
!

UNIVERSIDAD MICHOACANA DE
SAN NICOLÁS DE HIDALGO

!
FACULTAD DE INGENIERÍA ELÉCTRICA
DIVISIÓN DE ESTUDIOS DE POSGRADO

!
!

!
AUTOMATIC DESIGN OF ARTIFICIAL NEURAL

NETWORK CLASSIFIERS BY MEANS OF GENETIC
ALGORITHMS

!
!
by!!

Marco!Tulio!Arreola!Fernández!
!

!

THESIS!
!
!

Requirement!for!the!degree!of!

MASTER!OF!SCIENCES!IN!ELECTRICAL!
ENGINEERING!

!
!

Advisor:!
Juan!José!Flores!Romero!

!
!

CoLadvisor:!
Mario!Graff!Guerrero!

!
!

July!2012!

I
D'VlfION~

AUTOMATIC DESIGN OF ARTIFICIAL NEURAL NETWORK
CLASSIFIERS BY MEANS OF GENETIC ALGORITHMS

Los Miembros del Jurado de Examen de Grado aprueban
la Tesis de Maestría en Ciencias en Ingeniería Eléctrica de Marco Tuli Arreola Fernández

Dr. Félix Calderón Solorio
Presidente

Dr. Juan José Flores Romero
Director de Tesis

Dr. Mario Graff Guerrero
Co-Director de Tesis

Dr. Jaime Cerda Jacobo
Vocal

Dr. Nelio Pastor Gómez
Revisor Externo
UMSNH Ingeniería Civil

Dr. J. Aurelio Medina Rios
Jefe de la División de Estudios de Posgrado
de la Facultad de Ingeniería Eléctrica.

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO
Julio 2012

To Carlos and Margarita

Acknowledgements

First and foremost I o↵er my sincerest gratitude to my advisors, Juan J. Flores

and Mario Gra↵, who have supported me throughout my thesis with his endless

patience and knowledge, and without them, this thesis would not have been com-

pleted or written.

I would like to thank to my thesis examiners, their feedback have been really

helpful and enriching, thanks to Felix Calderón, Jaime Cerda, and Nelio Pastor.

I also thank the teachers and researchers who taught me in the graduate class.

They enriched my mind and soul. With them, I learned in directly or indirectly

way how to be a better human being.

I am grateful to my many student colleagues for providing a stimulating and

fun environment in which to learn and grow. Sorry for not mention any one but

it would impossible to write all those names here.

I am forever indebted to the Universidad Michoacana de San Nicolás de Hidalgo

and also with the División de Estudios de Posgrado of the Facultad de Ingenieŕıa

Eléctrica, from now on, my alma mater. This thesis could not been possible

without the economic support of CONACyT, thanks.

I wish to thank my entire family for providing a loving environment for me.

My brother Nitos, my sisters Celi and Jani, my brother in law Paco, my sister in

law Eda, my nephew Carlos the third, my two nieces Karlita and Andy, my aunt

Carmen, my uncle Alvaro, my cousins Edson and Bebis, and my stinky pet Pascal.

Finally, and most important, I wish to thank my parents Carlos and Margarita,

who have put the voices in my head that always push me on to give my best.

vii

ABSTRACT

Pattern classification is a field that has many applications, including image anal-

ysis, speech and audio recognition, biometrics, bioinformatics, data mining, and

information retrieval, among others.

Artificial Neural Networks (ANN) have been successfully used as a classifier

system in recent years. They have shown an exceptional ability to learn classifica-

tion functions. However, in order to design an e�cient ANN classifier one needs

to address the following questions: (1) What neural network architectures should

be used? (2) How many neurons are appropriate for the task? (3) Which learning

algorithm is the most suitable? (4) How much should be trained one neural net-

work in order to be e↵ective? In addition to these questions, intrinsically every

classification problem also involves answering to: (5) What features are relevant

to discriminate one object from another?

The task of designing the structure of an ANN, is typically done by an expert

in both the problem and the ANN’s field. To avoid the inconvenience of relying

on a human expert, it is a good idea to obtain the design of the network by an

automatic process, this is, (6) automated design of artificial neural network.

This work aims to answer the aforementioned questions; to do so an evo-

lutionary approach is proposed to automatically design ANNs for classification.

GEANN, Genetic-Evolutionary Approach for Neural Networks performs feature

selection. Designs the ANN’s topology and selects a training algorithm between

backpropagation, batch backpropagation, resilient backpropagation, and quick-

prop. We deal with overfitting of the net by doing a K-fold cross validation.

We compared our evolved ANN against previous methods, experimental results

show that our approach produces competitive ANNs. Since GAENN automatically

designs ANN’s topology, it can be used by anyone with no experience in the field

of artificial neural networks, and can be applied to a wide variety of classification

problem, the only requirement is to have a tagged dataset of a priori known

objects.

RESUMEN

La clasificación de patrones es un campo que tiene muchas aplicaciones, incluyendo

el análisis de imágenes, reconocimiento de voz y audio, datos biométricos, bioin-

formática, mineŕıa de datos y recuperación de información, entre otros.

Las Redes Neuronales Artificiales (RNA) se han utilizado con éxito como sis-

temas clasificadores en los últimos años. Han demostrado una capacidad excep-

cional para aprender las funciones de clasificación. Sin embargo, con el fin de

diseñar un eficiente clasificador de RNA se necesita hacer frente a las siguientes

preguntas: (1) ¿Qué arquitectura de RNA se debe utilizar? (2) ¿Cúantas neu-

ronas son apropiadas para la tarea? (3) ¿Qué algoritmo de aprendizaje es el más

adecuado? (4) ¿Cúanto debe ser entrenada una RNA para ser eficaz? Además

de estas preguntas, intŕınsecamente cualquier problema de clasificación también

involucra responder a: (5) ¿Qué caracteŕısticas son relevantes para discriminar un

objeto de otro?

La tarea de diseñar la estructura de la red, tipicamente es realizada por un

experto, tanto en el área del problema como en el campo de las redes neuronáles.

Para evitar el inconveniente de depender de un experto humano, es una buena idea

obtener el diseño de la red mediante un proceso automático, esto es, (6) diseño

automatizado de la red neuronal artificial.

Este trabajo pretende dar respuesta a las preguntas anteriores; para hacerlo

se propone un enfoque evolutivo para diseñar automáticamente RNAs para clasi-

ficación. EGERN, Enfoque Genetico-Evolutivo para Rededes Neuronales lleva a

cabo selección de caracteŕısticas, el diseño de la topoloǵıa de la RNA y selecciona

un algoritmo de entrenamiento entre propagación hacia atras, propagación hacia

atras por lote, propagación hacia atras resistente y quickprop. Nos ocupamos del

sobreentrenamiento de la red haciendo una validación cruzada.

Comparamos nuestra red evolucionada contra métodos previos, los resultados

experimentales muestran que nuestro enfoque produce RNAs competitivas. De-

bido a que EGERN diseña automáticamente la topoloǵıa de la RNA, puede ser

utilizado por cualquier persona sin experiencia en el campo de las redes neuronales

artificiales, EGERN puede usarse en una amplia variedad de problemas de clasifi-

cación, el único requisito es contar con un conjunto de datos etiquetas de objetos

conocidos a priori.

Contents

Acknowledgements vii

Abstract ix

Resumen xi

List of Figures xvii

List of Tables xix

List of Programs xxi

List of Algorithms xxi

List of Symbols and Abbreviations xxiii

List of Publications xxv

1 Introduction 1
1.1 Motivations . 3
1.2 Objectives . 4
1.3 State of the Art . 4
1.4 Thesis Outline . 7

2 Artificial Neural Networks as Classifiers 9
2.1 Biological Background . 10
2.2 Artificial Neural Network . 12

2.2.1 Artificial Neuron . 13
2.2.2 Types of activation function 15
2.2.3 Network topologies . 17

2.3 Learning in Artificial Neural Network 20
2.3.1 Delta rule . 20
2.3.2 Back Propagation Algorithm 21
2.3.3 General Sequential BP Algorithm 25
2.3.4 BP derivatives . 26

2.4 Generalization, Accuracy, and OverFitting 27
2.5 Concluding Remarks . 29

xiii

xiv CONTENTS

3 Genetic Algorithms 31
3.1 Biological Background . 32
3.2 Overview of GA . 33
3.3 Terminologies in GA . 34

3.3.1 Individuals . 34
3.3.2 Chromosome (Genotype) . 35
3.3.3 Phenotype . 36
3.3.4 Genes . 36
3.3.5 Morphogenesis . 36
3.3.6 Fitness . 36
3.3.7 Population . 37
3.3.8 Encoding . 37

3.4 Genetic Operators . 37
3.4.1 Selection . 38
3.4.2 Crossover (Recombination) 38
3.4.3 Mutation . 41
3.4.4 Replacing individuals . 42

3.5 Genetic Algorithms . 42
3.6 Concluding Remarks . 43

4 Evolving Artificial Neural Networks 45
4.1 Data Linear Scaling . 46
4.2 ANN Evolution . 47

4.2.1 Chromosome Description . 48
4.2.2 Fitness calculation . 52

4.3 K-Fold Cross Validation . 54
4.4 Final Training . 55
4.5 Concluding Remarks . 56

5 Results and Discussion 59
5.1 Data Sets Description . 60

5.1.1 Two moons: Artificial dataset 60
5.1.2 Land cover classification: Satellite image from Bolivia 61
5.1.3 Iris: A classic numeric dataset 62
5.1.4 Yeast: Protein location sites 63
5.1.5 WDBC: Breast Cancer Wisconsin (Diagnosis) 63
5.1.6 SPECTF: Heart dataset . 63
5.1.7 SPECT: Heart dataset . 64
5.1.8 Wine: Origin of wines . 64

5.2 Results and Discussion . 65
5.2.1 Concluding Remarks . 68

6 Conclusions and Future Work 69
6.1 Conclusions . 69
6.2 Future Work . 70

CONTENTS xv

A Implementation Issues 73
A.1 MathLink . 73

B Plots of Activation Functions 79

Bibliography 83

List of Figures

2.1 Biological neuron. 12
2.2 Artificial neuron. 14
2.3 Single layer feedforward networks. 18
2.4 One hidden layer feedforward neural network. 19

3.1 GA dualism. 35
3.2 GA chromosome. 35
3.3 GA population. 37
3.4 Single point binary chromosome crossover. 39
3.5 Two points binary chromosome crossover. 40
3.6 Binary chromosome mutation. 41

4.1 Flowchart of the three phases GEANN. 46
4.2 Chromosome description. 48
4.3 Number of output neurons . 51
4.4 Example of chromosome used in this thesis. 52

5.1 Two moons data set . 61
5.2 Landsat EMT+ imagen of Beni, Bolivia. 62
5.3 Isolating cells from an image taken from breast mass. 64

B.1 Plots of sigmoidal functions used for training in GEANN. 79
B.2 Plots of sin and cosine functions used for training in GEANN. . . . 80
B.3 Plots of Elliot functions used for training in GEANN. 80
B.4 Plots of Gaussian functions used for training in GEANN. 81
B.5 Plots of linear functions used for training in GEANN. 81

xvii

List of Tables

4.1 List of training algorithms . 49
4.2 List of activation functions . 49

5.1 Parameters used in evolution. 59
5.2 Datasets used in experiments. 65
5.3 Experimental results. 66

xix

List of Programs

5.1 Two moons function . 60
A.1 Shell script for installing MathLink 73
A.2 f.c, example of MathLink C program for running functions within

Mathematica’s notebooks . 75
A.3 f.tm, text template file for describing function’s parameters 75
A.4 mmcc, my mathlink c compiler, is a shell script for compiling c

source programs and use them within Mathematica’s notebooks . . 76
A.5 f.nb notebook implementing external functions calls. 77

List of Algorithms

2.1 Sequential back propagation algorithm. 26

3.1 Genetic algorithm. 43

4.1 Data linear scaling algorithm. 47

4.2 Fitness calculation. 53

4.3 K-fold cross-validation algorithm. 56

xxi

List of Symbols and

Abbreviations

SYMBOLS

'(·) Activation function

v
j

Activation potential of neuron j

⇠ Average squared error of the sum of squared errors

d e Ceiling function

c
i

Class i

y
i

Class type of pattern i

[a, b] Closed interval of variable x signifies that a  x  b

\ Complement binary operator

Pc Crossover probability

D Dimensionality or number of measurements

x
i

Feature i

Pm
gene

Gene mutation probability

⇠(n) Instantaneous value of the sum of squared errors

⌘ Learning-rate parameter

�(n)
j

Local gradient of neuron j at time n

Pm Mutation probability

C Number of classes

N Number of samples in TS

M Number of samples in VS

(a, b) Open interval of variable x signifies that a < x < b

xi Pattern i

�w Small change applied to weight w

2 Symbol for “belongs to”

w
kj

Synaptic weight of synapse j belonging to neuron k

w Vector of weights

xxiii

xxiv LIST OF SYMBOLS AND ABBREVIATIONS

ABBREVIATIONS

AI Artificial Intelligence

ANN Artificial Neural Network

BP Back Propagation

CV Cross Validation

DNA Dioxy Ribo Nucleic Acid

EA Evolutionary Algorithm

EC Evolutionary Computation

GA Genetic Algorithm

GBML Genetic-Based Machine Learning

GEANN Genetic-Evolutionary Approach for Neural Networks

iRPROP Improved Resilient Backpropagation

ML Machine Learning

NNEE Neural Network Ensemble Editing

PE Processing element

RPROP Resilient Backpropagation

SC Soft Computing

TS Training Set

VS Validation Set

List of Publications

Juan J. Flores, Marco Tulio Arreola, Jean François Mas, Mario Gra↵,

Félix Calderón. ”Evolving artificial neural networks for binary and

multi-class classification problems”. XIX Reunión nacional SELPER-

México, Sociedad de percepcion remota y sistemas de información

espacial. Morelia, Michoacán 2011.

Mario Gra↵, Juan J. Flores, Marco Tulio Arreola. ”Lessons learned

in Evolving Artificil Neural Networks for Classification and Forecasting.

Reunión de Otoño de Potencia, Electrónica y Computación, ROPEC

2011 Internacional. Morelia, Michoacán noviembre del 2011.

xxv

Chapter 1

Introduction

Pattern recognition1 is the field with the objective to classify objects into di↵erent

categories and classes [Duda et al., 2001]. This field has many applications, such

as image analysis, speech and audio recognition, biometrics, bioinformatics, data

mining, and information retrieval.

Human beings are very good at recognizing patterns. Since the beginning

humans needed to classify for surviving, this is an ability that has been perfected

through evolution. Unconsciously, we do it all the time, for example, we distinguish

harmful food, we recognize faces when we see them, voices over a poor telephone

line, we diagnose diseases, identify types of cars, classify galaxies by their shape,

etc.

In the past, recognition systems were manually developed and maintained by

human experts. The traditional approach requires that a human expert insight

into the objects to be detected and recognized since it is very di�cult to identify

a set of features that characterize a complex set of objects.

It is not di�cult to see that during the twentieth century automation had free

human beings from the heavy physical labor in the industry. However, many tasks,

which were thought to be light in physical labor, such as parts inspection in order

to reject defective products are still in their primitive human operation stage. Such

work involves mainly the acquisition of information through the human sensory

organs and then processing this information in the brain so that the worker make a

decision. Humans classify all the time, it is a necessary task for surviving; however,

1Pattern recognition is also called pattern classification, discriminant function analysis, or
decision making.

1

2 Chapter 1 Introduction

nowdays there is a prohibitive amount of information and in order to deal with it

we need to automatize this task.

The basic function of human intelligence is to ensure survival in nature, not

to perform precise calculations. The human brain can process millions of visual,

acoustic, olfactory, tactile, and motor data, and it shows astonishing abilities to

learn from experience, generalize from learned rules, recognize patterns, and make

decisions. Without any doubt the human mental faculties of learning, generalizing,

memorizing, and predicting should be the foundation of any intelligent artificial

device or smart system. Many algorithmic approaches have been developed trying

to mimic human intelligence, yet we are still far away from achieving anything

similar to that.

Notwithstanding, we are very bad at calculations or at any kind of computing,

there is a long-standing tradition in science that gives more respect to theories

that are quantitative, formal, and precise than to those that are qualitative, infor-

mal, and approximate. Recently, however, the validity of this tradition has been

challenged by the emergence of e�cient soft computing techniques to satisfy them.

Many contemporary problems do not lend themselves to precise solutions

within the framework of classical hard computing, for instance, recognition prob-

lems of all sorts (handwriting, speech, objects, images, etc.), forecasting (weather,

financial, or any other time series), and combinatorial problems like the “traveling

salesman”. To be able to deal with such problems, there is often no choice but

to accept solutions that are suboptimal. In addition, even when precise solutions

can be obtained, their cost is generally much higher than those solutions that are

imprecise.

Under this scenario, we can find the automatic design of neural networks. In

this problem, one deals with the identification of all the parameters of the neural

network such as: number of layers, number of neurons, activation functions, and so

on. As expected, one cannot use traditional optimization techniques to tackle this

problem given that it is a combinatorial optimization problem. As a consequence,

one is forced to look for di↵erent techniques, perhaps approximate ones, that allow

to determine the parameters and structure of an accurate neural network.

Chapter 1 Introduction 3

1.1 Motivations

In literature, there exist several classification methods. Some of them are of sta-

tistical nature, such as: Bayesian networks, Bayesian discriminative approaches,

Bayesian learning methods, Markov chains, kernels methods, discriminant func-

tions, maximum likelihood via Expectation Maximization, mixture models for

discrimination, and k-nearest neighbors, among others. Also, there are method-

ologies developed in the field of Artificial Intelligence (AI) such as: support vec-

tor machines, decision trees, fuzzy logic models, ANNs, etc. [Kecman, 2001,

Bishop, 2006, Ripley, 2007, Webb and Copsey, 2011] are excellent books where to

find more detailed information on those and others approaches.

Given the amount of work done in this field one may be tempted to think

that this is a closed problem. However, there are still a number of questions that

need to be addressed. In order to apply any of the aforementioned classification

techniques in real life problems, one needs to know very well the methodology

and have some experience in its usage, besides a relative major knowledge of the

problem itself.

ANNs have been successfully used as classifier systems in recent years, they

have shown an exceptional ability to learn classification functions. However, in

order to design an e�cient ANN classifier one needs to address the following

questions:

(1) What neural network architectures should be used?

(2) How many neurons are appropriate for the task?

(3) Which learning algorithms are most suitable?

