

FACULTAD DE INGENIERÍA CIVIL

"TRABAJOS DE RECONSTRUCCION MEDIANTE RECUPERACION DEL PAVIMENTO, AMPLIACION DEL ACOTAMIENTO, OBRAS DE DRENAJE Y SEÑALAMIENTOS, DEL KM 41+000 AL KM 47+000 DE LA CARRETERA ACAMBARO- MORELIA

MORELIA, MICHOACÁN, ABRIL DE 2008

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

A mis padres: Por sus consejos y apoyo durante toda mi educación, quienes con su guía y principios me brindaron la oportunidad de lograr esta carrera profesional.

> A mi padre # quien con su guía y convicción me marco la línea de valores a seguir, para ser una persona de bien siempre al servicio de quien lo necesite.

A mis hermanos, por su constante ejemplo de unión y apoyo como familia, en los momentos de tristeza, alegrías y dificultades a lo largo de mi vida.

A Rocío, mí Esposa, por su paciencia y apoyo constante a lo largo de nuestra vida, a quien le agradezco los hijos que me ha dado.

A mis hijos, Sergio, Katia y Eduardo, porque son el motivo que me mantiene a seguir adelante en la superación personal y constante, para transmitirles los valores y principios que mis padres me han heredado.

Para todos ellos con cariño y respeto para siempre

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Con especial aprecio, respeto y admiración, Por su guía y apoyo incondicional, Al C. Ing. Salvador Hernández Guzmán, Asesor de mi tesis.

A mis profesores, que con su paciencia y dedicación nos transmiten día a día los conocimientos necesarios como base fundamental para el desarrollo de nuestras vidas

A la Universidad Michoacana de San Nicolás de Hidalgo, Nuestra Casa de Estudios, por ser el lugar de reunión y enseñanza, que nos albergo a lo largo de nuestros estudios profesionales

> A la Facultad de Ingeniería Civil, pilar fundamental de nuestros Conocimientos y desarrollo profesional

FACULTAD DE INGENIERIA CIVIL

INDICE

GENERALIDADES

- 1.- ESTUDIOS PREVIOS
- 2.- DISEÑO DE PAVIMENTO
- 3.- PROCESO CONSTRUCTIVO
- 4.- OBRAS DE DRENAJE
- 5.- SEÑALAMIENTOS
- 6.- CONTROL DE CALIDAD

CONCLUSIONES

FACULTAD DE INGENIERIA CIVIL

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

GENERALIDADES

La ingeniería automotriz en la actualidad a sufrido un desarrollo técnico acelerado manifestándose en la construcción de vehículos capaces de transportar grandes cargas a altas velocidades, por lo anterior a la ingeniería de vías terrestres se le presenta el reto de construir estructuras que soporten las condiciones exigidas por el medio automotriz. Este reto lo asume la ingeniería de caminos de una manera racional aprovechando al máximo las estructuras ya existentes.

Para alcanzar la meta satisfactoria en las vías de comunicación, el especialista en vías terrestres, debe tener como objetivos principales: concebir, proyectar, construir, operar, mantener, modificar y demoler en su caso.

Para lograr lo anterior es necesario realizar una serie de estudios previos que nos permitan conocer las características generales del estado de camino así como de la zona o región donde se desarrollará la obra.

- 1.- Estudio Geotécnico
- 2.- Estudios Hidrológicos
- 3.- Estudios Geométricos
- 4.- Estudios Topográficos
- 5.- Estudios de Tránsito

El objetivo principal de estos estudios, es el de determinar las condiciones actuales de las terracerías y pavimento (Calidad de la estructura actual del pavimento) y conocer las causas que han originado el deterioro del pavimento del tramo carretero ubicado entre el Km. 41+000 y el Km. 47+000, que corresponde al subtramo comprendido entre la población denominada Tzintzimeo y el entronque con el acceso al Aeropuerto Internacional de la ciudad de Morelia Mich., en la carretera Acámbaro – Morelia; y en base a dichos conocimientos proponer los refuerzos en las terracerías que hagan de este tramo una carretera funcional al número y tipo de vehículos que transitarán en la misma con una velocidad que la ingeniería automotriz requiere dando seguridad a los usuarios de esta..

