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Abstract

What is our best current picture of the physical universe, and what are its problems
and uncertainties? There is an agreed basic view of the universe, the standard model
of cosmology, (ΛCDM), in which the universe expands from a hot big bang early
phase to a late-time cool, accelerating phase driven by a cosmological constant, with
structure formation. This seems to provide a statistically good fit to all the data up
to now, with the same set of parameters, however, there are extensions to it allowed
by the same cosmological data sets, in this work, Dark Energy (DE) is modelled by
a fluid with an Equation of state (EoS) with time dependency, w(z). Also there are
included the effects of dark energy anisotropic stress on features of the matter power
spectrum (PS). It is employed the Parametrized Post-Friedmannian (PPF) formalism
to emulate an effective DE, and to model its anisotropic stress properties through a
two-parameter equation that governs its overall amplitude (g0) and transition scale
(cg). For the background cosmology, we have considered different equations of state
to model DE including a constant w0 parameter, and models that provide thawing
(CPL) and freezing (nCPL) behaviors. We first constrain these parameters by using
the Pantheon, BAO, H0 and Cosmic Microwave Background (CMB) Planck data.
Then, it is analyzed the role played by these parameters in the linear Matter Power
Spectrum (PS). In order for the anisotropic stress not to provoke deviations larger
than 10% and 5% with respect to the ΛCDM PS at k ∼ 0.01h/Mpc, the parameters
have to be in the range −0.30 < g0 < 0.32, 0 ≤ c2

g < 0.01 and −0.15 < g0 < 0.16,
0 ≤ c2

g < 0.01, respectively.

Keywords: cosmology, dark energy, bayesian statistics.

v



Resumen

¿Cuál es nuestra mejor descripción actual del universo f́ısico?, y ¿cuáles son sus
proplemas e incertidumbres? Existe un modelo que explica como es el universo ac-
tualmente, el modelo estándar de la cosmoloǵıa, (ΛCDM), en el cual, a tiempos tem-
pranos el universo era altamente caliente y comenzó a expandirse y enfriarse a partir
de una gran explosión, hasta que actualmente se encuentra en una fase de expansión
acelerada, causada por una constante cosmológica. Este modelo es capaz de repro-
ducir y ajustar los datos observacionales usando los mismos parámetros cosmológicos,
en este trabajo, la enerǵıa oscura (DE) es modelada por un fluido con una ecuación
de estado (EoS) dependiente del tiempo, w(z). También se incluyen los efectos que el
estrés anisotrópico de la enerǵıa oscura puede ocasionar en el espectro de potencias
de materia (PS). Es utilizada la Parametrización Post-Friedmanniana (PPF) para
simular a la enerǵıa oscura e incluir su estrés anisotrópico, para esto se introduce una
ecuación con dos parámetros que gobiernan su amplitud (g0) y su transición de escala
(cg). En cambio, para la cosmoloǵıa de fondo, la enerǵıa oscura ha sido modelada a
través de diferentes ecuaciones de estado, incluyendo parametrización constante w0,
y modelos que reproducen comportamientos tipo descongelados (CPL) y congelados
(nCPL). Los parámetros fueron ajustados utilizando datos de la muestra de super-
novas Pantheon, BAO, H0 y de radiación cósmica de microondas CMB usando datos
de Planck. Después analizamos el papel que estos parámetros juegan en el espectro
de potencias de materia PS. Para que el estrés anisotrópico no cause desviaciones más
allá del 10% y 5% con respecto al modelo ΛCDM en k ∼ 0.01h/Mpc, los parámetros
tienen que estar en el rango −0.30 < g0 < 0.32, 0 ≤ c2

g < 0.01 y −0.15 < g0 < 0.16,
0 ≤ c2

g < 0.01, respectivamente.

Palabras clave: cosmoloǵıa, enerǵıa oscura, estad́ıstica bayesiana.
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CHAPTER 0. INTRODUCTION

Fascinated by the night sky the ancient civilizations had the discipline to observe
celestial objects: they measured and registered the behavior of the stars to under-
stand and interpret the Universe we live in, the cyclic movements of the sun, moon
and planets were inspiration to construct myths and legends about the origin of the
universe and also to explain and predict natural phenomena. Explanations about
how the universe behaves have been changed according to the available techniques
of observation and instruments at each epoch.

The science that studies the Universe: its origin, evolution, geometry, what it
is made of and how is the matter distributed is the Cosmology. An extraordi-
nary progress has been made developing cosmological theoretical models and high-
precision observational techniques, thanks to it, it was discovered the accelerated
expansion of the Universe, the existence of an unknown matter component called
dark matter and the large scale distribution of matter.

Nowadays the most accepted cosmological model states that the history of the
Universe starts with a Hot Big Bang (HBB), an explosion which occurred everywhere
at once, filling all space from the beginning, with an extremely hot and dense plasma
of particles and radiation pushing apart from every other particle, electromagnetic
radiation was scattered very efficiently by matter. Eventually the Universe cooled to
a temperature at which atoms can be formed, lowering the rate of scattering. The
HBB era ends when the universe cools enough that matter and radiation, decouple
from each other, at this time is defined the Last Scattering Surface (LSS) and since
then these photons began to propagate freely through the universe, which is the
source of the CMB we detect today. Initially the hot universe was dominated by
radiation, later, with cooling from the expansion the roles of matter and radiation
changed and the universe entered a matter-dominated era. Recently results suggest
that we have already entered an era dominated by dark energy.

The discovery of the accelerated expansion of the Universe implied the existence
of dark energy, that has been extensively confirmed by a two-decade variety of exper-
iments, initially employing Supernovae type Ia [1, 2], then using anisotropies in the
CMB from WMAP and Planck data [3], distance measurements of different tracers
[4], and clustering of large galaxy surveys, among other probes [5, 6, 7]. However,
little is known of the fundamental properties of DE, apart from being a ‘fluid’ that
possesses negative pressure. In the most successful model a cosmological constant
(Λ), is capable to fit the observations, albeit current tensions exist among a few
parameters when measured with different probes [8].

The effects of DE have been widely studied in the context of background cosmo-
logical dynamics; most of the work has been devoted to test different equations of
state for DE to understand the dynamics of the Hubble expansion flow. However,
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CHAPTER 0. INTRODUCTION

in comparison its perturbative effects are less explored, partially because we expect
little deviations at perturbative level, but also because we have no clues on its funda-
mental origin. One can, for example, treat DE as a barotropic fluid, hence, its sound
speed depends only on background quantities, or to consider it as a non-adiabatic
fluid to account for its linear effects for which additional hypotheses have to be made
about the fluid’s speed of sound [9]. There are many works that study the effect of
DE speed of sound in the perturbative dynamics, initially done by [10, 11, 12, 13].
It turns out that the effects of DE clustering result to be small, especially if the
DE EoS is close to −1, as demanded by observations, and then they are difficult
to discern with late-Universe measurements [14, 15]. But, in fact, varying the DE
sound speed can induce deviations of up 2% in the matter power spectrum (PS) [16],
that should be important in view of the expected constraints from upcoming galaxy
surveys, such as DESI [17].

Another possibility is to consider DE anisotropic stress. A homogeneous and
isotropic symmetric background metric forbids it, but it can be introduced at the
perturbed level [18]. Anisotropic stress can also mimic Modified Gravity (MG) at
linear order [19, 20, 21, 22], since it introduces at least a new parameter, and together
with DE EoS and sound speed, it yields a modified growth of structures in the
Universe. In fact, DE stress generates similar outcomes as those of varying the
sound speed of DE, but the detailed behavior depends on the signs of the EoS and
stress parameter [23]. From theoretical grounds, one expects DE anisotropic stress
to affect the evolution of the metric potentials and this provokes CMB temperature
anisotropies at low-multipoles, to be affected through the Integrated Sachs-Wolfe
(ISW) effect. In Refs. [24, 23, 25, 26, 27, 28] DE anisotropic stress was analyzed
to prove this conclusion using CMB data available at that time, but due to the
cosmic variance, CMB constraints are still broad. However, DE stress should affect
also matter clustering at large scales. Effects of anisotropic stress on the matter
power spectrum (PS) and on the growth function have been studied in several works
[24, 23, 29, 30, 31, 32, 33], showing that shear viscosity has an effect on very large
scales, but one the other hand it does not change much other cosmological parameter
values; for instance, for this latter reason we do not expect that DE shear terms alone
can alleviate the current tension in the Hubble constant; see however [34] in which
it is proven that adding anisotropic shear to interacting models helps to increase the
Hubble constant to release the tension for phantom DE.

In the literature there is a number of works considering different aspects of im-
perfect fluids, e.g. in connection to second order perturbation in ΛCDM [35], or
related to generalized scalar fields [36, 37]. Also, based on MG, efforts have been put
forward to understand how the gravitational effects of the fifth-force (that generates
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CHAPTER 0. INTRODUCTION

an effective shear term) influence the observables at cosmological scales, changing the
clustering properties [38, 39]. Our motivation here, linked to these latter works, is to
analyze the anisotropic stress effects on CMB and matter PS since the level of accu-
racy of future LSS galaxy surveys and probes shall demand detailed understanding
of the clustering properties of the matter field. In this way, being able to constrain
an hypothetical anisotropic shear, stemming either from DE or MG. Ways to carry
out this comparison are discussed e.g. in Refs. [40, 41, 42]. Recently, analysis of
recent probes hints for non-zero anisotropic stress [43], that also encourages us to
further analyze its clustering properties.

In the present work, we use the Parametrized Post-Friedmannian approach [44,
25, 45], though originally motivated to emulate MG models, they naturally introduce
an effective DE anisotropic stress term. We consider specific equations of state and
fix the DE speed of sound, to concentrate our analysis on the effects of the anisotropic
stress. We analyze the constraints from CMB power spectra and, especially, look for
deviations in the PS. Interestingly, we find that DE anisotropic stress is allowed by
Planck CMB data, as in Refs. [23, 25], but the linear and nonlinear PS impose
tighter constraints to it. We consider different DE EoS, firstly w = −1 that emulates
Λ at background level, then constant w0, and finally, thawing and freezing models,
to find out their effects in combination with stress parameters.

The structure of this thesis is the following: In Chapter 1 is presented a brief
resume of Standard Cosmology; including a description about the background dy-
namics and the linear order perturbed Einstein equations by taking as the background
model of the universe on the largest scales the Friedmann-Lemaitre-Robertson-Walker
(FLRW) and study the inhomogeneities by considering linear perturbations of the
FLRW model: the ‘standard model’ is such a perturbed FLRW model. In chapter 2
is presented an extension of the ΛCDM model where DE is considered as a fluid with
a time depending EoS which can also have perturbations and anisotropic stress, and
in Chapter 3 is introduced the PPF formalism to incorporate DE linear perturba-
tions, where a specific anisotropic stress phenomenology is adopted. Chapter 4 shows
the results employing different EoS and anisotropic stress considerations. Chapter
5 concludes. Finally, the main results of this thesis were published in the journal
Physics of the Dark Universe, [46].
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CHAPTER 1. STANDARD COSMOLOGY

The standard model of cosmology, ΛCDM, is a testable model that provides a
simple and remarkable fit to much of the cosmological data coming from different
regions of the visible Universe. This model is based upon a spatially-flat, expanding
Universe whose dynamics is governed by General Relativity and whose main matter
constituents are baryons, cold dark matter CDM, and a cosmological constant (Λ).
The simplicity of this model relies on the fact that it can be well described by six
base parameters; cold dark matter density1 (Ωch

2), baryonic density (Ωbh
2), optical

depth (τ), scalar spectral index (ns), initial amplitude of scalar perturbations (As)
and the angular size of the sound horizon at recombination (θ∗). These six parameters
are fixed to their best-fit values to match several kind of cosmological observations.
Also, there are other cosmological parameters derived from these six that help to
understand and describe the evolution of the Universe at different times and scale
distances such as CMB anisotropies, SNIa, BAO, H0, RSD, weak lensing of galaxies,
galaxy clustering, etc.

The standard ΛCDM model has been well tested both in our local and the late
Universe, however this model has some remaining problems, as the cosmological
constant origin. There are popular extensions of standard cosmology to provide
solutions to specific problems, for example modifications to gravity [47, 48] could
give a solution to the cosmological constant origin and also could explain the late
time accelerated expansion of the Universe even without a cosmological constant.
These theoretical modifications added extra degrees of freedom and should match
with the known observations. There are other modifications to ΛCDM and, in this
thesis the explored extensions are around the properties of dark energy.

1.1 Background dynamics

At scales larger than about 300 million light years there are no preferred directions
in the universe, this means that in average it is equal in all spatial directions around
every point on it, this is called isotropy, and also at those scales all the spatial
points are equivalent, meaning that there are no special positions so the universe is
homogeneous. These assumptions about the universe are the basis of the cosmolog-
ical principle, and are satisfied by Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric, which in spherical coordinates looks like:

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1.1)

1h is defined through H0 = 100hkm/s/Mpc

2



CHAPTER 1. STANDARD COSMOLOGY

here t is the cosmic time, a(t) the scale factor, k the spatial curvature whose values
can represent closed (k = 1), flat (k = 0) or open (k = −1) universes, see Fig.1.1.

Figure 1.1: Different geometries compatible with cosmological principle. All of them
have not frontier, k = 1 represents closed, k = 0 flat and k = −1 open Universes.
According to the cosmological data sets the visible Universe is a flat one.