(4) What features are relevant for discriminating one object from another?

(5) How much should be trained one neural network in order to be e↵ective?

In this thesis, we address all the aforementioned questions. Issues raised in

questions (1), (2), (3), and (4) are problem dependent, and are answered for

each particular problem at a time. Find how large an ANN should be, find the

relevant features for classification, and find a proper learning algorithm clearly

are optimization problems, we delegate the task to find these answers to a genetic

algorithm. Since its origins in mid-70’s GA have been proved to be an efective

4 Chapter 1 Introduction

poblational evolutive approach used to solve optimization problems. Once GA

have found answers for question (1) to (4), we use a cross-validation technique in

order to answers question number (5).

1.2 Objectives

The main objective of this thesis is to develop a methodology capable of automat-

ically design an ANN for classification problems.

Particular Objectives

• To propose an evolutive approach to design ANNs for classification.

• To apply a technique for reducing dimensionality of the classification prob-

lem; this problem is known as feature selection.

• Use a parsimony criteria to produce the simplest ANN that performs a proper

classification.

• Select a suitable learning algorithm.

• Avoid overfitting.

1.3 State of the Art

Artificial Intelligence is broadly defined as a branch of computer science concerned

with intelligent behavior on artifacts. Intelligent behavior, involves perception,

reasoning, learning, communicating, and acting in complex environments.

At present, Soft computing (SC) is not a closed and clearly defined discipline.

It includes an emerging and more or less established family of problem-stating and

problem-solving methods that attempt to mimic the intelligence found in nature

[Kecman, 2001]. In traditional computing, the prime objectives of computations

are precision and certainty. However, in soft computing, the precision and cer-

tainty carry a cost. SC considers the integration of computation, reasoning, and

decision making as partners in order to provide a framework for the trade-o↵

between precision and uncertainty. This integration of methodologies provides

a foundation for the conceptual design and deployment of intelligent systems. In

contrast to analytical methods, soft computing methodologies mimic consciousness

and cognition.

Chapter 1 Introduction 5

Mitchell defines Machine Learning (ML) as the study of computer algorithms

that improve automatically through experience [Mitchell, 1997]. [Kovacs, 2011]

manifests that ML is concerned with machines which improve with experience and

reason inductively or deductively in order to: optimize, approximate, summarize,

generalize from specific examples to general rules, classify, make predictions, find

associations, propose explanations, and propose methods to group objects.

There is some redundancy in some concepts and fields used in this thesis.

Subjects as learning, ML, SC, and intelligent machine are a blend of di↵erent

areas. The various fields bound together here used to be separate, and today they

are amalgamated in the broad area of Artificial Intelligence. Therefore, each area

was developed separately by researchers, scientists, and enthusiasts with di↵erent

backgrounds.

ANNs and evolutionary computation (EC) have each been proved to be e↵ec-

tive in solving certain classes of problems. ANNs are very good at mapping inputs

to outputs and evolutionary algorithms are very good at optimization. There-

fore, it was natural for scientists to combine the methodologies to develop hybrid

computational tools that are even more e↵ective than either methodology by itself.

According to [Kovacs, 2011], Genetics-based Machine Learning (GBML) is the

application of Evolutionary Algorithms (EAs) to machine learning. This places

evolvable ANNs in GBML. Also in his work, Kovacs classifies GBML systems

algorithmically in two approaches, in the Pittsburg approach one chromosome

encodes one solution, in the Michigan approach one solution is represented by

many chromosomes. Evolving ANNs generally uses the Pittsburgh approach.

An artificial neural network consists of a set of nodes, a set of directed con-

nections between a subset of nodes and a set of weights on the connections. The

connections specify inputs and outputs to and from nodes and there are three

forms of nodes: input nodes (input to the network from the outside world), out-

put nodes, and hidden nodes, which only connect to other nodes. Nodes are

typically arranged in layers: the input layer, hidden layer(s), and output layer.

Nodes compute by integrating their inputs using an activation function and pass-

ing on their activation as output. Connection weights modulate the activation

they pass on and, in the simplest form of learning, weights are modified while all

else remains fixed. The most common approach to learning weights is to use a

gradient descent-based learning rule such as backpropagation.

6 Chapter 1 Introduction

The architecture of an ANN refers to the set of nodes, connections, activation

functions and the plasticity of nodes; whether they can be updated or not. Most

often all nodes use the same activation function and in virtually all cases all nodes

can be updated.

Evolution has been applied at three levels: weights, architecture, and learning

rules. In terms of architecture, evolution has been used to determine connectivity,

select activation functions, and determine plasticity [Kovacs, 2011]. A fourth area,

the evolution of inputs (finding the optimal set of inputs), has received considerable

amount of attention [Flores et al., 2009, Flores et al., 2010].

Relatively little has been done on the evolution of neural network processing

element (PE) transfer functions and even less on evolving topological structure

and PE transfer functions simultaneously [Kovacs, 2011].

Three forms of representation have been used to encode ANN into the chro-

mosome of an EA: 1)direct encoding : [Yao, 1999, Floreano et al., 2008] in which

all details (connections and nodes) are specified, 2)indirect encoding : [Yao, 1999,

Floreano et al., 2008] in which parameters that specify the network topology are

evolved (e.g. number of hidden layers and nodes) and a learning process determines

the details, and 3)developmental encoding : [Floreano et al., 2008] in which a devel-

opmental process is genetically encoded [Gruau, 1995, Szirnyi and Csapodi, 1998].

Indirect and developmental representations are more flexible and tend to be used

for evolving architectures while direct representations tend to be used for evolving

weights alone.

Since the popularization of the back propagation (BP) algorithm (based on gra-

dient descent) in the mid-1980s [Werbos, 1974, Rumelhart and McClelland, 1986,

Hecht-Nielsen, 1989], there has been a significant increase in research and develop-

ment in the area of applying EC techniques for the purposes of evolving learning

rules aspects of AANs. [Scha↵er et al., 1992] and [Yao, 1999] are excellent surveys

of evolutionary ANNs covering 80-s, 90-s research decades but [Kovacs, 2011] is

an up to date state of the art of evolutionary ANNs and GBML in general.

Research has been done on evolution of weights, in which the fitness function

penalizes the ANN error and also the network complexity (number of hidden neu-

rons). In terms of learning accuracy there is no clear winer between evolution

and gradient descent; however, Yao [Yao, 1999] states that evolving weights and

architecture is better than evolving weights alone.

Chapter 1 Introduction 7

There is not a best learning rule for all architectures or problems. One ap-

proach is to evolve only learning rule parameters [Yao, 1999] such as the learning

rate and momentum in BP. Castillo [Castillo et al., 2007] found that, evolving the

architecture, initial weights and rule parameters together carry out good or better

results than, evolving only the first or the second of the three.

Yao proposes a three nested cycles framework for evolving architectures, train-

ing rules and weights [Yao, 1999]. Weight evolution is innermost as it occurs at

the fastest time scale while either rule or architecture evolution is outermost. The

framework can be thought of as a 3-dimensional space of evolutionary neural net-

work, where zero on each axis represents one-shot search and infinity represents

exhaustive search.

1.4 Thesis Outline

This thesis is organized as follows. Chapter 2 Artificial Neural Networks as Clas-

sifiers, talks about basic terminology about ANNs, what an artificial neuron is

and how to arrange them in order to form ANNs; it briefly explains the biological

background of ANNs, describes the perceptron and the multilayer perceptron, and

explains how ANNs learn.

Chapter 3, Genetic Algorithms, explains what it is and how it works the canon-

ical GA. Covering simple GA’s scheme, basic operations with individuals and how

result improves over generations.

Chapter 4, Evolving ANNs, describes in depth our approach and how ANNs

have been evolved by means of GAs in order to get e�cient and e↵ective classifi-

cators. Describe the chromosome structure used to represent ANN classifier and

how the fitness is computed to achieve a better classification.

Chapter 5 presents the results obtained in experiments conducted, also details

the datasets used.

Finally, Chapter 6 discusses conclusions and future work.

Chapter 2

Artificial Neural Networks as

Classifiers

For many decades, it has been a goal of engineers and scientists to develop a ma-

chine with elements similar to those found in the human brain. An artificial neural

network, or simply neural network, is a type of artificial intelligence that attempts

to mimic the way human brain processes and stores information [Rojas, 1996].

In general, artificial neural networks1 are composed of many simple processing

elements connected in a particular way, emulating various brain activities. It

works by creating connections between mathematical processing elements, called

neurons. The network function is determined largely by the connections between

these elements.

Neural networks can be trained to perform complex mapping input-output

problems. The powerful capability of the network comes from the characteristics

of its elements arrangement. There are one or more layers of hidden neurons

that are not part of the input or output of the network; a smooth nonlinearity

activation function employed at the output end of each neuron; and a high degree of

connectivity in the network. These three distinct characteristics enable multilayer

networks to learn complex tasks.

ANNs exploit parallel local processing and distributed representation proper-

ties that are believed to exist in the brain. The behavior of the trained ANN

depends on the weights, which are also referred to as strengths of the connections

1Artificial neural networks are also known as neurocomputer, connectionist networks, or par-
allel distributed processors.

9

10 Chapter 2 Artificial Neural Networks as Classifiers

between the PEs. ANNs learn from experience and generalize from previous sam-

ples. They modify their behavior in response to the environment, and are ideal in

cases where the required mapping function is not known and tolerance to faulty

input information is required.

ANNs o↵er certain advantages over conventional processing techniques. These

advantages are the generalization capability, parallelism, distributed memory, re-

dundancy, adaptivity, fault tolerance, and learning.

In recent years, ANNs have been applied successfully to a variety of problems

such as signal processing [Lapedes and Farber, 1987, Herault and Jutten, 1987,

Amari and Cichocki, 1998, Kechriotis and Manolakos, 1993], image compression

[Dony and Haykin, 1995], transportation [Kurokawa and Takeshita, 2004], forecast-

ing [Flores et al., 2009, Flores et al., 2010], robotics [Pomerleau, 1996], medical

diagnosis [Brause, 2001], manufacturing [Roseiro et al., 2005], adaptive control

[Chen and Narendra, 2001, Johnson and Calise, 2001, Idan et al., 2001], and ma-

chine vision [Rowley et al., 1996].

2.1 Biological Background

In order to understand some basic functions and architectural building blocks of

the human brain from the engineering and mathematical perspectives, this section

briefly introduces such topics of biological neural systems as the morphology of

biological neurons and neural signal processing.

The human nervous system is a very complex network of cells. The brain is the

central element of the human nervous system, consisting of near 1010 biological

neurons, coupled to receptors and e↵ectors [Haykin, 2007].

The human brain is a highly complex, nonlinear, and parallel information-

processing system. It has the capability to organize its structural constituents

known as neurons, as well as to perform certain computations (e.g. pattern recog-

nition, perception, and motor control) faster than the fastest electronic computer

developed so far. The brain’s plasticity permits the nervous system to adapt to

its surrounding environment.

Adaptation implies that the element can change in a systematic manner and

in doing so alter the transformation between input and output. In the brain,

transmission within the neural system involves coded nerve impulses and other

Chapter 2 Artificial Neural Networks as Classifiers 11

physical chemical processes that form reflections of sensory stimuli and incipient

motor behavior.

A biological neuron is a cell whose main function is the collection, processing,

and dissemination of electrical signals. The brain’s information processing capacity

is thought to emerge primarily from networks of such neurons.

Neurons have particular morphologies, depending on their role and position in

the nervous system, despite there is no such thing as a typical neuron [Arbib, 2002],

we can summarize properties shared by many neurons. The “basic prototype

neuron” is composed of a body, an axon and a multitude of dendrites.

The Soma (body), is the metabolic center of the neuron; dendrites, are the re-

ceptive area of the neuron; the axon, is the neuronal conducting unit that conveys

the information to other cells; presynaptic terminals of the axon, are the trans-

mitting elements of the neuron. Through these presynaptic terminals, one neuron

contacts and transmits information to the receptive surfaces of another neuron.

This point of contact is known as the synapse [Rabuñal and Dorrado, 2006].

The synapse is the basic input-output unit for transmission of information

between neurons. The neuron acts as a multi-input/single-output unit. A single

neuron can have several neighbors connected to it and bring in electrical signals

across the synapses and through the dendrites while it can be connected to other

neuron via the axon. Within the brain, neurons are connected to each other in

some way, and form a huge network.

The cell body of a neuron sums the incoming signals from dendrites as well as

the signals from numerous synapses on its surface. A particular neuron will send an

impulse to its axon if su�cient input signals are received to stimulate the neuron to

its threshold level. However, if the inputs do not reach the required threshold, the

input will quickly decay and will not generate any action. The majority of neurons

encode their outputs as a series of brief voltage pulses, known as spikes. A synapse

is a simple connection that can impose excitation or inhibition, but not both to

the receptive neuron. Figure 2.1 shows a biological neuron’s composition. As

explained below its dendrites acts as input signal channels then its body processes

those signals so that finally the result is transmitted through a axon to others

neurons.

This basic biological description of neuronal morphology will provide some

inspiration for the development of new neural structures for engineering and science

12 Chapter 2 Artificial Neural Networks as Classifiers









Figure 2.1: Biological neuron.

applications. In advance, we can notice that the processing of information within

a neuron involves two main mathematical operations:

1) Synaptic operation. The synaptic operation assigns a relative significance (weight)

to each incoming signal according to the past experience (knowledge) stored in

the synapse.

2) Somatic operation. The somatic operation provides various mathematical op-

erations such as aggregation, thresholding, nonlinear activation, and dynamic

processing to the synaptic inputs. If the weighted aggregation of the neural

inputs exceeds a certain threshold, the soma will produce an output signal to

its axon.

2.2 Artificial Neural Network

Artificial neural networks, as models of specific biological computational struc-

tures, consist of distributed information processing units. Each computing unit in

the network is based on the concept of an idealized artificial neuron. An ideal neu-

ron is assumed to respond optimally to the applied inputs. Artificial neurons are

Chapter 2 Artificial Neural Networks as Classifiers 13

connected through synaptic connections characterized by weight coe�cients and

every single neuron makes its contribution towards the computational properties

of the whole system.

As an information processor, an individual neuron performs an aggregation on

its weighted inputs and yields an output through a nonlinear activation function

with a threshold. Neural units are the basic building blocks for complex neural

network architectures. The study of neurons suggested that a single neuron oper-

ates like a linear classifier, and that a combination of many neurons may produce

a complex, piecewise linear boundary.

2.2.1 Artificial Neuron

In brain theory, the complexities of real neurons are abstracted in many ways to

aid in understanding di↵erent aspects of neural network development, learning,

or function, therefore there is no such thing as a “typical” neuron. The artificial

neurons are designed as variations on the abstractions of brain theory and are

implemented in software. However, we can specify characteristics of particular

neuron model.

The first formal model of the neuron was proposed as early as 1943 by Mc-

Culloch and Pitts [McCulloch and Pitts, 1943], this model is formed by: a set of

two-valued inputs, x
1

, x
2

, . . . , x
n

2 {0, 1}; one single two-value output, y 2 {0, 1};
a set of two-valued weights, w

1

, w
2

, . . . , w
n

2 {�1, 1}; and a threshold, w
0

2 R.
Each weight w

i

is associated with a particular input x
i

. The output of the neu-

ron is calculated by function g (
P

n

i=1

w
i

x
i

� w
o

), where g(·) is a step function

[Gupta et al., 2003]. This neuron model follows an “all-or-none” law.

More recently, the development of adaptive methods o↵ers an opportunity for

emulating the learning function of biological neural processes. Some of such neural

models were developed in the 1960s by Widrow and Ho↵ (Adaline), and Rosenblatt

(Perceptron). Adaline or Adaptive Linear Element consists of an adaptive linear

combiner cascaded with a hard-limiting quantizer, which is used to produce a

binary output. The threshold parameter, or bias weight w
0

is connected to a

constant input x
0

= 1 and controls the threshold level of the quantizer. The

di↵erence between the perceptron and the Adaline lies in the training procedure

and not in the organization of components of the neuron.

14 Chapter 2 Artificial Neural Networks as Classifiers

The neuron model used in this thesis is quite similar to the Perceptron and Ada-

line neuron model. It consists of four basic components that include (1) weights,

(2) aggregation function, (3) bias and an (4) activation function. Figure 2.2 shows

neuron model described in this section.

wk1

.

.

.

wk2

.

.

.

x1

x2

� �(·) yk

Inputs

Bias

Synaptic
weights

Agreggation
function

Activation
function Output

vk

wk0

xn wkn

x0 = 1

Figure 2.2: Artificial neuron.

(1) A set of synapses, each of which is characterized by a weight or strength

of its own. A measure x
j

at the input of synapse j connected to neuron k

is multiplied by the synaptic weight w
kj

. The first subscript refers to the

neuron in question while the second refers to the input end of the synapse to

which the weight refers. Unlike biological synapse, the synaptic weight may

lie in a range that includes negative as well as positive values, if the weight

is positive, commonly excites the node output; whereas, for negative weights,

tends to inhibit the node output. x
j

2 R, w
kj

2 R, and j > 0.

(2) Aggregation function, usually is an adder for summing the input signals,

weighted by the respective synapses of the neuron; the operation described

here constitute a linear combiner.

(3) The bias w
k0

has the e↵ect of increasing or lowering the neuron input of the

activation function. w
k0

2 R , and x
0

= 1.

Chapter 2 Artificial Neural Networks as Classifiers 15

(4) An activation function is used for limiting the amplitude of the output of a

neuron. Typically, the normalized amplitude range of the output neuron is

written as the closed unit interval [0, 1] or alternatively [�1, 1].

In mathematical terms, a neuron k is represented as the following equation:

v
k

=
mX

j=0

w
kj

x
j

(2.1)

where x
1

, x
2

, x
3

, . . . , x
m

are the inputs features; w
k1

, w
k2

, w
k3

, . . . , w
km

are the

synaptics weights of the neuron k; w
k0

is the bias; v
k

is the linear combiner out-

put due to the input signals and bias, also v
k

is the input of activation function.

Finally, the output of the neuron is computed as:

y
k

= '(v
k

) (2.2)

where '(·) is the activation function.

Having described all the pieces that compose the artificial neuron model, it is

sometimes more convenient to express it in just one equation as:

y
k

= '

mX

j=0

w
kj

x
j

!
(2.3)

The bias is an external parameter of artificial neuron k and has the e↵ect of

applying an a�ne transformation to the output
P

m

j=1

w
kj

x
j

of the linear combiner.

