

UNIVERSIDAD MICHOACANA
DE SAN NICOLÁS DE HIDALGO
FACULTAD DE INGENIERÍA ELÉCTRICA
DIVISIÓN DE ESTUDIOS DE POSGRADO

“BIFURCATION DIAGRAMS CONSTRUCTION BASED ON

NICHE PSO AND FIXED POINTS QUALIFICATION”

TESIS

Que para obtener el grado de:
MAESTRO EN CIENCIAS EN INGENIERÍA ELÉCTRICA

Presenta:

Oscar Vargas Torres

Juan José Flores Romero, Ph.D. Computer Science
Director de Tesis

Jaime Cerda Jacobo, Ph.D. Computer Science
Co-director de Tesis

Agosto de 2013

mailto:ovargas@dep.fie.umich.mx
mailto:juanf@umich.mx
mailto:jcerda@umich.mx

BIFURCATION DIAGRAMS CONSTRUCTION BASED
ON NICHE PSO AND FIXED POINTS QUALIFICATION

TESIS

Que para obtener el grado de
MAESTRO EN CIENCIAS EN INGENIERÍA ELÉCTRICA

presenta
Oscar Vargas Torres

Dr. Juan José Flores Romero
Director de Tesis

Dr. Jaime Cerda Jacobo
Co-Director de Tesis

Universidad Michoacana de San Nicolás de Hidalgo

Agosto 2013

To my son Alex Vargas Suárez

I want to thank Jehovah God, for allowing me to study this far.

I am grateful to my teachers, specially Dr. Juan José Flores Romero and Dr. Jaime Cerda
Jacobo for their supervision.

I thank my family for their patient and unconditional support.

Resumen

En campos tan diversos como la mecánica de fluidos, química, electrónica e ingeniería
eléctrica, hay aplicaciones de lo que se conoce como análisis de bifurcación: el análisis de
sistemas de ecuaciones diferenciales bajo la variación de parámetros.

Las herramientas tradicionales para el estudio de problemas de bifurcación incluyen
métodos de continuación que requieren valores iniciales para su correcto funcionamiento.
En el caso de bifurcaciones locales, la linealización en los puntos fijos del sistema propor-
ciona información importante sobre la estabilidad del sistema.

En este trabajo se utiliza la optimización por enjambre de partículas con nichos
(Niche PSO), como lo propusieron Brits et al. para encontrar y mantener múltiples puntos
fijos correspondientes a los valores de los parámetros de los sistemas dinámicos. Para de-
terminar la estabilidad de los puntos fijos se emplea la técnica de linealización.

El producto de este trabajo es BDT (Bifurcation Diagram Tool), una herramienta
para el trazo de diagramas de bifurcación, que utiliza Niche PSO para encontrar los puntos
fijos de sistemas dinámicos y la técnica de linealización para calificarlos.

Abstract

In scientific fields as diverse as fluid dynamics, chemistry, electronics, and electrical engi-
neering, there is the application of what is known as bifurcation analysis: the analysis of a
system of Ordinary Differential Equations (ODEs) under parameter variation.

Traditional tools required for parameter study in bifurcation problems include
continuation methods that require initial values to work correctly. For local bifurcations
linearisation at the fixed points of the sytem provides important information about the
stability of the system.

This work uses Niche Particle Swarm Optimization as proposed by Brits et al. to
locate and maintain multiple fixed points corresponding to parameter values of dynamical
systems. To determine the stability of fixed points, linearization is used.

The product of this work is BDT a Bifurcation Diagram Tool, that uses Niche
PSO to find the fixed points of dynamical systems and linearization to qualify them.

Contents

Dedication . iii
Resumen . v
Abstract . vii
Contents . ix
List of Figures . xi
List of Tables . xiii
List of Algorithms . xv
List of Symbols . xvii

1 Introduction 1
1.1 Preliminaries . 2

1.1.1 Finding Fixed Points as an Optimization Problem 2
1.1.2 Finding Multiple Fixed Points for the Same θ 4

1.2 Problem Definition . 5
1.3 State of the Art . 5
1.4 Objectives . 8
1.5 Description of Chapters . 8

2 Dynamical Systems 11
2.1 Basic Terminology . 11

2.1.1 Differential Equations and Fixed Points 11
2.1.2 Eigenvalues and Eigenvectors . 12
2.1.3 Stability and Linearization . 13

2.2 Linear Systems and their Relation to Nonlinear Systems 14
2.2.1 An Illustration of the Linearization Theorem 15

2.3 Criteria for Qualification of Fixed Points . 22
2.4 Numerical Computing of Derivatives and Jacobians 23

2.4.1 Numerical Differentiation: Ridders Method 25
2.4.2 Jacobians with Forward Differences 26

2.5 Final Remarks . 26

3 Bifurcation Diagram Construction based on Niche PSO 31
3.1 Particle Swarm Optimization . 31
3.2 Niche Particle Swarm Optimization . 33

ix

x Contents

3.2.1 Main Swarm Training . 33
3.2.2 Sub–Swarm Training . 33
3.2.3 Creation and Merging of Niches . 36

3.3 Bifurcations diagrams . 37
3.3.1 Using NichePSO to find fixed points 38

3.4 Final Remarks . 38

4 BDT: Bifurcation Diagram Tool 39
4.1 The JVM, Java, and Scala . 41
4.2 Plotting in 2D and 3D . 43
4.3 Graphical User Interface . 44
4.4 Final Remarks . 52

5 Results 53
5.1 Subcritical Pitchfork Bifurcation Diagram 53
5.2 Insect Outbreak . 57
5.3 Final Remarks . 59

6 Conclusions 61
6.1 General Conclusions . 61
6.2 Future Work . 63

A Parsing of a System of ODE’s 65
A.1 Grammars . 65
A.2 Combinator Parsers Vs. Parser Generators 66
A.3 A Grammar for Recognizing a Dynamical System 67
A.4 AST definition and evaluation . 68

Bibliography 71

List of Figures

1.1 Non-linearities introduced by Equation (1.4). 3
1.2 Bifurcation diagram for Equation (1.5). 4

2.1 Sink in phase space. 19
2.2 Deficient node in phase space. 21
2.3 Spiral sink in phase space. 22

4.1 Configuration of parameters. 45

5.1 Bifurcation diagram for Equation (5.1) obtained with BDT. 54
5.2 Bifurcation diagram for Equation (5.1) obtained with PyDSTool. 56
5.3 Bifurcation diagram for Equation (5.2) obtained with BDT. 58
5.4 Bifurcation diagram for Equation (5.2) obtained with PyDSTool. 58

xi

List of Tables

2.1 Criteria used for qualification of fixed points 24
2.2 Table resulting from Ridders method . 25

A.1 Implementation of PEG operators in Scala 66

xiii

List of Algorithms

1 ridders(f, x, h) . 27
2 jacobian(n, xs, f, Sx, eta) . 28

3 nichePSO(nx, ns) . 34

xv

List of Symbols

θ bifurcation parameter(s)
x scalar variable
x vector of state variables, vector function, solution of an equation
t time
ẋ derivative of x with respect to time, ẋ = dx/dt
f vector function, defines the dynamics of the problem that is to be solved
∥ · ∥ a vector norm
xs fixed point such that f(xs) = 0
Xθ0 Set of fixed points corresponding to θ = θ0
x0 the value of x at t = 0, x(0) = x0

I identity matrix
λ eigenvalue
∈ “in”, element of a set
Cn the set of functions with n continuous derivatives
δ, ϵ real positive numbers
ϕ solution of ẋ = f(x)
J(xs) Jacobian of f(x) evaluated at xs

T−1 inverse matrix of T
C1, C2 constants that depend on initial conditions
ej j-th unit vector
sgn sign function

xvii

Chapter 1

Introduction

Many research areas are interested in bifurcation analysis of dynamical systems.

Bifurcation diagrams plotting is a very important task in this kind of analysis because it

helps to qualitatively predict complex behaviors in the structure of a system where there is

variation in its parameters.

Common bifurcation diagrams plotting methods require of initial values and pa-

rameter adjustment for its correct operation. These values are frequently unknown and

requiere a deep knowledge of the system being analyzed, or a non-systematic search of

these parameters.

As an alternative to these methods, heuristic methods are used as an alternative

tool in bifurcation diagrams plotting. This kind of methods presents a number of advan-

tages and disadvantages over traditional methods, which will be presented in Section 1.3.

The goal of this project is to implement a software that produces bifurcation

diagrams using Niche Particle Swarm Optimization (Niche PSO), as well as the qualification

of fixed points.

1

2 Chapter 1: Introduction

1.1 Preliminaries

For a first-order system of ordinary differential equations (ODEs)

ẋ = f(x, θ) (1.1)

A bifurcation diagram depicts a scalar measure [x] versus the real parameter θ, where

(x, θ) solves (1.1) [Seydel, 2009]. For example, [x] could be xk (one of the components of

the n-vector x), or some convenient vector norm like ∥x∥2 = ∥x∥ (the euclidean norm) or

∥x∥∞ = max
1≤i≤n

|xi|. Fixed points xs of Eq. (1.1) are stationary solutions such that f(xs) = 0.

Traditional tools required for parameter study in bifurcation problems are 1) con-

tinuation methods with devices for detecting bifurcation and checking stability; and 2) meth-

ods for switching from one branch to another with or without the option of calculating the

bifurcation point itself [Seydel, 2009].

1.1.1 Finding Fixed Points as an Optimization Problem

The problem of finding fixed points of a dynamical system can be formulated as

the optimization problem: Find a set of solutions Xθ = {xs1 ,xs2 , . . . ,xsn}, such that each

xs ∈ Xθ is a minimum of

g1(x) = ∥f(x)∥ (1.2)

for a given value of θ.

The optimization problem can use different objective functions. Instead of a min-

imization problem, a maximization problem could use

g2(x) =
1

1 + ∥f(x)∥ (1.3)

as done in [López Cuevas Villanueva, 2010] and [Barrera et al., 2008]. g1 is simpler than g2

(and therefore more convenient in terms of computation time), but g2 or another function

that corresponds to a maximization problem (e.g. g3(x) = −∥f(x)∥) might be necessary

when the software used can solve maximization problems only.

1.1. Preliminaries 3

g2(x) takes values in the range [0, 1]. However, in general f(x) is not a linear

function of x. Using g2(x) introduces more non-linearities. To illustrate this point, let

h(y) =
1

1 + y
(1.4)

where y = ∥f(x)∥ for some x. Notice this is simply another way of representing Eq. (1.3).

Fig. 1.1 shows h(y) and its derivative h′(y).

Figure 1.1: Non-linearities introduced by Equation (1.4).

Let y1 = ∥f(x1)∥ = 25 and y2 = ∥f(x2)∥ = 50, for some vectors x1 and x2. A really

small improvement of h(y1) − h(y2) ≈ 1.885 × 10−2 is obtained for y2/y1 = 2. Fig. 1.1

also shows that the derivative h′(y) takes values very close to zero for y ≥ 10. For y ≤ 10,

|h′(y)| ≤ 1.0.

The linear scale that g1(x) = ∥f(x)∥ = y provides makes much more sense: if

y2/y1 = 2, then it is immediately obvious that x2 (with norm y2) is twice far away from

the origin than x1 (with norm y1), no matter how big y1 and y2 are.

4 Chapter 1: Introduction

1.1.2 Finding Multiple Fixed Points for the Same θ

For a given value of θ, f(xs) = 0 might have more than one solution (fixed points

xs). As an illustration, Fig. 1.2 shows the bifurcation diagram for the simple system

ẋ = f(x, θ) = θx+ x3 − x5 (1.5)

For some values of the parameter θ, there are multiple fixed points xs such that f(xs) = 0.

For example, for θ = −0.1, X−0.1 = {−0.941965,−0.335711, 0.0, 0.335711, 0.941965} (five

fixed points for the same θ).

Figure 1.2: Bifurcation diagram for Equation (1.5).

Traditional numerical open-interval methods for finding roots (like Newton-Raphson)

require an approximation of one of the roots. In general one value is returned (the nearest

root to the given initial approximation).

Niching methods in genetic algorithms tackle problems that require the location

and maintenance of multiple solutions (classification and machine learning, multimodal

1.2. Problem Definition 5

function optimization, multiobjective function optimization and simulation of complex and

adaptive systems) [Mahfoud, 1995].

This work uses Niche PSO as originally proposed in [Brits et al., 2002] to locate

multiple optimal solutions for multimodal optimization problems (such as finding multiple

fixed points for the same θ in dynamical systems). Niche PSO can be classified as a paral-

lel niching algorithm because the niches are identified and maintained simultaneously. In

contrast, sequential niching methods identifies multiple solutions by adapting the objective

function’s fitness landscape through the application of a derating function at a position

where a potential solution was found.

Niche PSO has the advantage that it does not require of approximations of roots

to start the search. This means the researcher of dynamical systems can benefit from this

ability to simplify the construction of bifurcation diagrams.

1.2 Problem Definition

The problem that this work solves is the following:

Construct bifurcation diagrams as complete as possible using Niche PSO to
find fixed points of dynamical systems. Information about the stability of fixed
points is found using linearization near the fixed point.

1.3 State of the Art

A (necessarily) incomplete list of software devoted to the study of dynamical sys-

tems and bifurcation problems is given in [Seydel, 2009]. Among the most prominent are

AUTO [Doedel, 1981] and XPP/XPPAUT (XPPAUT provides an interface to AUTO, which

is a software for continuation and bifurcation problems in ordinary differential equations)

[Ermentrout, 2002].

