
SEMANTIC CROSSOVER OPERATORS BASED ON THE FIRST AND
SECOND PARTIAL DERIVATIVES OF THE FITNESS FUNCTION FOR

GENETIC PROGRAMMING

THESIS

A thesis submitted for the degree of
PHD. IN ELECTRICAL ENGINEERING

presents
M.C. Ranyart Rodrigo Suárez Ponce de León

Dr. Mario Graff Guerrero
Thesis Advisor

Dr. Juan José Flores Romero
Thesis Co-Advisor

Universidad Michoacana de San Nicolás de Hidalgo
Facultad De Ingeniería Eléctrica

División de Estudios de Posgrado

Morelia, Michoacán, México
Enero 2018

Contents

v

List of Figures . ix

List of Tables . xi

Abstract . xiii

Resumen . 1

1. Introduction 3

1.1. Motivations . 4

1.2. Objectives . 6

1.3. Achievements . 6

1.4. List of publications . 7

1.5. Thesis Outline . 7

2. Literature Survey 11

2.1. Diversity, Direct and Indirect Methods . 11

2.2. GP and Regression . 14

2.3. GP and Classification . 15

2.4. GP and Feature Selection . 17

2.5. Summary . 18

3. Partial Derivatives in Genetic Programming 19

3.1. First Partial Derivative . 20

3.2. Second Partial Derivative . 22

3.2.1. Example of the computing of ∂2E
∂v2

in an individual 24

3.2.2. Using ∂2E
∂v2

and the Newton Method 26

3.3. Semantic Crossover for Genetic Programming Using Partial Derivatives . . 28

3.3.1. Crossover based on the first derivative 28

3.3.2. Crossover Based on the Newton Method 29

3.3.3. Crossover Based On The First Derivative And The Newton Method 30

3.4. Summary . 32

iii

iv Contents

4. Symbolic Regression and Semantic Crossover 35
4.1. Problems and Parameter Settings . 36
4.2. Results . 36
4.3. Summary . 43

5. Classification and Semantic Crossover 45
5.1. Problems and Parameter Settings . 47
5.2. Results . 49
5.3. Summary . 55

6. Feature Selection and Semantic Crossover 57
6.1. GP as a Feature Selection Algorithm . 59
6.2. Problems and Parameter Settings . 60
6.3. Results . 61
6.4. Summary . 70

7. Conclusions and Future Work 73

References 77

Nomenclature

AGX Approximately Geometric Crossover

ANNs Artificial Neural Networks

AR Auto-Regressive Model

ARIMA Auto-Regressive Integrated Moving Average

ARMA Auto-Regressive Moving Average

BDTs Binary Decision Trees

BER Balanced Error Rate

DE Differential Evolution

DTs Decision Trees

EAs Evolutionary Algorithms

ES Evolution Strategies

GAs Genetic Algorithms

GE Gene Expression Programming

GP Genetic Programming

GPPDE Semantic Crossover with first partial derivative information

GPPDE2 Semantic Crossover with second partial derivative information

GPPDEC Semantic Crossover combining GPPDE and GPPDE2

v

vi Contents

GSGP Geometric Semantic Genetic Programming

KLX Krawiec and Lichocki Geometric Crossover

LARS Least Angle Regression

LASSO Least Absolute Shrinkage and Selection Operator

LGX Locally Geometric Crossover

RBF Radial Basis Function Kernel for SVMs

RF Random Forests

SVMs Support Vector Machines

Contents vii

List of Symbols

α,β Values propagated by the Backpropagation Algorithm

∂E
∂v First partial derivative of E w.r.t v

∂2E
∂v2

Second partial derivative of E w.r.t v

E Error Function E = (y − ŷ)2

e Difference between target and output e = (y − ŷ)

u Cross point in the second parent

v Cross point in the first parent

List of Figures

1.1. Syntactical crossover in GP . 5

3.1. Function g(f(x)) represented as a directed graph. 20
3.2. Stored functions for computing the first derivative. 20
3.3. Back step for computing the first derivative. 21
3.4. Representation of partial derivatives stored in an individual. 22
3.5. Information stored to compute second partial derivative 22
3.6. Backward step to compute the second derivatives with three functions . . . 23
3.7. Individual in GP and its representation with stored derivatives 26

4.1. Example of Linear Regression . 36
4.2. Symbolic Regression Problems 1-6 . 41
4.3. Symbolic Regression Problems 7-9 . 42

5.1. Example of Classification . 46
5.2. Example of a Decision Tree . 46
5.3. Classification Problems (low dimensionality) 53
5.4. Classification Problems (high dimensionality) 54

6.1. Histogram of features in ARCENE dataset 62
6.2. Histogram of features in GISETTE dataset 63
6.3. Histogram of features in MADELON dataset 65

ix

List of Tables

4.1. Symbolic Regression Functions . 37
4.2. Parameter Settings in GP Systems for Symbolic Regression 38
4.3. Performance of the proposed crossovers operators in Regression problems

(training set) . 38
4.4. Performance of the proposed crossover operators in Regression problems (test

set) . 39
4.5. Performance of Semantic Crossovers on Symbolic Regression (training set) . 43
4.6. Performance of Semantic Crossovers on Symbolic Regression (test set) . . . 44

5.1. Classification Problems . 47
5.2. Parameter Settings in GP Systems for Classification problems 48
5.3. Performance of GP and SVM Systems on Classification Problems (training

set) . 51
5.4. Performance of GP and SVM Systems on Classification Problems (test set) 52

6.1. Previous Results obtained in ARCENE problem (test set) 58
6.2. Previous Results obtained in GISETTE problem (test set) 58
6.3. Previous Results obtained in MADELON problem (test set) 58
6.4. GP Parameters for Feature Selection . 61
6.5. Training results for the ARCENE dataset 67
6.6. Validation results for the ARCENE dataset 67
6.7. Training results for the GISETTE dataset 68
6.8. Validation results for the GISETTE dataset 68
6.9. Training results for the MADELON dataset 69
6.10. Validation results for the MADELON dataset 69
6.11. NIPS results December 1st. 70
6.12. NIPS results December 8th. 71

xi

Abstract

Semantic genetic operators in evolutionary algorithms, particularly in GP, have

been proved to be a better heuristic than traditional syntactic operators by improving the

performance of GP over certain problems. A semantic operator, crossover or mutation, is

guided by the behavior (semantics) of the individual, rather than its syntax, in order to

create new and fitter individuals. In this work, we propose to use the information provided

by the first and second partial derivatives of the error function (fitness function) w.r.t. the

crossing point, to develop novel semantic crossover operators for GP that outperform the

traditional crossover.

A semantic crossover operator based on partial derivatives will guide the crossover

operation by the minimization of the error contribution of the subtree rooted at the crossing

point. In order to develop these new operators, a new methodology is proposed to compute

the first and second partial derivatives of the fitness function with respect to the crossing

point, this methodology is inspired in the backpropagation algorithm used to train ANNs.

The information provided by the partial derivatives will guide a search in the second parent

in order to find more suitable values for the subtree rooted at the crossing point.

The semantic operators presented in this work are tested in three different kind of

problems commonly solved with GP: Regression, Classification and Feature Selection. Besi-

des comparing the semantic crossover operators against the traditional syntactical crossover

other semantic methods are also included in the comparison, for Regression problems. For

Classification and Feature Selection the comparison is with other traditional techniques used

for such tasks. The obtained results show a major improvement from traditional crossover

for GP in the problems tested and are competitive against other semantic operators and

traditional techniques.

Resumen

Los operadores genéticos semánticos en los algoritmos evolutivos, especialmente en

PG, han demostrado ser una heuŕıstica con mejores resultados que los operadores genéticos

sintácticos tradicionales debido a que aumentan el desempeño de PG. Un operador semánti-

co utiliza la información proporcionada por el comportamiento (semántica) del individuo,

de tal forma que su descendencia esté mejor adaptada que el individuo original. Este trabajo

propone utilizar la información proporcionada por la primera y segunda derivada parcial

de la función de error con respecto al punto de cruza seleccionado, con la finalidad de

desarrollar diferentes operadores semánticos para PG.

Un operador semántico de cruza basado en las derivadas parciales guiará el pro-

ceso de cruza de manera que minimise el error que proporciona el punto de cruza. Para

poder desarrollar estos nuevos operadores semánticos de cruza, se ha propuesto una nueva

metodoloǵıa para poder calcular las derivadas parciales de la función de error con respecto

al punto de cruza, dicha metodoloǵıa está inspirada en el algoritmo de propagación hacia

atrás que es usado para entrenar Redes Neuronales. La información que proporcionan las

derivadas parciales es usada para realizar una búsqueda en el segundo padre para encontrar

valores más apropiados para el subárbol cuya ráız es el punto de cruza.

Los operadores semánticos presentados en este trabajo fueron probados en tres di-

ferentes clases de problemas: Regresión, Clasificación y Selección de caracteŕısticas. Además

de comparar los operadores semánticos de cruza contra la cruza sintáctica tradicional tam-

bién otros operadores semánticos se han incluido en la comparativa en los problemas de

Regresión. Para Clasificasión y Selección de caracteŕısticas la comparación fue hecha contra

técnicas tradicionales usadas para este tipo de problemas. Los resultados obtenidos mues-

tran una mejora considerable respecto a la cruza tradicional de PG en los problemas usados

mientras que son competitivos contra otras técnicas semánticas y técnicas tradicionales.

KeyWords— Programación Genética, Operadores Semánticos, Regresión Simbólica, Clas-

sificación, Selección de Caracteŕısticas

Chapter 1

Introduction

Genetic Programming (GP) ([Koza92]), is an evolutionary algorithm where the

individuals represent computer programs that are designed to solve a particular task. Evo-

lutionary Algorithms (EAs) are optimization algorithms based on the concepts of the theory

of Evolution developed by Charles Darwin. Other examples of EAs are Genetic Algorithms

(GAs), Differential Evolution (DE), Evolution Strategies (ES), Gene Expression Program-

ming (GE), etc. These techniques are alternatives to traditional optimization algorithms

due to some characteristics, for example the ability to self-adapt the search for optimum

solutions on the fly [Fogel97].

GP is an optimization algorithm that solves problems typically represented in a

Supervised Learning approach; this means that GP requires a target which will be guiding

the optimization process. Different metrics are used (traditionally distance metrics) to mea-

sure how similar the output of the individuals’ (computer programs) and the target are.

The goal for GP is to create individuals that recreate the target as closely as possible. This

process is called the training stage and the target is called the training set. In other words,

GP creates computer programs that model the training set, those models are represented by

the best individual at the end of the GP run. Besides the training set a test set is required

to measure how well the individuals generalize to new data. The test set is not used by GP

in the optimization process.

Regarding the construction of the individuals in GP, these are created by selecting

elements from two sets: the function set and the terminal set. The function set contains

all the functions that can be part of the computer program and the terminal set contains

constants, inputs, or functions without arguments. One of the most popular representation

3

4 Chapter 1: Introduction

of an individual in GP is as a tree data structure, where leafs are elements of the terminal

set, and inner nodes are elements of the function set. These trees are n− ary trees, where

n is given by the arity of the functions used in the individuals. The evaluation of the root

of the tree is the output of the individual.

EAs create an initial population of individuals and then apply evolutionary opera-

tors to resemble the way natural selection acts in nature and promotes the survival of the

fitter individuals. The evolutionary operators used in GP are crossover and mutation. The

crossover operator takes two individuals (these individuals are called parents) and produce

offspring which contain certain parts of both parents. On the other hand, mutation acts

selecting one individual and changing one part of its genetic information resulting in a new

mutated individual.

If individuals in GP are represented as trees, the crossover operator randomly

selects one node in each parent; those points will be called crossing points. Each crossing

point can be seen as the root of a sub-tree in the parent. Traditional crossover swaps

the subtrees genereted by the crossing points between the parents. Performing this kind

of crossover gives two new individuals: the first parent with a sub-tree generated by the

crossint point in the second parent and, analogously, the second parent with a sub-tree

generated by the crossing point in the first parent. Although two individuals are created by

the crossover, only one will be added to the population, the other individual is discarded.

Figure 1.1 depicts a crossover where v and u are the crossing points in both parents, it can

be observed that the offspring is generated by replacing x (light gray), from the first father,

with sub-tree rooted below u of the second parent, resulting in Figure 1.1 (c)

1.1. Motivations

Traditionally, the crossover operator computes the crossing points randomly in

both of the parents. Because of this, there is no guarantee that the resulting offspring

will be fitter, according to the metric being used, than the parents. Furthermore, the two

individuals generated by the crossover are not compared under the metric in order to discard

the less fit of them, this process is also random (in some GP systems the crossover is fixed,

meaning that the first child is always discarded or vice versa).

The crossover operator is said to be a syntactical operator because it acts on the

syntax of the individuals. The syntax of an individual corresponds to its tree representation.

1.1. Motivations 5

(a) Parent 1 (b) Parent 2

(c) Offspring

Figure 1.1: Random individuals selected for crossover and their respective offspring (given
the crossing points v and u)

The crossover operator takes the syntax of the parents and performs a swap of sub-trees in

order to produce offspring. However, this strategy does not take into account the fitness of

the parents to produce the offspring. Syntactic crossover operator works with any informa-

tion of the behavior of the individuals (semantics). The crossover acts over the syntax of the

individuals and produce offspring that hopefully, will be better adapted than its parents.

It seems to be a much better strategy for the crossover to look at the behavior of the indi-

viduals rather than their syntax, in order to produce offspring, crossing individuals which

have desired behaviors over individuals whose behavior is not suitable for the problem. With

this last idea in mind, it is straightforward to ask whether there are better procedures to

select the crossover points in the parents, looking at their semantics, instead of computing

them randomly and acting merely on the syntax.

This last idea is the main motivation on which we have focused our attention to

develop the present work: propose a different way to perform the crossover in GP based on

the semantics of the individuals. The semantics of an individual in GP is commonly unders-

6 Chapter 1: Introduction

tood as the output of the individual. In other words, semantics refers to the behavior of the

individual. The metric used to evaluate the fitness of the individuals is called the fitness

function and this function takes as an argument the output of the individual (semantics)

rather than its syntax, to evaluate its fitness.

1.2. Objectives

The main objective of this work is to develop novel semantic crossover operators

that outperform the traditional syntatic crossover for GP. The crossover operators developed

in this work will have to accomplish two goals. The first goal is that the crossover has to

semantically guide the crossover by the behavior of the parents rather than their syntax

and, in this way, performing more conscious (non-blind) crosses between individuals than

the traditional syntactic crossover operator. The second goal is simple: the performance of

these crossovers have to increase compared to the syntactical one.

In order to accomplish the objectives, the crossover operators presented in this

work, computes the partial derivative of the fitness function w.r.t. one node of the tree (the

crossing point); with that information, crossover decides the crossing point in the second

parent in order to swap the sub-tree that minimizes the fitness function according to the

derivative. This operator uses the information of the semantics of the individuals in order

to perform the crossover between parents, therefore this operator falls in the category of

Semantic operators in GP. Chapter 2 addresses the topic of semantic operators.

1.3. Achievements

Partial Derivatives in GP

In order to develop the semantic crossover operators proposed in this work, a

methodology to compute partial derivatives in GP had to be created. This methodology

is inspired on the backpropagation algorithm used to train ANNs. The core ideas of the

backpropagation algorithm were used to compute the first and second partial derivatives of

the error function w.r.t. a certain node in an individual of GP.

1.4. List of publications 7

Semantic Crossover Operator for GP

This work presents three different crossover operators for GP. The difference bet-

ween them is the degree of the partial derivative being used. Results show a substantial

increase in performance with respect to GP’s traditional crossover.

Classification, Regression and Feature Selection

GP is often used in Classification an Regression problems. The semantic crossover

presented in this work were tested under these problems and outperform the traditional

crossover, opening the possibility to apply them in those tasks to real-world problems.

1.4. List of publications

• [Suárez15] Suárez, Ranyart Rodrigo, Mario Graff, and Juan J. Flores. “Semantic Cros-

sover Operator for GP based on the Second Partial Derivative of the Error Function.”

Research in Computing Science 94 (2015): 87-96.

• [Suárez14] Suárez, Ranyart Rodrigo, José Maŕıa Valencia-Ramı́rez, and Mario Graff.

“Genetic programming as a feature selection algorithm.” Power, Electronics and Com-

puting (ROPEC), 2014 IEEE International Autumn Meeting on. IEEE, 2014.

• [Valencia-Ramirez14] Valencia-Ramirez,J.M.,Raya,J.A., Cedeno,J.R., Suárez, Ranyart

Rodrigo, Es- calante, H. J., y Graff, M “Comparison between Genetic Programming

and full model selection on classification problems.” Power, Electronics and Compu-

ting (ROPEC), 2014 IEEE International Autumn Meeting on. IEEE, 2014.

• [Tellez17] Tellez, E. S., Miranda-Jiménez, S., Graff, M., Moctezuma, D., Suárez, Ran-

yart Rodrigo, y Siordia, O. S “A simple approach to multilingual polarity classification

in Twitter”, Pattern Recognition Letters, 2017.