Obvio que esta obra deberá cumplir la calidad especificada por los proyectistas,. y asegurada por los constructores encargados de ejecutar la obra, apoyando sus criterios en las Normas y Especificaciones de la S.C.T

Para nuestro caso particular tendremos la ejecución de la obra:

"RECONSTRUCCION MEDIANTE RECUPERACION DEL PAVIMENTO, AMPLIACION DE ACOTAMIENTOS, OBRAS DE DRENAJE Y SEÑALAMIENTOS DEL KM 41+000 AL 47+000 DE LA CARRETERA ACAMBARO -MORELIA"

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Para efecto de tener una comparativa del camino actual y el del proyecto se presenta el siguiente cuadro:

CAMINO ACTUAL

CONCEPTO	CARACTERÍSTICA GEOMÉTRICA Y ESTRUCTURALES
ANCHO DE CORONA	7 MTS
ESTRUCTURA	CARPETA ASFALTICAVARIABLE
	BASE HIDRÁULICA 15 CMS
	SUB – BASE 20 CMS

CAMINO REHABILITADO

CONCEPTO	CARACTERÍSTICA GEOMÉTRICA Y ESTRUCTURALES				
ANCHO DE CORONA	7.2 MTS				
ESTRUCTURA	CARPETA ASFÁLTICA 5 CMS (CONCRETO ASFÁLTICO MODIFICADO)				
	BASE ESTABILIZADA A 30CMS * B 35 CMS				

^{*} Caso especial donde la rasante no puede ser modificada, manteniéndola a nivel de la rasante original (Entronque Ferroviario)

Los trabajos de rehabilitación de la obra generan la siguiente volumetría:

CARPETA ASFÁLTICA (CONCRETO ASFÁLTICO MODIFICADO)

0.05 x 1.30 x 7.20 x 6000 = 2,808.00 m3 Sueltos

BASE ESTABILIZADA

0.30 x 1.31 x 8.20 x 6000 = 19,335.60 m3 sueltos

La ubicación de la obra se presenta a continuación

FACULTAD DE INGENIERIA CIVIL

ANEXO 1

LOCALIZACION DEL SITIO DE LA OBRA

FACULTAD DE INGENIERIA CIVIL

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Capitulo 1 Estudios Previos

Para la ejecución de cualquier obra, es necesario contemplar la mayor cantidad información necesaria posible respecto al estado y las condiciones que presenta la zona donde se realizarán los trabajos, ya sean estos de ejecución de obra nueva o reconstrucción de una obra existente.

En nuestro caso particular de reconstrucción mediante la recuperación de pavimento de la carretera Acámbaro - Morelia con una longitud de 6 km. Se presenta la necesidad de considerar los siguientes estudios:.

:

- 1.-Estudio Geotécnico
- 2.-Estudio Hidrológico
- 3.- Estudio Geométrico
- 4.-Estudio Topográfico
- 5.-Estudio de Tránsito

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

1.1.-Estudio Geoténico

El tramo en estudio va de la Población de Tzintzimeo al Entronque con el acceso al Aeropuerto Internacional de Morelia, del km 41+000 al 47+000 de la parte norte este del Estado)

El camino se clasifica como tipo "B" de dos carriles con un ancho de 7.0 m, se ubica en una zona topográficamente plana, por lo que los alineamientos horizontales y verticales no representan problemas, ya que la mayoría del tramo se desarrolla en tangente.

Con la finalidad de implementar la estrategia más adecuada para la realización del estudio geotécnico se propone aplicar la siguiente metodología:

TRABAJOS DE CAMPO

VISITA DEL SITIO

EXPLORACION DE LA ESTRUCTURA DEL PAVIMENTO EXISTENTE:

MUESTREO

LOCALIZACION DE BANCOS DE MATERIALES Y RECUPEACION DE MUESTRAS INFORMACION DE LA DEFORMACION ACTUAL DEL PAVIMENTO EXISTENTE

TRABAJOS DE LABORATORIO

DETERMINACION DE LA CALIDAD DE LOS MATERIALES RECUPERADOS DE LA ESTRUCTURA DEL PAVIMENTO ACTUAL Y DE LOS BANCOS DE MATERIALES

TRABAJOS DE GABINETE

DETERMINAR LAS CONDICIONES FISICO MECANICAS DE LA ESTRUCTURA DEL PAIMENTO ACTUAL

PROPONER ALTENATIVAS DE SOLUCION A LA ESTRUCTRA DEL PAVIMENTO ACTUAL

En el caso particular todos y cada uno de los trabajos de exploración, tanto de los materiales del terreno natural como la estructura del pavimento y de los bancos de materiales más cercanos al mismo, se programó en primera instancia una visita al sitio, por personal técnico especializado en geotecnia.