The assumptions on homogeneity and isotropy are compatible with the energy
momentum tensor of a perfect fluid:

Tµν = (ρ+ P )UµUν + Pgµν , (1.2)

with total density ρ, pressure P , and four-velocity Uν = (1, 0, 0, 0), Uν = (−1, 0, 0, 0).
The dynamics of expansion is obtained using the Einstein field equations:

Gµν ≡ Rµν −
1

2
gµνR =

8πG

c4
Tµν . (1.3)

along with Eqs.(1.1) and (1.2). Taking the components µν = 00, µν = ij there are
obtained the respective equations:

−3
ä

a
= 4πG(ρ+ 3P ) , (1.4)

ä

a
+ 2

(
ȧ

a

)2

+ 2
k

a2
= 4πG(ρ− P ) , (1.5)

where the dot represents cosmic time derivative, ˙≡ d
dt

, and double dot second time
derivative, substituting ä

a
from Eq.(1.4) in (1.5) one obtains:(

ȧ

a

)2

=
8πG

3
ρ− k

a2
, (1.6)

3



CHAPTER 1. STANDARD COSMOLOGY

this is the fundamental Friedmann equation that governs the expansion of the uni-
verse, its left hand side is the square of the Hubble rate, and is common to deal with
this equation in terms of H:

H ≡ ȧ

a
⇒ H2 =

8πG

3
ρ− k

a2
. (1.7)

The evolution of the Hubble factor depends of the k value, and on what the matter
components are and how they evolve. Each matter constituent is described by its
own energy momentum tensor, Eq.(1.2) and the conservation law ∇νT

(i)
µν = 0 gives

the energy density conservation equation for each matter constituent:

ρ̇i +
3ȧ

a
(ρi + Pi) = 0 (1.8)

where the sub –index i labels the different matter components. To solve this differ-
ential equation it is necessary to provide with an equation of state (EoS) that relates
pressure with density, P = P (ρ) for barotropic fluids. A popular example of a linear
barotropic EoS 2 is:

Pi = wiρi , (1.9)

wi is known as EoS parameter, it is usually constant and takes different values for
each matter component. The continuity equation Eq.(1.8) can be rewritten in a more
known form substituting Eq.(1.9) in it:

ρ̇i = −3H(1 + wi)ρi , (1.10)

that equation is solved as follows:

1

ρi

dρi
dt

= −3
1

a

da

dt
(1 + wi) (1.11)∫

d ln (ρi) = −3

∫
(1 + wi)d ln a , (1.12)

for constant wi the term (1 + wi) comes out of the integral:∫
d ln (ρi) = −3(1 + wi)

∫
d ln a (1.13)

ln ρi(a) = −3(1 + wi) ln a+ cte

ρi(a) = a−3(1+wi)ecte (1.14)

2This equation comes from the pressure definition Pi ≡
(
ni

∂ρi
∂ni
− ρi

)
, and the relation between

the density and the number of particles (ni): ρi = Anγi .
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CHAPTER 1. STANDARD COSMOLOGY

evaluating the last equation at the scale factor today, a0, gives the density value:

ρ0
i ≡ ρi(a0) = a

−3(1+wi)
0 ecte ⇒ (1.15)

ecte = ρ0
i a

3(1+wi)
0 (1.16)

such that,

ρi(a) = ρ0
i

(a0

a

)3(1+wi)

, (1.17)

the value of a today is a0 = 1, and finally the density evolution takes the solution:

ρi(a) = ρ0
i a
−3(1+wi) . (1.18)

There is an equivalence between the scale factor a and the redshift z:

1

1 + z
=
a(t)

a0

= a(t) (1.19)

such that a = 0 is assigned to the limit z → ∞, and today z = 0 corresponds to
a = 1. All the evolution equations can be written in terms of z instead of a and I
will use both representations indistinguishable.

The main constituents of the universe have EoS parameters presented below, and
according to Eq. (1.18) its density evolution is also given:

• Baryons: normal matter, after the matter-radiation equality have EoS param-
eter wb = 0, and density solution; ρb = ρ0

ba
−3.

• Cold Dark matter: it is a non relativistic presureless fluid, wc = 0 whose density
evolves as: ρc = ρ0

ca
−3.

• Radiation: hot relativistic matter with parameter, wγ = 1
3
, the density of

photons evolves as ργ = ρ0
γa
−4.

• Neutrinos: because of its tiny mass, of utmost 0.1eV, become no relativistic
in the late universe, but this effect is not considered in this work. In the era
dominated by radiation they are also relativistic with EoS parameter wν = 1

3

and density solution ρν = ρ0
νa
−4.

• Dark energy: exotic matter represented, in its simplest form, by a cosmological
constant, Λ, where wΛ = −1 and constant solution, ρΛ = ρ0

Λ.

5



CHAPTER 1. STANDARD COSMOLOGY

Using the above specific solutions the Friedmann equation Eq.(1.6) takes the form:

H2(a) =
8πG

3

[
ρ0
γa
−4 + ρ0

νa
−4 + ρ0

ba
−3 + ρ0

dma
−3 + ρΛ

]
− ka−2 , (1.20)

dividing both sides by H2:

H2(a)

H2
=

8πG

3H2

[
ρ0
γa
−4 + ρ0

νa
−4 + ρ0

ba
−3 + ρ0

dma
−3 + ρΛ

]
− k

H2
a−2 , (1.21)

and considering the definition of the critical density ρcrit ≡ 3H2/8πG,

H2(a)

H2
=

ρ

ρcrit
− k

H2
a−2 , (1.22)

it is also useful to introduce the dimensionless parameter density:

Ωi ≡
8πG

3H2
ρi =

ρi
ρcrit

, Ωk ≡ −
k

H2
a−2 , (1.23)

using these definitions the Hubble parameter is expressed as

H(a) = H0

√
Ω0
γa
−4 + Ω0

νa
−4 + Ω0

ba
−3 + Ω0

dma
−3 + Ω0

ka
−2 + ΩΛ . (1.24)

From Eq.(1.24) it is clear that each matter component dominates the evolution at
different epochs: neutrinos and photons dominate at early times (radiation era) but
matter (baryons and CDM) decays in a slower pace than radiation components so
eventually it equals the radiation density at the denominated equality epoch and
then overcomes it and starts to dominate the evolution (matter era). At more late
times dark energy starts to reach the matter density and nowadays it dominates the
evolution (dark energy era) of the universe, see Fig.1.2

The Friedmann equation (1.24) also imposes a constraint on the densities evolu-
tion, using the critical density definition in Eq.(1.22);

1 = Ωγ + Ων + Ωb + Ωc + Ωk + ΩΛ , (1.25)

such that the total matter content is always equals to 1, and one of the densities
depends on the others and can be expressed in terms of them, for example:

ΩΛ = 1− (Ωγ + Ων + Ωb + Ωc + Ωk) . (1.26)

Diverse cosmological probes will constrain these density parameters evaluated at
present times.

6



CHAPTER 1. STANDARD COSMOLOGY

Figure 1.2: Densities evolution, for k = 0 and according Eq.(1.24) there are radiation,
matter and dark energy eras with Ωr = Ωγ + Ων , Ωm = Ωb + Ωc.

1.1.1 Luminosity distances

Distant luminosity sources radiate isotropically, at different distances from it, the
flux tends to diminish at larger distances, R, from the source but the total energy is
conserved at each surface area of an sphere of radius R, see Fig.1.3. In an expanding
universe the luminosity distance dL that travels an emitted photon is related to the
comoving distance R by the relation dL = (1 + z)R. For the FLRW metric Eq.(1.1)
the luminosity distance is computed as:

dL =
(1 + z)

H0

c√
|Ω0

k|
sinn

[√
|Ω0

k|
∫ z

0

dz′

E(z′)

]
, (1.27)

where

E(z) =
H(z)

H0

, (1.28)

7



CHAPTER 1. STANDARD COSMOLOGY

Figure 1.3: The flux received by an observer depends on its comoving distance, R,
to the brilliant source.

and

sinn

[√
|Ω0

k|
∫ z

0

dz′

E(z′)

]
=



sin
[√
|Ω0

k|
∫ z

0
dz′

E(z′)

]
for Ωk < 0 ,[√

|Ω0
k|
∫ z

0
dz′

E(z′)

]
for Ωk = 0 ,

sinh
[√
|Ω0

k|
∫ z

0
dz′

E(z′)

]
for Ωk > 0 .

(1.29)

On the other hand, there is also another way to measure distances in cosmology,
objects with physical size D are viewed at δ angles, see Fig.1.4, the relation between
these quantities,valid for small angles, dA = D

δ
, is known as the angular diameter

distance, and is related to the luminosity distance through the equation:

dA =
dL(z)

(1 + z)2
. (1.30)

Other cosmological distances are functions of integrals of the Hubble parameter,
so at the background level Eq, (1.24) is the most relevant equation that must be
found.

8
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Figure 1.4: The physical size of an object, D is subtended by a angle δ, if the distance,
dA, between the object and the observer. Larger distances dA to the same object
yields smaller angles, δ, and if dA � D then dA = D

δ
.

9
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1.1.2 Dark energy

The discovery of the accelerated expansion of the Universe implied the existence of
dark energy, that has been extensively confirmed by a two-decade variety of experi-
ments, initially employing Supernovae type Ia [1, 2], and thereafter a lot of distinct
astronomical observations as Baryonic acoustic oscillations distance measurements,
galaxy clusters [5, 6, 7] and recent measurements of the Hubble factor H0 [49, 8],
those are known as background observations and are well fitted by the ΛCDM model.

• Supernovas Ia are standard candles which means that if they have identical
color, shape and neighborhood then, on average, they also have the same in-
trinsic luminosity, and the “observed” modulus distance is computed by the
model:

µobs = m?
B − (MB − αX1 + βC) , (1.31)

where m?
B is the observed magnitude peak in the rest frame of the Supernova,

X1 is the time stretching, B the color band, α, β and MB are nuisance pa-
rameters that depend on the host galaxy properties. For the compilation JLA
[50] this nuisance parameters have to be incorporated as free parameters and
for the combined Pantheon sample [51] those are not free parameters and are
fixed to 0. The light curve parameters (m?

B, X1, C) are fitted using parameter
reconstruction models (e.g. SALT2 [52], SiFTO [53], SNANA [54]) along with
photometrical data.

Flux measurements allow to establish a relation between the apparent and
absolute magnitude of an object which it is known as the distance modulus:

µ(z) = m(z)−M (1.32)

and it has the equation

µ(z) = 5log10

(
dL(z)

10pc

)
+ 25 , (1.33)

dL is calculated using Eq.(1.27). This theoretical equation depends on the
density parameter values and they have to be fitted using the observational
data Eq.(1.31) and Bayesian statistical techniques.

• Baryonic acoustic oscillation (BAO) is an early time phenomenon orig-
inated by the competing forces of radiation pressure and gravity which set
up oscillations in the photon-baryon fluid. Those perturbations propagate out-
wards as acoustic waves and imprinted a characteristic scale, the sound horizon

10
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rs, in the spatial distribution of cosmic objects. Distance measurements come
from galaxy catalogues where, using the imprint of the early sound waves, it
is possible to measure the distance to these galaxies using a geometrical test,
namely the angular extent of a feature of known size.

The expansion of the universe using BAO observations, usually is through the
angular diameter distance Eq.(1.30), and there are different data sets available
[55, 56, 57, 58].

• Hubble factor: today’s expansion rate, H0, can be predicted using late time
observations. The methods to measure this parameter require to build a “dis-
tance ladder” using geometry to calibrate the luminosities of standarizable star
types; for example, cepheid variables are pulsating stars whose period of vari-
ation strongly correlates with their luminosities, such that cepheids with the
same period also have the same magnitude absolute; the other independent
measurements come from SN Ia, which can be seen at greater distances than
cepheids. This kind of observations must be fitted with equation (1.24).

These types of cosmological observations can be used together or independently
to put constraints on the ΛCDM background model parameters, (Ωm,ΩΛ,Ωk, H0),
combined constraints from SNIa, BAO, and H0 measurements are shown in Tab.1.1
and in Fig.1.5. According to these results, the 32% of the total matter in the universe

Parameter 68% limits
Ωm 0.307± 0.017
ΩΛ 0.683± 0.025
ΩK 0.0107± 0.0088
H0 74.0± 1.4

Table 1.1: ΛCDM model background parameter constraints at 68%, using SNIa,
BAO and H0 observations.

is made of neutrinos, photons, baryonic and dark matter, nevertheless the 68% is dark
energy emulated here by a cosmological constant Λ, and open universes (Ωk > 0) are
favored but in the contour plots for Ωk is appreciated that flat and closed universes
are inside of the 68, 95 and 99% confidence limits. More tightly parameter constraints
are imposed when early time observations are considered in the analysis.
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0.015
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Figure 1.5: ΛCDM model constraints (68%, 95% and 99% confidence limits) on den-
sity parameters Ωm,ΩΛ and Ωk, using SNIa [51], BAO[59] and H0 [8] measurements.

12



CHAPTER 1. STANDARD COSMOLOGY

1.2 Linear perturbation theory

Late time cosmological observations can be well described by the FLRW metric,
where the assumptions on homogeneity and isotropy holds. This is not totally true
for early time cosmological observations as the CMB, where the distribution of tem-
perature has small deviations from a central value, and so the matter distribution
is not homogeneous. Those disturbances can be described by the theory of small
fluctuations where tensorial quantities can be expressed as its mean value plus small
deviations around it [60] as follows:

T (t, xi) = T0(t) + δT (t, xi) , (1.34)

t is the cosmic time, T0(t) is the average value of T . In cosmology, those quantities
are known as the background values for which the cosmological principle is still valid,
so they only depends on time. δT (t, xi) are the fluctuations, which depend also on
spatial coordinates and can be expressed as power series:

δT (t, xi) =
∞∑
n=1

εn

n!
δTn(t, xi) , (1.35)

the subscript n denotes the order of the perturbations, and ε is a small parameter
of expansion. Since equations of General Relativity are tensorial, the perturbed
spacetime can be described using this generic expansion, to arrive to the perturbed
Einstein’s equations is necessary to consider metric and matter perturbations.

