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Resumen

El trabajo de esta tesis analiza cómo es posible mejorar el pronóstico de k-Nearest Neighbors

con el uso de la descomposición wavelet a través de lifting. El lifting es capaz de representar

todas las wavelets estándar, aśı como las wavelets no lineales o de segunda generación. Esto

hace que la descomposición de las señales esté mejor adecuada para las tareas de pronóstico.

Para sacar mayor provecho al lifting, sus coeficientes son evolucionados. Esta decisión fue

tomada dado que sólo se han usado wavelets estándar para análisis musical para mejorar

el pronóstico. El evolucionar libremente los coeficientes nos permite tener, en teoŕıa, las

mejores wavelets de primera y segunda generación a nuestra disposición.

A pesar de que se ha investigado el uso de la transformada wavelet, no se ha hecho mucho

en el campo de demanda y consumo de potencia eléctrica. También se presentan resulta-

dos que superaron aquellos que fueron obtenidos en investigaciones pasadas para las series

de tiempo presentadas en esta tesis. Aún aśı, la mayor contribución consiste en proponer

una wavelet cuasi-óptima para descomponer señales en el campo mencionado, dado que,

hasta el d́ıa que esta tesis fue escrita, no ha habido intentos de evolucionar wavelets para

pronóstico, y la wavelet generalmente usada para tareas de pronóstico es la Daubechies 5,

la cual prueba esta tesis que no es óptima, incluso en la familia Daubechies.

Palabras clave— lifting, evolución diferencial, series de tiempo, carga de tiempo corto,

eliminación de ruido





Abstract

The work in this thesis analyses how it is possible to enhance k-Nearest Neighbors forecast-

ing with the use of wavelet decomposition through lifting. Lifting is able to represent all

the standard wavelets, as well as non-linear or second generation wavelets. This makes that

the decomposition of the signals is better suited for forecasting tasks.

In order to get the most out of lifting, its coefficients were evolved. This decision was made

because only standard wavelets used for music analysis have been considered to enhance

forecasting. Evolving freely the coefficients allows us to have, in theory, the best first and

second generation wavelets at our disposal.

While research has been done using the wavelet transform, not so much has been made in the

field of electric power demand and consumption. We also present results that outperform

those that were obtained in previous research for the time series presented in this thesis. Yet

the main contribution comes in proposing a quasi-optimal wavelet for decomposing signals

in the aforementioned field, given that, to the day in which this thesis was written, there

has been no attempt to evolve wavelets for forecasting, and the wavelet broadly used for

forecasting tasks is the Daubechies 5, which this thesis proves that is not the optimal, even

in the Daubechies wavelet family.

Keywords— lifting, differential evolution, time series, short-term load, denoising
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Chapter 1

Introduction

Having an accurate representation of the future, in order to make more efficient

and better present decisions, has been a topic of interest for researchers and people in

the industry. For example, due to the privatization and deregulation of power systems in

many countries, electricity has entered the competitive market and it is bought and sold

accordingly. This makes forecasting electricity load important and the time series field

of interest for this thesis, and with good reason since it was published in 1984 that an

increase of 1% in the forecasting error would imply in a £10 million in operating costs per

year [Bunn and Farmer, 1985]. This cost increase comes from unnecessary spinning reserve

when overestimating future load results, and failure to meet the demand and buying last

minute expensive electricity when underestimating.

That is just an example of why developing good forecasting methods is important.

However, most of the real-world time series tend to be very complex, making the former

task a very complex one. A group of complex series are the ones regarding electricity power

demand and consumption. In order to tackle the aforementioned problem, researchers have

relied on non-parametric tools such as k-Nearest Neighbors (k-NN) [Flores et al., 2019], and

others that are able to capture trend and seasonality [Zhang et al., 1998, Zhang, 2003].

Even though those techniques have improved the overall forecasting results, some

time series are complex enough so that forecasts do not yield results within the desired

error margin. Those series can be simplified by filtering the diverse frequency components

1



2 Chapter 1: Introduction

that make them, forecasting those components, and reverting the process in order to get a

forecast of the complex one. This process is desired since it simplifies the overall forecasting

task.

Filters that decompose the signals as stated above already exist, one of them is

the Continuous Wavelet Transform (CWT) and the Discrete Wavelet Transform (DWT)

[Daubechies, 1992]. One of the advantages of the DWT over other types of transforms is

that the resulting decomposition signals are in the same domain as the original one, so there

is no need for extra steps to make the forecasts. However, the DWT relies on a convolution

kernel, named wavelet, that makes shorter or broader the frequency range of the underlying

high and low pass filters. Since different domain signals have different properties, a wavelet

which makes a good decomposition for a signal, might not do so for another. This is why

it is important to find quasi-optimal wavelets for a given signal domain. But, since there

are so many of them, most of the researchers resort to known wavelet families that improve

results, but are by no means the best ones for the signals being used.

Trying to come up with an analytical formula to define a wavelet family for each

known signal domain would be a very difficult and time consuming task. However, while

it is difficult to evolve the coefficients that make up the wavelets, the DWT itself can be

described as a series of lifting steps whose coefficients can be evolved freely while preserving

the properties of the DWT [Sweldens, 1996, Sweldens, 1998].

This thesis uses k-NN to forecast short-term load time series. To aid the process,

the wavelet transform serves as a denoiser of the time series, evolving the lifting coefficients

that define the wavelet to try to minimize the error as much as possible. The short-term load

time series used in this thesis are provided by the National Center for Energy Control (in

Spanish Centro Nacional de Control de Enerǵıa – CENACE), which operates the Mexican

Interconnected Power System (MIPS). Since this thesis uses sensible and very important

data, all values will be scaled.
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1.1 Related Work

Due to its relevance, as stated in the previous section, forecasting short-term

electricity load is not something new. For example, in [Pai and Hong, 2005] support vector

machines are used to make the aforementioned task. Artificial Neural Networks (ANNs)

are also commonly used, being [Zhang et al., 1998] a review of the role they partake in

forecasting, and [Hippert et al., 2001] a particular review of the role in short-term load

forecasting. In this thesis, k-NN is used and, while not as popular as the others in this

forecasting field, in [Fan et al., 2019] research was made with it.

Due to the properties of the DWT, it has been used for a long time for time

series analysis and forecasting, with [Wong et al., 2003] as the first work using it to model

the trend and seasonality of the signals. The first work done that tackles the problem of

decomposing a signal, predict in its components, and add up the results to get a forecast

of the original one is shown in [Conejo et al., 2005]. While these are some of the earlier

works, to this date there is still research being made on working with time series and

DWT. To cite some examples: work has been done comparing different forecasting methods

with the aid of the DWT [Stolojescu et al., 2010], decomposing using the DWT and a

subsequent forecasting of the components by ANNs to predict monthly water table depth

[Anandakumar et al., 2019], and a mixture between mutual information, DWT, evolutionary

particle swarm optimization and adaptive neuro-fuzzy inference to predict wind power and

electricity market prices [Osório et al., 2014].

Although there is a fair amount of research involving time series forecasting and

evolution, this thesis only focuses on evolving wavelet coefficients. Before trying to fully

evolve wavelets, adapting wavelets was studied, trying to accomplish this through dictio-

nary methods, where a basis is selected from a set of predefined functions called atoms.

Some examples are the best basis algorithm [Coifman and Wickerhauser, 1992] and wavelet

packets [Wickerhauser, 1994]. Evolutionary algorithms are used for adaptive dictionary

methods in [Lankhorst and Laan, 1995] and [Liu and Wechsler, 2000]. Work using lifting

to adapt wavelets by optimizing data-based prediction error criteria is done in [Claypoole

et al., 1998]. [Erba et al., 2001] and [Lee et al., 1999] presented work regarding evolution
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of digital filters in general, not only wavelets. Stochastic optimization techniques have also

been used, like in [Monro and Sherlock, 1997] where minimization through simulated an-

nealing is used to design wavelets with balanced space and frequency dispersions, and in

[Hill et al., 2001] the genetic algorithm is used to find trigonometric functions that define a

CWT.

[Vaithiyanathan et al., 2014] attempted to evolve wavelet coefficients. The only

successful approach was to search for wavelets in the space near the coefficients of the CDF

9/7 wavelet, used as standard for image compression, by adding low amplitude Gaussian

noise. To this date, the only work that successfully evolves wavelets through lifting can be

found in [Grasemann and Miikkulainen, 2004], where Grasemann et al. use a coevolutionary

genetic algorithm to find lifting coefficients that define a quasi-optimal wavelet for cubic

spline compression. Then, in [Grasemann and Miikkulainen, 2005], Grasemann et al. apply

the previous methodology to find lifting coefficients that define a wavelet that outperforms

the FBI wavelet in terms of fingerprint compression, being that the FBI wavelet was used

a standard since it was considered the best for the task [Hopper et al., 1993]. To the best

of our knowledge, there is no documented attempt to evolve wavelet coefficients to forecast

time series of any nature.

1.2 Problem Statement

Given an electricity load time series and k-NN as its predictor, determine the

lifting coefficients that define a quasi-optimal wavelet for forecasting purposes.