6 Chapter 1: Introduction

AUTO has become a standard package in bifurcation analysis. The first distrib-

uted version appeared in 1980, and version 0.9.1 of AUTO-07P was released in 2012. AUTO

continues to be used and developed up to the moment of writing.

A complete and up-to-date installation of AUTO (at the moment of writing) uses

Fortran, Python, and LATEX and transfig (for the documentation). Even when AUTO has

a lot of features, the user of this software has the following challenges:

• It requires a decent amount of knowledge to install everything properly in different

platforms (portability is an issue here).

• The user can write some dynamical system specification using Fortran or C, and then

it is possible to use Python to get some scripting functionality. Interactivity is gained

through the AUTO Command Line User Interface (CLUI, based on the Python read-

eval-print loop interpreter) and the Unix command line. The user then has to learn

the basics of Fortran/C to describe the dynamical system, and choose between Python

or Unix interactivity (and therefore learn additional programming or a lot of custom

Unix1 AUTO commands). Usability is an issue here.

• The documentation is distributed in PDF form, but some of it requires an installation

of a TEX distribution and transfig. HTML documentation is non-existent. Again,

portability and usability are concerns.

• A very unusual file naming convention is used.

XPP/XPPAUTO contains the code for AUTO, and makes its usage easier. How-

ever, it does not expose all the features AUTO has (it targets more platforms and has to

keep up with the latest developments of AUTO). Someone has to compile the source code

for every platform to distribute it in binary form.

1these commands run both directly in the shell (in Windows the user needs to install MinGW, the
“Minimalist GNU for Windows” also) and at the AUTO Python prompt

1.3. State of the Art 7

PyDSTool [Clewley, 2012] provides another alternative for bifurcation and stabil-

ity analysis (PyDSTool features optional support for AUTO and a C-based integrator). If

the user wants a feature-complete installation, he/she will face similar challenges as men-

tioned before for AUTO. Furthermore, the user has to deal with a 32 bit installation, even

when using 64 bit systems. For example, to install it on a 64 bit Ubuntu Linux machine,

one possibility is to use debootstrap and schroot (with the proper configuration) to install

every dependency (gfortran, gcc, python, numpy, scipy, matplotlib, etc.) in a 32 bit flavor.

Although installing PyDSTool is harder than installing AUTO, it provides a more

uniform programming environment (Python scripting only) and is therefore more usable.

The pain of a correct installation is a price the user has to pay to get all the features

promised by the aforementioned software.

From the previous summary, the following should be clear by now: AUTO contin-

ues to be used (in some way) in a lot of open source tools for bifurcation and stability analysis

(e.g. XPPAUT, PyDSTool). This means a lot of Fortran and C legacy code involved, with

their respective advantages (e.g. performance) and disadvantages (e.g. portability).

Given the aforementioned usability and portability concerns for AUTO, a tool

that is both easier to use and install is proposed: BDT (Bifurcation Diagram Tool). Some

of the advantages it offers are: the user requires little previous knowledge of the behavior

of dynamical systems to construct bifurcation diagrams; bifurcation diagrams can be gen-

erated in an unsupervised way; the ability to work with non-continuous functions; great

portability provided by the usage of the Java Virtual Machine (JVM).

BDT has one important disadvantage: the computation time required for solving

optimization problems with Niche PSO can be large. However, a user of AUTO (or one of

its offspring) has to spend a lot of time constructing bifurcation diagrams with continuation

methods (initial conditions required).

8 Chapter 1: Introduction

Harold Abelson from the Massachusetts Institute of Technology (MIT), wrote an

article for a ”Bifurcation Interpreter” that used artificial intelligence together with the New-

ton method to study dynamical systems [Abelson, 1990].

An hybrid Particle Swarm Optimization method was used in [Flores et al., 2011]

to construct complete bifurcation diagrams to study voltage collapse phenomenon. One of

the important contributions of this work is the ability to build complete bifurcation dia-

grams, varying 2 or more parameters at the same time.

In [López Cuevas Villanueva, 2010], another tool for bifurcation diagram plotting

is reported. The default metaheuristic used was developed by Julio Barrera in his doctoral

thesis [Barrera Mendoza, 2012]. One of the important contributions of this work is the im-

plementation of a compiler for differential equations with ANTLR. The compiler generates

code that is interpreted at run-time using BeanShell scripts.

1.4 Objectives

The purpose of this thesis is the implementation of a tool (BDT) for construction

of bifurcation diagrams using Niche PSO. BDT must meet the following requirements:

• To allow the definition of dynamical systems.

• Generate bifurcation diagrams in 2D and 3D using Niche PSO.

• To allow the qualification of the stability of fixed points.

• Run on the Java Virtual Machine

1.5 Description of Chapters

The rest of this thesis is organized as follows:

• Chapter 2 introduces the dynamical systems terminology and stablishes the criteria

used for classification of fixed points.

1.5. Description of Chapters 9

• Chapter 3 introduces PSO and then introduces the special variant, Niche PSO, that

was developed to locate and maitain multiple optima. A description of the configura-

tion of the algorithm is given.

• Chapter 4 describes the process of plotting a bifurcation with BDT. It also explains

some non-trivial software techniques that were exploited in this work.

• Chapter 5 presents some results of this work. It also compares bifurcation diagrams

produced with BDT and PyDSTool (that can use AUTO for continuation methods).

• Chapter 6 summarizes the main achievements of this thesis and suggests further work.

• Appendix A defines a Parsing Expression Grammar (PEG) to recognize dynamical

systems. It mentions how this can be implemented in Scala with combinator parsers.

Chapter 2

Dynamical Systems

In this chapter basic dynamical system terminology is established (Section 2.1).

Section 2.2 states the noteworthy Linearization Theorem that constitutes the basis of our

qualification of fixed points criteria. Section 2.2.1 is an illustration of the application of

some concepts given in Section 2.2 in a nonlinear problem. Section 2.3 establishes the

qualification criteria of fixed points. Section 2.4 summarizes two numerical algorithms used

for qualification of fixed points.

2.1 Basic Terminology

This section introduces the dynamical systems terminology used in this work.

Section 2.1.1 shows the kind of differential equations studied in this thesis, whereas Sec-

tion 2.1.2 reviews the basic definition of eigenvalue and eigenvectors. Section 2.1.3 defines

what stability and linearization mean.

2.1.1 Differential Equations and Fixed Points

An autonomous first-order system of differential equations is a collection of n

interrelated differential equations:

ẋ = f(x, θ) (2.1)

11

12 Chapter 2: Dynamical Systems

This equation stands for a system consisting of n scalar components,
ẋ1

ẋ2
...

ẋn

 =


f1(x1, . . . , xn, θ)

f2(x1, . . . , xn, θ)
...

fn(x1, . . . , xn, θ)


A vector xs for which f(xs, θ) = 0 is called stationary solution. These solutions are

also called fixed points, and sometimes equilibrium points, singular points, critical points,

or rest points. In general, solutions of Eq. (2.1) vary with the parameter θ.

For more information about terminology for differential equations and dynamical

systems see [Strogatz, 1994], [Smale et al., 2003] and [Seydel, 2009]).

2.1.2 Eigenvalues and Eigenvectors

Given any n× n matrix A, if for a scalar λ and a nonzero vector v the equation

Av = λv (2.2)

holds, then λ is called an eigenvalue of the matrix A and v an eigenvector of A correspond-

ing or belonging to λ. For any eigenvalue λ the zero vector is always a solution of (2.2) and

is called the trivial eigenvector of A belonging to λ.

Equation (2.2) can be rewritten as

(A− λI)v = 0 (2.3)

For any fixed λ, a homogeneous equation like this has nontrivial solutions if and only if its

matrix is singular. It follows that λ is an eigenvalue of A if and only if λ is a root of the

characteristic polynomial

det(A− λI) = 0 (2.4)

To find the eigenvectors, substitute the eigenvalues resulting from (2.4), one after the other,

into (2.3), and solve for the unknown vector v.

2.1. Basic Terminology 13

2.1.3 Stability and Linearization

Suppose f(x) : Rn → Rn, is continuously differentiable in all x-space (f ∈ C1).

Then, for any x0, the initial value problem

ẋ = f(x), x(0) = x0

has a unique solution x(t,x0). The usual stability definitions are stated as follows:

• The system is stable at an equilibrium point xs, if for each positive number ϵ there is

a positive number δ such that for all solutions x(t,x0):

if ∥x0 − xs∥ < δ, then ∥x(t,x0)− xs∥ < ϵ, for all t ≥ 0

• The system is asymptotically stable at an equilibrium point xs if it is stable at xs and

if ∥x(t,x0)− xs∥ → 0 as t→ +∞ for all points x0 near xs.

• The system is neutrally stable at xs if it is stable at xs, but not asymptotically stable.

• The system is unstable at xs if it is not stable.

The stability properties of an autonomous linear system ẋ = Ax can be com-

pletely determined by a study of the eigenvalues of A and its corresponding eigenspaces.

For nonlinear autonomous systems, it is possible to determine the stability of the dynamical

system at the fixed points via linearization or with Liapunov functions1.

In the present work, the stability of fixed points is classified only if linearization

is suitable. If f is twice continuously differentiable (f ∈ C2), xs is a fixed point of ẋ = f(x),

and J(xs) is the Jacobian of f evaluated at xs, then the linear system ẋ = J(xs)(x− xs) is

the linearization of ẋ = f(x).

• The system ẋ = f(x) is asymptotically stable at xs if all eigenvalues of J(xs) have

negative real parts.
1Liapunov defined classes of scalar functions to test for the stability, asymptotic stability, or instability

of any system, linear or nonlinear, autonomous or nonautonomous [Borrelli and Coleman, 2004].

14 Chapter 2: Dynamical Systems

• The system ẋ = f(x) is unstable at xs if J(xs) has at least one eigenvalue with a

positive real part.

It is not possible to draw any conclusion about stability (using linearization) if J(xs) has

an eigenvalue with a zero real part, but no eigenvalue with a positive real part (non-linear

order terms determine the stability).

2.2 Linear Systems and their Relation to Nonlinear Systems

A matrix A is hyperbolic if none of its eigenvalues has real part 0. In that case,

the linear system ẋ = Ax is also said to be hyperbolic.

In analogy with linear systems, a fixed point xs of a nonlinear system ẋ = f(x) is

hyperbolic if all of the eigenvalues of J(xs) have nonzero real parts.

To emphasize the dependence of solutions on both time and the initial condi-

tions x0, let ϕ(t,x0) denote the solution that satisfies the initial condition x0. That is,

ϕ(0,x0) = x0. The function ϕ(t,x0) is called the flow of the differential equation.

Suppose ẋ = fAx and ẋ = fBx have flows ϕA and ϕB. These two systems are

(topologically) conjugate if there exists a homeomorphism2 h : Rn → Rn that satisfies

ϕB(t,h(x0)) = h(ϕA(t,x0))

The homeomorphism h is called a conjugacy. Thus a conjugacy takes the solution curves

of ẋ = fAx to those of ẋ = fBx.

These concepts are important because of the next theorem [Smale et al., 2003]:

Theorem 1 (The Linearization Theorem) Assume an n-dimensional system ẋ = f(x)

has an equilibrium point at xs that is hyperbolic. Then the nonlinear flow is conjugate to

the flow of the linearized system ẋ = J(xs)(x− xs) in a neighborhood of xs.
2A homeomorphism is a one-to-one, onto, and continuous function whose inverse is also continuous.

2.2. Linear Systems and their Relation to Nonlinear Systems 15

In a more intuitive way, this means that near the hyperbolic equilibrium point,

the flow of the nonlinear system has the same fate than the linear one. As a consequence,

an understanding of linear systems is useful to study nonlinear phenomena.

2.2.1 An Illustration of the Linearization Theorem

The horizontal motion of a weight attached to a nonlinear soft spring can be

modeled by an ODE that looks like:

ẍ+ 2cẋ+ (ω2
0 − d2x2)x = 0 (2.5)

where x is the horizontal displacement from the equilibrium position, and x > 0 corresponds

to a compressed spring. Hooke’s Law models S(x), the force exerted by the spring, as the

linear function −kx that acts opposite to the direction of the displacement. But here

the case where the “spring constant” k weakens as the displacement x increases is being

considered. Therefore

S(x) = −(ω2
0 − d2x2)x, ω0 and d are positive constants

A damping force −2cẋ is exerted over the spring, and it is opposite to the direction

of displacement of the weight (c is a positive number also). Equation (2.5) can be rewritten

as a first-order system of ODEs in normal form:

ẋ = v

v̇ = −ω2
0x− 2cv + d2x3

(2.6)

If x denotes the state vector [x, v]T , the system (2.6) can be expressed in matrix

form as

ẋ =

 0 1

−ω2
0 −2c

x +

 0

d2x3

 (2.7)

From Equation (2.6), it follows that fixed points of the nonlinear system are

xs1 =

0
0

 , xs2 =

ω0/d

0

 , xs3 =

−ω0/d

0



16 Chapter 2: Dynamical Systems

For xs1

J(xs1) =

 0 1

−ω2
0 −2c

 (2.8)

and the linearization of the system (2.7) near xs1 is merely

ẋ =

 0 1

−ω2
0 −2c

x (2.9)

The characteristic polynomial (see Equation (2.4)) of J(xs1) is

λ2 + 2cλ+ ω2
0 = 0 (2.10)

with roots:
λ1 = −c+

√
c2 − ω2

0

λ2 = −c−
√

c2 − ω2
0

(2.11)

Since c and ω0 are positive real numbers, the real parts of λ1 and λ2 are always

negative, whatever the actual values of c and ω0 are. If c < ω0, then λ1 and λ2 are complex

conjugates with negative real part−c. If c ≥ ω0, then 0 ≤ c2−ω2
0 < c2, so 0 ≤

√
c2 − ω2

0 < c,

or equivalently, −c ≤ −c+
√

c2 − ω2
0 < 0 and λ1 and λ2 are real and negative.