• Metric perturbations.

The spacetime metric is represented by a symmetric tensor, gµν = gνµ, which
following Eqs.(1.34),(1.35) can be written as:

gµν = g0
µν + εδgµν + ε2

1

2
δ2gµν + . . . , (1.36)

g0
µν is the unperturbed FLRW metric Eq.(1.1), εδgµν ≡ hµν is the first order pertur-

bation, ε2 1
2
δ2gµν is the second order one, etc. The goal of this section is to describe

only the first order perturbations, also called linear perturbation theory, and the
metric follows the next notation,

gµν = g0
µν + hµν . (1.37)

Perturbations can be decoupled into scalar, vector and tensor modes, according
to their properties under spatial coordinate transformations. Scalar perturbations

13
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are invariant under rotations, while vector and tensor fluctuations transform like
vectors and tensors under spatial rotations. The components of the perturbed metric,
time-time linear–order behaves as a scalar, time-space like a spatial vector and the
spatial–spatial as a spatial tensor.

According to the Helmholtz theorem, spatial vectors Ui can be decomposed into
a further scalar component, US, and a purely vector component, UV

i ;

Ui ≡
∂US

∂xi
+ UV

i , (1.38)

where UVi is a divergence free vector,
∂UVi
∂xi

= 0.

Similarly the spatial–spatial components of a symmetric two rank tensor, Tij, can
be decomposed into a purely scalar, vector and tensor components:

Tij = T Sδij +
∂2S
∂xi∂xj

+
∂T Vi
∂xj

+
∂T Vj
∂xi

+ T Tij , (1.39)

T Tij , T Vi , (T S,S) are respectively tensor, vector and scalar type components of the
tensor Tij. The conditions on these components are that the divergence of vector

and tensor modes is null,
∂T Vi
∂xi

=
∂T Tij
∂xi

= 0, and the tensor component is trace free

T Tii = 0.
In this framework, using Eqs.(1.38)-(1.39) one can decompose perturbations of

various quantities into three types of components: scalar, vector and tensor. At
linear order there is no coupling between the different fluctuation modes and they
can be studied independently. Following this prescription, the components of the
first–order metric perturbation hµν can be decomposed as follows:

htt = −2A , (1.40)

hit = a

[
∂B

∂xi
+Gi

]
, (1.41)

hij = a2

[
2HLδij + 2

∂2HT

∂xi∂xj
+
∂Ci
∂xj

+
∂Cj
∂xi

+Dij

]
, (1.42)

where A,B,HL, HT are the four scalar metric perturbations, Ci and Gi are diver-
genless vector modes and Dij is a trace-free and divergenless tensor perturbation,

∂Ci
∂xi

=
∂Gi

∂xi
= 0,

∂Dij

∂xi
= 0, Dii = 0 , (1.43)
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using this conditions the trace of the perturbed metric has only scalar modes,

hii = a2
[
6HL + 2∇2HT

]
. (1.44)

• Energy-momentum perturbations.

Using the same framework the energy momentum tensor can be expressed as a
background tensor, T 0

µν , plus small perturbations around it,

Tµν = T 0
µν + δTµν + . . . , (1.45)

each matter component has its own energy momentum tensor according to their
properties, if the fluids are perfect fluids at the background level they are described
by the equation (1.2). For an imperfect fluid, the stress–energy tensor must include
extra terms corresponding in a weakly collisional gas to shear and bulk viscosity,
thermal conduction, and other physical processes, these properties are included by
the addition of an extra traceless tensor, Σµν ,

Tµν = (ρ+ P )UµUν + Pgµν + Σµν , (1.46)

and its first–order perturbation yields,

δTµν = (δP ) g0
µν +P 0hµν + (δρ+ δP )U0

µU
0
ν +

(
ρ0 + P 0

) [
(δUµ)U0

ν + U0
µ(δUν)

]
+ Σµν ,
(1.47)

to split δTµν by components it is necessary to substitute the metric and velocity ones.
Considering that the total four–velocity satisfies the relation:

UνU
ν = −1 =⇒ gµνUµUν = −1 , (1.48)

and taking the first order perturbation of the last equation:

hµνU0
µU

0
ν + gµν0

[
(δUµ)U0

ν + U0
µ(δUν)

]
= 0 , (1.49)

the time–time component of the previous equation gives,

httU0
t U

0
t + gtt0

[
(δUt)U

0
t + U0

t (δUt)
]

= 0 , (1.50)

htt + 2δUt = 0 , (1.51)

finally the time perturbed velocity takes the form:

δUt = −1

2
htt =

1

2
htt . (1.52)
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The spatial perturbed velocity component, δUi, is commonly written as vi that can
be decomposed as an spatial vector according to Eq.(1.38):

vi ≡ δUi =
∂δUS

∂xi
+ δUV

i ,
∂δUV

i

∂xi
= 0 . (1.53)

Replacing the decomposition of the perturbed velocity in Eq.(1.47) there are obtained
the equations,

δTtt = −δP + P 0htt + δρ+ δP +
(
ρ0 + P 0

)
[−htt]

= −ρhtt + δρ , (1.54)

δTti = P 0hti +
(
ρ0 + P 0

) [
U0
t (δUi)

]
= P 0hti −

(
ρ0 + P 0

) [∂(δUS)

∂xi
+ δUV

i

]
, (1.55)

δTij = a2δij(δP ) + P 0hij + a2Σij , (1.56)

δTii = 3a2δP + P 0hii + a2Σii , (1.57)

it is usual to define a dimensionless version of the anisotropic stress by Πij ≡ Σij/P
whose decomposition as a spatial tensor is:

Πij =
1

3
δij∇2Π− ∂2Π

∂xi∂xj
+
∂ΠV

i

∂xj
+
∂ΠV

j

∂xi
+ ΠT

ij ,

∂ΠV
i

∂xi
=
∂ΠT

ij

∂xi
= ΠT

ii = 0 . (1.58)

It is useful to have in mind that contracted components of the energy momentum
tensor can be obtained by using the equation,

δT µν = hµβT 0
βν + gµβ0 δTβν . (1.59)

Using this expression, is possible to work out Eq.(1.45) to first order:

T 0
0 = − (ρ+ δρ) ,

T 0
k = (ρ+ P ) vk,

T kl = (P + δP ) δkl + PΠk
l, (1.60)

1.2.1 Perturbed Einstein equations

There are different ways to arrive to the first–order perturbed Einstein equations
δGµν , the goal of this subsection is only give some of the main steps to do it, for a
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further derivation you can consult [61, 62]. One way is to start perturbing both sides
of Eq.(1.3) and then separate the background from the linear order, another way is
first to substitute R by −κT 3 in Eq.(1.3) and then perturbs the equivalent equation
as follows,

Rµν = κTµν −
1

2
κgµνT , (1.61)

κ = 8πG
c4

, and c = 1. The total Ricci tensor, the stress and the metric tensor,
Eq.(1.61), can be written as background plus a perturbed part,

R0
µν + δRµν = κT 0

µν −
1

2
κgµνT

0 + κδTµν −
1

2
κ(hµν)T

0 − 1

2
κgµνδT , (1.62)

the background has the solutions described in previous sections and can be separated
from the first–order perturbed equations because they are not coupled, the linear
equations are,

δRµν = κδTµν −
1

2
κ(hµν)T

0 − 1

2
κgµνδT , (1.63)

the left hand side involves only geometrical quantities and it’s components are given
in terms of metric perturbations as;

δRtt = − 1

2a2

(
∇2htt

)
− 3

2

(
ȧ

a

)
ḣtt +

1

a2
∂iḣit

− 1

2a2

[
ḧii − 2

(
ȧ

a

)
ḣii + 2

((
ȧ

a

)2

− ä

a

)
hii

]
, (1.64)

δRti = −
(
ȧ

a

)
∂ihtt −

1

2a2

(
∇2hti − ∂i∂jhtj

)
+

[
ä

a
+ 2

(
ȧ

a

)2
]
hti

−1

2
∂t

[
1

a2
(∂ihjj − ∂jhji)

]
, (1.65)

δRij =
1

2
∂i∂jhtt +

(
2ȧ2 + aä

)
δijhtt +

1

2
aȧδijḣtt

− 1

2a2

(
∇2hij − ∂k∂ihkj − ∂k∂jhki + ∂i∂jhkk

)
+

1

2
ḧij

− ȧ

2a

(
ḣij − δijḣkk

)
−
(
ȧ

a

)2

[−2hij + δijhkk]−
ȧ

a
δij∂khkt

−1

2

(
∂iḣjt + ∂jḣit

)
− ȧ

2a
(∂ihjt − ∂jhit) , (1.66)

3Contracting Einstein equation: gµν
(
Rµν − 1

2gµνR = κTµν
)
⇒ R = −κT
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δRii =
1

2
∇2htt + (2ȧ2 + aä)3htt +

3

2
aȧḣtt −

1

2a2

(
2∇2hii − 2∂k∂ihki

)
+

1

2
ḧii +

ȧ

a
ḣii −

ȧ2

a2
hii − 3

ȧ

a
∂khkt − ∂iḣit . (1.67)

The Einstein field equations relate perturbations in the metric to perturbations in
the matter through Eq.(1.63). Taking components and replacing the generic decom-
position of the perturbed metric and stress tensor we found equations that govern
the evolution of metric perturbations. This derivation can be done considering only
scalar, vector or tensor components.

When only scalar fluctuations are considered and combining the different compo-
nents of the Einstein equations, and changing time derivatives4 by derivatives with
respect to ′ = d/ln(a) it is possible to write the usual system of equations in Fourier
space:

HL +
1

3
HT +

B

kH
− H ′T
k2
H

=
4πGa2

k2

[
δρ+ 3aH(ρ+ P )

(v −B)

k

]
, (1.68)

A+HL +
HT

3
+
B′ + 2B

kH
−
[
H ′′T
k2
H

+

(
3 +

H ′

H

)
H ′T
k2
H

]
= −8πGa2

k2
PΠ ,(1.69)

A−H ′L −
H ′T
3

=
4πGa

H
(ρ+ P )

v −B
k

, (1.70)

A′ +

(
2 + 2

H ′

H
− k2

H

3

)
A− kH

3
(B′ +B)−H ′′L −

(
2 +

H ′

H

)
H ′L (1.71)

=
4πG

H2

(
δP +

1

3
δρ

)
, (1.72)

where δρ, δP , PΠ are the sum of individual matter components.

δρ =
∑
a

δρa, δP =
∑
a

δPa, PΠ =
∑
a

PaΠa,

(ρ+ P )
v −B
k

=
∑
a

(ρa + Pa)
va −Ba

k
(1.73)

Although we know the Einstein equations, it is helpful to derive the first order pertur-
bation of the continuity, ∇µT

µ0, and Euler equations, ∇µT
µi. These perturbations

4ẋ = Hx′
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give the energy and momentum conservation equations for each non interacting mat-
ter component:

δρ′a + 3(δρa + δPa) = −(ρa + Pa)(kHva + 3H ′L), (1.74)

[a4(ρi + Pa)(va −B)]
′

a4kH
= δPi −

2

3
PaΠa + (ρa + Pa)A . (1.75)

These equations hold for each individual component and are solved together with
equations (1.68)-(1.72). The evolution equations derived in the previous subsections
can be solved numerically once the initial conditions are specified, for this is useful
to work in different gauges (see next sections).

19



CHAPTER 1. STANDARD COSMOLOGY

1.2.2 Gauge freedom

A physical space–time can be characterized by different metrics and coordinate sys-
tems. They are chosen according to the properties of the physical system under
consideration. In cosmology, the preferred background metric is the FLRW metric
that can be written in spherical or rectangular coordinates. However, when pertur-
bations are considered it is possible to go from the background to the perturbed
metric using a correspondence rule, this is referred to as a gauge. This map is not
unique and is generated by a vector field, the gauge generator.

Perturbed modes can be obtained using different diffeomorphisms, φ : M −→ N ,
between manifolds, some of them introduce quantities without physical meaning,
however it is possible to describe the universe by choosing specific observers for
which the perturbed equations have a physical interpretation.