1.3 Hypothesis

It is possible to use the wavelet transform as a denoiser to aid the forecasting of

short-term load time series, using k-NN as the predictor, improving its results. In particular,

it is possible to find a wavelet through evolution of lifting coefficients that outperforms the

forecasting that is achieved by using wavelets from standard wavelet families.
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1.4 Thesis Objectives

1.4.1 General goal

Define a lifting scheme with enough wavelet representation capacity, getting its

coefficients through evolution that result in a signal decomposition that, along with an k-

NN, outperforms the forecasting done with or without the aid of the DWT. When compared

to a forecasting task aided by the DWT, wavelets used in most of the research to date will

be considered.

1.4.2 Particular goals

1. Define a scheme that combines k-NN with wavelets, varying the level of decomposition

and k-NN hyper-parameters, until the best results using that scheme are found for

electricity load time series.

2. Search for the wavelet that yields the best results.

3. Successfully implement a lifting scheme that decomposes signals just like the DWT.

4. Finding the lifting steps required to have enough capacity for the desired decomposi-

tion.

5. Use evolution to find the lifting coefficients that outperform the results obtained in

the second goal and those already provided in previous research.

1.5 Motivation

Even though there is some work done in terms of electricity load forecasting, taking

into account the total of researchers in computer science, only a small percentage of them

is interested in forecasting, compared to more popular fields of research. In many countries,

such as Mexico, only a handful of people know how to do forecasting and the results obtained

so far in the industry can be improved, which opens work opportunities. This improvement

of results is what motivated the search for new forecasting schemes, resulting in the one

proposed.
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Another motivation comes from seeing how much enhancement can be made to

forecasting schemes using evolved wavelets. Since nobody has evolved wavelets using lifting

to forecast, this work may help to further explore this field of research.

1.6 Justification

Most of the forecasting done involving wavelets use the Daubechies family, in

particular the order 5 wavelet, which corresponds to the coefficients that define the filter

used to decompose the time series. While the obtained results are satisfactory, no research

has been done to determine if that wavelet is the best suited in that family to electricity

load forecasting. Even if that was the case, [Grasemann and Miikkulainen, 2005] proves

that the likelihood of finding a better wavelet through lifting and evolution is high.

Finding a quasi-optimal wavelet for electricity load forecasting would improve the

results for anyone attempting to perform this task, even if they are not using k-NN to make

the predictions or if data from another region is being used, since decomposing using lifting

is simple and inexpensive in terms of time.

1.7 Thesis Layout

Chapter 2 presents a general background of all the methods and schemes used in

the work of this thesis. We explain concepts of time series analysis and forecasting. We give

a brief introduction to k-NN. We discuss definitions of some types of wavelet transforms.

Finally, we present an explanation of differential evolution. The proposed method and tests

used in order to obtain the lifting coefficients in this thesis, along with its explanation, can

be found in Chapter 3. The forecasting results obtained with the found lifting coefficients,

along with a comparison with forecasting without the use of wavelets and with the use of

the Daubechies family, is found in Chapter 4. Finally, in Chapter 5 a summary of the results

along with a personal interpretation is given. This chapter also includes recommendations

for future work regarding the subject.



Chapter 2

Preliminaries

In order to fully explain the work done and presented in this thesis, some general

background needs to be explained in this chapter. It is assumed that the reader is familiar

with basic concepts of linear algebra, calculus, probability and statistics.

This chapter shows some general concepts of time series analysis and forecasting.

It also features an explanation of k-Nearest Neighbors, since it is used as the predictor. It

also explains the wavelet transform, along with the lifting implementation of it, since we

use it a a denoiser to enhance the forecasting done by the predictor. Finally, it explains

differential evolution, which we use to try to find the lifting coefficients that perform the

best denoising of the time series.

Before we begin explaining the concepts of this chapter, we define the notation

that is used. When preceded by a symbol, values enclosed in parenthesis () denote the

arguments for the function associated with the symbol, and values enclosed in brackets []

denote a specific sample of the array associated with the symbol. We use subscript i to

denote the i-th element of the indexed variable that precedes it. Aside from this, we use

the standard notation found in the bibliography of this thesis.

2.1 Time Series Analysis and Forecasting

This section discuses some basic concepts regarding time series and forecasting

that are fundamental to understand this thesis. Should the reader want to delve more in

7
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the subject, it is advised to refer to [Montgomery et al., 2015], since that is the material

that was consulted for the writing of this section.

First, it is important to define some concepts that will be used throughout this

thesis. The forecasting problems used in this thesis involve time series, which are time-

oriented or chronological sequence of observations on a variable of interest; the values of

that variable are typically collected at equally space time periods. We will use the term

forecast to refer to a prediction of some future event or events. Forecasting problems can be

classified depending how far in the future the predictions take place; for this thesis we focus

only on short-term forecasting, which involves predicting events days, weeks, or months

into the future. To make the forecasts, forecasting models are used, which extrapolates

past and current behavior into the future. Before looking at concepts that require symbolic

notation, forecast horizon and forecast interval shall be defined. The forecast horizon or

forecast lead time refers to how far into the future the forecasts will be produced. The

forecast interval tells how frequently the new forecasts are prepared. For example, in the

time series used in this thesis, in order to test the performance of the predictor, CENACE

requires a prediction of the values for a whole day (lead time). The dispatch intervals are

15 minutes long (forecast interval), giving a total of 96 predictions.

Introducing symbolic notation to provide a formal definition, regarding time series,

we assume that there are T samples of data available, that go from the first or period 1

to the last or sample T . Let y be the vector that contains the values of a time series, we

will use yt to denote the observation of this variable at time period t, t = 1, 2, . . . , T . The

variable can represent a cumulative or an instantaneous quantity. When forecasting, it is

important to make a differentiation between the real value at yt and the predicted one.

Taking τ as the forecast lead time, the forecast for yt at time period t− τ will be denoted

by ŷt(t− τ). A common type of forecast is the one step ahead, which predicts yt one period

prior and is represented by ŷt(t − 1). In general, the fitted or predicted value of yt will be

denoted by ŷt. For the CENACE time series, due to the time the operators take to execute

the necessary actions, forecasts two steps ahead must be made, denoted by ŷt(t− 2).

When predicting the value of a variable, often being a real number, the probability

for the prediction to be equal to the observation tends to 0, meaning that the forecast error
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Figure 2.1: Forecasting process.

will never be zero. More specifically, the forecast error that results from a forecast of yt that

was made at a time period t− τ is called the lead −τ forecast error and it is represented by

et(τ) = yt − ŷt(t− τ). (2.1)

To calculate the forecasting error of a one step ahead prediction, the next equation

would be used

et(1) = yt − ŷt(t− 1).

In order to finish this section, a brief explanation of the steps involving a forecasting

process will be given. In Figure 2.1 we show a diagram that depicts those forecasting steps

and the interaction they have between themselves.

1. Problem definition corresponds to the part of the process where it needs to be under-

stood how the forecasts will be used by the final user. Here is where the forecast lead

time and the forecast interval are defined. Also the final user will state the required

level of forecast accuracy.

2. Data collection refers to acquire the relevant history for the variable of interest. In

most real life scenarios, the data collected is entirely made of normal measurements;

frequently, missing values or outliers will be found, along with data problems that

may be presented due to the nature of the underlying system or changes in it. One

needs to deal with this type of problems, since only representative data of the current

underlying system needs to be used.

3. In the data analysis step, plottings of the time series are made in order to detect

visually some patterns of it. While observing the plot, one should search for trends

and seasonal or other types of cyclical components. We will use the term trend to
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indicate an evolutionary movement, whether upward or downward, in the values of

the variable. Trends can be both long or short-term. Seasonality refers to behavior

that repeats along time in the variable. This behavior can be daily, weekly or even

yearly, depending on the process being examined.

4. Model selection and fitting, as the name suggests, consists in choosing a model or

models and fitting those to the data. Fitting refers to estimating the model parameters

unbeknown to us.

5. In the model validation step, the model is evaluated in a simulation of a real use of

it, with data not available in the fitting process. Since it is important to know how

the model will behave when used by the end user and there is a big chance that the

performance in the fitting step is better than the one with real values, the data is

split into a training set and a validation set. The training set will be destined for

the model fitting, and the validation set will be used to simulate how the model will

perform with new data.

6. During the forecasting model deployment step, the end user will use the model and

obtain the desired forecasts. In this part, model maintenance may be given in order

to extend the longevity of the model.

7. When monitoring forecasting model performance, the model will be checked regularly

to ensure that its performance is still acceptable. Since it is possible and likely to

have changes in the properties of the underlying process being predicted, the models

may deteriorate and not be useful any longer. If this is the case, it may be necessary

to go back to the data analysis step. A constant measurement of the error is a good

practice to check the model performance through time.

2.2 Nearest Neighbors

This section explains the k-NN algorithm. Although there are different approaches

when it comes to implementing k-NN, this thesis will only focus in its original implementa-

tion. Although k-NN was originally conceived as a classification algorithm, it is also possible
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to use it for regression; we also show in this section an explanation of how to forecast using

it. Most of the concepts are taken from [Kantz and Schreiber, 2004], and we advise the

reader to consult it if they want to delve more in the subject.