Por tratarse de un camino en operación, de dos carriles; se programó la realización de 12 (doce) sondeos de tipo Pozo a Cielo Abierto (PCA), de los cuales 6 (seis) fueron calas para su clasificación y los otros 6 (seis) para verificar la calidad de los materiales a fondo, estos se realizaron a su vez en la estructura del pavimento existente; tratando de ubicarlos de forma estratégica, para minimizar las molestias a los usuarios y además obtener la información representativa de aproximadamente 500 m, para cada uno; y así obtener los datos requeridos de todas las capas de los materiales que conforman la estructura del pavimento actual (Estratigrafía y Calidad).

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Los perfiles de cada uno de los pozos se pueden apreciar con detalle en el ANEXO 2 (perfiles estratigráficos).

De forma simultánea a la apertura de los sondeos, se realizó la toma de muestras alteradas representativas de cada una de las capas encontradas, para su posterior ensaye en el laboratorio.

Como acción paralela se realizó la localización y muestreo de los bancos de materiales **Anexo No.3**, (Bancos de Materiales) que serán propuestos en la reconstrucción de las capas de terracerías y pavimento actual teniendo presente emplear aquellos bancos que se localicen a la menor distancia posible de la obra, y que además reúnen los requisitos de calidad que establece la SCT para cada caso; esto de acuerdo con lo estipulado en los términos de referencia de la presente licitación.

Respecto a la información relacionada a la deformación de las capas del pavimento actual se recurrió a la medición en sitio de estas mediante el método de la Viga Benkelman cuyo resultado se presenta en el **Anexo No.4**

Una vez obtenidas las muestras de los materiales descritas en lo relacionado a los trabajos de campo, se etiquetaron y protegieron para su traslado al laboratorio, en donde se les realizaron las pruebas de calidad que indican las normas de la SCT para cada uso propuesto, que se describen a continuación:

- Preparación de la muestra
- Peso Volumétrico Seco Suelto
- Peso Volumétrico Seco Máximo
- Humedad óptima
- Granulometría por mallas
- Límite Líguido
- Índice Plástico
- VRS Estándar saturado
- Expansión
- Equivalente de Arena (únicamente a la base)
- Absorción
- Densidad
- Clasificación SUCS (SCT)

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Presentándose los reportes respectivos en el **Anexo No.5** (Calidad de Materiales que Conforman la Estructura del Pavimento Actual)

De los resultados obtenidos en campo y laboratorio se puede concluir lo siguiente:

El terreno natural esta constituido por suelos que se clasifican como limos de alta plasticidad (MH), con VRS estándar saturado de 3.1% a 6.6%, Límite Líquido de 68% a 77%, índice plástico de 22% a 37%, materiales, que no cumplen con los parámetros estipulados con las Normas de calidad de los materiales, de la SCT. Vigentes, ni para capas de terraplén y muy susceptibles a los cambios de humedad dando origen a fuertes deformaciones cuando esta excede el límite liquido Por lo que respecta a los materiales de la estructura del camino existente, se puede concluir lo siguiente:

La carpeta de concreto asfáltico presenta un contenido de C. A. entre 6.6 y 13.3%, con granulometría fuera de la zona especificada por las Normas de la SCT vigentes; debido sin duda al intenso bacheo que presenta.

La base hidráulica está constituida por materiales de tipo gravas limosas (GM) y en la mayoría por arenas limosas (SM), con VRS estándar saturado de 95.0% a 97%, Equivalente de Arena de 23 a 29%, Límite Líquido de 22.8% a 25.5%, e índice plástico inapreciable, materiales que no cumple con los parámetros de calidad estipulados por las Normas de la SCT.

La capa subrasante está conformada por suelos que se clasifican en la mayor parte como arenas limosas (SM), y gravas limosas (GM), con VRS estándar saturado de 74.0% a 97.6%, Límite Líquido de 20.8% a 30%, e índice plástico inapreciable, materiales que cumplen con los parámetros de calidad para capa subyacente y subrasante, de acuerdo con las Normativa de la SCT vigente.