There are two approaches to calculate how perturbations change under a small
coordinate or gauge transformation. In the passive view there is a transformation
rule between two coordinate systems which allows to study the behavior of the per-
turbations under this transformation rule. In the active approach it is considered
the one–parameter family of diffeomorphisms, φτ : M −→M , generated by a vector
field V α, that allows to compare a given tensor field, T̃ , with the new tensor field T
that arises from the action of φ5 using the notion of the Lie derivative with respect
to the vector field V α: T̃ = T − LV T (0). For the metric tensor it yields,

h̃µν = hµν − LV [g0
µν ] , (1.76)

the Lie derivative of the metric is:

LV [g0
µν ] = ∇0

µVν +∇0
νVµ , (1.77)

where,
∇0
µVν = ∂µVν − ΓαµνVα ,

such that the transformation between perturbed metrics is given by the expression:

h̃µν = hµν − (∂µVν + ∂νVµ − 2ΓαµνVα) . (1.78)

the vector field Vα = (Vt, Vi) has time and vector components, the time component
Vt behaves as a scalar, and the vector component, Vi, decomposes into a scalar plus
a vector part,

Vi = ∂iV
S + V V

i . (1.79)

5T̃ = φ∗τT
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Using Eq.(1.78) and replacing the decomposition of the gauge generator Eq.(1.79)
we obtained the transformation rules of the time–time, time–space and space–space
perturbed components of the metric:

h̃tt = htt − (2∂tVt +−2ΓαttVα) = htt − 2∂tVt , (1.80)

h̃ti = hti − (∂tVi + ∂iVt − 2ΓjtiVj) = hti − ∂tVi − ∂iVt + 2
ȧ

a
Vi (1.81)

h̃ij = hij − (∂iVj + ∂jVi − 2ΓtijVt) = hij − ∂iVj − ∂jVi + 2aȧδijVt , (1.82)

replacing the decomposition of the metric components Eqs.(1.40)-(1.42):

−2Ã = −2A− 2∂tVt ⇒ Ã = A+ ∂tVt (1.83)

a[∂iB̃ + G̃i] = a[∂iB +Gi]− ∂t[∂iV S + V V
i ]− ∂iVt + 2

ȧ

a
[∂iV

S + V V
i ] (1.84)

the proportional part of ∂i yields the transformation rule of the scalar component B,

B̃ = B − 1

a

(
∂tV

S + Vt − 2HV S
)
, (1.85)

and the vector component yields the transformation of the vector component Gi,

G̃i = Gi +
1

a

(
−∂tV V

i + 2HV V
i

)
(1.86)

and finally for the space–space transformation:

a2

[
2H̃Lδij +

2∂2H̃T

∂xi∂xj
+
∂C̃i
∂xj

+
∂C̃j
∂xi

+ D̃ij

]
= a2

[
2HLδij +

2∂2HT

∂xi∂xj
+
∂Ci
∂xj

+
∂Cj
∂xi

+Dij

]
− ∂i[∂jV S + V V

j ]− ∂j[∂iV S + V V
i ] + 2aȧδijVt , (1.87)

taking the proportional parts of δij, ∂i∂j, ∂i and of the tensor part we have,

H̃L = HL +HVt , (1.88)

H̃T = HT −
1

a2
V S , (1.89)

C̃i = Ci −
1

a2
V V
i , (1.90)

D̃ij = Dij . (1.91)
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In other notations, the temporal component of the vector field is denoted by α and
the scalar part of the space component V S by β.

The active approach can be used also to obtain the transformation rules of the
energy momentum tensor:

δ̃T µν = δTµν − LV T 0
µν , (1.92)

and for the energy density and pressure it yields:

δ̃ρ = δρ+ LV ρ0 ⇒ δ̃ρ = δρ+ Vtρ̇
0 , (1.93)

˜δP = δP + LV P 0 ⇒ ˜δP = δP + VtṖ
0 . (1.94)

Using these prescriptions it is possible to go from the equations in one gauge
to another one. Historically many gauges have been used and for different times in
the evolution of the Universe, different gauges have their advantages. Cosmological
codes [63] are usually written (and solved) in synchronous gauge [64] because the
equations are better behaved numerically in that gauge. It is common to work the
theoretical equations in another gauge and then make the correspondent changes to
synchronous. A further discussion between Newtonian and synchronous gauge can
be consulted in [64]. In this work the main equations are given in Newtonian and
matter comoving gauge.
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1.2.3 Newtonian gauge

This metric (N) is generated by choosing the components of the vector field, V S
N and

V N
t such that HT = 0 and B = 0,

V S
N = −a2H̃T , Vt = −aB̃ + a2 ˙̃HT , (1.95)

replacing these particular solutions, V S
N , V

N
t , in Eqs.(1.85)-(1.91) there are obtained

the transformation rules between perturbed tensors in different gauges to Newtonian.
In Newtonian gauge it is conventional to rewrite the scalar metric potentials as:

HL = Φ, Ψ = A, B = HT = 0 . (1.96)

The total metric in conformal Newtonian, longitudinal gauge is given by the equation,

ds2 = a2(τ)
[
− (1 + 2Ψ) dτ 2 + (1 + 2Φ)dxidxi

]
, (1.97)

where Ψ and Φ are gauge invariant scalar potentials [65, 66], Φ is called the Newtonian
potential since it has evolution equations closest to the Newtonian ones. In this
metric the components of the energy momentum tensor are

T 0
0 = − (ρ+ δρ) ,

T 0
k = (ρ+ P ) vk,

T kl = (P + δP ) δkl + PΠk
l, (1.98)

where ρ and P are the background energy density and pressure, δρ and δP their
respective perturbations, and Πk

l are the anisotropic stress components. Since we
are dealing with scalar perturbations, it is useful to work with the velocity divergence
θ and the scalar anisotropic stress Π defined as

θ = ikivi, (1.99)

Π = −3

2

(
kikj
k2
− 1

3
δij

)
Πij. (1.100)

The Einstein’s field equations, in this metric are

k2Φ = 4πGa2
∑

a

(
δρa + 3Ha(ρa + Pa)

θa

k2

)
, (1.101)

k2 (Φ + Ψ) = −8πGa2
∑

a

PaΠa , (1.102)

Ψ− Φ′ =
4πGa

H

∑
a

(ρa + Pa)
θa

k2
, (1.103)
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Ψ′ +

(
2 + 2

H ′

H
− k2

H

3

)
Ψ− Φ′′ −

(
2 +

H ′

H

)
Φ′ =

4πG

H2

(
δp+

1

3
δρ

)
(1.104)

where the sums run over all energy components. In the absence of anisotropic stresses
both gravitational potentials are equal (up to a minus sign). At early times the dif-
ference in the two gravitational potentials is sourced by the second moment of the
phase-space distribution function of radiation components. However at late times,
well after decoupling and during the matter dominated phase, this is negligible and
one can safely set Ψ = −Φ to obtain the standard growth of matter linear perturba-
tions δm ∝ a. This is a key property of cold dark matter, allowing its perturbations to
grow at the same rate for all scales well below the Hubble horizon during the matter
dominated phase. At later times, once DE starts to become important, the growth of
large scales structures is halted because the expansion becomes very fast and the pace
of matter aggregation is reduced, even frozen for a de Sitter expansion. The details of
how this process occurs depend on the very nature of DE. Matter components source
the gravitational potential Φ through the Poisson equation, Eq. (1.101), however the
trajectories of non-relativistic CDM particles respond to the gravitational potential
Ψ through the geodesic equation, which in the Newtonian limit is ~̈x = −∇Ψ. Hence,
even if probes of the Universe’s expansion indicate that DE should very close to a
cosmological constant with P ≈ −ρ, the growth of perturbations can be very dif-
ferent in the presence of the anisotropic stress Πde. But note that this quantity is
not accessible from background observations, and by taking a posture of complete
ignorance about what DE is, it is natural to incorporate the stress in a perturbative
analysis, on the same footing as one introduces the EoS and the speed of sound. The
anisotropic stress should be small at early times, before decoupling, in order to not
spoil the CMB anisotropies, tightly constraining models and leaving room to affect
the CMB only through the ISW effect. Hence, it is expected that effects of a DE
stress will be more feasible to be detected through CDM late time clustering probes,
in particular the matter PS.

From the conservation of the energy-momentum tensor we get the continuity and
Euler equations, for non-interacting fluids these reduce to

δρ′ + 3(δρ+ δP ) = −(ρ+ P )

(
3Φ′ +

θ

aH

)
, (1.105)

(ρ+ P )θ′ =
k2

aH

(
Ψ(ρ+ P ) + δP

)
− (ρ′ + P ′)θ − 4(ρ+ P )θ − 2

3aH
k2PΠ, (1.106)

where we use derivatives with respect to ln(a), denoted by a prime. At the back-
ground level adiabaticity is guaranteed by the continuity equation, however, when
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fluctuations are considered, the energy density of components and their EoS do not
completely specify their pressure. In a general description, for non-interacting com-
ponents one has the relation [67, 68, 13]:

δP = c2
sδρ+ 3aH(ρ+ P )(c2

s − c2
a)
θ

k2
, (1.107)

with ca the adiabatic sound speed and cs the speed of sound in the fluid’s rest frame,

c2
a ≡

P ′

ρ′
, c2

s ≡
δP rest

δρrest
, (1.108)

where

δρrest = δρ+ 3Ha(ρ+ P )
θ

k2
(1.109)

the last expression is the gauge invariant rest-frame density perturbation [65].

1.2.4 Matter comoving gauge

An alternative gauge choice is defined by choosing the components of the generator
vector field, V S

com and V com
t , to obtain the metric conditions:

B = VT and HT = 0 , (1.110)

where VT is the sum of velocities of matter components, excluding dark energy, this
choice gives the solutions,

V S
com = −a2H̃T , V com

t = a(VT − B̃) + a2 ˙̃HT . (1.111)

For this metric it is better to rename the metric components as6:

ζ ≡ HL , ξ ≡ A . (1.112)

The Einstein’s field equations, in matter comoving gauge are:

ζ +
VT
kH

=
4πGa2

k2

∑
a

(
δρcom

a + 3Ha(ρa + Pa)
θa − θT
k2

)
, (1.113)

ξ + ζ + aH
θ′T + 2θT

k2
= −8πGa2

∑
a

PaΠa , , (1.114)

6In other notations the comoving curvature perturbation is named as: HL = R.
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ξ − ζ ′ = 4πGa

H

∑
a

(ρa + Pa)
θa − θT
k2

, (1.115)

ζ ′ +

(
2 + 2

H ′

H
− k2

H

3

)
ζ − 1

3aH
(θ′T + θT )− ξ′′ −

(
2 +

H ′

H

)
ξ′

=
4πG

H2

(
δpcom +

1

3
δρcom

)
(1.116)

The right hand side of the third Einstein field equation (1.115) can be simplified to
yield,

ζ ′ = ξ − θT
aHk2

− 4πGa

H
(ρde + Pde)

θde − θT
k2

, (1.117)

the Navier–Stokes equations for total matter

δρ′T + 3(δρT + δpT ) = −(ρT + PT )(kHVT + 3ζ ′), (1.118)

δPT −
2

3
PTΠT + (ρT + PT )ξ = 0⇒ ξ = −

δPT − 2
3
PTΠT

ρT + PT
, (1.119)

replacing ξ from the last equation in Eq.(1.117) it is obtained a conservation law for
the comoving curvature ζ:

ζ ′ = −
δPT − 2

3
PTΠT

ρT + PT
− θT
aHk2

− 4πGa

H
(ρde + Pde)

θde − θT
k2

, (1.120)

on super horizon scales k � aH the curvature perturbation is conserved, ζ ′ → 0.
The relationships between comoving and conformal Newtonian gauge are obtained
by replacing the solutions of the gauge generator of interest, for example, using
Eq.(1.111) one can go from comoving variables to Newtonian ones following the
transformation rules (1.83)-(1.91), the transformation between the two scalar metric
fluctuations is given by:

Ψ = ξ + ∂tV
com
t = ξ + aH(VT + V ′T ) (1.121)

Φ = ζ +HV com
t = ζ + aHVT (1.122)
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As has been mentioned, the ΛCDM model is the simplest, successful cosmological
model supported by observations. An important aspect of the cosmological observa-
tions is that we can classify them into two groups. In the first one the cosmological
observations are used to test the background model by probing the expansion his-
tory, and, in the second, it is possible to test perturbations around the background
using observations that probe the CMB anisotropies and the growth of structure.
For the background, we use distances between galaxies, luminosity distances coming
from supernovae Ia, diameter angular distances of BAO, etc. All these observations
are considered standard candles or/and standard rulers, and, they don’t need a per-
turbed description. On the other hand, for the perturbations, we use mainly the
CMB temperature power spectra, and observations of the large-scale structure. The
perturbed universe provides crucial tests and more tightly constraints on the model
parameters that are complementary to those arising from the background, therefore
they should be consistent.

To describe all the cosmological observations, the ΛCDM model assumes the ex-
istence of two yet directly undetected components: CDM and DE to explain the
accelerated expansion of the present universe. However, we are not at present sure
that DE behaves exactly as a constant, it can well be a function of the cosmic
time, and also can have additional properties, such as anisotropic stress. In its more
general way to understand it, it can be considered as a fundamental scalar field
or alternatively as an exotic type of fluid or some modified gravity scheme. These
last approaches are equivalent at first order perturbation level, when the appropri-
ate physical conditions are imposed, as we will describe in next chapter. In this
chapter, we follow the fluid approach motivated to provide with a phenomenological
prescription of DE. We will next consider a family of models that phenomenologically
describe DE, considering different time behaviors.

