorems for

optimization. Trans. Evol. Comp, 1(1):67–82, abr. 1997. ISSN 1089-

778X.

[Wright32] Wright, S. The roles of mutation, inbreeding, crossbreeding and se-

lection in evolution. Proceedings of the Sixth International Congress

of Genetics, 1:356–66, 1932.

[Xin09] Xin, B., Chen, J., y Pan, F. Problem difficulty analysis for parti-

cle swarm optimization: Deception and modality. En Proceedings

of the First ACM/SIGEVO Summit on Genetic and Evolutionary

Computation, GEC ’09, págs. 623–630. ACM, New York, NY, USA,

2009. ISBN 978-1-60558-326-6.

[Yoon12] Yoon, Y. y Kim, Y.-H. The Roles of Crossover and Mutation in

Real-Coded Genetic Algorithms. INTECH Open Access Publisher,

2012.

	Portada
	Resumen
	thesis