La capa de Terraplén está conformada por suelos que se clasifican como arenas limosas (SM), con VRS estándar saturado de 62.5% a 65.7%, limite liquido de 23.5% a 33.5%, e índice plástico inapreciable, materiales que cumplen con los parámetros de calidad para capa subyacente y subrasante, de acuerdo con las Normativa de la SCT vigente.

Después de analizar los resultados de laboratorio y estudiar la información recabada se deduce que la falla estructural del camino se originó por las siguientes causas:

El efecto del tránsito pesado, es decir la estructura del pavimento presenta espesores y calidades inferiores a los requeridos para las cargas que circulan actualmente

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

La superficie de rodamiento, por los daños que presenta, no es completamente impermeable dando pie a la filtración del agua hacia las capas de la estructura, provocando que la capacidad portante de la base disminuya sustancialmente, dando origen a deformaciones plásticas.

Además, se tienen condiciones de acumulación de agua en zonas aledañas al camino por tiempos prolongados debido a que la pendiente del terreno natural es muy escasa haciendo lento el desalojo del agua de lluvia lo que provoca las condiciones de humedad más desfavorables para este material que al disminuir su resistencia permite deformaciones que se suman a los problemas antes descritos.

La solución a dicho problema es sin duda la reestructuración del pavimento actual, llevando los trabajos hasta la protección de las terracerías. Proponiéndose para ello las alternativas que se presentan en el **Anexo No.6** (Alternativa). Mismas que fueron apoyadas con los cálculos generados en el capítulo 2 (DISEÑO DE PAVIMENTO) y apego a las normas y especificaciones particulares conforme a las disposiciones de control de calidad, construcción y supervisión de la SCT vigentes

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

DESCRIPCION ESTRATIGRAFICA DE SONDEOS A CIELO ABIERTO ESTUDIO Y PROYECTO EJECUTIVO PARA LA RECONSTRUCCIÓN PROYECTO: ENSAYES No 07-ago-06 CAMINO: ACAMBARO - MORELIA FECHA DE INICIO: TZINTZIMEO - T. AEROPUERTO TRAMO: FECHA DE INFORME: 21-ago-06 KM 41+000 AL 47+000 SUBTRAMO: 190.0 P.C.A. - 1 PROFUNDIDAD DEL SONDEO CM. P.C.A. No.: UBICACIÓN KM. LADO: 41+300, LADO DERECHO ESTE ANCHO DE CORONA: REFERENCIA: 292.896 NORTE 2,198,281 ELEV. 1.839 COLUMNA ESTRATIGRAFICA CLASIFICACION CAPA DETECTADA Y DESCRIPCION CARPETA CTO. ASFALTICO 0.05 0.05 MEZCLA EN CARPETA 0.06 0.11 GRAVA LIMOSA 0.07 BASE HIDRAULICA COLOR CAFÉ 0.18 ARENA LIMOSA CON GRAVAS 0.19 SUBRASANTE COLOR ROJIZO 0.37 ARENA LIMOSA 0.23 TERRAPLEN COLOR CAFÉ CLARO 0.60 LIMO DE ALTA TERRENO NATURAL 1.30 PLASTICIDAD COLOR NEGRO 1.90 SIMBOLOGIA CAPA VEGETAL ARENA TERRAPLEN CARPETA ASFALTICA GRAVA-ARENA BASE HIDRAULICA GRAVA ARCILLA SUBRASANTE ROCA LIMO OBSERVACIONES Y RECOMENDACIONES: LABORATORISTA JEFE DE LABORATORIO Vo.Bo. ING. J. DE JESÚS DE LA CRUZ RODRÍGUEZ. ING. SERGIO MONTOYA ESPINOZA ING. MANUEL DE J. AGUILAR JIMÉNEZ