2.1 Parameterized dark energy

Beyond a cosmological constant, the accelerated expansion of the universe can be
driven by a dynamical DE component whose EoS is commonly parametrized by a
time dependent function,

Pde = w(z)ρde, (2.1)

where the EoS parameter, w(z), can be chosen with different purposes; as for exam-
ple, it can mimic quintessence and phantom fields [69, 70]. In general, quintessence
models and then EoS parameterizations w(z) can be classified into two broad cate-
gories: thawing and freezing behaviors [71, 72]. In the first case the scalar field is
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frozen at early times where the kinetic energy is negligible and w ∼ −1, then w(z)
evolves generically as a monotonic, convex, decreasing function to reach asymptoti-
cally, at late times, some w ≥ −1. In the second case, in freezing-tracker models, the
scalar field rolls down to the minimum of its potential at the beginning of the Uni-
verse, but starts to slow down and stops when it comes to dominate the dynamics; in
this case the w(z) function is generically a monotonic, concave, increasing function
at higher z which at late times tends to w ∼ −1. Several DE parametrizations have
been proposed in the literature, some seem to favor thawing models [73, 74], but
Ref. [75] exhibits that freezing models fit better. This latter reference proposes a
generalization of the CPL EoS [76, 77], called nCPL,

w(z) = w0 + wa

(
z

1 + z

)n
, (2.2)

or, in terms of the scale factor

w(a) = w0 + wa (1− a)n , (2.3)

such that n = 1 reduces to the standard CPL (suitable for thawing models) while for
larger values of n it can produce freezing behavior. Since the goal is to understand
how different EoS behaviors influence different cosmological observations such as
SNIa, BAO, H0, CMB anisotropies and the PS, especially in combination with DE
anisotropic stress, we will consider the nCPL parametrization with n = 1 and n = 7,
corresponding to thawing and freezing behaviors, respectively. We will also consider
models with w constant. For any n > 0, the nCPL EoS parametrization is w0 at
z = 0 and goes to w0 + wa at high redshifts. A requirement to achieve a thawing
behavior is that the function should be decreasing as z grows and so wa must be
negative, and to get a freezing evolution wa must be positive. Fig.2.1 exhibits those
behaviors.

The density evolution is found substituting the parameterization w(a) in the
integral Eq.(1.12) that looks like:

ρi(a) = ρ0
i exp

[
−3

∫ a

1

1 + wi(ā)

ā
dā

]
, (2.4)

that for nCPL has the solutions
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Figure 2.1: Left panel shows a decreasing w(z) behavior, both parameters w0, wa are
negative, and the convex behavior is guaranteed if n = 1 (thawing behavior). In the
right panel w0 < 0 but wa > 0 in this case we obtain an increasing function, convex
for n > 1(freezing).

ρde(a) =



ρ0
dea
−3(1+w0+wa) exp [−3wa(1− a)] (n = 1),

ρ0
dea
−3(1+w0+wa) exp

[
−3wa

(
363
140
− 7a+ 21

2
a2 − 35

3
a3 + 35

4
a4

−21
5
a5 + 7

6
a6 − 1

7
a7
)]

(n = 7) .

(2.5)

For parameter values w0 6= −1, wa 6= 0 the DE density is not anymore constant
on time as in the ΛCDM model and the new solution together with the other mat-
ter components determines the background history, H(z), through the Friedmann
equations Eq.(1.24).
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2.2 Dark energy perturbations

One of the most powerful cosmological observations at first order perturbation level
is the temperature map of the CMB, which contains a great deal of information: this
map shows that there are small disturbances in the temperature distribution, called
anisotropies. The observed CMB anisotropies could be originated before, during or
after the LSS, by different sources, including the gravitational effect caused by the
potential wells at recombination (the Sachs Wolfe effect, dominant on large angular
scales), intrinsic temperature fluctuations at the time of the last scattering (dominant
on small angular scales), and the Doppler effect from motions of the plasma. Since
the time of LSS the photons of the CMB have been traveled through time varying
potential wells, so, secondary anisotropies can be generated. Photons are blue shifted
when they fall into a gravitational potential and redshifted when they climb out of
it, if the potentials are decaying due to its linear evolution this effect is referred as
the Integrated Sachs-Wolfe (ISW). A photon that crosses a varying potential well
acquire a net energy shift, reflected in the CMB temperature map. During the
matter dominated era, the gravitational potential is constant, (in the Newtonian
gauge), which means that in that era there will not be any ISW effect produced.
When dark energy starts to dominate over dark matter, the gravitational potentials
are not constant anymore and the ISW term becomes significant, so this effect can
be sourced by a time dependent DE density and its perturbations, reflected in the
CMB map and its corresponding temperature power spectrum as shown in Fig.2.2.

In ΛCDM dark energy is a cosmological constant without density or pressure
perturbations and without anisotropic stress, but if dark energy is modelled as a
barotropic fluid with EoS parameter w0 6= −1 or by a depending time function w(z),
or by a scalar field, then small density and pressure fluctuations can be present at
some specific epochs. The evolution of matter variables is given by the perturbed
equations (1.105)-(1.109) which are valid for any barotropic fluid, in them it is neces-
sary to specify the pressure equation. If wi is just a positive constant, then, Pi = wiρi
implies that, both speed of sound definitions Eq.(1.108) coincide between them and
with the wi parameter and are well defined positive, explicitly;

δPi = wiδρi ⇒
δPi
δρi
≡ c2

s,i = wi , and Ṗi = wiρ̇i ⇒
Ṗi
ρ̇i
≡ c2

a,i = wi , (2.6)

that happens for dark matter and radiation for example, however constant w dark
energy models have negative values and so the speed of sound velocities can be also
negative and different between them. The case when wi is not a constant implies
that temporal or spatial variations of wi must be considered to specify the pressure
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Figure 2.2: CMB temperature power spectrum at low `-multipoles. In this plot the
EoS of DE is the CPL parameterization. Here is explored the ISW effect that can
be caused by changes on the w0, wa parameters. It was considered a fixed w0 and
different wa values in the lack of DE anisotropic stress.

fluctuation Eq.(1.107):

δPde = c2
s,deδρde + 3aH(1 + w(z))ρde(c

2
s,de − c2

a,de)
θde
k2
, (2.7)

c2
a = w(z)− w′(z)

3(1 + w(z))
. (2.8)

Check that if w(z) = −1 the equation (2.8) diverges. In this and following
chapters DE is a fluid where w(z) deviates from a cosmological constant and its
density perturbation needs to be solved along with the Einstein equations.

δρ′de + 3(δρde + δPde) = −(ρde + Pde)

(
3Φ′ +

θde
aH

)
, (2.9)

(1 + w(z))ρdeθ
′
de =

k2

aH

(
Ψ(1 + w(z))ρde + δPde

)
− (ρ′de + P ′de)θde

−4(1 + w(z))ρdeθde −
2

3aH
k2PdeΠde . (2.10)

The anisotropic stress term also affects the shear equation, whose derivatives are
involved in the ISW effect:

k2 (Φ + Ψ) = −8πGa2PTΠT + PdeΠde . (2.11)
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When w(z) crosses the phantom divide (w(z) = −1) the velocity equation (2.10)
becomes singular. There are different approaches to implement DE perturbations,
specially to avoid the phantom divide, one of them is developed in the frame of
gauge invariant entropy perturbation variables [67]; the relative entropy perturbation
between the matter and the dark energy, and the intrinsic entropy perturbation of
the dark energy. In terms of these entropy perturbations are rewritten and solved
the Einstein’s field equations. In this work DE perturbations are included using the
PPF framework, this formalism has the advantage that allows to cross the phantom
divide.
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The parametrized post-Friedmann (PPF) formalism was initially proposed [44] to
describe regimes where modified gravity (MG) models can accelerate the expansion
of the Universe without dark energy. Any DE or MG model needs to guarantee
an expansion history compatible with distance measures at large scales. Another
requirement is that at linear regime it is obtained a modified Poisson equation, and
on small scales modifications must be suppressed in order to satisfy stringent local
tests of General Relativity (GR). To achieve all the cosmological requirements the
PPF formalism introduces three functions, g(a, k), fζ , fg: the first one encodes the
relationship between the two scalar metric fluctuations, the second for the super-
horizon relationship between the metric and density fluctuations, and the third one
to have the quasi–static limit in which the metric potential satisfies a Poisson–like
equation. Additionally this formalism introduces one constant parameter, cΓ, as the
relationship between the transition scale and the Hubble scale.

What distinguishes a particular model of gravity or dark energy is the relation-
ship between the metric potentials Φ and Ψ because they modify directly the shear
equation (1.102). In the PPF framework a function g is introduced to establish a
relationship between metric potentials:

g ≡ Φ + Ψ

Φ−Ψ
, (3.1)

g is related to the more commonly used slip parameter γ ≡ −Φ/Ψ as

g =
γ − 1

γ + 1
, (3.2)

also it is useful to define the potentials Φ−, Φ+,

Φ− ≡
Φ−Ψ

2
, Φ+ ≡

Φ + Ψ

2
. (3.3)

Replacing the Einstein equations in Newtonian gauge it is obtained a Poison like
equation for the potential Φ−, that in the quasi–static regime, kH >> 1 1, when time
derivatives of the metric fluctuations can be ignored compared with spatial gradients
and the matter anisotropic stress is negligible yields,

k2Φ− =
4πGa2

1 + fG
δρrest , (3.4)

here the fG(a) function is added to parameterize a possibly time-dependent modifi-
cation of the Newton constant.

1(kH ≡ k
aH )
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Cosmological perturbations that give rise to the large scale structures in the
universe (galaxies, clusters, etc) are assumed to be causally generated during the
inflationary period by quantum fluctuations of the inflaton field. These primordial
inhomogeneities grew bigger than the Hubble horizon (that coincides with the event
horizon at that time) and due to exponential expansion then they exit it. After
inflation the Hubble scale begins to grow more rapidly than the wavelength of per-
turbations and eventually the mode’s wavelength re-enters the Hubble horizon as the
perturbation seeds of structure formation [78].

The quasi–static approximation is not valid at all scales, and at superhorizon
scales, kH << 1, there can also be modifications that can be taken into account,
with this purpose one can introduce an additional term Γ to the modified Poison
equation,

k2(Φ− + Γ) = 4πGa2δρrest + PTΠT , (3.5)

in this limit the derivative of the last equation along with the conservation equation
gives an evolution equation for Γ that needs to be solved. Making a gauge transfor-
mation from Newtonian to comoving, and replacing the Φ− definition it is obtained
the next equation of motion for the curvature ζ,

ζ ′ = (g + 1)Φ′− + (1− g + g′)Φ− − aH ′VT (3.6)

for which we have the freedom at superhorizon scales to determine the leading order
behavior of ζ ′. Without loss of generality, we can parametrize it with a possibly
time-dependent function fζ , such that Eq.(1.117) is

lim
kH<<1

ζ ′ = −
δPT − 2

3
PTΠT

ρT + PT
+

1

3
fζkHVT . (3.7)

Those are all the functions required by this framework, to demand all the require-
ments of GR. It sometimes uses variables in comoving gauge and then make the gauge
transformation to Newtonian as was previous done. Particular choices of functions
g, fG, fζ are related to different MG models [44], and it is possible to extend this
framework to DE models where DE anisotropic stress can modify the relationship
between potentials and must be considered.
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3.1 PPF for dark energy

There are different approaches to implement the evolution of DE anisotropic stress
to solve the system 1.101-1.106. Some works [23, 24, 27, 28, 31, 33, 79] assume that
anisotropic stress is sourced by the amplitude of the velocity shear tensor ∂ivjde, and
are motivated by the fact that it should be gauge invariant; so they demand to fulfill
a continuity-like equation stemming from a Boltzmann hierarchy, but invoking an
effective viscosity parameter as a source. This approach washes out DE fluctuations
for non-phantom EoS [29], making them even more difficult to detect when compared
to other approaches, as those motivated by MG [32] or modified growth [20], where
effects inside the horizon are also expected. Both approaches are valid and are
motivated by different physics. The specific model will then determine the effects
on observables. Our motivation is to explore effects on scales that will be available
through the next generation of LSS measurements.

First of all if DE is modelled by a fluid with a barotropic time dependent EoS
and anisotropic stress is not negligible the continuity and Euler equations have the
known expressions:

δρ′de = −3(δρde + δPde)− (ρde + Pde) [kHvde + 3Φ′] , (3.8)

[a4(ρde + pde)(vde)]
′

a4kH
= δpde −

2

3
pdeΠde + (ρde + pde)Ψ, (3.9)

it is useful to make the derivative of the last equation,

4a3a′

a4kH
(ρde + pde)vde +

a4

a4

[(ρde + Pde)(vde)]
′

kH
= δPde −

2

3
PdeΠde + (ρde + Pde)Ψ, (3.10)

to finally obtain an expression that will be appear in next calculations,

[(ρde + pde)(vde)]
′

k
=
δpde
aH
− 2

3

pdeΠde

aH
+

(ρde + pde)Ψ

aH
− 4(ρde + pde)

vde
k
. (3.11)

In ΛCDM the right hand side of Eq.(1.102) has only contributions coming from
anisotropic stresses of neutrinos and radiation, but now, the potential Φ+ is modified
by the contribution of DE anisotropic stress,

Φ+ = −8πGa2

2

PTΠT

k2
− 8πGa2

2

pdeΠde

k2
, (3.12)

in the PPF framework this deviation is parametrized by the g(a, k) function,

Φ+ ≡ g(a, k)Φ− −
4πGa2

k2
PTΠT , (3.13)
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such that the metric ratio function has the definition,

g(a, k) = −4πGa2PdeΠde

k2Φ−
, (3.14)

check that if there is not DE anisotropic stress then g = 0 and Φ+ has only the
standard contributions, equation (3.14) replaces the DE anisotropic stress and its
derivatives in terms of the PPF–function g and the potential Φ−,

−4πGa2PdeΠde

k2
= gΦ−, (3.15)

taking the prime (′) derivative of the last expression it is obtained the derivative of
the DE anisotropic stress in the new variables

−8πGaa′PdeΠde

k2
− 4πGa2

k2
(PdeΠde)

′ = g′Φ− + gΦ′− ⇒

4πGa2

k2
(PdeΠde)