1.5. Thesis Outline

Chapter 2 presents the related work. The chapter starts with the classification of

the different semantic-aware approaches in GP, not necessarily crossover methods but a more

general view of the different techniques that try to initialize the population of individuals

8 Chapter 1: Introduction

in order to have semantic variety among them. Naturally, the chapter also covers a brief

review of the semantic crossover operators that can be distinguished in the literature and

that are going to be compared to our proposal later in this thesis.

Chapter 3 presents the core ideas behind our semantic crossover operators: develop

a methodology than can compute partial derivatives in GP and, using this information,

develop semantic crossover operators for GP. The chapter explains all the grinds that make

possible to compute first and second partial derivatives in GP as well as the modifications

required by GP in order for this methodology to work. Three different crossover operators

are presented in the chapter; the difference between them is the order of the derivative being

used as well as the heuristic that uses the information provided by the derivative.

In Chapter 4 our semantic crossover operators are tested over a set of benchmark

problems that consists of Symbolic Regression problems. The definition of Symbolic Regres-

sion is provided in the chapter. We decided to test our operators in Symbolic Regression

due to two main reasons: Symbolic Regression is perhaps, the most common problem whe-

re the advantages of GP are used and the other reason is that there exists a couple of

different semantic crossovers found in the literature that test their performance over the

same set of problems. Due to this we can compare the performance of our operators to the

aforementioned.

Chapter 5 presents a different set of tests applied to crossover operators. This time

our operators are tested in Classification problems. Classification is one of the most common

problem that arises in the area of Artificial Intelligence and hence the importance of the

developing of better heuristics to solve it. This time, to the best of our knowledge, we could

not find semantic crossover operators that solves benchmark problems in Classification,

therefore we compare the performance of our approaches v.s. traditional techniques used to

solve the task.

Chapter 6 presents the last series of tests applied to our semantic crossover ope-

rators. Due to its conceptualization, GP selects different variables of the problem being

solved to build the individuals that will be part of the population. In problems with high

dimensionality (large number of variables), GP selects a subset of such variables to solve

the task. This is, that at the end of the run, GP acts as a filter of redundant variables or

outliers. The problem of filtering this kind of non useful information is called Feature Selec-

tion, and different problems of this category are used to test our operators. Again, different

traditional techniques that are commonly used to solve the feature selection problem were

1.5. Thesis Outline 9

used for comparison purposes.

Chapter 7 presents the final thoughts of this work as well as some future ideas

that can be implemented in short time. The main idea of this chapter is to discuss the

achievements obtained by our semantic crossovers and how the main objectives proposed

in this work have been accomplished.

Chapter 2

Literature Survey

Semantic awareness in GP refers to genetic operators (or strategies) that use the

information of semantics of the individuals, instead of their syntax, to perform the evolutio-

nary operators like crossover and mutation, and even, to initialize the population. Perhaps,

one of the first attempts to include semantic awareness into GP was made by [Blickle94],

which proposed to select as crossover points only those nodes that have an impact on the

fitness function, avoiding those crossover points that did not provide offspring with different

semantics. To accomplish this, Brickle proposed the concept of redundancy, which refers to

the loss of valuable genetic material of individuals leading GP to get trapped in local opti-

ma. Under this concept of redundancy in GP, the crossover proposed by Brickle, selects as

crossing points, only the nodes in parents which are not redundant.

Since Brickle’s work, many researchers have focus their attention in develop seman-

tic awareness strategies for GP. The majority of these works include the notion of semantics

into the crossover operator. According to Vanneschi [Vanneschi14], three major categories

of semantic awareness in GP can be distinguished in the literature: diversity methods, direct

methods and indirect methods

2.1. Diversity, Direct and Indirect Methods

Following the classification of semantic-aware strategies for GP done by Vanneschi,

diversity methods refer to strategies that promote semantic diversity among the individuals

in order to avoid local optima or in other words, promote a more broad search. The idea is

to preserve different genetic information among the population leading to individuals that

11

12 Chapter 2: Literature Survey

exhibit different semantics as possible. These kind of strategies are mostly implemented at

population level like population initialization such as the one proposed by [Beadle09].

On the other hand, direct methods work on the semantic space by defining semantic

operations that translate into syntaxis transformations ([Moraglio12a, Vanneschi14]). Wor-

king on the semantic space has the benefit of knowing some properties of all the offspring

generated, for example, Moraglio’s operator [Moraglio12a] has the characteristic that the

offspring cannot be worse (in terms of fitness) than the worse of the parents. Similarly, Graff

[Graff15] developed an operator whose offspring is at least as fit as the best of the parents.

Direct methods are also called geometric operators (or semi-geometric), these operators are

called geometric because the crossover operator, under a metric d : R two parents p1 and p2

produce offspring that lie in the d-segment between the parents. Other examples of directs

methods are Krawiec’s and Pawlak’s operators [Krawiec09, Moraglio12a, Pawlak14].

Finally, indirect methods, such as our proposal, act on the syntax of the individuals,

and then, certain predefined semantic conditions are checked. This category is where all the

majority of semantic operators in GP falls into. This class of operators is more general

and is simply called semantic operators because the operations to generate new individuals

are driven by certain rules or conditions constrained to the semantics of the generated

individuals. For example, Beadley [Beadle08, Beadle09] proposed a crossover operator that

is semantically driven in the sense that it promotes individuals which are semantically

different from their parents (predefining a way to measure this semantic difference). The

offspring are added to the next generation only if they are not semantically equivalent to

the parents (forcing to have different semantics among the population).

Following Beadley’s idea and extending it to other domains, Nguyen [Nguyen09]

and Uy [Uy10, Uy11] proposed crossovers that also produced offspring semantically diffe-

rent from their parents although the way this difference is measured differs from Beadle’s.

Ruberto [Ruberto14] introduced the concept of error vector and error space. Briefly, the

idea is that the optimal solution can be constructed from two individuals that are aligned

in the vector space. Consequently, the objective of the search procedure can be changed

from finding the closest individual to the desired behavior (i.e., the origin in the error spa-

ce) to finding aligned individuals. This novel GP strategy has shown success in solving two

complex real-life applications in drug discovery, namely, human oral availability and median

lethal dose.

The crossover operators developed in this work, rely on the Backpropagation al-

2.1. Diversity, Direct and Indirect Methods 13

gorithm, specifically on the graphic representation described in [Rojas96]. This algorithm

has been widely used for years to train Artificial Neural Networks (ANNs). Particularly,

the backpropation algorithm is used to adjust the weights of the connections that exist

between neurons. The usage of the backpropagation in GP is not new, the algorithm has

been used in the past to optimize the constants of trees (individuals in GP). Its applica-

tion to GP is somewhat straightforward because GP and ANNs share some characteristics.

In GP, the individuals are represented as trees and the output of the nodes are fed to

other nodes and so on. Similarly, the neurons in ANNs are processing units called per-

ceptrons (which can be seen as functions with multiple arguments) that receive as inputs

the output of other neurons. Examples of the usage of backpropagation algorithm in GP

are [Smart04, Zhang04a, Graff13], where the backpropagation algorithm is used to update

the values of the constants, very similar to what is done when optimizing the weights in

an ANN. However, these ideas applied to optimize the constants in individuals cannot be

directly used to select the crossover points given that the crossover points contain functions

(root of sub-trees) instead of constants.

The work that presents the most similarities with the crossover operators pre-

sented in this works is from Pawlak’s research [Pawlak14]. Roughly, the idea presented by

Pawlak is to pass the desired semantics of subtasks (subtrees) during crossover, using the

backpropagation algorithm. The desired semantics for these subtasks (which are simpler

than the main task, i.e., reproducing the target or training data), are previously computed

with reverse computation. Our proposal differs from Pawlak’s given that the information

passed by the backpropagation algorithm is the error contribution of each node, provided

by the partial derivatives of the error function contrarily to Pawlak’s where the information

passed by the backpropagation algorithm are several previously computed values.

This work is based in a previous semantic crossover operator presented by Graff

et.al. [Graff14]. The main idea of this proposal is to compute the partial derivative of the

fitness function with respect to the node selected as the cross point in the first parent and

with this information chose the second cross point in the other parent. The selection of

the cross point in the second parent is done checking which sub-tree in the individual has

the most suitable output according to the derivative propagated for the first parent. This

can be accomplished by adequating the backpropagation algorithm in GP. Particularly, the

backpropagation is used to propagate the derivative of the error function to the desired

node (the crossing point for the first parent).

14 Chapter 2: Literature Survey

The novel semantic operators presented in this work take the idea presented by

Graff et.al. and goes one step further by computing the second partial derivative of the

error function. The second order derivative provides new information that is used to de-

velop novel heuristics about the selection of the crossing point in the second parent, and

outperform the traditional syntactical crossover operator for GP. The next chapter presents

the methodology for computing the partial derivatives of the error function in GP and how

to use it to develop the semantic crossover operators.

Most of the times, GP is used in Regression and Classification problems. However,

due to the way that GP produces new individuals, it have also been used in problems of

Feature Selection, much lesser times than Regression and Classification though. Due to the

fact that Regression, Classification and Feature Selection are the most common problems

solved with GP, we decided to test our approach on these problems. In the next subsection,

a brief review of the use of GP over these problems is presented.

2.2. GP and Regression

Regression refers to a problem when output data of a certain model or system is

known but the model itself is not. The user must select one known model to fit the data

and then tune its parameters, this is the case of Auto Regressive (AR) models and its

variants ARMA and ARIMA, for example. However, in Symbolic regression the user does

not suppose anything about the model that generated the data and infers both the model

and its parameters.

GP suits perfectly in the case of Symbolic Regression, GP itself does not suppose

anything about the data and the fitness of the individuals is driven by how well their

ouput fits the data under certain metric. The individuals generated by GP can be seen as

different regression models and their paramaters are given by the different combinations

of the function and terminal sets. For example, in [Augusto00] GP is used to fit different

sampled polynomial functions, known a-priori, and results show that GP can infer the exact

polynomial function in some cases.

The Semantic approaches in GP addressed in the 2.1 Subsection are all tested

in some type of symbolic regression problem (boolean or real valued), so, the references

provided in that subsection are examples of the application of GP to Regression problems.

2.3. GP and Classification 15

2.3. GP and Classification

According to Espejo et al. [Espejo10], three major categories of GP into Classifi-

cation can be distinguished: Preprocesing, Model Extraction and Ensemble of Classifiers.

The preprocessing of the data in Classification refers to transformations of the original data,

these transformations are often aimed at reducing noise in the data. Model extraction in

Classification is the task of inducing a classifier from the data, it is the main task in Clas-

sification. An Ensemble in the Classification context, is the union of two of more classifiers

that were constructed over the same data in order to obtain a larger and more robust (under

certain criteria) classifier.

The obvious approach when using GP to infer a classifier is to treat each indivi-

dual as a classifier and guide the evolution with a fitness function that evaluates the quality

of each classifier (individual). Most of the works found in the literature that use GP for

Classification rely on this approach, therefore there is a vast number of works done in the

past over different areas. In this large number of publications of GP and model extraction,

Espejo et al. [Espejo10] suggest certain divisions in order to have a clearer vision: GP for ex-

tracting decision trees, GP for learning rule-based systems and GP for learning discriminant

functions. Next are some uses of GP for model extraction in Classification.

GP for extracting Decision Trees

Decision Tress (DTs) [Quinlan86] are trees designed to perform simple comparisons

between data features and infer a classifier. The branches of the trees represent the diferent

outcomes of the comparisons and similarly, perform other comparisons. If a DT performs

only one comparison per node, with two possible outcomes it is called a Binary Decision

Tree (BDT).

GP evolves tree structures and therefore the use of GP to evolve BDTs have been in

the mind of researches of many areas: Software Engineering [Khoshgoftaar07], Pattern Re-

cognition [Shirasaka98, Tanigawa00, Haruyama02, Oka00], Benchnarks [Folino99, Folino00,

Eggermont02, Bot00b, Bot00a], Medicine [Estrada-Gil07, Mugambi04], Finance [Kuo07].

However, the application of GP to evolve BDTs has its limitations. BDTs are very

simple tree structures and due to this, BDT’s size is usually very short in comparison to

the size of the trees evolved by GP. Therefore, using GP to evolve BDTs will result in trees

much larger than BDTs inferred traditionally.

16 Chapter 2: Literature Survey

To overcome this issue, researchers have adopted some strategies the most common

and obvious being two approaches: choosing for crossover those trees whose size is smaller

given equal fitness and directly include the size of the individuals into the fitness function.

Other strategies split the training data into n smaller sets and then use different GP for

each of these sets leading to small BDTs specialized to classify a sub-set of the training set.

GP for learning rule-based systems

A rule-based system consists of a set of rules which classifies data. These rules are in

the form of IF(antecedent P)... THEN(consequent Q). The rules test the features of the data

to satisfy a condition and then assigns a class given the result of the test. Many techniques

have been used to infer the set of rules, being EAs among them [Casillas09, Carse07] and

also GP.

Traditionally, when GP is used to infer the rules for a rule-based system two ap-

proaches are applied: the chromosome = set of rules or Pittsburgh approach [Smith80] and

the chromosome = rule or Mighigan approach [Wilson95]. In the Pittsburgh approach the

best individual of the run codifies the solution for the classification problem. The main

drawback of this approach is that the solution is large and complex. In the Michigan ap-

proach the opposite occurs, the solutions are simpler but the drawback is that several runs

of GP are required in order to infer the whole set of rules.

Wether Michigan or Pittsburgh approach are used to infer the rule set, reasearches

of many areas have use GP to build such set, for example: Pattern Recognition [Stanhope98,

De Stefano02], Benchmarks [Tsakonas06, De Falco02, Tan02, Carreno07, Eggermont99, Es-

pejo05], Finance [Qing-Shan07, Sakprasat07, Garcia-Almanza08], Medicine [Yu07, Tan03,

Bojarczuk00, Ngan99], Biology [Johnson00, Wang05], etc.

GP for learning discriminant functions

A discriminant function or in the case of Classification, a classification function,

takes data’s features as arguments (or sub-features created from original features) and

maps or assigns a certain class for that features. Discriminant functions are concise and

more efficient than classification rules but are hard to be understood and iterpreted since

the discriminant functions are usually non-linear [Chien02]. A whole set of discriminant

functions is required to solve a classification problem for k classes: F = {fi|fi : Rn → R, 1 ≤

2.4. GP and Feature Selection 17

i ≤ k}.
GP can be used to find such non-linear discriminant functions as we can se in works

from many areas where a Classification problem occurs: Benchmark [Patterson07, Curry07,

Li08, Cavaretta99, Muni04], Pattern Recognition [Tackett93, Teredesai04], Image Classifi-

cation [Wijesinghe07, Petrović05, Chen07, Li07], Signal Classification [Teller95], Communi-

cations [Zhang08, Faraoun06, Mukkamala04], Engineering [Sette04, Zhang07, Hennessy05].

GP ensemble for Classification

An ensemble of classifiers refers to the use or combination of different classifiers

(or instances of the same algorithm with different parameters’ values) in the same classifi-

cation problem. This creates a larger classifier that consists of all the classifiers being used.

The idea behind this technique relies on the fact that different algorithms have different

advantages and drawbacks. Hopefully, the ensemble of classifiers will benefit of the goods

of each individual classifier in the ensemble and on the other hand, dismiss their particular

drawbacks.

In order to combine all the algorithms included in the ensemble a method for

interpreting the results must be defined. This usually is accomplished by a votation scheme,

where all the algorithms are run in the classifiaction problem and then the predictions of

the algorithms are compared to each other and the class with more number of votes, for a

particular example is chosen as the final predicted class. In other ensemble approaches, this

votation scheme use weighted votes in order to give more importance to some algorithms

than others.

Naturally, GP have been included as part of ensemble methods in the past: Bench-

mark [Folino08, Thomason07], Communications [Zhang04b], Medicine [Hong06, Hengpra-

prohm08, Brameier01], Biology [Xu08, Imamura03].

2.4. GP and Feature Selection

In a nutshell, the problem of Feature Selection is basically the reduction of data

dimensionality (Feature Selection will be explained in Chapter 6). This reduction of data’s

dimensionality is often mandatory in order to separate noise or redundant information that

is not useful to the algorithm being used to solve the Classification problem. The use of

GP for Feature Selection applied to Classification is mainly aimed at this preprocessing of

18 Chapter 2: Literature Survey

data, in other words, GP is used to reduce the dimensionality of data and then, with this

new transformed data, a classifier is applied over the new data.

GP is used to reduce the number of data’s dimensions for one reason: when data

dimensionality is high it is unlikely for the best individual of the run to have all the features

contained in the data. So, if the best individual skip some of the features to classify the

data such features are probably noise (or not relevant to the problem) and can be filtered

from the data. There are several examples of the use of GP to preprocess data related

to classification problems: Engineering [Guo05], Pattern Recognition [Lin05], Benchmark

[Neshatian08, Krawiec02, Smith05, Sherrah96, Sherrah97], Medicine [Guo06, Estébanez05],

Finance [Estébanez08].

2.5. Summary

In this chapter, the problems inherent in the traditional crossover in GP have been

addressed. Summarizing, these problems are mainly due to the fact that the traditional

crossover is merely an exchange of syntactical information with any guarantee that the

offspring will be better adapted. Although the traditional crossover also exchanges semantic

information, is only a side effect of the crossover because the crossover is not guided by this

information.

