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Abstract 

This thesis presents two fast and accurate methodologies for the assessment of the 

dynamic and periodic steady state operation of microgrids with photovoltaic energy sources 

in time and harmonic domain. The topology of the entire electrical system involves a 

photovoltaic array connected to a boost converter, followed by an inverter which is coupled 

to the electrical network via a passive filter.  

The time domain methodology uses the trapezoidal rule technique to integrate the set of 

first-order differential algebraic equations, generated by the entire electrical system. Then, 

the numerical differentiation method is used to significantly speed-up the process of 

convergence of the state variables to the limit cycle. After that, the cubic spline interpolation 

algorithm is used to reconstruct the steady state waveform obtained from the numerical 

differentiation method to the fewest number of possible time steps. This curve fitting 

algorithm is used only once the steady state is obtained. The efficiency of the solution is 

further enhanced with the application of parallel processing based on Graphic Processing 

Units. 

The harmonic domain methodology is based on the Fourier series to express 

voltages/currents as vectors and admittances/impedances as matrices, this allows to include 

frequencies multiples of the fundamental frequency, i.e., harmonics. The PV array is 

represented as a Thevenin equivalent in the Harmonic Domain. The boost converter and the 

inverter are represented in the harmonic domain via switching function matrices. This allows 

to obtain the steady state of the entire electrical system via simple matrix/vector operations.  

The results are successfully validated through direct comparison against those obtained 

with the PSCAD/EMTDC simulator, widely accepted by the power industry. The main 

applications of the proposed methodologies are in the areas of power quality and of 

distributed generation. 

In addition, this thesis details an efficient algorithm for the simulation of the steady state 

response of power networks under non-sinusoidal conditions. The algorithm uses the current 

injection method, LU decomposition, and parallel processing based on graphic processing 

units. It is shown that the implementation on a graphic processing unit platform becomes an 
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efficient computational resource to find the steady state solution since floating-point 

operations and repetitive calculations increase in proportion to the size of the network. 
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Resumen 

 Esta tesis presenta dos metodologías rápidas y precisas para la evaluación de la 

operación dinámica y de estado estable de micro redes con fuentes de energía fotovoltaica en 

el dominio armónico y del tiempo. La topología del sistema eléctrico completo consta de un 

arreglo fotovoltaico conectado a un convertidor Boost, seguido de un inversor el cual está 

conectado a la red eléctrica mediante un filtro pasivo. 

 La metodología en el dominio del tiempo utiliza la técnica de la regla trapezoidal para 

integrar el conjunto de ecuaciones diferenciales algebraicas, generadas por el sistema 

eléctrico completo. Entonces, el método de diferenciación numérica se utiliza para acelerar 

significativamente el proceso de convergencia de las variables hacia el ciclo límite. Después 

de esto, el algoritmo de interpolación segmentaria cubica se usa para reconstruir la forma de 

onda de estado estable obtenida por el método de diferenciación numérica con el menor 

número posibles de muestras por periodo. El algoritmo de ajuste de curvas se utiliza una vez 

que se ha obtenido el estado estable. La eficiencia de la solución es aun mejorado con la 

aplicación de procesamiento en paralelo basado unidades de procesamiento gráfico. 

 La metodología en el dominio armónico está basada en el análisis de Fourier para 

expresar los voltajes y/o corrientes como vectores y las admitancias y/o impedancias como 

matrices, lo cual permite incluir frecuencias múltiplos de la fundamental, esto es, armónicos. 

El arreglo fotovoltaico se presenta como un equivalente de Thevenin en el dominio armónico. 

El convertidor boost y el inversor son representados en el dominio armónico por medio de 

matrices con funciones de conmutación. Esto permite obtener el estado estable del sistema 

eléctrico completo por medio de operaciones con matrices y/o vectores. 

 Los resultados son exitosamente validados a través de la comparación directa con el 

simulador PSCAD/EMTDC, ampliamente reconocido por la industria. Las aplicaciones 

principales de las metodologías propuestas se encuentran el área de la calidad de la energía 

y en sistemas de generación distribuida. 

 Además, esta tesis describe un algoritmo eficiente para la simulación de la respuesta 

en estado estable de redes eléctricas bajo condiciones no senoidales. El algoritmo utiliza el 

método de inyección de corrientes, la factorización LU y procesamiento en paralelo basado 



xx 
 

en unidades de procesamiento gráfico. Se ha probado que la implementación sobre una 

plataforma basada en unidades de procesamiento gráfico se convierte en un recurso eficiente 

computacional para encontrar la solución en estado estable, ya que las operaciones con punto 

flotante y los cálculos repetitivos se incrementan en proporción al tamaño de la red. 

Palabras clave: Dominio-Tiempo, Dominio-Armónico, Sistema Fotovoltaico, 

Procesamiento en Paralelo y Estado Estable.  
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Chapter 1 

 

Introduction 

 

1.1 Introduction 

Last decade, the use of renewable energies for producing electrical power has increase 

exponentially. Several countries around the world are interested in natural and clean sources 

of energy as an alternative for protecting the natural environment. Among the renewable 

energies available for producing electrical power, solar energy is one of the most promising. 

Sunlight can be transformed to electricity through a photovoltaic (PV) device. A PV 

device is basically a semiconductor diode whose p-n junction is exposed to light [Moller 

1993]. The incidence of light on the semiconductor generates charge carriers that originate 

an electric current if the cell is short-circuited. To date, there is a wide variety of 

semiconductors using different manufacturing processes. The monocrystalline and 

polycrystalline silicon semiconductors are the only found at commercial scale [Patel 2006], 

[Messenger and Ventre 2010]. For the purposes of this thesis, these two materials have 

similar behavior and are not studied in detail.    

The basic device of a PV system is the PV cell. Due to the low voltage produced by a 

PV cell, a set of PV cells may be grouped to form panels or modules [Masters 2004]. Most 

PV panels available on the market are normally constituted by 36 or 72 PV cells connected 

in series/parallel. The power output ratings of PV panels ranging from 300 to 500 W. 

When the desired power of the PV panel is insufficient, a combination of PV panels 

connected in series/parallel is implemented. The combination is called PV array. 

The connection of a PV array with the microgrid is normally achieved by using a DC 

capacitor link, a DC/DC converter, a DC/AC converter, and a filter. This PV generation 

system produce harmonics that interact with the microgrid adversely affecting power quality. 
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The dynamic and periodic steady state condition of these PV generation systems is 

important for the planning, design and operation of electrical networks and power systems 

where they are connected. 

Reported technical problems and limitations of PV generation are its variability, 

intermittency and adverse power quality effects, such as harmonic distortion, voltage and 

frequency variations, among others. In particular, this thesis centers on the analysis of the 

harmonic distortion produced by PV generation systems in microgrids. These problems can 

be analyzed with the proposed time and frequency domain methodologies. Both can be 

applied to take adequate control decisions, i.e., to regulate the power generation and the 

energy conversion process or to enhance the electrical network or microgrid stability, among 

other issues. 

 

1.2 State of the Art 

Aside from the depleting fossil fuel reserve, the concern for global warming has 

become an impetus across the world to integrate PV generation systems in the conventional 

power systems. Usually, PV generation systems of single digit MW capacities have been 

connected to the power system, primarily, at subtransmission voltage levels. However, such 

PV generation systems are expected to be increasingly connected to distribution networks 

where loads and/or other local generators are also present. This calls for better understanding 

of large-scale PV systems employed as distributed energy sources, in terms of control, 

dynamic characteristics, and performance, through development of suitable simulation 

models [Willis and Scott 2000]. 

In Germany, Australia, and other developed countries, large-scale PV systems [Martin 

Bucher 2016], [Victorian Project 2017] are either already embedded or expected to be 

integrated in the conventional high voltage grid in the next few years. Nevertheless, any 

information on their operating strategies is yet to be made available. However, significant 

work [Tan et al. 2004], [Lee and Wang 2008] has been done on small-scale PV generation 

systems only and operating with or without a parallel alternate source, e.g., capacitor bank, 

battery, fuel cell, diesel generator, or wind turbine.  
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The system was either an isolated one [Sokolov and Shmilovitz 2008], [Chen et al. 

2010] or interfaced with the utility [Tan et al. 2004], [Jain and Agarwal 2008] at the low 

voltage side (230 V). 

On the other hand, the steady state response of power networks with interconnected PV 

generation systems is now of primary interest to an engineer. This is because certain aspects 

of system performance are easier to characterize and verify in steady state. Examples of 

quantities that are best measured when the power system is in steady state include harmonic 

distortion, power, frequency, etc. 

The periodic steady state solution of a power network can be obtained in three main 

frameworks, i.e., time domain (TD), frequency domain (FD) and hybrid frequency-time 

domain, respectively. A concise review is given in [Medina et al. 2013] regarding the main 

advantages, drawbacks, formulation and convergence characteristics related to the different 

methods belonging to the frames of reference above indicated. 

In the TD framework, the work presented in [Tan et al. 2004] describes a model of PV 

generation suitable for studying its interactions with the power system. Four years later, [Lee 

and Wang 2008] applied a TD technique to obtain the dynamic response of a hybrid 

renewable generation system connected to isolated loads, and [Jain and Agarwal 2008] 

developed a model for distributed generation applications fed by nonconventional energy 

sources. In those works, the focus was basically on the analysis of stability. Needless to say, 

the findings from analyses or tests using such small-scale models at the end user level cannot 

be applied for evaluating the operational impacts of large-scale PV systems interfaced with 

the high voltage buses in a grid. 

Another way to compute the periodic steady state response of a PV generation system 

in the specialized literature in TD is via simulation packages [Perera et al. 2012], [Sood and 

Balla 2009], for instance PSCAD/EMTDC [PSCAD 2005], PSIM [PSIM 2016] or EMPT-

RV [EMPT-RV 2012]. Harmonic analysis is then performed as a post-processing procedure. 
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In the harmonic domain (HD) framework several models of power systems components 

have been developed, for example, synchronous machine [Xu et al. 1991], [Medina et al. 

1994], the power transformer [Medina and Arrillaga 1992], [Semlyen et al. 1997], arc 

furnaces [Acha et al. 1990], fluorescent lamps [Chang 2003], Thyristor Commutated 

Reactors (TCRs) [Acha et al. 1996], the power converters [Smith et al. 1995], [Bathrurst et 

al. 2001], HVDC systems [Bathrurst et al. 2000], adjustable speed drives [Xu et al. 2000], 

static var systems [Xu et al. 1999], and the unified power flow controller (UPFC) [Collins et 

al.  2006].  

However, single-phase grid-connected PV generation systems have not been fully 

modelled in the HD. Some electronic components used in grid-connected PV generation 

systems have been modelled in HD separately, for instance the voltage source inverter (VSI) 

[Acha and Madrigal 2001], but with distinct applications.         

 

1.3 Motivation Behind the Present Research  

Generally, TD methods have been used to simulate single-phase grid-connected PV 

generation systems where a post-processing stage is needed for harmonic visualization. 

Furthermore, TD methods may require integration over considerable periods of time. It has 

been suggested only for cases where the periodic steady state response can be obtained in a 

few cycles [Dommel et al. 1986], such as sufficiently damped systems. Otherwise, achieving 

steady state requires long simulation times and large computational resources.  

Fortunately, there are techniques to speed-up the convergence process. The 

extrapolation to the limit cycle and Poincaré map techniques have been applied to quickly 

obtain the periodic steady state of electrical systems. They were first introduced in [Semlyen 

and Medina, 1995]. A follow-up research in this field is reported in  [Segundo and Medina 

2008], [Segundo 2010]. The Numerical Differentiation (ND) method is one of the 

extrapolation to the limit cycle techniques introduced in [Semlyen and Medina 1995]. In the 

present research, the ND method is used to speed-up the periodic steady state solution of the 

microgrid with interconnected PV generation. 
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The cubic splines interpolation (CSI) is an algorithm that has been applied to 

accurately estimate a new point between known data with smaller error that the obtained with 

square or linear interpolation. The application of the CSI method is proposed to adjust the 

number of times steps per cycle needed during the TD solution. 

 HD techniques constitute alternative methods for the modelling and simulation of 

electrical systems with emphasis on the analysis of the quality of power. HD simulations 

provide the steady state solution of a system in a direct manner and power quality indices are 

readily available.    

 

1.4 Aims 

1.4.1 Main Aim 

 Main aim: To implement a fast and accurate time and frequency domain methodology 

for the assessment of the dynamic and periodic steady state operation of microgrids 

with photovoltaic energy sources. 

 

  1.4.2 Particular Aims 

 To incorporate in the TD solution process, efficient numerical techniques, such as 

Newton methods, extrapolation to the limit cycle, and cubic splines interpolation.  

 To assure the Maximum Power Point (MPP) operation of the PV array in the HD 

method. Besides, the proposed model should be able to account for any number of 

harmonics. 

 To develop the digital tools for the assessment of the dynamic and periodic steady 

state operation of microgrids with PV energy sources in Time and Harmonic 

Domains, respectively. 