The inception of k-NN comes from the necessity to perform non-parametric clas-

sification, since there are situations when the parametric estimates of probability densities

are unknown. Originally introduced in [Fix, 1951, Fix and Hodges Jr, 1952] and further

more studied with a more formal approach in [Cover and Hart, 1967], the k-NN algorithm

has its roots on what is known as the nearest neighbor rule (NN rule).

2.2.1 NN Rule

Let X be a metric space. Let d be a metric defined in X. We define a set of n pairs

(x1, θ1), (x2, θ2), . . . (xn, θn), being the xi’s values in X, and the θi’s values in [1, 2, . . . ,M ],

corresponding to the indexes of the different categories that can be assigned to an individual.

We will say that the ith individual belongs to the category associated by index θi, and xi

are the measurements taken for that individual.

When a new x or query is given, our goal is to find the θ that forms the pair (x, θ).

Since we can only observe the measurement x, we will use the information of the already

known xi’s and θi’s to define θ. We will define the nearest neighbor x� ∈ {x1, x2, . . . , xn} to

x if it satisfies

x� = argmin
i=1,2,...,n

(d(xi, x)).

The NN rule decides that x belongs to the category given by θ�, corresponding to its nearest

neighbor x�, and excluding any information that could be provided by the n− 1 remaining

individuals. When θ �= θ�, it is considered as a mistake, defining the risk or probability of

error R as the ratio of the amount of errors to the number of classifications.

In order to determine the nearest neighbor, it is possible to use one of several

known metrics, such as:

• Euclidean: d(xi, x) =
�
(xi − x)2.

• Euclidean squared: d(xi, x) = (xi − x)2.
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• Manhattan: d(xi, x) = |xi − x|.

The most common of them is the Euclidean and it is also the one suggested for the purpose

of this thesis [Kantz and Schreiber, 2004].

The advantage of this algorithm is that there is no training or fitting process in

which values are adapted to represent the underlying distribution for the individuals. The

disadvantage, however, is that each time a new query is presented, its distance with every

other individual is calculated in order to apply the rule. This makes that the time required

to output the result once the query is presented is greater than the time required with many

other classification algorithms.

k-NN Rule

It is possible to extend the definition of the NN rule in order to consider more than

just one individual; when fixing the number of individuals that are going to be considered to

k, the rule is known as the k-NN rule. Given the set of n pairs (x1, θ1), (x2, θ2), . . . (xn, θn)

and the x, we reorder the pairs in the form of (x(1), θ(1)), (x(2), θ(2)), . . . (x(n), θ(n)) such that

d(x(1), x) ≤ d(x(2), x) ≤ · · · ≤ d(x(n), x).

Then we take the first k pairs (x(1), θ(1)), (x(2), θ(2)), . . . (x(k), θ(k)) in order to find the most

concurrent category among the θ(i)’s by counting. To formally denote this counting, we will

use the Kronecker delta function, which compares two inputs, outputting 1 when they are

equal, and 0 otherwise

δ(p, h) =




0 if p �= h,

1 if p = h.

(2.2)

Using equation (2.2) we can now define a function C(S, j) that counts the number of oc-

currences of an element j over a sequence S of length m as

C(S, h) =

m�

i=1

δ(h, Si) (2.3)
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Finally, we use equation (2.3) to define a function that counts the votes for each possible

category of the k selected neighbors Sk and outputs the one with the most votes

θ� = argmax
i

(C(Sk, θ(i))).

The k-NN rule decides that x will belong to the category given by θ�, corresponding to the

one with the most occurrences among those that were given by the k selected individuals,

ignoring the information provided by the n− k remaining.

Although there are techniques that help in the selection of k in order to achieve

the minimal error [Kantz and Schreiber, 2004], the optimal value is not necessarily reached

by those techniques and varies depending on the distribution in which the individuals are

taken. However, it is proved in [Cover and Hart, 1967] that the risk R has bounds

R∗ ≤ R ≤ R∗
�
2− M

M − 1
R∗

�
. (2.4)

In equation (2.4), R∗ corresponds to the Bayes error rate, which is the minimal error rate

possible for a classifier.

2.2.2 k-NN Regression

In order to forecast using k-NN, we need to change its purpose from classification

to regression; that is changing the approach of the algorithm from assigning a category

to a query to define the behavior of an underlying function at query point x [Kantz and

Schreiber, 2004].

Using notation from Section 2.1, given the time series y, we are going to define a

database of individuals that are going to be used for the query. We will introduce parameter

m which will define the length of the vectors that make the individuals. These individuals

are equivalent to the vectors of measurements used for classification. Each individual xi will

start from observation yi, having the values of the next m − 1 observations as well. This

can be expressed as

xi = [yi, yi+1, . . . , yi+m−1]. (2.5)

For time series, instead of categories, we will now use θi, corresponding to a function of xi

for the general case, to represent the observation ahead of the last in xi by lead time τ ,
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represented as

θi = yi+m−1+τ . (2.6)

There will be an individual for each unique vector constructed from y using equations (2.5)

and (2.6), and as long as there an observation at the required indexes.

Once the individuals database has been created and query x arrives, which usually

corresponds to the vector immediately after the last in the database, we will proceed exactly

like we did with the k-NN rule for classification, however we will make a modification to

define θ�. We now define θ� ∈ R, since it corresponds to the forecast at ŷT+1, instead of

being an identifier for a category.

Instead of having a vote for each of the k considered neighbors, we will average

their associated θ(i) value, such as

θ� =
1

k

k�

i=1

θ(i).

In regression, the probability of θ = θ� is 0, so we will define error using equation (2.1).

It is possible to construct the database and calculate θ� in various ways by incorpo-

rating more parameters [Kantz and Schreiber, 2004]. However, this thesis uses the procedure

explained above since it is simpler, requires a shorter search for the ideal parameter values,

and was the one that exhibited the best results while testing.

2.3 Wavelet Transform

Although there is a significant amount of theoretical background regarding the

wavelet transform, this section will provide a light version of it that is enough for the reader

to understand the role it plays in this thesis. Most concepts will be taken from [Daubechies,

1992], and it is advised for the reader to use that material if a more in depth explanation

is desired.

We will particularly focus our attention on theDiscrete Wavelet Transform (DWT).

However, being discrete or continuous, one can think of the wavelet transform as a tool that

splits a signal into different frequency components, representing each of those components
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with a resolution associated to its scale.

2.3.1 Discrete Wavelet Transform

The DWT serves to represent a signal in terms of translations and dilatations of a

function ψ, known as the mother wavelet. This transform will create a set of low resolution

coefficients, known as approximations, and a set of finer resolution coefficients, known as

details. Rather than deriving and using a formula based on function ψ, an algorithm known

as Fast Wavelet Transform (FWT) is used to compute the aforementioned coefficients,

recursively applying a pair of digital filters to the signal.

Without delving too much on the subject, since it is not a main concern in this

thesis, we will define a digital filter as a sequence of real numbers called filter coefficients.

Those filter coefficients are convoluted with the desired signal to be filtered. The type of

filters used for the FWT algorithm are known as Finite Impulse Response (FIR), which

means that, when applied to a unitary impulse, the resulting coefficients are non-zero only

on a finite range.

The pair of filters used for decomposition consists of a low-pass filter H(z) and

a high pass filter G(z). To synthesize the original signal, an inverse transform is applied

using low-pass filter H̃(z) and high-pass filter G̃(z). The filters H(z), G(z), H̃(z) and G̃(z)

must form a biorthogonal basis in order to have a perfect reconstruction [Daubechies, 1992].

From now on we are going to treat biorthogonality and invertible as synonyms in a wavelet

context. There are some special cases where the corresponding decomposition filters and

synthesizing filters have the same values, but mirrored, forming an orthonormal system.

The previous explanation can be expressed in the following equation, considering

a signal y and filter length ξ

s[n] =

ξ�

i=1

y[n− i]H[i] (2.7)

ρ[n] =

ξ�

i=1

y[n− i]G[i]. (2.8)

For the sake of completeness, we point out that s in equation (2.7) corresponds to the

approximation coefficients and ρ in equation (2.8) correspond to the detail coefficients.
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Since we have less frequency components, it is possible to have half the amount of values in

s and d compared to y while having enough information to capture the whole behavior of

it. Denoting a downsampling by 2 as y ↓2, it is possible to write both equations (2.7) and

(2.8) as

s[n] =

�
ξ�

i=1

y[n− i]H[i]

�
↓2 (2.9)

ρ[n] =

�
ξ�

i=1

y[n− i]G[i]

�
↓2 . (2.10)

The inverse transform is obtained in a similar fashion as with the decomposition in the

sense that an upsampling is done to the approximation and detail coefficients, followed by

a convolution with their respective filters, and finally adding both of their results to obtain

the original signal. This can be expressed in the following equation, which uses a simplified

notation, denoting ↑2 as upsampling by 2 and ∗ as the convolution, as in equation 2.11.

y[n] = (s[n]) ↑2 ∗H̃[n] + (ρ[n]) ↑2 ∗G̃[n]. (2.11)

One of the properties of the DWT is that one can further decompose the remaining

frequency components by iterating on the output of the low-pass filter. The amount of

iterations applied is known as the decomposition level. Since each decomposition adds

another array of detail coefficients, for a given decomposition level l, we are going to end

up with l arrays of detail coefficients and one with approximation coefficients at the last

level. We can use a numeric subscript to denote the corresponding level of decomposition

for the coefficients, and if we consider s0 = y, we can write equations (2.9) and (2.10) in a

way that generalizes the concept of a multilevel decomposition as

sl[n] =

�
ξ�

i=1

sl−1[n− i]H[i]

�
↓2

ρl[n] =

�
ξ�

i=1

sl−1[n− i]G[i]

�
↓2 .