From the previous discussion, it follows that the nonlinear system (2.7) has an

equilibrium point at xs1 that is hyperbolic (neither λ1 nor λ2 have real part 0). There-

fore, not only it is possible to say that the nonlinear system is asymptotically stable at xs1

(both λ1 and λ2 have negative real part), but because of the Linearization Theorem, it is

also possible to say that the nonlinear flow of system (2.7) resembles that of the linearized

system near xs1 .

The exact nature of the solutions for system (2.9) depends on the relative sizes of

the constants c and ω0. There are three cases:

• c > ω0. Then λ1 and λ2 are real, negative, and different.

• c = ω0. Then λ1 = λ2 = −c < 0

2.2. Linear Systems and their Relation to Nonlinear Systems 17

• c < ω0. Then λ1 = α+ iβ, λ2 = λ1 = α− iβ.

In order to find the eigenvectors corresponding to λ1,2, substitute λ1,2 (one at a

time) into (J(xs1)− λI)v = 0, and solve for the unknown v.

Overdamped System: c > ω0

For λ1, (J(xs1)− λ1I)v = 0 can be written asc−√
c2 − ω2

0 1

−ω2
0 −c−

√
c2 − ω2

0

v = 0

and solutions are of the form

v1 = k1

 1

−c+
√

c2 − ω2
0

 k1 ̸= 0 (2.12)

For λ2, c+√
c2 − ω2

0 1

−ω2
0 −c+

√
c2 − ω2

0

v = 0

and solutions are of the form

v2 = k2

 1

−c−
√

c2 − ω2
0

 k2 ̸= 0 (2.13)

The matrix T whose columns are the eigenvectors of J(xs1) is:

T =

 1 1

−c+
√

c2 − ω2
0 −c−

√
c2 − ω2

0

 (2.14)

with inverse

T−1 =
1

2
√

c2 − ω2
0

 c+
√

c2 − ω2
0 1

−c+
√

c2 − ω2
0 −1

 (2.15)

Then, the system ẏ = T−1ATy is

ẏ =

−c+√
c2 − ω2

0 0

0 −c−
√

c2 − ω2
0

y (2.16)

18 Chapter 2: Dynamical Systems

with solution:

y(t) = C1e
(−c+
√

c2−ω2
0)t

1
0

+ C2e
(−c−
√

c2−ω2
0)t

0
1

 (2.17)

The solution to ẋ = J(xs1)x is given by Ty:

x(t) = C1e
(−c+
√

c2−ω2
0)t

 1

−c+
√
c2 − ω2

0

+ C2e
(−c−
√

c2−ω2
0)t

 1

−c−
√

c2 − ω2
0

 (2.18)

or in a more compact way:

x(t) = C1e
λ1t

 1

λ1

+ C2e
λ2t

 1

λ2

 (2.19)

The equilibrium point xs1 is a sink, because both eigenvalues are real, negative

and different.

Given the initial condition x(0) =

x0
v0

, C1 and C2 can be computed with

C1

C2

 = T−1x(0) (2.20)

Figure 2.1 shows the flow of the linearized system near xs1 . It was drawn using

c = 2.0, ω0 = 1.0, and initial conditions from the sequence:−3.0
−4.0

 ,

−3.0
4.0

 ,

−2.0
−4.0

 ,

−2.0
4.0

 , . . . ,

3.0
4.0

 (2.21)

According to the Linearization Theorem, the nonlinear flow of the system (2.7) is

conjugate to the flow of the linearized system near xs1 .

Critically damped: c = ω0

In this case, λ1 = λ2 = −c < 0 (a double eigenvalue). Besides

J(xs1) =

 0 1

−c2 −2c

 (2.22)

2.2. Linear Systems and their Relation to Nonlinear Systems 19

3 2 1 0 1 2 3
x

4

3

2

1

0

1

2

3

4

v

Weak eigenspace

Strong eigenspace

Figure 2.1: Sink in phase space.

The characteristic polynomial is λ2+2cλ+c2 = 0, with eigenvalues λ1 = λ2 = −c.

Substituting these in (J(xs1)− λI)v = 0 gives c 1

−c2 −c

v = 0

and solutions are multiple (non–zero) of v = [1,−c]T . The dimension of the eigenspace

in this case is less than the multiplicity of the eigenvalue, and therefore, the eigenspace is

deficient. Let w = [c, 1]T , so that v and w are linearly independent. Then J(xs1)w =

µv− cw for some µ ̸= 0. To be precise, µ = c2 + 1. Let

u =
1

µ
w =

1

c2 + 1

c
1


Let T be the matrix whose columns are v and u

T =

 1 c/(c2 + 1)

−c 1/(c2 + 1)

 =
1

c2 + 1

 c2 + 1 c

−c(c2 + 1) 1

 (2.23)

20 Chapter 2: Dynamical Systems

with inverse

T−1 =
1

c2 + 1

 1 −c

c(c2 + 1) c2 + 1

 (2.24)

Then, the similarity transformation T−1AT makes possible to express the system

in a canonical form

ẏ =

−c 1

0 −c

y (2.25)

The general solution may be written as

y(t) = C1e
−ct

1
0

+ C2e
−ct

t
1


that corresponds to x = Ty

x(t) = C1e
−ct

 1

−c

+ C2e
−ct

 t+ c/(c2 + 1)

−tc+ 1/(c2 + 1)

 (2.26)

The equilibrium point xs1 is a deficient node, because there is only a double eigen-

value (algebraic multiplicity is two), but its eigenspace has dimension one.

Figure 2.2 was drawn using c = ω0 = 1.0, and initial conditions from sequence

(2.21).

Underdamped: c < ω0

If c < ω0, then λ1 = α+iβ, λ2 = λ1 = α−iβ, where α < 0 and β =
√

ω2
0 − c2. The

characteristic polynomial is exactly as (2.10), but now the roots are complex conjugates:

λ1 = −c+ i
√

ω2
0 − c2

λ2 = −c− i
√

ω2
0 − c2

(2.27)

(J(xs1)− λ1I)v = 0 is c− i
√

ω2
0 − c2 1

−ω2
0 −c− i

√
ω2
0 − c2

v = 0

and solutions are multiple (non-zero) of

v =

 1

−c+ i
√

ω2
0 − c2

 (2.28)

2.2. Linear Systems and their Relation to Nonlinear Systems 21

3 2 1 0 1 2 3
x

4

3

2

1

0

1

2

3

4

v

Figure 2.2: Deficient node in phase space.

Let

w1 =
1

2
(v1 + v2) =

 1

−c


w2 = −

i

2
(v1 − v2) =

 0√
ω2
0 − c2


These vectors are linearly independent, and a similarity transformation T−1J(xs1)T can be

built with

T =

 1 0

−c
√

ω2
0 − c2

 (2.29)

that has inverse

T−1 =
1√

ω2
0 − c2

√ω2
0 − c2 0

c 1

 (2.30)

Hence solutions are of the form x = Ty where

y(t) = C1e
−ct

 cos
√

ω2
0 − c2t

− sin
√

ω2
0 − c2t

+ C2e
−ct

sin
√

ω2
0 − c2t

cos
√

ω2
0 − c2t

 (2.31)

22 Chapter 2: Dynamical Systems

x(t) can be written as:

x(t) = e−ct

 cosβt sinβt

−c cosβt− β sinβt −c sinβt+ β cosβt

C1

C2

 (2.32)

The phase portrait corresponds to a spiral sink. Figure 2.3 was draw using c = 0.5, ω0 = 1.0,

and initial conditions from sequence (2.21).

3 2 1 0 1 2 3
x

4

3

2

1

0

1

2

3

4

v

Figure 2.3: Spiral sink in phase space.

2.3 Criteria for Qualification of Fixed Points

A linear system like (2.9) can be completely described with the eigenvalues and

eigenvectors (besides stability, it is possible to determine analytically the exact shape of

the linear flow in the neighbourhood of the fixed point). This is not the case for nonlinear

systems.

2.4. Numerical Computing of Derivatives and Jacobians 23

For nonlinear systems the process followed in this work consists of a few simple

steps:

• Find the fixed points of the system ẋ = f(x, θ) (an alternative to do this will be

studied in the next chapter).

• Evaluate the jacobian of f in every fixed point xs: J(xs) (linearization is used here).

• Compute the eigenvalues of J(xs).

– If the fixed point xs is hyperbolic, the linear conjugate flow can be used to

describe the behaviour in its neighbourhood (see Table 2.1). By consequence,

the fixed point can be classified as “Asymptotically Stable” or “Unstable”.

– Table 2.1 shows 10 possible cases depending on four boolean flags: isHyperbolic,

negativeFound, positiveFound, complexFound. The boolean flag isHyperbolic is

set to true if every eigenvalue of J(xs) has non-zero real part; negativeFound

(positiveFound) is set to true if there is at least one eigenvalue with negative

(positive) real part; complexFound is set to true if there is at least one eigenvalue

that is complex.

Notice that linearization gives information about the linear conjugate flow only

if the fixed point is hyperbolic (column “Linear Conjugate Flow” of the table).

– If the fixed point xx is not hyperbolic, acording to Section 2.1.3, it could be

classified as “Unstable” or “Undefined”. The latter case occurs when there is not

enough information from the linearization process, and stability classification

requires an analysis of higher order terms.

2.4 Numerical Computing of Derivatives and Jacobians

Acording to Section 2.3, it is necessary to evaluate J(xs). For dynamical systems

consisting of one scalar equation, it is enough to check the sign of the derivative evaluated

at the fixed point. A description of the algorithms used for this purpose follows.

24 Chapter 2: Dynamical Systems

Table 2.1: Criteria used for qualification of fixed points

C
as

e
N

um
be

r

is
H

yp
er

bo
lic

ne
ga

ti
ve

Fo
un

d

po
si

ti
ve

Fo
un

d

co
m

pl
ex

F o
un

d

Li
ne

ar
C

on
ju

ga
te

F
lo

w

St
ab

ili
ty

1 false false false X – Undefined
2 false false true X – Unstable
3 false true false X – Undefined
4 false true true X – Unstable
– true false false X – –
5 true false true false Source Unstable
6 true false true true Spiral Source Unstable
7 true true false false Sink Asymptotically Stable
8 true true false true Spiral Sink Asymptotically Stable
9 true true true false Saddle Unstable
10 true true true true Spiral Saddle Unstable

2.4. Numerical Computing of Derivatives and Jacobians 25

2.4.1 Numerical Differentiation: Ridders Method

The derivative of f(x) is

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(2.33)

This formula suggests a naive approach to compute a numerical derivative: pick

a small value h and apply (2.33). However, applied uncritically, this procedure is almost

guaranteed to produce inaccurate results.

Ridders applied Romberg’s method to improve the accuracy in the computation

of the first and second derivatives of a real function [Ridders, 1982]. Using the Taylor

expansion in the vicinity of x:

f ′(x) ≈ f(x+ h)− f(x− h)

2h
(2.34)

with a truncation error of et ∼ h2f (3). As a consequence, et decreases quadratically with

decreasing h. Repeatedly halving the value of h produces a series of corresponding values

of f(x+ h)− f(x− h)

2h
, which is denoted by (A1, A2, A3, . . .).

Now f ′(x) ∼ A1+et1 ∼ A2+et2 , furthermore et1/et2 = 4, so a better approximation

is given by:

f ′(x) ≈ 4A2 −A1

4− 1
(2.35)

which is denoted by B1.

This procedure leads us to the well known Romberg method:

A1 A2 A3 A4 · · ·
m = 1 B1 B2 B3 · · ·
m = 2 C1 C2 · · ·
m = 3 D1 · · ·

...

Table 2.2: Table resulting from Ridders method

26 Chapter 2: Dynamical Systems

with
Bn =

An+1 · 4m −An

4m − 1
, m = 1

Cn =
Bn+1 · 4m −Bn

4m − 1
, m = 2

(2.36)

and so on.

Algorithm 1 computes the terms in Table 2.2 and returns the last element of the

diagonal as an approximation to the derivative at the requested point. It also returns an

approximation of the error in the computed value. Line 1 assigns a size of 10 to the number

of rows, m, in Table 2.2. Line 6 is the first approximation to the derivative, and line 7

assumes the error is big at this point (that is why err is assigned the maximum value that

Doubles can represent). Line 15 corresponds to Equation 2.36. The error strategy is to

compare each new extrapolation to one order lower, both at the present stepsize and the

previous one. If error is decreased, the improved answer is saved (lines 18–21). If higher

order error is worse by a significant factor SAFE, the algorithm quits early (lines 24–26).

2.4.2 Jacobians with Forward Differences

The implementation used in this work is based on [Dennis and Schnabel, 1987]. A

forward difference approximation to J(xs) (the jacobian matrix of f(x) evaluated at xs) is

used.

Column j of J(xs) is approximated by f(xs + hjej), where ej is the j–th unit

vector, and hj = η1/2 max{|xs[j]|, 1/Sx[j]} sgn(xs[j]). 1/Sx[j] is the typical size of |xs[j]|

by the user, and η = 10-DIGITS, where DIGITS is the number of reliable base 10 digits in

f(x). The corresponding elements of J(xs) and J typically will agree in about their first

DIGITS/2 base 10 digits[Dennis and Schnabel, 1987].