 To develop an efficient algorithm for the simulation of the steady state response of 

power networks under non-sinusoidal conditions using parallel processing techniques 

based on graphic processing units (GPUs) 
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1.5 Contributions 

The main contributions of this work can be summarized as follows: 

 A fast and accurate time and frequency domain methodology for the assessment of 

the dynamic and periodic steady state operation of microgrids with photovoltaic 

energy sources. The TD solution process incorporates efficient numerical techniques 

and the HD model is capable to account for any number of harmonics. 

 A time and frequency domain simulator with efficient and accurate mathematical and 

numerical tools such as Newton Raphson (NR), Trapezoidal Rule (TR) and Parallel 

Processing based on GPUs. 

 A fast and efficient algorithm for harmonic propagation studies using advanced 

computational and mathematical tools.  

 

1.6 Thesis Outline 

Chapter 1 presents a review of the state of the art associated with the methods that have 

been used to simulate single-phase grid-connected PV generation systems in time and 

frequency domains. After this review of the state of the art, aims, motivation and 

contributions to be achieved are established. Finally, the description of chapters are given. 

Chapter 2 presents the numerical and computational tools used to develop this thesis, 

such us, NR, TR, DFT, FFT and Parallel Processing based on GPUs. 

Chapter 3 deals with the description and modeling of the single-phase grid-connected 

PV generation system in TD, a review of the ND method based on the Poincaré map and 

extrapolation to the limit cycle concepts, and an explanation of the CSI technique. Also, a 

case study for harmonic propagation in TD using parallel processing based on multi-CPUS 

and multi-GPUs is shown.    

Chapter 4 describes a HD technique for the modelling and simulation of single-phase 

grid-connected PV generation system. The fundamentals of HD and the representations of 

basic electrical elements in HD are presented. Also, some power quality indices for 
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nonsinusoidal conditions are given. In addition, a case study for harmonic propagation in FD 

is presented. 

Chapter 6 presents the general conclusions drawn from this research, addressing and 

suggesting ideas for further research to be done in the same field of knowledge. 
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Chapter 2 

 

Numerical and Computational Techniques 

 

    2.1 Introduction 

Nowadays, power systems analysis methodologies require solving complex and 

highly non-linear problems, which requires the use of a large amount of computational 

resources. Therefore, power system simulations must incorporate advanced numerical and 

computational techniques for planning, operation, control, and analysis. In other words, a 

simulation technique must be fast, computationally efficient, robust, secure, and reliable. At 

the same time, it is necessary to make models as efficient as possible to minimize 

computation times and to capture realistic effects. This chapter gives a concise description 

of the numerical mathematical and computational tools incorporated in this research work 

with the aim of making the solution process involved for each case robust, reliable and 

efficient. These are the following: 

 The Newton Raphson Method. 

 Trapezoidal Rule. 

 Parallel Processing Techniques Based on GPUs. 

 Discrete Fourier Transform 

 Fast Fourier Transform 

 

    2.2 Newton Raphson Method 

Equation (3.1) is an algebraic and transcendental equation, i.e., is a nonlinear 

equation. In order to find the solution, it is necessary to use a numerical method. Perhaps the 

most widely used to find the solution of a nonlinear equation is the NR Method.  
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The derivation of the NR method is as follows: a current guess is x and this is incorrect 

by an amount of h, so that x+h is the exact value of the sought root. It now remains for us to 

determine h or at least find an approximation to it. 

The Taylor expansion for the function f(x) at the point x + h is given by [Otto and 

Denier 2005]: 

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓´(𝑥) + 𝑂(ℎ2)                                              (2.1) 

 This can be interpreted as follows: the value of the function at x+h is equal to the 

value of the function at x plus the gradient times the distance between the points. This can be 

considered to include further terms; at the moment we are fitting a straight line. 

 In this expression we have used the term O(h2): loosely this means something the 

same size as h2 and also the prime means differentiated with respect to the argument of the 

function. We now note that x+h is supposedly the actual root so f(x+h)=0. Discarding the 

higher-order terms from (2.1) we find that, 

ℎ ≈ −
𝑓(𝑥)

𝑓´(𝑥)
                                                                (2.2)  

This presumes that the actual root is close, and consequently we can discard the terms 

proportional to h2, since these should be smaller than those proportional to h. 

This allows us to construct the iterative recursive equation, 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓´(𝑥𝑛)
,    𝑛 = 0,1,2, …                                          (2.3)  

 

    2.3 The Trapezoidal Rule 

The Newton-Cotes formulas are the most common numerical integration schemes. 

They are based on the strategy of replacing a complicated function or tabulated data with an 

approximation function that is easy to integrate [Chapra and Canale 2010]: 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥 ≅  ∫ 𝑓𝑛(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎
                                              (2.4) 

 



10 
 

where fn(x)=a is a polynomial of the form 

𝑓𝑛(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑛−1𝑥
𝑛−1 + 𝑎𝑛𝑥𝑛  

where n is the order of the polynomial. 

 The TR is the first of the Newton-Cotes closed integration formulas. It correspond to 

the case where the polynomial in (2.4) is first-order: 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥 ≅  ∫ 𝑓1(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎

 

where 

𝑓1(𝑥) = 𝑎0 + 𝑎1𝑥 = 𝑓(𝑎) +
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
(𝑥 − 𝑎)                              (2.5) 

The area under this straight line is an estimate of the integral of f(x) between the 

limits a and b:  

𝐼 = ∫ [𝑓(𝑎) +
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
(𝑥 − 𝑎)] 𝑑𝑥

𝑏

𝑎

 

The result of the integration is 

𝐼 = (𝑏 − 𝑎)
𝑓(𝑎)+𝑓(𝑏)

2
                                                     (2.6) 

which is called the TR and is an example of an implicit method. 

 

    2.4 Parallel Processing Techniques Based on GPU 

    2.4.1 An Overview on GPUs 

A graphic processing unit (GPU) is a co-processor dedicated to graphics processing 

and floating point operations. A GPU helps to offload tasks from CPU. Generally the GPU 

is connected to the CPU and is completely separate from the motherboard. The random access 

memory (RAM) is connected through the accelerated graphics port (AGP) or the peripheral 

component interconnect express (PCI-Express) bus.  
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Some GPUs are integrated into the northbridge on the motherboard and use the main 

memory as a digital storage area, but these GPUs are slower and have poorer performance 

[Cook 2013]. 

A GPU has parallel processing architecture, which allows it to perform multiple 

calculations on sets of data at the same time. The GPU, first invented by Nvidia, is the most 

powerful parallel processor to date [Sanders and Kandrot 2010]. 

  

    2.4.2 Fermi Architecture   

Nvidia is one of the leading manufactures of GPUs. Architecture Fermi and Kepler 

are the most widely used for parallel processing. The GPU used in this research is the Tesla 

C2075 with Fermi architecture, discussed next [Nvidia Fermi 2011]. 

The Tesla C2075 [Nvidia Fermi 2011] is implemented with 3.0 billion transistors, 

features up to 512 CUDA cores. A CUDA core executes a floating point or integer instruction 

per clock for a thread. The 512 CUDA cores are organized in 16 streaming multiprocessors 

(SM) of 32 cores each. The GPU has six 64-bit memory partitions, for a 384-bit memory 

interface, supporting up to a total of 6 GB of GDDR5 DRAM memory. The Giga Thread 

global scheduler distributes thread blocks to SM thread schedulers. 

Fig. 2.1 shows the elements of a SM and a CUDA core. A brief explanation of the 

components of the Fermi SM is given below: 

 Load/Store Units. Each SM features 32 CUDA processors and has 16 load/store 

units, allowing source and destination addresses to be calculated for sixteen threads 

per clock. Supporting units load and store the data at each address to cache or DRAM.  

 Four Special Fuction Units. A special function unit (SFU) execute transcendental 

instructions such as sine, cosine, reciprocal, and square root. The SFU pipeline is 

decoupled from the dispatch unit, allowing the dispatch unit to issue other execution 

units while the SFU is occupied.  
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 Dual Warp Scheduler. The SM schedules threads in groups of 32 parallel threads 

called warps. Each SM features two warp schedulers and two instruction dispatch 

units, allowing two warps to be issued and executed concurrently. Fermi’s dual warp 

scheduler selects two warps, and issues one instruction from each warp to a group of 

sixteen cores, sixteen load/store units, or four SFUs. 

 Shared Memory and L1 Cache. Shared memory enables threads within the same 

thread block to cooperate, facilitates extensive reuse of on-chip data, and greatly 

reduces off-chip traffic. 

 

Each CUDA processor has a fully pipelined integer arithmetic logic unit (ALU) and 

floating point unit (FPU). 

 

 

Fig. 2.1 SM and core processor scheme. 
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    2.4.3 Kepler Architecture   

Kepler Architecture is the successor to the Fermi Architecture. Kepler introduces two 

key changes that greatly improve the GPU´s efficiency. First, a redesigned SM, the most 

important building block of the GPU, for optimal performance per watt. Kepler´s SM has 

twice the performance per watt compared to the Fermi´s SM. Second, a feature called GPU 

Boost that dynamically increases clock speed to improve performance within the card´s 

power budged [Nvidia Kepler 2012]. 

The most important thing to understand about GPU Boost is that it works through real 

time hardware monitoring as opposed to application based profiles. As an algorithm, it 

attempts to find what is the appropriate GPU frequency and voltage for a give moment in 

time. It does this by reading a huge swathe of data such as GPU temperature, hardware 

utilization, and power consumption. Depending on these conditions, it will raise the clock 

and voltage accordingly to extract maximum performance within the available power 

envelop. Because all this is done via real-time hardware monitoring, GPU Boost requires no 

application profiles.   

 

    2.4.4 CUDA  

CUDA is the hardware and software architecture that enables Nvidia GPUs to execute 

programs written with C, C++, Fortran, OpenCL, DirectCompute, and other languages 

[Nvidia CUDA 2015]. A CUDA program calls parallel kernels. A kernel executes in parallel 

across a set of parallel threds. The programmer or compiler organizes these threads in thread 

blocks and grids of threads blocks. The GPU instantiates a kernel program on a grid of 

parallel thread blocks. Each thread within a thread block executes an instance of the kernel, 

and has a thread ID within its thread block, program counter, registers, per-thread private 

memory, inputs, and output results. 

A thread block is a set of concurrently executing threads that can cooperate among 

themselves through barrier synchronization and shared memory. A thread block has a block 

ID within its grid. 
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A grid is an array of thread blocks that execute the same kernel, read inputs from 

global memory, write results to global memory, and synchronize between dependent kernel 

calls. In the CUDA parallel programing model, each thread has a per-thread private memory 

space used for register spills, function calls, and C automatic array variables. Each thread 

block has a per-block shared memory space used for inter-thread communication, data 

sharing, and result sharing in parallel algorithms. Grids of thread blocks share results in 

global memory space after kernel-wide global synchronization. 

A CUDA program has two parts: the serial part and the parallel part. In the serial part, 

no parallelism exists and the instructions are executed in the CPU. In the parallel part, which 

involves massive data parallelism, instructions are executed in the GPU. A high level view 

of the CUDA programming model is illustrated in Fig. 2.2.   

 

 

Fig. 2.2 Schematic of execution of a Nvidia´s CUDA programming model. 

 



15 
 

    2.4.5 OpenMP  

Open MP is an application programming interface (API) for parallel programming on 

multiprocessors. It consists of a set of compiler directives and a library of support functions. 

OpenMP works in conjunction with standard C, or C++ [Quinn 2004]. 

The OpenMP API uses the fork-join model of parallel execution. Under this approach, 

the program starts as a single thread of execution, just like a sequential program. The thread 

that executes this code is referred to as the initial thread. Whenever an OpenMP parallel 

construct is encountered by a thread while it is executing the program, it creates a team of 

threads (this is the fork), becomes the master of the team, and collaborates with the other 

members of the team to execute the code dynamically enclosed by the construct. At the end 

of the construct, only the original thread, or master of the team, continues; all others terminate 

(this is the join). Each portion of code enclosed by a parallel construct is called a parallel 

region [Chapman et al. 2008].  

The OpenMP API comprises a set of compiler directives, runtime library routines, 

and environment variables to specify shared-memory parallelism in C or C++ programs. An 

OpenMP directive is a specially formatted comment or pragma that generally applies to the 

executable code immediately following it in the program. A directive or OpenMP routine 

generally affects only those threads that encounter it. 

A team of threads is created to execute the code in a parallel region of an OpenMP 

program. To accomplish this, the programmer simply specifies the parallel region by 

inserting a parallel directive immediately before the code that is to be executed in parallel to 

mark its start. Additional information can be supplied along with the parallel directive. This 

is mostly used to enable threads to have private copies of some data for the duration of the 

parallel region and to initialize that data. At the end of a parallel region is an implicit barrier 

synchronization: this means that no thread can progress until all other threads in the team 

have reached that point in the program.  

If the programmer does not specify how the work in a parallel region is to be shared 

among the executing threads, they will each redundantly execute all of the code.  
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The OpenMP work-sharing directives are provided for the programmer to state how 

the computation in a structured block of code is to be distributed among the threads.  

OpenMP is based on the shared-memory model; hence, by default, data is shared 

among the threads and is visible to all of them. Sometimes, however, one needs variables that 

have thread-specific values. When each thread has its own copy of a variable, so that it may 

potentially have a different value for each of them, we say that the variable is private. For 

example, when a team of threads executes a parallel loop, each thread needs its own value of 

the iteration variable. This case is so important that the compiler enforces it; in other cases 

the programmer must determine which variables are shared and which are private. Data can 

be declared to be shared or private with respect to a parallel region or work-sharing construct. 