PROYECTO:	ESTUDIO Y PROYECTO EJECUTIV	O PARA LA RE	CONSTRUCCIÓN			ENSAYES No		2
CAMINO:	ACAMBARO - MORELIA					FECHA DE INICIO:		07-ago-06
TRAMO: SUBTRAMO:	TZINTZIMEO - T. AEROPUEF KM 41+000 AL 47+000	110				FECHA DE INFOR	ME:	21-ago-06
00011011101								
P.C.A. No.:	P.C.A 2					PROFUNDIDAD DEL SC	NDEO CM.	205.0
UBICACIÓN KM. L	ADO: 41+950, LADO IZQUII	RDO						
ANCHO DE CORO	DNA:					REFERENCIA:	ESTE	292,325
							NORTE	2,198,189
							ELEV.	1,836
COLUMI ESTRATIGR			PROFUN		CAPA DETECTADA	CLASIFICACION Y DESCRIPCION		
		0.10	0.10	[CARPETA	CTO. ASFALTICO		
		0.20	0.30		BASE HIDRAULICA	GRAVA LIMOSA COLOR CAFÉ OSCURO (TEZONTLE NEGRO)		
		0.15	0.45		SUBRASANTE	ARENA LIMOSA CON GRAVAS COLOR ROJIZO (TEZONTLE ROJO)		
		0.60	1.05		TERRAPLEN	ARENA LIMOSA COLOR CAFÉ CLARO		
		1.00	2.05		TERRENO NATURAL	LIMO DE ALTA PLASTICIDAD COLOR NEGRO		
	SIMB	OLOGIA						
	TERRAPLEN		[]]]]]]]]]]]	APA V	-GETAI	CARPETA ASFALTICA)	
	GRAVA-ARENA			RENA	LOCIAL	BASE HIDRAULICA		
	ARCILLA		G			SUBRASANTE		
	LIMO		ZZZZZ R			1		
NOTA:								
OBSERVACIONES	S Y RECOMENDACIONES:							
	LABORATORISTA		JE	FE DE	LABORATORIO	Υ	Vo.Bo.	
ING. MAN	UEL DE J. AGUILAR JIMÉNEZ		ING. J. DE J	IESÚS	DE LA CRUZ RODRÍGUE	Z ING. SERG	SIO MONTOYA ESP	INOZA

PROYECTO: 3 ESTUDIO Y PROYECTO EJECUTIVO PARA LA RECONSTRUCCIÓN ENSAYES No CAMINO: ACAMBARO - MORELIA FECHA DE INICIO: 07-ago-06 TRAMO: TZINTZIMEO - T. AEROPUERTO 21-ago-06 FECHA DE INFORME: KM 41+000 AL 47+000 SUBTRAMO: P.C.A. No.: P.C.A. - 3 PROFUNDIDAD DEL SONDEO CM. 175.0 UBICACIÓN KM. LADO: 42+400, LADO DERECHO ANCHO DE CORONA: 291,867 ESTE NORTE 2,197,861 ELEV. 1.837 COLUMNA CLASIFICACION Y CAPA DETECTADA ESTRATIGRAFICA DESCRIPCION 0.05 CARPETA CTO. ASFALTICO 0.05 0.09 0.14 CARPETA MEZCLA EN FRIO ARENA LIMOSA CON GRAVAS 0.18 BASE HIDRAULICA CAFÉ OSCURO 0.32 ARENA LIMOSA 0.10 SUBRASANTE COLOR ROJIZO 0.42 TEZONTLE ROJO ARENA LIMOSA COLOR CAFÉ 0.33 TERRAPLEN CLARO 0.75 LIMO DE ALTA PLASTICIDAD 1.00 TERRENO NATURAL COLOR NEGRO 1.75 SIMBOLOGIA CAPA VEGETAL ARENA TERRAPLEN GRAVA-ARENA GRAVA ARCILLA ROCA LIMO BSERVACIONES Y RECOMENDACIONES: LABORATORISTA JEFE DE LABORATORIO Vo.Bo. ING. MANUEL DE J. AGUILAR JIMÉNEZ ING. J. DE JESÚS DE LA CRUZ RODRÍGUEZ ING. SERGIO MONTOYA ESPINOZA