2.5 Final Remarks

This chapter gives the necessary terminology from dynamical systems theory used

in this work. Section 2.2.1 is an illustration of how the Linearization Theorem applies to

2.5. Final Remarks 27

Algorithm 1: ridders(f, x, h)
Input : f, the function to be differentiated; x, the value at which the

derivative will be computed; h, an initial step from x

Output: ans, the derivative of f at x; err, an estimate of the error in ans

1 ntab ← 10

2 safe ← 2.0

3 Initialize errt, fac, hh and ans to 0.0

4 Initialize bidimensional array a of size ntab× ntab to zeros

5 hh← h

6 a[0,0]← f(x + hh)− f(x− hh)
2hh

7 err← Double.MaxValue

8 con← 1.4

9 con2← con× con

10 for j = 1 to a.numCols do

11 hh← hh/con

12 a[0, j]← f(x + hh)− f(x− hh)
2hh

13 fac← con2

14 for i = 1 to j do

15 a[i, j]← a[i - 1, j]× fac− a[i - 1, j - 1]
fac− 1.0

16 fac← con× fac

17 errt← max
{∣∣a[i, j]− a[i - 1, j]

∣∣, ∣∣a[i, j]− a[i - 1, j - 1]
∣∣}

18 if errt ≤ err then

19 err← errt

20 ans← a[i, j]

21 end

22 end

23 higherOrderWorse← |a[j, j]− a[j - 1, j - 1]| ≥ safe× err

24 if higherOrderWorse then

25 break

26 end

27 end

28 return ans, err

28 Chapter 2: Dynamical Systems

Algorithm 2: jacobian(n, xs, f, Sx, eta)
Input : n ∈ Z, xs ∈ Rn, f(x) : Rn → Rn, Sx ∈ Rn, η ∈ R

Output: J ∈ Rn×n ≈ J(xs)

1 sqrtEta ← η1/2

2 for j = 1 to n do

// calculate column j of J

3 stepSizej← sqrtEta×max{|xs[j]|, 1/Sx[j]} × sgn(xs[j])

4 tempj ← xs[j]

5 xs[j]← xs[j]+ stepSizej

6 stepSizej ← xs[j]− tempj

7 fj ← f(xs + stepSizej× ej)

8 for i ← 1 to n do

9 J[i, j]← fj[i]− f(xs)[i]

stepSizej
10 end

11 xs[j]← tempj

12 end

2.5. Final Remarks 29

a nonlinear system, and shows how a similarity transformation can be applied to J(xs)

in order to express the same matrix in a different basis (given by the eigenvalues in the

case of non-defective matrices and by the generalized eigenvalues in the case of defective

ones) such that the result is in a Jordan canonical form. The purpose of this process is

twofold: it allows to classify the number of possibilities that can arise when computing the

eigenvalues of J(xs) (the similarity transformation preserves the eigenvalues of the original

matrix) and it makes easier to solve the linear system of differential equations that arise

from the linearization process. The solution in the original basis can be found by a simple

linear mapping. Table 2.1 summarizes the different possibilities that can be studied from

an eigenvalue analysis of J(xs).

Chapter 3

Bifurcation Diagram Construction

based on Niche PSO

In this chapter the basics of Particle Swarm Optimization (PSO) and Niche Particle

Swarm Optimization (Niche PSO) are studied (pointing out some important configuration

chosen for the algorithms involved). Section 3.3 defines what a bifurcation diagram is and

Subsection 3.3.1 explains how Niche PSO is exploited to find the (possibly multiple) fixed

points for a given set of values of the parameters.

3.1 Particle Swarm Optimization

Particle swarm optimization (PSO) was originally designed and introduced by

Eberhart and Kennedy [Eberhart and Kennedy, 1995]. The PSO is a population based

search algorithm based on the simulation of the social behavior of birds, bees or a school of

fishes.

If xi(t) ∈ Rnx (a vector with nx real components) is the position of the i–th particle

of the swarm (which has size ns) in the search space at time t (which denotes discrete time

steps), then after one time step the new position is given by:

xi(t+ 1) = xi(t) + vi(t+ 1) (3.1)

31

32 Chapter 3: Bifurcation Diagram Construction based on Niche PSO

where vi(t) denotes the velocity vector of the i–th particle. The velocity has a social and

a cognitive component, that drive the optimization process.

For the basic PSO algorithm, the velocity update of the i-th particle has the form:

vij(t+ 1) = vij(t) + c1r1j(t)pij(t) + c2r2j(t)sij(t) (3.2)

where the subindex ij denotes the j–th entry corresponding to i–th particle; p(t) is the

cognitive component and s(t) the social component; c1 and c2 are positive acceleration con-

stants used to scale the contribution of the cognitive and social components respectively;

r1j and r2j are random values sampled from a uniform distribution U [0, 1].

The original form of PSO is the GBest version [Eberhart and Kennedy, 1995]. For

the GBest version the neighborhood for each particle is the entire swarm. The social net-

work employed by the GBest PSO uses the star topology (the social component of the

particle velocity update reflects information obtained from all the particles in the swarm).

In this case, the social information is the best position found by the swarm.

The global information exchange in the GBest version allows a fast convergence of

a solution. However, the swarm loses diversity soon and this implies further exploration is

not possible and the particles can perform only local search around their convergence point.

Eberhart and Kennedy designed a LBest version of PSO and introduced the con-

cept of neighbourhood of a particle (the group of particles that can exchange social informa-

tion with the given particle) [Eberhart and Kennedy, 1995]. Each particle assumes a set of

other particles to be its neighbors and, at each iteration, it communicates its best position

only to these particles, instead of to the whole swarm. Eberhart and Kennedy found that

the LBest version has a better ability than the GBest version to avoid being trapped in

local optima, at the cost of computation time (it converges slower).

3.2. Niche Particle Swarm Optimization 33

3.2 Niche Particle Swarm Optimization

Niching algorithms are used for locating and maintaining multiple solutions to

problems like multimodal function optimization and multiobjective function optimization

[Mahfoud, 1995]. The PSO algorithm has poor habilities to achieve this goal, as summa-

rized by [Brits et al., 2007]. The Niche PSO was developed to enhance these habilities of

PSO.

Niche PSO starts with a main swarm that contains all particles. When a particle

seems to have converged to a solution, a subswarm (niche) is formed with that particle and

its closest neighbour (the subswarm particles are no longer part of the main swarm). Each

subswarm refines and maintain their own solution. To maintain niches, it is important that

every subswarm is independent from the others. See Algorithm 3. The following sections

describe this algorithm in detail (using a particular configuration). The implementation

uses the CILib library (https://github.com/cilib/cilib/).

3.2.1 Main Swarm Training

The main swarm is a normal PSO swarm trained using a cognition-only model

(social component is zero) to promote exploration. Using Equation (3.2), that means c1 =

1.2, c2 = 0.0.

3.2.2 Sub–Swarm Training

Each subswarm is trained using GCPSO (Guaranteed Convergence PSO) as sug-

gested by [Engelbrecht, 2007], because “it has guaranteed convergence to a local minimum

[Van Den Bergh, 2006], and because the GCPSO has been shown to perform well on ex-

tremely small swarms [Van Den Bergh, 2006]”.

The GCPSO changes the position and velocity update of the global best particle,

at the same time that uses a conventional PSO for the rest of the particles. If τ is the index

https://github.com/cilib/cilib/

34 Chapter 3: Bifurcation Diagram Construction based on Niche PSO

Algorithm 3: nichePSO(nx, ns)
Input : nx (the dimension of the search space), nS (the size of the swarm)

Output: Sk.ŷ (the best solution of each subswarm)

1 Create and initialize a nx-dimensional main swarm, S

2 repeat

3 Train the main swarm, S, for one iteration using the cognition–only

model

4 Update the fitness of each particle (S.xi) of the main swarm

5 for each sub-swarm Sk do

6 Train sub-swarm particles, Sk.xi, using a full model PSO

7 Update each particle’s fitness

8 Update the sub-swarm radius Sk.R

9 end

10 If necessary, merge sub-swarms

11 Allow sub-swarms to absorb any particles from the main swarm that

moved into the sub-swarm

12 If necessary, create new sub-swarms

13 until stopping condition is true

14 return Sk.ŷ for each sub-swarm Sk as a solution

3.2. Niche Particle Swarm Optimization 35

of the global best particle (yτ = ŷ), GCPSO changes the position update to

xτj(t+ 1) = ŷj(t) + wvτj(t) + ρ(t)(1− 2r2(t)) (3.3)

This is obtained if the velocity update of the global best particle changes to

vτj(t+ 1) = −xτj(t) + ŷj(t) + wvτj(t) + ρ(t)(1− 2r2(t)) (3.4)

where ρ(t) is a scaling factor defined as:

ρ(t) =


2ρ(t) if number of sucesses(t) > ϵs

0.5ρ(t) if number of failures(t) > ϵf

ρ(t) otherwise

(3.5)

where number of successes and number of failures denote the number of consecutive suc-

cesses and failures, respectively (ϵs and ϵf are the chosen thresholds for these). A fail-

ure occurs when the new global best position is actually equal or worse than the previ-

ous global best position. The optimal values for ϵs and ϵf are problem dependent, but

[van den Bergh and Engelbrecht, 2002] recommends to set ϵs = 15 and ϵ = 5 for high-

dimensional search spaces.

For the rest of the particles, the conventional PSO chosen uses a

ConstrictionVelocityProvider. Therefore the velocity update changes to:

vij(t+ 1) = χ[vij(t) + ϕ1(yij(t)− xij(t)) + ϕ2(ŷj(t)− xij(t))] (3.6)

where

χ =
2κ

|2− ϕ
√

ϕ(ϕ− 4)|
(3.7)

with ϕ = ϕ1+ϕ2, ϕ1 = c1r1, and ϕ2 = c2r2. Under the conditions that ϕ ≥ 4 and κ ∈ [0, 1],

the swarm is guaranteed to converge [Engelbrecht, 2007].

The ConstrictionVelocityProvider is used together with a

ClampingVelocityProvider. The following code excerpt shows how the velocity providers

for each sub-swarm (niche) have been configured:

36 Chapter 3: Bifurcation Diagram Construction based on Niche PSO

1 // velocityProvider
2 val subSwarmVelProv = new GCVelocityProvider()
3 subSwarmVelProv.setRho(ConstantControlParameter.of(1.0))
4 subSwarmVelProv.setSuccessCountThreshold(15) // epsilons
5 subSwarmVelProv.setFailureCountThreshold(5) // epsilonf
6
7 val constrictionVelProv = new ConstrictionVelocityProvider()
8 constrictionVelProv.setSocialAcceleration(ConstantControlParameter.of(2.05))
9 constrictionVelProv.setCognitiveAcceleration(ConstantControlParameter.of(2.05))

10 constrictionVelProv.setKappa(ConstantControlParameter.of(1.0))
11
12 val clampingVelProv = new ClampingVelocityProvider(
13 ConstantControlParameter.of(1.0), constrictionVelProv)
14
15 subSwarmVelProv.setDelegate(clampingVelProv)

To provide better exploration habilities, LBestTopology has been used for the sub-

swarms.

3.2.3 Creation and Merging of Niches

The merge strategy for subswarms needs special care. If merging subswarms is

not allowed to maintain every niche, then multiple subswarms might be refining the same

solution. On the other hand, if subswarms merge too easily, some niches could be lost. A

merge detection strategy based on diversity has been used in this work.

The basic ideas are:

• A sub-swarm is formed when a particle seems to have converged to a solution. If

the standard deviation (over several iterations) of the fitness of a partice is below a

threshold, the particle has converged to a solution.

• A niche is formed with the closest neighbour (euclidean distance is used for measuring

distances).

• Particles leaving the main swarm are added to a suitable niche.

Using CILib, this behaviour can be configured with the following code:

1 // Niche Detector
2 this.nicheDetector = new MaintainedFitnessNicheDetection()
3 this.nicheDetector.asInstanceOf[MaintainedFitnessNicheDetection].
4 setThreshold(ConstantControlParameter.of(1.0E-12))
5 this.nicheDetector.asInstanceOf[MaintainedFitnessNicheDetection].
6 setStationaryCounter(ConstantControlParameter.of(3.0))
7

3.3. Bifurcations diagrams 37

8 // Merge Detector
9 this.mergeDetector = new DiversityBasedMergeDetection()

10 this.mergeDetector.asInstanceOf[DiversityBasedMergeDetection]
11 .setThreshold(ConstantControlParameter.of(1.0e-12))

3.3 Bifurcations diagrams

As stated in Section 1.1.2, a bifurcation diagram depicts a scalar measure [x] ver-

sus the real parameter θ, where (x, θ) solves (1.1).

As a consequence of the existence and uniqueness theorems of ODEs, there are

three kinds of trajectories, namely:

1. Stationary solutions x(t) ≡ xs, f(xs) = 0 (e.g. nodes, saddle points, foci, and degen-

erate cases like centers) and turning points.

2. Periodic solutions x(t + T) = x(t) (e.g. limit cycles, heteroclinic, and homoclinic

orbits).

3. One-to-one solutions x(t1) ̸= x(t2) for t1 ̸= t2.

Some stationary solutions can be at the same time bifurcation points. Informally,

a bifurcation point (with respect to parameter θ) is a solution (xs0 , θs0) to Equation (1.1)

where the number of solutions changes when θ passes θs0 . Examples of this kind of bifur-

cations are turning points, transcritical, and pitchfork bifurcations.

A bifurcation from a branch of equilibria to a branch of periodic oscillations is

called Hopf bifurcation.