 Synchronizing, or coordinating the actions of, threads is sometimes necessary in 

order to ensure the proper ordering of their accesses to shared data and to prevent data 

corruption. By default, OpenMP gets threads to wait at the end of a work-sharing construct 

or parallel region until all threads in the team executing it have finished their portion of the 

work. Only then can they proceed. This is known as a barrier. 

 

    2.5 Discrete Fourier Transform 

 In practice, data is often available in the form of a sampled time function, represented 

by a time series of amplitudes, separated by fixed time intervals of limited duration. When 

dealing with such data, a modification of the Fourier transform, the discrete Fourier transform 

(DFT), is used [Proakis and Manolakis 1996], [Acha and Madrigal 2001]. The DFT is 

computed with 

𝑋[𝑛] = ∑ 𝑥[𝑘]𝑒−𝑗2𝜋𝑘𝑛/𝑁𝑁−1
𝑘=0                                                 (2.7) 

where N represents the number of samples. The inverse discrete Fourier Transform (IDFT) 

is 

𝑥[𝑘] =
1

𝑁
∑ 𝑋[𝑛]𝑒𝑗2𝜋𝑘𝑛/𝑁𝑁−1

𝑛=0                                                 (2.8) 
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Also, the DFT and IDFT can be seen as a linear transformation represented by: 

𝑋 = 𝑊𝑥                                                                   (2.9) 

𝑥 = 𝑈𝑋                                                                   (2.10) 

In (2.9) and (2.10), the matrices W and U are formed by the typical terms e-j2πkn/N 

and ej2πkn/N from (2.7) and (2.8), respectively.  

 

    2.6 Fast Fourier Transform 

 The phasor terms within the transformation matrices in (2.9) and (2.10) are repeated 

according to the value of N. The FFT algorithm takes advantage of this repetition and applies 

an efficient solution scheme that achieves the transformation with a reduced number of 

operations, thus considerably saving computational time [Proakis and Manolakis 1996], 

[Acha and Madrigal 2001]. 

 The application of the DFT (or FFT) to a TD sampled signal results in a vector with 

its frequency components arranged as: 

𝑋 =

[
 
 
 
 
 
 
 
 

𝑋0

𝑋1

𝑋2

⋮
𝑋𝑁/2

𝑋𝑁/2

⋮
𝑋2

∗

𝑋1
∗ ]

 
 
 
 
 
 
 
 

                                                                    (2.11) 

In (4.18), the subscript of each element denotes the number of the frequency 

component, and “*” denotes the complex conjugate. The frequency spacing (∆f) between 

components is related to the period of observation of the TD signal (Tmax), as follows: 

∆𝑓 = 1/𝑇𝑚𝑎𝑥                                                            (2.12) 
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 It should be noted that if we apply the FFT to a TD signal with Tmax = T0, ∆f  results 

equal to f0, such that the frequency components in (2.11) are harmonics of f0. This 

consideration will be used through the remaining of this thesis. 

 

    2.7 Conclusions 

This chapter has presented the advanced mathematical and computational tools used 

for the development of this research work. A concise basic theory of the NR Method, TR 

approximation, parallel processing based on GPUs, DFT, and FFT has been given.  
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Chapter 3 

 

PV Systems Modelling in Time Domain 

 

3.1 Introduction 

Renewable PV generation systems represent an attractive and viable alternative of 

electrical energy supply to decrease the environmental contamination and the global warming 

due to the consumption of fossil fuels. The PV installations have been steadily growing over 

the last decades. At present, a considerable number of PV generation plants are connected to 

power systems or to isolated electrical networks [Eltawil and Zhao 2010]. 

 The dynamic performance of these PV generation systems is important for the 

planning, design and operation of electrical networks and power systems where they are 

connected [Kouro et al. 2015]. This chapter mainly focuses in a TD framework for the 

representation of these interconnected PV generation systems working under dynamic and 

periodic steady state conditions [Kim et al. 2009]. The proposed methodology is based on a 

set of first-order differential algebraic equations (DAEs) to represent the entire electrical 

system. The extrapolation to the limit cycle and Poincaré map approach [Parker and Chua 

1989] is used to quickly obtain the periodic steady state. The CSI is an algorithm to accurately 

estimate a new point between known data with smaller error that the obtained with square or 

linear interpolation [Chapra and Canale 2010], [Burden et al. 2011]. The application of the 

CSI is proposed to adjust the number of time steps per cycle needed during the TD solution. 

The CSI technique accurately obtains new solution points, adjusted with a smaller error. 

  

    3.2 System Description and Modelling 

Fig. 3.1 shows the configuration of a single-phase grid-connected PV generation 

system. It contains a PV array, a capacitor link, a DC/DC converter, a DC/AC converter, a 

filter, and a utility grid [Morales 2014].  
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The capacitor link is connected at the output of the PV array for decoupling AC-

system dynamics from the PV array. The DC/DC converter is used to maintain an adequate 

voltage level and for maximum power point tracking (MPPT) of the PV generation system. 

The DC/AC converter is used to obtain AC power. Finally, the filter is used to mitigate the 

total harmonic distortion (THD) at the point of common coupling (PCC). 

 

    3.2.1 PV Array Model 

A PV cell is the basic unit of a PV array. Typically, a single PV cell generates an 

electrical power of about 1 to 3 W. To increase the power, several PV cells are connected in 

the appropriate series-parallel combination to form larger capacity units, called PV modules. 

Fig. 3.2 shows the equivalent circuit of a practical PV module. The equation from the theory 

of semiconductors [Rauschenbach 1980], [Kalogirou 2013] that mathematically describes 

the characteristic of a PV module is 

𝐼 = 𝐼𝑝𝑣 − 𝐼0 [𝑒𝑥𝑝 (
𝑉+𝑅𝑠𝐼

𝑉𝑇𝑎
) − 1] −

𝑉+𝑅𝑠𝐼

𝑅𝑝
                                          (3.1) 

where Ipv and I0 are the PV and saturation currents of the PV module, respectively. 

VT = NskT/q is the thermal voltage of the module with Ns cells connected in series, q is the 

electron charge (1.60217646 × 10-19 C), k is the Boltzmann constant (1.3806503 × 10-23 J/K), 

and T is the temperature on the p-n junction (in Kelvin degrees). In (2.1), a is the diode ideal 

constant, Rs is the equivalent series resistance of the PV module (Ω), and Rp is the equivalent 

parallel resistance (Ω).  

 

 

Fig. 3.1 Single-phase grid-connected PV generation system. 
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Fig. 3.2 Single-diode model of the theoretical equivalent circuit of a PV module. 

 

From (3.1) the V-I curve of Fig. 3.3(a) is obtained, where three particular points are 

highlighted, i. e., short circuit (0,Isc), MPP (Vmpp, Impp), and open circuit (Voc, 0) [Villalva et 

al. 2009]. The V-P curve of Fig. 3.3(b) also dictates the performance of a PV module. 

A PV array consists of NP parallel and/or NS series connected modules. To include a 

PV array model in the PV generation system, a PV Thevenin equivalent is obtained in this 

thesis based on the calculation of the Rp and Rs parameters of the model of Fig. 3.2. Basically, 

this is achieved by solving the nonlinear relation (3.1), considering the PV array working at 

MPP. 

 

     

(a)                                                                      (b) 

Fig. 3.3 (a) Characteristic I-V of a PV module, (b) characteristic V-P of a PV module. 
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The calculation of the PV Thevenin equivalent follows the next steps: 

Step 1. When a PV array is assembled, Voc and Isc are proportional to the number of 

series and parallel connected modules, respectively. The total PV array characteristics are 

calculated with: 

𝑉𝑂𝐶 = 𝑁𝑆𝑉𝑜𝑐                                                         (3.2a) 

𝑉𝑀𝑃𝑃 = 𝑁𝑆𝑉𝑚𝑝𝑝                                                      (3.2b) 

𝐼𝑆𝐶 = 𝑁𝑃𝐼𝑠𝑐                                                         (3.2c) 

𝐼𝑀𝑃𝑃 = 𝑁𝑃𝐼𝑚𝑝𝑝                                                     (3.2d) 

Step 2. We assume that IPV of the adopted model equals the maximum possible 

generated current (ISC). This permits to calculate I0 by using: 

𝐼0 =
𝐼𝑆𝐶

𝑒𝑥𝑝

𝑉𝑂𝐶
𝑎𝑉𝑇−1

                                                         (3.3) 

Step 3. Considering that the PV array works at MPP, we evaluate (3.1) at the MPP, 

obtaining: 

𝐼𝑀𝑃𝑃 = 𝐼𝑃𝑉 − 𝐼0 [𝑒𝑥𝑝 (
𝑉𝑀𝑃𝑃+𝐼𝑀𝑃𝑃𝑅𝑆

𝑉𝑇𝑎
) − 1] −

𝑉𝑀𝑃𝑃+𝐼𝑀𝑃𝑃𝑅𝑆

𝑅𝑃
                      (3.4) 

Also, from Fig. 3.3(b) it can be notice that the derivative of the power with respect to 

the voltage is zero at the MPP. This condition is described by: 

𝐼𝑀𝑃𝑃𝑅𝑆−𝑉𝑀𝑃𝑃

𝑉𝑇𝑎
𝐼0𝑒𝑥𝑝

𝑉𝑀𝑃𝑃+𝐼𝑀𝑃𝑃𝑅𝑆
𝑉𝑇𝑎 + 𝐼𝑀𝑃𝑃 (

𝑅𝑆

𝑅𝑃
+ 1) −

𝑉𝑀𝑃𝑃

𝑅𝑆
= 0                   (3.5) 

 Thus, (3.4) and (3.5) are solved simultaneously in order to obtain RS and RP, for 

instance by using the NR.  

 Step 4. Once RS and RP are known from the solution of (3.4) and (3.5), and following 

the Thevenin theorem, the equivalent voltage source is obtained with: 

𝑉𝑡ℎ = 𝑅𝑃 [𝐼𝑃𝑉 − 𝐼0 (𝑒𝑥𝑝
𝑉𝑀𝑃𝑃+𝐼𝑀𝑃𝑃𝑅𝑆

𝑉𝑇𝑎 − 1)]                                  (3.6) 
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and the equivalent resistance is given by: 

𝑅𝑡ℎ = 𝑅𝑃 + 𝑅𝑆                                                      (3.7) 

 The resultant Thevenin equivalent given by (3.6) and (3.7) is finally ready to be 

interfaced with the rest of components and the grid.  

 

    3.2.2 DC/DC Converter 

The DC/DC converter corresponds to a boost converter (BC) shown in Fig. 3.4. The 

main task of a BC is to maintain the output voltage vout at a desired level, considering that 

the input voltage vin and load may fluctuate. In the BC, the output voltage is always higher 

than the input voltage. When the switch is on, the diode is reverse biased, thus isolating the 

output stage. The input supplies energy to the inductor. When the switch is off, the output 

stage receives energy from the inductor as well as from the input. The switch is controlled 

by a pulse-with modulation (PWM) scheme in which the duty ratio d, defined as, 

d = Ton/Ts                                                                 (3.8) 

is adjusted as required [Mohan et al. 2001].  

In (3.8), Ts represents the BC switching period, defined as the inverse of the switching 

frequency Fs, normally set at several kHz [Luo and Ye 2004]; Ton is the time in which the 

switch remains in on state within a switching period. The conduction time of the diode 

complements the conduction time of the switch. 

 

 

Fig. 3.4 Boost converter topology. 
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For the PV generation system, it is desired that the PV array works at MPP; vin of the 

BC (equal to the output voltage of the PV array) must be equated to VMPP by adjusting d. 

 Since the PV array depends on environmental conditions, VMPP is variable. There are 

several MPPT algorithms; the most popular are the perturb and observe (P&O) and the 

incremental conductance (InC) methods [Rashid 2011]. Since this contribution ultimately 

centers on the periodic steady state operation condition, it is assumed that the PV array works 

at the MPP by adopting the P&O method. Furthermore, the PV system is a non-feedback 

system, i.e., the output of the system has no influence or effect on the control action of the 

input signal. In other words, is an open-loop system. 

 

    3.2.3  DC/AC Converter 

 Fig. 3.5 shows a DC/AC converter. The main objective of a DC/AC converter is to 

generate a sinusoidal AC output voltage, whose magnitude and frequency can both be 

controlled. It can be observed from Fig. 3.5 that the DC/AC converter corresponds to a single-

phase full-bridge inverter. The switching actions at the DC/AC converter are controlled by a 

PWM scheme with unipolar voltage switching [Mohan et al. 2001].  

 

 

Fig. 3.5 Single-phase full-bridge inverter. 
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Here, the switches in the legs A and B of the full-bridge inverter are controlled 

separately by comparing the triangular waveform vtri (which establishes the switching 

frequency of the inverter switches) with two sinusoidal signals vcontrol and -vcontrol (which 

sets the desired fundamental frequency of the inverter output voltage) as shown in Fig. 3.6. 