A brief review of semantic crossover operators reported in the literature has been

presented. These operators have shown an increase in performance with respect to tradi-

tional crossover in GP. Semantic crossovers operators have been proposed for GP with the

goal of producing fitter offspring. Although all the semantic crossover share this goal, the

way that this goal is achieved differs among them. Three major categories can be distin-

guished: diversity methods, direct methods and indirect methods. In the next chapter, our

proposal of semantic crossover operators is going to be presented, This contribution fits in

the category of indirect methods.

The uses of GP addresed in this work correspond to three problems: Symbolic

Regression, Classification and Feature Selection. Therefore, a brief review of several works

done in these areas have been presented. The cited works show that researchers of several

and different fields, use GP to solve the different problems that rise in their respective areas.

This verifies the idea that GP can be used in a very wide range of areas.

Chapter 3

Partial Derivatives in Genetic

Programming

The semantic crossovers operators proposed in this contribution produce an offs-

pring by replacing the subtree rooted at a certain node from the first parent with the subtree

rooted at the second crossing point (u) from the second parent. The goal is to minimize

the offspring’s fitness (e.g., distance between target behavior and offspring behavior) by

carefully selecting the crossing point. The procedure used to minimize the offspring’s fitness

is as follows. First, it measures the error contribution associated to the subtree rooted at

the crossing point. Second, having obtained the error contribution, a subtree with root at

the second crossing point (i.e., u) is selected, from the second parent, such that it might

reduce this error. This section describes the methodology used to tackle the first task of the

semantic crossover procedure, and Section 3.3 describes the heuristics developed to select

the second crossing point i.e., u.

In Artificial Neural Networks (ANN), the problem of measuring the error con-

tribution of a particular node in a layer, specifically a node associated with a constant,

has been known, for many years, using the Backpropagation algorithm. Backpropagation is

used to optimize the weights in the neural network such that the net’s output is as similar

as possible to the desired output. Backpropagation is an iterative process, in each step or

iteration the weights are updated using a gradient descent scheme; that is, using the infor-

mation provided by the gradient of the error w.r.t. that weight, i.e., ∂E
∂w , where E is the

error function (in GP it is the fitness function) and w is the weight being optimized.

19

20 Chapter 3: Partial Derivatives in Genetic Programming

3.1. First Partial Derivative

Traditionally, Backpropagation is explained and implemented using matrix nota-

tion, which is very convenient given the ANN’s structure; conversely, Raul Rojas in [Rojas96]

explained it using graph operations. Specifically, the procedure used to compute ∂E
∂w was per-

formed by storing information on the vertices in the forward step, and applying arithmetic

operations to this information, and feeding the values to the network in the backward step of

the algorithm. In this contribution a tree-based GP system is being used, consequently, the

procedure proposed by Rojas can be implemented in a tree structure, and, one can obtain

∂E
∂w , where w is any node of the tree. In order to have a clear picture of how to compute ∂E

∂w ,

let us start explaining the procedure described by Rojas with a simple example.

Let us assume that one is interested in ∂g(f(x))
∂x , so the first step would be to depict

function g(f(x)) in a graph. Figure 3.1 represents g(f(x)) where the arrows indicate the

computing path, that is, input x is fed to node f which produces f(x); then, f(x) is given

to node g which in turn produces g(f(x)). This procedure is part of the forward step of

Backpropagation; however, in order to compute ∂g(f(x))
∂x , we need to store values at each

node in order to use them in the backward step of the algorithm.

Figure 3.1: Function g(f(x)) represented as a directed graph.

Figure 3.2 presents the graph representing g(f(x)); it can be observed that each

node is split in two parts: the lower part stores the value of computing the partial derivative

of the node’s function with respect to the input variable, and the upper part defines the

function being applied to the input. From the figure, it is observed that node f stores f �(x),

and, respectively, node g stores g�(f(x)); please note that f(x) is the input of node g, so it

is straightforward to compute g�(f(x)). For example, let f = sin and g = cos, then cos(x)

would be the first value stored and − sin(sin(x)) would be the second value stored.

Figure 3.2: Stored functions for computing the first derivative.

3.1. First Partial Derivative 21

Figure 3.2 depicts the forward step of the Backpropagation algorithm; on the

other hand, the backward step is performed by traversing the graph from the output to the

inputs, this can be observed from Figure 3.3. Note the change in the direction of the edges

in order to show the path of the computation. The procedure to compute ∂g(f(x))
∂x can be

seen as a chain of multiplications; 1 is submitted to the net at the output (right hand side

of the figure). This is multiplied by the value stored at node g, the results is g�(f(x)), this

result is then multiplied by the value stored at node f , yielding g�(f(x)) · f �(x), which is

in fact ∂g(f(x))
∂x . Following the previous example, let us compute ∂ cos(sin(x))

∂x , as mentioned

above, the second value stored is − sin(sin(x)) and the first value stored is cos(x) hence
∂ cos(sin(x))

∂x = − sin(sin(x)) cos(x).

Figure 3.3: Back step for computing the first derivative.

Let us go beyond computing the derivative of a function with only one argument.

Figure 3.4 presents the following function g(f(x1, x2)). From the figure, it can be observed

that the lower part of node f is split in two, this is to store the partial derivatives with

respect to each argument. In the forward step x1 and x2 are the inputs to node f , at this

node we need to store ∂
∂x1

f(x1, x2) and ∂
∂x2

f(x1, x2) which are depicted at the lower left

and right of node f , respectively. The next step f(x1, x2) is the argument of node g and

the output is g(f(x1, x2)). For example, let f = ∗ and g = sin, then ∂
∂x1

f(x1, x2) = x2 and

∂
∂x2

f(x1, x2) = x1, that is x2 and x1 are stored at the left and right part of node f (see

Figure 3.4 (b)). Node g stores cos(x1x2), which corresponds to ∂
∂x sin(x) = cos(x) where x

is the input, i.e., x1 · x2.

The backward step is performed as follows: one is submitted to the output, then

this is multiplied by ∂
∂xg(f(x1, x2)), which is then passed to node f . At this point, there

are two paths, following the left path to x1 it is obtained ∂
∂xg(f(x1, x2))

∂
∂x1

f(x1, x2) and

on the right path to x2 it is obtained ∂
∂xg(f(x1, x2))

∂
∂x2

f(x1, x2), which corresponds to

∂
∂x1

g(f(x1, x2)) and ∂
∂x2

g(f(x1, x2), respectively. Following the previous example, path to

x1 obtains in the backward step cos(x1x2)x2 and path to x2 obtains cos(x1x2)x1, which

correspond to ∂
∂x1

sin(x1x2) and
∂

∂x2
sin(x1x2), respectively.

22 Chapter 3: Partial Derivatives in Genetic Programming

(a) Partial derivatives to be

stored

(b) Individual with the

derivatives stored

Figure 3.4: Representation of partial derivatives stored in an individual.

3.2. Second Partial Derivative

One of the goals of this contribution is the use of the information provided by the

second partial derivative to select the crossover point u of the second parent. In order to

compute the second derivative in a graph, we need to store an extra value in each node

in the graph, this extra value corresponds to the second derivative of the node’s function.

Figure 3.5 depicts function h(g(f(x))) using the extra storage to keep f ��, g��, as well as h��.

In fact, the only difference in the forward step between the first and second derivative is

this extra value that correspond to the second derivative.

Figure 3.5: Information stored to compute second partial derivative

On the other hand, the backward step requires some additions to the procedure

used to compute the first derivative. Figure 3.6 depicts the backward steps used to compute

the second partial derivative: the dashed edge represents the first derivative process, and,

the solid edges represent the additional process required by the second partial derivative

at each node. The second derivative is computed as: α(x) · c2 + β(x) · c21 where α(x) and

3.2. Second Partial Derivative 23

β(x) are the first and second derivative values propagated; and c1 and c2 are the values

stored at the node being processed (done in the forward step) that correspond to the first

(c1) and second (c2) derivatives, respectively. Analogously, following this notation, the first

derivative can be computed by α(x) · c1. The process to compute both partial derivatives is

depicted in Algorithm 1.

Figure 3.6: Backward step to compute the second derivatives with three functions

In order to clarify the process used to compute the second derivative, let us describe

all the steps required to compute ∂2h(g(f(x)))
∂2x

(depicted in Figure 3.6), i.e., the second partial

derivative of function h, w.r.t. x using α, β, c1 and c2; α and β are enhanced with a subscript

that indicates the node where the first or second derivative were computed, respectively.

Algorithm 1: Algorithm to compute ∂2E
∂v2

and ∂E
∂v

1 function ComputeDerivatives (P,β,α);

Input : P : Path to node v, β0 and α0

Output: βn, αn

2 for n = node in P and i = (1, length(P)) do

3 cn1 = 1st. Value stored in n ;

4 cn2 = 2nd. Value stored in n ;

5 βi = αi−1 · cn2 + βi−1 · (cn1)2;
6 αi = αi−1 · cn1 ;

7 end

8 return βi,αi;

1. Values α(x) and β(x) are set to 1 and 0, respectively.

2. In Node h:

βh(x) = α(x) · c2 + β(x) · c21 = h��(g(f(x)))

αh(x) = αi(x) · c1 = h�(g(f(x)))

24 Chapter 3: Partial Derivatives in Genetic Programming

3. In Node g:

βg(x) = αh(x) · c2 + βh(x) · c21 = h�(g(f(x)))g��(f(x)) + h��(g(f(x)))g�(f(x))2

αg(x) = αh(x) · c1 = h�(g(f(x)))g�(f(x)))

4. In Node f :

βf (x) = αg(x)·c2+βg(x)·c21 = h��(g(f(x)))g�(f(x))2f �(x)2+h�(g(f(x)))g��(f(x))f �(x)2+

h�(g(f(x)))g�(f(x))f ��(x)

αf (x) = h�(g(f(x)))g�(f(x)))f �(x)

5. Algorithm ends because it reached node x.

At the end of the previous steps, the last β computed by the algorithm is βf (x) =

h��(g(f(x)))g�(f(x))2f �(x)2+h�(g(f(x)))g��(f(x))f �(x)2+h�(g(f(x)))g�(f(x))f ��(x). In order

to show that this term is indeed the second partial derivative of function h w.r.t. variable

x, let us derive ∂2h(g(f(x)))
∂2x

by formulae:

∂2h(g(f(x)))

∂x2
=

∂

∂x

�
h�(g(f(x)))g�(f(x))f �(x)

�

=
∂

∂x

�
h�(g(f(x)))

�
g�(f(x))f �(x) + h�(g(f(x)))

∂

∂x

�
g�(f(x))f �(x)

�

= h��(g(f(x)))g�(f(x))f �(x)g�(f(x))f �(x) +

h�(g(f(x)))
∂

∂x

�
g�(f(x))

�
f �(x) + h�(g(f(x)))g�(f(x))

∂

∂x

�
f �(x)

�

= h��(g(f(x)))g�(f(x))2f �(x)2 + h�(g(f(x)))g��(f(x))f �(x)f �(x) +

h�(g(f(x)))g�(f(x))f ��(x)

= h��(g(f(x)))g�(f(x))2f �(x)2 + h�(g(f(x)))g��(f(x))f �(x)2 +

h�(g(f(x)))g�(f(x))f ��(x).

The formulae used to derive the aforementioned expression were the chain rule and

the derivative of products of functions. It is important to note that this example considers

only three functions, i.e., h, g and f , nonetheless the methodology can be easily extended

to any number of functions because it relies on the chain rule.

3.2.1. Example of the computing of ∂2E
∂v2

in an individual

So far, we have described how Backpropagation algorithm computes the second

partial derivatives of a function w.r.t. a node in a tree. However, in order to use the second

3.2. Second Partial Derivative 25

partial derivative information for guiding the crossover operation in GP, we need the second

partial derivative of the error function w.r.t. the node selected as the crossover point. The

error function considered in this work is E = (y − ŷ)2, where y is the target and ŷ is the

output of a given individual.

Specifically, given that E is the error function, we need to obtain the second partial

derivative of E w.r.t. some node v, i.e., the crossover point in the first parent. To do so,

the first step is to compute the second partial derivative of E w.r.t. the output of the

individual i,e., ŷ this step corresponds to the first term of the chain rule. This derivative

is ∂2E
∂ŷ2

= ∂
∂ŷ

�
∂E
∂ŷ

�
= ∂

∂ŷ [−2(y − ŷ)] = 2. In order to compute ∂2E
∂v2

, instead of starting the

algorithm with the propagated values of α(x) = 1 and β(x) = 0, as in the previous example,

the algorithm starts with αE(x) = ∂E
∂ŷ = −2e and βE(x) = ∂2E

∂ŷ2
= 2 which are the first

terms being propagated, where e is the difference between the target and the output of an

individual i.e., e = (y − ŷ).

Let us explain the process with an example. Consider function that ŷ = 1.5x2 −
0.7x + 1.2 depicted in Figure 3.7 (a) is codified in an individual, and, let us also assume

that this individual is selected as the first parent for crossover. Additionally, the crossover

point (node v) selected in this individual is the second constant of the function ŷ i.e., −0.7.

Figure 3.7 (b) shows the steps made by backpropagation to compute the term ∂2E
∂v2

.

Note that in the figure, the root node is function E (although the root of the individual is

the right child of node E), which takes two arguments y and ŷ(x). Additionally, the target

y(x) and the part 1.5x2 of ŷ(x) are simplified and the nodes involved in the path from the

root to the crossover point are highlighted in red. Finally, the first and second derivatives

stored for each function correspond only to the required derivatives for the highlighted path.

For the example in Figure 3.7 (b), backpropagation will perform the following

steps:

1. β1 = αE · c2 + βE · c12 = −2e · 0 + 2 · 12 = 2

α1 = αE · c1 = −2e · 1

2. β2 = α1 · c2 + β1 · c12 = −2e · 0 + 2 · 12 = 2

α2 = α1 · c1 = −2e · 1

3. β3 = α2 · c2 + β2 · c12 = −2e · 0 + 2 · (x)2 = 2x2

α3 = α2 · c1 = −2e · x = −2ex

26 Chapter 3: Partial Derivatives in Genetic Programming

a) b)

Figure 3.7: a) depicts a simple function. b) presents the corresponding tree with the infor-
mation stored in the forward step, the path follow (red edges) to reach the crossover point

and the error function to illustrate the backward step of ∂2E
∂v2

.

4. Algorithm stops because it reached node v.

When node v is reached, the propagated terms are: α = −2ex and β = 2x2. These

values are indeed the first and second partial derivatives of E = (y − ax2 − vx− c)2 w.r.t.

to v (note that −ŷ is rewritten to −ax2− vx− c). The next equations show the derivatives.

∂E

∂v
= 2(y − ax2 − vx− c)(−x) = −2ex

∂2E

∂v2
=

∂

∂v
2(y − ax2 − vx− c)(−x) =

∂

∂v
2vx2 = 2x2

3.2.2. Using ∂2E
∂v2

and the Newton Method

At this point, it is natural to ask: how can the information provided by the partial

derivatives be used to improve the individuals in GP?. Perhaps, the first approach that came

to mind is to perform the Newton Method, given that the error function E, is quadratic. In

other words, treat the output of the node chosen as the crossover point as if the outputs were

the initial points in the newton method, using the first and second derivatives to compute

3.2. Second Partial Derivative 27

the next iteration of the newton method. The new output given by this iteration is the

desired output in the crossover, in other words, the desired output of the child produced

by the crossover. The newton method is presented in Equation 3.1 where v̂i is the desired

output, vi is the initial point that corresponds to v’s output at ith training case, and ∂E
∂v

and ∂2E
∂v2

are the first and second derivatives the terms, respectively.

v̂i = vi −
∂E

∂v

�
∂2E

∂v2

�−1

(3.1)

Lets explain the newton method with the previous example (Figure 3.7) but this

time more information is given:

* The samples x = [−1,−0.5, 0, 0.5, 1]

* The error e = y(x)− ŷ(x) = [−1.5,−0.75, 0,−0.75,−1.5]

* Output of node v, v = [−0.7,−0.7,−0.7,−0.7,−0.7]

* First partial derivative ∂E
∂v = −2ex = [−3,−0.75, 0,−0.75,−3]

* Second partial derivative ∂2E
∂v2

= 2x2 = [2, 0.5, 0, 0.5, 2]

where x contains the values for the function’s variable, the derivatives ∂E
∂v = −2ex

and ∂2E
∂v2

= 2x2 are the previously computed derivatives but this time evaluated at x and

the error e is also evaluated at x.

Since the output of node v happens to be a constant of the function codified by

the individual, let us take the sum of the evaluated first and second partial derivatives,

−7.5 and 5 respectively. The first iteration of the newton method yields v̂ = −0.7− −7.5
5 =

−0.7 + 1.5 = 0.8. This means that the output of node v which is currently the constant

−0.7 has to be 0.8. In other words, the first iteration of the Newton method indicates that

the constant 0.7 need to be replaced with the constant 0.8 in order to minimize the error.