′ = 2gΦ− − g′Φ− − gΦ′− . (3.16)

The goal is to obtain a modified Poisson equation for the Φ− potential, starting from
it’s definition:

k2Φ− ≡
k2Φ

2
− k2Ψ

2
= k2Φ− k2Φ

2
− k2Ψ

2
= k2Φ− k2Φ+ . (3.17)

Replacing the Einstein equations (1.101) and (1.102) in the last equation yields,

k2Φ− = 4πGa2
[
δρrestT + δρrestde

]
+

4πGa2

k2
PdeΠde +

4πGa2

k2
PTΠT , (3.18)

the PPF formalism introduces a new function Γ, which encodes the no standard
terms to this Poisson equation, for dark energy it takes the definition:

Γ = −4πGa2

k2

[
δρrestde + PdeΠde

]
, (3.19)

check that if there is not DE anisotropic stress Γ is not necessarily zero, because
DE density perturbations are present, but if Γ = 0 the standard Poisson equation is
recovered and there are not modifications comming from dark energy. The variable
Γ allows to obtain a Poisson equation for an effective potential Φ− + Γ sourced only
by standard contributions,

k2 (Φ− + Γ) = 4πGa2
[
δρrestT + PTΠT

]
, (3.20)
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One of the advantages of this framework is that solving the motion equation for Γ it
is possible to recover the behavior of the dark energy variables, the motion equation
for Γ is obtained deriving it’s definition and replacing the conservation equations as
follows,

Γ′ = −8πG

k2
aa′
[
δρde + 3aH(ρde + Pde)

Vde
k

+ PdeΠde

]
− 4πGa2

k2

[
δρ′de

+3a′H(ρde + Pde)
Vde
k

+ 3aH ′(ρde + Pde)
Vde
k

+ 3aH

[
(ρde + Pde)

Vde
k

]′
+ (PdeΠde)

′
]
,

(3.21)

replacing again the Γ definition, the equation for H ′ and the conservation equations,
Eqs. (3.8), (3.11),

Γ′ = 2Γ− 4πGa2

k2
(PdeΠde)

′ − 4πGa2

k2

[
− 3δρde − 3δPde − (ρde + pde)

kVde
aH

− 3(ρde + pde)Φ
′
]
− 4πGa2

k2

[
3aH(ρde + pde)

Vde
k

]
− 4πGa2

k2
3(ρde + pde)

Vde
k
a

[
−4πG

H
(ρT + PT + ρde + Pde)

]
− 4πGa2

k2
3aH

[
δPde
aH
− 2

3

PdeΠde

aH
+

(ρde + Pde)Ψ

aH
− 4(ρde + Pde)

Vde
k

]
, (3.22)

reordering terms,

Γ′ = 2Γ− 4πGa2

k2
(PdeΠde)

′ − 4πGa2

k2

[
− 3δρde − 9aH(ρde + Pde)

Vde
k
− 2PdeΠde

− PdeΠde

]
− 4πGa2

k2
PdeΠde −

4πGa2

k2
[3Ψ− 3Φ′] +

4πGa2

k2
(ρde + Pde)

kVde
aH

− 4πGa2

k2
3(ρde + Pde)

Vde
k

[
−4πGa

H
(ρT + PT + ρde + Pde)

]
. (3.23)

Replacing the Einstein equation (1.103) it is obtained,

Γ′ = 2Γ− 3Γ− 4πGa2

k2
PdeΠde −

4πGa2

k2
(PdeΠde)

′

− 4πGa2

k2
(ρde + Pde)12πG

a

H

[
(ρT + PT )

VT
k

+ (ρde + Pde)
Vde
k

]
+

4πGa2

k2
(ρde + Pde)

kVde
aH
− 4πGa2

k2
(ρde + Pde)3

Vde
k

[
−4πGa

H
(ρT + PT + ρde + Pde)

]
.

(3.24)
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Reordering terms in the last expression and replacing the anisotropic stress contri-
butions in terms of PPF variable using Eqs. (3.15) and (3.16),

Γ′ = −gΦ− + g′Φ− + gΦ′− −
4πGa2

k2

[
12πG

a

H
(ρde + Pde)

(
VT
k
− Vde

k

)]
(ρT + PT )

+
4πGa2

k2
(ρde + Pde)

kVde
aH
− Γ (3.25)

The previous equation is written in mostly PPF variables, excepting for the concern-
ing terms to DE velocity, this DE contribution appears also in the motion equation
of the curvature ζ ′ Eq.(1.117) for which the extra contributions are parametrized at
large scales, kH � 1, by a depending time function fζ ;

lim
kH�1

4πG
a

H
(ρde + Pde)

(
Vde
k
− VT

k

)
= −1

3
fζ

k

aH
VT (3.26)

in this superhorizon limit the equation of motion for Γ is :

lim
kH�1

Γ′ = −Γ− gΦ− + g′Φ− + gΦ′− +
4πGa2

k2
(ρT + PT ) (−fζkHVT )

+
4πGa2

k2
(ρde + Pde)kHVT . (3.27)

The term Φ′− can be expressed in terms of PPF functions, it’s expression is found by
deriving Eq.(3.20),

Φ− =
4πGa2

k2

[
δρT + 3aH(ρT + PT

VT
k

) + PTΠT

]
− Γ , (3.28)

with respect ′,

Φ′− = −Γ′ +
8πGaa′

k2

[
δρT + 3aH(ρT + PT )

VT
k

+ PTΠT

]
+

4πGa2

k2

[
δρ′T

+ 3aH ′(ρT + PT
VT
k

) + 3a′H(ρT + PT )
VT
k

+ 3aH

(
(ρT + PT )

VT
k

)′
+ (PTΠT )′

]
,

(3.29)

replacing the continuity and Euler equations for the matter component in Eq.(3.29)
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yields,

Φ′− = 2Φ− + 2Γ− Γ′ +
4πGa2

k2

[
− (ρT + PT )(kHVT + 3Φ′)− 3(δρT + δPT )

+ 3aH(ρT + PT )
VT
k

+ 3a(ρT + PT )
VT
k

4πG

3H
(ρ′T + ρ′de) + 3aH

kH
k
δPT

+ 3aH
kH
k

(ρT + PT )Ψ− 2PTΠT − 12aH(ρT + PT )
VT
k

+ (PTΠT )′
]

(3.30)

reordering terms in last expression and then replacing the terms Φ− and Γ where it
is required,

Φ′− = 2Φ− + 2Γ− Γ′ +
4πGa2

k2

[
−3δρT − 9aH(ρT + PT )

VT
k
− 3PTΠT

]
+

4πGa2

k2
[PTΠT

+(PTΠT )′ − (ρT + PT )(kHVT + 3Φ′) + 3a(ρT + PT )
VT
k

4πG

3H
(ρ′T + ρ′de) + 3(ρT + PT )Ψ

]
= 2Φ− + 2Γ− Γ′ − 3(Φ− + Γ) +

4πGa2

k2
[PTΠT + (PTΠT )′] +

4πGa2

k2
3(ρT + PT ) [Ψ− Φ′]

+
4πGa2

k2

[
−(ρT + PT )kHVT + (ρT + PT )

VT
k

a

H
(−12πG)(ρt + PT + ρde + Pde)

]
(3.31)

= −Φ− − Γ− Γ′ +
12πGa2

k2
(ρT + PT )

[
4πG

a

H
(ρT + PT )

VT
k

+ 4πG
a

H
(ρde + Pde)

Vde
k

]
− 12πGa2

k2
(ρT + PT )

[
4πG

a

H
(ρT + PT )

VT
k

+ 4πG
a

H
(ρde + Pde)

VT
k

]
− 4πGa2

k2
(ρT + PT )kHVT +

4πGa2

k2
[PTΠT + (PTΠT )′] . (3.32)

Finally, Φ′− has the motion equation:

Φ′− = −Φ− − Γ− Γ′ +
12πGa2

k2
(ρT + PT )4πG

a

H
(ρde + Pde)

(
Vde − VT

k

)
−4πGa2

k2
(ρT + PT )kHVT +

4πGa2

k2
[PTΠT + (PTΠT )′] (3.33)

The last equation is valid at all scales, because it hasn’t been considered any limit,
however considering the parametrization Eq.(3.26) to replace the remaining DE con-
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tribution at superhorizon scales kH � 1 yields,

lim
kH�1

Φ′− = −Φ− − Γ− Γ′ +
12πGa2

k2
(ρT + PT )

[
−1

3
fζ(a)

k

aH
VT

]
−4πGa2

k2
(ρT + PT )kHVT +

4πGa2

k2
[PTΠT + (PTΠT )′] , (3.34)

and regrouping terms it is obtained the motion equation of Φ− in this limit:

lim
kH�1

Φ′− = −Φ−−Γ−Γ′− 4πGa2

k2
(ρT +PT ) [fζ + 1] kHVT +

4πGa2

k2
[PTΠT + (PTΠT )′] ,

(3.35)
substituting equation (3.35) in the expression for Γ′ (3.27):

lim
kH�1

Γ′ = −Γ− gΦ− + g′Φ− − gΦ− − gΓ− gΓ′ − 4πGa2

k2
(ρT + PT ) [gfζ + g] kHVT

+ g
4πGa2

k2
[PTΠT + (PTΠT )′]− 4πGa2

k2
(ρT + PT )fζkHVT +

4πGa2

k2
(ρde + Pde)fζkHVT

(3.36)

reducing terms:

lim
kH�1

Γ′(1 + g) = −Γ(1 + g) + (g′ − 2g)Φ− + g
4πGa2

k2
[PTΠT + (PTΠT )′]

−4πGa2

k2
[(ρT + PT ) [gfζ + g + fζ ]− (ρde + Pde)] kHVT , (3.37)

defining the source of the last equation:

S =
4πGa2

(1 + g)k2
(g [PTΠT + (PTΠT )′]− {(ρT + PT ) [gfζ + g + fζ ]

−(ρde + Pde)} kHVT ) +
(g′ − 2g)

(1 + g)
Φ− , (3.38)

and now rewriting the equation of motion for Γ in the limit limkH�1

lim
kH�1

Γ′ = S − Γ . (3.39)

Note that the source S vanishes if the functions g and fζ are zero, in this case there
is not modification to gravity.
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In the opposite limit, kH � 1, the DE anisotropic stress should vanish and the
potential Φ− have also a Poisson equation with a possible modified Newton constant,
introduced by the fG PPF function:

lim
kH�1

Φ− =
4πGa2

k2

δρrestT + PTΠT

1 + fG(a)
, (3.40)

a comparison between (3.40) and (3.20) implies that in the quasistatic regime

lim
kH�1

Γ = fGΦ− . (3.41)

The equation of motion for Γ [45, 25] must be valid at all scales. To satisfy the super
horizon limit kH � 1 and the subhorizon scales kH � 1 the equation of motion for
Γ is taken to be: (

1 + c2
Γk

2
H

) [
Γ′ + Γ + c2

Γk
2
H(Γ− fGΦ−)

]
= S , (3.42)

where cΓ is a new PPF parameter. Those are all the required equations for the
PPF prescription, where giving the functions g(a, k), fζ and fG. It is possible to
solve for Γ and after recover the dark energy variables. For example, the rest frame
density perturbation, δrestde is obtained from Eq.(3.19), then, using equation (3.15) to
substitute the anisotropic stress in terms of g, after we use eq. (3.20) to eliminate
Φ−, and finally regrouping terms,

4πGa2

k2

[
δρrestde

]
= −Γ− 4πGa2

k2
PdeΠde ,

4πGa2

k2

[
δρrestde

]
= −Γ + gΦ− ,

4πGa2
[
δρrestde

]
= −(g + 1)k2Γ + g

[
4πGa2δρrestT

]
. (3.43)

This formalism also allow us to across the phantom divide. The numerical imple-
mentation to solve the system has been done in CAMB [63] and CosmoMC [80, 81]
and the main results for different dark energy parametrizations are detailed in the
following subsection.

3.1.1 Dark energy stress phenomenology

To solve the perturbed equations in the PPF formalism the functions; fζ(a), fG(a),
g(a, k) and the constants c2

s, cΓ must be specified. We know that dark energy becomes
important and not negligible at large scales, this is the limit kH � 1, where we can
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expect g(a, k) 6= 0 and at least O(k−2
H ), also we expect Γ 6= 0. In the opposite limit

we want to restore general relativity, because of that we will fix fG = 0. We need to
construct an appropriated g function to obtain deviations when it are required.

The function g(a, k) used in this work has the following functional form [25]:

g(a, k) =
gSH(a)

1 + (cgkH)2
, (3.44)

also we know that the role of dark energy starts to be important at late times when
it becomes to dominate over dark matter, at background level the ratio between
densities varies along a, this motivates the functional form of gSH :

gSH(a) = g0

(
ρde(a)

ρm(a)

Ω0
m

Ω0
de

)1/2

. (3.45)

This g(a, k) function introduces two additional free parameters, g0 and cg, its ampli-
tude and propagation along k-modes, respectively. For g0 = 0 one recovers the case
without anisotropic stress and cg = 0 implies scale free dependence. These functions
affect the Poisson equation (1.101), which using equations(3.19), hop (3.15) can be
rewritten in terms of g as

k2Φ− =
4πGa2(δρrestm + δρrestde )

1 + g
, (3.46)

from this we can see that g > 0 makes Φ− to diminish, as was shown in [25]. Also
it is possible to express Eq.(3.46) in terms of DE anisotropic stress and matter
perturbations:

PdeΠde = − g

1 + g

[
δρrestT + δρrestde

]
. (3.47)

By construction in this formalism DE anisotropic stress has contributions of all
energy density perturbations and the different components are weighted by the same
factor as Eq.(3.47) indicates. Other approaches that include DE anisotropic stress
[32, 82] parameterize the right hand side of Eq. (3.47) using different weight factors
to each matter perturbation.
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CHAPTER 4. COSMOLOGICAL EFFECTS OF DE ANISOTROPIC
STRESS.