In Fig. (3.6) the peak value of vcontrol (the same for -vcontrol) is related to vtri by 

modulation ratio ma, calculated as: 

𝑚𝑎 =
𝑣𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑣𝑡𝑟𝑖
                                                              (3.9) 

It is noted that ma corresponds also to the ratio between the magnitude of the 

fundamental component of the output voltage vac and the magnitude of the input voltage vdc. 

The frequency of vtri is fixed at several kHz, and determines the order of the harmonics of 

vac [Mohan et al. 2001]. Harmonics in vac appears as sidebands centered at every two times 

the frequency modulation ratio mf, given by: 

𝑚𝑓 =
𝑓𝑠

𝑓0
                                                                (3.10) 

 Where fs is the switching frequency and f0 is the ac-system frequency. 

In the unipolar PWM voltage switching scheme applied to the VSI, the control for leg 

A is independent of the control of leg B. For leg A, when vcontrol < vtri, Sa1 is turned on, 

otherwise is turned off (Sa2 is always complementary to Sa1). The same rule governs the 

control of leg B, but using –vcontrol  instead of vcontrol. 

 

Fig. 3.6 Sinusoidal PWM for unipolar voltage switching. 

 



26 
 

As an illustrative example, consider the control of a VSI using f0 = 60 Hz, ma = 0.8, 

mf = 12, and vdc = 1. The obtained switching function sa1 is shown in Fig. 3.7. 

 

Fig. 3.7 Switching function sa1. 

The output voltage (vac) for this case is shown in Fig. 3.8. 

 

Fig. 3.8 Output voltage vac. 

 

    3.3 DAE Representation. 

Fig. 3.9 shows a single-phase grid-connected PV generation system. It consists on a 

voltage source, a battery bank, five transmission lines, two linear loads, and the PV 

generation system. Fig. 3.10 shows the equivalent circuit of a single-phase grid-connected 

PV generation system. The dynamic operation of the system is represented by twelve DAEs, 

i.e., six differential equations and six algebraic. The voltage at the capacitors and the currents 

in the inductors where chosen as state variables.  
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Fig. 3.9 Microgrid supplied by a PV source. 

 

The system of DAEs is presented below: 

 Differential equations. 

 

𝑑

𝑑𝑡
vpv = −

vpv

CpvRpv
−

iL

Cpv
+

VDC

CpvRpv
                                          (3.11) 

𝑑

𝑑𝑡
iL =

vpv

L
−

vc

L
s2                                                                (3.12) 

𝑑

𝑑𝑡
vc =

iL

C
s2 −

ifc

C
si                                                               (3.13) 

𝑑

𝑑𝑡
ifc =

vc

Lfc
si −

Rfc+Rd

Lfc
ifc −

vcf

Lfc
+

Rd

Lfc
ipcc                               (3.14) 

 𝑑

𝑑𝑡
vcf =

ifc

Cf
−

ipcc

Cf
                                                                     (3.15) 

𝑑

𝑑𝑡
vc5 =

i5

C5
                                                                               (3.16)  

 

 



28 
 

 

 

 

Fig. 3.10 Equivalent circuit of the microgrid supplied by a PV source. 

 

 Algebraic equations. 

 

𝑑

𝑑𝑡
ipcc = 

(D3−
B3(1+

L1
L2

)

(L3+
(L2+L3)L1

L2
)
)

(−1−(
L4
L5

+1)(
Lfg

L4
)−

Lfg(1+
L1
L2

)

(L3+
(L2+L3)L1

L2
)
)

                                       (3.17) 

𝑑

𝑑𝑡
i5 =

L4

L5
(

𝑑

𝑑𝑡
i4) −

C1

L5
                                                                 (3.18)  

𝑑

𝑑𝑡
i4 =

E

L4
−

Lfg

L4
(

𝑑

𝑑𝑡
ipcc) +

C1

L4
                                                    (3.19)  

𝑑

𝑑𝑡
𝑖3 =

𝑑

𝑑𝑡
i2 +

𝑑

𝑑𝑡
i1                                                                     (3.20)  

𝑑

𝑑𝑡
i2 =

L1

L2
(

𝑑

𝑑𝑡
i1) −

A

L2
                                                                 (3.21)  

𝑑

𝑑𝑡
i1 =

B3−Lfg(
𝑑

𝑑𝑡
ipcc)

(L3+
(L2+L3)L1

L2
)
                                                                  (3.22) 
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  where:                                  A =  i2R2 − i1R1 − vAC 

B = R4i4 − R3i3 − R2i2 

C1 =  R5i5 + vC5 − R4i4 

E = Rd(ifc − ipcc) + vcf − Rfgipcc − R5i5 − vC5 

B3 = B +
(L2 + L3)

L2
A + C1 + E 

D3 = −(
L4

L5
+ 1)

E

L4
− (

L4

L5
+ 1) (

C1

L4
) +

C1

L5
+

A

L2
 

 

    3.4 Efficient TD Solution Using the Numerical Differentiation Method 

 The ND method can be applied to efficiently obtain the periodic steady state of a 

microgrid with PV energy sources. In principle, a nonlinear power network/component can 

be mathematically modeled by a set of first-order DAEs and using some integration routine, 

such as the TR or Fourth-Order Runge-Kutta (RK4) algorithm [Balagurusamy 1999], the 

periodic steady state solution is obtained. This conventional process is known as “brute 

force” (BF) approach [Parker and Chua 1989] and can be inefficient. It may require of a 

considerable time and computer effort. However, TD solution can be significantly 

accelerated to obtain the periodic steady state solution with the use of Newton type methods 

[Semlyen and Medina 1995], [Medina et al. 2013].  

The mathematical model of DAEs is represented by state space equation, 

𝐱̇ = [𝐀]𝐱 + [𝐁]𝐮                                                                (3.23) 

The extrapolation to the limit cycle of the state vector represented by x∞ can be 

calculated as in [Semlyen and Medina 1995], i.e., 

𝐱∞ = 𝐱i + 𝐂(𝐱i+1 − 𝐱i)                                                      (3.24) 

𝐂 = (𝐈 − 𝚽)−1                                                               (3.25) 

𝚽 = ∂𝐱(t + T)/ ∂𝐱(t)                                                        (3.26) 
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where: 

xi    is the state vector at the beginning of the base cycle. 

xi+1 is the state vector at the end of the base cycle. 

C     is the iteration matrix. 

Φ    is the state transition matrix. 

I      is the unit matrix. 

T     is the fundamental frequency period. 

 

The Φ matrix can be approximated using finite-difference derivative as 

𝚽 ≈ Δ𝐱(t + T)/Δ𝐱(t)                                                       (3.27) 

The identification of Φ is detailed as follows: a base cycle x(t) is obtained through 

the numerical integration of (3.23) using the BF method during several cycles starting from 

a determined initial condition (e.g., zero condition). Usually, the number of cycles comprises 

the initial transient. A base cycle can be seen as the last cycle of this initial transient period. 

Then, the base cycle is sequentially perturbed with a small value at the beginning of the cycle 

for each state variable. The difference between the base cycle and the perturbed base cycle 

at the end of the cycle is then evaluated to obtain ∆xi+1 = xi+1 – xi for all the state variables. 

This allows the sequential identification of the state transition matrix by columns.  

With Φ identified, the iteration matrix C can be evaluated using (3.25). Finally, at 

this point the state vector at the limit cycle can be evaluated using (3.24). It represents the 

limit cycle estimation of the state vector. 

In other words, ND computes Φ using a column by column process. The kth column 

of Φ is Φk, for k = 1, 2,…n. This column can be computed by perturbing the kth state, i.e., 

let x(t) → x(t) + ∆xk(t) and compute x(t+T) + ∆xk(t+T) by numerical integration of (3.23) 

over one period with the initial condition x(t) → x(t) + ∆xk(t).  
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Notice that if ∆xk(t) is equal to ɛUk, being ɛ a small real number, e.g., 10-6, and Uk 

the kth column of a identity matrix of dimension n, for k = 1, 2,…n, then, by considering 

(3.27) we obtain,  

 Δ𝐱k(t + T) = 𝚽εUk                                                       (3.28) 

and consequently 

Δ𝐱k(t + T) = εΦk                                                         (3.29) 

Therefore 

Φk = Δxk(t + T)/ε                                                        (3.30) 

 

Each column of Φ can be computed with (3.30). All n states of the system (3.23) must 

be perturbed separately in order to compute the n columns of the sensitivity matrix. Note that 

n+1 cycles must be computed before we can apply (3.24). 

 

    3.4.1 Variants of Implementation 

 The identification of the Φ matrix is the most computationally demanding task during 

the iterative TD location of the limit cycle. Different implementation strategies can be 

explored for the efficient solution of the microgrid with PV energy sources using the ND 

method. If Φ and C are updated at each iteration step using (3.25) and (3.26), a Newton 

Process of quadratic convergence to the limit cycle of the state variables results [Semlyen 

and Medina 1995]. On the other hand, it becomes a linearly convergent process if Φ and C 

are kept constant after the first evaluation using (3.25) and (3.26).  

However, the solution process is expected to be significantly faster than the first 

approach, since a repetitive identification of Φ is avoided. 
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    3.5 Cubic Spline Interpolation 

 Once the ND method has obtained the steady state solution using the fewest number 

of possible time steps, it does not represent the final solution and different order harmonics 

may appear. To avoid this, it is necessary to use an interpolation method that estimates data 

points using a mathematical function that minimizes overall surface curvature, resulting in a 

surface that passes exactly through the input points. In this thesis, CSI is used. The objective 

of CSI process is to derive a third-order polynomial for each interval of data points [Chapra 

and Canale 2010]. The polynomial for each interval can be represented by its general form,  

fi(x) = aix
3 + bix

2 + cix + di                                                 (3.31) 

 Fig. 3.11 helps to explain the notation used to derive cubic splines. The first step in 

the derivation [Cheney and Kincaid 2008] is based on the observation that since each pair of 

knots is connected by a cubic, the second derivative within each interval is a straight line. 

Equation (3.31) can be differentiated twice to verify this observation. On this basis, the 

second derivatives can be represented by a first-order Lagrange interpolating polynomial: 

fi
′′(x) = fi

′′(xi−1)
x−xi

xi−1−xi
+ fi

′′(xi)
x−xi−1

xi−xi−1
                                      (3.32) 

 

where fi”(x)  is the value of the second derivative at any point x within the ith interval. 

Thus, this equation is a straight line connecting the second derivative at the first knot f”(xi-1)  

with the second derivative at the second knot f”(xi).  

 

 

Fig. 3.11 Notation used to derive cubic splines. 



33 
 

Next, (3.32) can be integrated twice to yield an expression for fi(x). However, this 

expression will contain two unknown constants of integration. These constants can be 

evaluated by invoking the function-equality conditions, i.e., f(x) must equal f(xi-1) at xi-1 and 

f(x) must equal f(xi) at xi. By performing these evaluations, the following cubic equation 

results: 

fi(x) =
fi
′′(xi−1)

6(xi − xi−1)
(xi − x)3 +

fi
′′(xi)

6(xi − xi−1)
(x − xi−1)

3 

+[
f(xi−1)

xi−xi−1
−

f′′(xi−1)(xi−xi−1)

6
] +[

f(xi)

xi−xi−1
−

f′′(xi−1)(xi−xi−1)

6
]               (3.33)            

 

Admittedly, this relationship is a much more complicated expression for the cubic 

spline for the ith interval than, say, (3.31). However, notice that it contains only two unknown 

“coefficients”, i.e., the second derivatives at the beginning and at the end of the interval f”(xi-

1) and f”(xi). Thus, if we can determine the proper second derivative at each knot, (3.33) is a 

third-order polynomial that can be used to interpolate within the interval. 

The second derivatives can be evaluated by invoking the condition that the first 

derivatives at the knots must be continuous: 

fi
′(xi) = fi+1

′ (xi)                                                            (3.34) 

Equation (3.33) can be differentiated to give an expression for the first derivative. If 

this is done for both the (i-1)th and the ith intervals and the two results are set equal according 

to (3.34), the following relationship results: 

(xi − xi−1)f
′′(xi−1) + 2(xi+1 − xi−1)f

′′(xi) + (xi+1 − xi)f
′′(xi+1) = 

6

xi+1−xi
[f(xi+1) − f(xi)] + 6

xi−xi−1
[f(xi−1) − f(xi)]                        (3.35) 

If (3.35) is written for all interior knots, n-1 simultaneous equations result with n+1 

unknown second derivatives. However, since this is a natural cubic spline, the second 

derivatives at the end knots are zero and the problem reduces to n-1 equations with n-1 

unknowns. In addition, notice that the system of equations will be tridiagonal. Thus, not only 

have we reduced the number of equations but we have also add them in a form that is 

extremely easy to solve. 
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    3.6 General Time Domain Solution Scheme 

The flowchart of the solution method to obtain the periodic steady state of microgrids 

with PV energy sources is shown in Fig. 3.12. It is basically composed by five blocks, whose 

function are as follows: the first block reads the parameters of the microgrid and the PV 

generation system, the second block obtains the Thevenin equivalent circuit of the PV array, 

the third block is based on the circuit of Fig 3.1, where the PV array is replaced by the 

corresponding Thevenin equivalent, finds the set of DAEs. The DAE representation of the 

grid connected PV generation system is efficiently solved with the ND method in the fourth 

block. Finally, the fifth block reconstructs the steady state waveform using the CSI method. 