Local bifurcations can be characterized by locally defined eigenvalues crossing some

line. For stationary bifurcations and Hopf bifurcations, these are the eigenvalues λ(θ) of

the Jacobian J(xs) of stationary solutions (xs, θ) and the line is the imaginary axis in the

38 Chapter 3: Bifurcation Diagram Construction based on Niche PSO

complex plane.

Global bifurcations (e.g. homoclinic bifurcation) cannot be analized based on

locally defined eigenvalues. This work only adresses local bifurcations.

3.3.1 Using NichePSO to find fixed points

Traditionally, finding fixed points of Equation (1.1) is done with continuation.

However, this problem can be formulated as an optimization problem (see Section 1.1.1).

In general, several solutions could exist for each θ in a multi-parameter problem, and there-

fore an optimization method that can find multiple solutions to multimodal optimization

problems is needed. Niche PSO is used in this work to find multiple fixed points of dynam-

ical systems for every parameter value.

3.4 Final Remarks

Training of subswarms takes advantage of several CIlib implementa-

tions: ConstrictionVelocityProvider, GCVelocityProvider, ClampingVelocityProvider,

LBestTopology, DiversityBasedMergeCriterion, among others. This chapter has shown a

configuration of Niche PSO adapted to find fixed points of dynamical systems (a problem

reformulated as an optimization problem).

The following parameters of Niche PSO have to be tuned for best results:

• The size of the main swarm.

• The value of the threshold for the DiversityBasedMergeCriterion to avoid excessive

merging of niches at the same time that some merging is allowed in order to get

benefits from the social information and experience of merged subswarms.

• The stopping condition of the algorithm. Running Niche PSO for too long can lead to

loss of solutions. On the other hand, stopping too quickly could give wrong solutions.

Chapter 4

BDT: Bifurcation Diagram Tool

This chapter describes BDT, a Bifurcation Diagram Tool that uses Niche PSO to

construct bifurcation diagrams. In previous chapters, attention has been given to theoret-

ical foundations of qualification of fixed points of dynamical systems. In this chapter, a

description of important implementation issues will be considered.

The process of plotting a bifurcation diagram with BDT (Bifurcation Diagram

Tool) follows.

1. Parse a description of the dynamical system. To be successfully parsed, such de-

scription must be recognized by the Parser Expression Grammar (PEG) defined in

Appendix A.3.

2. A function f(x) is built that may depend on at most two parameters θ1, θ2, using

DynamicalSystem, and closing over some of the parameters (the other θs) to fix their

values (this is done by the user), so that at most two parameters vary quasi-statically.

In other words, if there are more than two parameters, the user has to fix the additional

ones to specific values (or even all of them but one).

3. Using f from the previous step, Niche PSO minimizes ∥f∥ and tries to find every global

minima (which should correspond to fixed points of the dynamical system).

4. Since there is no absolute guarantee that NichePSO has converged to fixed points only

39

40 Chapter 4: BDT: Bifurcation Diagram Tool

(it may have stagnated somewhere else), solutions with fitness above a given tolerance

are discarded.

5. Classify the stability of every fixed point using the criteria described in Section 2.3.

6. If the fixed point is hyperbolic, the conjugate linear flow near it is classified.

7. Plot the bifurcation diagram.

To actually execute the process above, BDT must have modules for:

• Parsing and evaluating dynamical systems.

• Minimizing f using Niche PSO.

• Computing derivatives and jacobians for the stability quatilification; for hyperbolic

fixed points, classifying the conjugate linear flow in their neighbourhood.

• Plotting bifurcation diagrams.

• Interacting with the user via a Graphical User Interface (GUI).

The first three bullets have been addressed in previous chapters. In this chapter

a description of the last two bullets in the previous list is given.

Section 4.1 emphasizes that the implementation of BDT is using the Java Virtual

Machine (JVM), taking advantage of both Java and Scala. Section 4.2 just states some

choices made during development of BDT, with respect to 2D and 3D plotting. Section 4.3

discusses an important part of the application: the Graphical User Interface (GUI). Then,

taking as an example a small part of the GUI (see Fig. 4.1) the reader can have a glimpse of

how testing has been used for the GUI, and how non-trivial programming techniques have

been exploited to get a better design (and a higher-level of abstraction). Listing 4.5 shows

a pattern that takes advantage of delimited continuations to undo inversion of control in

GUIs, to get a more imperative style of programming user interfaces.

4.1. The JVM, Java, and Scala 41

4.1 The JVM, Java, and Scala

In previous chapters the theoretical foundations of this work have been estab-

lished, as well as important algorithms used in BDT. Implementation issues (that have

needed careful thought, and a lot of time and effort) have received almost no attention, up

to this chapter.

One of the requirements for BDT is to work on top of the Java Virtual Machine

(JVM). At this point, a distinction should be made:

• The Java language. The Java programming language is a general-purpose, concurrent,

class-based, object-oriented language. It is a strongly and statically typed language. It

is a relatively high level language, in that details of the machine representation are not

available through the language. It includes automatic storage management, typically

using a garbage collector. The Java programming language is normally compiled to

the bytecoded instruction and binary format defined in the Java Virtual Machine

Specification [Gosling et al., 2012].

• The Java Virtual Machine (JVM). It is the cornerstone of the Java Platform. It is

the component of the technology responsible for its hardware- and operating system-

independence, the small size of its compiled code, and its ability to protect its users

from malicious programs. It is an abstract computing machine that, like a real com-

puting machine, has an instruction set and manipulates various memory areas at run

time. The JVM knows nothing of the Java programming language, only of a particular

binary format, the class file format [Lindholm et al., 2012].

A somewhat conservative approach has been chosen: working on top of the JVM

(mature and well stablished) but using Java’s type system and the more powerful type

system from Scala.

A type system is a tool that helps people to reason about programs. It allows to

42 Chapter 4: BDT: Bifurcation Diagram Tool

classify terms—syntactic phrases—according to the properties of the values that they will

compute when executed [Pierce, 2002].

For example, in Java, the value true has type boolean, while the value "Hello,

world!" has type String. Every boolean variable shares certain properties with other values

of the same type. For example, boolean functions (like AND, OR, NOT) can be applied

on boolean values and strings can be concatenated; these are properties of those types.

That type information allows us to reason about those values without concerning low-level

details, and some valuable abstraction is gained.

According to [Pierce, 2002], a type system is good at

• Detecting errors.

• Giving programs a higher level of abstraction.

• Documenting code.

• Providing language safety.

• Improving the efficiency of programs.

so there are compelling reasons to harness the power of type systems.

Functions are a noteworthy example of the convenience of the Scala’s type system.

Functions can be stored in a variable, being called and passed around to other functions as

parameters. The type of a function f with input type A and output type B can be written in

Scala as f: A ⇒ B. For example, the signature of the ridders method can be written as

1 def ridders(f: Double ⇒ Double, h: Double): Double ⇒ Double

The first parameter, f (the function that is going to be differentiated), is a function that

takes a Double and returns a Double. The ridders method returns a function (the first

derivative of f), which takes a Double—the x0 needed to evaluate f ′(x0)—and returns a

Double—the value of f ′(x0).

4.2. Plotting in 2D and 3D 43

Java and C#, two of the most important mainstream languages, have first-order

parametric polymorphism, usually called generics in these languages. First-order paramet-

ric polymorphism has a standard application area in collections. For example, it is possible

to abstract over types, to get type constructors such as List[_]. To get a concrete type like

List[Int], the type constructor needs the argument type Int.

First-order parametric polymorphism has some limitations though: type construc-

tors cannot be abstracted over. For example, it is not possible to pass a type constructor

as a type argument to another type constructor. This generalisation to types that abstract

over types that abstract over types (“higher-kinded types”) has many practical applications,

as reported by [Moors et al., 2008].

A functor is an example of a data type that the Java’s type system cannot encode

(it lacks the ability to encode higher-kinded types). A functor captures the idea of a data

type that implements the map operation. In Scala, a functor can be encoded with:

1 trait Functor[F[_]] {
2 def map[A,B](fa: F[A])(f: A ⇒ B): F[B]
3 }

Lists and a lot of other type constructors (e.g. Option[_]) are instances of the

data type Functor.

1 val listFunctor extends Functor[List] {
2 def map[A,B](as: List[A])(f: A ⇒ B): List[B] = as map f
3 }

It is necessary to emphasize that this work takes advantage of several Java libraries.

Those can be used from Scala without problems.

4.2 Plotting in 2D and 3D

Virtually every bifurcation diagram is drawn in 2D. Therefore, a decision of which

library would serve this purpose was necessary. This had to take into account the Java GUI

toolkit that was going to be used to build the user interface of BDT (some choices were

Java Swing and the SWT from Eclipse).

44 Chapter 4: BDT: Bifurcation Diagram Tool

Another compatibility issue that had to be addressed was the choice of the 3D

library. The graphic output must be embedded in a container from the same Java GUI

toolkit of the user interface. The final choice was this:

• Java Swing for the GUI Toolkit.

• JFreeChart1 for 2D plotting.

• Jzy3d2 for 3D plotting.

The backend used for 2D plotting is JFreeChart, but a convenient wrapper for this

library, scala-chart, is exploited (there is less boilerplate to write compared to plain java

programming with the JFreeChart API).

Jzy3d depends on JOGL (Java Bindings for OpenGL) and that means Jzy3d de-

pends on native libraries. The good news is that those dependencies are distributed in

a convenient way to be used by the Java platform. Some of the advantages are: good

performance and interactive 3D graphics. As a sample of beautiful 3D interactive plots

(illustrating some common functions used for optimization) produced with jzy3d and scala

code, see https://github.com/oscarvarto/benchmarkPlots/wiki.

4.3 Graphical User Interface

A simple part of the Graphical User Interface (GUI) will illustrate some of the

techniques used in BDT. During the process of plotting the bifurcation diagram, the user

is required to configure the parameters for further processing of the dynamical system. For

example, suppose the user wants to plot a diagram for parameter _w, then he must choose

the range [From, To] for that parameter and the Step used in that range. See Fig. 4.1, that

corresponds to an instance of class ConfParamFrame.

1License: GNU Lesser General Public Licence (LGPL).
2License: New BSD

https://github.com/oscarvarto/benchmarkPlots/wiki

4.3. Graphical User Interface 45

Figure 4.1: Configuration of parameters.

GUI code is a substantial part of most applications (roughly 45–60 % of an average

codebase [Memon, 2002]), nonetheless, GUI tests remain relatively unused in practice and

remain an unexplored area of research [Memon, 2002].

The needs for GUI tests are unique: tests should be able to click, type and perform

a multitude of other actions. FEST-Swing has been chosen to test the GUI-functionality.

FEST-Swing simulates (using a software robot) actual user gestures at the operating system

level, ensuring that the application will behave correctly in front of the user.

The package summary for javax.swing states: “In general Swing is not thread safe.

All Swing components and related classes, unless otherwise documented, must be accessed

on the event dispatching thread”. Therefore, according to the Fest-Swing documentation:

“the cardinal rule is: creation and access of Swing components should be done in the Event

Dispatch Thread (EDT)”.

See Listing 4.1 as an example of some of the implemented tests for GUIs. Test

ConfParamFrameTest1 is written using ScalaTest (as every test implemented in this work so

far). The most important points of Listing 4.1 are:

• Line 1 shows ConfParamFrameTest1 extends FestiveFunSuite. The latter was imple-

mented to manage the following tasks:

– Create var window: FrameFixture that will handle the tested window in a EDT-

46 Chapter 4: BDT: Bifurcation Diagram Tool

safe way.

– Install FailOnThreadViolationRepaintManager to catch EDT-access violations.

This is done before every test in the class.

– Clean up resources after each test, as explained in the documentation of Fest-

Swing:
FEST-Swing forces sequential test execution, regardless of the testing
framework. To do so, it uses a semaphore to give access to the keyboard
and mouse to a single test. Cleaning up resources after running each
test method releases the lock on such semaphore. To clean up resources
simply call the method cleanUp in the FEST-Swing fixture inside.

• Method beforeEach, lines 4–11, shows the right way to create Swing components

using a convenient mechanism to access those in the EDT from test code. Quoting

the Fest-Swing documentation:

This mechanism involves three classes.
– GuiQuery, for performing actions in the EDT that return a value
– GuiTask, for performing actions in the EDT that do not return a value
– GuiActionRunner, executes a GuiQuery or GuiTask in the EDT, re-throwing

any exceptions thrown when executing any GUI action in the EDT.

• Every test for the GUI module is tagged GUITest as shown in lines 13 and 22. This

tag serves a special purpose: to identify tests that take control over the mouse and

keyboard while running.

• The first test, lines 13–20, verifies that clicking the OK button (see Fig. 4.1) without

entering any numbers in the From, To, and Step fields gives a specific error message

in the log area of the frame.

• The second test, lines 22–28, verifies that appropiate input is accepted without prob-

lems.