Finally, if the node v is changed to constant 0.8 the new individual would be

ŷ(x) = 1.5x2 + 0.8 + 1.2, which is indeed the function we used to build the target values

for this example. Summarizing, the Newton method can be combined with backpropagation

in GP to fine tune constants in individuals. However, the crossover point can be any node

(function, variable or constant), consequently, the sum of partial derivatives cannot be

used directly. Therefore, next section starts rectifying this scenario by proposing semantic

28 Chapter 3: Partial Derivatives in Genetic Programming

crossover operators that use the information provided by the derivatives to generate an

offspring.

3.3. Semantic Crossover for Genetic Programming Using Par-

tial Derivatives

So far, the Backpropagation algorithm has been adapted to GP in order to compute

the first and second partial derivatives. It is of particular interest to compute the derivative

of fitness function E w.r.t. node v given that this derivative contains information about the

similarity between v’s output and the target behavior. Specifically, the information given

is whether v’s output needs to be increased or decreased in order to minimize the fitness

function.

With the information provided by the first and second partial derivatives we de-

cided to develop three different crossover operators for GP. The main difference among

the aforementioned operators rely on the degree of the partial derivative used to select the

crossing points. In the next subsections the three crossovers operators and their definitions

are presented.

3.3.1. Crossover based on the first derivative

That is, let us assume that node v is selected as crossover point in the first parent,

then the idea is to select the crossover point of the second parent (i.e., u) using the informa-

tion provided by the derivative. Equation 3.2 shows our first crossover operator based only

on the information provided by the first derivative. It works as follows: let k be sign(∂E∂v),

v be v’s output, s is the output of a given node s at the second parent, S contains all the

nodes at the second parent, and, i iterates for all the training cases. Using this notation,

the crossover point of the second parent, i.e., u, is computed as:

u = argmax
s∈S

N�

i=1

sign(vi − si) · ki. (3.2)

In order to clarify Equation 3.2, let us analyze the two possible scenarios that

would lead
�

i sign(vi − si) · ki to get its maximum value. Let us assume that u is the

crossover point that produced this maximum value, and u contains u’s output. In the case

ki > 0, then the value vi should be decreased, consequently vi − ui should be positive.

3.3. Semantic Crossover for Genetic Programming Using Partial Derivatives 29

On the other hand, ki < 0 implies that vi should be increased, hence, vi − ui should be

negative; however, ki < 0 implies that the result is positive. Under these circumstances,
�

i sign(vi − si) · ki equals |T | (the cardinality of the training set). In other words, this

crossover operator randomly selects the crossover point in the first parent, i.e., v, computes

the derivative of fitness function E w.r.t. v, and based on this information, selects from S
the subtree that maximizes the desired sign, i.e., slope. Algorithm 2 shows the steps required

to compute the crossing point u according to the first partial derivative information.

Algorithm 2: Selection of second crossing point u based on first derivative

information

1 GPPDE (∂E∂v ,v, P2);

Input : P2: Second parent, output of crosspoint v and its partial

derivative ∂E
∂v

Output: u: Cross point in second parent

2 k = sign(∂E∂v) ;

3 N = number of training cases ;

4 S = nodes in P2 ;

5 crossPoints = array[length(S)] ;

6 for s = node in S do

7 sum = 0 ;

8 for i = 1 to N do

9 sum+ = sign(vi − si) · ki ;
10 end

11 crossPointss = sum ;

12 end

13 u = argmax(crossPoints) ;

14 return u ;

3.3.2. Crossover Based on the Newton Method

Given that the second derivative of E w.r.t. v (the node that represents the crossing

point in the first parent) is available, the next step is to select node u using the information

provided by the Newton method. That is, with the first iteration of the newton method

30 Chapter 3: Partial Derivatives in Genetic Programming

computes v’s desired output. With this vector, one can perform a search in the second parent,

among all possible subtrees, and select the subtree whose output has the minimum euclidean

distance with the vector obtained by the newton iteration. Such scheme is presented in

Equation 3.3, where v̂i is the first iteration of the newton method, si is s’s output at the

ith training case, S contains all the nodes of the second parent, and N is the size of the

training set.

u = argmin
s∈S

N�

i=1

�
(v̂i − si)2 (3.3)

Equation 3.3 shows a crossover operator which uses the information provided by

partial derivatives to select the subtree in the second parent and perform the crossover. Ho-

wever, this scheme has a major drawback, the Vanishing Gradient problem [Hochreiter01].

This problem states that the magnitude of the gradient decreases exponentially in the front

layers of an ANN. This problem affects the ANN training algorithms with a gradient des-

cent strategy like backpropagation. To our purposes, the vanishing gradient problem means

that if the crossover point selected corresponds to a deep node, the magnitude of the first

partial derivative will be practically zero. In that case, the term ∂E
∂v in Equation 3.1 will

be zero; as a result the new point is the same as the current point. Algorithm 3 shows the

steps required to select the crossing point v according to the first iteration of the Newton

method.

3.3.3. Crossover Based On The First Derivative And The Newton Met-

hod

It is worth to notice that the first crossover operator presented in this work, that

uses only the first partial derivative information (Equation 3.2), is not affected by the vanis-

hing gradient problem. This crossover operator is guided only by the sign of the derivative

instead of by its magnitude, so it is immune to the decay of the gradient. Because of this,

we decided to combine both strategies to develop a crossover operator that uses the in-

formation of the newton method with the sign of the first partial derivative Equation 3.4.

This crossover is similar with the previous operator, with the difference that the euclidean

distance is divided by a factor given by the first partial derivative. This factor represents

the number of times the output of subtree s at the second parent is suitable according to

the sign of the derivative. In fact, this information is what is being used in Equation 3.2.

3.3. Semantic Crossover for Genetic Programming Using Partial Derivatives 31

Algorithm 3: Selection of second crossing point u based on second derivative

information

1 GPPDE2 (∂E∂v ,
∂2E
∂v2

,v, P2);

Input : P2: Second parent, output of crosspoint v and its firts and second

partial derivatives ∂E
∂v ,

∂2E
∂v2

Output: u: Cross point in second parent

2 v̂ = v − ∂E
∂v

�
∂2E
∂v2

�−1
;

3 N = number of training cases ;

4 S = nodes in P2 ;

5 crossPoints = array[length(S)] ;

6 for s = node in S do

7 sum = 0 ;

8 for i = 1 to N do

9 sum+ =
�

(v̂i − si)2 ;

10 end

11 crossPointss = sum ;

12 end

13 u = argmin(crossPoints) ;

14 return u ;

32 Chapter 3: Partial Derivatives in Genetic Programming

u = argmin
s∈S

N�
i=1

�
(v̂i − si)2

N�
i=1

sign(vi − si) · ki.

(3.4)

The idea behind this operator is to compute the euclidean distance between the

iteration of the newton method and the subtrees of the second parent, and reward those

subtrees whose output follow the sign of the derivative by dividing their euclidean distance

by the number of times its sign coincided with the the sign of the first partial derivative.

On the other hand, subtrees whose output does not follow the sign of the derivative at

any point, are penalized and are discarded for selection (this also avoids by zero division in

Equation 3.4). Algorithm 4 depicts the combination of the two previous algorithms 2 and

3.

3.4. Summary

In summary, this contribution proposes three different procedures to select the

crossover point of the second parent, namely point u. In order to do so, one needs to select

two parents, select the crossover point of the first parent, i.e. v, and then compute the partial

derivatives of the fitness function E w.r.t. v. With these derivatives, the three different

procedures proposed to select u are described in Algorithms 2, 3 and 4. From now on, we

will refer as GPPDE to the GP system implementing the first strategy which corresponds

to first derivative information, GPPDE2 will be used to refer to the second proposal which

uses second derivative information, and GPPDEC corresponds to the combination of the

two later proposals and which uses first and second partial derivatives information.

In this chapter, we have presented our proposal of semantic crossover operators for

GP. The main idea behind the three operators developed is using the information provided

by the first and second partial derivative of the error function to guide the selection of the

crossing point in the second parent. The first derivative can be interpreted as the direction on

which the output of the sub-tree with the first crossing point as root, helps to minimize the

error function. On the other hand, the second partial derivative can be used in conjunction

with the first partial derivative and perform the first iteration of the Newton Method in

order to minimize the error contribution of the sub-tree represented by the first crossing

point. Particularly, the newton method can be applied in GP to fine-tune constants in

3.4. Summary 33

Algorithm 4: Selection of second crossing point u based on first and second

derivatives information

1 GPPDEC (∂E∂v ,
∂2E
∂v2

,v, P2);

Input : P2: Second parent, output of crosspoint v and its firts and second

partial derivatives ∂E
∂v ,

∂2E
∂v2

Output: u: Cross point in second parent

2 k = sign(∂E∂v) ;

3 v̂ = v − ∂E
∂v

�
∂2E
∂v2

�−1
;

4 N = number of training cases ;

5 S = nodes in P2 ;

6 crossPoints = array[length(S)] ;

7 for s = node in S do

8 sum = 0 ;

9 for i = 1 to N do

10 sum+ =

√
(v̂i−si)2

sign(vi−si)·ki ;

11 end

12 crossPointss = sum ;

13 end

14 u = argmin(crossPoints) ;

15 return u ;

34 Chapter 3: Partial Derivatives in Genetic Programming

individuals.

Chapter 4

Symbolic Regression and Semantic

Crossover

In order to test the crossover operators developed in the previous chapter, we

decided to apply GP to different problems. The first of these problems is called Symbo-

lic Regression. Before explaining what symbolic regression is, first we need to introduce

the concept of regression. Traditionally, regression refers to the process of modelling the

relationship between one or more explanatory variables X and one dependant variable y.

If the relationship between variables is assumed to be linear, the problem is called linear

regression. The parameters of the linear model are inferred from the data and estimated

with different techniques, for example linear squares, Figure 4.1 shows a simple example of

linear regression where there is one explanatory variable (x-axis) and one dependent varia-

ble (y-axis). In this example, the model that fits the data is ŷ = θX + �, where θ and � are

the estimated parameters.

However, there are data in many areas whose relationship between variables can-

not be assumed to be linear. In those cases, other models are used to describe the data for

example polynomial regression, where the relationship is modelled by an n− th degree poly-

nomial. Furthermore, when the relationship is not linear nor polynomial, or one just simply

do not want to assume any relationship between the data, the problem is called symbolic

regression. In symbolic regression, the model itself and its parameters are inferred from the

data. In this scenario, the application of GP results quite effective because GP evolves trees

that represent different models; each individual represents a model. The parameters of the

35

36 Chapter 4: Symbolic Regression and Semantic Crossover

Figure 4.1: Example of Linear Regression

models represented by the individuals can be seen as a subset of the possible combinations

of the function set and the terminal set.

4.1. Problems and Parameter Settings

Table 4.1 shows the problems used to testing semantic operators in symbolic re-

gression whereas Table 4.2 shows the parameters used by the GP systems. Table 4.1 shows

the 9 functions used for regression. In order to build the training set, the functions are

sampled 21 times, uniformly distributed in the specified range. The validation set is built

sampling the function another 21 additional points, but contrarily to the training set, these

samples are randomly distributed in the range. We decided to include these functions becau-

se they have been used to test other semantic operators, so we can compare our proposals

to other operators.

4.2. Results

Let us start with the symbolic regression problems using the Euclidean Distance as

the performance measure. Each GP system was run 30 times, and, the average performance

4.2. Results 37

Table 4.1: Symbolic Regression Functions

Problem Formula Range

Keijzer1 0.3sin(x)(2πx) [-1,1]

Keijzer4 x3exp(−x)cos(x)sin(x)(sin2(x)cos(x)− 1) [0,10]

Nguyen6 sin(x) + sin(x+ x2) [-1,1]

Nguyen7 log(x+ 1) + log(x2 + 1) [0,2]

Nonic
9�

i=1
xi [-1,1]

R1 (x+1)3

x2−x+1
[-1,1]

R2 x3−3x3+1
x2+1

[-1,1]

R3 x6+x5

x4+x3+x2+x+1
[-1,1]

Septic x7 − 2x6 + x5 − x4 + x3 − 2x2 + x [-1,1]

is reported for the training set, and, the median for the test set. The median allow us to

compare our results to other semantic operators previously reported in the literature.

In the results tables, the best performance is in bold face in order to facilitate the

reading. In addition to this, the cases where the difference on performance is statistically

significant (with a confidence level of 95%) are indicated with an ∗. The statistical analysis
was done using the Wilcoxon signed rank test [Wilcoxon45]. Only the performance in the

training set is under this statistical analysis.

Table 4.3 shows the results for the training set of the three proposed semantic ope-

rators. Additionally, the last column presents the results for traditional GP with syntactic

crossover. From the table, it can be seen that the operator that trains better is GPPDEC,

achieving the best results in 6 out of 9 problems (4 of them with a statistically significant

difference). GPPDE won 3 problems and GPPDE2 won 1 problem. GP was in last place

with zero best results.

In Table 4.4, the performance in the test set is presented. In this table, we can see

that GPPDEC is the clear winner obtaining the best performance in 8 out of 9 problems,

and tied with the other operators in 1 problem (all GP systems were particularly good in

Nguyen6 problem). Again, in second place was GPPDE, which obtained better performan-

ce than than GPPDE2 and GP. Comparing the operators having the worst performance,

namely GP and GPPDE2, it is observed that GPPDE2 is better in 7 out of 9 problems,

and tied in 1 problem. This tells us that even the worst semantic operator proposed is able

38 Chapter 4: Symbolic Regression and Semantic Crossover

Table 4.2: Parameter Settings in GP Systems for Symbolic Regression

Parameter Value

Mutation Depth random ∈ [1, 5]

Selection Tournament size 4

Population Size 1024

Number of generations 100

Function Set (F) +,-,*,/,exp,sin,cos,ln

Crossover rate 100%

Mutation rate 0%

Max length 512

Table 4.3: Performance of Semantic Crossover Operators and GP in Symbolic Regression
Problems (Training Set). Best perfomance in boldface; when the best perfomance is statis-
tically significant (with a confidence of 95%) is indicated with * as superscript.

Problem GPPDE GPPDE2 GPPDEC GP

Keijzer1 0.024 0.041 0.022 0.080

Keijzer4 0.165 0.205 0.178 0.264

Nguyen6 0.000 0.005 0.0002 0.009

Nguyen7 0.003 0.203 0.001* 0.017

Nonic 0.040 0.085 0.020* 0.156

R1 0.041 0.081 0.033* 0.128

R2 0.109 0.039 0.050 0.210

R3 0.007 0.018 0.003 0.016

Septic 0.073 0.062 0.024* 0.138

to achieve better results than the traditional syntactic crossover.

The last tables presented the average and median performance at the end of the

evolutionary process, in order to complement this information, Figures 4.2 and 4.3 present

the evolution of the fitness throughout the generations. Figures present 9 plots, each for

every symbolic regression problem, containing the performance of the operators in terms of

the euclidean distance (w.r.t. the target) at each generation. In order to keep the information

easy to read, the plots include only the two best operators, namely GPPDEC and GPPDE,

although traditional GP was added into the comparison in order to have a reference.

4.2. Results 39

Table 4.4: Performance of Semantic Crossover Operators and GP in Symbolic Regression
Problems (Test Set). Best performance in boldface.

Problem GPPDE GPPDE2 GPPDEC GP

Keijzer1 0.029 0.052 0.014 0.086

Keijzer4 0.572 0.636 0.458 0.754

Nguyen6 0.000 0.000 0.000 0.000

Nguyen7 0.002 0.013 0.0005 0.010

Nonic 0.050 0.084 0.019 0.130

R1 0.034 0.035 0.015 0.065

R2 0.074 0.029 0.024 0.297

R3 0.021 0.016 0.007 0.022

Septic 0.150 0.055 0.044 0.155

From these plots, lets look at the training curves. It can be seen that in none of the

problems the training curve of GP trains faster or better than GPPDEC or GPPDE. This

slow learning compared to the proposed semantic operators is more evident in the problems

Keijzer1, Keijzer4, Nonic, R1, R2 and Septic. Both GPPDEC and GPPDE training curves

present a faster learning compared to GP for most of the symbolic problems. Due to this,

one can stop the learning process in early generations (10-20 generations) for the semantic

operators, and still obtain better results than with traditional GP using a larger number of

generations.

The shapes of the training for GPPDEC and GPPDE curves are very similar for

most of the problems (almost identical in Nguyen6, Nguyen7, and R3). The only noticeable

difference is the magnitude of the euclidean distance. It is important to notice that both

algorithms exhibit training curves that converge in a small number of generations, the curves

reached almost the same performance at early generations than the one obtained in the last

generation (100th generation).

The difference in the curves of GPPDEC and GPPDE is more evident in the test

set. The plots of problems where overfitting is noticeable, like Keijzer4 and Septic, show

this difference. GPPDEC’s validation curve seems to minimize the effect of overfitting. For

example, in Keijzer4, GPPDE obtains its minimum validation euclidean distance near the

10th generation, and beyond that point, as the number of generations increased, so did

the euclidean distance for validation. However, this behavior is not present in GPPDEC’s

40 Chapter 4: Symbolic Regression and Semantic Crossover

validation curve, where it appears that overfitting has been minimized. This minimization

effect of the overfitting is also seen in Septic. This may be the reason why GPPDEC exhibits

the least validation error of all the three semantic crossover operators.