 

    3.7 Test Case of PV System in TD 

The periodic steady state solution of the single-phase grid-connected PV generation 

system of Fig. 3.10 is obtained in time domain framework.  The solution is obtained using 

the BF and ND combined with CSI (ND-CSI) methods. 

 

 

                                                    Fig. 3.12 Flowchart of the ND-CSI method. 

 

 
START 

 

Input parameters of the power network and PV generation system 

Calculate the Thevenin equivalent circuit of the PV array, eqs. (3.2) – (3.7) 

Find the state-space representation of the microgrid with the PV generation system, eqs. (3.11) - (3.22) 

Speed up the periodic steady state solution in time domain, eqs. (3.23) – (3.30)  

Reconstruct the steady state waveform, eqs. (3.31) – (3.35)  

END 
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For the first case, the BF procedure is evaluated with a sampling time-step of 0.1 µs. 

For the second case, ND obtains the periodic steady state with a sampling time-step of 2.5 

µs. Then, CSI is used just once to reconstruct the waveform. The criterion for convergence 

of the state variables has been defined as 10-4.The corresponding parameters are contained in 

Table 3.1. The PV array is solved for standard test conditions (STC), i.e., irradiance of 1000 

W/m2 and temperature of 25°C. The PV system operates at the MPP. 

 

                               Table 3.1 Data for grid-connected PV generation system. 

PV array at STC 

NS 17 Number of modules connected in series 

NP 2 Number of modules connected in parallel 

Voc 21.47 V Open-circuit voltage per module 

Isc 7.6 A Short-circuit current per module 

Vmpp 17.1 V Voltage at MPP per module 

Impp 7.1 A Current at MPP per module 

Pmax 121.41 W Maximum power per module 

nS 28 Number of cells connected in series per module 

ki 0.00502  A/°C Temperature correction factor for current 

kv -0.08 V/°C Temperature correction factor for voltage 

a 1.3 Ideality factor of diode 

DC/DC Converter 

Cpv 5500 µF Capacitance 

L 9 mH Inductance 

C 2200 µF Capacitance 

Fs 10 kHz Switching Frequency 

DC/AC Converter 

FSW 25 kHz Switching Frequency 

ma 0.9 Modulation index 

Filter 

Rfc 1 mΩ Resistance 

Lfc 0.3 mH Inductance 
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Rfg 1 mΩ Resistance 

Lfg 0.15 mH Inductance 

Rd 2 Ω Resistance 

Cf 2.2 µF Capacitance 

Microgrid 

VAC 230 V Voltage (RMS) 

R1  1 Ω Resistance 

R2  33 Ω Resistance 

R3  1 Ω Resistance 

R4  33 Ω Resistance 

R5  1 Ω Resistance 

L1  1 mH Inductance 

L2  0.17 H Inductance 

L3  1 mH Inductance 

L4  0.17 H Inductance 

L5  1 mH Inductance 

C5 220 µF Capacitance 

 

 

The resultant variables of the PV array are obtained via the procedure described in 

section 3.2.1 and presented in Table 3.2. 

Based on the parameters of Table 3.1, the V-I and P-V curves of the PV array are 

presented in Figs. 3.13 and 3.14. The V-I and P-V curves of the PV array are a scale-up of 

the curves of the PV module. This is because the association of PV modules provides a higher 

current and voltage output.  

 

Table 3.2 Variables calculated for the PV array. 

Key points of V-I curve of PV array 

VOC 365 V Open-circuit voltage (total) 

ISC 15.2 A Short-circuit current (total) 
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VMPP 290.8 V Voltage at MPP (total) 

IMPP 14.2 A Current at MPP (total) 

PMAX 4129.4 W Maximum power (total) 

Parameters for Norton Equivalent 

RS 2.0 Ω Series resistance 

RP 2.172 kΩ Parallel resistance 

ITH 14.33 A Norton current 

RTH 2.174 kΩ Norton resistance 

 

 

 

Fig. 3.13 V-I curve. 

 

 

Fig. 3.14 P-V curve. 
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Fig. 3.15 shows the solution process to the periodic steady state of the current 

waveform at PCC with the ND-CSI. Five initial cycles and a base cycle were obtained before 

applying the ND method. One cycle of the periodic steady state solution is shown. 

The current waveform at PCC obtained with the BF, ND-CSI, and PSCAD/EMTDC 

methods is illustrated in Fig. 3.16. An excellent agreement between responses can be 

observed. The corresponding comparison in harmonic content is shown in Fig. 3.17. Please 

notice that the harmonic distortion of the waveform is mainly due to the presence of third, 

fifth and seventh harmonics. The magnitude of the third harmonic is above the limit allowed 

by harmonic standards [IEEE Std 519-1992]. Again, a close agreement between the 

responses obtained with the BF, ND-CSI, and PSCAD/EMTDC are shown. 

 

                     

Fig. 3.15 Current at the PCC. 

 

Fig. 3.16 Steady state current at the PC. 



39 
 

 

 

Fig. 3.17 Current harmonic content. 

 

Table 3.3 shows the converged values of d and of the DC components (averages) of 

voltage and current at the PV array terminals. Table 3.3 concludes that the obtained values 

agree with the MPP as given in Table 3.2. Also, Table 3.3 reports the THD and powers at the 

PCC obtained with the BF and ND-CSI methods, respectively. Please observe that the 

maximum error between responses is negligible, i.e., it is only 0.02% for the THD in ipcc.   

The algorithm used in this research was implemented on AMD A8-6410 APU 

processor with AMD Radeon R5 Graphics, 2 GHz, and 6 GB of DDR3 onboard memory. 

Table 3.4 presents the variants of implementation of the ND method. The CPU time needed 

by the ND-CSI with Φ variable method to obtain the periodic steady state solution was 35 

ms while by the ND-CSI with Φ constant procedure was 17 ms. In other words, the ND with 

Φ constant is on average 2 times faster than the ND with Φ variable. Also, the ND with Φ 

constant is 20 times faster than BF method. 
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Table 3.3 Simulation results of TD case. 

PV array 

Vpv0 290.93 DC component of voltage at PV terminals 

Ipv0 14.20 DC component of current at PV terminals 

Boost converter 

d 0.277 Duty Ratio 

Point of common coupling 

 BF ND-CSI  

THD in vpcc 1.16 % 1.17 % Total harmonic distortion 

THD in ipcc 5.27 % 5.29 % Total harmonic distortion 

S 4.7715 kVA  4.7735 kVA  Apparent power 

P 4.1350 kW 4.1370 kW Active power  

PF 0.8667 0.8669 Power factor 

 

In terms of the number of full time domain cycles (NFC) required for the convergence 

to the limit cycle, the BF method took 38, the ND-CSI with Φ variable took 18, and ND-CSI 

with Φ constant took 30. 

 

Table 3.4 Comparison of solution methods. 

  

BF 

Φ  

variable 

Φ  

constant 

Time (ms) 348 35 17 

NFC 38 18 30 

 

 

Finally, two fast and efficient methodologies for the simulation of the periodic steady 

state response of power networks under non-sinusoidal conditions in the TD are presented.  

The firs one is shown in Section 3.8 and uses the TR, DN, and CSI algorithms. The second 

one is shown in Section 3.9 and uses the same three methods as the previous one, but a 

parallel processing technique based on multi-CPUS and multi-GPUS is added. 
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    3.8 Harmonic Propagation in TD 

The three-bus test system of Figure 3.18 has been solved with the BF, the ND, and 

with the ND-CSI. For the first case, ND uses 1024 time steps to integrate a complete period 

of time of the equations describing the system. For the second case, the ND uses the fewest 

possible time steps to obtain the periodic steady state. Then, CSI is used to reconstruct the 

waveform.  

The system of Fig. 3.18 has two magnetizing branches connected at bus two and three, 

respectively. Two capacitors connected at the same buses, three resistors and inductors 

(transmission lines), and a voltage source. The dynamic operation of the system is 

represented by seven differential equations. The voltage at the capacitors, the flux linkage of 

the magnetizing branches and the currents in the inductors were chosen as state variables. 

 Fig. 3.19 shows part of the process to reach the steady state current at bus two. Three 

initial cycles and a base cycle, before using the ND method, and two steady state cycles. This 

bus was chosen due to the fact it has a nonlinear element connected.  

 

 

Fig. 3.18 Three-bus test system. 
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Fig. 3.19 Behavior of the current at bus two. 

  

 Fig. 3.20 is a zoom of half cycle of the steady state current at bus two. The ND-CSI 

method (with the fewest possible time steps) is an excellent alternative to the ND method 

with 1024 time steps. 

Fig. 3.21 shows the harmonic spectrum using the FFT. Fig. 3.21 shows the close 

agreement achieved between responses obtained with both methods. Twenty harmonics are 

shown, all of them in percent of the fundamental. The harmonics that most influence the 

distorted waveform are the third, fifth, and seventh. The magnitudes are 61.6 %, 8.2 % and 

3.5%, respectively, using the ND method with 1024 time steps per cycle. On the other hand, 

the magnitude of the third is 62.3%, the fifth is 9.1%, and the seventh is 3.7% with the ND-

CSI approach. The maximum error between responses is 0.9%. 

 

Fig. 3.20 Zoom-in of the steady state current at bus two. 
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Fig. 3.21 Harmonic spectrum of Fig. 5.13. 

 

The CPU time needed by the ND with 1024 time steps per cycle is 43 ms, and for the 

ND-CSI procedure is 10 ms or 4 times less. 

A similar case takes place with the voltage waveform at bus 2, as shown in Fig. 3.22. 

Please observe that this waveform presents a low harmonic order distortion due to the 

capacitor connected in parallel. The harmonic spectrum is shown in Fig. 3.23. Please observe 

that the conventional ND and the ND combine with CSI are in close agreement. 

 

Fig. 3.22 Behavior of the voltage at bus 2. 
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Fig. 3.23 Harmonic spectrum of Fig. 5.16. 

 

The proposed ND-CSI method has been applied for the periodic steady state solution 

of larger systems. The IEEE-14 bus test system has been modified to include nonlinear loads. 

It has twenty transmission lines, fourteen capacitors bank, eight generators, and fourteen 

magnetizing branches. The state variables are related with the voltage at the capacitors banks, 

the flux linkage of the magnetizing branches, and the currents in the transmission lines.  

The ND method uses 1024 time steps per cycle and the ND combined with CSI 256 

time steps per cycle.   

The BF procedure took 101 complete cycles to obtain the steady state response and 

the ND method 61. Table 3.5 shows the CPU time required for the periodic state solution of 

the modified IEEE-14 and 30 bus test systems. The second column shows the consumed time 

by the BF method, the third column by the ND method, and the fourth column by the ND-

CSI method.  

 The comparison between the third and fourth columns shows the importance of using 

CSI. The ND-CSI method is 5 times faster than just the ND method. In addition, the 

comparison between the second and the fourth columns show that the ND-CSI method is 

almost 7 times faster than the BF method. 
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It is important to mention that when only the ND method (using the fewest possible 

time steps), without CSI is applied to find the steady state solution, different order harmonics 

may appear in the spectrum. 

 

                           Table 3.5 CPU time in larger systems TD. 

IEEE 

system 

BF  

Time (ms) 

ND 

Time (ms) 

CSI 

Time (ms) 

14 1,483 961 224 
30 4,436 2,831 554 

 

 

Figure 3.24 shows the steady state nodal current at bus 14. The graph is a comparison 

between the two algorithms. The waveform generated by ND method is overlapped to the 

obtained with the ND-CSI using 256 time steps per cycle. 

 

 

Fig. 3.24 Steady state nodal current at bus 14. 
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    3.9 Harmonic Propagation with multi-CPU and multi-GPU in TD 

The algorithm developed for this research was implemented on a Dell Precision 

R5500 Workstation with Intel Xeon processor, 2.2 GHz, and 6 GB onboard memory. The 

workstation has three GPUs connected. The Tesla C2075 with Fermi architecture, the 

GeForce GTX 650 with Kepler architecture, and GTX 660 with Kepler architecture. The 

parallel algorithm was develop by [Magaña 2016]. 

The Tesla C2075 features up to 448 CUDA cores, 6 GB of GDDR5 DRAM memory. 

The 448 CUDA cores are organized in 14 streaming multiprocessors of 32 cores each. The 

GeForce GTX 650 has 768 CUDA cores, 1 GB of memory. The 768 CUDA cores are 

organized in 4 streaming multiprocessors of 192 cores each. The GeForce GTX 660 has 1152 

CUDA cores, 1.5 GB of memory. The 1152 CUDA cores are organized in 6 streaming 

multiprocessors of 192 cores each. 

As observed, we have multiple GPUs with Fermi and Kepler architectures, so it is 

necessary to have at least one CPU core for each GPU. Furthermore, it is necessary to have 

a software to perform parallel processing techniques on the CPU and on the GPU. Figure 

3.25 illustrates that OpenMP is used for the CPU and CUDA is used for the GPUs. Both 

platforms interact with each other through programs written in C language. 