Similarly, we can write equation (2.11) to have the same consideration as

sl−1[n] = (sl[n]) ↑2 ∗H̃[n] + (ρl[n]) ↑2 ∗G̃[n].
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Figure 2.2: A level 3 DWT decomposition using filters.
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Figure 2.3: A level 3 DWT reconstruction using filters.

In order to show in a clearer way the multilevel properties of the DWT, a diagram

is shown in Figure 2.2. The result of the decomposition will be l+1 = 4 signals or coefficient

arrays ρ1, ρ2, ρ3 and s3. The higher frequency components will be located in ρ1 and the

lower ones in s3. It is important to remember that, if y is of length T , then ρ1, ρ2, ρ3, and

s3 will have a length of T/2, T/4, T/8 and T/16, respectively.

For the sake of completeness, we show in Figure 2.3 a diagram of the reconstruction

process when the inverse wavelet transform is applied through the use of digital filters. It

is worth nothing that the output of the reconstruction is denoted by ẏ since, even though

the signal coefficients are perfectly reconstructed, there is a shift in the reconstructed signal

that varies depending on the length of the filter coefficients.
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2.3.2 Stationary Wavelet Transform

While we described how we could apply the wavelet transform to time series in

theory, and even if what we described is used in almost any type of digital signal, the

coefficient decimation poses a problem. First, considering a decomposition level l, the time

series length must be divisible by 2l; one can think of padding or truncating the series at

the beginning as a workaround. However, when we make the predictions, the total number

of predictions must also satisfy the divisibility condition, but it needs to do so in each of

the coefficient arrays. For example, if we wanted to make 16 predictions on the original

series, for a level 3 deconstruction, we would be required to make 2 predictions for s3 and

ρ3, 4 for ρ2, and 8 for ρ1, in order to be able to reconstruct the coefficients in terms of the

original signal. If we want to make m number of total predictions such that m �≡ 0 mod 2l,

then we must use a number n < 2l that satisfies m + n ≡ 0 mod 2l, and make a total of

m + n predictions. This can be detrimental for the quality of the predictions. Trying to

pad the predictions in the reconstruction phase would pose an even worse outcome than

the previous solution attempt, since we would be modifying the frequency components that

define the behavior of the original signal.

The situation presented in the previous paragraph can and is avoided with the

Stationary Wavelet Transform (SWT). The SWT is defined in [Shensa, 1992] and averages

over all possible shifts of the input signal, the reason being that it is also known as shift-

invariant. This is done by removing the time-varying decimators, which means that the

coefficient arrays no longer reduce their length with respect to the original. So, for a

decomposition level l and a signal of length T , we will end up with lT coefficients, instead

of T using the DWT. Subsequent iterations at a given level l must use the original versions

of the wavelet filters, expanded by 2l. The aforementioned process is shown as a diagram in

Figure 2.4, considering a level 3 decomposition. Reconstruction is omitted, since it is easy

to see the similarity and slight differences with the DWT.

This type of wavelet transform is also known as redundant since, as stated in

Subsection 2.3.1, we only need half the coefficients per level to capture the signal behavior

and we have more in the SWT. However, since the wavelet transform takes its input in the
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Figure 2.4: A level 3 SWT decomposition using filters.

time domain and its output is also in the time domain, we can perform forecasting on the

various components as if it were the case of doing so on the original signal. We can even

just predict the lower frequency components and have the results as the overall predictions

for the series, which corresponds to using the SWT as a denoiser.

2.4 Lifting

Lifting was conceived as a way to apply non-linear wavelet transforms, also known

as second generation wavelets [Sweldens, 1996, Sweldens, 1998]. Lifting provides an en-

tirely spatial-domain interpretation of the transform, which allows to use the transform in

signals with more complex geometry and irregular sampling. This introduces nonlinear-

ities while retaining control of the multi-scale properties, hence the name. In [Sweldens,

1996, Daubechies and Sweldens, 1998] it is also proven that any first generation wavelet,

as the ones described in Section 2.3, can be represented through lifting. It is important to

bear in mind that not every decomposition done with lifting has a first generation wavelet

representation.

The lifting scheme is composed by 3 steps. These steps come from viewing the

DWT as a prediction-error decomposition. The coefficients that define the wavelet, at a

given decomposition level l, serve as predictors for the values at the next level l + 1. The

detail coefficients are considered prediction errors between the wavelet coefficients and the
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values of the next level they are attempting to predict.

The lifting steps are defined as:

• Split: Divide the original signal into two disjoint sets. Since most digital signals come

from a smooth and slowly varying underlying function, it is possible to consider that

the odd and even samples are highly correlated. If we take this notion to a local

context, then it is possible to predict the odd samples from the adjacent even ones.

This means that we can perform what is known as the Lazy Wavelet Transform (LWT)

[Daubechies and Sweldens, 1998], consisting in, given the original signal y[n], create

two subsets ye[n] = y[2n] and yo = y[2n + 1], which corresponds to separating the

signal into two that contain the even samples and the odd samples, respectively.

• Predict: We predict the odd coefficients yo[n] from the even coefficients ye that neigh-

bors them, using interpolation. This means that the predictor for each yo[n] is ex-

pressed as a linear combination, using scalar α, as

P (ye)[n] = α(ye[n− 1] + ye[n]).

Given the predictor function, we can now define the first lifting step as the prediction

error

ρ[n] = yo[n]− P (ye)[n]. (2.12)

Going by the same notation as in Section 2.3, this first lifting step is the equivalent to

applying a high-pass filter to the input signal. Assuming that the underlying function

is smooth, the values in ρ[n] are going to be small. This step is totally reversible by

doing

yo[n] = ρ[n] + P (ye)[n]. (2.13)

• Update: We transform the even coefficients ye[n] into the result of passing the original

signal through a low-pass filter and downsampling it. For this, we proceed in a similar

fashion as we did in the second step, using a linear combination of the prediction errors
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ρ[n]

U(ρ)[n] = β(ρ[n] + d[n+ 1]).

We replace the even values ye[n] by

s[n] = ye[n] + U(ρ)[n].

Just as with equation (2.12), given the approximation coefficients s[n] and the detail

coefficients ρ[n], it is possible to reconstruct perfectly ye[n] with

ye[n] = s[n]− U(ρ)[n].

If we further use equation (2.13), then we also recover yo[n], being able to reconstruct

the original input signal y[n], making the whole process invertible.

We can repeat as much as we need the second and third step, remembering that

s[n] replaces ye[n] and ρ[n] replaces yo[n], and using scalars that are not necessarily equal

to α or β for this extra steps. This repetition of steps extends our capacity to represent

wavelets, whether they belong to the first or second generation. When we are done with the

lifting steps, we multiply the final approximation coefficients by a scalar ζ and the detail

coefficients by 1/ζ. This is done to normalize the energy of the underlying scaling and

wavelet functions. In Figure 2.5 we show a diagram depicting the whole lifting scheme,

without repeating the predict and update steps pair, showing in Figure 2.6 a diagram of

the inverse process.

Just as with the DWT, it is possible to apply multilevel lifting iterating over the

low-pass coefficients, so Figure 2.2 already serves the purpose of illustrating the process

through a diagram.

In [Daubechies and Sweldens, 1998], along with others, some properties of lifting

relevant to this thesis are mentioned:

• Lifting preserves biorthogonality.

• Any wavelet can be expressed as a sequence of lifting steps.
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Figure 2.5: Applying lifting steps to a signal.
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Figure 2.6: Applying inverse lifting steps to reconstruct a signal.
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• Lifting is faster than the standard FWT implementation.

• It is easy to implement non-linear wavelet transforms using lifting.

• Lifting is not a unique process. It is possible to have groups of different lifting coeffi-

cients that decompose a given signal exactly like the others.

2.4.1 Redundant Lifting

Just as with the DWT, the lifting scheme halves the total number of signal samples

at each decomposition level. Thankfully, although for adaptive purposes, a redundant lifting

is defined in [Claypoole et al., 1998].