2.2.2 Types of activation function

The activation function denoted by '(·), defines the output of a neuron in terms

of the induced local field v. Due to the learning algorithm used to adapt weights,

the activation functions needs to be continuous and di↵erentiable. However, after

the training phase one can change the activation function for a discrete version

for instance to get all the outputs between [�1, 1]. The most common activation

functions found on the literature are:

16 Chapter 2 Artificial Neural Networks as Classifiers

1) Threshold or step function. Here we have:

'(v) =

8
<

:
1 if v � 0

0 if v < 0
(2.4)

The output of the neuron takes the value of 1 if the induced local field of that

neuron is positive, and 0 otherwise.

2) Linear piece function. In this one we have:

'(v) =

8
>>><

>>>:

1, v � 1

v, 0 < v < 1

0, v  0

(2.5)

This form of activation function may be viewed as an approximation to a

nonlinear amplifier.

3) Sigmoid function. The sigmoid function, whose graph is a s-shaped, is by far

the most common form of activation function used in ANNs. It is defined as a

strictly increasing function that exhibits a graceful balance between linear and

nonlinear behavior. The sigmoid function is defined by:

'(v) =
1

1 + e�2vs

(2.6)

where s is the slope of the sigmoid function. Whereas, a threshold function

assumes the value of 0 or 1, a sigmoid function assumes a continuous range of

values from 0 to 1.

The activation functions described in Equations 2.4, 2.5 and 2.6 range from 0 to

1. It is sometimes desirable to have an activation function range from -1 to 1, in

which case the activation function assumes a symmetric form with respect to the

origin.

4) Symmetric threshold function is defined as:

'(v) =

8
<

:
1 if v � 0

�1 if v < 0
(2.7)

Chapter 2 Artificial Neural Networks as Classifiers 17

5) Linear pice symmetric function:

'(v) =

8
>>><

>>>:

1, v � 1

v, �1 < v < 1

�1, v  �1

(2.8)

6) Sigmoid symmetric function:

'(v) =
2

1 + e�2vs

� 1 (2.9)

2.2.3 Network topologies

Network topology refers to the particular way artificial neurons are arranged in

order to produce desired outputs, this is also called network architecture. There

exist three fundamentally di↵erent classes of network architectures:

1) Single-Layer Feedforward Networks. This is the simplest form of a layered

network, we have a vector of inputs that are projected onto an output layer of

neurons, but not vice versa. This networks is strictly a feedforward type and

we do not count the inputs as an independent layer because no computation is

performed there [Haykin, 2007].

2) Multilayer Feedforward Networks. The second class of feedforward neural net-

work distinguishes itself by the presence of one or more hidden layers. The

function of neurons in hidden layers is to intervene between the external input

and the network output in some useful manner. The source nodes in the in-

put layer supply elements of the activation pattern, which constitute the input

signals applied to the neurons in the second layer. The output signals of the

second layer are used as inputs to the third layer, and so on for the rest of

the network. The signals emerged from output neurons constitute the overall

response of the network to the input pattern supplied in the source nodes in

the input layer.

3) Recurrent networks. A recurrent neural network distinguishes itself from a

feedforward neural network in that it has at least one feedback loop. The

presence of feedback loops, have an impact on the learning capability of the

network and on its performance. Feedback loops involve the use of particular

18 Chapter 2 Artificial Neural Networks as Classifiers

branches composed by unit-delay elements, which result in a nonlinear dynamic

behavior.

2.2.3.1 Single Layer Feedforward Network

A single layer feed-forward consists of one or more output neurons, each one is

connected with weighting factors to all inputs. The network having only just one

neuron is the simplest form of neural network used for the classification of two

linear separable classes. The single layer network represents a linear discriminant

function.

By increasing the number of neurons in the output layer, we may classify with

more than two classes. However, classes still need to be linearly separable for the

ANN to work properly [Bishop, 2006, Theodoridis and Koutroumbas, 2008].

x0

x1

xn

y

inputs output

wn
.
.
.

w1

w0

(a) One neuron, the simplest feedfor-
ward neural network.

x1

xn

y1

yk

inputs outputs

wkn

.

.

.

.

.

.

.

.

x0

(b) Single layer feedforward net-
work of k neurons.

Figure 2.3: Single layer feedforward networks.

Figure 2.3 shows a graphical representation of two single layer feedforward

networks, in Figure 2.3a we can see the simplest form of a feedforward neural

network, while Figure 2.3b depicts one single layer neural network with k neurons.

It is important to mention that we only count the output layer since inputs does

not perform any operations.

Chapter 2 Artificial Neural Networks as Classifiers 19

2.2.3.2 Multi-Layer Feedforward Network

To solve more complicate and diverse classification problems, we have to go to

networks with one or more hidden layers between the inputs and outputs of the

system.

For example, a two-layer network (one hidden layer) with linear outputs can

uniformly approximate any continuous function on a compact input domain to

arbitrary accuracy provided the network has a su�ciently large number of hidden

units [Bishop, 2006].

x0

x1

xn

y1

yk

z0

z1

zh

inputs hidden
units outputs

whn wkh

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 2.4: One hidden layer feedforward neural network.

Figure 2.4 depicts an ANN with one hidden layer. The input, hidden, and

output variables are represented by nodes, and the weight parameters are repre-

sented by links between the nodes, in which the bias parameters are denoted by

links coming from additional input and fixed variables x
0

= 1 and z
0

= 1. Ar-

rows denote the direction of information flow through the network during forward

propagation.

20 Chapter 2 Artificial Neural Networks as Classifiers

There is some confusion in the literature regarding the terminology for counting

the number of layers in an ANN. Thus the network in Figure 2.4 may be described

as a 2-layer network (which counts the number of layers of units, and does not

count the inputs as units) or may be described as a single-hidden-layer network

(which counts the number of layers of hidden units). We decided to use the later

terminology that is Figure 2.4 is called a one hidden-layer network.

2.3 Learning in Artificial Neural Network

The fundamental di↵erence between a system that learns and one that merely

memorizes is that a learning system generalizes to unseen samples. Much of our

work is with supervised learning, getting a network to behave in a way that success-

fully approximates some specified pattern of behavior or input-output relationship.

The structure of the ANN as a classifier system is given along with a number

of known parameters (x
1

, y
1

), (x
2

, y
2

), (x
3

, y
3

), . . . , (x
N

, y
N

). The input vector x

is fed, one sample at a time, in sequence. A teacher stands beside the machine,

observing the input x
i

, the expected output y
i

and the classificator’s output ŷ
i

.

When a discrepancy is observed between the expected output and the obtained

output, the teacher notifies the machine, and the machine changes the parameters

according to a predesigned algorithm. Historically, the earliest forms of supervised

learning involved changing synaptic weights to oppose the error in a neuron with

a binary output, or to minimize the sum of squares of errors of output neurons in

a network with real-valued outputs.

When all samples in the training set have been used to modify the parameters

then an iteration of learning is completed, this is called epoch. This learning

process is repeated until some stop criteria is reached. This could be that the

classificator has reached a good classification accuracy or the maximum number

of epochs has been reached.

2.3.1 Delta rule

If we consider the case of a neuron k constituting the only node in the output

layer of a feedforward neural network, such neuron is driven by a signal vector

x(n) produced by one or more layers of hidden neurons of the neural net. The

argument n denotes discrete time or the time step of an iterative process involved

in adjusting the synaptic weights of neuron k. The output is denoted by y(n)
k

. This

Chapter 2 Artificial Neural Networks as Classifiers 21

neuron output, representing the only output of the neural network, is compared

to a desired output, denoted by d(n)
k

. Consequently, an error, denoted by e(n)
k

is

calculate by

e(n)
k

= d(n)
k

� y(n)
k

(2.10)

The error e(n)
k

actuates as control mechanism, which purpose is to apply a

sequence of corrective adjustments to the synaptic weights of neuron k. The

corrective adjustments are designed to make the output signal y(n)
k

come closer to

the desired response d(n)
k

in a step-by-step manner. This objective is achieved by

minimizing a cost function ⇠(n), defined in terms of the error output e(n)
k

as:

⇠(n) =
1

2

⇣
e(n)
k

⌘
2

(2.11)

That is, ⇠(n) is the instantaneous value of error. The step-by-step adjustment

to the synaptic weights of neuron k are continued until the network reaches a

steady state. At that point the learning process is terminated.

Minimization of the cost function ⇠(n) leads to a learning rule known as the

delta rule or Widrow-Ho↵ rule, named in honor to his originators. In mathematical

form delta rule describing adjustment to be applied to the synaptic weight is stated

by:

�w(n)

kj

= ⌘ e(n)
k

x(n)

j

(2.12)

where w(n)

kj

denotes the value of synaptic weight w
kj

of neuron k excited by element

x(n)

j

of the measurements vector x(n) at time step n. And ⌘ is a positive constant

that determinates the rate of learning as we process from one step in the learning

process to another.

Just in words delta rule can be stated as: The adjustment made to a synaptic

weight of a neuron is proportional to the product of the error signal and the input

signal of the synapse in question [Haykin, 2007].

2.3.2 Back Propagation Algorithm

BP applies a delta rule modified version with the backpropagation of the error

through previous layers of neurons. The BP algorithm consists of two pass through

the di↵erent layers of the network: a forward pass and a backward pass. In the

forward pass, an activity pattern is applied to the input nodes of the network,

22 Chapter 2 Artificial Neural Networks as Classifiers

and its e↵ect propagates through the network layer by layer. Finally, a set of

outputs is produced as the actual response of the network. As expected during

the forward pass the synaptic weights are all fixed whereas during the backward

pass, the synaptic weights are all adjusted in accordance with an error-correction

rule. Specifically, the actual response of the network is subtracted from desired

output to produce an error signal, this error is propagated backward through the

network. The synaptic weights are adjusted to make the actual response of the

network move closer to the desired output.

In particular BP algorithm, works in the following way: the error signal of the

output neuron j at iteration n (i.e. presentation of the nth training sample) is

defined by

e(n)
j

= d(n)
j

� y(n)
j

(2.13)

where d(n)
j

is the desired response for neuron j and y(n)
j

is the output obtained in

neuron j at iteration n.

⇠(n) =
1

2

X

j2C

⇣
e(n)
j

⌘
2

(2.14)

is the mean square error over all neurons in the output layer at iteration n, the

set C includes all neurons in the output layer of the network. Hence,

⇠ =
1

N

NX

n=1

⇠(n) (2.15)

is the average square error over all N samples. This average error is a function

of all the free parameters (i.e. synaptic weights and bias) of the network. For a

given TS, ⇠ represents the cost function as a measure of learning performance.

The objective is to adjust the free parameters of the network that minimize ⇠.

The minimization problem is tackled using a variant of gradient descent, where

the solution moves down in the weight space according to the calculated slope of

the error function with respect to each weight. Using calculus the slope is defined

as the partial derivative of the error with respect to the weight vector @⇠(n)/@w(n)

ji

.

BP applies a correction �w(n)

ji

to the synaptic weight w(n)

ji

which is proportional

to partial derivative. This gradient represents a sensitivity factor, determining the

direction of search in weight space for the synaptic weight w
ji

. But when we only

apply this rule, the weights from input to hidden units are never changed, so in

order to adapt the weights from inputs to hidden units, we again want to apply

the delta rule. In this case, however, we do not have a value for �w for the hidden

units.

Chapter 2 Artificial Neural Networks as Classifiers 23

In order to update the weights in the hidden neurons, one need to apply the

chain rule. The chain rule does the following: distribute the error of an output

unit e
i

to all the hidden units that is connected to, weighted by this connection.

Former in words is, a hidden unit j receives a delta from each output unit i,

this delta is weighted according to the connection weight between those units.

According to the chain rule, @⇠(n)/@w(n)

ji

is expressed as:

@⇠(n)

@w(n)

ji

= � e(n)
j

'
0

j

⇣
v(n)
j

⌘
y(n)
i

(2.16)

where '
0
j

(·) is the derivative of the activation function. The use of the minus sign

accounts for gradient descent in the weight space. The local gradient �(n) is defined

by

�(n)
j

= e(n)
j

'
0

j

⇣
v(n)
j

⌘
(2.17)

Then, correction �w(n)

ji

applied to w
ji

in BP algorithm is defined by the delta

rule as:

�w(n)

ji

= ⌘ �(n)
j

y(n)
i

(2.18)

where ⌘ is the learning-rate parameter of the BP algorithm. From Equation 2.17

we can state that, the local gradient for an output neuron j is equal to the corre-

sponding error e(n)
j

for that neuron and the derivative '
0
j

⇣
v(n)
j

⌘
of the associated

activation function.

We can apply delta rule in two cases: when j is an output node or when j it

is a hidden node.

Neuron j is an output node. When neuron j is located in the output layer,

it is supplied with a desired response of its own. We can use Equation 2.13 to

compute error signal associated with this neuron; having determined e(n)
j

, it is

straightforward compute gradient �(n)
j

using Equation 2.17 and compute �w(n)

ji

with Equation 2.18.

Neuron j is a hidden node. When neuron j is located in a hidden layer, there

is no specified desired response for that neuron. Error for a hidden neuron needs

to be determined recursively in terms of the error of all the neurons to which that

hidden neuron is directly connected. In this case the local gradient �(n)
j

for hidden

neuron is defined as:

�(n)
j

= '
0

j

⇣
v(n)
j

⌘X

k

�(n)
k

w(n)

kj

. (2.19)

24 Chapter 2 Artificial Neural Networks as Classifiers

The factor '
0
j

⇣
v(n)
j

⌘
depends solely on the activation function associated with

hidden neuron j. The remaining factor, namely the summation over k, depends

on two sets of terms. The first set of terms, the �(n)
k

, requires knowledge of the

errors e(n)
k

for all neurons that lie in the layer to the immediate right of hidden

neuron j, and that are directly connected to neuron j. The second set of terms,

the w(n)

kj

, consists of the synaptic weights associated with these connections.

To summarize, BP algorithm specifies that the correction applied to the synap-

tic weight connecting neuron i to neuron j is defined by Equation 2.18, where ⌘ is

the learning rate parameter, �(n)
j

is the local gradient and, y(n)
i

is the input signal

of neuron j. The local gradient depends on whether neuron j is an output node

(use Equation 2.17 to compute it) or a hidden node (use Equation 2.19).

2.3.2.1 Momentum

The smaller we make the learning-rate parameter ⌘, the smaller is the change of

the network weights from one iteration to the next. On the other hand, if ⌘ is

too large, in order to speed up the rate of learning, then it is possible to obtain

an unstable network. In order to accelerate the learning rate reducing the risk of

having an unstable network, Rumelhart proposed to include a momentum term to

the delta rule. This is

�w(n)

ji

= ↵ �w(n�1)

ji

+ ⌘ �(n)
j

y(n)
i

(2.20)

where ↵ is called momentum constant. The idea is to make the new change of

weights large if it is in the direction of the previous change of weights., while if it

is in a di↵erent direction make it smaller. Clearly the momentum must be between

0 and 1. Equation 2.20 is called generalized delta rule.

2.3.2.2 Sequential and Batch modes of training

For a given training set, BP may be applied in one of two basic ways:

1) Sequential mode. This is also known as on-line, pattern, stochastic or incre-

mental mode. In this mode the update of the weights is performed after the

presentation of each training sample. Usually, In this mode the patterns are

presented to the network randomly.

Chapter 2 Artificial Neural Networks as Classifiers 25

2) Batch mode. In this mode, weight updating is performed after all the training

samples have been seen by the net. It is common to use Equation 2.15 as cost

function.

2.3.2.3 Stopping criteria

In general, BP algorithm does not have well defined criteria for stopping its oper-

ation [Haykin, 2007]. Nevertheless, there are some popular techniques that have

been used to stop iterative learning while BP is applied:

• When the rate of change in the average squared error is small.

• The mean square error is su�ciently small.

• When the Euclidean norm of the gradient vector reaches a su�ciently small

gradient threshold.

• After accomplish a prefixed number of epochs.

• When the generalization performance is adequate.

2.3.2.4 Weights Initialization

It is di�cult to choose the initial value of the weights so that they are as close

as possible to the global minimum in the weight space. Since a priori knowledge

about the global minimum is limited, the initial weights must be estimated. It is

common practice to initialize randomly the weights with small values, for example,

between -0.5 and 0.5 [Gupta et al., 2003].

2.3.3 General Sequential BP Algorithm

The well know BP algorithm for sequential training is listed in Algorithm 2.1, as

explained before BP is an iterative learning algorithm where training is accom-

plished executing two phases, forward and backward; in the algorithm steps 4 and

5 form the forward phase and steps 6 to 9 form the backward phase; the two initial

steps are initialization requirements.

26 Chapter 2 Artificial Neural Networks as Classifiers

Algorithm 2.1 Sequential back propagation algorithm.

1: Initialize weights randomly taking values from the interval [�0.5, 0.5]
2: Set learning rate ⌘ 2 (0, 1) and momentum ↵ 2 (0, 1)
3: repeat
4: From TS choose a tagged input pattern x

i

to apply it to the input layer
5: Propagate pattern forward in order to calculate ANN’s output y

i

6: Calculate error between desired output and obtained; e
j

= d
j

� y
j

7: Calculate delta on the output layer; �
j

= e
j

'
j

(v
j

)
8: Calculate delta for the hidden layer; �

i

= '
0
i

(v
i

)
P
j

�
j

w
ji

9: Update all weights according to �w(n)

ji

= ↵ �w(n�1)

ji

+ ⌘ �
j

y
i

10: until Stop criteria is reached

2.3.4 BP derivatives

Since BP is based on gradient descent and this is inherently a slow convergence

method to find the minimum of the error function, many researchers have devel-

oped improvements and extensions to the basic BP algorithm.

2.3.4.1 Resilient Backpropagation

By 1990’s Riedmiller[Riedmiller and Braun, 1992, Riedmiller and Braun, 1993] de-

veloped RPROP, where the direction of each weight update is based on the sign of

the partial derivative @⇠(n)/@w(n)

ji

. The idea is to eliminate the harmful influence

of size of the partial derivative on the weight step. Only the sign of the derivative

is considered to indicate the direction of the weight update. The size of the weight

change is determined by a update-value �(n)

ji

:

�w(n)

ji

=

8
>>>><

>>>>:

��(n)

ji

, if @⇠

(n)

@w

(n)
ji

> 0

+�(n)

ji

, if @⇠

(n)

@w

(n)
ji

< 0

0, otherwise

And the update-value is determined on a sign independ adaptation process

[Riedmiller, 1994]:

�(n)

ji

=

8
>>>><

>>>>:

⌘+ · �(n�1)

ji

, if @⇠

(n�1)

@w

(n)
ji

@⇠

(n)

@w

(n)
ji

> 0

⌘� · �(n�1)

ji

, if @⇠

(n�1)

@w

(n)
ji

@⇠

(n)

@w

(n)
ji

< 0

�(n�1)

ji

, otherwise

Chapter 2 Artificial Neural Networks as Classifiers 27

where 0 < ⌘� < 1 < ⌘+.