Figure 3.26 shows the sequential algorithm for the ND method with Φ constant. It is 

composed by four blocks. The first block calculates the vectors of state variables at the 

beginning xi and end of the base cycle xi+1, respectively. The second block is the calculation 

of state transition matrix Φ. The third block evaluates C using (3.24) and finally block four 

obtains the solution (3.25).  

To reduce CPU time in the algorithm of Fig. 3.26, it is necessary to apply parallel 

processing techniques to each block, i.e., in all integration periods parallel processing needs 

to be applied (initial cycle and base cycle in block 1, Φ matrix in block 2 and final cycles in 

block 4). The matrix inverse is calculated in block 3; part of the process can be parallelized.  

 

 



47 
 

 

 

Fig. 3.25 Proposed platform. 

 

 

 

 

Fig. 3.26 Sequential DN Method with Φ constant. 
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NO 
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On the other hand, block 2 performs the maximum computer effort since Φ is 

computed in a column-by-column process. For the computation of the column, it is necessary 

to make a copy of the vectors xi and xi+1 from the CPU to the GPU. Each GPU will process 

several columns simultaneously. After all columns assigned to the GPU are processed, a copy 

from the GPU to CPU is made and columns are placed in the Φ matrix. Figure 3.27 shows 

the proposed algorithm for the computation of Φ with several CPUs and GPUs. 

In addition, Fig. 3.28 shows the algorithm to increase memory efficiency in block 3. 

With Φ calculated, the solution of (2.7) is as follows: 

 LU decomposition is applied to Matrix C (this process is done in the CPU). 

 A copy of matrix C is made from the CPU to GPU. 

 Unit matrix B is defined in the GPU. 

 Using Ly = B, vector y is calculated by forward substitution by thread n (this process 

is done in the GPU). 

 Using UX = y, the solution vector X is obtained by backward substitution. 

 A copy of matrix X is made from GPU to CPU.  

 

 

Fig. 3.27 Φ calculation with several CPUs and GPUs. 
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Fig. 3.28 Solution process with several CPUs and GPUs 

 

    3.10 Harmonic Propagation with Parallel-Computing in TD 

The IEEE-14 bus test system have been solved with BF, ND-CSI sequential and ND-

CSI parallelized algorithm. The electric power systems have been modified to include 

nonlinear loads, such as, magnetizing branches and arc furnaces. Both procedures use ND 

with the fewest possible time steps to integrate a complete period of time of the equations 

describing the system, and CSI to reconstruct the waveform. 

The modified IEEE-14 bus test system has ten magnetizing branches, fourteen 

capacitor banks, twenty resistors and inductors (transmission lines), and eight generators. 

The dynamic operation of the system is represented by fifty six differential equations. The 

voltage at the capacitor banks, the flux linkage of the magnetizing branches and the currents 

in the inductors were chosen as state variables. It is important to mention that the system of 

equations were obtain through an algorithm developed by [Ramos 2007]. 
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Fig. 3.29 shows part of the process to reach the steady state current at bus 11. Five 

initial cycles and a base cycle are obtained before using the ND method, and two cycles of 

extrapolation to the limit cycle. This bus was chosen due to the fact that it has a nonlinear 

element connected. Light damping for the system was assumed. 

Figure 3.30 is a zoom of half cycle of the steady state current at bus 11. The 

parallelized ND-CSI method with 256 time steps is an excellent alternative to the BF and 

ND-CSI sequential. 

The best way to compare these two methods (BF, and ND-CSI parallelized) is to 

obtain its harmonic spectrum using the Fast Fourier Transform. Please notice that this 

waveform presents a large harmonic distortion due to the presence of many nonlinear loads 

connected. The harmonics that most influence the distorted waveform are the third, fifth, and 

ninth, respectively. The magnitudes are 42.93%, 3.65% and 1.68%, respectively, using the 

BF method with 1024 time steps per cycle. On the other hand, the magnitude of the third is 

42.94%, the fifth is 3.67%, and the ninth is 1.69% with the ND-CSI parallelized approach. 

The maximum error between responses is 0.02%. It is clear that both methods are in close 

agreement. 

The CPU time needed by the BF with 256 time steps per cycle is 1117 ms, for the 

ND-CSI sequential is 678 ms, and for the ND-CSI parallelized procedure is 141 ms or 4.8 

times less. 

 

Fig. 3.29 Behavior of the current at bus 11. 
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Fig. 5.30 Zoom-in of the steady state current at bus 11. 

 

The BF, ND-CSI sequential, and the proposed ND-CSI parallelized method with 256 

time steps per cycle have been applied for the periodic steady state solution of larger systems. 

The IEEE-30, 57, and 118 test bus systems have been modified to include nonlinear loads.  

As an example, the IEEE-30 test bus system was chosen. The dynamic behavior of 

the system is represented by ninety-four differential equations. The state variables are related 

with the voltage at the capacitor banks, the flux linkage of the magnetizing branches, and the 

currents in the transmission lines. 

The BF procedure took 161 complete cycles to obtain the steady state response and 

the ND-CSI parallelized method 115. 

Table 3.6 shows the CPU time required for the periodic steady state solution of the 

modified IEEE Bus Test Systems solved with BF and ND-CSI parallelized. The second 

column shows the number of state variables, the third column is the consumed time by the 

BF method, the fourth column by the ND-CSI parallelized method, and the fifth column 

shows the speed up of the proposed algorithm. The comparison between the third and fourth 

columns shows the importance of using CSI and parallel processing techniques. 
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                  Table 3.6 CPU time in larger systems (BF versus ND-CSI parallelized). 

IEEE 

system 
n 

BF 

Time (ms) 

ND-CSI 

Parallelized 

Time (ms) 

ND-CSI Parallelized 

BF 

14 56 1117 141 7.9 
30 94 2335 201 11.6 
57 152 3124 230 13.5 
118 479 154113 1450 106.2 

  

 

Table 3.7 shows the CPU time required for the periodic steady state solution of the 

modified IEEE Bus Test Systems solved with ND-CSI sequential and ND-CSI parallelized. 

Third column is the consumed time by the ND-CSI sequential method and the fourth column 

by the ND-CSI parallelized method. Last column shows the speed up of the proposed 

algorithm. 

The ND-CSI parallelized method is 8.7 times faster than ND-CSI sequential for the 

IEEE-30 bus test system. However, the result for the best case (IEEE-118 bus test system) is 

that the ND-CSI parallelized algorithm is 42 times faster than the ND-CSI sequential. 

 

Table 3.7 CPU time in larger systems (ND-CSI sequential versus ND-CSI parallelized).  

IEEE 

system 
n 

ND-CSI 

Sequential  

Time (ms) 

ND-CSI 

Parallelized 

Time (ms) 

DN-CSI Parallelized 

ND-CSI Sequential 

14 56 678 141 4.8 
30 94 1,759 201 8.7 
57 152 2,829 230 12.3 
118 479 61,040 1450 42.0 
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    3.11 Conclusions 

A TD methodology to assess the dynamic operation and harmonic distortion produced 

in microgrids with integration of PV sources has been implemented. It is based on the 

representation of the grid-connected PV generation system by a set of DAEs, to be solved by 

a numerical integration method, such as the RT or RK4 methods. The TD solution is 

enhanced with the combined application of extrapolation to the limit cycle based on the ND 

method and CSI to the voltage and current waveforms. With the proposed methodology, the 

TD solution can be obtained with considerably less computational effort. 

The obtained results have been corroborated with those of PSCAD/EMTDC 

simulator, widely accepted by the power industry. It is important to mention that the 

PSCAD/EMTDC equivalent circuit of the single-phase grid-connected PV generation system 

was built using power electronic devices.  

The application of parallel-computing to the periodic steady state solution in TD has 

been described, as well as in the harmonic propagation algorithm. A solution is always 

obtained and the algorithm exploits the CIM and LU Decomposition. 

The implementation of parallel GPU-computing for large electrical networks has been 

very effective and accurate. Even for the small test system analyzed, it has shown that the 

parallel algorithm is faster than the sequential algorithm.  
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Chapter 4 

 

Conventional and PV Systems Modelling in Frequency 

Domain Methodology 

 

    4.1 Introduction 

Network harmonics are defined as sinusoidal voltage or current waveforms of 

frequencies being integer multiples of the main generated (or fundamental) frequency 

[Arrillaga and Watson 2004]. Harmonics can be generated by diverse nonlinear loads and 

sources, e.g., saturated transformers, power electronic devices, wind generators, among 

others. The presence of harmonics in electrical networks can produce several undesirable 

effects such us telephone interference, overvoltage at capacitor banks, overheating in wires, 

vibration of motors, system resonances, among others [Heydt 1991].  

The above mentioned effects decrease the efficiency of the electrical network and the 

lifetime of surrounding equipment. For all these reasons, power quality analysis has become 

an important topic in electrical networks. HD techniques constitute alternative methods for 

the modelling and simulation of electrical networks with emphasis on the analysis of the 

power quality. HD simulations provide the steady state solution of an electrical network in a 

direct manner and power quality indices are readily available. 

This chapter presents a HD model of an interconnected PV generation system. The 

topology of the interconnected PV generation system is the same as the one used in chapter 

3 but the PV array and the grid are represented as Thévenin equivalents in HD. The proposed 

methodology is based on the set of first order ODE that represent the entire electrical system 

and converted into the HD. Also, switching functions (of the DC/DC and DC/AC converters) 

are represented in the HD as the Toeplitz-type matrices. This allows to obtain the steady state 

of the PV system via simple matrix/vector operations. 
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    4.2 Electrical Variables in Harmonic Domain 

    4.2.1 Voltages and Currents 

 The HD uses the specific vector arrangement of the Fourier coefficients shown in 

(4.1) A HD signal will be hereafter represented by capital letters and instantaneous TD 

variables by lower case letters. 

𝑋 =

[
 
 
 
 
 
 
 
 
𝑋−ℎ

⋮
𝑋−2

𝑋−1

𝑋0

𝑋1

𝑋2

⋮
𝑋ℎ ]

 
 
 
 
 
 
 
 

                                                                  (4.1) 

In (4.1), h represents the maximum harmonic under study and the subscript “0” 

denotes the dc component. 

Equation (4.1) shows that the DC component is located at the center of the vector, the 

terms above the DC component correspond to the Fourier coefficients with negative 

exponents in a descending order, the terms below the DC component are their flipped 

conjugates. Any current, voltage, or other electrical variable, can be expressed in the HD 

using the arrangement in (4.1). 

In the case of a TD-sampled signal with unknown Fourier coefficients, FFT can be 

applied to obtain the harmonic coefficients in Section 2.6, taking care of the appropriate 

reordering of the obtained values, as dictated by (4.1). 

 

    4.2.2 HD Impedance/Admittance Relations of RLC Elements 

 The relation between voltage and current for the RLC elements in the HD are 

described next. Based on (4.1), consider the following generic definitions for the HD voltage 

and current vectors: 
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𝑉 =

[
 
 
 
 
 
 
 
 
𝑉−ℎ

⋮
𝑉−2

𝑉−1

𝑉0

𝑉1

𝑉2

⋮
𝑉ℎ ]

 
 
 
 
 
 
 
 

 ,      𝐼 =

[
 
 
 
 
 
 
 
 
𝐼−ℎ

⋮
𝐼−2

𝐼−1

𝐼0
𝐼1
𝐼2
⋮
𝐼ℎ ]

 
 
 
 
 
 
 
 

                                                          (4.2) 

Then, the TD relations for the RLC elements: 

vR(t) = RiR(t),                                                                   (4.3a) 

vL(t) = L
𝑑iL(t)

𝑑𝑡
,                                                                   (4.3b) 

vc(t) =
1

C
∫ ic(t)dt,                                                               (4.3c) 

become in the HD: 

 𝑉𝑅 = 𝑅𝐼𝑑𝐼𝑅 = 𝑍𝑅𝐼𝑅,                                                              (4.4a) 

𝑉𝐿 = 𝐿𝐷𝐼𝐿 = 𝑍𝐿𝐼𝐿,                                                               (4.4b) 

𝑉𝐶 =
1

𝐶
𝐷−1𝐼𝐶 = 𝑍𝑐𝐼𝑐,                                                             (4.4c) 

where the differentiation matrix D is defined as: 
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                    (4.5)  

and Id represents an identity matrix of dimensions 2h + 1. 
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Similarly, the corresponding admittance relations are given by: 

𝐼𝑅 =
1

𝑅
𝐼𝑑𝑉𝑅 = 𝑌𝑅𝑉𝑅,                                                        (4.6a) 

𝐼𝐿 =
1

𝐿
𝐷−1𝑉𝐿 = 𝑌𝐿𝑉𝐿,                                                      (4.6b) 

𝐼𝐶 = 𝐶𝐷𝑉𝐶 = 𝑌𝑐𝑉𝑐,                                                          (4.6c) 

Thus, the HD inclusion of RLC elements in a general network is performed by a set 

of algebraic equations, as given by (4.4) or (4.6). 