DESCRIPCION ESTRATIGRAFICA DE SONDEOS A CIELO ABIERTO

ROYECTO:	ESTUDIO Y PROYECTO EJECUTIV		ENSAYES No		4 07-ago-06			
MINO: AMO:	ACAMBARO - MORELIA TZINTZIMEO - T. AEROPUER)TO				FECHA DE INICIO: FECHA DE INFORME:		21-ago-06
JBTRAMO:	KM 41+000 AL 47+000					FECHA DE INFOR	WE	21-ag0-00
C.A. No.:	P.C.A 4					PROFUNDIDAD DEL SO	ONDEO CM.	205.0
	O: 42+800, LADO IZQUI	ERDO					_	Г
ICHO DE CORONA	λ:					REFERENCIA:	ESTE	291,595
							NORTE	2,197,659
							ELEV.	1,837
COLUMNA ESTRATIGRAFI			PROFUN		CAPA DETECTADA	CLASIFICACION Y DESCRIPCION		
	R.S.	0.11	0.11		CARPETA	CTO. ASFALTICO	٦	
		0.22	0.33		BASE HIDRAULICA	ARENA LIMOSA CON GRAVAS CAFÉ OSCURO (TEZONTLE NEGRO)		
		0.11	0.44		SUBRASANTE	ARENA LIMOSA CON GRAVAS COLOR ROJIZO (TEZONTLE ROJO)		
		0.30	0.74		TERRAPLEN	ARENA LIMOSA COLOR CAFÉ CLARO		
		1.10	1.84		TERRENO NATURAL	LIMO DE ALTA PLASTICIDAD COLOR NEGRO		
	SIMB	OLOGIA						
	TERRAPLEN	0200111	B0000000	CAPA V	/EGETAL	CARPETA ASFALTICA		
	GRAVA-ARENA			ARENA		BASE HIDRAULICA		
	ARCILLA		3755555			SUBRASANTE		
	LIMO		333333	ROCA				
NOTA:	R.S.= RIEGO DE SEL	LO						
BSERVACIONES Y	RECOMENDACIONES:							
	LABORATORISTA				ABORATORIO	Υ	Vo.Bo.	

ROYECTO: AMINO: RAMO: UBTRAMO:	ESTUDIO Y PROYECTO EJECUT ACAMBARO - MORELIA TZINTZIMEO - T. AEROPUE KM 41+000 AL 47+000		CIÓN		ENSAYES NO FECHA DE INICIO FECHA DE INFOR		5 07-ago-06 21-ago-06
.C.A. No.:	P.C.A 5				PROFUNDIDAD DEL S	ONDEO CM.	208.0
BICACIÓN KM. LADO	O: 43+300, LADO DER	ЕСНО					l
NCHO DE CORONA	:				REFERENCIA:	NORTE ELEV.	291,132 2,197,314 1,837
COLUMNA ESTRATIGRAFIO	CA	PROFUN		CAPA DETECTADA	CLASIFICACION Y DESCRIPCION		
		0.06 0.06	=	CARPETA	CTO. ASFALTICO	Ŧ	
		0.08 0.14		CARPETA	MEZCLA EN FRIO		
		0.14		BASE HIDRAULICA	ARENA LIMOSA CON GRAVAS CAFÉ OSCURO (TEZONTLE NEGRO)	1	
	• • • • • • • • • • • • • • • • • • •	0.12		SUBRASANTE	ARENA LIMOSA COLOR ROJIZO (TEZONTLE ROJO)		
		0.48		TERRAPLEN	ARENA LIMOSA COLOR CAFÉ CLARO		
		1.20		TERRENO NATURAL	LIMO DE ALTA PLASTICIDAD COLOR NEGRO		
	0.144	2010014					
	TERRAPLEN	BOLOGIA	CAPA V	ÆGETAL	CARPETA ASFALTICA		
	GRAVA-ARENA		ARENA	1	BASE HIDRAULICA		
	ARCILLA	20002200	GRAVA	1	SUBRASANTE		
	LIMO	2222222	ROCA			J	
NOTA:							
BSERVACIONES Y F	RECOMENDACIONES:						
LABO	ORATORISTA	JEFE DE LA	BORATOR	210	Vo.Bo.		$\overline{}$
	. DE J. AGUILAR JIMÉNEZ	ING. J. DE JESÚS I		.	ING. SERGIO MONTOYA E		