The redundant lifting consists simply in intertwining the output of two non-

redundant lifted wavelet transforms. The first transform is exactly as the one defined

previously, that is, predict the odd coefficients from the even coefficients. The second trans-

form has the same steps, but predicts the even coefficients from the odd coefficients, achieved

by shifting the input by one. The output will be two signals from the same length as the

one used as input. The low-pass even coefficients se[n] come from the low-pass coefficients

of the normal lifting and the low-pass odd so[n] coefficients come from the low-pass coeffi-

cients of the shifted lifting. The process to obtain the high-pass coefficients is analogous to

the previous, but taking the high-pass coefficients. To make this process clearer, in Figure

2.7 a diagram depicting the redundant lifting scheme is presented, where the Lift block

represents the regular lifting process shown in Figure 2.5.

Given s[n] and ρ[n], it is possible to reconstruct the original signal by splitting both

of them in their respective even and odd coefficients. Given one of the pairs (se[n], ρe[n])

or (so[n], ρo[n]), it is possible to perform the reconstruction following the process showed

in Figure 2.6. From Figure 2.7, it should be obvious to the reader that we only need to

reconstruct using one pair; using both would imply doing unnecessary extra work.

Just as with regular lifting, it is possible to apply extra lifting steps. It is also

possible to perform a multilevel deconstruction, however, as noted with lifting, there is no

necessity to extend the lifting coefficients responsible for the decomposition.

The previous descriptions of k-NN and lifting define the tools that are used to
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Figure 2.7: Applying redundant lifting to a signal.

make the predictions, however we do not use the lifting representation of a standard wavelet.

Instead we evolve the lifting coefficients to find a wavelet transform that yields better results

than those obtained with standard ones. The evolution algorithm that this thesis uses is

defined in the next section.

2.5 Differential Evolution

Differential Evolution (DE) is a metaheuristic that optimizes functions, defined in

[Storn and Price, 1997]. It attempts to find the global minimum by evaluating a population

that changes from generation to generation. For the population at any given generation G,

it utilizes Np parameter vectors of dimension D

νi,G i = 1, 2, . . . , Np.

The number of individuals Np remains constant during the optimization process. The

initial population vectors are chosen randomly, trying to cover the entire search space.

New parameter vectors are generated at every generation by an operation called mutation,

consisting in the addition of the weighted difference between two population vectors to a
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third vector. The mutated vector’s parameters go through what is known as crossover,

which consists in mixing them with another predetermined vector’s parameters. If the

resulting vector from the mutation and crossover yields a lower cost function value than the

target vector used at the beginning of this process, then it replaces it in the next generation,

being this operation known as selection. Each population vector has to serve once as the

target vector so that Np competitions take place at every generation.

More formally, each operation of DE can be described in the following manner:

• Mutation: For each target vector νi,G, a mutant vector υi,G+1 is generated

υi,G+1 = νµ1,G + F (νµ2,G − νµ3,G).

The values µ1, µ2, µ3 ∈ {1, 2, . . . , Np} denote random non-repeated indexes of popu-

lation vectors that are different from the target vector, so a population of a least 4 is

necessary. The amplification of the differential variation (νµ2,G − νµ3,G) is controlled

by real factor 0 < F < 2.

• Crossover: To increase the diversity, a trial vector is ui,G+1 is formed

ui,G+1 = (u1i,G+1, u2i,G+1, . . . , uDi,G+1). (2.14)

Each of the elements in equation (2.14) is defined by

uji,G+1 =




υji,G+1 if randb(j) ≤ CR or j = rbr(i)

νji,G if randb(j) > CR or j �= rbr(i)

, j = 1, 2, . . . , D.

We denote randb(j) as the jth evaluation of a uniform random number generator with

output values in [0, 1]. The crossover probability is defined by CR ∈ [0, 1], determined

by the user. To ensure that ui,G+1 gets at least one parameter from υi,G+1, an index

rnbr(i) ∈ {1, 2, . . . , D} is chosen randomly.

• Selection: The trial vector ui,G+1 is compared to the target vector νi,G. If vector

ui,G+1 yields a smaller cost function value than νi,G, then νi,G+1 = ui,G+1; otherwise

νi,G+1 = νi,G.
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2.6 Chapter Conclusions

In this chapter we explained all the concepts that are necessary to define and

understand the proposed algorithms that we show in Chapter 3. It is important to remember

that this chapter only featured concepts that were used in the development of the work

presented in this thesis, leaving out all of those that were not used in subsequent chapters.



Chapter 3

Lift k-NN Forecasting

This chapter proposes modifications to some of the algorithms presented in Chap-

ter 2, as well as explaining the overall algorithm that serves as the main work of this thesis.

The main algorithm will be discussed further in this chapter. However, in order to make it

easier for the reader to understand, we describe it from a general standpoint here. The time

series is decomposed using lifting coefficients provided by the DE algorithm. We only take

the approximation coefficients to produce a forecast using k-NN. We get the forecast error

between the prediction and the real value, feeding it to DE so that the evolution process

continues.

We begin the explanations with some changes done to k-NN in order to improve

performance and efficiency, as well as describing the process used to find the parameters

for constructing the database and defining the number of neighbors. Next, we describe the

implementation of lifting, since there is not known library that has it. Finally, we explain

the overall algorithm, piecing together all of the aforementioned tools.

3.1 Modifying k-NN

Just as described in Section 2.2, calculating the Euclidean distance for each indi-

vidual in the database once a query arrives is a very time consuming task; even more so

if we take into account that the work in this thesis involves evolving a function that uses

NN, making a long but acceptable task into one that is unfeasible. One way to solve this

27
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problem without incorporating new parameters, which would imply that more tunning is

required and could result in more time spent, is to reduce the total number of Euclidean

distances calculated once a query arrives, which could reduce the time needed linearly, and,

while not making the process extremely efficient, it makes it feasible for the purposes of

this thesis.

If the individuals database is large enough, one could think that is a good idea to

discard older data and only consider the most recent half or quarter of it. This would in

fact reduce the overall time and, in general, the more recent the data, the better. However,

we will take advantage of our knowledge of where the time series comes from. We forecast

short-term load time series provided by CENACE, which, by analyzing the data and using

common knowledge that energy consumption tends to be similar at a given hour throughout

the days, we know that is has a daily seasonality. This means that, for example, when

predicting a value at 04 : 00, seems almost pointless to look for individuals around 16 : 00,

and we should only look for individuals around the time of the day the query is made.

To make things clearer, we will make definitions in terms of the sample indexes,

instead of using timestamps, just bearing in mind that, since every sample is 15 minutes

ahead or behind the adjacent ones, samples corresponding to a same time of the day in

different days will be separated by a multiple of 96 number of samples. This means that,

given a sample at r < 96, we can define any sample z that was taken at the same time of

the day as r by

z ≡ r mod 96. (3.1)

Assuming that we need to predict the next sample after the last one found in the database,

being N the number of individuals or length of the database, we will define r as

r = 96− (N mod 96). (3.2)

With the definition of equation (3.2), we can define a window frame w that we use to search

around r, that is, we only calculate the Euclidean distance between the query and any

individual at index z that holds

((z + w + r) mod 96) ≤ 2w. (3.3)
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Although it may seem confusing at a first glance, we are expressing the condition in terms

of 2w in equation (3.3) because we want to consider w samples prior and after those defined

in equation (3.1). If we took w out of the left side of the equation and subtracted it from

the right side, we would have an issue with the preceding samples, since their indexes would

have values within the range of [−w,−1] and, for example, −1 mod 96 = 95, which is most

certainly a bigger number than w. Otherwise there is no point in making this modification.

For the sake of completeness, Algorithm 1 shows how the k-NN modification is

implemented. Most of the lines refer to simple variable assignations based on the equations

presented, however there are a few lines that need to be discussed. Line 3 defines an array

named Individuals whose elements consist of the Euclidean distance between an individual

that holds the condition defined in equation (3.3) and the prediction associated with that

individual, doing the process of filling the array in line 7. In line 10 we sort the Individuals

array by the distance value. Finally, we return the average of the predictions of the k

considered individuals with the smallest distance.

3.1.1 NN parameter selection

Since we are using a very simple implementation of k-NN, as defined in Section

2.2, we only need to pay attention to two integer parameters: length of the individuals M

and number of neighbors k. If we have a vague idea of where some integer parameters lie,

then we can perform what is know as a grid search.

A grid search consists in trying out all the possible combinations of function pa-

rameters in a predefined search subspace and choosing the one that, in our case, yields the

lowest output value. For example, if we were to find the optimal parameters for a function

f(x, y) searching in a subspace so that x ∈ [I, I+1, . . . , I+P ] and y ∈ [J, J +1, . . . , J +L],

then we would evaluate

f(I, J), f(I + 1, J), . . . , f(I + P, J), f(I, J + 1), f(I + 1, J + 1), . . . , f(I + P, J + L).

Algorithm 2 shows the implementation of the grid search algorithm to tune the

parameters of k-NN. Line 2 defines the variable best that will be holding the lowest output
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Algorithm 1: Change to how the k-NN are picked.