 

    4.2.3 Convolutions 

 For nonlinear elements, e.g., a nonlinear reactor, a voltage-current solution can be 

established in the HD via FD convolutions. As an illustrative example, consider the TD 

nonlinear relation given by (4.7), where x(t) and y(t) can represent electrical variables: 

y(t) = x(t) + 0.1x(t)2                                                     (4.7) 

In the HD, (4.7) becomes: 

𝑌 = 𝑋 + 0.1(𝑋 ⊗ 𝑋)                                                       (4.8) 

where X⊗X represents a FD convolution given in the HD as a product of a Toeplitz-type 

matrix with the harmonic content of X as elements and the HD vector X as follows: 
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



                                  (4.9) 

Periodically switched devices can also be represented in the HD via FD convolutions 

using switching functions. Consider the circuit of Fig. 4.1, which consists of an ideal switch 

and a resistive load. 
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Fig. 4.1 Periodic switched load. 

 

In the TD, the expression for the load current is: 

i(t) =
1

R
s(t)v(t)                                                         (4.10) 

where s(t) take values of one (switch on) or zero (switch off) along the time. If the switching 

scheme is periodic, s(t) can be represented by Fourier series. Therefore, the TD product of 

s(t) with v(t) becomes a convolution in the HD, and (4.10) can be written in the HD as: 

𝐼 =
1

𝑅
𝑆 ⊗ 𝑉                                                             (4.11) 

 It should be mentioned that a convolution generates a truncation error. This error 

becomes smaller as the number of terms taken from the Fourier series is increased.  

 

    4.3 Power Factor and Total Harmonic Distortion  

Non-linear loads and electronic equipment generate harmonics which increase the 

root mean square (RMS) current, and therefore increase the apparent power consumption and 

decrease power factor. Based on this reasoning, some definitions for power quality are 

needed [Acha and Madrigal 2001], [Alexander and Sadiku 2006]. 

The RMS value of a signal in the HD is: 

𝑋𝑅𝑀𝑆 = √∑ |𝑋𝑚|2∞
𝑚=−∞                                                       (4.12) 
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Using the RMS value, as in (4.12), for voltage and current, the apparent power 

becomes: 

𝑆 = √∑ ∑ |𝑉𝑚|2|𝐼𝑛|2∞
𝑛=−∞

∞
𝑚=−∞                                                (4.13)   

The apparent power of (4.13) can be represented as the sum of three orthogonal 

components as: 

𝑆 = √𝑃2 + 𝑄𝐻
2 + 𝐷𝐻

2                                                        (4.14) 

where P represents the active power (W), QH is the interaction of harmonic components of 

same frequencies (VAR), and DH represents the interaction of harmonics of different 

frequencies. DH is called Volts-Amperes-Distortion (VAD) [De la Rosa 2005]. 

 The active power in a circuit with harmonic distortion is calculated with [Acha and 

Madrigal 2001]: 

𝑃 = ∑ |𝑉𝑚||𝐼−𝑚|∞
𝑚=−∞                                                      (4.15) 

then, power factor is given by: 

𝑃𝐹 =
𝑃

𝑆
                                                                  (4.16) 

The THD of an electrical signal, either voltage or current, is: 

𝑇𝐻𝐷𝑋 =
√∑ |𝑋𝑚|2∞

𝑚=2

|𝑋1|
× 100%                                                 (4.17) 

where X stands for V or I. The standards IEEE-519 and IEC-61000 define limits for harmonic 

distortion [De la Rosa 2015]. According to IEEE-519, the maximum admitted levels for THD 

in voltage for systems of up to 69 kV is 5% and any individual harmonic should not exceed 

3%. For THD of currents, the maximum admitted level is calculated as a function of the 

short-circuit current at the PCC and the average of the maximum demand current based on 

periodic measurements [De la Rosa 2005]. 
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    4.4 State-Space Representation of the Grid-Connected PV Generation System.  

Based on Fig. 3.10, the equivalent circuit of a single-phase grid-connected PV 

generation system is presented in Fig. 4.2. The PV array and the grid have been replaced by 

the corresponding Thévenin equivalents. The state-space representation of grid-connected 

PV generation system is composed by six ODEs. 
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    (4.18)       

 

where: 

si = sa1 − sb2                                                              (4.19) 

 

 

Fig. 4.2 Equivalent circuit of the grid-connected PV generation system.  
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The switching functions sa1 and sb2 are obtained with the PWM scheme of the VSI 

presented in Section 3.2.3, while s2 is obtained based on the duty ratio of the BC. In (4.18), 

s2 can take values of 1 or 0, while si can take values of 1, 0 or -1 along the time. Equation 

(3.23) or (4.18) represent the TD model of the single-phase grid-connected PV generation 

system. The transformation of the TD model to the HD is described next. 

 

    4.5 General Harmonic Domain Solution Scheme 

Based on the HD theory of this chapter, the set of ODEs is given by (3.23) or (4.18) 

is converted into the HD resulting in: 

𝐷𝑑𝑋 = 𝐴𝑋 + 𝐵𝑈                                                          (4.20) 

where: 
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In (4.21) the differentiation matrix D has been arranged in block-diagonal form to 

account for the six HD variables, as given by (4.22). Also, the switching functions si and s2 

are represented in the HD as the Toeplitz-type matrices Si  and S2, respectively, and 

introduced in matrix A given by (4.23). Please notice that in (4.23) Id represents an identity 

matrix of appropriate dimensions. 

 The HD solution of (4.20) or alternatively the steady-state solution of the PV system 

for a given operating point, is given by: 

𝑋 = (𝐷𝑑 − 𝐴)−1𝐵𝑈                                                   (4.25)   
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It is noted that ipv is not a state variable and thus not a solution given by (4.25); 

however, it can be calculated with: 

𝐼𝑝𝑣 =
1

𝑅𝑝𝑣
𝑉𝐷𝐶 −

1

𝑅𝑝𝑣
𝑉𝑝𝑣                                                    (4.26) 

Any HD solution vector, e.g., Vpv can be extracted from the X in (4.25) and 

transformed to the TD for waveform visualization purposes. 

The flow chart of the solution method to obtain the periodic steady state of electrical 

networks with PV energy sources in HD is shown in Fig. 4.3. It is basically composed by 

five blocks. The first block reads the parameters of the electrical network and the PV 

generation system, the second block obtains the Thevenin equivalent circuit of the PV array 

and the power network, the third block is based on the circuit of Fig 4.2 to obtain the set of 

ODEs and convert it into the HD. Fourth block represents switching functions in the HD as 

the Toeplitz-type matrices and introduce them in matrix A. Finally, fifth block calculates the 

solution of the PV generation system for a given operating point. In other words, this block 

obtains the steady state of the entire electrical system via simple matrix/vector operations. 

 

Fig. 4.3 Flowchart of the HD method. 

 
START 

 

Input parameters of the power network and PV generation system 

Calculate the Thevenin equivalent circuit of the PV array, eqs. (3.2) - (3.7), and power network 

Obtain the state-space representation of Fig 4.2 and convert it into the HD, eqs. (4.18) – (4.24) 

Represent switching functions in the HD as the Toeplitz-type matrices  

Calculate the solution of the PV generation system for a given operating point, eqs. (4.25) – (4.26) 

END 
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    4.6 Test Case of PV system in HD 

The HD model of the single-phase grid-connected PV generation system (Fig. 4.2) 

and the solution scheme (Section 4.5) presented in this Chapter are adopted for the simulation 

results of this case. The dynamic operation of the system is represented by six ODEs. The 

voltage at the capacitors and the currents in the inductors where chosen as state variables. 

Data for the entire electrical network are contained in Table 4.1. The resultant variables of 

the PV array are obtained via the procedure described in section 3.2.1 and presented in Table 

3.2. 

                                  Table 4.1 Data for grid-tied PV generation system. 

PV array at STC 

NS 17 Number of modules connected in series 

NP 2 Number of modules connected in parallel 

Voc 21.47 V Open-circuit voltage per module 

Isc 7.6 A Short-circuit current per module 

Vmpp 17.1 V Voltage at MPP per module 

Impp 7.1 A Current at MPP per module 

Pmax 121.41 W Maximum power per module 

nS 28 Number of cells connected in series per module 

ki 0.00502  A/°C Temperature correction factor for current 

kv -0.08 V/°C Temperature correction factor for voltage 

a 1.3 Ideality factor of diode 

DC/DC Converter 

Cpv 5500 µF Capacitance 

L 9 mH Inductance 

C 2200 µF Capacitance 

Fs 10 kHz Switching Frequency 

DC/AC Converter 

FSW 25 kHz Switching Frequency 

ma 0.9 Modulation index 

Filter 

Rfc 1 mΩ Resistance 
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Lfc 0.3 mH Inductance 

Rfg 1 mΩ Resistance 

Lfg 0.15 mH Inductance 

Rd 2 Ω Resistance 

Cf 2.2 µF Capacitance 

Network equivalent 

VAC 215 V Voltage (RMS) 

Rg  1.84 Ω Resistance 

Lg  3.5 mH Inductance 

 

 

Figs. 4.4 - 4.7 present the resultant TD waveforms and the corresponding harmonic 

content of the voltage at the PV array terminals (vpv), the current across the BC inductor (iL), 

and the voltage and current at the PCC (vpcc and ipcc), respectively. It is mentioned that, to 

obtain the TD waveforms presented in this chapter, (4.25) is evaluated with a sampling time-

step or 0.1 µs. 

The results of Figs. 4.4 – 4.7 have been obtained by using 50 and 220 harmonics in 

the HD model of the PV system. Please notice that higher order produced by power 

electronics components are not expected to appear beyond the twentieth harmonic. This is 

due to the filter operation. Thus, there is usually no need to use more than 50 harmonics in 

the HD simulation and to obtain the TD waveforms, i.e., using fewer harmonics represents 

an obvious saving in computational resources.  
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(a) 

 

(b) 

 

(c) 

Fig. 4.4 (a) vpv, (b) zoom-in of vpv, and (c) harmonic content of vpv. 
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(a) 

 

(b) 

 

(c) 

Fig. 4.5 (a) iL, (b) zoom-in of iL, and (c) harmonic content of iL. 
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(a) 

 

(b) 

 

(c) 

Fig. 4.6 (a) vpcc, (b) zoom-in of vpcc, and (c) harmonic content of vpcc. 
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(a) 

 

 

(b) 

 

(c) 

Fig. 4.7 (a) ipcc, (b) zoom-in of ipcc, and (c) harmonic content of ipcc. 
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Fig. 4.8 shows a comparison between the voltage at the PV array terminals with the 

TD and the HD method. It can be observed that the calculated voltage using the HD model 

for 50 harmonics agrees well with the TD waveform, which means that there is a close 

agreement between both responses. However, the best way to compare this two current 

waveforms is by means of their harmonic spectra.  This is done in Fig. 4.9, again a close 

agreement is shown. 

 

Fig. 4.8 Comparison between TD and HD of vpv. 

 

Fig. 4.9 Harmonic spectra of TD and HD of vpv. 
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Table 4.2 shows the converged values of d and of the DC components (averages) of 

voltage and current at the PV array terminals using 220 harmonics. Table 4.2 concludes that 

the obtained values agree with the MPP as given in Table 3.2. Also the THD and powers at 

the PCC are shown in Table 4.2.  

 

Table 4.2 Simulation results of HD case. 

PV array 

Vpv0 290.7 DC component of voltage at PV terminals 

Ipv0 14.20 DC component of current at PV terminals 

Boost converter 

d 0.277 Duty Ratio 

Point of common coupling 

THD in vpcc 1.19 % Total harmonic distortion 

THD in ipcc 5.29 % Total harmonic distortion 

S 4.7755 kVA  Apparent power 

P 4.1330 kW Active power  

PF 0.8654 Power factor 

 

 

    4.7 Harmonic Propagation Method 

The steady state solution of a linear circuit operating under non-sinusoidal conditions 

may be carried out using phasor analysis, but the circuit needs to be solved at each frequency 

of interest [Acha and Madrigal 2001]. The inductors and capacitors have linear frequency 

dependence, whereas the resistor may be assumed to remain constant. With these three 

passive elements and the sources represented by their harmonic content, a linear circuit 

analysis can be carried out. 

In general, a linear circuit operating under non-sinusoidal conditions is well 

represented by the following linear system of equations: 
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1 1,1 1,2 1, j 1,N 1
h h h h h h
2 2,1 2,2 2, j 2,N 2
h h h h h h

j j,1 j,2 j, j j,N j
h h h h h h

N N,1 N,2 N, j N,N N
h h h h h h

I Y Y Y Y V
I Y Y Y Y V

I Y Y Y Y V

I Y Y Y Y V

     
     
     
     

     
     
     
     
          

                                        (4.27) 

 

where the current Ihj is the phasor current at frequency h injected at node j, Yhi,j is the 

equivalent admittance at frequency h between nodes i and j, Vhj is the phasor voltage at 

frequency h at node j, and N is the number of nodes of the electric network. 