2.3.4.2 Improved RPROP

Despite RPROP is one of the best performing first-order learning methods for

neural networks, in 2000 year Igel proposed iRPROP [Igel and Hüsken, 2000] as a

modified version of original algorithm RPROP.

Two versions of iRPROP was stated, iRPROP+ and iRPROP�; the first

performs weight-backtracking in the cases where overall error increased and always

sets the derivative @⇠(n)/@w(n)

ji

to zero; the second performs the same as iRPROP+

without weight-backtracking [Igel and Hüsken, 2003].

2.3.4.3 QuickProp

Fahlman [Fahlman, 1988] developed a BP based heuristic which takes into account

the curvature of the error surface at any point by defining:

�w(n)

ji

=

8
<

:
↵(n)

ji

· �w(n�1)

ji

, if �w(n�1)

ji

6= 0

⌘ · @⇠

(n)

@w

(n)
ji

, if �w(n�1)

ji

= 0

where

↵(n)

ji

= min

0

B@

@⇠

(n)

@w

(n)
ji

@⇠

(n�1)

@w

(n)
ji

� @⇠

(n)

@w

(n)
ji

,↵
max

1

CA

Quickprop update weights once after each presentation of the entire set (batch

training) and requires the storage of four values for every weight: the weight

itself, the slope accumulated for the current training epoch, the previous delta,

and the previous slope. If the goal is to use the minimum number of memory bits

during training, a simple gradient descent algorithm may be superior to quickprop

[Hoehfeld and Fahlman, 1992].

2.4 Generalization, Accuracy, and OverFitting

ANN generalize well it appropriately classifies items that are not included in the

training set. Generalization ability is measured by the accuracy of these classifica-

tions. In order to understand more easily generalization we can make an analogy

28 Chapter 2 Artificial Neural Networks as Classifiers

with a curve fitting. That is, we try to approximate a set of points with a straight

line or a low-degree polynomial curve. At this point, we are confident that we

have captured some underlying relationship in the data if the fit to the data is

very good and if there is a lot of data. The fitted curve can then be used to

estimate (with reasonable reliability) values for new data points not used earlier

in the fitting process. If a straight line does not fit the data well, then perhaps we

might try a second degree curve, and so on.

A similar story can be told for ANN. ANN computes a complex, nonlinear

function of its inputs. If the classification of these inputs is in fact some function

that is close to some member of the set of functions implementable by the network,

and if the fit by a trained network on the data is very good for a large number

of inputs, then it is likely that the training process has captured the underlying

relationship between inputs and outputs. In this case, generalization to new inputs

should be good [Nilsson, 1998].

A classificator accuracy usually is measured in both training set and validation

set. A common measure is the number of samples correctly classified in those sets.

For instance, if the training set has 500 members and the validation set only 100,

and our classification system correctly classifies 490 and 95 respectively, then our

classificator has an accuracy of 98% in the training set, and accuracy of 95% in

the validation set.

Even if a training set error is low, generalization might not be good. This

error is called in statistics the out-of-sample-set error rate. If a classifier present

low error rate in TS but high error rate in VS means that the classificator has

learnt very well the training samples but generalization has been lost. This is

called overfitting, and scientists have been developed some technics to avoid this

situation.

Perhaps the simplest technique is to divide the input vectors available for

training into two disjoint sets and use one of these for training. After training is

finished, we use the other set for estimating the out-of-sample error rate. When we

do not have enough data, one is forced to use another technique to fight overfitting.

One of these techniques is cross validation. In this method we divide the vectors

available for training into k disjoint subsets, called folds. We select one of these

folds as a validation set and use the other k � 1 as a training set. We do this k

times, each time selecting a di↵erent fold as a validation set and its complement as

the training set. We compute the error rate for each validation set (after training

on its complement) and take the average of these error rates as the estimate of

Chapter 2 Artificial Neural Networks as Classifiers 29

the out-of-sample error. Experimental results suggest that taking k from 5 to 10

gives reasonable estimates of generalization. For the special case of k = m where

m is the number of labeled vectors available, we have what is called leave-one-out

cross validation.

2.5 Concluding Remarks

The essence of BP learning algorithm is to encode an input-output mapping into

the synaptic weights and thresholds of a multilayer perceptron. The hope is that

the network becomes well trained so that it learns enough about the past to gen-

eralize to the future events.

Chapter 3

Genetic Algorithms

Charles Darwin proposed the theory of natural evolution in the origin of species

[Darwin, 1909]. Over several generations, biological organisms have evolved to

reach certain remarkable features based on the principle of natural selection, i.e.,

survival of the fittest. Darwinian evolution is intrinsically a search and optimiza-

tion mechanism. Evolved organisms demonstrate optimized complex behavior at

each level: the cell, the organ, the individual and the population. Biological

species have solved the problems of chaos, chance, nonlinear relationships, and

temporality. These problems proved to be in equivalence with the classic methods

of optimization [Sivanandam and Deepa, 2008]. The evolutionary concept can be

applied to problems where traditional optimizations techniques have been unable

to produce solutions or these are unsatisfactory.

The theory of natural selection proposes that the plants and animals that exist

today are the result of millions of years of adaptation to the demands of the

environment. At any given time, a number of di↵erent organisms may coexist and

compete for the same resource in an ecosystem. Due to this, poorly performing

individuals have less chance to survive, and the most adapted or fit individuals

produce a relatively large number of o↵springs. It can also be noted that during

reproduction, a recombination of the good characteristics of each ancestor can

produce better fit o↵spring. After some generations, species evolve to become

more and more adapted to their environment.

31

32 Chapter 3 Genetic Algorithms

3.1 Biological Background

The science that deals with the mechanisms responsible for similarities and di↵er-

ences in species is called Genetics. The word genetics is derived from the Greek

word genesis meaning origin. The science of genetics helps us to di↵erentiate be-

tween heredity and variations, genetics seek to account for the resemblances and

di↵erences. The concepts and mechanisms implemented in GA are directly de-

rived from natural evolution. The main terminologies involved in the biological

background of species are described in genetics as follows:

Every human/animal cell is a complex of many “micro” factories that work

together. The center of all this is the cell nucleus. The genetic information is

contained in the cell nucleus.

All the genetic information gets stored in well defined structures know as chro-

mosomes. Each chromosome is build of Dioxy Ribo Nucleic Acid (DNA). In hu-

mans, a chromosome exists in the form of pairs (23 pairs found). The chromosomes

are divided into several parts called genes. Genes code the properties of species

i.e., the characteristics of an individual. The set of all the genes of a specific species

is called genome. Each and every gene has an unique position on the genome called

locus, allele is one of alternative forms of a gene. Most living organisms store their

genome on two or more chromosomes copies (diploidism and polyploidism respec-

tively), but in the GA, all the genome information usually are stored on the same

chromosome (haploidism). Thus chromosomes and genomes are synonyms with

one other in GA.

For a particular individual, the entire combination of genes is called genotype.

The phenotype describes the physical aspect, the characteristics of the individual

are interpreted through the decoding of genes. One interesting point of evolu-

tion is that selection is always done on the phenotype whereas the reproduction

recombines genotype. Morphogenesis means form of living organisms, it is the pro-

cedure to transform individual’s genotype to a certain characteristics, this map-

ping between genotype and fenotype depends directly of the encoding used and

the meaning of each gene. Morphogenesis plays a key role between selection and

reproduction.

Reproduction of species via genetic information is carried out by, mitosis and

meiosis. In Mitosis the same genetic information is copied to new o↵spring. There

is no exchange of information. This is a normal way of growing of multi cell

Chapter 3 Genetic Algorithms 33

structures, like organs. Meiosis forms the basis of sexual reproduction. When

meiotic division takes place two gametes appear in the process. When reproduction

occurs, these two gametes conjugate to a zygote which becomes the new individual

(o↵spring).

The origin of species is based on preservation of favorable variations and re-

jection of unfavorable ones. The variation refers to the di↵erences shown by the

individual of a specie and also between the parents and its o↵spring. Individuals

better adapted in living environment have a greater chance of survive (better fit).

Qualify individuals in the population takes importance because better individuals

usually have better chances to heritage genetic information to their o↵springs, as

a result, natural selection plays a major role in this survival process.

3.2 Overview of GA

Evolutionary computation (EC) techniques abstract biological evolutionary prin-

ciples into algorithms that may be used to search for solutions to a problem. In

EC, there are four historical paradigms that have served as the basis of much

of the activity in the field: genetic algorithms [Holland, 1975], genetic program-

ming [Koza, 1992], evolutionary strategies [Rechenberg, 1973], and evolutionary

programming [Fogel et al., 1966]. The most popular technique in evolutionary

computation research has been the genetic algorithm.

In the mid 70’s Holland developed natural evolution’s ideas in his book “Adap-

tation in natural and artificial systems”. He described how to apply the principles

of natural evolution to optimization problems and built the first Genetic Algo-

rithms. In this book the term adaptation, the ability to adapt, plays a central role

and is defined as a process of progressive modification of structures, which leads

to improve performance of the system interacting with its environment.

Genetic algorithms glean ideas from natural mechanisms of reproduction, the

four essential principles manifest in nature are the core ingredients of genetic algo-

rithm [Jacob, 2001] : (1) the dualism principle of separating genetic information

of the genotype the expressed phenotype, (2) a discrete encoding of genotypical

structures, (3) recombination e↵ects resulting from sexual reproduction, and (4)

elementary buildings blocks, which are combined according to specific templates,

help in the composition of complex interacting systems, representing a core pre-

condition of modular design and construction.

34 Chapter 3 Genetic Algorithms

Dualism: In biological systems, the genetic information encoded in DNA is

used in two ways, as genetic information, which is replicated, and as instruc-

tions, which have to be executed. In GA, the genotypical structures, modified by

an evolutionary algorithm through recombination and mutation, are clearly sep-

arated from the phenotypical structures. The evolution is not performed in the

space of the parameters to be optimized but in an encoding, genotypical structure

space. The principal separation of phenotype and genotype in nature is explicitly

implemented by genetic algorithms.

Discrete encoding: In DNA strands, genetic information is encoded by a

four letter alphabet. For GA structures a binary string representation is used, but

any other encoding scheme over a discrete, finite alphabet may be chosen as well.

Recombination e↵ects: The cells of sexually reproducing individuals con-

sist of a double set of homologous1 chromosomes, each half from the o↵spring’s

mother and father. Paired chromosomes are mutually exchanged by crossover, the

resulting descendant cells contain a slightly mutated chromosome set, merged from

the genetic information of both parental cells. GA replicate these recombination

e↵ects and integrate them into evolutionary simulation models and optimization

algorithms.

Elementary building blocks: Complex adaptive systems, such as the in-

teractions of genome structures, are hierarchically composed of simple elementary

units. This modular organization principle plays a decisive role in the encoding

structures of genetic algorithms as well. The genotypical GA structures are also

built from elementary buildings blocks: short binary strings, command sequences,

variables, constants, or symbolic expressions.

3.3 Terminologies in GA

3.3.1 Individuals

An individual is a single possible solution. Following nature fenotype/genotype

dualism, GA implements in individual two forms of solutions:

• The chromosome (genotype), which is the genetic information that the GA

deals with.
1Chromosomes having the same length and same gene coding but possibly di↵erent alleles

Chapter 3 Genetic Algorithms 35

• The phenotype, which is the representation of the chromosome in terms of

the model.

Figure 3.1 represents the nature dualism implemented in GA, where bottom

plane are the genotypical space and upper plane is the phenotypical space, every

individual has one genotype and one phenotype.

 Phenotypical
 space

 Genotypical
space

011010

101101
111001

Figure 3.1: Genotype and fenotype dualism as a nature principle in GA.

3.3.2 Chromosome (Genotype)

A chromosome is a sequence of encoded genes. A chromosome contains in some

way, information about the solution that it represents. The morphogenesis func-

tion associates each genotype with its phenotype. It simply means that each

chromosome must define one unique solution. Figure 3.2 shows a typical chromo-

some used in GA, also at bottom part in Figure 3.1 (genotypical space) a set of

chromosomes are represented as binary strings.

11111 00000

Figure 3.2: GA chromosome.

36 Chapter 3 Genetic Algorithms

3.3.3 Phenotype

Phenotype is the form of the chromosome in the environment, the modifications

are performed in the genotypical space and qualifying/selection take place in phe-

notypical space. Genotype and phenotype form a dualism and a GA evolves in-

dividuals by applying operators in both levels. Upper part of Figure 3.1 shows

phenotypical space, each filled square represent one phenotype, bottom part rep-

resents genotypical space.

3.3.4 Genes

A chromosome is subdivided into genes. A Gene describes a part of a possible

solution to a problem, without actually being the complete solution. The structure

of each gene is defined in a record of phenotyping parameters. The phenotype

parameters are instructions that map from genotype to phenotype. It can also be

said as encoding a solution set into a chromosome and decoding a chromosome to

a solution set. In Figure 3.2, we can see a binary chromosome form by ten genes,

each square (gene) contains one of two possible alleles, 0 or 1.

3.3.5 Morphogenesis

The mapping between genotype and phenotype is necessary to convert solution

sets from the model to a structure that a GA can work with, and new individuals

from the GA to a form that the model can evaluate. This is called Morphogenesis.

In Figure 3.1 dashed arrows represent morphogenesis of each individual.

3.3.6 Fitness

The fitness of an individual in a GA is the value assigned by measuring the ap-

titude of how good a phenotype in the environment. For computing fitness, the

chromosome is first decoded and then the fitness function assigns a number ac-

cording to their characteristics. In a nutshell the fitness indicates how good the

solution is.

Chapter 3 Genetic Algorithms 37

3.3.7 Population

A population is a collection of individuals. The two important characteristics of a

GA population are: the initial population and the population size. It is common

to use a random initial population, but there may be instances where the initial

population is built with some known good solutions.

In Figure 3.3 a random population of n individuals is represented as binary

strings of ten genes.

chromosome 1

11111 00000

11 00111 000

chromosome 2

11 001 111 00

chromosome 3

.

.

.

11 000 010 00

chromosome n

Figure 3.3: Genetic algorithm population.

3.3.8 Encoding

Encoding is a process of representing individual genes into the chromosome. The

process can be performed using bits, numbers, trees, arrays, lists or any other

object. The encoding depends mainly on the kind of problem. For example, in a

continuous problem would make more sense to encode a real number whereas in a

discrete problem integers or a binary string would be more appropriate.

3.4 Genetic Operators

For GA to find an optimum solution, it is necessary to perform certain operations

over the individuals. This section discusses the basic operators used in GA to

achieve a acceptable solutions.

38 Chapter 3 Genetic Algorithms

The breeding process is the heart of the genetic algorithm. It is in this process,

where new and hopefully fitter individuals are created. The breeding cycle consists

of four steps:

I. Selecting parents for crossover.

II. Crossover the parents to create new individuals.

III. Mutating o↵springs.

IV. Replacing old individuals in the population with the new ones.

3.4.1 Selection

Selection is the process of choosing parents from the population for crossover. The

selection criteria used is a critical factor that determines the success of failure of

an evolutionary algorithm given that only those individuals are the ones that pass

their genetic information from one generation to the next. GA follows a criterion

which is closely related to selection among natural organisms.

As it is in nature, the purpose of selection is to emphasize fitter individuals

in the population with the hope that their o↵springs would have better fitness.

Selection is a method that picks chromosomes out of the population according

to their evaluation function. The better the fitness function, the more chance an

individual can be selected.

The most common methods of selection are: fitness proportionate selection,

rank based selection and tournament selection. Proportionate selection picks out

individuals based on their fitness values, the better individuals have greater prob-

ability of being selected. Rank based selection schemes selects individuals base

on their rank within the population. In tournament selection, n individuals are

selected randomly from the population in order to compete each other, the winner

is the one with the best fitness and this is selected.

3.4.2 Crossover (Recombination)

Crossover is the process of taking some parents to produce from them some o↵-

springs. The basic parameter in crossover is the crossover probability (Pc). This

parameter describes how often crossover will be performed. If there is no crossover,

Chapter 3 Genetic Algorithms 39

o↵spring are exact copies of parents. If there is crossover, o↵spring are made from

parts of both parent’s chromosome.

There are many ways to perform crossover, the simplest one is called single

point crossover, this involve two parents and one single point of crossover; oth-

ers common crossover approaches are: two points, multipoint, uniform and three

parents.

Single Point: In this crossover approach one crossover point is selected ran-

domly along the length of the mated chromosomes and genes next to the cross-site

are exchanged for getting two o↵springs.

Figure 3.4 shows a single point crossover in a pool of two mating binary chro-

mosomes. One random crossover point is selected (3.4a), then the genes next to

the cross point are exchanged (3.4b) and finally, two new individuals (o↵springs)

are generated (3.4c).

11111 00000

11 00111 000

first parent

random
crossing

point

second parent

(a) Crossover single point randomly selected.

111 000

111 000

1100

11 00

crossover

(b) Genes next to the cross point are exchanged.

110011 000 1

first offspring

second offspring

111 000 11 00

(c) Two resulting o↵springs.

Figure 3.4: Single point binary chromosome crossover.

40 Chapter 3 Genetic Algorithms

Two points: In two-point crossover, two crossover points are chosen and the

contents between these points are exchanged between two mated parents.

In Figure 3.5 the dotted lines indicate the crossover points (3.5a). The content

between these points are exchanged among the parents (3.5b) to produce new

children (3.5c) for mating in the next generation.

11111 00000

11 00111 000

first parent

second random
crossing point

second parent

first random
crossing point

(a) Two crossover points are randomly selected.

111 000

111 000

1100

11 00

crossover

(b) Genes between cross points are exchanged.

100001 100 1

first offspring

second offspring

101 100 11 10

(c) Two resulting o↵springs.

Figure 3.5: Two points binary chromosome crossover.

Multipoint: This approach can be accomplish in two ways. One is even

number of cross-sites and the other odd number of cross-sites. In the case of

even number of cross-sites, cross-sites are selected randomly around a circle and

information is exchanged. In the case of odd number of cross-sites, a di↵erent

cross-point is always assumed at the string beginning.