Input: query query, individuals database database, window frame w, number of neigh-

bors k

Output: values indexes for the individuals length and number of neighbors that yield

the best results within the grid

1: function findNeighbors(query,database,w,k)

2: N ← length(database)

3: Individuals ← NewArray()

4: r ← 96− (N mod 96)

5: for z ← 0; z < N do

6: if ((z + w + r) mod 96) ≤ 2w then

7: Individuals.append([Euclidean(query, database[z][: −1]), database[z][−i]])

8: end if

9: end for

10: Individuals.sortByDistance()

11: return Mean(Individuals[:, 1][: k])

12: end function
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value of our target function; since we want to find the lowest value in the grid or subspace,

we set the variable to have an initial value of infinite, being that any numeric value will

be lower. Line 3 defines indexes, responsible for having the parameter values that yield

the best results. Given that it is a fact that we will find a better output value than the

initial, we set indexes to [0, 0], using those parameter values as mere placeholders. Line

4 does not consider the last two individuals, since the last serves as a testing value and

we make one prediction two steps ahead, that is, defining lead time τ = 2. Line 7 uses a

function to create the individuals database, based on equations (2.5) and (2.6). Line 8 uses

a function that performs k-NN regression using the modification showed in Algorithm 1.

Line 10 we use ErrorMeasure as a placeholder for an error metric defined by the needs

of the user. This means that candidate will have the forecast error between the real value

and the value of our k-NN regression function, for each of the possible combinations. Lines

11 to 13 compare the output value and update it and the parameter values that yield it if

necessary. Finally, we return the parameter values that achieved the best results.

With the resulting M we define the length of the individuals in our database and

the length of the queries as well. The resulting k will be used when applying the modified

k-NN rule, showed in Algorithm 1.

3.2 Redundant Lifting Implementation

Even though, by looking at Section 2.4, it is easy to implement the lifting scheme,

there is no known library that does it, so, in order to make the work in this thesis fully

reproducible by the reader, we will show a simple lifting implementation.

3.2.1 Lifting steps

We begin by defining how to apply the lifting steps to a signal, particularly the

Update and Predict steps, since the Split step is done implicitly in the overall lifting

algorithm. Algorithm 3 shows the Predict implementation. It consists in, given an input

signal, defining the output as a signal constructed by adding to each element of the input

its next one. Since there is no value after the last one, we get the last value of the output
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Algorithm 2: Grid search for k-NN parameters.

Input: lower search bound for individuals length initM , upper search bound for in-

dividuals length endM , lower search bound for number of neighbors initk, upper search

bound for number of neighbors initk, time series times, window frame w

Output: values indexes for the individuals length and number of neighbors that yield

the best results within the grid

1: function gridSearch(initM,endM,initk,endk,times,w)

2: best ← ∞
3: indexes ← [0, 0]

4: historicTS ← times[: −2]

5: for i ← initM ; i < endM do

6: for j ← initk; j < endk do

7: indDB ← createDB(historicTS, i)

8: query ← historicTS[−i :]

9: forecast ← findNeighbors(query, indDB,w, j)

10: candidate ← ErrorMeasure(forecast, times[−1])

11: if candidate < best then

12: best ← candidate

13: indexes ← [i, j]

14: end if

15: end for

16: end for

17: return indexes

18: end function
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signal as the original value from the input. Line 2 does this assignation.

Algorithm 3: Predict step for lifting.

Input: signal signal

Output: sum of input signal with itself shifted one to the right prediction

1: function predict(signal)

2: prediction ← signal

3: prediction[: −1] ← signal[: −1] + signal[1 :]

4: return prediction

5: end function

Algorithm 4 shows the Update step, being analogous to the Predict step, however

we add to each sample of the signal its previous value, instead of its next.

Algorithm 4: Update step for lifting.

Input: signal signal

Output: sum of input signal with itself shifted one to the left renew

1: function update(signal)

2: renew ← signal

3: renew[1 :] ← signal[1 :] + signal[: −1]

4: return renew

5: end function

3.2.2 Lifting decomposition and reconstruction

With the lifting steps covered, we now explain how to implement redundant lifting.

As explained in Subsection 2.4.1, redundant lifting consists in regular lifting with just an

extra lifting decomposition with a shift in the input signal. Since we need to test the lifting

scheme at various capacities, that is, with different number of Predict/Update pairs, we

designed the algorithm to be able to perform the necessary number of steps given the length

of the lifting coefficients. Since the repeatable steps always come in a pair, we will always
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have an odd number of lifting coefficients greater than 3, due to the last lifting coefficient

being the scaling factor.

Algorithm 5 shows how to implement lifting decomposition to a signal. The al-

gorithm is a direct translation from the definitions in Chapter 2.4, but it is important to

explain lines 3 and 4, since there is room for confusion. We stated that the details d would

be defined as the prediction error for the odd signal coefficients, being the approximations

s similar but in terms of the even ones; however line 3 defines d as the values of the even

indexes of the signal, proceeding similarly for s using the odd indexes in line 4. This is

due to the fact that, while in most programming languages we start numbering the indexes

stating from 0, from a positional standpoint and based on the mathematical definition, the

first value, found at position 1, is the one corresponding to index 0, making this sort of shift

for the rest of the index values.

Algorithm 5: Lifting decomposition to a signal.

Input: signal signal, lifting coefficients coeffarray

Output: approximation coefficients s, detail coefficients d

1: function lift(signal, coeffarray)

2: coefflen ← length(coeffarray)/2

3: d ← signal[0 :: 2]

4: s ← signal[1 :: 2]

5: for i ← 0; i < coefflen do

6: d ← d− coeffarray[2 ∗ i] ∗ predict(s)
7: s ← s+ coeffarray[2 ∗ i+ 1] ∗ update(d)
8: end for

9: s ← s ∗ coeffarray[: −1]

10: d ← d/coeffarray[: −1]

11: return s, d

12: end function

Even though in Subsection 2.4.1 we say that, in order to apply redundant lifting,

we need to use the lift function but feed it with the signal being shift forward one sample,
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we define a new function called liftShift that receives the same inputs as lift, but d is

made out of the values at the odd indexes and s out of the even ones. We do this because,

although mathematically correct, shifting the signal one sample would imply not having an

even amount of total samples, making us unable to perform the LWT.

With both of the lift and liftShift functions, we can implement the redundant

lifting. Algorithm 6 shows the implementation of redundant lifting, which just directly

follows the aforementioned definition.

Algorithm 6: Redundant lifting decomposition to a signal.

Input: signal signal, lifting coefficients coeffarray

Output: approximation coefficients apro, detail coefficients deta

1: function redLift(signal, coeffarray)

2: aproe, detae ← lift(signal, coeffarray)

3: aproo, detao ← liftShift(signal, coeffarray)

4: apro ← NewArray(Length(signal))

5: deta ← NewArray(Length(signal))

6: apro[0 :: 2] ← aproo

7: apro[1 :: 2] ← aproe

8: deta[0 :: 2] ← detao

9: deta[1 :: 2] ← detae

10: return apro, deta

11: end function

Being done with the decomposition, we now move to the inverse wavelet trans-

form through lifting. Just as defined in Section 2.4, we take as inputs the approximation,

detail and lifting coefficients, and output the reconstructed signal. Algorithm 7 shows the

reconstruction process for a signal, just as described.

As we described in Subsection 2.4.1, to apply an inverse redundant lifting process,

we just need to split the approximation and detail coefficients and apply the regular in-

verse lifting process to just the even samples, corresponding to the odd array indexes. In

Algorithm 8 we show said process.
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Algorithm 7: Lifting reconstruction of a signal.

Input: approximation coefficients approx, detail coefficients detail, lifting coefficients

coeffarray

Output: reconstructed signal reconst

1: function invLift(approx, detail, coeffarray)

2: s ← approx/coeffarray[: −1]

3: d ← detail ∗ coeffarray[: −1]

4: coefflen ← length(coeffarray)/2

5: for i ← coefflen; i ≥ 0; i−− do

6: s ← s− coeffarray[2 ∗ i+ 1] ∗ update(d)
7: d ← d+ coeffarray[2 ∗ i] ∗ predict(s)
8: end for

9: reconst ← NewArray(Length(d) ∗ 2)
10: reconst[0 :: 2] ← d

11: reconst[1 :: 2] ← s

12: return reconst

13: end function

Algorithm 8: Redundant lifting reconstruction of a signal.

Input: approximation coefficients approx, detail coefficients detail, lifting coefficients

coeffarray

Output: reconstructed signal reconst

1: function invRedLift(approx, detail, coeffarray)

2: aproe ← approx[1 :: 2]

3: detae ← detail[1 :: 2]

4: reconst ← invLift(aproe, detae, coeffarray)

5: return reconst

6: end function
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Having described the implementation for the decomposition and reconstruction

schemes using lifting, we are just left to explain an implementation that allows us to decom-

pose and reconstruct for a given level l. In order to implement the multilevel decomposition,

we just need to remember that the scheme iterates over the approximation coefficients of

the previous level of the one resulting from our decomposition. Although simple, for the

sake of completeness, we show in Algorithm 9 that implementation. We define in line 2 the

decompcoeff array that stores the last level approximation coefficients and the detail co-

efficients for each level. Using si and ρi to denote the approximation and detail coefficients

for decomposition level i, and defining the target decomposition level l, the function will

return an array in the form

(sl, ρl, ρl−1, . . . , ρ1).