4.2. Results 41

(a) Keijzer1 (b) Keijzer4

(c) Nguyen6 (d) Nguyen7

(e) Nonic (f) R1

Figure 4.2: Symbolic Regression Problems 1-6

42 Chapter 4: Symbolic Regression and Semantic Crossover

(a) R2 (b) R3

(c) Septic

Figure 4.3: Symbolic Regression Problems 7-9

Besides comparing the three semantic crossover operators proposed to GP, we

have made another comparison against state of the art semantic crossover operators: Ap-

proximately Geometric Crossover (AGX) [Pawlak14], Locally Geometric Crossover (LGX)

[Krawiec12], Krawiec and Lichocki Geometric Crossover (KLX) [Krawiec09], and Geometric

Semantic Genetic Programming (GSGP) [Moraglio12b]. Of all the three operators presented

in this work, only GPPDEC was included into this comparison because it was the operator

that presented the best results among the proposed operators. Again, GP is included as

reference.

The training results of this comparison are shown in Table 4.5, where the bold

4.3. Summary 43

Table 4.5: Performance of Different State of the art Semantic Crossovers on Symbolic Re-
gression Problems (Training Set). Best performance in boldface.

Problem GPPDEC AGX LGX KLX GSGP GP

Keijzer 0.022 0.001 0.032 0.134 0.279 0.080

Keijzer4 0.178 0.010 0.140 0.455 0.667 0.264

Nguyen6 0.0002 0.001 0.002 0.027 0.197 0.009

Nguyen7 0.001 0.000 0.010 0.052 0.046 0.017

Nonic 0.020 0.005 0.041 0.223 0.759 0.156

R1 0.033 0.005 0.014 0.177 0.590 0.128

R2 0.050 0.003 0.034 0.163 0.206 0.210

R3 0.003 0.001 0.003 0.038 0.093 0.016

Septic 0.024 0.004 0.023 0.266 1.136 0.138

numbers indicate the best performance. As can be seen from the table, the three operators

that presented better results were GPPDEC, AGX and LGX. AGX was the operator that

presented the best results winning 8 of 9 problems with a wide margin. Comparing GPPDEC

and LGX alone, each operator won 4 out of 9 problems, and they tied in one problem (R3).

GPPDEC was able to train the best in Nguyen6, which was the only problem that AGX

did not won in the training set.

Table 4.6 shows the validation results. In this case, GPPDEC was the best method

for validation, it presented the best results with 5 problems won, followed by AGX and LGX

with two problems each. Again, KLX, GSGP and GP were outperformed by GPPDEC, AGX

and LGX.

4.3. Summary

In this chapter the three proposed semantic operators were tested in the Symbolic

Regression problem. A set of benchmarks were used to measure the performance achieved

by GPPDE, GPPDE2, and GPPDEC. The crossover operators outperformed traditional

syntactical crossover. Different convergence plots were presented to show this statement.

In such plots, it can be seen that the convergence of our semantic operators is faster and

with less error than syntactical crossover. Moreover, the three operators were compared

with other semantic operators reported in the literature. In this comparison, the semantic

44 Chapter 4: Symbolic Regression and Semantic Crossover

Table 4.6: Performance of Different State of the art Semantic Crossovers on Symbolic Re-
gression Problems (Test Set) Best performance in boldface.

Problem GPPDEC AGX LGX KLX GSGP GP

Keijzer 0.014 0.015 0.049 0.151 0.275 0.086

Keijzer4 0.458 0.309 0.478 0.585 0.911 0.754

Nguyen6 0.000 0.001 0.002 0.009 0.180 0.000

Nguyen7 0.0005 0.001 0.003 0.041 0.038 0.010

Nonic 0.019 0.061 0.081 0.172 0.618 0.130

R1 0.015 0.030 0.008 0.156 0.630 0.065

R2 0.024 0.011 0.038 0.133 0.215 0.297

R3 0.007 0.009 0.008 0.027 0.084 0.022

Septic 0.044 0.032 0.026 0.271 1.210 0.155

crossover operators proposed in this work achieved better performance than most of the

semantic crossover operators included in the comparison.

Chapter 5

Classification and Semantic

Crossover

The second problem on which we tested the semantic crossover operators is Clas-

sification. The problem of Classification, as its name suggests, consists in classify data in a

certain number of classes. Data is presented in form of observations (examples), each with

a certain number of features and the particular class that the observation belongs to. In

this scheme, a particular observation of the data can belong only to one class (although in

multi-class classification a certain observation can belong to two or more classes). Therefore,

the problem of classification can be seen as the search of a model that maps the space of

features to a class: f : �N → Ck, where f is the classifier function, N represents the number

of real-valued features, C is a set of classes, and Ck represents the kth class.

In Figure 5.1, a simple example of the problem of classification is presented. In the

figure, there is data that belongs to one of two classes: star and triangle. The features that

determine whether the objects belong to one class or another are simply called feature1 and

feature2. One of the most used approaches to classify data are decision trees. Decision trees

compare the features’ values of the observations with certain predefined rules and performs

splits on the data. Depending on these splits, new data is labelled according to the majority

of observations that belong to a certain class. In the right part of Figure 5.1, a pair of splits

are proposed to classify data. The decision tree that performs such splits is shown in Figure

5.2.

The decision tree makes comparison between the features in the training data and

45

46 Chapter 5: Classification and Semantic Crossover

certain rules, for example f1 > 1.7, which means that the feature number one must be

greater that 1.7, and then counts the number of elements of each class that follow the rule.

In the previous rule, the objects that follow this rule are 5 triangles and 2 stars. These splits

continue over the characteristics until all the data follow some rule. When new objects are

presented to the decision tree, the value of their characteristics will follow some previous rule

and it will be labelled to one class depending on which class had the majority of members

for that rule.

(a) Original Data (b) Classified Data

Figure 5.1: Example of Classification

Figure 5.2: Example of a Decision Tree

Although in the last example, classification seems to be a simple task, it is not. In

some problems, the big number of characteristics makes it difficult to create suitable rules

to split the data. Many techniques have been proposed to solve classification problems,

GP is one of them. Just like in regression problems, the characteristics of classification

5.1. Problems and Parameter Settings 47

Table 5.1: Classification Problems

Data Set Input Features Training set instances Test set instances

Banana 2 400 4900

Titanic 3 150 2051

Thyroid 5 140 75

Diabetes 8 468 300

Breast-Cancer 9 200 77

Flare-Solar 9 666 400

Heart 13 170 100

Ringnorm 20 400 7000

Twonorm 20 400 7000

German 20 700 300

Image 20 1300 1010

Waveform 21 400 4600

Splice 60 1000 2175

are the explanatory variables and the outcome instead of being real value is an integer

which represents the class’ label. The only modification needed to apply GP to classification

problems is how to interpret the output of the individuals, because individuals in GP have

real-valued outputs. Rounding the output or defining threshold values are the most common

strategies.

5.1. Problems and Parameter Settings

The crossover operators presented in this work were tested on 13 different classifi-

cation problems, presented in Figure 5.1. These problems were divided into two categories,

depending on the number of features. Problems with less than 20 features were put into

one set and problems with more than 20 features in the other. The measure of performance

used to compare the different crossovers is the Balanced Error Rate (BER). Additionally,

support vector machines (SVMs) were added into the comparison. The SVMs included li-

near and RBF kernels, with default parameters (the SVM implementations can be found in

[Pedregosa11]).

The parameters used for the GP systems are the standard, suggested by [Poli08,

48 Chapter 5: Classification and Semantic Crossover

Table 5.2: Parameter Settings in GP Systems for Classification problems

Parameter Value

Mutation Depth random ∈ [1, 5]

Selection Tournament size 4

Population Size 100

Number of generations 500

Function Set (F)

+,-,*,/,exp,sin,cos,ln

abs, sqrt, sigmoid, if, max

min, ln, square, argmax

Crossover rate 50%

Mutation rate 50%

Max length min(�2 , 256)

Koza92]. Those parameters are shown in Table 5.2. Nonetheless, there are some parameters

that deserve an explanation, for example the difference in the crossover rate and population

size between classification and regression problems is because this set of parameters have

been used with success in the past by [Vanneschi13]. Also, it was decided to use a different

function set F for classification problems based on the performance exhibited by GP on

classification problems (see [Valencia-Ramirez14]).

The function set F used in the classification problems is formed by arithmetic

functions, transcendental functions and other not so common functions: max, min, if and

argmax. These four latter functions are implemented using arithmetic operators and function

exp see Equations 5.1-5.4. The if function is a sort of conditional function that selects y or

z depending on whether the value of x is 0 or 1, respectively. Argmax function returns the

index of the subtree that has the highest value.

max(x, y) =
x− y

1 + e−100(x−y)
+ y (5.1)

min(x, y) =
y − x

1 + e−100(x−y)
+ x (5.2)

if(x, y, z) =
y − z

1 + e−100x
+ z (5.3)

5.2. Results 49

argmax(x) =
�

i

eβxi

�
j
eβxj

i (5.4)

Regarding the length of the individuals in the GP systems, a maximum length

of min(|T |
2 , 256) is imposed for classification. This value was inspired by the degrees of

freedom in a function whose parameters can be linearly identified. This is, in order to

identify k parameters it is needed at least k + 1 points. Roughly, in an expression with n

nodes at least n
2 of these nodes are operands and the other half are variables, so assuming

that each variable has a coefficient to be identified one needs at least n
2 examples.

The last consideration is the procedure used to classify. Each classification problem

was treated as a symbolic regression. In order to obtain a label from a continuous value,

the output of the individual is rounded, and, the output was limited to be in the range

[0 − 1], given that all the datasets have only two classes. In addition to this, following

ideas presented on [Valencia-Ramirez14], an ensemble of k classifiers is used. That is, each

system is initialized k times, with k different seeds, and the best individual of each system

is kept in a set. Then, the best individuals are used to predict the test set. The class of

each object corresponds to the one that receives the greater number of votes. Finally, the

number of examples are balanced to have exactly the same instances for both classes. This

was achieved by removing the necessary examples in the training set until both classes have

the same number of elements. The features of the datasets are normalized to have zero mean

and one standard deviation.

Finally, the Classification problems used to test our approach correspond to dif-

ferent benchmarks found in the literature, the benchmarks and their information can be

obtained in http://www.raetschlab.org/Members/raetsch/benchmark.

5.2. Results

The results obtained for the training set are shown in Table 5.3. Comparing GP

systems against SVMs, the first trained better in 9 out of the 13 problems. It is important to

note that the best results for GP were achieved by GPPDE, training better in 7 problems.

SVM with RBF kernel was in second place with the best results in 4 problems. Unlike in

symbolic regression problems, GPPDEC and GPPDE2 did not won any problem in the

training set at all, although GPPDEC had close results with GPPDE in problems: Titanic,

50 Chapter 5: Classification and Semantic Crossover

Diabetes, Flare-solar and outperform it in Twonorm.

In the case of SVMs, it is important to note that the selection of the kernel makes

a considerable difference in the performance, being RBF the kernel that presents better

results. The difference is that SVMs with RBF kernel trained the best in problems: Diabetes,

Ringnorm, German and Splice. SVMs with linear kernel trained the best in zero problems,

in fact, SVMs with linear kernel were outperformed by GP systems in 12 problems.

For the test set, the results are depicted in Table 5.4. In the test set, the opposite

thing occurred, SVMs validate better in 10 out of 13 problems against GP systems. The

best results were achieved by SVM with a RBF kernel, validating the best in 9 problems.

GPPDE was the second place validating the best in 2 problems.

Comparing GPPDE and GP, it is clear that including information of the deriva-

tives in the crossover, helps to improve the performance of GP. Just like in the regression

problems, different plots of the convergence of the GP methods have been included to see

more clearly the advantages of the derivatives over traditional GP. Figures 5.3 and 5.4 show

these plots. In these figures it can be seen that the training curve of GP does not learn

as fast as GPPDE or GPPDEC, and for most of the classification problems, GP does not

achieve the same performance either.

GPPDE is the clear winner for the GP systems in classification, in both training

and tests sets. However, there are two problems that seem to be harder to generalize than

the others for all the GP systems including GPPDE. These problems are Titanic and Breast-

Cancer. In such graphics, the validation curves are noisy and the information learned in the

training set is not useful to validate the problems. Something else worth to mention is how

GPPDEC performs in the test set. The slight softener effect in the validation curves seen

in symbolic regression problems is not present in classification.

5.2.
R
esu

lts
5
1

Table 5.3: Performance of GP and SVM Systems on Classification Problems in Training Set. Best perfomance in boldface.

Problem GPPDEC GPPDE2 GPPDE GP SVM Linear SVM RBF

Banana 4.8976± 1.6690 6.5953± 2.2780 4.5241± 1.6612 4.4550 ± 1.6100 44.7017 10.3337

Titanic 24.5118± 4.7161 24.3845 ± 5.1152 25.3618± 5.3653 24.4766± 4.8553 28.0303 26.7761

Thyroid 0.0000 ± 0.0000 0.2058± 0.5447 0.0000 ± 0.0000 0.0000 ± 0.0000 11.6121 3.3847

Diabetes 11.7787± 2.8863 13.3908± 3.6080 11.3865± 2.6753 10.9930 ± 2.9038 23.8205 17.0781

Breast-cancer 10.2325± 4.0565 13.1027± 4.9299 7.8390 ± 3.3359 8.8883± 3.6533 29.2102 18.8721

Flare-solar 27.2886± 2.0920 28.1160± 2.2980 27.2879 ± 1.7735 27.6304± 1.7388 31.9941 29.5441

Heart 3.1865± 1.8767 3.8543± 1.8566 3.2847± 1.7990 1.9782 ± 1.4423 12.9046 7.2450

Ringnorm 0.5477± 3.5798 0.3430± 0.4098 0.0203 ± 0.0992 0.1518± 0.4384 20.7716 0.3692

Twonorm 0.0756± 0.1786 0.0750± 0.1514 0.0681± 0.1380 0.0261 ± 0.1138 0.9521 0.4226

German 17.2762± 4.6591 20.0828± 4.7487 14.5522 ± 3.5633 16.7023± 4.4382 25.7178 13.8590

Image 2.5556± 1.7434 4.1390± 1.2309 1.1680 ± 0.4736 1.8036± 0.9888 16.5104 7.3035

Waveform 1.0913± 0.9628 1.6567± 1.1573 1.2049± 0.8462 0.9836 ± 1.1158 8.2755 4.0538

Splice 5.0507± 2.1862 6.3016± 2.2806 3.8181 ± 1.9212 4.6468± 1.6714 12.6342 1.8736

52
C
h
ap

ter
5:

C
lassifi

ca
tion

an
d
S
em

a
n
tic

C
ro
ssover

Table 5.4: Performance of GP and SVM Systems on Classification Problems in Validation Set. Best perfomance in boldface.

Problem GPPDEC GPPDE2 GPPDE GP SVM Linear SVM RBF

Banana 13.3207± 1.3071 14.0086± 1.7875 13.1738± 1.4493 13.3993± 1.2938 46.3894 11.7548

Titanic 31.7737± 3.5047 31.9252± 3.4372 32.6755± 4.0815 32.2722± 3.7967 29.8575 29.8437

Thyroid 6.8695± 3.8875 6.4280± 3.4912 6.3888± 3.6412 6.7189± 3.2268 15.6444 6.1575

Diabetes 26.2881 ± 2.0697 26.7402± 2.3827 26.7969± 2.1747 26.9842± 2.0062 26.7470 26.9211

Breast-cancer 37.1104± 5.6245 36.7157± 5.5330 37.8349± 5.4793 36.7913± 5.2459 36.1889 35.6376

Flare-solar 33.3116± 1.9301 33.1648± 1.8204 33.2187± 1.7916 33.0648± 2.0894 32.9291 32.5822

Heart 18.8638± 3.6136 19.4722± 4.0256 19.1110± 3.9598 19.4058± 3.6437 17.7606 17.8571

Ringnorm 5.6080± 4.1133 5.9966± 1.5372 4.4865± 0.8190 6.2338± 2.7599 24.8896 1.8325

Twonorm 3.7455± 0.4606 3.7987± 0.5244 3.8085± 0.5512 3.7886± 0.4699 3.4861 2.7158

German 30.6172± 2.7325 30.5003± 2.5287 30.0875± 2.9162 30.8068± 2.8298 29.0928 28.3244

Image 5.4064± 2.1974 6.8151± 1.7931 3.6739 ± 0.5464 4.8303± 1.4477 16.9506 8.7921

Waveform 11.8906± 1.1360 12.0275± 1.1214 11.6855± 0.7742 12.3369± 1.1372 12.3945 10.2681

Splice 8.0533± 2.1862 9.5252± 2.2962 7.5382 ± 1.7733 8.3688± 1.5843 16.4734 11.4135

5.2. Results 53

(a) Banana (b) Heart

(c) Thyroid (d) Diabetes

(e) Breast Cancer (f) Flare Solar

Figure 5.3: Classification Problems (low dimensionality)

54 Chapter 5: Classification and Semantic Crossover

(a) Ringnorm (b) Twonorm

(c) German (d) Waveform

(e) Image (f) Splice

Figure 5.4: Classification Problems (high dimensionality)

5.3. Summary 55

5.3. Summary

In this chapter, our semantic crossover operators GPPDE, GPPDE2 and GPP-

DEC were tested over Classification problems. The classification problems used in the test

correspond to a classical benchmark set, on which researches in a large number of areas

test their classification models. Just like in the case of Regression, other methods have

been included in the comparison to show how the performance of the semantic crossover

operators can be compared with state of the art techniques. A Support Vector Machine

(SVM) with two kernels was included in the comparison.SVM’s are widely used methods

for classification due to their high accuracy and because of this we decided to include them

in the test.