Uniform: Each gene in the o↵spring is created by copying the corresponding

gene from one or the other parent chosen according to a random generated binary

crossover mask of the same length as the chromosomes. O↵springs, therefore

contain a mixture of genes from each parent.

Chapter 3 Genetic Algorithms 41

Three parents: Three parents are randomly chosen. Each bit of the first

parent is compared with the bit of the second parent. If both are equal, the bit is

taken otherwise; the bit from the third parent is taken, for the o↵spring.

3.4.3 Mutation

After crossover, the chromosomes are set to mutation. Mutation plays the role

of recovering the lost genetic materials as well as for randomly disturbing genetic

information. It is an insurance policy against the irreversible loss of genetic mate-

rial [Sivanandam and Deepa, 2008]. If crossover is supposed to exploit the current

solution to find better ones, mutation is supposed to help for the exploration of

the whole search space.

There are many di↵erent forms of mutation for the di↵erent kinds of represen-

tation. For binary representation, a simple mutation can consist in inverting the

value of each gene with a small probability.

Mutation has two parameters: the mutation probability (Pm) and the gene

mutation probability (Pm
gene

). The mutation probability decides how often chro-

mosome will be mutated. Once this has been determined, Pm
gene

is used as

mutation point probability or mutation gene probability, for deciding if a single

gene should be mutated or not.

Figure 3.6 depicts the mutation of a binary chromosome, where the bits are

slipped in the locus 3 and 10.

11111 00000

(a) Chromosome subject to mutation with Pmgene = 0.2.

01111 00010

(b) Resulting chromosome after mutation.

Figure 3.6: Binary chromosome mutation.

42 Chapter 3 Genetic Algorithms

3.4.4 Replacing individuals

Replacement is the last stage of any breeding cycle. Two parents are drawn

from a fixed size population, traditionally they breed two children, but not all

four can return to the population, so two must be replaced in order to keep the

population size constant. Basically, there are two kinds of methods for updating

the population; generational updates and steady state updates.

The generational scheme consists in producing µ children from a population

of size µ to form the population at the next time step (generation), and this new

population of children completely replaces the parent selection. Clearly this kind

of update implies that an individual can only reproduce with individuals from the

same generation. We called this method comma and use a symbol “,” to reference

it.

Of course, there exists slightly di↵erent versions of generational update, for

instance, from a parent population of size µ, � o↵springs are generated. Then the

µ best individuals from either the o↵spring and parent form the next generation.

We called this method plus and use a symbol + to reference it.

The insertion of a new individual usually requires the replacement of another

population member. The individual to be replaced can be chosen as the worst

member of the population. (it leads to a very strong selection pressure), or as the

oldest member of the population, but those method are quite radical.

Generally, steady state updates use traditional selection for both creation of

the mating pool and the replacement, usually a tournament method. Tourna-

ment replacement is exactly analogous to tournament selection except the less fit

solutions are picked as the winner in the tournament.

3.5 Genetic Algorithms

GA evolution starts with the creation of the initial population of µ individuals.

After interpretation (decoding) and evaluation of the individuals, the population

enters a selection-crossover-mutation cycle, which is performed until a stop criteria

is reached. Operators applied in this cycle are constrained to manipulate the

individuals in a manner consistent with the structural interpretation of genes.

The standard GA procedure is presented in Algorithm 3.1:

Chapter 3 Genetic Algorithms 43

Algorithm 3.1 Genetic algorithm.

1: Initialize the population
2: Calculate fitness for each individual in the population.
3: repeat
4: Select individuals for mating
5: Perform crossover to form o↵springs
6: Mutate the o↵springs
7: Calculate the fitness of new individuals
8: Decide which individuals will form the new generation
9: until Stop criteria reached

3.6 Concluding Remarks

In this chapter, we have presented the overall process followed by genetic algo-

rithm, as well as reviewing its main operators.

GA is an iterative approach based on Darwin’s evolution theory; in where,

adaptation of the fittest individual, brings better possibilities of survival to his

descendants.

GA works with a population of individuals, each individual is a potential so-

lution. For each generation performs three main operations, selection, crossover

and mutation. Selection, picks individuals for crossover according to their fitness.

Crossover, mate individuals in order to generate new ones. Finally, mutation,

apply small changes to the generated individuals. Those three operations are

performed iteratively until the stop criteria is reached.

Chapter 4

Evolving Artificial Neural

Networks

Genetic-Evolutionary Approach for Neural Networks, GEANN, is the approach

proposed in this thesis. GEANN evolves ANNs in order to design an accurate

classifier for a given tagged dataset, GEANN performs one preliminary arithmetic

adjustment (data scaling) and carry out three stages to accomplish the final trained

classifier ANN.

This evolutionary approach aims to automate ANN’s design for classification,

it attempts to achieve this by carrying out three simple stages. Figure 4.1 shows

the flow chart of 3 stages that form the proposed approach. The procedure begins

with a given tagged TS, this dataset contains severals samples where x
i

2 R.
The preprocessing step is an a�ne transformation, where the observation mea-

surements domain is translated from the original domain R to the interval [�1, 1].

Once the dataset has been scaled, the first phase uses a GA to design the

ANN’s topology, to select the features, and to select a training algorithm among:

BP, BP batch, QuickPROP, and iRPROP. Relying on a K-fold cross validation

technique, the second phase determines the number of epochs that the learning

algorithm is applied to the evolved ANN in order to avoid overfitting. The final

phase trains the evolved ANN applying the learning algorithm as many epochs as

they were determined in the second phase. GEANN returns a fully designed and

trained ANN to classify multidimensional samples as those presented in the given

dataset.

45

46 Chapter 4 Evolving Artificial Neural Networks

Begin

Linear Scaling

Evolve ANNs

K-fold
crossvalidation

Training

End

TS, xi 2 R

TS, xi 2 [�1, 1]

ANN's topology

epochs

Final designed and trained
classificator ANN

Figure 4.1: Flowchart of GEANN, the proposed approach for automatic design of
artificial neural network classifiers by means of genetic algorithms.

A detailled explanation of the proposed approach is presented along this chap-

ter.

4.1 Data Linear Scaling

Since learning takes place in the form of an iterative process, through the training

algorithm, it is a good idea to transform the data before sending it to the GA.

This pre-processing of information, is a simple linear rescale. One needs to be

Chapter 4 Evolving Artificial Neural Networks 47

careful in rescaling, though, since it may transform a feature from one value to

another one, and does not reflect the potential importance of each characteristic

[Bishop, 2002].

By applying a linear transformation all inputs are rearranged, and get a re-

spective value between -1 to 1. So, for each characteristic the new minimum

value of all samples will be -1 and the new maximum value 1. To do this, we

treat each of the input variables independently, and for each feature x
i

we recal-

culate its new value by the application of Algorithm 4.1. First, for each mea-

surement, minimum and maximum values are found with respect to the train-

ing set. Then, compute the scale factor as factor = new span/span, where

span = max�min, and new span = new max� new min, since new interval is

[�1, 1] then, new span = 2. All observations are recalculated with new data =

(x
i

�min) ⇤ factor + new min.

Algorithm 4.1 Data linear scaling algorithm.

Require: TS with N samples, D features per sample, and x
i

2 R
1: for j 1 to D do
2: min

j

,max
j

 min(x
j

),max(x
j

)
3: span

j

 max
j

�min
j

4: factor
j

 2/span
j

5: for i 1 to N do
6: x

ij

 (x
ij

�min
j

) ⇤ factor
j

� 1
7: end for
8: end for
9: return TS, x

i

2 [�1, 1]

Through the application of Algorithm 4.1 we get one array of factors and one

array of minimums, one factor and one minimum for each feature. Using those

values, same preprocessing is done for new unseen samples of VS.

4.2 ANN Evolution

ANN are evolved using a GA, throughout evolution process many ANN’s charac-

teristics are found, such as the number of input neurons, which inputs are relevants,

the number of neurons in the hidden layer, the activation function for each layer,

and the training algorithm.

There are three main activities to realize when working with genetic algorithms,

design chromosome representation, test crossover and mutation operations, and

design the fitness function.

48 Chapter 4 Evolving Artificial Neural Networks

4.2.1 Chromosome Description

The chromosomes used in this work are binary strings of fixed length for each

problem. The chromosome has been designed in order to faithfully represent one

hidden layer ANN and also has been formed according to the canonical GA, so

this allows us to use traditional operations without lose of representativity for

individuals.

Since the proposed approach is intended to tackle any tagged TS, then chro-

mosomes are able to represent a wide variety of networks sizes. GA’s individuals

will have a variable number of input and hidden neurons, besides, chromosome are

able to specify one activation function for each layer from a set, and also specify

one training algorithm.

Inputs

0 ... 01 ... 10 11 0 0

#hidden
neurons

Training
algorithm

Activation function
for hidden layer

11 0 0

Activation function
for output layer

1

Figure 4.2: Binary chromosome used to represent one hidden layer artificial
feedforward neural network.

Figure 4.2 shows the chromosome structure used in this thesis. From left to

right, the first section represents inputs; its length is equal to the number of

features of the problem, in this section there will be as many genes as obser-

vations a sample has. The next section, stores the number of hidden neurons

using a binary coded integer number (the length of this section is calculated by

dLog
2

(2 · (N/D log(N)))e). The third section uses only two genes to represent

the training algorithm to be used; Table 4.1 shows the list of possible learning

algorithms. The last two sections, contain binary coded number of the activation

function for the hidden and the output layer respectively; each of these have a

length of 4 genes. Table 4.2 shows the list of possible activation functions for

neurons of the hidden and output layers. Appendix B has a plot for each of the

functions.

Number of input neurons and feature selection

The goal of feature selection is to find the subset of features that produces the

best recognition performance and requires the least computational e↵ort.

Chapter 4 Evolving Artificial Neural Networks 49

Table 4.1: List of training algorithms

Algorithm Genes
0 Sequential back propagation 00
1 Batch back propagation 01
2 QuickPROP 10
3 iRPROP 11

Table 4.2: List of activation functions

Name Genes
0 Linear 0000
1 Sin 0001
2 Cos 0010
3 Sigmoid 0011
4 Sigmoid stepwise 0100
5 Sigmoid symmetric 0101
6 Sigmoid symmetric stepwise 0110
7 Gaussian 0111
8 Gaussian symmetric 1000
9 Not used
10 Elliot 1010
11 Elliot symmetric 1011
12 Linear piece 1100
13 Linear piece symmetric 1101
14 Sin symmetric 1110
15 Cos symmetric 1111

Adding more features does not necessarily improve discrimination performance.

An important goal is to choose the best set of features from the discriminating

features that are available. GA have been used to automatically determine the

relative importance of many di↵erent features and to select a good subset of fea-

tures available to the system. We use GA to select a best feature subset, defined

as a particular set of features that is the best in discriminating the target from

the natural clutter.

GA is used to seek the smallest (or the least expensive) subset of features for

which the classifier’s performance does not deteriorate below a certain specified

level. During the search, each subset can be coded as a D-element bit string (D is

the total number of features). The ith element of the bit string assumes 0 if the

ith feature is excluded from the subset and 1 if it is present in the subset.

50 Chapter 4 Evolving Artificial Neural Networks

The chromosome’s first section represents the inputs, genes that contain a 1

indicates that the respective input variables will be taken into account. On the

other hand, genes that contain a 0 indicates that likewise inputs will not be taken

into account. This input representation allows GA to perform feature selection at

the same time it finds the ANN’s topology.

Number of hidden neurons

In [Huang and Babri, 1998] has been rigorously proved that for N arbitrary

distinct samples, one ANN with at most N hidden neurons and with any bounded

nonlinear activation function which has a limit at one infinity can learn this N

distinct samples with zero error. Despite their proof, for our approach this is

still a large upper limit for determining the number of hidden neurons. We are

not tackling an optimization problem for classification function f(x) = y, we do

not intend to learn this function with zero error. But find an ANN that behave

tantamount to f(x) = y.

Several researchers have proposed some rules of thumb for determining an

optimal number of hidden units for any application. For instance: A rule of

thumb is for the size of this hidden layer to be somewhere between the input layer

size and the output layer size ... [Blum, 1992]. How large should the hidden layer

be? One rule of thumb is that it should never be more than twice as large as the

input layer..., [Berry and Lino↵, 1997], and typically, we specify as many hidden

nodes as dimensions needed to capture 70-90 % of the variance of the input data

set... [Boger and Guterman, 1997]. Most of those rules are not applicable to most

circumstances as they do not consider the training set size (number of training

pairs), or the complexity of the data set to be learnt [Xu and Che, 2008].

Based on Barron’s work [Barron, 1994], Shuxiang Xu and Ling Chen propose

a novel approach for determining an optimal number of hidden layer neurons for

feed forward neural networks [Xu and Che, 2008]. In their work, after conducted a

number of experiments they found that for a small or medium-sized dataset (with

less than 5,000 training pairs), when N/n is less than or close to 30, the optimal

number of hidden neurons most frequently occurs on the number of samples (N);

however, when N/D is greater than 30, the optimal number of hidden neurons is

close to the value of
q

N

D log(N)

.

The former approach has been relaxed a little bit in order to allow GA to

find the optimum number of hidden neurons; for the case where N/D is less than

or close to 30, N is taken as the maximum number of possible hidden neurons;

Chapter 4 Evolving Artificial Neural Networks 51

otherwise is calculated with 2 ·
⇣

N

D log(N)

⌘
. The above formula is a very relaxed

upper limit, large enough that GA will find an adequate number of neurons in the

hidden layer.

The former number is coded as part of the chromosome in a binary substring

of length
l
Log

2

⇣
2 ·
⇣

N

D log(N)

⌘⌘ m
.

Number of output neurons

Apparently the number of output neurons is missing in chromosome represen-

tation, but in the proposed approach, the number of output neurons is not required

to be coded in the chromosome. The output produced by the ANN in response to

input pattern x
j

lies in output neurons y
1

, y
2

, y
3

, . . . , y
k

.

Since the codomain of activation functions used is [0, 1] or [�1, 1], it is expected
for a k class type sample, only the y

k

output neuron presents the maximum value

(1 or near to 1) and the complement set of output neurons present the minimum

value (0 or -1 if using symmetric function). This is, the ANN classificator activates

the output neuron to the corresponding class of input vector x
j

.

Using the former scheme of activating only output neuron number k, it is clear

to see that the number of output neurons depends on the problem addressed.

This is, in a k-class classification problem, we need a total of k output neurons

to represent all possible classification decisions. This is a fixed characteristic,

therefore, it is not evolved, and so it is not included in the chromosome.

xj

Artificial
Neural

Network

y1

y2

y3
.
.
.

yk

Figure 4.3: Number of output neurons is defined directly by the number of
di↵erent classes existing in the problem

Figure 4.3 illustrates how the number of output neurons is directly determined

by the number of di↵erent classes existing in the classification problem. In this

52 Chapter 4 Evolving Artificial Neural Networks

figure vector x
j

denotes the jth sample of an D-dimensional input vector to be

classified by an ANN.

As an example of chromosome representation used, Figure 4.4 shows one chro-

mosome for a problem with N = 560, D = 5 and C = 2. Chromosome is 21

genes length and encodes 3 input neurons from 5 possible, the first, the second

and the fifth; 5 hidden neurons; 2 output neurons; hidden neurons have sigmoid

symmetric as activation function, and output layer elliot symmetric; when train-

ing in order to calculate fitness, this individual should learn with batch version of

back propagation algorithm.

010101 101100010111001

Figure 4.4: Example of chromosome used in this thesis.

When working with binary and same length chromosomes (as used in this the-

sis), there is no need to check functionality of crossover and mutation operations,

because crossing two binary homologous chromosome generates one or more bi-

nary chromosome, and when mutating one or more genes will produce an equal

length binary chromosome.

4.2.2 Fitness calculation

Fitness is a measure of how good one individual is. In this thesis the fitness value

is limited to interval [0, 1] and it is calculated according to the number of correct

classifications made by each class. If one individual hits all the samples of one

class and half the samples of second one, it will have 0.75 in his fitness function.

We decide to use a learning strategy for training the ANN, instead of evolving

its weights. Learning algorithms are generally gradient-based, so one could argue

that they would get stuck at local optima.

Given that there exists a set of unknown samples, we do not intend to learn

the classification function f(x) = y with zero error. But find an ANN that behave

tantamount to f(x) = y. If optimal fitness were found, the generalization ability

of the network could be compromised.

Chapter 4 Evolving Artificial Neural Networks 53

Algorithm 4.2 shows the fitness computing used in this thesis. It begins with

chromosome decoding, this is done for interpreting phenotype starting from geno-

type; then, according to structure decoded an ANN is created; next, flags training

terminators time limit and epochs limit are initialized; after that, ANN enters to

the training loop until one flag reaches stop condition; last, the number of true

positives classifications made by class are calculated; finally, the mean value of

correct classifications made by class are returned as the fitness of chromosome

given.

Algorithm 4.2 Fitness calculation.

Require: Chromosome, time limit, epochs limit,TS with C number of classes
1: Decode chromosome
2: Create ANN according to chromosome
3: timer 0 seconds
4: epochs 0
5: while timer < time limit and epochs < epochs limit do
6: Train one epoch ANN(TS)
7: epochs epochs+ 1
8: end while
9: for i 1 to C do

10: class accuracy
i

 samples correctly classified from class i

samples existing in class i

11: end for
12: fitness mean(class accuracy)
13: return fitness

The training loop is limited by time or number of epochs because there is no

other stop criteria that ensures reaching the stop condition.

There are two factors that one must take into consideration in order to decide

which library to use to train the ANN. First comes the training time, that is, if

the algorithm takes a lot of time training the network, then we will be forced to

evaluate only a small number of individuals to provide a result in a reasonable time.

Secondly, one must consider the flexibility of the algorithm, i.e., the parameters

of the net that can be modified. The former restricts the number of parameters

that can be evolved. For example, if the chosen algorithm does not accept to

modify the number of neurons in the hidden layer, then one would not be able to

modify this parameter in the evolutionary process. Here, we decided to use the

Fast Artificial Neural Network Library (FANN) [Nissen, 2003], which is e�cient

and very flexible, with a vast number of parameters that can be modified.

54 Chapter 4 Evolving Artificial Neural Networks

4.2.2.1 Evolution result

Despite some researchers have proposed to use population information in evolu-

tionary ANN for improving generalization in learning systems [Yao et al., 1998,

Cho, 1999, Liu et al., 2001, Gabrys and Ruta, 2006], the proposed approach only

takes into account the best individual in the final population. The former decision

is supported on Kolmogorov’s theorem (Section 1.1) and on Huang and Babri’s

proof [Huang and Babri, 1998], where it is shown that one hidden layer network

with enough number of hidden neurons has the capability of learning any multi-

variable function with zero error.