We output the decomposition coefficients in this manner to follow the standard used by

all the libraries that implement the wavelet transform, whether it is in its continuous or

discrete variant. For the same reason, this is how the input for the inverse must be given.

Algorithm 9: Multilevel redundant lifting decomposition to a signal.

Input: signal signal, lifting coefficients coeffarray, decomposition level level

Output: array of details and approximation coefficients decompcoeff

1: function multiRedLift(signal, coeffarray, level)

2: decompcoeff ← NewArray()

3: targetsignal ← signal

4: for i ← 0; i < level do

5: targetsignal, detail ← redLift(targetsignal, coeffarray)

6: decompcoeff.insertAtBeginning(detail)

7: end for

8: decompcoeff.insertAtBeginning(targetsignal)

9: return decompcoeff

10: end function

To apply the multilevel reconstruction using the lifting scheme, we perform a re-
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construction using the approximation and detail coefficients of the last level, and iterate

using the output as the approximation coefficients and the corresponding detail coefficients

of the next level to reconstruct. Algorithm 10 shows the implementation of the afore-

mentioned process. It is worth nothing that the decomposition level does not need to be

specified, since it is equal to the amount of detail coefficients sets, corresponding to the

overall number of elements in the decomposition coefficients array minus one.

Algorithm 10: Multilevel redundant lifting reconstruction of a signal.

Input: array of details and approximation coefficients decompcoeff , lifting coefficients

coeffarray

Output: reconstructed signal approx

1: function multInvRedLift(decompcoeff, coeffarray)

2: approx ← decompcoeff [0]

3: decomplen ← Length(decompcoeff)

4: for i ← 1; i < decomplen do

5: approx ← invRedLift(approx, decompcoeff [i], coeffarray)

6: end for

7: return approx

8: end function

3.3 Forecasting Algorithm

Now that we have covered the definitions and the implementations of all the nec-

essary tools for the work presented in this thesis, except the DE implementation, we can

explain the overall and main algorithm. For DE, we use the SciPy library [Virtanen et al.,

2020]. In order to make the explanation easier, we show in Figure 3.1 a block diagram

which depicts the process that we describe next.

Even though experiments were made using the scheme, commenting more on the

topic in Chapter 4 and 5, the main work in this thesis does not forecast using all the decom-

position coefficients and then performs the inverse transform; instead we use the wavelet
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transform as a denoiser. This means that we only work with the last level approximation

coefficients, make the forecasts and output them as general forecasts of the input time se-

ries. Normally using a wavelet transform as a denoiser can be problematic if the frequency

components that we are leaving out are significant to the overall behavior of the time series;

however we use DE to tune the lifting coefficients so that the denoising just leaves out what

can be considered, in fact, as noise. Given that DE evolves real valued parameters, such

as the lifting coefficients, any wavelet can be expressed through lifting, lifting also makes

non-linear wavelet transforms, and lifting is not a unique process, using both DE and lifting

in tandem seems only fitting.

First, we scale the original input time series so that its values are in the range

[0, 1]. We do this to prevent overflow and other problems associated with great numeric

values, since electricity load time series have values in the tens of thousands. Then, we

decompose the scaled time series with lifting, with the lifting coefficients being provided

by DE. We take just the last level approximation coefficients and create the individuals

database with them. We use k-NN regression to get the forecasts of the approximation

coefficients. Since lifting and some wavelet transforms do not preserve energy, we scale the

approximation coefficients A to match the values of the [0, 1] scaled time series ys. We do

this by multiplying the approximation coefficients by a factor v defined as

v =
max(ys)

max(A)
. (3.4)

One of the advantages of scaling in [0, 1] is that, since there are only non-negative values,

we do not need to consider an offset in equation (3.4). Next, we apply the inverse scaler

to change the energy preserved forecasts values from [0, 1] to those corresponding the input

time series and output them as overall forecasts of the time series. Finally, we obtain the

fitness value for DE by calculating an error measure between the forecasts and the real

expected values, feeding that value to DE. The process ends when the maximum number of

iterations is reached or when no new set of coefficients are generated, known as convergence.

When the process ends, we are left out with the best forecast made and with the lifting

coefficients that ultimately produced it.

Even though the process is very simple and straightforward, in order to make
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Figure 3.1: Overall evolving process.
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this work reproducible and for the sake of completeness, we show in Algorithm 11 the

implementation of the main function that returns the fitness value that DE uses. We are

not including DE, again, because we use a library for it. It receives as input the time series,

lifting coefficients, decomposition level, length of individuals, and number of neighbors. It

is worth noting that Algorithm 11 just makes one prediction, but we have faith in the reader

in order to slightly modify it and be able to produce an arbitrary number of forecasts, which

is precisely the case showed in Chapter 4.

Algorithm 11: Forecasting with k-NN and lifting.

Input: time series times, lifting coefficients coeffarray, decomposition level level,

query and individuals length m, number of neighbors k

Output: error fitness between the forecast and the real value

1: function liftNN(times, coeffarray, level, m, k)

2: scaledts ← Scaler(times[: −2])

3: maxts ← Max(scaledts)

4: appro ← multiRedLift(scaledts, coeffarray, level)

5: maxappro ← Max(appro)

6: indDB ← createDB(appro,m)

7: query ← appro[−m :]

8: forecast ← NNRegression(query, indDB, k)

9: forecast ← forecast ∗maxts/maxappro

10: forecast ← InverseScaler(forecast)

11: fitness ← ErrorMeasure(forecast, times[−1])

12: return fitness

13: end function

3.4 Chapter Conclusions

In this chapter we presented algorithms that allow us to perform a more efficient

k-NN regression scheme. We also described how we can find the optimal k-NN hyper-
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parameters within a fixed region. We presented a lifting implementation that successfully

decomposes a signal without decimation. We gave an algorithm that combines k-NN and

lifting to forecast. We also explained how the evolution of the lifting coefficients is per-

formed. We show in Chapter 4 the results of using the algorithms presented in this chapter

in short-term load time series.



Chapter 4

Results

The forecasting task used in the experiments consists in seven time series of 35421

samples taken every 15 minutes, from which 35421 are used as history and the last 92

are used as a test set. After forecasts for each of the seven time series are obtained, they

are added up together and make the final and main forecast. This means that we end up

with seven partial forecasts and a main one. The decision to use this particular task was

made due to its complexity, since it would serve as a precedent to tackle simpler forecasting

schemes.

Before we begin explaining the specific tests and their respective results, it is

important to address the characteristics of the computer in which the testing was made,

since one of the measures this thesis reports is the amount of time spent in the various

processes. For the experiments, an MSI GE62 6QF Apache Pro laptop was used, with an

Intel Core i7 6700HQ processor at 3.50GHz with 6MB in cache and 12GB of DDR4 RAM

at 2133MHz.

This chapter discusses the search experiment used to find the k-NN parameters

that produced the best results. Next, we address the evolution experiments conducted in

order to find the lifting coefficients that improved the k-NN forecasting. Then, we show

the forecasting tasks done with the evolved lifting coefficients. We also show some results

using k-NN alone and with the aid of the regular DWT, as we need them to make a direct

comparison with the ones obtained. Finally, we mention some failed experiments that did

43
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not produce the expected results, in case the reader decides to delve in this topic, as some

considerations may be taken in mind.

Just as mentioned when explaining Algorithm 11, we need to define an error mea-

surement used by the algorithms responsible for finding parameters and to be able to com-

pare the various forecasting schemes. Since it is the most common measurement used in

forecasting research, we will use the Mean Absolute Percentage Error (MAPE), which, using

the notation from 2.1, is defined as:

E =
1

T

T�

t=1

����
yt − ŷt

yt

���� .

Normally, it is possible to have a division by zero in the case of yt = 0. However, unless

extraordinary circumstances happen, that is not the case with short-term load time series.

From previous experiments made by various members of the faculty using these

same time series, involving ANNs and Nearest Neighbors with DE evolved hyper-parameters,

the best MAPE measurement and target value to beat with the proposed schemes was

0.6475397. Making the goal since the definition of the parameters for k-NN regression to

be as close as possible to that value or to improve it.

4.1 Grid Search and Evolution Experiments

Before we can make k-NN forecasting with the aid of evolved lifting coefficients, we

first need to find parameters for both of them that produce results good enough to outper-

form the aforementioned cases that do not use this particular tandem. We begin by describ-

ing the process for the k-NN parameters, because it is not a good idea to have a mediocre

k-NN forecasting, leaving all the hard work to lifting. Even though it is documented that

the wavelet transform can help, it does not make drastic increments in performance.