The results for the semantic crossover operators proposed in this work, i.e., GPP-

DE, GPPDE2 and GPPDEC show an improvement over traditional syntactic crossover

which can be seen again in the convergence plots that were depicted. Also, the performance

is comparable against SVMs with RBM kernel and in most of the cases, superior than SVMs

with linear kernel.

Chapter 6

Feature Selection and Semantic

Crossover

When a system is being analyzed, it is common practice to collect data that will

give us useful information for the analysis. In an ideal situation, only the data that best

describes the system would be considered. Sometimes, this representative data is unknown.

Making assumptions about it will lead to misunderstandings about the system.

In these cases the collected data contains both useful information and noise. The

problem of feature selection [Kira92] consists in filtering the representative data contained

in the data collected. Feature selection is needed to develop simpler models that will only

consider relevant features. There are many problems that are related to feature selection:

classification, clustering, regression, feature learning, online learning, etc.

Besides Classification and Regression, we have decided to test the proposed seman-

tic operators and GP with feature selection problems. The motivation to do this is that,

in [Suárez14], we compared traditional GP with techniques that are used for the feature

selection problem like LASSO, LARS and, Random Forests.

Our results from [Suárez14], where we tested an ensemble of GP systems with

syntactical crossover and other specialized algorithms on three different feature selection

problems, proved that an ensenmble of GP is perfectly capable of performing Feature Selec-

tion over data on the run and without the need of any changes to the algorithm. Moreover,

in some cases, the GP ensemble outperformed the other algorithms over certain criteria. In

table 6.1, 6.2 and 6.3 the results for the test set over the problems considered are depicted.

57

58 Chapter 6: Feature Selection and Semantic Crossover

Table 6.1: Results obtained by GP-E, RF and Lasso using a subset of Features for ARCE-
NE’s test dataset.

% Features Accuracy

GP-E RF Lasso

100% 0.7300 0.7400 0.6500

10% 0.7300 0.7500 0.7700

5% 0.7900 0.7200 0.7500

1% 0.7300 0.7400 0.7700

Table 6.2: Results obtained by GP-E, RF and Lasso using a subset of Features for GISET-
TE’s test dataset.

% Features Accuracy

GP-E RF Lasso

100% 0.9200 0.9530 0.8560

10% 0.9250 0.9620 0.9710

5% 0.9160 0.9570 0.9680

1% 0.9150 0.9400 0.9640

Table 6.3: Results obtained by GP-E, RF and Lasso using a subset of Features for MADE-
LON’s test dataset.

% Features Accuracy

GP-E RF Lasso

100% 0.6300 0.8483 0.5767

10% 0.7450 0.8617 0.5583

5% 0.7867 0.8733 0.5750

1% 0.6767 0.7717 0.5983

6.1. GP as a Feature Selection Algorithm 59

We now want to test if the proposed semantic crossover operators that use the

partial derivatives, namely GPPDE, GPPDE2 and GPPDEC have an impact on the per-

formance (wether this impact increase or decrease it) in Feature Selection problems with

respect to GP.

6.1. GP as a Feature Selection Algorithm

GP is not often related to feature selection problems, however, GP performs feature

extraction on the run without any modifications to the algorithm. The reason for this

is explained by the way GP selects the problem’s variables. GP creates a population of

computer programs, which are created combining functions and terminals. The terminals

are constants or problem’s variables. These constants and variables are randomly selected

every time GP creates a new individual. An individual may contain one or more variables

more than once but it would be very strange for an individual to contain all the variables

at least one time. Because of this, GP creates individuals that contain only a subset of the

problem’s variables.

In feature selection problems, the goal is to find a subset of variables that best

describes the behavior of the system. When GP is applied to feature selection problems, the

creation of individuals will consider only a subset of features. Once the evolution process

has finished, the fittest individuals will contain only a subset of features. It can be inferred

that this subset of features contains the features that affects the outcome to a greater degree

. This is why GP is performing a feature extraction on the run.

Because the GP systems are being used for feature extraction, two steps are re-

quired. The first step consists of runing the GP systems to identify the most important

features of the problem. This filtering of the features can be accomplished by inspecting the

fittest individuals in the run. Because GP is a non-deterministic algorithm, one run of the

system may be not enough to identify the most important variables.

We decided to perform 30 independent runs for the process of filtering. This is,

at the end of each run, the best individual found is selected and the variables used in the

model are identified. With this process, we can construct an histogram of variables, which

counts how many times certain variable was used in the best individual of each run.

Once the most recurrent variables among the fittest individuals have been identified

in the histogram, these variables are filtered from the original data, the second step is

60 Chapter 6: Feature Selection and Semantic Crossover

performed and consists of a second run of the systems considering only this subset of

variables.

In feature extraction, a common problem is to determine m, in other words, the

number of features considered as relevant (ignoring the rest). All the algorithms try to

minimize m without reducing the accuracy in the prediction. If the problem has many

irrelevant features or noise, m can be approximately 10% − 30% of the total number of

features. However, in order to not make any assumptions about the data, several values for

m have been considered for the tests. These values start from as large as 50% of the total

features to as few as only 1%.

Summarizing, the methodology proposed for using GP for feature selection consists

of two steps: the filtering of the features and the prediction of the classification problems.

From the first 30 runs, the most relevant features are extracted. The second 30 runs considers

only the features extracted in the first step and measures the performance of GP over the

problem with the filtered features.

6.2. Problems and Parameter Settings

The GP-systems were tested over benchmark problems. These problems corres-

pond to a contest in the area of feature selection that took place in 2003 (for the results of

the competition see [Guyon04]). However, the system is still open for people who want to

test their approaches over the problems (http://www.nipsfsc.ecs.soton.ac.uk/).

1.- ARCENE is a problem where the task is to identify prostate and ovarian cancer,

the data was collected from two sources: The National Cancer Institute (NCI) and

the Eastern Virginia Medical School (EVMS). The samples include patients with

cancer and healthy or control patients. It is a binary classification problem with 10,000

features.

2.- GISETTE the task in this problem is to classify two confusable handwritten digits:

the four and the nine. It is a binary classification problem with 5000 features.

3.- MADELON is a problem where random data has to be classified. The samples in the

dataset are synthetic, it is a binary classification problem with 500 features.

6.3. Results 61

The GP parameters used in the feature selection experiments are shown in Ta-

ble 6.4. The election of these parameters gave good results in previous GP-related works

[Graff13] and we decided to maintain some of them.

Table 6.4: GP Parameters for Feature Selection

Parameter Value

Population Size 1000

Number of Generations 50

Function Set (F)

{+,−,×, /, | · |, exp,√,

sin, cos, sigmoid, if,máx,

mı́n, ln, square, argmax}
Crossover rate 90%

Mutation rate 10%

Mutation depth random ∈ [1, 5]

Selection Tournament of size 2

6.3. Results

Firt, let start discussing the histograms obtained by the GP systems for the three

feature selection problems, Figures 6.1, 6.2 and 6.3 show these histograms. The histograms

show that indeed, not all the features are selected by the best individuals the same number

of times. The importance of the histograms rely on the data they generate.

With the histogram’s data, the variables can be sorted by their importance, given

the number of times that each variable was selected on the 30 runs. With this list of k

features, a subset of m features is selected and these variables are the ones that can only

be chosen by the GP system in the second run. It is worth noticing that each GP system

performs its own filtering of features, in other words, all the algorithms performs the filtering

step and the classification step separately from the others.

For example in the ARCENE problem, depicted in Figure 6.1, it can be seen that

in GPPDEC, GPPDE2 and GPPDE at least three variables were selected more than 60

times by the best individual in the 30 runs, whereas in GP none of the variables were

selected more than 35 times.

62 Chapter 6: Feature Selection and Semantic Crossover

(a) GPPDEC (b) GPPDE2

(c) GPPDE (d) GP

Figure 6.1: Histogram of features in ARCENE dataset

For GISETTE problem, Figure 6.2, GPPDE2 and GPPDE selected variables more

than 100 times in constrast to GPPDEC and GP where the maximum number of ocurrences

for the variables nevar passed 70 for GPPDEC and 50 for GP.

Finally, in the histograms for MADELON problem, shown in Figure 6.3, GPPDEC

and GPPDE selected variables with more than 200 ocurrences, GPPDE2 selected variables

with more than 150 ocurrences and for GP, again, the selection of any variable did not pass

above 120 ocurrences.

In order to test how these different outcomes in the filtering of variables would

perfom in the classification task, we decided to test different values for m (the number

6.3. Results 63

(a) GPPDEC (b) GPPDE2

(c) GPPDE (d) GP

Figure 6.2: Histogram of features in GISETTE dataset

64 Chapter 6: Feature Selection and Semantic Crossover

of filtered features) to depict how this value afects the performance. In the plots, these

different values of m are represented by the red lines. Each line represents a different value

form = [1, 5, 10, 25, 50], where the values form represent the percentage of the total features

that are selected. For a given line, the features who are above the line are considered for

selection. So, each line represent a cut in the features’ space. These cuts are more evident

in GISETTE and MADELON problems.

When the process of the selection of variables had concluded, the next step is

test these different subset of features in the classification problem. These results for the

classification task are given in terms of the accuracy, this is, the number of success ratio

in the classification (#ofcorrectpredictions
#totalexamples). The last consideration regarding to the tests is

that Principal Component Analysis (PCA) [Holland08] was added to the comparison to

reduce the data dimensionality by the selection of different values for m and then use least

squares to perform a linear classification over the data. Such scheme will be named PCA-

LS. meaning that PCA is used to select a subset of features and Least Squares is used to

perform the classification.

Let us start first with ARCENE in both Training and Validation sets. Tables

6.5 and 6.6 show the results. The tables present five different values for m which are:

[50, 25, 10, 5, 1]% of the total of features and the best result overall the values of m is in

boldface. In the majority of the algorithms, one can see a very distinctive pattern in GP

systems: the least the features used, the greater accuracy reached.

For example in Figure 6.5 as for GPPDE is concerned, the best training accuracy

was obtained at 5% of the features, this is 500 features instead of the original 10, 000

features. This behavior is also present in GPPDEC and GP, where their best accuracy was

reached with 1% of the features. PCA-LS manages to train perfectly for the different values

m values.

For the Validation set in ARCENE dataset the best accuracy for GP systems was

obtained by GPPDEC using 1% of the features. Interestingly, GP decreased its accuracy

when the number of features decreased, perhaps GP is overfitting in this problem. A little

overfitting can be observed in GPPDE too. In the case of GPPDEC, the best accuracy in

both training and validation sets was at 1% of the features. Again, PCA-LS obtains the

best validation results with an acuraccy of 0.8300 for m = 25%.

The results of GISETTE dataset are presented in Tables 6.7 and 6.8. For the

training set, the best result for the GP-systems was acomplished by GPPDE at 1% of

6.3. Results 65

(a) GPPDEC (b) GPPDE2

(c) GPPDE (d) GP

Figure 6.3: Histogram of features in MADELON dataset

66 Chapter 6: Feature Selection and Semantic Crossover

features, followed by GPPDE2 at the same % of features. PCA-LS trains with no error

for this problem too. The results in the validation set, presented in Figure 6.8 show that

GP, GPDPE1 and GPPDE reach their maximum accuracy at %1 of features, whereas

GPPDEC had a slightly drecrease in accuracy from 0.8919 at 5% of features to 0.8883

at 1% of features. The best result was accomplished by GPPDE. In the validation set all

the GP-systems outperformed PCA-LS with which had a maximum accuracy of 0.8030 at

m = 25%.

Finally, for the MADELON dataset the results are presented in Tables 6.9 and

6.10. In the training set, the best result was reached by GPPDE but this time at 10%

of the features, contrarily to GPPDEC, GPPDE2 and GP who reach ther best values at

5% and 1% of features. PCA-LS reach the best training accuracy of 0.8305 at 50% of the

features.

In the validation set there is a tie in the best result with GPPDE2 and GPPDE

at 5% of the features. It is important to note that at 1% of the features, contrarily to

ARCENE and GISETTE, GP achieves its best performance compared to other values of

m. PCA-LS had poor validation results and perhaps is overfitting the data.

Additionally, we have included the official results of the feature selection competi-

tion from which the datasets were collected, namely NIPS 2003 Feature Selection Challenge

[Guyon05]. According to the authors, several methods were submitted to the competition

but three categories were the more common: SVMs, ANNs and Tree methods (Decision

trees and Random Forests).

Tables 6.11 and 6.12 show the results obtained for the methods submitted at

December 1st 2003 and December 8th. 2003 respectively. The results presented in such

tables are the result of the evaluation of the submitted methods by the organizers and are

presented for all the problems in the challenge. Unfortunately, the results are not problem

by problem and we can not compare to them but they give an illustration of what the

performance is like for other techniques. In the results tables, the score is the performance

achieved by the methods and the percentage of features used to achieved such performance

is also reported.

6.3.
R
esu

lts
6
7

Table 6.5: Training results for the ARCENE dataset

% of Features GPPDEC GPPDE2 GPPDE GP PCA-LS

50 0.8796± 0.0521 0.9080± 0.0454 0.9640± 0.0354 0.8693± 0.0611 1

25 0.9086± 0.0413 0.8830± 0.0469 0.9753± 0.0192 0.8996± 0.0402 1

10 0.8973± 0.0481 0.9033± 0.0560 0.9503± 0.0500 0.8863± 0.0477 1

5 0.9053± 0.0393 0.9403± 0.0369 0.9810± 0.0210 0.8993± 0.0403 1

1 0.9100± 0.0371 0.9110± 0.0419 0.9756± 0.0329 0.9163± 0.0427 1

Table 6.6: Validation results for the ARCENE dataset

% of Features GPPDEC GPPDE2 GPPDE GP PCA-LS

50 0.6553± 0.0791 0.5453± 0.0513 0.6616± 0.0485 0.6623± 0.0530 0.8200

25 0.6716± 0.0602 0.6260± 0.0679 0.6650± 0.0667 0.6633± 0.0639 0.8300

10 0.6546± 0.0627 0.6663± 0.0718 0.6660± 0.0539 0.6503± 0.0409 0.8100

5 0.6850± 0.0484 0.6520± 0.0577 0.6433± 0.0550 0.6613± 0.0453 0.7800

1 0.6883± 0.0579 0.6846± 0.0535 0.6496± 0.0502 0.6176± 0.0767 0.7300

68
C
h
ap

ter
6:

F
eatu

re
S
electio

n
a
n
d
S
em

a
n
tic

C
rossover

Table 6.7: Training results for the GISETTE dataset

% of Features GPPDEC GPPDE2 GPPDE GP PCA-LS

50 0.8480± 0.0604 0.8738± 0.0638 0.8946± 0.0438 0.8539± 0.0264 1

25 0.8192± 0.0547 0.8922± 0.0167 0.8936± 0.0338 0.8648± 0.0177 1

10 0.8424± 0.0437 0.8892± 0.0281 0.8976± 0.0277 0.8818± 0.0196 1

5 0.8919± 0.0486 0.8932± 0.0208 0.9065± 0.0332 0.8903± 0.0154 1

1 0.8883± 0.0245 0.9049± 0.0124 0.9255± 0.0188 0.8992± 0.0085 1

Table 6.8: Validation results for the GISETTE dataset

% of Features GPPDEC GPPDE2 GPPDE GP PCA-LS

50 0.8344± 0.0559 0.8599± 0.0361 0.8750± 0.0398 0.8445± 0.0261 0.7750

25 0.8109± 0.0495 0.8777± 0.0161 0.8742± 0.0317 0.8533± 0.0174 0.7890

10 0.8303± 0.0433 0.8728± 0.0246 0.8787± 0.0286 0.8697± 0.0223 0.8030

5 0.8678± 0.0451 0.8812± 0.0232 0.8868± 0.0313 0.8816± 0.0161 0.7710

1 0.8747± 0.0221 0.8923± 0.0117 0.9073 ± 0.0187 0.8770± 0.0094 0.7780

6.3.
R
esu

lts
6
9

Table 6.9: Training results for the MADELON dataset

% of Features GPPDEC GPPDE2 GPPDE GP PCA-LS

50 0.5807± 0.0571 0.6361± 0.0246 0.6225± 0.0682 0.6244± 0.0287 0.8305

25 0.6175± 0.0514 0.6281± 0.0158 0.6474± 0.0627 0.6371± 0.0560 0.8275

10 0.6182± 0.0550 0.6329± 0.0243 0.7021± 0.0895 0.6554± 0.0479 0.7275

5 0.6354± 0.0531 0.6464± 0.0291 0.6945± 0.0763 0.6817± 0.0601 0.6755

1 0.6480± 0.0581 0.6408± 0.0302 0.6681± 0.0391 0.6690± 0.0312 0.6235

Table 6.10: Validation results for the MADELON dataset

% of Features GPPDEC GPPDE2 GPPDE GP PCA-LS

50 0.5596± 0.0579 0.6105± 0.0288 0.6030± 0.0541 0.6198± 0.0287 0.4500

25 0.6036± 0.0483 0.6248± 0.0106 0.6227± 0.0533 0.6334± 0.0578 0.5100

10 0.6058± 0.0487 0.6258± 0.0203 0.6685± 0.0789 0.6512± 0.0512 0.4850

5 0.6247± 0.0442 0.6881 ± 0.0238 0.6881 ± 0.0565 0.6865± 0.0655 0.4766

1 0.6374± 0.0467 0.6366± 0.0261 0.6490± 0.0223 0.6631± 0.0294 0.4850

70 Chapter 6: Feature Selection and Semantic Crossover

Table 6.11: Results from NIPS 2003 competition (December 1st.)