In this chapter we present the main results of this thesis. We employ the equations
of previous chapters to incorporate anisotropic stress of DE, and although it was
motivated by MG models, its parameterization is suitable as a fluid description to
treat it in a phenomenological manner.

The results of this chapter use the PPF formalism to include DE anisotropic
stress, with functions and parameters as follows: fG = 0, g(a, k) given by equation
(3.44), fζ = 0.4 gSH , cΓ = 0.4 c2

s, and c2
s = 1, following ref. [25]. Varying the

DE sound speed (cs) it is known to provoke variations of up 2% in the matter
power spectrum [16], but we set it constant here to concentrate our analysis in the
anisotropic stress. To close the system it is necessary to specify the anisotropic stress
parameters (g0, cg), that are in the function g(a, k).

The DE contribution was numerically solved by adapting the codes CAMB1 [63] and
CosmoMC2 [80] to include the shear contribution as detailed in the previous sections.
We analyze the outcomes of the above anisotropic stress phenomenological model in
combination with the effects of different DE EoS. The cosmological data set used
in this work is: BAO measurements from 6dFGS, SDSS-MGS, and BOSS LOWZ
BAO [55, 56, 57, 58], supernovae from the Combined Pantheon Sample [51], recent
H0 measurement from Riess 2018 [49], CMB TT spectrum and low-` polarization
data from Planck 2015 [3]. The main results are separated considering first the case
without and with DE anisotropic stress and different DE EoS parametrizations that
are detailed in the upcoming subsections.

4.1 No DE anisotropic stress

The results of these subsections consider that DE density perturbations are caused
only by the EoS parametrization and Πde = 0, then the ppf function g(a, k) = 0.

4.1.1 wde– constant

The case where the EoS parameter is just a constant, w(z) = w0 6= −1, guarantees
an accelerated expansion of the universe if w0 is smaller than −1/3.

There are two important regions, the non phantom with EoS parameter values,
−1 < w0 < −1/3, and the phantom region with w0 < −1. First to explore similarities
and differences between those regions they are explored separately. The results for

1https://camb.info/https://camb.info/
2https://cosmologist.info/cosmomc/https://cosmologist.info/cosmomc/.
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non phantom region shows density perturbations well defined positive and different
from zero for small k–modes. Fig.4.1 shows the results of the density contrast in
its rest frame for different w0 and c2

s values and allows to check that lower speed of
sound values produce bigger DE density perturbations, and also that if w0 is further
away from a cosmological constant then the perturbations are further away from
zero. For the phantom region, w0 < −1, the perturbations can be also different

Figure 4.1: Dark energy perturbations with EoS w0 > −1, non-phantom region, left
plot fixes z = 0 and shows the dark energy perturbation for different k-modes, right
plot sets a k mode and evolves it over the scale factor a.

Figure 4.2: Phantom region, w0 < −1, left panel fixes z = 0 and shows the dark
energy density perturbation for different k-modes, right plot sets a k mode and
evolves it over a.
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from zero and negative as shown in Fig.4.2, where the chosen w0 values are −1.54
and −1.006. The value w0 = −1.54 is the best fit reported by Planck 2015 [3] when
only CMB data are taken into account and w0 = −1.006 is the result when also
background observations are considered; updates of the CMB data yields similar
constraints on this parameter. In this region also while w0 deviates more from a
cosmological constant its perturbations are further away from zero, and the effect of
c2
s is the same than previously.

DE density perturbations are smaller than the matter ones, as shown in Figs.
4.3- 4.4 where it is plotted the ratio between dark energy and matter perturbations.
This relation tends to zero in both regions. Fig. 4.5 shows the effect of different w0

Figure 4.3: Non phantom region, w0 > −1, these plots show the ratio between
contrast densities. Left plot fixes z = 0, and the right panel sets a k mode and
evolves it over a.

values on the CMB temperature power spectrum at low `-multipoles.

4.1.2 Thawing- Freezing parametrizations.

The nCPL parametrization (2.2) has a thawing behaviour if n = 1, w0 < 0 and
wa < 0, and a freezing behaviour if n = 7, w0 < 0 and wa > 0. Both behaviors can
or not cross the phantom divide, if they don’t across this barrier they remain in the
phantom or non phantom region all the time.

The first election of EoS parameters,w0 = −0.86, wa = −0.13, gives a decreasing
w(z) function, which has a thawing behavior if n = 1, Fig. 4.6 shows the DE
perturbations for different n and c2

s values. The second election is w0 = −0.98, wa =
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Figure 4.4: w0 < −1 phantom region, these plots show the relation between contrast
densities. Left plot fixes z = 0 for different k-modes, right plot sets a k mode and
evolves it over a.

0.1, in this case the freezing behavior is obtained if n = 7, otherwise w(z) is only an
increasing function and the effect of n and c2

s is similar to the previous cases.
Almost all data sets from cosmological probes are compatible with phantom dark

energy, in that case w0 +wa can be less than −1, for this example w0 = −0.961, wa =
−0.28 which are in agreement with Planck 2018. Plot 4.8 shows that the effect of n
and c2

s is the same as in previous case: in this case perturbations are positive in the
same regime where w(z) is positive.

4.2 DE anisotropic stress

4.2.1 w ≈ −1

DE emulating a cosmological constant at background level has no density perturba-
tions in the absence of DE anisotropic stress. However, one expects that evolving
DE will have differences, albeit small, from w = −1. But, for all practical purposes
many DE/MG models are indistinguishable from ΛCDM at background level, so
for definiteness we adopt w = −1 in this subsection. The inclusion of anisotropic
stress generates fluctuations that depend on the chosen anisotropic stress parame-
ters: bigger g0 values generate bigger perturbation amplitudes; and, bigger cg values
shift the anisotropic shear effects to larger scales. These behaviors are shown in
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Figure 4.5: DE density contrast (left panel), CMB temperature power spectrum at
low `-multipoles (right panel) for different w0 in which we neglected DE anisotropic
stress.

Figure 4.6: Dark energy contrast density for the nCPL parametrization with thawing
behaviour if n = 1, for this w0, wa values, the power n = 7 is only a decreasing
parametrization but is not thawing or freezing.

Fig. 4.9, where ratios of DE to matter rest-frame densities are plotted for param-
eters g0 = 0.18, 0.32 and cg = 0.01, 0.1. These values are chosen because they lie
inside the 1-σ and 2-σ confidence interval levels (c.l.) allowed by the Monte Carlo
Makov Chain (MCMC) (as we will show in Fig. 4.15), and still provide large devia-
tions to the matter PS, reaching a maximum of 15% when compared to the ΛCDM
(g0 = 0) case, as explained below.

We varied the parameters (g0, cg) using CAMB to obtain various CMB TT power
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.

Figure 4.7: Contrast DE density perturbation with w0, wa parameters that yields a
freezing behaviour if n = 7.

Figure 4.8: Contrast DE density perturbation with different EoS parameters.
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Figure 4.9: Ratios of DE to DM rest-frame densities at redshift z = 0. We employ
an EoS with w0 = −1 and various anisotropic stress parameters (g0, cg).

spectra, as shown in Figs. 4.10-4.11 along with CMB Planck data [3]. Left panel of
Fig.4.10 has cg fixed and shows that positive g0 values enhance low-` anisotropies due
to the ISW, whereas negative values diminish them, except for very low multipoles,
where multipoles can go crossing the ΛCDM curve to overtake it. We also show the

Figure 4.10: CMB TT power spectra at low multipoles for different g0 (top panel,
fixed cg = 0.01) and cg values (bottom panel, fixed g0 = 1.0), for the w = −1 model.

ΛCDM best fit (black dashed line), labeled in the figure as g0 = 0, cg = 0. We note
in the right panel of Fig. 4.10 that setting g0 fixed, the effect of increasing cg is both
to decrease the low-` anisotropies and to shift their effect to smaller `-modes. These
plots exhibits that, as we expected, the anisotropic parameters are not affecting high
`-multipoles, where all the plotted curves coincide. For low-multipoles anisotropies,
one may try to adjust downwards the curve, however, the relevance of these data
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points lies in the cosmic variance. In fact, low multipoles, including the quadrupole,
turn out to be consistent with the ΛCDM model [83].

Figure 4.11: CMB TT power spectra at low multipoles for different cg and g0 values
and EoS w0 = −1. The best fit values are g0 = −0.0014, cg = 0.24, as shown in
Table 4.1.

Large scale anisotropic stress imprints an effect on the clustering of matter at
late times, as in the PS and growth function [23, 24, 29, 30, 31, 32, 33]. To see this,
we plot the PS in Fig. 4.12 for (g0, cg) parameter values such that cg is fixed and
g0 takes values between [−1, 1], in a similar way we did it in Fig. 4.10. The effects
over this matter statistic are clear: negative values of g0 tend to rise the PS for low
k-modes, and for large k we recover the ΛCDM model since g(k → 0)→ 0; positive
g0 values produce the opposite effect. Note that we have fixed the normalization
such that all models have the same primordial power spectrum amplitude As and
spectral index ns. For that reason all models coincide for modes kH � c−1

g , where g
becomes negligible.

Now, selecting some of the parameters of Fig. 4.11, we show in Fig. 4.13 again
the percentage departures with respect to the ΛCDM model: cg → 0 increases the
effect. These deviations in the PS amplitude can be large in the range of linear
perturbations, and in fact they will also contribute to the nonlinear PS [46].

We know, however, that deviations from the ΛCDM PS at scales∼ 0.01-0.1h/Mpc
could not be as large as in Fig. 4.12 or 4.13, since these would affect the BAO fea-
tures, and given the upcoming galaxy surveys such as DESI [17], the constraints will
tighten to uncertainties to be less than (or order of) 1%. Consequently, we explore
for deviations that are of the order of 1% and at most 15% (up to an overall normal-
ization) in Fig. 4.14, left and right panels, respectively. Note that the deviations from
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Figure 4.12: Matter PS produced by different g0 values with cg = 0.01 fixed. The
bottom panel shows the percent differences with respect to ΛCDM model. The
background model is w0 = −1 EoS.

Figure 4.13: Percent deviations on the PS relative to the ΛCDM case produced by
different cg values with fixed g0 = 1. The background model is w0 = −1 EoS.

ΛCDM reach their maximum around k ∼ 10−3 h/Mpc. At the scale k ∼ 0.01h/Mpc,
deviations are of 10% (left panel, models g0 = |0.32|, cg = 0.01) and of 0.66% (right
panel, models g0 = |0.022|, cg = 0.01) and at k ∼ 0.05h/Mpc of 4% (left panel) and
of 0.3% (right panel).

In both panels of Fig. 4.14, dashed lines are for cg = 0.1, solid lines for cg = 0.01
and color changes for different g0 as it is shown in the labels. Negative values of g
will increase the potentials wells, as can be seen from Eq. (3.46), and then the PS
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Figure 4.14: PS percentage deviation from ΛCDM. The anisotropic parameters (g0,
cg) considered are such that the maximum percentage deviation is of around 15%
(left panel) and of 1% (right panel), corresponding to 4.09% and to 0.28% at a scale
k = 0.05h/Mpc, respectively. We include the best fitted plot of our data set (see the
results table 4.1) corresponding to g0 = −0.0014, cg = 0.24 that produce a difference
of around 0.05% from ΛCDM model. These results are for the w0 = −1 EoS model.

increases as well. Increasing cg lowers the absolute value of the maxima (g0 < 0) or
mimina (g0 > 0), but this is a by-effect of the produced shift along k, that erases
shear fluctuations above kH ∼ c−1

g . Here we appreciate that deviations of at most
15% are possible if |g0| < 0.32. In the right panel, we find g0 values in the interval
|g0| ≤ 0.022 permit at most order 1% deviations from the ΛCDM model.

To find out what anisotropic parameter values are more realistic and preferred
by cosmological data we perform an MCMC sampling of the parameter space using
CosmoMC and the cosmological data set described at the beginning of this section.
The relevant best-fit values for the w = −1 model are in column I of Table 4.1.
For anisotropic parameters we obtain g0 = −0.0014+0.1530

−0.1504, c
2
g < 0.070 at 68% c.l.,

in agreement with the results of the vanilla ΛCDM cosmological parameters from
Planck [3]. The CMB TT power spectrum produced by these values is included
in Fig. 4.10 (cyan color) that is alike the ΛCDM model, meanwhile other models
vary only at low-multipoles, as already explained. Similarly, in the right panel of
Fig. 4.14, we include the PS of our best-fit to obtain deviations of around 0.05% at
k < 10−3h/Mpc from the no anisotropic stress case.

We finalize this subsection presenting the contour confidence region of the stress
parameters in Fig.4.15, and also the contour plots of the main cosmological param-
eters in Fig.4.16, confirming that the no-anisotropic case (g0 = 0) is allowed at 1-σ
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Figure 4.15: Contour confidence plots of the DE anisotropic parameters (g0, cg) at
68, 95 and 99% c.l. for the w = −1 and w0 = constant EoS models.

by CMB data. Nevertheless, the left panel of Fig. 4.14 shows that for anisotropic
parameter values that are inside the 2-σ best-fit values, they produce differences on
the PS of at least 15% with respect to ΛCDM. In this parameter range the CMB will
be well fitted and not changing significantly. It is then clear that the PS imposes
tighter constraints than the CMB on the anisotropic stress and hence is a potential
theory discriminator of different DE anisotropic stress models.