4.1.1 Grid search results

Before beginning the grid search to find the length M of the vectors of the in-

dividuals database and queries, and the number of considered neighbors k, we first fixed

k = 1, since in [Cover and Hart, 1967] it is proven that such consideration is capable of
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Figure 4.1: Main forecasts with tuned k-NN.

yielding acceptable results, and tested values from M = 5 to a number that gave worse

results than the previous one tested, incrementing M by 5. This means that, considering

a value M = mf + 5 that performed worse than mf , the succession of tested values for

M can be seen as M = 5, 10, . . . ,mf ,mf + 5. We did this in order to reduce the search

space since, due to the curse of dimensionality, this type of searches can take significant

time. Using the previous notation, we found mf = 60, so the decision to search from 50 to

70 was made. For k, the search ranged from k = 1 to k = 10. This means that a total of

21 · 10 = 210 combinations were considered. The winning pair was M = 61 and k = 5, with

a MAPE value of 0.6374744. In Figure 4.1 we can see the main forecasts, that is the sum

of the seven components, that yielded the aforementioned result. It is important to note

that, given that we are using sensible data, the values of the time series have been scaled.
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4.1.2 DE results

We used DE to obtain the best possible the lifting coefficients. Since the number

of individuals examined depends on the dimension of the parameter vector, we started with

just 3 lifting coefficients. Based on [Grasemann and Miikkulainen, 2004] and [Grasemann

and Miikkulainen, 2005], we decided to define the boundaries for the update and predict

coefficients to [−1, 1] and the one for the scaling factor to [−2, 2]. The default parameters for

DE given by the SciPy library were used, just changing the maximum number of iterations

to 55 and the population size to 8. Since it does not take significant time and it is easier

to perform the denoising throughout several decomposition levels, a level 3 decomposition

was implemented. After 17 iterations, which corresponds to 408 analyzed individuals, the

values converged and, therefore, the evolution process halted. The desired value was not

obtained, in fact, resulted worse than without using lifting. A second evolution experiment

was conducted, with different initial individuals, having a similar result.

Since increasing the number of lifting steps, increases its representation capacity,

the decision to evolve 5 lifting coefficients was made. The same DE parameters from the

previous experiment were used and, after 49 iterations, which corresponds to 1960 analyzed

individuals, the process halted on a convergence. However, the goal was met with a MAPE

value of 0.6337626. In Figure 4.2 we show the main forecasts using k-NN aided with lifting,

using the evolved coefficients.

Since with the aid of the evolved lifting coefficients all the other results were

outperformed, there is interest in seeing how the decomposition of the signals was made.

Given that the main time series was not decomposed, one of the other seven time series was

used to show the decomposition. In Figures 4.3, 4.4, 4.5 and 4.6, we show the first, second

and third level detail coefficients, and the third level approximation coefficients, respectively.

Additionally, we show in Figure 4.7 the original time series that was decomposed.

4.2 Results Comparison

Even though we already stated that the scheme that uses evolved lifting coefficients

was the one that performed the best, we will present the MAPE values for all of the partial
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Figure 4.2: Main forecasts using lifting and tuned k-NN.

Figure 4.3: First level detail coefficients.
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Figure 4.4: Second level detail coefficients.

Figure 4.5: Third level detail coefficients.
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Figure 4.6: Third level approximation coefficients.

Figure 4.7: Original time series.
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Figure 4.8: Main forecasts using db2 and tuned k-NN.

and main forecasts, as well as the time each of the schemes needed.

In order to justify the proposal of this thesis with results, we used traditional

wavelets to see if they could outperform the lifting results. We tried the Daubechies wavelet

family as well as the FBI wavelet. To do this, we used the PyWavelets library [Lee et al.,

2019]. Of all the ones considered, the one that provided the best results was the order 2

Daubechies wavelet (db2), and performed the best when only using just one decomposition

level. However, it was not able to even meet the error criteria defined by the advisor. It is

important to note that this is also a denoising scheme, just as with lifting. In Figure 4.8

we show the main forecasts using that wavelet. Table 4.1 shows a comparison of the results

obtained by using Daubechies wavelets from order 1 to 5. More Daubechies wavelets were

tested, but their error increased as the order did.

Table 4.2 shows the performance of k-NN regression alone, k-NN regression using

the db2 wavelet, and k-NN regression using lifting with evolved coefficients. The only time

series were aided by lifting scheme has a greater MAPE value is in the fourth time series,
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Daubechies wavelets

Time Series Order 1
(db1)

Order 2
(db2)

Order 3
(db3)

Order 4
(db4)

Order 5
(db5)

1st 2.3227990 1.9160500 2.1322805 2.3481188 2.5712097
2nd 2.2085885 1.7996213 2.0864264 2.1306598 2.1306258
3rd 2.0944288 2.0321481 2.5594039 3.0444270 3.5019938
4th 2.7364407 1.4411677 1.2768998 1.3060665 1.5089668
5th 2.7606201 1.7703327 2.0083601 2.0965425 2.2691137
6th 1.8296414 1.5238273 1.5241821 1.8209926 2.2528962
7th 2.0423074 1.6897004 1.9228182 2.2751868 2.5963218

Main 1.4018464 0.7121444 1.0288592 1.2334200 1.4569735

Table 4.1: MAPE values using various Daubechies wavelets with k-NN.

Schemes

Time Series k-NN k-NN + db2 k-NN + lifting

1st 1.8636617 1.9160500 1.8255230
2nd 1.8258686 1.7996213 1.7646766
3rd 1.8999023 2.0321481 1.8286672
4th 2.7630127 1.4411677 1.5363824
5th 1.7102076 1.7703327 1.6357255
6th 1.5633339 1.5238273 1.5222299
7th 1.8226193 1.6897004 1.5631419

Main 0.6374744 0.7121444 0.6337626

Table 4.2: MAPE values of the considered schemes.

although not by much.

In terms of the time needed to make all the forecasts, as expected, just using k-NN

alone had the best time with 30.1 s; it took more time when decomposing the time series,

taking 98.0 s for the scheme with the db2 wavelet, and 97.2 s for the one that uses evolved

lifting.

4.3 Unsuccessful Attempts

Even though there were experiments that did not improve the MAPE value, they

can give some insight in case this topic is further researched. Aside from the 3 coefficients

experiment, the original idea was to make forecasts on each of the 4 components and then use
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the inverse transform to get the final forecasts for each time series, since [Conejo et al., 2005]

proposes this approach. This, however, did not produce acceptable results when doing the

evolution process. Several attempts were made, going from 3 coefficients to 9 coefficients,

and increasing the population. The maximum number of iterations was irrelevant, since

there was always the case of convergence, but unable to satisfy the error goal. Since a lot

of time went in the process and 9 lifting coefficients has more than enough representation

capacity, the decision to use the lifting decomposition as a denoiser was rather adopted.

4.4 Chapter Conclusions

In this chapter we explained the experiments conducted to get the results of this

thesis. We also provided the resulting hyper-parameters for k-NN. We addressed the exper-

iments conducted to find the lifting coefficients that yielded an error that met the defined

criteria. We compared various results within the Daubechies family, and also compared

results of different schemes. We gave a brief summary of some experiments that did not

produce results that met the criteria in order to provide the reader with more information,

in case they decide to delve in this topic. We will show in Chapter 5 the general conclusions

of this thesis, along with propositions for future work.
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Conclusions

This chapter presents general conclusions that consist in an interpretation of the

obtained results that are shown in Chapter 4. It also features some ideas that may serve to

conduct future research, based on the work of this thesis.

5.1 General Conclusions

In this thesis, we were able to define a k-NN regression based forecasting method

that was able to outperform the best results of previous research for a given set of time series,

while reducing the amount of time needed to make said forecasts, once the lifting coefficients

were found. We successfully evolved lifting coefficients that, when used in tandem with the

k-NN regression method as a denoising scheme, were able to best the results that were

obtained without lifting and even those with the use of traditional wavelets. Adding to

this, the winning decomposition does not show the behavior one would expected form

a first generation wavelet, most likely being a non-linear wavelet, only being able to be

implemented through lifting.

This work is also the first attempt, to the date this thesis was written, to evolve

wavelets through lifting for forecasting tasks, and is one of the few to evolve lifting coeffi-

cients that achieve desirable results in general. Additionally, we were able to corroborate the

lifting properties. In particular, since there was no optimization in the coding of the lifting

process and was able to make the decomposition faster than highly optimized libraries, we

53
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also showed that there are many advantages of using lifting instead of traditional DWT.

5.2 Future Work

We present some promising ideas that may serve as areas of potential research,

and may lead to fruitful results:

1. Making forecasts on each component was not successful. This may be due to the fact

that there is no fitting process in k-NN regression, so there is little apparent benefit

on simplifying time series when used with it. However, forecasting algorithms that

have a fitting process may benefit a lot from using this scheme.

2. Even if lifting is used as a signal denoiser, more forecasting schemes should be studied

to see if there is a better payoff than with k-NN regression.

3. Although the error criteria was met, evolving more parameters as well as conducting

experiments with more iterations and population may lead to even better results. It

is a good idea to increase the wavelet representation capacity, as well as evolving

the decomposition level. It is also worth considering properly evolving the k-NN

parameters and introducing others that may improve the forecasts.

4. Time series of different domains have different behaviors, so it is an interesting idea

to see if evolving wavelets through lifting can also help forecasting time series that

have significantly different frequency components.
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