For the cases where two or more individuals present equal fitnesses, GEANN

follows the parsimony principle and prefers a smaller and simpler individual than

a complex and larger one; that is, having the minimum possible number of neurons

in the input and hidden layers, without detriment to their classifying capabilities.

GA will find an appropriate ANN topology, by performing a feature selection,

i.e. it discerns what variables are important for the classification problem and

what variables are not. The number of variables determines the number of input

neurons in the final classifier. The evolutionary process determines the necessary

number of hidden neurons and what training algorithm is the best for the designed

topology. Also, GA find what activation function should be used in the hidden

layer and the output layer.

Once evolution finishes, we will get information on how many input neurons

are needed, which features should be taken into account and which should not,

how many hidden neurons are needed, what training algorithm suits better for

that topology and TS, what activation function should be used in the hidden

layer, which activation function should be used in the output layer, and finally we

will get one real value as fitness on TS.

4.3 K-Fold Cross Validation

In addition to the problem of designing the ANN’s topology, there is the problem

of knowing how much the ANN must learn. If the ANN learns too little, it will

be ine↵ective to classifying, and if it learns too much it will lose its ability to

generalize. There are three stop criteria well known in the application of a learning

algorithms: stop the network training when a predefined number of iterations is

reached, stop training when a predefined error rate for the training set is reached,

Chapter 4 Evolving Artificial Neural Networks 55

and stop training when a minimum error rate is reached for a validation set, this

last is known as cross-validation (CV) [Shao et al., 2011].

Since the goal of GEANN is to automate the design of ANN for a given clas-

sification problem, we cannot set a predefined number of iterations; this number

could work fine for some problems and fail for others. Neither we can set one

predefined learning error rate, because not all the problems have the same com-

plexity. Cross-validation has been proved to be an e↵ective stop criteria and an

excellent way to avoid overfitting [Ng, 1997, Prechelt, 1998, Shao et al., 2011], so

the proposed approach uses cross-validation.

The second phase deals with overfitting. Overfitting is the inability of the

evolved ANN to generalize, therefore to perform well the classification task. Gen-

erally, this problem is tackled by limiting the learning capabilities of the ANN.

To reduce learning, and therefore overfitting in training an ANN, one possible so-

lution is to decrease the number of training epochs. Unfortunately, the potential

solution of decreasing the number of epochs raises another question which is how

to choose a reasonable value for this parameter. To address this issue, this second

phase applies a 5-fold cross-validation technique.

Algorithm 4.3 shows the K-fold cross validation process followed in GEANN.

First the original training set TS is randomly split into five subsets (folds) of

equal size. Then k � 1 folds are used to form one temporary training set and the

remaining set is used as a temporary validation set. This TS and VS formation

process is repeated k times, each time leaving out a di↵erent fold of the TS. Next,

we train k networks, each of them trained for 1 to max epoch, storing accuracy

for every iteration. Finally, accuracy average of k nets is computed in order to

find the value that provides the best generalization.

Cross-validation’s aims to find how many training iterations must be applied

to the ANN in order to avoid overfitting, this number of iterations is located at

the position where the best average was found.

4.4 Final Training

The third and last phase is the culmination of GA and cross validation results.

GA provides ANN’s characteristics and cross-validation determines how many it-

erations of the learning algorithm are necessary; now it is the time to form our

56 Chapter 4 Evolving Artificial Neural Networks

Algorithm 4.3 K-fold cross-validation algorithm.

Require: k,max epoch,TS, ANN’s topology
1: Split TS into k equal sized subsets (folds)
2: for i 1 to k do
3: V S

i

 fold
i

4: TS
i

 TS \ fold
i

5: Create ANN
i

according to ANN’s topology received
6: end for
7: for j 1 to max epoch do
8: for i 1 to k do
9: Train one epoch ANN

i

(TS
i

)
10: accuracy

i

 Compute accuracy for ANN
i

(V S
i

)
11: end for
12: mean accuracy

j

 mean(accuracy)
13: end for
14: epochs arg max

x

(mean accuracy
x

)
15: return epochs

final classifier according to the evolved topology and training the network for the

number of iterations calculated by cross-validation.

The result of the third stage is the final ANN trained with good enough gen-

eralization of TS, and ready to classify.

4.5 Concluding Remarks

This chapter presents GEANN, the proposed approach. This evolutionary ap-

proach consists of three phases (after the scaling that takes place in the prepro-

cessing).

As a first step, one biologically inspired heuristic was consider for finding ANN’s

topology: Genetic Algorithm. One chromosome structure was designed to repre-

sent one hidden layer ANNs of di↵erent sizes and characteristics. One of the main

activities to take into account when working with GA is the fitness calculation,

here we explained how GEANN computes fitness. GA will determine the ANN’s

characteristics, but still is unanswered, how many epochs must be used in the

training algorithm.

As a second step, one statistical technique was used for avoiding lose of gen-

eralization: Cross-validation. ANN needs to learn just enough, without overdoing

it. CV will provide us with information on the number of epochs that must be

applied to the learning algorithm to avoid lose of generalization.

Chapter 4 Evolving Artificial Neural Networks 57

The final step is the culmination of the last two phases. Here, it only remains

to create the ANN found by the GA and train it for the number of iterations

suggested by CV.

Chapter 5

Results and Discussion

In order to test the accuracy of the automatically designed ANN, eight classi-

fication experiments were performed. The first one corresponds to an artificial

dataset, the second one to a real life land cover classification problem and the last

six were taken from the UCI Machine Learning Repository [A. Asuncion, 2007],

covering di↵erent issues such as identification of cancerous tissue, di↵erentiation

of flower types, diagnosis of normal or abnormal human hearts, location site of

yeast protein, and identification of wines.

For each addressed problem, 30 independent runs were performed. Table 5.1

shows the parameters used in GA for each of the runs. On every evolution process

were evaluated 1,500 individuals. It was applied 70% of crossover probability,

70% of mutation probability, and 20% of gene mutation probability. On fitness

computation, were used 60 seconds or 10,000 epochs as stop criteria.

Table 5.1: Parameters used in evolution.

Parameter Value
Number of evaluations 1,500
Population 50
Generations 30
Pc 0.7
Pm 0.7
Pm

gene

0.2
Fitness time limit 60 seconds
Fitness #epochs limit 10,000 epochs

59

60 Chapter 5 Results and Discussion

Next section, presents a detailed description of each of the datasets; finally the

results and discussion section shows the average accuracy achieved.

5.1 Data Sets Description

5.1.1 Two moons: Artificial dataset

The two moons (or two bananas) dataset contains two regions representing two

classes each region is a half ring with radius r = 10, width w = 8, one region is

upper half and the other is lower half, both regions have a separation distance

d = �31.5 between them, negative value means overlapping, and each region has

350 two dimensional samples.

Program 5.1: Two moons function

TWOmoons[n_: 350, d_: -31.5, r_: 10, w_: 8] :=

Block[{moon1 = {}, moon2 , a, b, c},

While[Length[moon1] < n,

pto={a=(2r+w) (Random []-0.5), b=(r+w/2) Random[], c=Sqrt[a^2+b^2]};

If[(r - w/2) < c < (r + w/2),

moon1 = Join[moon1 , {Part[pto , 1;;2] + (r+w/2)}]

]

];

moon2=Partition[Riffle[Part[moon1 , All , 1]+r, -Part[moon1 , All ,

2]-d], 2];

moon1=Partition[Flatten[Riffle[moon1 , Table[-1, {Length[moon1]}]]] , 3];

moon2=Partition[Flatten[Riffle[moon2 , Table[1, {Length[moon2]}]]] , 3];

Join[moon1 , moon2]

]

Listing 5.1 shows the TWOmoons function used to generate 700 points. The

function is coded in Mathematica c�. This function generates one region centered

at (r + w/2, r + w/2); the second region is a mirror image of the first one with a

translation of (r, d) respect to the first region’s center.

Figure 5.1 shows the two moons dataset generated with the former function.

Samples of class one are circles, and samples of class two are squares. This set

provides a way to measure an ANN’s classification skills. The dataset created was

split into two subsets TS and VS, the first one includes 80% randomly chosen

points and the second one the remaining 20%. Figure 5.1 represents TS points

with lined shapes and VS points with filled shapes.

The proposed process, was followed only with theTS, the evolved ANN learned

from the TS only. VS was used only for testing purposes once the design of the

Chapter 5 Results and Discussion 61

5 10 15 20 25 30 35
x

5

10

15

20

25

y

Figure 5.1: Two moons dataset.

ANN’s completed. Figure 5.1 shows 560 points of TS, circles from class one and

squares from class two, also illustrates 140 points from VS used for testing after

evolution concludes.

5.1.2 Land cover classification: Satellite image from Bo-

livia

The study area captured in this image is located in the department of Beni, Bolivia;

it was selected due to its highly heterogeneous landscapes comprising montane

tropical cloud forest (locally know as yungas), lowland tropical forest, and wet

savannas.

The classification problem was based on Landsat ETM+ imagery, based upon

8 categories: early-growth forests, old-growth forests, water, bare soil, agriculture,

pastures, infrastructure/urban and, savanna areas. Training data selection was

based on the data gathered previously in the field after a careful examination of

its spectral signatures.

62 Chapter 5 Results and Discussion

For the mixed version of this dataset, all samples from training set and from

validation set were gathered into one single dataset, then this unique dataset were

split it again in 80% random samples for the training set and the remaining 20%

for the validation set. In the following section a discussion will take e↵ect about

this.

Figure 5.2 shows the satellite image concerning to this dataset.

Figure 5.2: Landsat EMT+ imagen of Beni, Bolivia.

5.1.3 Iris: A classic numeric dataset

The iris dataset by R.A. Fisher is arguably the most famous dataset used for

classification. It contains 50 samples each of three types of plants: Iris Setosa, Iris

Chapter 5 Results and Discussion 63

Versicolor, and Iris Virginica. One class is linearly separable from the other 2; the

last class is not linearly separable from the other two. There are four attributes in

the dataset: sepal length, sepal width, petal length, and petal width (all measured

in centimeters).

5.1.4 Yeast: Protein location sites

This database contains information about a set of yeast cells. The task is to

determine the location site of each cell. The classes are: 1) CYT, cytosolic or

cytoskeletal; 2) NUC, nuclear; 3) MIT, mitochondrial; 4) ME3, membrane pro-

tein, no N -terminal signal; 5) ME2, membrane protein, uncleaved signal; 6) ME1,

membrane protein, cleaved signal; 7) EXC, extracellular; 8) VAC, vacuolar; 9)

POX, peroxisomal; and 10) ERL, endoplasmic reticulum lumen.

5.1.5 WDBC: Breast Cancer Wisconsin (Diagnosis)

This database contains features computed from a digitized image of a fine needle

aspirate of a breast mass. To obtain observations investigators follow this process:

Once organic material is gotten, it is mounted on a microscope slide and stained

to highlight the cellular nuclei. A portion of the slide in which the cells are well-

di↵erentiated is then scanned using a digital camera and a frame-grabber board.

Then individual nuclei are isolated.

Once all (or most) of the nuclei have been isolated in this way, a specialized

software computes the values for each of ten characteristics of each nuclei, mea-

suring size, shape and texture. The mean, standard error and extreme values of

these features are computed, resulting in a total of 30 nuclear features for each

sample.

Figure 5.3 shows an image of isolated cells, this takes between two and five

minutes per slide. The task in this problem is to determine whether a found

tumor is benign or malignant.

5.1.6 SPECTF: Heart dataset

This dataset contains information for diagnosing of cardiac Single Proton Emission

Computed Tomography (SPECT) images. Each of the patients is classified into

64 Chapter 5 Results and Discussion

Figure 5.3: Isolating cells from an image taken from breast mass.

two categories: normal and abnormal. The database of 267 SPECT image sets

(patients) was processed to extract features that summarize the original SPECT

images. As a result, 44 continuous feature patterns were created for each patient.

The task in this problem is to determine whether a patient has an abnormal heart

condition or not.

5.1.7 SPECT: Heart dataset

This dataset is similar to the previous one, but in this one, the patterns were

further processed to obtain 22 binary feature patterns.

5.1.8 Wine: Origin of wines

These data are the results of a chemical analysis of wines grown in the same region

in Italy but derived from three di↵erent crops. The analysis determined the quan-

tities of 13 constituents found in each of the three types of wines. The attributes

are: 1) Alcohol, 2) Malic acid, 3) Ash, 4) Alcalinity of ash, 5) Magnesium, 6) To-

tal phenols, 7) Flavanoids, 8) Nonflavanoid phenols, 9) Proanthocyanins, 10)Color

intensity, 11)Hue, 12)OD280/OD315 of diluted wines, and 13)Proline.

Chapter 5 Results and Discussion 65

Table 5.2 summarizes the datasets used in experiments. From left to right, the

first column presents the dataset name of each problem. Second column, shows

the number of features. Next two columns are the number of training samples

existing in the training and validation set respectively. Finally, last column shows

the number of di↵erent classes the problem has.

Table 5.2: Datasets used in experiments.

Dataset name D TS size VS size Classes
Two moons 2 560 140 2
Land cover 12 36,914 800 8
Land cover (mixed) 12 30,172 7,545 8
Iris 4 120 30 3
Yeast 8 1,187 297 10
WDBC 30 455 114 2
SPECTF 44 80 187 2
SPECT 22 80 187 2
Wine 13 143 35 3

5.2 Results and Discussion

The best evolved ANN in each run was optimized using the 5-fold cross-validation

to determine the maximum number of epochs. Finally, we trained again each

network with the training set using the number of epochs found in the previous

step.

Table 5.3 presents the average ratio of correct classification in the cross vali-

dation (µCV), training set (µTS), and validation set (µVS).

In order to illustrate the accuracy of our approach, we are going to contrast

our results against di↵erent techniques that have been used to tackle the di↵erent

problems presented on Table 5.3.

Two moons

The two moons problem was designed to easy visualize the dataset, due to high

dimensionality in classification problems, most of the times it is hard to see how

hard one classification problem is. Two moons is a linear separable problem, of

low dimension with only two di↵erent classes.

66 Chapter 5 Results and Discussion

Table 5.3: Experimental results.

Dataset name µCV µTS µVS
Two moons 0.9938 0.9984 0.9985
Land cover (Bolivia) 0.8472 0.9210 0.8070
Land cover (Bolivia) mixed 0.9017 0.9401 0.9166
Iris 0.9865 0.9839 0.9865
Yeast 0.5916 0.6599 0.5886
WDBC 0.9367 0.9603 0.9565
SPECTF 0.8191 0.8169 0.7849
SPECT 0.8404 0.8810 0.8374
Wine 0.9447 0.9839 0.9509

Iris

The Iris problem presents an easy to di↵erentiate clouds of points, one class

is linearly separable from the other two, but the remaining two are not linearly

separable between them. Similarly to the two moons, the iris problem presents

low dimensionality and a small number of classes. For those two problems, our

approach performed very well, getting almost 100% of correct classifications.

Land cover

If we compare the accuracy reached in this dataset against the accuracy achieved

from some other well known approaches used to classify Landsat ETM+ imagery,

we realize that land cover classification problem, presents not so good results.

Spectral mixture analysis is one of the traditional techniques used to classify

this kind of imagery, in [Song, 2005, Buyantuyev et al., 2007] we can see an overall

classification accuracy of 90%, ten percent higher than the accuracy reached by

us.

The process of determining a class type for each pixel in a land cover classi-

fication problem begins when one technician gathers data in situ for some of the

training areas. Then, on a desk several pixels are matched to their corresponding

class types by its spectral signatures, but most of the times this process does nor

accurately reflect reality. The accuracy presented on the mixed version of the

land cover dataset, can lead us to conclude that many pixels of the original train-

ing set are labeled wrong. That is why, when we mix all samples and reallocate

Chapter 5 Results and Discussion 67

training set and validation set pixels, the proposed approach was able to reach a

competitive classification accuracy.

Yeast

Yeast protein location problem is the most di�cult addressed in this thesis, it

presents a medium sized dimensionality, considerable amount of samples, very dif-

ferent classes and very much overlapping cloud classes. Horton and Nakai defined

a model of classification which combines human provided expert knowledge with

probabilistic reasoning [Horton and Nakai, 1996], this approach can be viewed ei-

ther as a probabilistic analog to decision trees or as a restricted form of Bayesian

network. Horton and Nakai were able to get 0.55 of correct localisation proteins

for the yeast dataset, this result is 0.0386 lower than the localisations got by our

approach, and with the drawback than a human expert should hand-tune some

factors for optimal prediction accuracy.

WDBC

In [Wolberg and Mangasarian, 1990] Olvi L. Mangasarian et al., took WDBC

dataset to test a linear programming-based diagnostic system by a variant of the

multi-surface method (MMS) [Mangasarian et al., 1995], they got 0.975 of correct

classification. The accuracy reached by GEANN is 0.0185 lower than the one

gotten by Mangasarian et al. Our solution is fully automated, unlike the one

presented by Mangasarian.

SPECTF

Lukasz A. Kurgan, et al., developed a six-step knowledge discovery approach

to automated cardiac SPECT diagnosis [Kurgan et al., 2001]. In his work, they

got 0.77 of correct classifications on the unseen data, as a disadvantage to this

method, we can say that, it only works for medical diagnosis. Cuong To and

Tuan D. Pham developed a procedure to create decision trees by means of GP

[To and Pham, 2009]. For the SPECTF problem they got 0.7907 of accuracy, just

0.0058 of di↵erence against our approach. In this work, several methods were also

compared and the results are: Support Vector Machines (SVM) 0.6337, LogitBoost

(LB) 0.6860, Logistic Regression (LR) 0.6860, Linear discriminant analysis (LDA)

0.6686, and Linnear regression and least square (LS) 0.6686.

SPECT

Michael G. Madden developed Markov Blanket Bayesian Classifier Algorithm

(MBBC) and compare it against other Bayesian approaches in [Madden, 2002]. He

68 Chapter 5 Results and Discussion

showed that for SPECT problem, Naive Bayes (NB) classification got 0.7170 of ac-

curacy, Tree-Augmented NB 0.8125, General Bayesian Network 0.8019 and MBBC

0.8075. These results are slightly lower than the one obtained by our approach.

Cios and Kurgan were able to get di↵erent results in [Cios and Kurgan, 2002].