Equation (4.27) in compact form is given by 

Ih = YhVh                                                               (4.28) 

where Ih is the harmonic current injection vector, Yh is the harmonic equivalent admittance 

matrix, and Vh is the harmonic voltage vector. The system is solved at each frequency of 

interest as 

Vh = Yh
−1Ih                                                            (4.29) 

 The inverse of the admittance matrix Yh gives the impedance matrix Zh, 

 

1,1 1,2 1, j 1,N
h h h h
2,1 2,2 2, j 2,N
h h h h

h j,1 j,2 j, j j,N
h h h h

N,1 N,2 N, j N,N
h h h h

Z Z Z Z
Z Z Z Z

Z
Z Z Z Z

Z Z Z Z

 
 
 
 

  
 
 
 
  

                                           (4.30) 

 

where the impedance Zh
i,j is known as the driving point impedance of node j at different 

frequencies. 
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4.8 Current Injection Method 

The harmonic current injection method (CIM) is widely used to carry out harmonic 

propagation studies in power systems [Heydt 1991].   

 

The salient features of the method are outlined below: 

 Build Yh of the power system including the contribution for all sources and loads. A 

different Yh must be calculated for each harmonic h. 

 Obtain Ih by extracting the term of the appropriate frequency from each nonlinear 

load. 

 Use (4.29) to calculate Vh. Both magnitude and phase information are important. If a 

time domain solution required for each bus voltage, the calculated harmonics are 

superimposed. 

 

    4.9 LU Decomposition 

Since (4.29) should be repetitively used, once for each harmonic. It is advisable to 

form Yh with an algorithm being time and memory efficient. For instance, triangular 

factorization may be applied. The triangular factors of Yh are found and the voltages are 

calculated by appropriately applying forward and backward substitution to Equations (4.31) 

to (4.33). 

Ih = (L)(U)Vh                                                             (4.31) 

Ih = (L)(W)                                                                (4.32) 

W = (U)Vh                                                                   (4.33) 

In the above equations, L and U are the lower left and upper right triangular factors of 

Yh. The vector W is solved by forward substitution, and the vector Vh is subsequently 

calculated by backward substitution. 
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4.10 General Harmonic Propagation Solution Procedure 

The algorithm for the harmonic propagation method in the power network combines 

a conventional power flow study with the CIM and LU decomposition. Fig. 4.10 slows the 

flowchart for the harmonic propagation method. It is basically composed by three blocks, 

i.e., the data block that reads the parameters of the power system, the power flow block that 

performs a conventional power flow study and the harmonic voltage block that determines 

the harmonic propagation through the system. Some parts of the algorithm are executed 

sequentially and some parts in parallel. The system data block is programmed sequentially. 

Then two tasks are simultaneously run. Each task is performed by one thread in the CPU 

(Open MP). One of the threads (thread 1) performs the power flow study meanwhile the other 

thread (thread 0) copy the system data from the CPU to the GPU. 

These two tasks are executed in parallel and have different computation time, so they 

have to be synchronized. To synchronize this part of the algorithm a flag is used. Initially 

flag = 0 and changes to flag = 1 when the power flow study concludes. If the power flow 

study has no finished yet, thread 0 will have to wait until thread 1 finishes its process. The 

last part of the algorithm is executed in the GPU (CUDA). 

For each harmonic, it is necessary to obtain the equivalent admittance matrix, the 

CIM, and solve for the harmonic voltage vector. Superposition effects are accounted to obtain 

the final result. 

 

Fig. 4.10 Algorithm of the proposed method 
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The following steps summarize the complete method. 

 Find the steady state solution given by a conventional power flow study. 

 With the resultant voltages at fundamental frequency, compute the passive 

equivalent circuit. 

 Obtain the equivalent admittance matrix seen from node where the non-linear load 

is connected. 

 Solve (4.29) for each frequency of interest to get the final result by superposition 

of effects. 

 

    4.11 Harmonic Propagation in FD 

A case study for the harmonic propagation in the power network using the methodology 

described in Section 4.7 is presented next. The solution algorithm of Section 4.10 was 

developed in the FD framework. For the purposes of the simulation, it is sufficient for 

harmonic analysis to account for the first 50 harmonics.  

The test system of Fig. 4.11 has been used to illustrate the performance of the 

implemented method described in Section 4.7. It corresponds to a modified IEEE-14 bus test 

system. The electric power system includes three static VAR compensators (SVCs) 

connected in three different buses. 

The maximum magnitudes of harmonic content injected by the SVCs are given in 

Table 4.3. The SVCs are considered to be delta connected, hence no zero sequence harmonic 

current is injected into system. In Table 4.3, the harmonic currents are given as percentage 

of the fundamental component. The fundamental power flow solution is given in Table 4.4. 
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Fig. 4.11 IEEE-14 bus test system. 

 

 

Table 4.3 Maximum amplitude of harmonic currents in SVC. 

Harmonic % of  fundamental 

5 5.05 

7 2.59 

11 1.05 

13 0.75 

17 0.44 

19 0.35 

23 0.24 

25 0.20 

 

 

 



77 
 

 

Table 4.4 Fundamental frequency power flow (p.u.).   

Node  V  PG QG PD QD 

1 1.060 0 2.385 0 0 0 

2 1.045 -5.109 0.400 0.122 0.217 0.127 

3 1.010 -12.91 0 -0.182 0.942 0.190 

4 1.024 -10.72 0 0 0.478 -0.039 

5 1.023 -9.079 0 0 0.076 0.016 

6 1.070 -14.53 0 -1.250 0.112 0.075 

7 1.083 -14.03 0 0 0 0 

8 1.090 -14.03 0 0.037 0 0 

9 1.100 -15.68 0 0 0.295 0.166 

10 1.087 -15.77 0 0 0.090 0.058 

11 1.075 -15.32 0 0 0.035 0.018 

12 1.155 -18.07 0 0 0.061 0.016 

13 1.136 -17.53 0 0 0.135 0.058 

14 1.170 -19.08 0 0 0.149 0.050 

 

 

The system is solved for each frequency of interest with (4.29), where Ih have values 

different from zero only in entries where the nonlinear loads are connected. Table 4.5 shows 

the harmonic voltages in percentage of the fundamental. 
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Table 4.5 Harmonic voltage in the network. 

V \ h 5% 7% 11% 13% 17% THD 

V10 0.5548 0.6397 0.1646 0.0727 0.0238 0.8662 

10 129.60 104.52 -10.29 -19.272 -23.88  

V11 0.2875 0.3267 0.0806 0.0346 0.0105 0.4441 

11 128.89 103.72 -11.29 -20.38 -25.22  

V12 1.1192 0.7802 0.4406 0.3717 0.2815 1.5527 

12 149.58 148.30 153.31 154.19 155.32  

V13 0.9679 0.6763 0.3441 0.2946 0.2244 1.3182 

13 147.67 143.67 151.85 153.07 154.29  

V14 1.5306 1.1408 0.3504 0.3292 0.2644 2.0175 

14 141.39 129.81 144.64 149.31 151.55  

 

To show the impact that the nonlinear load has on these type of studies, Fig. 4.12 

shows the distorted voltage waveform obtain at bus 14. 

 

Fig. 4.12 Distorted voltage waveform at bus 14. 
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The parallel code has been applied to larger systems to show the relevance of the 

harmonic CIM processed in parallel. The IEEE-57, 118 and 300 test bus system have been 

solved. Table 4.6 shows the results obtained by the sequential and the parallelized algorithm. 

The first column shows the bus number, the second the time for data reading of power system, 

and the third is the time consumed by the power flow study. Columns fourth and fifth show 

the computation time of the CIM processed in parallel (PCI) and sequential (SCI), 

respectively. Columns sixth and seventh show the processing time for the complete parallel 

(TPCI) and sequential (TSCI) code, respectively. The last two columns show the speed-up 

of the complete algorithm and the speed-up of the CIM respectively. 

 

Table 4.6 CPU time in larger systems FD. 

IEEE 

system 
Data 

Power 

Flow 
PCI SCI TPCI TSCI 

Speedup 

SCI/PCI 

57 0 21 46 51 67 72 1.11 

118 1 56 52 361 109 418 6.94 

300 2 1250 592 7667 1844 8919 12.95 

 

 

The comparison of the fourth column to the fifth shows the importance of using 

parallel processing based on GPUs for the CIM. The best speed-up is 12.95 times for the 

IEEE-300 bus test system and 4.84 times for the complete algorithm. For the case of the 

IEEE-118 bus test system the results were 6.94 and 3.83, respectively, and for the case of the 

IEEE-57 bus test system were 1.11 and 1.07, respectively. It is clear that the speed-up 

significantly increases with the size of the power network. The speed-up can be improved if 

the entire algorithm and not just the CIM are solved by using parallel processing. 
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    4.12 Conclusions 

The HD basic theory has been reviewed. The HD representation of nonlinear and 

switched-elements has been presented in terms of frequency domain convolutions. This 

representation allows to readily handle such elements via algebraic frequency domain 

operations. Furthermore, some power quality indices for nonsinusoidal conditions have been 

presented. 

The HD model of a grid-connected PV generation system has been presented. A major 

characteristic of the proposed model is that the periodic steady-state can be obtained in a 

direct way via HD matrix/vector operations. 

On the other hand, the proposed HD model of the single-phase grid-connected PV 

generation system has been also evaluated for STC. A major result is that the proposed model 

can include any number of harmonics depending on the desired TD resolution. Using fewer 

samples represents an obvious saving in computational resources. Finally, power quality 

indices are readily available from the HD solution variables. 

A close agreement between the TD and HD methodologies for the assessment of the 

dynamic and the periodic steady state operation of microgrids with PV generation systems is 

shown. As evidence of it, the THD calculated for both cases is the same. 

The application of parallel GPU-computing in harmonic propagation studies in FD 

for large electrical networks has been very effective and accurate.  
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Chapter 5 

 

Conclusions 

   

    5.1 Conclusions 

An efficient and accurate TD methodology to evaluate the dynamic operation and 

harmonic distortion of a single-phase grid-connected PV generation system has been 

proposed. The method combines the advantages of the ND method and CSI technique. The 

introduction of CSI significantly enhances the efficiently of the ND method for the 

computation of the periodic steady state solution. Besides, the algorithm with CSI accurately 

reproduces the steady state waveform of the ND method using a much larger number of time 

steps. The proposed ND-CSI methodology has been validated against the solution obtained 

with the conventional BF solution and with the PSCAD/EMTDC simulator, respectively. A 

close agreement between the obtained responses has been achieved. For the reported case 

3.7, the maximum error between responses was 0.02%. The computational effort to obtain 

the TD solution has been substantially reduced when compared against the BF approach, i.e., 

on average the ND-CSI with Φ variable was 10 times faster than the conventional BF solution 

and 20 times faster with Φ constant. 

A HD model of a single-phase grid-connected PV generation system has been also 

proposed. The Norton equivalent of the PV array and the Thevenin equivalent of the power 

network have been introduced in the HD model of case 4.6. The obtained results have been 

validated against the response obtained with the TD method; a close agreement was achieved. 

The simulation results show that higher harmonics produced by power electronics do not 

appear at the PCC due to the filter presence; however, lower harmonics are present. 

In this thesis, the power network has been assumed without harmonic distortion, 

yielding low values of THD at the PCC. In real cases, some harmonics from the power 

network can produce a higher harmonic distortion. A distorted power network can be readily 

accounted for in the proposed model. 
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It is important to mention that the TD and HD model of a single-phase grid-connected 

PV generation system used in this research is exactly the same. A close agreement between 

the periodic steady state solution obtained in TD and HD, respectively, was achieved.       

A parallel processing technique based on GPUs for the analysis of harmonic 

propagation in electric networks using the CIM and LU Decomposition in the FD has been 

applied in case study 5.3. It is shown that for the explicit harmonics representation, the 

implementation on a GPU platform becomes an efficient computational resource to find the 

steady state solution since floating-point operations and repetitive calculations increase in 

proportion to the number of harmonics and size of the network; both related with the 

computer effort.  

The algorithm processed in parallel was implemented on a Tesla C2075 GPU. It 

improves the efficiency from 1.11 to 12.95 times for the CIM and from 1.07 to 4.84 times in 

total simulation, as compared with a conventional algorithm processed in series. 

Finally, a TD methodology for the analysis of harmonic propagation in electric 

networks using the ND and CSI methods has been proposed in case 5.4.  

For the modified IEEE-14 bus test system, the ND-CSI was on average 7 times faster 

than the BF method and 5 times faster than the ND method. For the modified IEEE-30 bus 

test system, the ND-CSI was on average 8 times faster than the BF method and 6 times faster 

than the ND method. 

 

    5.2 Recommendations for future research work 

From the state of research reported in this thesis, the author suggests to proceed in the 

following directions: 

1. To extend the reported representation of PV systems to include three-phase power 

networks, working under balanced and unbalanced operation conditions. 

2. To extend the analysis to the power networks with integration of other renewable 

energy sources, such as wind generators, diesel generators, bank of batteries, among 

others. 
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3. To extend the analysis to the dynamic and periodic steady state solution of larger 

scale conventional power networks as well as with the integration of renewable 

energy sources. 

4. To extend the analysis to other power quality adverse effects, such as inter-harmonics, 

sags, swells, flicker, among others. 

5. To introduce control techniques in the HD and TD for MPPT using voltage source 

converters. 

6. To further potentiate the application of parallel processing for the efficient dynamic 

and periodic steady state analysis of power networks with integration of renewable 

energy sources. 

7. To explore the application of real time simulation in the analysis. 
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