4.3. Graphical User Interface 47

Listing 4.1: Excerpts of GUI Tests implemented for frame in Fig. 4.1

1 class ConfParamFrameTest1 extends FestiveFunSuite with Matchers {
2 val dummyProject = Project("DummyProject", DynSys1.dynSys)
3
4 override def beforeEach() {
5 val frame = GuiActionRunner.execute(
6 new GuiQuery[ConfParamFrame]() {
7 protected def executeInEDT() = new ConfParamFrame(dummyProject)
8 })
9 window = new FrameFixture(frame)

10 window.show()
11 }
12
13 test("From, To and Step entries must be numbers.", GUITest) {
14 window.button("ConfirmationOrSkipPanel.okButton").click()
15 window.textBox("ConfParamFr.logArea").text() should be(
16 """|From, To and Step entries must be numbers
17 |empty String
18 |empty String
19 |empty String""".stripMargin)
20 }
21
22 test("No error message if param confiration is Ok", GUITest) {
23 window.textBox("ConfParamFr.paramInfo.rangeFrom").setText("0.0")
24 window.textBox("ConfParamFr.paramInfo.rangeTo").setText("1.0")
25 window.textBox("ConfParamFr.paramInfo.step").setText("0.1")
26 window.button("ConfirmationOrSkipPanel.okButton").click()
27 window.textBox("ConfParamFr.logArea").text() should be("")
28 }
29 }

The build file for the project (written for sbt, the Simple Build Tool) was config-

ured to be able to run only this kind of tests using the -n option as shown in line 12 of

Listing 4.2. ScalaTest also provides the -l option to exclude any test by tag (or a list of

names of tags surrounded by double quotes) [Hinojosa, 2012].

According to the documentation for org.scalatest.Tag “The tag annotation must

be written in Java, not Scala, because annotations written in Scala are not accessible at

runtime”. The Java implementation for the GUITest annotation is

1 package umich.gui.tags;
2
3 import java.lang.annotation.*;
4 import org.scalatest.TagAnnotation;
5
6 @TagAnnotation
7 @Retention(RetentionPolicy.RUNTIME)
8 @Target({ElementType.METHOD, ElementType.TYPE})
9 public @interface GUITest {}

To run only the tests tagged GUITest, use the gui:test task from the sbt prompt.

48 Chapter 4: BDT: Bifurcation Diagram Tool

Listing 4.2: Special configuration for tests tagged GUITest

1 lazy val BDT = Project(
2 "BDT",
3 file("."),
4 settings = commonSettings ++ Seq(
5 libraryDependencies ++= Seq(
6)
7)
8).configs(GUITests)
9 .settings(inConfig(GUITests)(Defaults.testTasks): _*)

10 .settings(
11 testOptions in GUITests := Seq(
12 Tests.Argument("-n", "umich.gui.tags.GUITest")
13)
14)
15
16 lazy val GUITests = config("gui") extend(Test)

Now let us discuss a more abstract part of the same example (see Fig. 4.1): vali-

dation of input (numeric fields From, To, and Step) using Applicative Functors. See Listing

4.3 and the corresponding comments afterwards.

Listing 4.3: Validation of Parameter Configuration using Applicative Functors

1 class Range private(val from: Double, val to: Double)
2 object Range {
3 def apply(from: Double, to: Double, errorMsg: String):
4 Validation[String, Range] = if (from <= to) new Range(from, to).success
5 else errorMsg.fail
6 }
7
8 class ParameterConfig private(val from: Double, val to: Double, val step: Double)
9 object ParameterConfig {

10 def apply(from: Double, to: Double, step: Double): ValidationNel[String, ParameterConfig] = {
11 val vnelRange = Range(from, to, cond1Msg).toValidationNel[String, Range]
12 val vnelStep = Range(step, (to - from).abs, cond2Msg).toValidationNel[String, Range]
13 (vnelRange ⊛ vnelStep) { (r, s) ⇒ new ParameterConfig(r.from, r.to, s.from) }
14 }
15 val cond1Msg = "From must be less or equal than To"
16 val cond2Msg = "Step must be less or equal than given range"
17 }

• Class Range and its companion object are auxiliary to class ParameterConfig and its

companion object.

• Lines 1 and 8 show both constructors for Range and ParameterConfig are private and

that is intentional, because the provided way to (indirectly) instantiate this classes is

through respective apply methods in their companion objects (see Lines 3 and 10).

– Range.apply has return type Validation[String, Range]. A Validation[E, A]

represents either a Success(a) or a Failure(e) and its motivation is to provide

4.3. Graphical User Interface 49

an instance of Applicative[λ[_]] (where λ[α] = Validation[E, α]) that accu-

mulates errors through semigroup3 E.

– Line 11 calls Range.apply and right after that transform its output value to

a value of type ValidationNel[String, Range] (which is just a convenient way

to abbreviate the type Validation[NonEmptyList[String], Range]). Something

analog is done in lines 12–13.

Line 13 is the reason of Listing 4.3. The function

{ (r, s) ⇒ new ParameterConfig(r.from, r.to, s.from) }

is applied to (vnelRange ⊛ vnelStep). The aforementioned function knows nothing about

the possibility of failure: Validation will handle this automatically. In case of success, a

tuple (r, s) representing a range and a step will be available, and a ParameterConfig can

be built from them. What happens in case of failure? In this example that could come from

vnelRange or vnelStep (both are applicative values, instances of Applicative[λ[_]] where

λ[Range] = Validation[NonEmptyList[String],Range]).

Suppose vnelRange = Failure(NonEmptyList(cond1Msg)). If vnelStep is a Success,

line 13 would return a Failure(NonEmptyList(cond1Msg)). If vnelStep is also a Failure then

line 13 would return the accumulated failures: Failure(NonEmptyList(cond1Msg, cond2Msg)).

If both vnelRange and vnelStep are Successes, line 13 returns a ParameterConfig wrapped in

a Success. Applicative Functors have provided a very succint and powerful way to manage

every possibility.

Additional validation is used in the code corresponding to Fig. 4.1 to make the

application more robust: only suitable numerical input that corresponds to an actual

ParameterConfig is accepted. In case of failures, the accumulated error messages are used

to give the user some feedback to correct his/her input.

3In the abstract algebra sense, a semigroup is a set together with a binary operation on that set that
satisfy a closure and an associative law. Unlike a Monoid, there is not necessarily a zero.

50 Chapter 4: BDT: Bifurcation Diagram Tool

The same example would be useful to explain how delimited continuations (an

advanced Scala construct) are exploited to handle GUI events code in a suitable way. The

following comments explain Listing 4.4.

• If validation of input fails, then a NonEmptyList(String) is returned by

getErrorsOrParamConfig(), where every string of this non-empty list is an error mes-

sage that should be used as feedback for the user to correct his input. This is shown

in lines 4–10.

• If validation succeeds, a ParameterConfig is returned by getErrorsOrParamConfig(),

and lines 12–17 manages two different situations: code for ConfParamFrame is used

1) during normal operation of BDT or 2) during unit-testing (using Fest-Swing).

During 1) the continuation is called with c(()) and ConfParamFrame loses control of

the application: delimited continuations are used to undo the inversion of control that

is usual in GUI code.

Listing 4.4: Clicking OK (see Fig. 4.1) calls this code

1 val okAction = new AbstractAction("OK") {
2 def actionPerformed(event: ActionEvent) {
3 getErrorsOrParamConfig().fold(
4 errorsNel ⇒
5 {
6 // Show errors to user
7 val errorMessages: List[String] =
8 EntriesMustBeNumbers :: errorsNel.list
9 logPane.textArea.setText(errorMessages.mkString("\n"))

10 },
11 parConf ⇒
12 {
13 import scalaz.std.option._
14 import scalaz.syntax.std.option._
15 cont.cata(
16 c ⇒ c(()), println("This should happen during testing only"))
17 })
18 }
19 }

Fig. 4.1 is just one of several dialogs that the user interacts with (one after the

other) to input information for plotting a bifurcation diagram. Undoing inversion of con-

trol is useful here because once control of the application has been recovered, code can

be written in only one place, instead of having logic for managing GUI events spread in

several places. The purpose of using this programming style is to write code that is more

4.3. Graphical User Interface 51

maintainable and easier to change.

As an example, let us review an excerpt of the code that creates several dialogs

(one after the other) that expect input from the user to create a bifurcation diagram (see

Listing 4.5).

Listing 4.5: Usage of delimited continuations to undo inversion of control in GUIs.

1 class NewProjectAction() extends AbstractAction("New Project") {
2 var cont: (Unit ⇒ Unit) = null
3 def actionPerformed(event: ActionEvent) = reset {
4 val projName = getProjectName()
5 val dynSys = getDynamicalSystem()
6 val proj1 = addParamConfig(Project(projName, dynSys))
7 val proj2 = if (dynSys.maybeTwoParameterSimulation)
8 addParamConfig(proj1) else proj1
9 processProject(proj2)

10 }
11
12 // code for additional dialogs
13
14 def addParamConfig(proj: Project): Project @cps[Unit] = {
15 val cpf = new ConfParamFrame(proj)
16 cpf.pack()
17 cpf.setVisible(true)
18 shift {
19 k: (Unit ⇒ Unit) ⇒
20 {
21 cont = k
22 cpf.cont = Some(cont)
23 }
24 }
25 cpf.setVisible(false)
26 cpf.getParamConfig().cata(t ⇒ proj.addParamConf(t), proj)
27 }

• Lines 3–10 show calls to methods that create dialogs and return output produced from

user input. This methods are using delimited continuations to 1) wait until the user

has introduced suitable input (validation is used for this) so that the next dialog can

be created and shown and 2) undo inversion of control.

• Note lines 4–9 show the program logic (with a convenient imperative programming

style) for GUI in one place once control of the application has been recovered.

• Method addParamConfig is called in line 6. Lines 14–27 show the corresponding signa-

ture and body. Note that line 15 shows the creation of a ParamConfFrame from previous

examples (see Fig. 4.1).

52 Chapter 4: BDT: Bifurcation Diagram Tool

• Once addParamConfig has been called, lines 15–17 run normally, execution enters the

shift, captures the continuation, and returns to the end of the enclosing reset, exiting

the actionPerformed method (line 10).

• Note that lines 21–22 save the captured continuation k inside the member cont of cpf

which in turn has type ConfParamFrame. Remember that line 14 of Listing 4.4 calls

this continuation only after proper input has been introduced.

• Once the continuation has been called, execution continues at line 25. Line 26 returns

a Project and that should be annotated in the signature of addParamConfig (see line

14). However, because a shift is being used, addParamConfig is also annotated with

@cps.

• The returned Project is bound to proj1 in line 6, and execution continues inside

actionPerformed with the rest of method calls (some of which are also @cps annotated).

BDT has been constructed trying to follow important principles like correctness

and modularity.

In order to increase the probability of the implementation to be correct, as many

parts of it as possible have been tested. There are tests for numerical algorithms (derivatives,

jacobians, eigenvalues, etc.), Niche PSO, parsing, stability qualification, etc., and also some

tests that integrate those smaller blocks.

4.4 Final Remarks

This chapter emphasizes implementation details of BDT, taking graphical exam-

ples to demonstrate important techniques used: testing, functional programming, and de-

limited continuations.

Testing has received a lot of attention in this work, not only in the GUI. However,

GUI testing requires additional considerations that have been addressed correctly, and two

specific examples have been explained thoroughly.

Chapter 5

Results

Previous chapters considered theoretical foundations as well as practical glimpses

of BDT. The focus of this chapter is on specific problems solved with BDT.

Section 5.1 focuses on a simple problem that represents a challenge for Niche PSO:

the canonical example of a subcritical pitchfork bifurcation.

Section 5.2 shows a bifurcation diagram obtained with BDT where two parameters

are varied.

Both examples are compared with the corresponding bifurcation diagrams ob-

tained with PyDSTool (a traditional tool for bifurcation diagram plotting). Note that BDT

needs less input from the user (PyDSTool requires initial conditions).

5.1 Subcritical Pitchfork Bifurcation Diagram

The canonical example of a subcritical pitchfork bifurcation diagram is given by

ẋ = θx+ x3 − x5 (5.1)

The scalar measure used for the bifurcation diagram is simply x. Figure 5.1 shows

53

54 Chapter 5: Results

the corresponding bifurcation diagram obtained with BDT. Blue dots are stable fixed points,

red dots are unstable fixed points and black dots indicate fixed points where the stability

criteria—the sign of the derivative of the right hand side of Eq. (5.1)—is not enough to

classify them (nothing can be said in general when f ′(xs) = 0 for the fixed point xs, and a

graphical analysis is required [Strogatz, 1994]).

From the bifurcation diagram, (θ, x) = (0, 0) is a subcritical pitchfork bifurcation

(and the black dot gives us a hint that something special might be happening there). The

other two dots at θ = −0.25 correspond to turning points (or saddle-node bifurcations).

Figure 5.1: Bifurcation diagram for Equation (5.1) obtained with BDT.

To compute the fixed points for Figure 5.1, a user of BDT has to enter the follow-

ing description (the user selects the parameter range and the step using a graphical user

interface):

Listing 5.1: Input for BDT for dynamical system (5.1).

1 x' = _theta*x + x^3 - x^5
2 measure1 = x

Obtaining the corresponding bifurcation diagram with PyDSTool requires the user

to give detailed instructions, as shown in Listing 5.2. See Fig. 5.2. The user should know

5.1. Subcritical Pitchfork Bifurcation Diagram 55

some Python to describe the dynamical system (AUTO demands some Fortran, C and

Python knowledge). BDT is simpler to use, because the user can provide a description

of the dynamical system using a domain specific language created to avoid the specifics of

some programming language (see Appendix A). This lowers the entry point to start using

BDT.