Method (Team) Score Features (%)

BayesNN-DFT (Neal/Zhang) 88.0 80.3

BayesNN-DFT (Neal/Zhang) 86.2 80.3

BayesNN-small (Neal) 68.7 4.7

BayesNN-large (Neal) 59.6 60.3

RF+RLSC (Torkkola/Tuv) 59.3 22.5

final2 (Chen) 52.0 24.9

SVMBased3 (Zhili/Li) 41.8 29.5

SVMBased4 (Zhili/Li) 41.1 29.5

final1 (Chen) 40.4 6.2

transSVM2 (Zhili) 36.0 29.5

BayesNN-E (Neal) 29.5 96.8

Collection2 (Saffari) 28.0 7.7

Collection1 (Saffari) 20.7 32.3

6.4. Summary

The main objective of this chapter was to compare GP to GPPDEC, GPPDE2 and

GPPDE for feature selection problems. The importance of Feature selection is that it helps

to filter the important features, therefore, saving computing time and storage space. At the

same time it helps to increase the algorithm’s performance because it removes features that

do not provide problem’s information, this non important features only provide noise, and

this noise decreases the performance of the algorithm.

In this chapter, different GP systems were used to perform feature selection over

a set of benchmarks problems. Feature Selection is not a problem on which GP is applied

very often even though that due to the form that GP creates individuals, GP performs a

feature selection by on the run. The performance of the different GP systems in feature

selection problems were compared to each other.

We had previously tested an ensemble of GP for feature selection problems and

compared to LASSO and Random Forest obtaining good results. This time, the results

were compared to PCA and Least Squares obtaining better results in 2 out of 3 problems.

The results presented here show that the semantic operators proposed in this work extend

6.4. Summary 71

Table 6.12: Results from NIPS 2003 competition December 8th.

Method (Team) Score Features (%)

BayesNN-DFT (Neal/Zhang) 71.4 80.3

BayesNN-large (Neal) 66.3 60.3

BayesNN-small (Neal) 61.1 4.7

final 2-3 (Chen) 49.1 24.9

BayesNN-large (Neal) 49.1 60.3

final2-2 (Chen) 40.0 24.6

Ghostminer1 (Ghostminer) 37.1 80.6

RF+RLSC (Torkkola/Tuv) 35.4 22.4

Ghostminer2 (Ghostminer) 35.4 80.6

RF+RLSC (Torkkola/Tuv) 34.3 22.4

FS+SVM (Lal) 31.4 20.9

Ghostminer3 (Ghostminer) 26.3 80.6

CBAMethod3E (CBAGroup) 21.1 12.8

Nameless (Navot/Bachrach) 12.0 32.3

the capabilities of GP for feature selection, in terms of achieving better performance or

reducing overfitting. The results of the original Feature Selection competition from which

the problems were taken were also reported as an illustration of the performance of other

methods in such task.

Chapter 7

Conclusions and Future Work

In this work, a methodology to compute the first and second partial derivatives

in GP have been introduced. Particularly, the derivative of the fitness function w.r.t. some

node. If these derivatives are computed for the node selected as the crossing point, this

opens the possibility to develop a crossover operator for GP. Moreover, this operator would

be semantic, because the crossover between individuals is being driven by their behavior

rather than their syntax.

Based on this methodology, three semantic operators have been created: GPPDE,

GPPDE2 and GPPDEC. The differences between these three operators are the degree

of the derivative and how to interpret the derivative. GPPDE computes the first partial

derivative and uses the sign of this derivative to select the crossing point in the second

parent. GPPDE2 computes the first and second partial derivatives and performs an iteration

of the newton method and uses this information to perform the crossover. Finally, GPPDEC

is a combination of the later two crossovers and checks the sign of the first derivative with

the information of the first iteration of the newton method.

These three crossover operators were tested on two classes of problems commonly

tackled with GP: Symbolic Regression and Classification. For Symbolic Regression, results

show that a combination of the information provided by the first and second derivatives,

this is, GPPDEC performed the best of all the three methods. On the other hand, in

Classification problems the method that proved to be the best approach was GPPDE.

In both classes of problems, the semantic operators created outperformed the traditional

syntactical operator used in GP. Different convergence plots were provided to illustrate the

behavior of the semantic operators throughout the evolutionary process in order to prove

73

74 Chapter 7: Conclusions and Future Work

that they are a better strategy than a syntactic operator.

Additionally, we have included state of the art methods for all the problems tested

to compare the performance of the semantic operators presented in this work. For Symbolic

Regression, a comparison with other semantical crossover operators found in the literature

was presented and for Classification SVMs were included to the comparison. In the first

problem, results show that GPPDEC was the overall second place out of the 6 methods

included. And for Classification, GPPDE proved to be a competitive strategy against SVMs

and even achieving better results than SVMs depending on the kernel used.

Moreover, another class of problems was included in this work: Feature Selection.

In previous work we have tested GP over Feature Selection problems with interesting results.

This time GPPDE, GPPDE2, GPPDEC were compared against GP for Feature Selection

problems. In order to have a reference in this kind of problems, PCA with linear squares were

included into the comparison. Results for Feature Selection show that GP-systems recognize

important features and improve the performance of the classification task. Again, GPPDE,

GPPDE2 and GPPDEC outperformed the syntactical crossover. The problems used in the

Feature Selection task were obtained from the NIPS 2003 Feature Selection Challenge, the

results from the original competition were also depicted for illustrative purposes.

The results obtained in this work encourage us to perform a deeper research about

how to interpret partial derivatives in GP in order to develop better crossover operators

than the traditional syntactic ones and, at the same time, to provide new strategies to the

semantic ones.

Future work can be developed in the area of mutation. Further research can include

a mutation operator guided by the partial derivatives of 1st. and 2nd. degree like GPPDE

and GPPDE2 and a combination of both, like GPPDEC. The idea will be the same on which

these semantic operators rely on: compute the desired partial derivative in the mutation

point and with this information search in the possible mutations which one resembles the

most with the heuristic being used.

Another idea that can be implemented in short time is the fine tuning of constants

in the individuals. The idea here is that at the end of the GP run, take the best individual

and tune some of its constants with the Newton method (like in Section 3.2) and try to

boost the performance of the best individual in the run.

Lastly, regarding Feature Selection and GP and given the results, another work

that can be easily implemented is the combination of GP with other techniques to solve the

75

task. This is, GP will be used only in the selection of the subset of features that are going

to be used in the classification task and the, with this reduction of data’s dimensionality,

perform the classification with other methods like SVMs that show great generalization

ability in the Feature selection results.

Finally, all these last ideas only confirm that there is so much area of improvement

regarding to GP and GP with the crossovers presented in this work. We believe that GPP-

DE, GPPDE2 and GPPDEC are one successful example of the combination of traditional

techniques like Newton Method with EAs like GP will lead to better strategies to solve

real-world problems.

References

[Augusto00] Augusto, D. A. y Barbosa, H. J. Symbolic regression via genetic pro-

gramming. En Neural Networks, 2000. Proceedings. Sixth Brazilian

Symposium on, págs. 173–178. IEEE, 2000.

[Beadle08] Beadle, L. y Johnson, C. G. Semantically driven crossover in gene-

tic programming. En IEEE Congress on Evolutionary Computation,

págs. 111–116. 2008.

[Beadle09] Beadle, L. y Johnson, C. G. Semantic analysis of program initiali-

sation in genetic programming. Genetic Programming and Evolvable

Machines, 10(3):307–337, 2009.

[Blickle94] Blickle, T. y Thiele, L. Genetic programming and redundancy. choice,

1000:2, 1994.

[Bojarczuk00] Bojarczuk, C. C., Lopes, H. S., y Freitas, A. A. Genetic programming

for knowledge discovery in chest-pain diagnosis. IEEE Engineering

in Medicine and Biology Magazine, 19(4):38–44, 2000.

[Bot00a] Bot, M. C. Improving induction of linear classification trees with

genetic programming. En Proceedings of the 2nd Annual Conference

on Genetic and Evolutionary Computation, págs. 403–410. Morgan

Kaufmann Publishers Inc., 2000.

[Bot00b] Bot, M. C. y Langdon, W. B. Application of genetic programming to

induction of linear classification trees. En European Conference on

Genetic Programming, págs. 247–258. Springer, 2000.

77

78 References

[Brameier01] Brameier, M. y Banzhaf, W. Evolving teams of predictors with linear

genetic programming. Genetic Programming and Evolvable Machines,

2(4):381–407, 2001.

[Carreno07] Carreno, E., Leguizamón, G., y Wagner, N. Evolution of classifica-

tion rules for comprehensible knowledge discovery. En Evolutionary

Computation, 2007. CEC 2007. IEEE Congress on, págs. 1261–1268.

IEEE, 2007.

[Carse07] Carse, B. y Pipe, A. G. Introduction: genetic fuzzy systems. Inter-

national Journal of Intelligent Systems, 22(9):905–907, 2007.

[Casillas09] Casillas, J. y Carse, B. Special issue on genetic fuzzy systems: Re-

cent developments and future directions. Soft Computing-A Fusion of

Foundations, Methodologies and Applications, 13(5):417–418, 2009.

[Cavaretta99] Cavaretta, M. J. y Chellapilla, K. Data mining using genetic pro-

gramming: The implications of parsimony on generalization error. En

Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999

Congress on, tomo 2, págs. 1330–1337. IEEE, 1999.

[Chen07] Chen, Z. y Lu, S. A genetic programming approach for classification

of textures based on wavelet analysis. En Intelligent Signal Proces-

sing, 2007. WISP 2007. IEEE International Symposium on, págs.

1–6. IEEE, 2007.

[Chien02] Chien, B.-C., Lin, J. Y., y Hong, T.-P. Learning discriminant fun-

ctions with fuzzy attributes for classification using genetic program-

ming. Expert Systems with Applications, 23(1):31–37, 2002.

[Curry07] Curry, R., Lichodzijewski, P., y Heywood, M. I. Scaling genetic pro-

gramming to large datasets using hierarchical dynamic subset selec-

tion. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 37(4):1065–1073, 2007.

[De Falco02] De Falco, I., Della Cioppa, A., y Tarantino, E. Discovering inter-

References 79

esting classification rules with genetic programming. Applied Soft

Computing, 1(4):257–269, 2002.

[De Stefano02] De Stefano, C., Della Cioppa, A., y Marcelli, A. Character preclassi-

fication based on genetic programming. Pattern Recognition Letters,

23(12):1439–1448, 2002.

[Eggermont99] Eggermont, J., Eiben, A. E., y van Hemert, J. I. A comparison of

genetic programming variants for data classification. En International

Symposium on Intelligent Data Analysis, págs. 281–290. Springer,

1999.

[Eggermont02] Eggermont, J. Evolving fuzzy decision trees with genetic program-

ming and clustering. En European Conference on Genetic Program-

ming, págs. 71–82. Springer, 2002.

[Espejo05] Espejo, P. G., Romero, C., Ventura, S., y Hervás, C. Induction of

classification rules with grammar-based genetic programming. En

Conference on Machine Intelligence, págs. 596–601. 2005.

[Espejo10] Espejo, P. G., Ventura, S., y Herrera, F. A survey on the applica-

tion of genetic programming to classification. Systems, Man, and

Cybernetics, Part C: Applications and Reviews, IEEE Transactions

on, 40(2):121–144, 2010.

[Estébanez05] Estébanez, C., Valls, J., Aler, R., y Galván, I. A first attempt at cons-

tructing genetic programming expressions for eeg classification. Ar-

tificial Neural Networks: Biological Inspirations–ICANN 2005, págs.

665–670, 2005.

[Estébanez08] Estébanez, C., Valls, J. M., y Aler, R. Gppe: a method to generate

ad-hoc feature extractors for prediction in financial domains. Applied

Intelligence, 29(2):174–185, 2008.

[Estrada-Gil07] Estrada-Gil, J. K., Fernández-López, J. C., Hernández-Lemus, E.,

Silva-Zolezzi, I., Hidalgo-Miranda, A., Jiménez-Sánchez, G., y Vallejo-

Clemente, E. E. Gpdti: A genetic programming decision tree induc-

80 References

tion method to find epistatic effects in common complex diseases.

Bioinformatics, 23(13):i167–i174, 2007.

[Faraoun06] Faraoun, K. y Boukelif, A. Genetic programming approach for multi-

category pattern classification applied to network intrusions detec-

tion. International Journal of Computational Intelligence and Appli-

cations, 6(01):77–99, 2006.

[Fogel97] Fogel, D. B. The advantages of evolutionary computation. En BCEC,

págs. 1–11. 1997.

[Folino99] Folino, G., Pizzuti, C., y Spezzano, G. A cellular genetic programming

approach to classification. En Proceedings of the 1st Annual Con-

ference on Genetic and Evolutionary Computation-Volume 2, págs.

1015–1020. Morgan Kaufmann Publishers Inc., 1999.

[Folino00] Folino, G., Pizzuti, C., y Spezzano, G. Genetic programming and

simulated annealing: A hybrid method to evolve decision trees. En

European Conference on Genetic Programming, págs. 294–303. Sprin-

ger, 2000.

[Folino08] Folino, G., Pizzuti, C., y Spezzano, G. Training distributed gp en-

semble with a selective algorithm based on clustering and pruning for

pattern classification. IEEE Transactions on Evolutionary Compu-

tation, 12(4):458–468, 2008.

[Garcia-Almanza08] Garcia-Almanza, A. L. y Tsang, E. P. Evolving decision rules to pre-

dict investment opportunities. International Journal of Automation

and Computing, 5(1):22–31, 2008.

[Graff13] Graff, M., Pena, R., y Medina, A. Wind speed forecasting using gene-

tic programming. En 2013 IEEE Congress on Evolutionary Compu-

tation, págs. 408–415. IEEE, 2013.

[Graff14] Graff, M., Graff-Guerrero, A., y Cerda-Jacobo, J. Semantic crossover

based on the partial derivative error. En European Conference on

Genetic Programming, págs. 37–47. Springer, 2014.

References 81

[Graff15] Graff, M., Tellez, E. S., Villasenor, E., y Miranda-Jiménez, S. Se-

mantic genetic programming operators based on projections in the

phenotype space. Research in Computing Science, 94:73–85, 2015.

[Guo05] Guo, H., Jack, L. B., y Nandi, A. K. Feature generation using ge-

netic programming with application to fault classification. IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cyberne-

tics), 35(1):89–99, 2005.

[Guo06] Guo, H. y Nandi, A. K. Breast cancer diagnosis using genetic pro-

gramming generated feature. Pattern Recognition, 39(5):980–987,

2006.

[Guyon04] Guyon, I., Gunn, S., Ben-Hur, A., y Dror, G. Result analysis of

the nips 2003 feature selection challenge. En Advances in Neural

Information Processing Systems, págs. 545–552. 2004.

[Guyon05] Guyon, I., Gunn, S., Ben-Hur, A., y Dror, G. Result analysis of

the nips 2003 feature selection challenge. En Advances in neural

information processing systems, págs. 545–552. 2005.

[Haruyama02] Haruyama, S. y Zhao, Q. Designing smaller decision trees using mul-

tiple objective optimization based gps. En Systems, Man and Cyber-

netics, 2002 IEEE International Conference on, tomo 6, págs. 5–pp.

IEEE, 2002.

[Hengpraprohm08] Hengpraprohm, S. y Chongstitvatana, P. A genetic programming

ensemble approach to cancer microarray data classification. En In-

novative Computing Information and Control, 2008. ICICIC’08. 3rd

International Conference on, págs. 340–340. IEEE, 2008.

[Hennessy05] Hennessy, K., Madden, M. G., Conroy, J., y Ryder, A. G. An im-

proved genetic programming technique for the classification of raman

spectra. Knowledge-Based Systems, 18(4):217–224, 2005.

[Hochreiter01] Hochreiter, S., Bengio, Y., Frasconi, P., y Schmidhuber, J. Gradient

82 References

flow in recurrent nets: the difficulty of learning long-term dependen-

cies, 2001.

[Holland08] Holland, S. M. Principal components analysis (pca). Department of

Geology, University of Georgia, Athens, GA, págs. 30602–2501, 2008.