4.2.2 w = constant

In this section the expansion history is slightly different from ΛCDM, now we assume
w = w0 constant. Thus, density fluctuations are generated even if DE does not
possess anisotropic stress, showing that perturbations attenuate as w → −1 and
when cs → 1.

For this model, anisotropic stress parameters leave very similar imprints on the
CMB TT curve as those of the w = −1 model, see Fig. 4.10, so we omit to show
these results, and the same discussion about the parameters (g0, cg) prevails for this
EoS. The effects on the PS are shown in Fig.4.17, where the EoS reference value is
w0 = −1.023 in agreement with Planck’s results [3] and the values cg and g0 were
chosen so that they result in visible changes, with deviations from ΛCDM of order
of 10% or less. For these plots we obtain a maximum deviation of around 10% at
k ∼ 10−3h/Mpc, and of 3.4% at k = 0.05h/Mpc. All anisotropic stress values we
used to generate Fig. 4.17 are consistent with the Planck CMB TT measurements.

The relevant results of an MCMC fit are presented in column II of Table 4.1, and
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Figure 4.16: Contour confidence plots of the main cosmological parameters at 68, 95
and 99% c.l. for the w = −1 model.
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Table 4.1: Best-fit values and marginalized 0.68 confidence intervals for our cosmolog-
ical data set JLA, BAO, CMB TT and low-P. Column I corresponds to w = −1 EoS,
in column II the parameter w0 is a free constant, in column III the CPL parameteri-
zation with w0, wa as free parameters, in column IV the 7CPL parameterization with
no anisotropic stress, and in column V the 7CPL parameterization with anisotropic
stress.

I II III IV V

w = −1 w0 constant CPL 7 CPL no-stress 7 CPL

Ωbh
2 0.0224± 0.0002 0.0223± 0.0002 0.0222± 0.0002 0.0228± 0.0002 0.0223± 0.0002

Ωch2 0.1180± 0.0012 0.1191± 0.0016 0.1201± 0.0019 0.1190+0.0017
−0.0016 0.1193± 0.0016

τ 0.0855+0.0176
−0.0174 0.0802+0.0184

−0.018 0.0757+0.0189
−0.0188 0.0795+0.0185

−0.0182 0.0796+0.0183
−0.0186

logAs 3.101+0.035
−0.034 3.093± 0.036 3.086± 0.036 3.090± 0.036 3.092± 0.036

ns 0.970± 0.004 0.967± 0.005 0.965± 0.005 0.967± 0.005 0.967± 0.005

H0 68.26± 0.53 68.99± 1.01 68.83+1.02
−1.03 68.97+1.00

−1.04 68.97± 1.00

w0 −1.00 −1.046± 0.045 −0.962+0.099
−0.111 −1.040± 0.047 −1.040+0.046

−0.047

wa 0 0 −0.381+0.469
−0.352 < 0.882 < 0.873

g0 −0.0014+0.1530
−0.1504 −0.0014+0.1531

−0.1539 0.0004+0.1515
−0.1502 0 0.0001+0.1510

−0.1520

c2g < 0.070 0.109+0.052
−0.069 < 0.071 0 < 0.071
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Figure 4.17: PS percentage deviation with respect ΛCDM. In these plots w0 =
−1.023, and g0, cg are as the labels indicate; we include the best-fit curve from Table
4.1.

the contour plots that involve DE parameters are shown in Figs. 4.15 and 4.18. The
resulting parameter g0 is similar to the one produced by the w0 = −1 EoS, but c2

g

has some differences, since now the intervals at 68, 95 and 99% are a slightly bigger
and c2

g = 0 is excluded at 1-σ. As expected, the values w0 = −1, g0 = 0 are inside
the 68% contours, and c2

g = 0 at 2-σ, meaning that the results are in agreement with
the ΛCDM model.

Finally, we note that the value of cg reported in Table 4.1 is bigger than for
the other models. This motivated us to show in Fig. 4.18 the contour plots of the
anisotropic parameters with the EoS parameter to clarify any degeneracy among
them. We found essentially no degeneracy in w0 and go, and a small effect in w0

and cg, as also proved in their corresponding correlation matrices in a principal
component analysis. In Fig.4.19 there are shown the contour confidence plots of the
main cosmological parameters.

4.2.3 Thawing parametrization (CPL)

Now we consider the CPL EoS, providing a thawing behavior for wa < 0. CPL is
one of the most popular EoS for DE, and according to Planck 2015 results [3] in the
absence of DE anisotropic stress, the best fit values for the data set we are using are
w0 = −0.93+0.23

−0.22, wa = −0.41+0.87
−0.91 at 2-σ [84], that we will take as reference values.

We found similar effects due to the anisotropic parameters on the CMB TT power
spectrum for this EoS. We plot in Fig. 4.20 our results on deviations of the PS with
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Figure 4.18: Contour confidence plots at 68, 95 and 99% for the w0 =constant EoS,
corresponding to results in column II of Table 4.1.

respect to ΛCDM model, as in Fig. 4.14 (left panel) and Fig.4.17, yielding maximum
differences of around 10%; particularly, at k = 0.05h/Mpc the maximum deviation
is about 4%.

Finally, we performed an MCMC statistical analysis parametrizing wde as CPL.
The best-fit parameters and c.l. at 68% are presented in column III of Table 4.1,
and their corresponding contour plots for (g0, cg) in Fig. 4.21. The contour plot for
anisotropic stress parameters looks very similar to the one obtained with the EoS
w0 = −1; see Fig. 4.15, which indicates that the DE EoS and stress parameters are
quite independent, this also is evident from Fig.4.22 where are shown the contour
limits of the main cosmological parameters.

4.2.4 Freezing parametrization (7-CPL)

Finally we consider the n-CPL DE parametrization, Eq. (2.2) with n = 7 which
has a freezing behavior if w0 < 0 and wa > 0. To our knowledge, for this EoS
there are no reported best-fitted values for w0, wa. Then, we first estimate them
for the case of null anisotropic stress. The results are shown in column IV of Table
4.1 and the contour plot is presented in Fig.4.23 (yellow regions). For this EoS
the standard cosmological model is recovered (w0 = −1, wa = 0) at 68%. The w0

parameter is well restricted by late time observations, whereas wa is not sensitive to
these cosmological data set, its upper limit at 68% is 0.882 but it can take a wide
range of negative values. This is consistent with claims in the sense that fittings
suggest thawing [73, 74] and freezing models [75]; we find that both are allowed for
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Figure 4.19: Contour confidence plots of the main cosmological parameters at 68, 95
and 99% c.l. for the w = const model.
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Figure 4.20: Deviations on the PS, produced by CPL parameterization and DE
anisotropic stress. The parameters of DE EoS are w0 = −0.93, wa = −0.41, that are
the Planck’s reference values. We also include our best DE fitted parameters, shown
in column III of Table 4.1.

Figure 4.21: Contour confidence plots at 68, 95, and 99% of the parameters (g0, cg)
for models CPL and 7CPL.

this EoS. Variations on wa are not visible in the CMB TT, but deviations are present
in the amplitude of the matter PS. When varying wa from −1.1 to 0.8 the change in
the PS is of about 1% in linear scales and these tend to lower the power, the larger
(positive) wa values are. In this case, the effects in the PS occur in k between 10−4

and 10−3 h/Mpc; after k = 0.004h/Mpc the PS behaves as ΛCDM.
Now we introduce DE anisotropic stress as in the above subsections. The data fits
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Figure 4.22: Contour confidence plots of the main cosmological parameters at 68, 95
and 99% c.l. for the CPL parameterization.
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Figure 4.23: Contour confidence plots at 68, 95, and 99% for 7CPL EoS parameters
with and without DE anisotropic stress.

are shown in column V of Table 4.1, and their contour plots concerning to DE stress
parameters are in Fig. 4.21. The contour plot wa − w0 is shown in Fig. 4.23 (purple
regions) together with that of no-anisotropic stress. The similarity between both
cases shows that data from CMB and late time background evolution are agnostic
to the presence of the DE anisotropic stress.

In Fig.4.24 we include the best-fitted values of this model and others inside the
95% contour confidence plot to obtain deviations on the PS of around 10% with
respect ΛCDM.

The lesson from all these models is that they leave particular and potentially
detectable features in the PS, even when the parameter space for DE EoS and
anisotropic parameters are allowed by CMB and background probes. In general,
we found that the anisotropic stress provokes deviations smaller than 10% with
respect to the ΛCDM PS at k ∼ 0.01h/Mpc for the parameters in the range
−0.30 < g0 < 0.32, 0 ≤ c2

g < 0.01 and smaller than 5% for −0.15 < g0 < 0.16,
0 ≤ c2

g < 0.01.
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Figure 4.24: Deviations on the PS of around 10% caused by different anisotropic
stress values in the 7CPL parametrization, with freezing parameters w0 =
−1.04, wa = 0.2. We also include the best fitted shear parameters curve.
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Figure 4.25: Contour confidence plots of the main cosmological parameters at 68, 95
and 99% c.l. for the 7– CPL parameterization.
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The standard cosmological model assumes general relativity as the theory of grav-
ity, the geometry of the background is described by the FLRW metric and the matter
by perfect fluids. At this level the Friedmann equations allows to establish a the-
oretical equation for the Hubble constant that can be measured with a variety of
standard candles and rulers, all of them indicating that the universe is in an accel-
erated expansion epoch that is caused by an exotic matter component called dark
energy in the form of a cosmological constant. Furthermore, cosmological observa-
tions for which the equations of the background are not enough can be understood in
the framework of cosmological perturbation theory, this approach yields the Einstein
and Navier Stokes linear equations by perturbing the FLRW background, and, al-
lows us to confront the theoretical model with CMB anisotropies data. The standard
model of cosmology is a perturbed FLRW universe whose matter content is made of
radiation, baryons, cold dark matter and dark energy (as cosmological constant).

As the nature of DE is unknown it is possible to explore modifications of ΛCDM
promoting the cosmological constant as a fluid with time varying EoS and adding
also an anisotropic stress. The addition of the properties is easy to implement at
background level, where the only modification is made through the DE density and
pressure equations. However the study of perturbations can be difficult since in
the equations it is introduced a divergence at w0 = −1 that has to be avoided.
To implement the DE perturbations there are different frameworks some of them
equivalent to the MG scheme at linear order.

These DE and MG are degenerated at first order perturbation theory when DE
is provided with anisotropic stress [19, 20, 21, 22]. In general, DE perturbations
are smaller than DM ones, but still they may leave an imprint on the CMB and
clustering evolution. The role of anisotropic stress is to create (in the w = −1 EoS
model) or amplify/modify DE density perturbations; other effects were known to
happen due to changes in the DE EoS or in its sound speed [14, 16, 15]. Anisotropic
stress has an impact in the ISW effect [24, 23, 25, 26, 27, 28], that results similar for
the various EoS studied in this work. But given the level of uncertainties due to the
cosmic variance, CMB data alone will not shed light on such a component. However,
current and forthcoming galaxy surveys can delimit this possibility.

We studied the influence of anisotropic stress parameters using the PPF formalism
[25, 45] in which we employed an ansatz on the anisotropic stress function with
two parameters, one mainly controlling the amplitude (g0) and the other the scale
dependence (c2

g), such that for early times or small scales, k � aHc−1
g , the stress

vanishes. The best fitted parameters are shown in Table 4.1 for the different EoS
considered in this work. All models predict that anisotropic stress parameters are
consistent with ΛCDM model up to error bars. However, the possibility of nontrivial
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anisotropic stress is open. Independent of the EoS parametrization, positive g0 values
make the perturbations to increase, the CMB TT low multipoles also increase, but
the PS decreases with respect to the ΛCDM PS (negative g0 values do the opposite).
Further, we found that the parameters of the anisotropic stress and the EoS are not
degenerated.

For the w = −1 model, CMB analysis allows any pair of values over the intervals
−1 ≤ g0 ≤ 1, 0.01 ≤ cg ≤ 1, but these are wide enough to produce large effects
in the PS. In fact, parameters in the range 0.5 ≤ |g0| ≤ 1, 0.01 ≤ cg ≤ 1 reach
differences with respect to ΛCDM of up to 30%, which are too big to be acceptable.
The maximum percentage difference is driven by the g0 value. In order for the
anisotropic stress not to provoke deviations, with respect to ΛCDM, larger than 15%
in the PS, the g0 parameter has to be in the range |g0| ≤ 0.32 and for deviations
of up 1% the parameter should be in the range |g0| ≤ 0.022. For the rest of the
models considered in this work, wCDM, CPL, and 7CPL, the deviations are similar
in the parameter ranges just mentioned. In general for all models, we found that in
order for the anisotropic stress not to provoke deviations larger than 10% and 5%
with respect to the ΛCDM PS at k ∼ 0.01h/Mpc, the parameters have to be in the
range −0.30 < g0 < 0.32, 0 ≤ c2

g < 0.01 and −0.15 < g0 < 0.16, 0 ≤ c2
g < 0.01,

respectively.
Since one expects that present and future galaxy surveys will have uncertain-

ties in the determination of the PS of one-percentage levels, they could delimit the
anisotropic stress stemming from DE, or equivalently from MG, to shed light on the
nature of one of most mysterious components of the Universe.
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