Listing 5.2: Python Script for PyDSTool to get Fig. 5.2

1 import PyDSTool as dst
2 import matplotlib.pyplot as plt
3
4 DSargs = dst.args(name='Canonical example of a subcritical pitchfork bifurcation')
5 DSargs.pars = {'r': -0.25}
6 DSargs.varspecs = {'x': 'r*x + x**3 - x**5', 'w': 'x - w'}
7 DSargs.ics = {'x': 0.5, 'w': 0}
8 ode = dst.Generator.Vode_ODEsystem(DSargs)
9 PC = dst.ContClass(ode)

10 PCargs = dst.args(name='SubcritPitchforkBif', type='EP-C')
11 PCargs.freepars = ['r']
12 PCargs.MaxNumPoints = 40
13 PCargs.MaxStepSize = 5e-2
14 PCargs.MinStepSize = 1e-3
15 PCargs.StepSize = 5e-3
16 PCargs.LocBifPoints = ['BP', 'LP']
17 PCargs.StopAtPoints = 'BP'
18 PCargs.SaveEigen = True
19
20 plt.clf()
21 plt.hold("on")
22 PC.newCurve(PCargs)
23 PC['SubcritPitchforkBif'].forward()
24 PC['SubcritPitchforkBif'].backward()
25 PC.display(['r', 'x'], stability=True)
26
27 ode.set(ics = {'x': -0.5, 'w': 0}, pars = {'r': -0.25})
28 PC2 = dst.ContClass(ode)
29 PC2.newCurve(PCargs)
30 PC2['SubcritPitchforkBif'].forward()
31 PC2['SubcritPitchforkBif'].backward()
32 PC2.display(['r', 'x'], stability=True)
33
34 ode.set(ics = {'x': 0.0, 'w': 0.0}, pars = {'r': -0.30})
35 PC3 = dst.ContClass(ode)
36 PCargs.MaxNumPoints = 20
37 PCargs.StopAtPoints = []
38 PC3.newCurve(PCargs)
39 PC3['SubcritPitchforkBif'].forward()
40 PC3.display(['r', 'x'], stability=True)
41 plt.grid('on')
42 plt.show()

The following comments highlight some important details of Listing 5.2 and make

some comparison between the corresponding bifurcation diagrams and the methodology to

produce them.

• Line 6 describes the system given by Eq. (5.1). Note that a dummy variable w is

56 Chapter 5: Results

Figure 5.2: Bifurcation diagram for Equation (5.1) obtained with PyDSTool.

needed for one-dimensional systems.

• Lines 5, 7, 27, 34 show a very important detail: in order to produce the complete

bifurcation diagram of Fig. 5.2, PyDSTool needs to be provided with suitable initial

conditions corresponding to specific values of parameters. If this necessary guidance

is somewhat hard for a relatively simple dynamical system, the harder it is for more

complicated dynamical systems. This is where computational intelligence algorithms

can help to simplify the required intervention of the user: every branch of the bifur-

cation diagram is found (for a given parameter value) using a niching or speciation

algorithm.

• Continuation methods allow us to keep track of changes in the eigenvalues of fixed

points along a curve, therefore giving us additional information about the kind of

bifurcations points found (see the two turning points —or limit points, or saddle node

bifurcations— and the branch point in Fig. 5.2). In contrast, Fig. 5.1 does not try

to classify the fixed point based only in linearization in the neighbourhood of the

equilibria. However, from the graphical analysis we can get the same conclusions.

5.2. Insect Outbreak 57

Here, the user must interpret the graphical output.

• Notice how the bifurcation diagram is drawn in pieces. The user has to give instruc-

tions to produce three curves: PC, PC2, and PC3. What if the user has no idea about

the number of pieces he/she must draw?

Both approaches have advantages and disadvantages, and the last observations

suggest that instead of competing, they could be complementary and might even be fused

in a hybrid algorithm that takes advantage of the strenghts of each method.

5.2 Insect Outbreak

This section deals with a dimensionless formulation of the insect outbreak model

studied in [Strogatz, 1994]. The dynamical system is given by the scalar equation

ẋ = rx
(
1− x

k

)
− x2

1 + x2
(5.2)

where r, dimensionless growth rate, and k, the dimensionless carrying capacity, are para-

meters of the system. x is the chosen scalar measure for the bifurcation diagram (x is the

dimensionless size of the insect population).

The bifurcation diagram shown in Fig. 5.3 was obtained with BDT, where axis x,

y, z represent k, r, and x, respectively. From the diagram, it should be obvious that there

are two saddle node bifurcation for each value of k.

Listing 5.3: Input for BDT for dynamical system (5.2).

1 x' = _r*x*(1 - x/_k) - x^2/(1 + x^2)
2 measure1 = x

58 Chapter 5: Results

Figure 5.3: Bifurcation diagram for Equation (5.2) obtained with BDT.

Figure 5.4: Bifurcation diagram for Equation (5.2) obtained with PyDSTool.

5.3. Final Remarks 59

A corresponding part of the latter diagram was obtained with PyDSTool. See

Listing 5.4 and Figure 5.4. Note that only one parameter is varied and only one initial

condition is given (see line 7). Writing the Python code (including appropriate initial

conditions) to obtain all the slices of Fig. 5.3 is certainly a hard task. To produce a

complete bifurcation diagram like the one produced by BDT and shown in Fig. 5.3, this

process would need to be repeated for each slice of the bifurcation diagram, then the results

should be assembled. This process is performed automatically by BDT.

Listing 5.4: Python script for PyDSTool to get Fig. 5.4

1 import PyDSTool as dst
2 import matplotlib.pyplot as plt
3
4 DSargs = dst.args(name='Insect Outbreak problem')
5 DSargs.pars = {'r': 0.6}
6 DSargs.varspecs = {'x': 'r*x*(1 - x/30.0) - x**2/(1 + x**2)', 'w': 'x - w'}
7 DSargs.ics = {'x': 15.0, 'w': 0.0}
8 ode = dst.Generator.Vode_ODEsystem(DSargs)
9 PC = dst.ContClass(ode)

10 PCargs = dst.args(name='InsectOutbreak', type='EP-C')
11 PCargs.freepars = ['r']
12 PCargs.MaxNumPoints = 40
13 PCargs.MaxStepSize = 1.0
14 PCargs.MinStepSize = 0.01
15 PCargs.StepSize = 0.1
16 PCargs.LocBifPoints = ['LP', 'BP']
17 PCargs.StopAtPoints = 'BP'
18 PCargs.SaveEigen = True
19
20 plt.clf()
21 plt.grid("on")
22 PC.newCurve(PCargs)
23 PC['InsectOutbreak'].forward()
24 PC['InsectOutbreak'].backward()
25 PC.display(['r', 'x'], stability=True)
26
27 plt.show()

5.3 Final Remarks

Two case studies have been used to compare the output given by PyDSTool (that

can use continuation to find bifurcations) and BDT. Whereas PyDSTool requires suitable

initial conditions provided by the user, computational intelligence algorithms (such as Niche

PSO) provide BDT with the ability to get similar output with less guidance (studying only

local bifurcation problems).

60 Chapter 5: Results

Scripts for PyDSTool have been used to illustrate a general characteristic of

continuation-based bifurcation tools: the user must provide a lot of guidance to get com-

plete bifurcation diagrams. This guidance may be provided in a more interactive way, using

a graphical user interface (e.g. XPPAUT), but still has to be provided.

In the other hand, using computational intelligence algorithms (like Niche PSO

and others) to solve different bifurcation problems, may require some tuning of the para-

meters of the heuristic involved. For example, in the case of Niche PSO, the number of

particles of the main swarm, the number of iterations that the algorithm is going to be

executed, etc., may require attention from the researcher. A good understanding of the

heuristic involved is expected to get appropriate results. In a typical situation, several ex-

periments may be required before getting acceptable diagrams.

Continuation-based tools require smaller computational time to produce bifurca-

tion diagrams. However, the researcher has to invest a lot of time and intellectual resources

to provide the required guidance. Both approaches have advantages and disadvantages, and

this suggests that an hybrid solution should be better.

Niche PSO has been used successfully to solve a particular application (find fixed

points) that requires the ability to search and maintain multiple solutions. Further exper-

imentation and analysis is required though (e.g. different and harder problems, repeated

enough times to get data for deeper conclusions). Using different heuristics would provide

a better perspective also. Design of good experiments is essential.

AUTO and related tools have a big number of features and can solve a wide

variety of problems. Some of them have been under development for years (AUTO has

been around for decades) by several people. No doubt researchers will continue to take

advantage of them. A serious contender should provide clear advantages and should be

robust and easy to use. BDT is still a proof of concept, and requires talented people to use,

design, develop, maintain, document, and test it.

Chapter 6

Conclusions

In this final chapter two main points are addressed: general conclusions (Sec-

tion 6.1) and further work (Section 6.2).

Section 6.1 argues that the usage of Niche PSO as a It also explains what has

been used to successfully achieve several goals: parsing of dynamical systems, finding fixed

points with computational algorithms, testing for correctness, and having a suitable build

script for the application, among others.

Section 6.2 touches several possibilities for additional work. A modular design

over the Java Platform can take advantage of the well stablished OSGi specification. On

a very different direction, dynamic PSO variants are suggested to guide the search of fixed

points once parameters are varied. Parameter variation is done in fixed steps, but a more

sophisticated approach (a dynamical variation) could also be investigated.

6.1 General Conclusions

The field of dynamical systems is highly complex, but also fascinating, because it

helps us understand a lot of phenomena around us. Differential equations remain to be one

of the best ways to model our world.

61

62 Chapter 6: Conclusions

In this work Niche PSO has been applied as an alternative way to find fixed points

of dynamical systems. Further experimentation and analysis is required, though.

A proper identification of the most important parameters of the algorithm has to be

made. There are a lot of parameters that can be studied: the number of particles; the stop-

ping condition of the algorithm; a proper selection of the creation, merging, and absortion

criteria for the subswarms (niches); the selection of the scaling factor ρ and κ for controlling

the exploration/exploitation behaviour of subswarms in a intelligent way (according to the

problem characteristics); a study of the social structure imposed on subswarms (selection

of topologies); just to mention some of them. How each of these paramaters affect the per-

formance of Niche PSO for bifurcation diagram plotting? Which are the most important?

A proper answer to these questions deserves thorough investigation and experimentation

on its own.

In this work several areas had to be addressed: the conceptual and mathematical

background of dynamical systems (what can be learned about fixed points using heuris-

tics instead of continuation? how can stability of fixed points be determined?); the com-

piler/interpreter theory and implementation to recognize a language targeting systems of

ordinary differential equations; the computational intelligence involved in the Niche PSO

algorithm, as well as knowing how to take advantage of a complicated (but complete) im-

plementation in the CIlib library; installing, knowing and using traditional bifurcation tools

to be able to compare with this work; the implementation details involved in an application

that requires graphics, portability, ease of use with a graphical user interface, numerics,

artificial intelligence, etc. The task is daunting in extension and complexity. Each one of

these areas was studied only in a rather introductory way.

A limited area of bifurcation analysis has been addressed. As pointed out in

Section 3.3, only local bifurcations have been studied. A deeper understanding of both

dynamical systems and computational algorithms is required to investigate the intersection

between global and periodic phenomena with heuristics.

6.2. Future Work 63

6.2 Future Work

The Java language lacks advanced modularization support, as witnessed by the

existance of the Jigsaw project (http://openjdk.java.net/projects/jigsaw/). Some limita-

tions are [Hall et al., 2011]:

• Low-level code visibility control.

• Error-prone class path concept.

• Limited deployment and management support

For the moment, the only realistic (and solid) alternative for true modularity for

the Java platform is OSGi (http://www.osgi.org/Main/HomePage). A good architecture for

BDT could use OSGi bundles as units of modularisation. The OSGi framework provides

functionality in the following layers [Alliance, 2012]:

• Security layer.

• Module layer.

• Life cycle layer.

• Service layer.

• Actual services.

As a proof of concept, further work could be done exercising the module and life cicle

layers, and then taking advantage of the service layer to provide different computational

intelligence algorithms to find and maintain multiple solutions of optimization problems.

This approach is far better than resorting to Java reflection (at the same time that Java

modularity limitations are addressed).

For the current implementation, Niche PSO is restarted every time a parameter is

modified. This approach has advantages and disadvantages. Previous results (possibly in-

nacurate and/or incomplete) are not trusted blindly (to guide the search), so each time the

http://openjdk.java.net/projects/jigsaw/
http://www.osgi.org/Main/HomePage

64 Chapter 6: Conclusions

algorithm is asked to search for every solution. For example, sometimes the algorithm does

not find all solutions, but it could do it for the next value of parameters (that are generally

close). However, in most situations, new solutions obtained with a small variation of para-

meters remain close to previous solutions, and this fact can be exploited to guide the search.

CIlib provides implementations for dynamic versions of PSO, that respond to en-

vironment changes. Parameter variation could correspond to environment changes and

trigger adjustments in the best solutions. Such adjustment would be faster than starting

the search without any guidance. A simple approach to mantain the ability to find multiple

solutions could be to interleave normal niching iterations (starting without any guidance)

with dynamic PSO searches.

Currently, parameters are varied using a fixed step. That approach makes easier

to miss a bifurcation point. A more elaborated solution could dynamically vary the step

so that 1) bifurcations are not overlooked, 2) the step size is not chosen too small or too large.

A more traditional approach to bifurcation and stability analysis could be imple-

mented on the JVM to make comparisons with AUTO and related tools.

Appendix A

Parsing of a System of ODE’s

The process of finding the structure in the program (a flat stream —or sequence—

of tokens) is called parsing, and a module that performs this task is a parser [Grune, 2012].

Following the approach proposed by [Labun, 2012], this works uses a Parsing Ex-

pression Grammar (PEG) instead of Context-Free Frammars for the definition of a language

for system of differential equations, and combinator parsers instead of parser generators.

A.1 Grammars

Most language syntax theory and practice is based on generative systems, particu-

larly context-free grammars (CFGs) and regular expressions (REs) [Ford, 2004]. Chomsky’s

generative system of grammars allows for ambiguities, which is useful for modelling natural

languages, but this power makes it difficult to express and parse machine-oriented languages.