[Hong06] Hong, J.-H. y Cho, S.-B. The classification of cancer based on dna

microarray data that uses diverse ensemble genetic programming. Ar-

tificial intelligence in Medicine, 36(1):43–58, 2006.

[Imamura03] Imamura, K., Soule, T., Heckendorn, R. B., y Foster, J. A. Beha-

vioral diversity and a probabilistically optimal gp ensemble. Genetic

Programming and Evolvable Machines, 4(3):235–253, 2003.

[Johnson00] Johnson, H. E., Gilbert, R. J., Winson, M. K., Goodacre, R., Smith,

A. R., Rowland, J. J., Hall, M. A., y Kell, D. B. Explanatory analysis

of the metabolome using genetic programming of simple, interpretable

rules. Genetic Programming and Evolvable Machines, 1(3):243–258,

2000.

[Khoshgoftaar07] Khoshgoftaar, T. M. y Liu, Y. A multi-objective software quality

classification model using genetic programming. IEEE Transactions

on Reliability, 56(2):237–245, 2007.

[Kira92] Kira, K. y Rendell, L. A. The feature selection problem: Traditional

methods and a new algorithm. En AAAI, págs. 129–134. 1992.

[Koza92] Koza, J. R. Genetic programming: on the programming of computers

by means of natural selection, tomo 1. MIT press, 1992.

[Krawiec02] Krawiec, K. Genetic programming-based construction of features for

machine learning and knowledge discovery tasks. Genetic Program-

ming and Evolvable Machines, 3(4):329–343, 2002.

[Krawiec09] Krawiec, K. y Lichocki, P. Approximating geometric crossover in

semantic space. En Proceedings of the 11th Annual conference on

Genetic and evolutionary computation, GECCO ’09, págs. 987–994.

References 83

ACM, New York, NY, USA, 2009. ISBN 978-1-60558-325-9. doi:

10.1145/1569901.1570036. 00032.

URL http://doi.acm.org/10.1145/1569901.1570036

[Krawiec12] Krawiec, K. y Pawlak, T. Locally Geometric Semantic Crossover. En

Proceedings of the 14th Annual Conference Companion on Genetic

and Evolutionary Computation, GECCO ’12, págs. 1487–1488. ACM,

New York, NY, USA, 2012. ISBN 978-1-4503-1178-6. doi:10.1145/

2330784.2331005. 00014.

URL http://doi.acm.org/10.1145/2330784.2331005

[Kuo07] Kuo, C.-S., Hong, T.-P., y Chen, C.-L. Applying genetic programming

technique in classification trees. Soft Computing-A Fusion of Foun-

dations, Methodologies and Applications, 11(12):1165–1172, 2007.

[Li07] Li, Y.-M., Wang, M., Cui, L.-J., y Huang, D.-M. A new classification

arithmetic for multi-image classification in genetic programming. En

Machine Learning and Cybernetics, 2007 International Conference

on, tomo 3, págs. 1683–1687. IEEE, 2007.

[Li08] Li, G., Wang, J. F., Lee, K. H., y Leung, K.-S. Instruction-matrix-

based genetic programming. IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), 38(4):1036–1049, 2008.

[Lin05] Lin, Y. y Bhanu, B. Evolutionary feature synthesis for object recog-

nition. IEEE Transactions on Systems, Man, and Cybernetics, Part

C (Applications and Reviews), 35(2):156–171, 2005.

[Moraglio12a] Moraglio, A., Krawiec, K., y Johnson, C. G. Geometric semantic ge-

netic programming. En International Conference on Parallel Problem

Solving from Nature, págs. 21–31. Springer, 2012.

[Moraglio12b] Moraglio, A., Krawiec, K., y Johnson, C. G. Geometric semantic

genetic programming. En C. A. C. Coello, V. Cutello, K. Deb, S. Fo-

rrest, G. Nicosia, y M. Pavone, eds., Parallel Problem Solving from

Nature - PPSN XII, no 7491 en Lecture Notes in Computer Science,

84 References

págs. 21–31. Springer Berlin Heidelberg, ene. 2012. ISBN 978-3-642-

32936-4, 978-3-642-32937-1.

[Mugambi04] Mugambi, E. M., Hunter, A., Oatley, G., y Kennedy, L. Polynomial-

fuzzy decision tree structures for classifying medical data. Knowledge-

Based Systems, 17(2):81–87, 2004.

[Mukkamala04] Mukkamala, S., Sung, A. H., y Abraham, A. Modeling intrusion de-

tection systems using linear genetic programming approach. En In-

ternational Conference on Industrial, Engineering and Other Appli-

cations of Applied Intelligent Systems, págs. 633–642. Springer, 2004.

[Muni04] Muni, D. P., Pal, N. R., y Das, J. A novel approach to design classi-

fiers using genetic programming. IEEE transactions on evolutionary

computation, 8(2):183–196, 2004.

[Neshatian08] Neshatian, K. y Zhang, M. Genetic programming and class-wise

orthogonal transformation for dimension reduction in classification

problems. En European Conference on Genetic Programming, págs.

242–253. Springer, 2008.

[Ngan99] Ngan, P. S., Wong, M. L., Lam, W., Leung, K. S., y Cheng, J. C.

Medical data mining using evolutionary computation. Artificial In-

telligence in Medicine, 16(1):73–96, 1999.

[Nguyen09] Nguyen, Q. U., Nguyen, X. H., y ONeill, M. Semantic aware crossover

for genetic programming: the case for real-valued function regression.

En Genetic Programming, págs. 292–302. Springer, 2009.

[Oka00] Oka, S. y Zhao, Q. Design of decision trees through integration of c4.

5 and gp. En Proc. 4th Jpn.-Australia Joint Workshop Intell. Evol.

Syst, págs. 128–135. 2000.

[Patterson07] Patterson, G. y Zhang, M. Fitness functions in genetic program-

ming for classification with unbalanced data. AI 2007: Advances in

Artificial Intelligence, págs. 769–775, 2007.

References 85

[Pawlak14] Pawlak, T., Wieloch, B., y Krawiec, K. Semantic Backpropagation for

Designing Search Operators in Genetic Programming. IEEE Transac-

tions on Evolutionary Computation, Early Access Online, 2014. ISSN

1089-778X. doi:10.1109/TEVC.2014.2321259.

[Pedregosa11] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,

Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,

Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.,

y Duchesnay, E. Scikit-learn: Machine learning in Python. Journal

of Machine Learning Research, 12:2825–2830, 2011.

[Petrović05] Petrović, N. y Crnojević, V. Impulse noise detection based on robust

statistics and genetic programming. En International Conference

on Advanced Concepts for Intelligent Vision Systems, págs. 643–649.

Springer, 2005.

[Poli08] Poli, R., Langdon, W. B., y McPhee, N. F. A field guide to genetic

programming. Published via http://lulu.com and freely available

at http://www.gp-field-guide.org.uk, 2008. (With contributions

by J. R. Koza).

URL http://www.gp-field-guide.org.uk

[Qing-Shan07] Qing-Shan, C., De-Fu, Z., Li-Jun, W., y Huo-Wang, C. A modified ge-

netic programming for behavior scoring problem. En Computational

Intelligence and Data Mining, 2007. CIDM 2007. IEEE Symposium

on, págs. 535–539. IEEE, 2007.

[Quinlan86] Quinlan, J. R. Induction of decision trees. Machine learning, 1(1):81–

106, 1986.

[Rojas96] Rojas, R. Neural Networks: A Systematic Introduction. Springer, 1a

edón., jul. 1996. ISBN 3540605053.

[Ruberto14] Ruberto, S., Vanneschi, L., Castelli, M., y Silva, S. ESAGP – A se-

mantic GP framework based on alignment in the error space. En

M. Nicolau, K. Krawiec, M. I. Heywood, M. Castelli, P. Garci-

86 References

Sanchez, J. J. Merelo, V. M. R. Santos, y K. Sim, eds., 17th Eu-

ropean Conference on Genetic Programming, tomo 8599 de LNCS,

págs. 150–161. Springer, Granada, Spain, 23-25 abr. 2014.

[Sakprasat07] Sakprasat, S. y Sinclair, M. C. Classification rule mining for auto-

matic credit approval using genetic programming. En Evolutionary

Computation, 2007. CEC 2007. IEEE Congress on, págs. 548–555.

IEEE, 2007.

[Sette04] Sette, S., Wyns, B., y Boullart, L. Comparing learning classifier

systems and genetic programming: A case study. Engineering Appli-

cations of Artificial Intelligence, 17(2):199–204, 2004.

[Sherrah96] Sherrah, J., Bogner, R. E., y Bouzerdoum, B. Automatic selection of

features for classification using genetic programming. En Intelligent

Information Systems, 1996., Australian and New Zealand Conference

on, págs. 284–287. IEEE, 1996.

[Sherrah97] Sherrah, J. R., Bogner, R. E., y Bouzerdoum, A. The evolutionary

pre-processor: Automatic feature extraction for supervised classifica-

tion using genetic programming. Genetic Programming, págs. 304–

312, 1997.

[Shirasaka98] Shirasaka, M., Zhao, Q., Hammami, O., Kuroda, K., y Saito, K. Auto-

matic design of binary decision trees based on genetic programming.

En Proc. The Second Asia-Pacific Conference on Simulated Evolution

and Learning (SEAL’98. Citeseer, 1998.

[Smart04] Smart, W. y Zhang, M. Continuously evolving programs in genetic

programming using gradient descent. En Proceedings of 2004 Asia-

Pacific Workshop on Genetic Programming. 2004.

URL http://homepages.mcs.vuw.ac.nz/~mengjie/papers/will-

meng-apwgp04.pdf

[Smith80] Smith, S. F. A learning system based on genetic adaptive algorithms.

1980.

References 87

[Smith05] Smith, M. G. y Bull, L. Genetic programming with a genetic algo-

rithm for feature construction and selection. Genetic Programming

and Evolvable Machines, 6(3):265–281, 2005.

[Stanhope98] Stanhope, S. y Daida, J. Genetic programming for automatic target

classification and recognition in synthetic aperture radar imagery. En

Evolutionary Programming VII, págs. 735–744. Springer, 1998.

[Suárez14] Suárez, R. R., Valencia-Ramı́rez, J. M., y Graff, M. Genetic pro-

gramming as a feature selection algorithm. En Power, Electronics

and Computing (ROPEC), 2014 IEEE International Autumn Mee-

ting on, págs. 1–5. IEEE, 2014.

[Suárez15] Suárez, R. R., Graff, M., y Flores, J. J. Semantic crossover operator

for gp based on the second partial derivative of the error function.

2015.

[Tackett93] Tackett, W. A. Genetic programming for feature discovery and image

discrimination. En ICGA, págs. 303–311. 1993.

[Tan02] Tan, K. C., Tay, A., Lee, T. H., y Heng, C. Mining multiple com-

prehensible classification rules using genetic programming. En Evo-

lutionary Computation, 2002. CEC’02. Proceedings of the 2002 Con-

gress on, tomo 2, págs. 1302–1307. IEEE, 2002.

[Tan03] Tan, K. C., Yu, Q., Heng, C., y Lee, T. H. Evolutionary computing

for knowledge discovery in medical diagnosis. Artificial Intelligence

in Medicine, 27(2):129–154, 2003.

[Tanigawa00] Tanigawa, T. y Zhao, Q. A study on efficient generation of decision

trees using genetic programming. En Proceedings of the 2nd Annual

Conference on Genetic and Evolutionary Computation, págs. 1047–

1052. Morgan Kaufmann Publishers Inc., 2000.

[Teller95] Teller, A. y Veloso, M. Program evolution for data mining. Internatio-

nal Journal of Expert Systems Research and Applications, 8(3):213–

236, 1995.

88 References

[Tellez17] Tellez, E. S., Miranda-Jimnez, S., Graff, M., Moctezuma, D., Surez,

R. R., y Siordia, O. S. A simple approach to multilingual polarity

classification in twitter. Pattern Recognition Letters, 94:68 – 74, 2017.

ISSN 0167-8655. doi:https://doi.org/10.1016/j.patrec.2017.05.024.

URL http://www.sciencedirect.com/science/article/pii/

S0167865517301721

[Teredesai04] Teredesai, A. M. y Govindaraju, V. Issues in evolving gp based clas-

sifiers for a pattern recognition task. En Evolutionary Computation,

2004. CEC2004. Congress on, tomo 1, págs. 509–515. IEEE, 2004.

[Thomason07] Thomason, R. y Soule, T. Novel ways of improving cooperation

and performance in ensemble classifiers. En Proceedings of the 9th

annual conference on Genetic and evolutionary computation, págs.

1708–1715. ACM, 2007.

[Tsakonas06] Tsakonas, A. A comparison of classification accuracy of four genetic

programming-evolved intelligent structures. Information Sciences,

176(6):691–724, 2006.

[Uy10] Uy, N. Q., Hien, N. T., Hoai, N. X., y ONeill, M. Improving the ge-

neralisation ability of genetic programming with semantic similarity

based crossover. En European Conference on Genetic Programming,

págs. 184–195. Springer, 2010.

[Uy11] Uy, N. Q., Hoai, N. X., ONeill, M., McKay, R. I., y Galvan-Lopez, E.

Semantically-based crossover in genetic programming: application to

real-valued symbolic regression. Genetic Programming and Evolvable

Machines, 12(2):91–119, 2011.

[Valencia-Ramirez14] Valencia-Ramirez, J. M., Raya, J. A., Cedeno, J. R., Suarez, R. R., Es-

calante, H. J., y Graff, M. Comparison between Genetic Programming

and full model selection on classification problems. En 2014 IEEE

International Autumn Meeting on Power, Electronics and Computing

(ROPEC), págs. 1–6. nov. 2014. doi:10.1109/ROPEC.2014.7036349.

References 89

[Vanneschi13] Vanneschi, L., Castelli, M., Manzoni, L., y Silva, S. A new implemen-

tation of geometric semantic GP and its application to problems in

pharmacokinetics. En K. Krawiec, A. Moraglio, T. Hu, A. . Etaner-

Uyar, y B. Hu, eds., Genetic Programming, no 7831 en Lecture Notes

in Computer Science, págs. 205–216. Springer Berlin Heidelberg, ene.

2013. ISBN 978-3-642-37206-3, 978-3-642-37207-0.

[Vanneschi14] Vanneschi, L., Castelli, M., y Silva, S. A survey of semantic met-

hods in genetic programming. Genetic Programming and Evolvable

Machines, 15(2):195–214, jun. 2014. ISSN 1389-2576, 1573-7632. doi:

10.1007/s10710-013-9210-0.

URL http://link.springer.com/article/10.1007/s10710-013-

9210-0

[Wang05] Wang, S. X. y Lichodzijewski, P. Boolean genetic programming for

promoter recognition in eukaryotes. En Evolutionary Computation,

2005. The 2005 IEEE Congress on, tomo 1, págs. 683–690. IEEE,

2005.

[Wijesinghe07] Wijesinghe, G. y Ciesielski, V. Using restricted loops in genetic pro-

gramming for image classification. En Evolutionary Computation,

2007. CEC 2007. IEEE Congress on, págs. 4569–4576. IEEE, 2007.

[Wilcoxon45] Wilcoxon, F. Individual comparisons by ranking methods. Biometrics

Bulletin, 1(6):80, dic. 1945. ISSN 00994987. doi:10.2307/3001968.

URL http://www.jstor.org/discover/10.2307/3001968?uid=

3738664&uid=2&uid=4&sid=21102014980993

[Wilson95] Wilson, S. W. Classifier fitness based on accuracy. Evolutionary

computation, 3(2):149–175, 1995.

[Xu08] Xu, C.-G. y Liu, K.-H. A gp based approach to the classification

of multiclass microarray datasets. Advanced Intelligent Computing

Theories and Applications. With Aspects of Artificial Intelligence,

págs. 340–346, 2008.

90 References

[Yu07] Yu, J., Yu, J., Almal, A. A., Dhanasekaran, S. M., Ghosh, D., Worzel,

W. P., y Chinnaiyan, A. M. Feature selection and molecular classifi-

cation of cancer using genetic programming. Neoplasia, 9(4):292IN1–

303IN3, 2007.

[Zhang04a] Zhang, M. y Smart, W. Genetic programming with gradient des-

cent search for multiclass object classification. En M. Keijzer, U.-M.

OReilly, S. Lucas, E. Costa, y T. Soule, eds., Genetic Programming,

no 3003 en Lecture Notes in Computer Science, págs. 399–408. Sprin-

ger Berlin Heidelberg, ene. 2004. ISBN 978-3-540-21346-8, 978-3-540-

24650-3.

[Zhang04b] Zhang, Y. y Bhattacharyya, S. Genetic programming in classif-

ying large-scale data: an ensemble method. Information Sciences,

163(1):85–101, 2004.

[Zhang07] Zhang, L. y Nandi, A. K. Fault classification using genetic program-

ming. Mechanical Systems and Signal Processing, 21(3):1273–1284,

2007.

[Zhang08] Zhang, Y., Li, H., Niranjan, M., y Rockett, P. Applying cost-sensitive

multiobjective genetic programming to feature extraction for spam

e-mail filtering. En European Conference on Genetic Programming,

págs. 325–336. Springer, 2008.