They use inductive ML methods for generating hypotheses about a given TS. In

particular, they use CLIP (Cover Learning using Integer Linear Programming)

algorithms, which is a hybrid algorithm that combines rule and decision tree algo-

rithms. They got 0.84 of correctly classified samples from VS, this is only 0.0026

better than the average obtained by our approach for the same dataset.

Wine

Since k nearest neighbor (kNN) classifiers are sensitive to outliers and noise

contained in the training set, many approaches have been proposed to edit the

training data so that the performance of the classifiers can be improved. In

[Jiang and hua Zhou, 2004] Yuan Jiang and Zhi-hua Zhou proposes to use a neu-

ral network ensemble to edit the training data set for kNN classifiers. They com-

pared 3 di↵erent editing approaches against his NNEE (Neural Network Ensemble

Editing) and for the wine dataset, they got 0.9494, 0.9494, 0.9605 and 0.9605

of accuracy for the methods Depuration, RelabelOnly, RemoveOnly and MMEE

respectively. These results present an evidence of similar classification skills for

the one hidden layer ANN evolved under our proposed approach and kNN with

training set edited by neural network ensamble. Our results are only 0.0096 lower

than the one got it by Yuan Jiang and Zhi-hua Zho for the wine dataset, and also

slightly above than the other editing strategies.

5.2.1 Concluding Remarks

It is important to know that the GEANN process we have just presented is com-

petitive with other procedures. Nonetheless, the approach presented is not the

clear and unbeatable winner, it produces a competitive ANN, since the aim of this

work is to develop an automated procedure to design competitive ANN, we believe

that the comparison presented here is enough for this purpose.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis proposes GEANN a new technique to automatically obtain a compet-

itive classification artificial neural network. The proposed approach attempts to

solve supervised learning problems, so a tagged training set is needed.

GEANN uses three steps to produce a trained ANN. It first starts with a pre-

processing scaling of observations, scaling translates the samples’ domain interval

from (�1,1) to [�1, 1]. Scaling moves all multidimensional points inside the

input space at the same time, so, the distribution of observations in the input

space is unchanged.

By reviewing literature, we started from the reliable idea that one hidden layer

feedforward neural network is enough to tackle any tagged training set. Also,

we can notice that several learning algorithms have been used to improve gener-

alization, but there is no one universal solution that automate learning for any

classification problem and at the same time avoids overfitting. For addressing the

former inconvenient, the approach proposed mixes biological inspired algorithms

like GA (non deterministic), with statistical treatment of given observations in

order to limit the amount of knowledge learnt.

The first step is crucial for the final classificator, is where most of decisions will

take place, here, the mayor responsibilities such as: find relevant inputs to classify,

determinate how many hidden neurons, decide which training algorithm to use,

are delegated to a genetic algorithm. GA find a simpler and smaller architecture

that will be able to learn better the training samples.

69

70 Chapter 6 Conclusions and Future Work

In the second step, proposed approach relies on cross-validation scheme to

determine the number of iterations to apply learning algorithm, in order to avoid

overfitting. The last step is to train the network using the number of epochs found

in the previous step.

Eight problems were tackled in order to measure the accuracy of the proposed

method, evolved ANN were compared against a variety of classifications algo-

rithms and classification techniques. We compared experimental evolved ANN

against previously presented methods. The experimental results show that our

approach produces competitive classifiers. Furthermore, our methodology is com-

pletely automated, so it can be used by any researcher with no experience in the

field of artificial neural networks.

6.2 Future Work

A deeper study on which parameters a↵ect learning is needed. Identifying what

parameters have high importance in learning, will allow us to derive GEANN for

taking special treatment of such parameters.

Random initialization of weights as early activity in learning algorithms, causes

noise. Given that a network starts to learn at every stage of the proposed approach.

Future work could be done avoiding random initialization every time a network

begins to learn.

One of the drawbacks of the presented approach is the limit time that every

network has available to learn data, some studies have shown that selecting a

smaller high representative subset of training pairs by class, allow network to

learn in less time. This idea opens the possibility of cross validate while evolving.

The proposed approach evolves just a subset of possibles network arguments,

deep studies could be done evolving one bigger subset of such arguments.

Artificial neural networks are a wide study area still open, the proposed ap-

proach could be explored in order to change network’s main characteristics, such

as, topology, recent investigations have demonstrated recurrent networks are able

to get excellent accuracy in function approximation problems. Also changing neu-

ron model (and in consequence learning algorithm) some researchers have obtained

great accuracies in shorter time than traditional models.

Chapter 6 Conclusions and Future Work 71

Most of the neural networks implementations consider just one bias by layer,

new studies shall be done by implementing one bias by neuron.

Appendix A

Implementation Issues

Since FANN is a neural network library, that implements multilayer artificial

neural networks in C language, and Evolvica is a GA library implemented in

Mathematica c�. In order to implement GEANN approach, we need a way to run

FANN C coded programs inside Mathematica’s notebooks.

A.1 MathLink

MathLink is the proprietary technology of Mathematica for including executable

programs coded in C within Mathematica’s notebooks. A clean install of Mathe-

matica is enough for been able to use MathLink, but before using it, one need to

create few symbolic links to the proper MathLink installed programs and libraries.

In particular, one need to reference to mprep (mathlink preprocessing) program,

mathlink.h header file, and libMLi3.a static MathLink library file.

Program A.1 creates the above mentioned symbolic links in the respectives

directories ⇠/bin/mprep, ⇠/include/mathlink.h, and ⇠/lib/libMLi3.a. Also en-

vironment variables PATH, CPATH, and LIBRARY PATH are up to date, so

recent created links are loaded in a transparent way.

Program A.1: Shell script for installing MathLink

#!/ bin/sh

dirbin=$HOME/bin

dirinclude=$HOME/include

dirlib=$HOME/lib

Function that makes directories :

~/ bin ~/ include ~/ lib

73

74 Appendix A Implementation Issues

if doesn ’t exists , otherwise do nothing

create_dirs ()

{ if [! -d $dirbin]; then

mkdir $dirbin

fi

if [! -d $dirinclude]; then

mkdir $dirinclude

fi

if [! -d $dirlib]; then

mkdir $dirlib

fi

}

Function that makes symbolic links to corresponding Mathematica files:

~/ bin/mprep

~/ include/mathlink.h

~/ lib/libMLi3.a

if doesn ’t exist , otherwise do nothing

create_links ()

{ if [! -e $dirbin/mprep]; then

ln -s ‘find /Applications/Mathematica* -name "mprep"‘ $dirbin/mprep

fi

if [! -e $dirinclude/mathlink.h]; then

ln -s ‘find /Applications/Mathematica* -name "mathlink.h" |

grep -v framework ‘ $dirinclude/mathlink.h

fi

if [! -e $dirlib/libMLi3.a]; then

ln -s ‘find /Applications/Mathematica* -name "libMLi3.a" |

grep -v MacOSX ‘ $dirlib/libMLi3.a

fi

}

Function for modifying environment variables :

PATH=$PATH :~/ bin

CPATH=$CPATH :~/ include

LIBRARY_PATH = $LIBRARY_PATH :~/ lib

mod_PATHS ()

{ echo $PATH | grep -q -s $dirbin

if [$? -eq 1] ; then

echo "\n run on terminal :\n\texport PATH=$PATH:$dirbin\n"

adding ~/ bin to PATH , ~/. profile will be modified

echo "" >> ~/. profile

echo "# insert ~/bin to PATH" >> ~/. profile

echo "echo \$PATH | grep -q -s \"~/bin\"" >> ~/. profile

echo "if [\$? -eq 1] ; then" >> ~/. profile

echo " export PATH=\ $PATH :~/ bin" >> ~/. profile

echo "fi" >> ~/. profile

fi

echo $CPATH | grep -q -s $dirinclude

if [$? -eq 1] ; then

echo "" >> ~/. profile

echo "# insert ~/ include to CPATH" >> ~/. profile

echo "echo \$CPATH | grep -q -s \"~/ include\"" >> ~/. profile

echo "if [\$? -eq 1] ; then" >> ~/. profile

echo " export CPATH=\ $CPATH :~/ include" >> ~/. profile

echo "fi" >> ~/. profile

fi

Appendix A Implementation Issues 75

echo $LIBRARY_PATH | grep -q -s $dirlib

if [$? -eq 1] ; then

echo "" >> ~/. profile

echo "# insert ~/lib to LIBRARY_PATH" >> ~/. profile

echo "echo \$LIBRARY_PATH | grep -q -s \"~/lib\"" >> ~/. profile

echo "if [\$? -eq 1] ; then" >> ~/. profile

echo " export LIBRARY_PATH =\ $LIBRARY_PATH :~/ lib" >> ~/. profile

echo "fi" >> ~/. profile

fi

}

create_dirs

create_links

mod_PATHS

Once, MathLink is installed it is necessary to meet four requirements in order

to run C functions within a Mathematica’s notebook.

1) C source file must include mathlink.h header file, and program’s main func-

tion must call MLMain(argc, argv) function. Program A.2 shows the basic tem-

plate of a C source file program, where function f(int x, int y) is the one planned

to run from Mathematica’s notebook.

Program A.2: f.c, example of MathLink C program for running functions within

Mathematica’s notebooks

#include "mathlink.h"

int main(int argc , char *argv []) {

return MLMain(argc , argv);

}

int f(int x, int y) {

return x+y;

}

2) One must specify in a text file (.tm) a template with the description of the C

function that will be executed from the notebook. Listing A.3 shows the template

file for the function f(int x, int y).

Program A.3: f.tm, text template file for describing function’s parameters

:Begin:

:Function: f

:Pattern: f [x_Integer , y_Integer]

:Arguments: {x, y}

:ArgumentTypes: {Integer , Integer}

:ReturnType: Integer

:End:

76 Appendix A Implementation Issues

where; :Begin:, is the beginning mark of the template for a particular function;

:Function: is the name of the function in the C program; :Pattern: is the pattern

to be defined to call the function; :Arguments: is the list of arguments to the

function; :ArgumentTypes: is the list of types of the arguments to the function;

:ReturnType: is the type of the value returned by the function; and :End: is the

terminal mark in the template for a particular function.

3) Compile C source file and the respective template files in order to generate

the running file that will be linked from Mathematica’s notebook.

Program A.4 is the shell script implemented for compiling C source files, it

links libraries from both FANN and MathLink.

Program A.4: mmcc, my mathlink c compiler, is a shell script for compiling c

source programs and use them within Mathematica’s notebooks

#! /bin/sh

#--

List of libraries to include in compilation

libs="-lstdc++ -ldoublefann -lMLi3 -framework Foundation"

#--

Parse the command line options

argc=$#

while [$argc -ne 0]

do

case "$1" in

-o) if [-z "$2"] ; then

echo "usage: $0: -o output_file"

exit 1

fi

output_filename=$2

argc=‘expr $argc - 1‘

shift

;;

*.tm)

files_tm="${files_tm} $1"

;;

*.c)

files_c="${files_c} $1"

;;

*)

compile_flags="${compile_flags} $1"

;;

esac

argc=‘expr $argc - 1‘

shift

done

#--

Convert the .tm files to one single .c file using mprep

Appendix A Implementation Issues 77

if [! -z "${files_tm}"] ; then

file_tm_c=${output_filename }.tm.c

mprep ${files_tm} -o ${file_tm_c}

files_c="${files_c} ${file_tm_c}"

fi

#--

Convert the .c files to .o files using gcc -c

for i in $files_c; do

namefile=‘echo ${i} | sed -e ’s/\(.*\)\..*/\1/ ’‘

gcc -c $i -o ${namefile }.o

files_o="${files_o} ${namefile }.o"

done

#--

Convert the .o files to exec file using gcc

for i in $files_o; do

gcc -Wall ${libs} ${files_o} -o ${output_filename}

done

#--

Delete temporals files

rm *.tm.c

rm *.o

The shell script mmcc general usage is:

$ mmcc f.tm f.c -o f

4) Finally, is mandatory to “install” running program from a notebook by

means of function Install[], once program is installed, one can execute function

f [] from notebook. At the end of the notebook It is recomendable to uninstall all

previously installed programs.

Program A.5

Program A.5: f.nb notebook implementing external functions calls.

link = Install[‘‘f’’];

(* Install starts a MathLink - compatible external program and installs

Mathematica definitions to call functions in it *)

f[2343 , 4345]

6688

Uninstall[link];

(* Uninstall terminates an external program started by Install , and

removes Mathematica definitions set up by it *)

Appendix B

Plots of Activation Functions

This Appendix shows the plots of the 15 activation functions available for training

in FANN.

-6 -4 -2 2 4 6
x

0.2

0.4

0.6

0.8

1.0
y

fHxL = 1

1 + „-2 x s

(a) Sigmoid

-6 -4 -2 2 4 6
x

0.2

0.4

0.6

0.8

1.0
y

(b) Sigmoid stepwise

-6 -4 -2 2 4 6
x

-1.0

-0.5

0.5

1.0
y

fHxL = 2

1 + „-2 x
-1

(c) Sigmoid symmetric

-6 -4 -2 2 4 6
x

-1.0

-0.5

0.5

1.0
y

(d) Sigmoid symmetric stepwise

Figure B.1: Plots of sigmoidal functions used for training in GEANN.

79

80 Appendix B Plots of Activation Functions

-6 -4 -2 2 4 6
x

0.2

0.4

0.6

0.8

1.0
y

fHxL = Sin HxL + 1

2

(a) Sin

-6 -4 -2 2 4 6
x

0.2

0.4

0.6

0.8

1.0
y

fHxL = Cos HxL + 1

2

(b) Cos

-6 -4 -2 2 4 6
x

-1.0

-0.5

0.5

1.0
y

fHxL = Sin HxL

(c) Sin symmetric

-6 -4 -2 2 4 6
x

-1.0

-0.5

0.5

1.0
y

fHxL = Cos HxL

(d) Cos symmetric

Figure B.2: Plots of sin and cosine functions used for training in GEANN.

-6 -4 -2 2 4 6
x

0.2

0.4

0.6

0.8

1.0
y

fHxL = x

2 H1 + x L+0.5

(a) Elliot

-6 -4 -2 2 4 6
x

-1.0

-0.5

0.5

1.0
y

fHxL = x

1 + x

(b) Elliot symmetric

Figure B.3: Plots of Elliot functions used for training in GEANN.

Appendix B Plots of Activation Functions 81

-6 -4 -2 2 4 6
x

0.2

0.4

0.6

0.8

1.0
y

fHxL = „-x2 s

(a) Gaussian

-6 -4 -2 2 4 6
x

-1.0

-0.5

0.5

1.0
y

fHxL = 2 „-x2 s

(b) Gaussian symmetric

Figure B.4: Plots of Gaussian functions used for training in GEANN.

-4 -2 2 4
x

-1.0

-0.5

0.5

1.0
y

fHxL = x s

(a) Linear

-6 -4 -2 2 4 6
x

0.2

0.4

0.6

0.8

1.0
y

Rampa @0,1D

(b) Linear piece

-6 -4 -2 2 4 6
x

-1.0

-0.5

0.5

1.0
y

Rampa @-1, 1D

(c) Linear piece symmetric

Figure B.5: Plots of linear functions used for training in GEANN.

Bibliography

[A. Asuncion, 2007] A. Asuncion, D. N. (2007). UCI machine learning repository.

[Aguirre et al., 2009] Aguirre, A. H., Borja, R. M., and Garćıa, C. A. R., editors

(2009). MICAI 2009: Advances in Artificial Intelligence, 8th Mexican Inter-

national Conference on Artificial Intelligence, Guanajuato, México, November

9-13, 2009. Proceedings, volume 5845 of Lecture Notes in Computer Science.

Springer.

[Amari and Cichocki, 1998] Amari, S. and Cichocki, A. (1998). Adaptive blind

signal processing-neural network approaches. Proceedings of the IEEE,

86(10):2026–2048.

[Arbib, 2002] Arbib, M. A. (2002). The Handbook of Brain Theory and Neural

Networks. The MIT Press, second edition.

[Aristoklis D. Anastasiadis and Vrahatis, 2003] Aristoklis D. Anastasiadis, G.

D. M. and Vrahatis, M. N. (2003). An e�cient improvement of the rprop al-

gorithm. In In Proceedings of the First International Workshop on Artificial

Neural Networks in Pattern Recognition ANNPR-03.

[Barron, 1994] Barron, A. R. (1994). Approximation and estimation bounds for

artificial neural networks. Machine Learning, 14(1):115–133.

[Berry and Lino↵, 1997] Berry, M. J. and Lino↵, G. (1997). Data Mining Tech-

niques: For Marketing, Sales, and Customer Support. John Wiley & Sons, Inc.,

New York, NY, USA.

[Bishop, 2002] Bishop, C. (2002). Neural networks for pattern recognition. Oxford

University Press, USA.

[Bishop, 2006] Bishop, C. M. (2006). Pattern Recognition and Machine Learning

(Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus,

NJ, USA.

83

84 BIBLIOGRAPHY

[Blum, 1992] Blum, A. (1992). Neural networks in C++: an object-oriented

framework for building connectionist systems. Wiley professional computing.

Wiley.

[Boger and Guterman, 1997] Boger, Z. and Guterman, H. (1997). Knowlege Ex-

traction from Artificial Neural Networks Models. IEEE Systems, Man and Cy-

bernetics Conference, pages 3030–3035.

[Bow, 2002] Bow, S.-T. (2002). Pattern Recognition and Image Preprocessing.

Marcel Dekker, Inc., New York, NY, USA, 2nd edition.

[Braun and Griebel, 2007] Braun, J. and Griebel, M. (2007). On a Constructive

Proof of Kolmogorov’s Superposition Theorem. Preprint. SFB 611.

[Brause, 2001] Brause, R. W. (2001). Medical analysis and diagnosis by neural

networks. In Proceedings of the Second International Symposium on Medical

Data Analysis, ISMDA ’01, pages 1–13, London, UK, UK. Springer-Verlag.

[Buyantuyev et al., 2007] Buyantuyev, A., Wu, J., and Gries, C. (2007). Estimat-

ing vegetation cover in an urban environment based on landsat etm imagery: A

case study in phoenix, usa. Int. J. Remote Sens., 28(2):269–291.

[Castillo et al., 2007] Castillo, P., Guervós, J. J. M., Arenas, M. G., and Romero,

G. (2007). Comparing evolutionary hybrid systems for design and optimiza-

tion of multilayer perceptron structure along training parameters. Inf. Sci.,

177(14):2884–2905.