Parsing Expression Grammars (PEGs) provide an alternative, recognition-based

formal foundation for describing machine-oriented syntax. PEGs “solve the ambiguity prob-

lem by not introducing ambiguity in the first place” [Ford, 2004] using prioritized choice.

PEGs provide operators for constructing grammars. The combinator parsing systems from

the Scala standard library, use PEG semantics for recognizing languages. Table A.1 shows

how PEG operators are implemented in Scala combinator parsing library.

65

66 Appendix A: Parsing of a System of ODE’s

Description PEG notation Scala notation
Literal string ' ' " "
Literal string " " " "
Character class [] "[]".r
Any character . ".".r
Grouping (e) (e)
Optional e? (e?) or opt(e)
Zero–or–more e* (e*) or rep(e)
One–or–more e+ (e+) or rep1(e)
And–predicate &e guard(e)
Not–predicate !e not(e)
Sequence e1e2 e1 ∼ e2
Prioritized choice e1/e2 e1 | e2

Table A.1: Implementation of PEG operators in Scala

A.2 Combinator Parsers Vs. Parser Generators

Parser generators, such as ANTLR, achieve their goal (generate parsers in a tar-

get language, e.g. Java) using a particular grammar notation system (different from the

target language). Besides, auxiliary structures and routines (such as actions) have to be pro-

grammed in the target language. The programmer has therefore to deal with two languages.

In contrast, combinator parsers are implemented in the host language as a library.

The parsing rules as well as auxiliary routines are both written in the host language.

But the combinator parsing approach have some disadvantages with respect to

specialized parsing systems. The latter have full control on the parser code generation and

can apply arbitrary optimizations to the code. Combinators are limited in this area. The ob-

vious consequence is that combinators parsers, in general, are slower than generated parsers.

The main advantage of combinator parsers over parsing generators in this project

is the hability to change the grammar more easily.

A.3. A Grammar for Recognizing a Dynamical System 67

A.3 A Grammar for Recognizing a Dynamical System

A PEG grammar for recognizing first-order systems of ordinary differential equa-

tions can be defined as follows.

system ← sentence+ scalarMeasure scalarMeasure?

sentence ← equation / constantDefinition

equation ← dotStateVar "=" expr

constantDefinition ← constant "=" floatingPointNumber

scalarMeasure ← ("measure1" / "measure2") "=" expr

dotStateVar ← "[a-z]\w*" "'"

stateVar ← "[a-z]\w*" !"'"

constant ← "[A-Z][A-Z0-9_]*" !"'"

parameter ← "_\w+" !"'"

expr ← prod ("+" prod / "-" prod)

prod ← signExp ("*" signExp / "/" signExp)

signExp ← "-"? power

power ← (appExpr "^") appExpr

appExpr ← fun "[" expr "]" / simpleExpr

fun ← "Cos"/"Sin"/"Ln"/"Log"/"Exp"/"Tan"/"Cot"/"Sec"/"Csc"/"Sqrt"

simpleExpr ← stateVar / constant / parameter / floatingPointNumber / "(" expr ")"

For brevity, the definition of a floatingPointNumber is taken for granted (defini-

tion in scala.util.parsing.combinator.JavaTokenParsers.floatingPointNumber). The syn-

tax from regular expressions in the JDK is also exploited. For example, [a-zA-Z] matches

any letter from the alphabet (a through z, or A through Z); \w is a word character:

[a-zA-Z_0-9].

Note that defining the grammar in a top-down decomposition fashion allows to

easily encode precedences of arithmetic operations directly in the grammar rules. This

grammar can be translated (almost) directly to code in Scala to build a parser. The only

68 Appendix A: Parsing of a System of ODE’s

parser’s task is to build an Abstract Syntax Tree (AST) for the given input.

Evaluation of the AST (which is an intermediate representation that has discarded

semantically irrelevant parts from the concrete representation in the input) is done (at run–

time, and separately from parsing) by an object of the class DynamicalSystem. Thus, the

class DynamicalSystem represents target-machines that can evaluate expressions written in

the specific intermediate representation language. In practical terms, an interpreter for

simple dynamical systems has been built.

A.4 AST definition and evaluation

Section A.3 stated that the only parser’s task is to build an AST. Some excerpts

from the implementation code will be used to explain how this is done, and also, how the

dynamical system is evaluated.

1 def sentence = equation | constantDefinition
2 def equation = dotStateVar ~ ("=" ~> expr) ^^ Equation
3 def stateVar = """[a-z]\w*""".r <~ not("'") ^^ StateVar
4 def expr: Parser[Expr] = chainl1(prod, "+" ^^^ Add | "-" ^^^ Sub)

• Line 1 is almost identical to the corresponding PEG expression. Note that the vertical

bar | means prioritized–choice.

• Line 2 uses the sequence operator ~, the ~> operator, and ^^.

– The ~> and <~ operators are used to match and discard a token. For example, the

result of "=" ~> expr is just the result of expr, not a value of the form "=" ~ expr.

– expr ^^ f applies f to the result of expr. For example, line 2

calls Equation(dotStateVar, expr). Equation is a case class: an apply

method is provided automatically for the companion object that lets

the user of the case class construct objects without the new key-

word. Besides, the call Equation(dotStateVar, expr) is a shortcut to

Equation.apply(dotStateVar, expr).

A.4. AST definition and evaluation 69

• Line 4 uses the ^^^ combinator. p^^^v replaces the result of p by the constant v.

chainl1(p, s) combinator matches 1 or more repetitions of p (with type P), separated

by matches of s (s must, upon matching each separator, produce a binary function

that is used to combine neighboring values). For example, if p produces values prod1,

prod2, prod3, and s produces Add, Sub, then the result is (prod1 Add prod2) Sub prod3.

Note the left associative grouping. There is an analog chainr1 combinator that is used

for the exponentiation operation (which is right associative).

• By using ^^, ^^^, and case classes (like Equation, StateVar, Add, Sub, and others) the

nodes of a parse tree (the AST) are being built. The nodes of the AST know how to

evaluate themselves using a simple idea: each node is decomposed into its parts, the

parts are evaluated, and then merged again with the operation that corresponds to

the node type (the usual recursive tree evaluation).

Bibliography

[Abelson, 1990] Abelson, H. (1990). The bifurcation interpreter: A step towards the au-

tomatic analysis of dynamical systems. Computers & Mathematics with Applications,

20(8):13–35.

[Alliance, 2012] Alliance, O. (2012). Osgi service platform, core specification, release 5,

version 5.0. OSGi Specification.

[Barrera et al., 2008] Barrera, J., Flores, J. J., and Fuerte-Esquivel, C. (2008). Generating

complete bifurcation diagrams using a dynamic environment particle swarm optimization

algorithm. Journal of Artificial Evolution and Applications, 2008:1–8.

[Barrera Mendoza, 2012] Barrera Mendoza, J. A. (2012). Análisis de sistemas dinámicos

utilizando herramientas de inteligencia artificial. Thesis, Universidad Michoacana de San

Nicolás de Hidalgo, Morelia, Michoacán.

[Borrelli and Coleman, 2004] Borrelli, R. L. and Coleman, C. S. (2004). Differential equa-

tions: a modeling perspective. Wiley New York, NY.

[Brits et al., 2002] Brits, R., Engelbrecht, A. P., and Bergh, F. V. D. (2002). A niching

particle swarm optimizer. In In Proceedings of the Conference on Simulated Evolution

And Learning, page 692—696.

[Brits et al., 2007] Brits, R., Engelbrecht, A. P., and Van den Bergh, F.

(2007). Locating multiple optima using particle swarm optimization.

http://www.sciencedirect.com/science/journal/00963003.

71

72 Bibliography

[Clewley, 2012] Clewley, R. (2012). Hybrid models and biological model reduction with

PyDSTool. PLoS computational biology, 8(8):e1002628.

[Dennis and Schnabel, 1987] Dennis, J. E. and Schnabel, R. B. (1987). Numerical Methods

for Unconstrained Optimization and Nonlinear Equations. Society for Industrial Mathe-

matics.

[Doedel, 1981] Doedel, E. J. (1981). AUTO: a program for the automatic bifurcation analy-

sis of autonomous systems. Congr. Numer, 30:265–284.

[Eberhart and Kennedy, 1995] Eberhart, R. and Kennedy, J. (1995). A new optimizer us-

ing particle swarm theory. In Micro Machine and Human Science, 1995. MHS’95.,

Proceedings of the Sixth International Symposium on, page 39–43.

[Engelbrecht, 2007] Engelbrecht, A. P. (2007). Computational intelligence: An introduction.

Wiley.

[Ermentrout, 2002] Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical

systems: a guide to XPPAUT for researchers and students, volume 14. Siam.

[Flores et al., 2011] Flores, J. J., Fuerte-Esquivel, C. R., Barrera, J., and Carvajal, H. R.

(2011). Particle swarm optimization method to assess a voltage stability region by multi-

parameter bifurcation analysis. International Review of Electrical Engineering, 6(7).

[Ford, 2004] Ford, B. (2004). Parsing expression grammars: a recognition-based syntactic

foundation. SIGPLAN Not., 39(1):111–122.

[Gosling et al., 2012] Gosling, J. et al. (2012). The Java® Language Specification, Java SE

7 Edition.

[Grune, 2012] Grune, D. (2012). Modern compiler design. Springer, New York, NY.

[Hall et al., 2011] Hall, R., Pauls, K., McCulloch, S., and Savage, D. (2011). OSGi in

action: Creating modular applications in Java. Manning Publications Co.

[Hinojosa, 2012] Hinojosa, D. (2012). Testing in Scala. O’Reilly Media, Inc.

Bibliography 73

[Labun, 2012] Labun, E. (2012). Combinator Parsing in Scala. Master’s thesis, Institut für

SoftwareArchitektur.

[Lindholm et al., 2012] Lindholm, T., Yellin, F., Bracha, G., and Buckley, A. (2012). The

Java® Virtual Machine Specification, Java SE 7 Edition. Technical Report JSR-000924,

Oracle.

[López Cuevas Villanueva, 2010] López Cuevas Villanueva, M. (2010). Herramienta para el

análisis de sistemas dinámicos mediante diagramas de bifurcación basado en metaheurís-

ticas. Master’s thesis, Universidad Michoacana de San Nicolás de Hidalgo, Morelia,

Michoacán.

[Mahfoud, 1995] Mahfoud, S. W. (1995). Niching methods for genetic algorithms. Urbana,

51(95001).

[Memon, 2002] Memon, A. M. (2002). GUI testing: Pitfalls and process. IEEE Computer,

35(8):87–88.

[Moors et al., 2008] Moors, A., Piessens, F., and Odersky, M. (2008). Generics of a higher

kind. In Acm Sigplan Notices, volume 43, page 423–438.

[Pierce, 2002] Pierce, B. C. (2002). Types and programming languages. The MIT Press.

[Ridders, 1982] Ridders, C. (1982). Accurate computation of f’(x) and f’(x) f”(x). Advances

in Engineering Software (1978), 4(2):75–76.

[Seydel, 2009] Seydel, R. U. (2009). Practical Bifurcation and Stability Analysis. Springer.

[Smale et al., 2003] Smale, S., Hirsch, M. W., and Devaney, R. L. (2003). Differential

Equations, Dynamical Systems, and an Introduction to Chaos, Second Edition. Academic

Press, 2 edition.

[Strogatz, 1994] Strogatz, S. H. (1994). Nonlinear Dynamics And Chaos: With Applications

To Physics, Biology, Chemistry And Engineering. Westview Press.

[Van Den Bergh, 2006] Van Den Bergh, F. (2006). An analysis of particle swarm optimizers.

PhD thesis, University of Pretoria.

74 Bibliography

[van den Bergh and Engelbrecht, 2002] van den Bergh, F. and Engelbrecht, A. P. (2002).

A new locally convergent particle swarm optimiser. In Systems, Man and Cybernetics,

2002 IEEE International Conference on, volume 3, page 6–pp.

	tesis.pdf
	Dedication
	Resumen
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Symbols
	Introduction
	Preliminaries
	Finding Fixed Points as an Optimization Problem
	Finding Multiple Fixed Points for the Same

	Problem Definition
	State of the Art
	Objectives
	Description of Chapters

	Dynamical Systems
	Basic Terminology
	Differential Equations and Fixed Points
	Eigenvalues and Eigenvectors
	Stability and Linearization

	Linear Systems and their Relation to Nonlinear Systems
	An Illustration of the Linearization Theorem

	Criteria for Qualification of Fixed Points
	Numerical Computing of Derivatives and Jacobians
	Numerical Differentiation: Ridders Method
	Jacobians with Forward Differences

	Final Remarks

	Bifurcation Diagram Construction based on Niche PSO
	Particle Swarm Optimization
	Niche Particle Swarm Optimization
	Main Swarm Training
	Sub–Swarm Training
	Creation and Merging of Niches

	Bifurcations diagrams
	Using NichePSO to find fixed points

	Final Remarks

	BDT: Bifurcation Diagram Tool
	The JVM, Java, and Scala
	Plotting in 2D and 3D
	Graphical User Interface
	Final Remarks

	Results
	Subcritical Pitchfork Bifurcation Diagram
	Insect Outbreak
	Final Remarks

	Conclusions
	General Conclusions
	Future Work

	Parsing of a System of ODE's
	Grammars
	Combinator Parsers Vs. Parser Generators
	A Grammar for Recognizing a Dynamical System
	AST definition and evaluation

	Bibliography