[Chen and Narendra, 2001] Chen, L. and Narendra, K. S. (2001). Nonlinear adap-

tive control using neural networks and multiple models. Technical report, Au-

tomatica, Special Issue on Neural Network Feedback Control.

[Cho, 1999] Cho, S.-B. (1999). Pattern recognition with neural networks combined

by genetic algorithm. Fuzzy Sets and Systems, 103(2):339 – 347. ¡ce:title¿Soft

Computing for Pattern Recognition¡/ce:title¿.

[Cios and Kurgan, 2002] Cios, K. J. and Kurgan, L. A. (2002). New learning

paradigms in soft computing. chapter Hybrid inductive machine learning: an

overview of CLIP algorithms, pages 276–321. Physica-Verlag GmbH, Heidelberg,

Germany, Germany.

[Darwin, 1909] Darwin, C. (1909). The origin of species. Harvard classics. P.F.

Collier & son.

BIBLIOGRAPHY 85

[Dony and Haykin, 1995] Dony, R. D. and Haykin, I. S. (1995). Neural network

approaches to image compression. In Proc. IEEE, pages 288–303.

[Duda et al., 2001] Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern

Classification (2nd Edition). Wiley-Interscience, 2nd edition.

[Fahlman, 1988] Fahlman, S. E. (1988). An empirical study of learning speed

in back-propagation networks. Technical Report Computer Science Technical

Report.

[Floreano et al., 2008] Floreano, D., Dürr, P., and Mattiussi, C. (2008). Neuroevo-

lution: from architectures to learning. Evolutionary Intelligence, 1(1):47–62.

[Flores et al., 2009] Flores, J. J., Loaeza, R., Rodŕıguez, H., and Cadenas, E.

(2009). Wind speed forecasting using a hybrid neural-evolutive approach. In

[Aguirre et al., 2009], pages 600–609.

[Flores et al., 2010] Flores, J. J., Rodŕıguez, H., and Gra↵, M. (2010). Reducing

the search space in evolutive design of arima and ann models for time series

prediction. In [Sidorov et al., 2010], pages 325–336.

[Fogel et al., 1966] Fogel, L., Owens, A., and Walsh, M. (1966). Artificial intelli-

gence through simulated evolution. Wiley.

[Gabrys and Ruta, 2006] Gabrys, B. and Ruta, D. (2006). Genetic algorithms in

classifier fusion. Appl. Soft Comput., 6(4):337–347.

[Gruau, 1995] Gruau, F. (1995). Automatic Definition of Modular Neural Net-

works. Adaptive Behaviour, 3(2):151–183.

[Gupta et al., 2003] Gupta, M. M., Homma, N., and Jin, L. (2003). Static and

Dynamic Neural Networks: From Fundamentals to Advanced Theory. John

Wiley & Sons, Inc., New York, NY, USA, 1st edition.

[Haykin, 2007] Haykin, S. (2007). Neural Networks: A Comprehensive Foundation

(3rd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[Haykin, 2009] Haykin, S. (2009). Neural Networks and Learning Machines. Num-

ber v. 10 in Neural networks and learning machines. Prentice Hall.

[Hecht-Nielsen, 1989] Hecht-Nielsen, R. (1989). Theory of the backpropagation

neural network. In , International Joint Conference on Neural Networks, 1989.

IJCNN, pages 593–605 vol.1. IEEE.

86 BIBLIOGRAPHY

[Herault and Jutten, 1987] Herault, J. and Jutten, C. (1987). Space or time adap-

tive signal processing by neural network models. In AIP Conference Proceedings

151 on Neural Networks for Computing, pages 206–211, Woodbury, NY, USA.

American Institute of Physics Inc.

[Hoehfeld and Fahlman, 1992] Hoehfeld, M. and Fahlman, S. E. (1992). Learning

with limited numerical precision using the cascade-correlation algorithm. IEEE

Transactions on Neural Networks, 3:602–611.

[Holland, 1975] Holland, J. H. (1975). Adaptation in Natural and Artificial Sys-

tems. University of Michigan Press, Ann Arbor, MI, USA.

[Horton and Nakai, 1996] Horton, P. and Nakai, K. (1996). A probabilistic clas-

sification system for predicting the cellular localization sites of proteins. In In

Proceeding of the Fourth International Conference on Intelligent Systems for

Molecular Biology, pages 109–115.

[Huang and Babri, 1998] Huang, G. and Babri, H. A. (1998). Upper bounds on the

number of hidden neurons in feedforward networks with arbitrary bounded non-

linear activation functions. IEEE Transactions on Neural Networks, 9(1):224–

229.

[Idan et al., 2001] Idan, M., Calise, A. J., and Parekh, D. E. (2001). Adaptive

neural network based approach for active flow control. In In ASME Fluids

Engineering Division Summer Meeting, number FEDSM2001-18281.

[Igel and Hüsken, 2000] Igel, C. and Hüsken, M. (2000). Improving the Rprop

Learning Algorithm, pages 115–121. Citeseer.

[Igel and Hüsken, 2003] Igel, C. and Hüsken, M. (2003). Empirical evaluation of

the improved rprop learning algorithm. Neurocomputing, 50:2003.

[Jacob, 2001] Jacob, C. (2001). Illustrating evolutionary computation with Math-

ematica. Evolutionary Computation Series. Morgan Kaufmann Pub.

[Jiang and hua Zhou, 2004] Jiang, Y. and hua Zhou, Z. (2004). Editing training

data for knn classifiers with neural network ensemble. In Lecture Notes in

Computer Science, Vol.3173, pages 356–361. Springer.

[Johnson and Calise, 2001] Johnson, E. N. and Calise, A. J. (2001). Neural net-

work adaptive control of systems with input saturation. In Input Saturation,

Submitted, American Controls Conference, pages 3527–3532.

BIBLIOGRAPHY 87

[Kechriotis and Manolakos, 1993] Kechriotis, G. I. and Manolakos, E. S. (1993).

Using neural networks for nonlinear and chaotic signal processing. In Proceedings

of the 1993 IEEE international conference on Acoustics, speech, and signal pro-

cessing: plenary, special, audio, underwater acoustics, VLSI, neural networks -

Volume I, ICASSP’93, pages 465–468, Washington, DC, USA. IEEE Computer

Society.

[Kecman, 2001] Kecman, V. (2001). Learning and soft computing: support vector

machines, neural networks, and fuzzy logic models. Complex adaptive systems.

MIT Press.

[Kennedy et al., 2001] Kennedy, J. F., Kennedy, J., Eberhart, R. C., and Shi,

Y. (2001). Swarm intelligence. The Morgan Kaufmann series in evolutionary

computation. Morgan Kaufmann Publishers.

[Kovacs, 2011] Kovacs, T. (2011). Genetics-based machine learning. In Rozenberg,

G., Bäck, T., and Kok, J., editors, Handbook of Natural Computing: Theory,

Experiments, and Applications. Springer Verlag.

[Koza, 1992] Koza, J. R. (1992). Genetic Programming: On the Programming of

Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

[Kurgan et al., 2001] Kurgan, L. A., Cios, K. J., Tadeusiewicz, R., Ogiela, M.,

and Goodenday, L. S. (2001). Knowledge Discovery Approach to Automated

Cardiac SPECT Diagnosis. Artificial Intelligence in Medicine, 23(2):149–169.

[Kurokawa and Takeshita, 2004] Kurokawa, T. and Takeshita, K. (2004). Air

transportation planning using neural networks as an example of the trans-

portation squadron in the japan air self-defense force. Syst. Comput. Japan,

35(12):46–56.

[Lapedes and Farber, 1987] Lapedes, A. and Farber, R. (1987). Nonlinear sig-

nal processing using neural networks: Prediction and system modeling. Signal

Processing.

[Larochelle et al., 2009] Larochelle, H., Bengio, Y., Louradour, J., and Lamblin,

P. (2009). Exploring strategies for training deep neural networks. Journal of

Machine Learning Research, 10:1–40.

[Liu et al., 2001] Liu, Y., Yao, X., and Zhao, Q. (2001). Evolving a cooperative

population of neural networks by minimizing mutual information. In In Pro-

ceedings of the 2001 Congress on Evolutionary Computation, pages 384–389.

IEEE Press.

88 BIBLIOGRAPHY

[Madden, 2002] Madden, M. G. (2002). Evaluation of the performance of the

markov blanket bayesian classifier algorithm. CoRR, cs.LG/0211003.

[Maiorov and Pinkus, 1999] Maiorov, V. and Pinkus, A. (1999). Lower bounds

for approximation by mlp neural networks. Neurocomputing, 25:81–91.

[Mangasarian et al., 1995] Mangasarian, O. L., Street, W. N., and Wolberg, W. H.

(1995). Breast cancer diagnosis and prognosis via linear programming. Opera-

tions Research, 43:570–577.

[McCulloch and Pitts, 1943] McCulloch, W. and Pitts, W. (1943). A logical calcu-

lus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology,

5:115–133. 10.1007/BF02478259.

[Mitchell, 1997] Mitchell, T. M. (1997). Machine learning. McGraw Hill series in

computer science. McGraw-Hill.

[Ng, 1997] Ng, A. Y. (1997). Preventing ”overfitting” of cross-validation data. In

In Proceedings of the Fourteenth International Conference on Machine Learning,

pages 245–253. Morgan Kaufmann.

[Nilsson, 1998] Nilsson, N. J. (1998). Artificial intelligence: a new synthesis. Mor-

gan Kaufmann Publishers Inc., San Francisco, CA, USA.

[Nissen, 2003] Nissen, S. (2003). Implementation of a Fast Artificial Neural Net-

work Library (fann). Technical report, Department of Computer Science Uni-

versity of Copenhagen (DIKU).

[Nolfi and Parisi, 2002] Nolfi, S. and Parisi, D. (2002). Evolution of artificial neu-

ral networks. In In Handbook of brain theory and neural networks, pages 418–

421. MIT Press.

[Pomerleau, 1996] Pomerleau, D. A. (1996). Neural network vision for robot driv-

ing. In The Handbook of Brain Theory and Neural Networks, pages 161–181.

University Press.

[Prechelt, 1998] Prechelt, L. (1998). Automatic early stopping using cross valida-

tion: quantifying the criteria. Neural Networks, 11:761–767.

[Rabuñal and Dorrado, 2006] Rabuñal, J. and Dorrado, J. (2006). Artificial neu-

ral networks in real-life applications. Idea Group Pub.

BIBLIOGRAPHY 89

[Rechenberg, 1973] Rechenberg, I. (1973). Evolutionsstrategie : Optimierung tech-

nischer Systeme nach Prinzipiender biologischen Evolution. Number 15 in Prob-

lemata. Frommann-Holzboog, Stuttgart-Bad Cannstatt.

[Rechenberg, 1994] Rechenberg, I. (1994). Evolutionsstrategie’94, volume 1 of

Werkstatt Bionik und Evolutionstechnik. Friedrich Frommann Verlag (Günther

Holzboog KG), Stuttgart.

[Riedmiller, 1994] Riedmiller, M. (1994). Rprop - description and implementation

details. Technical report, Proc. of ISCIS VII, Universitat.

[Riedmiller and Braun, 1992] Riedmiller, M. and Braun, H. (1992). Rprop - a fast

adaptive learning algorithm. Technical report, Proc. of ISCIS VII, Universitat.

[Riedmiller and Braun, 1993] Riedmiller, M. and Braun, H. (1993). A direct adap-

tive method for faster backpropagation learning: The rprop algorithm. In IEEE

International Conference of Neural Networks, pages 586–591.

[Ripley, 2007] Ripley, B. D. (2007). Pattern recognition and neural networks. Cam-

bridge University Press.

[Rojas, 1996] Rojas, R. (1996). Neural Networks: A Systematic Introduction.

Springer, 1 edition.

[Roseiro et al., 2005] Roseiro, L., Ramos, U., and Leal, R. (2005). Neural networks

in damage detection of composite laminated plates. In Proceedings of the 6th

WSEAS international conference on Neural networks, NN’05, pages 115–119,

Stevens Point, Wisconsin, USA. World Scientific and Engineering Academy and

Society (WSEAS).

[Rowley et al., 1996] Rowley, H., Baluja, S., and Kanade, T. (1996). Neural

network-based face detection. In Computer Vision and Pattern Recognition

’96.

[Rumelhart and McClelland, 1986] Rumelhart, D. E. and McClelland, J. L.

(1986). Parallel distributed processing: explorations in the microstructure of

cognition, vol. 1: foundations. MIT Press, Cambridge, MA, USA.

[Scha↵er et al., 1992] Scha↵er, J. D., Whitley, D., and Eshelman, L. J. (1992).

Combinations of genetic algorithms and neural networks: a survey of the state

of the art. Combinations of Genetic Algorithms and Neural Networks, 1992.,

COGANN-92. International Workshop on, pages 1–37.

90 BIBLIOGRAPHY

[Schi↵mann et al., 1993] Schi↵mann, W., Joost, M., and Werner, R. (1993). Com-

parison of optimized backpropagation algorithms. In Proc. of ESANN’93, Brus-

sels, pages 97–104.

[Shao et al., 2011] Shao, Y., Ta↵, G. N., and Walsh, S. J. (2011). Comparison of

early stopping criteria for neural-network-based subpixel classification. IEEE

Geosci. Remote Sensing Lett., 8(1):113–117.

[Sidorov et al., 2010] Sidorov, G., Aguirre, A. H., and Garćıa, C. A. R., edi-

tors (2010). Advances in Soft Computing - 9th Mexican International Confer-

ence on Artificial Intelligence, MICAI 2010, Pachuca, Mexico, November 8-13,

2010, Proceedings, Part II, volume 6438 of Lecture Notes in Computer Science.

Springer.

[Sivanandam and Deepa, 2008] Sivanandam, S. N. and Deepa, S. N. (2008). In-

troduction to genetic algorithms. Springer.

[Song, 2005] Song, C. (2005). Spectral mixture analysis for subpixel vegetation

fractions in the urban environment: How to incorporate endmember variability?

Remote Sensing of Environment, 95(2):248–263.

[Szirnyi and Csapodi, 1998] Szirnyi, T. and Csapodi, M. (1998). Texture classi-

fication and segmentation by cellular neural networks using genetic learning.

Computer Vision and Image Understanding, 71(3):255 – 270.

[Theodoridis and Koutroumbas, 2008] Theodoridis, S. and Koutroumbas, K.

(2008). Pattern Recognition, Fourth Edition. Academic Press, 4th edition.

[To and Pham, 2009] To, C. and Pham, T. D. (2009). Analysis of Cardiac Imaging

Data using Decision Tree based Parallel Genetic Programming, pages 317–320.

[Webb and Copsey, 2011] Webb, A. and Copsey, K. (2011). Statistical Pattern

Recognition. John Wiley & Sons.

[Werbos, 1974] Werbos, P. (1974). Beyond Regression: New Tools for Prediction

and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, Cam-

bridge, MA.

[Wolberg and Mangasarian, 1990] Wolberg, W. H. and Mangasarian, O. L. (1990).

Multisurface Method of Pattern Separation for Medical Diagnosis Applied to

Breast Cytology. Proceedings of the National Academy of Sciences,U.S.A.,

87:9193–9196.

BIBLIOGRAPHY 91

[Xu and Che, 2008] Xu, S. and Che, L. (2008). A novel approach for determining

the optimal number of hidden layer neurons for FNN’s and its application in

data mining. In 5th International Conference on Information Technology and

Applications (ICITA 2008).

[Yao, 1993] Yao, X. (1993). Evolutionary artificial neural networks. International

Journal of Intelligent Systems, 4:539–567.

[Yao, 1999] Yao, X. (1999). Evolving artificial neural networks. Proceedings of the

IEEE, 87(9):1423–1447.

[Yao et al., 1998] Yao, X., (smieee, X. Y., and Liu, Y. (1998). Making use of

population information in evolutionary artificial neural networks.

[Zilouchian and Jamshidi, 2000] Zilouchian, A. and Jamshidi, M., editors (2000).

Intelligent Control Systems Using Soft Computing Methodologies. CRC Press,

Inc., Boca Raton, FL, USA, 1st edition.

	Acknowledgements
	Abstract
	Resumen
	List of Figures
	List of Tables
	List of Programs
	List of Algorithms
	List of Symbols and Abbreviations
	List of Publications
	1 Introduction
	1.1 Motivations
	1.2 Objectives
	1.3 State of the Art
	1.4 Thesis Outline

	2 Artificial Neural Networks as Classifiers
	2.1 Biological Background
	2.2 Artificial Neural Network
	2.2.1 Artificial Neuron
	2.2.2 Types of activation function
	2.2.3 Network topologies

	2.3 Learning in Artificial Neural Network
	2.3.1 Delta rule
	2.3.2 Back Propagation Algorithm
	2.3.3 General Sequential BP Algorithm
	2.3.4 BP derivatives

	2.4 Generalization, Accuracy, and OverFitting
	2.5 Concluding Remarks

	3 Genetic Algorithms
	3.1 Biological Background
	3.2 Overview of GA
	3.3 Terminologies in GA
	3.3.1 Individuals
	3.3.2 Chromosome (Genotype)
	3.3.3 Phenotype
	3.3.4 Genes
	3.3.5 Morphogenesis
	3.3.6 Fitness
	3.3.7 Population
	3.3.8 Encoding

	3.4 Genetic Operators
	3.4.1 Selection
	3.4.2 Crossover (Recombination)
	3.4.3 Mutation
	3.4.4 Replacing individuals

	3.5 Genetic Algorithms
	3.6 Concluding Remarks

	4 Evolving Artificial Neural Networks
	4.1 Data Linear Scaling
	4.2 ANN Evolution
	4.2.1 Chromosome Description
	4.2.2 Fitness calculation

	4.3 K-Fold Cross Validation
	4.4 Final Training
	4.5 Concluding Remarks

	5 Results and Discussion
	5.1 Data Sets Description
	5.1.1 Two moons: Artificial dataset
	5.1.2 Land cover classification: Satellite image from Bolivia
	5.1.3 Iris: A classic numeric dataset
	5.1.4 Yeast: Protein location sites
	5.1.5 WDBC: Breast Cancer Wisconsin (Diagnosis)
	5.1.6 SPECTF: Heart dataset
	5.1.7 SPECT: Heart dataset
	5.1.8 Wine: Origin of wines

	5.2 Results and Discussion
	5.2.1 Concluding Remarks

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	A Implementation Issues
	A.1 MathLink

	B Plots of Activation Functions
	Bibliography