	3200	21 02011 2011		CA DE SONDEOS A	CILLO ADILICIO		
ROYECTO: AMINO: RAMO: JBTRAMO:	ESTUDIO Y PROYECTO EJECUT ACAMBARO - MORELIA TZINTZIMEO - T. AEROPUE KM 41+000 AL 47+000		FRUCCIÓN		ENSAYES NO FECHA DE INICIO: FECHA DE INFORM	_	6 07-ago-06 21-ago-06
C.A. No.:	P.C.A 6				PROFUNDIDAD DEL SO	NDEO CM.	203.0
BICACIÓN KM. LAD	O: 43+800, LADO IZQU	JIERDO					
NCHO DE CORONA	A:				REFERENCIA:	ESTE	290,693
						NORTE	2,196,986
						ELEV.	1,837
COLUMNA ESTRATIGRAFI		PROFUN		CAPA DETECTADA	CLASIFICACION Y DESCRIPCION		
	RENIVELACIÓN	0.11	0.11	CARPETA	CTO. ASFALTICO	- 1	
		0.20	0.31	BASE HIDRAULICA	ARENA LIMOSA CON GRAVAS CAFÉ OSCURO (TEZONTLE NEGRO)		
	• • • • •	0.12	0.43	SUBRASANTE	ARENA LIMOSA CON GRAVAS COLOR ROJIZO (TEZONTLE ROJO)		
		0.40	0.83	TERRAPLEN	ARENA LIMOSA COLOR CAFÉ CLARO		
		1.20	2.03	TERRENO NATURAL	LIMO DE ALTA PLASTICIDAD COLOR NEGRO		
	SIM	BOLOGIA				_	
	TERRAPLEN	0000000	CAPA \	/EGETAL	CARPETA ASFALTICA		
	GRAVA-ARENA	202000000	ARENA	i	BASE HIDRAULICA		
	ARCILLA		GRAVA	i	SUBRASANTE		
	LIMO	235525	ROCA	•)	
NOTA:						,	
RSERVACIONES V	SE TIENE UNA CAPA DE R RECOMENDACIONES:	ENIVELACIÓN					$\overline{}$
SOLITA OIONES I	NESSMENDAGIONES.						
LAB	ORATORISTA	JEFE DI	E LABORATOR	no Y	Vo.Bo.		
ING. MANUEL	L DE J. AGUILAR JIMÉNEZ	ING. J. DE JES	ÚS DE LA CRU	JZ RODRÍGUEZ.	ING. SERGIO MONTOYA ES	SPINOZA	J

ROYECTO:	ESTUDIO T PROTECTO EJECUTI	VO PARA LA RECONSTRUCCIÓ	N	ENSAYES No	7
AMINO:	ACAMBARO - MORELIA			FECHA DE INICIO:	07-ago-0
RAMO:	TZINTZIMEO - T. AEROPUE	RTO	FECHA DE INFORME	E: 21-ago-06	
UBTRAMO: <u>I</u>	KM 41+000 AL 47+000				
.C.A. No.:	P.C.A 7			PROFUNDIDAD DEL SON	NDEO CM. 205.0
BICACIÓN KM. LADO:	44+300, LADO DERE	ЕСНО			I
NCHO DE CORONA:				REFERENCIA:	ESTE 290,341
-				Ī	NORTE 2,196,727
					ELEV. 1,839
COLUMNA ESTRATIGRAFICA	A	PROFUN	CAPA DETECTADA	CLASIFICACION Y DESCRIPCION	
ı	R.S.	0.08 0.08	CARPETA	MEZCLA EN FRIO	
ł	2222	0.08 0.08	CARPETA	ARENA LIMOSA CON	
		0.12	BASE HIDRAULICA	GRAVAS CAFÉ OSCURO (TEZONTLE NEGRO)	
		0.20	SUBRASANTE	ARENA LIMOSA CON GRAVAS COLOR ROJIZO (TEZONTLE ROJO)	
6 5 9		0.45	TERRAPLEN	ARENA LIMOSA COLOR CAFÉ CLARO	
		1.20	TERRENO NATURAL	LIMO DE ALTA PLASTICIDAD COLOR NEGRO	
	1				
		BOLOGIA			
	TERRAPLEN		CAPA VEGETAL	CARPETA ASFALTICA	
	GRAVA-ARENA	Management Control	ARENA	BASE HIDRAULICA	
	ARCILLA	(2)	GRAVA	SUBRASANTE	
	LIMO	1357,2359	ROCA)	
NOTA:	R.S.= RIEGO DE SELLO			-	
BSERVACIONES Y RE					
	NATORISTA	JEFE DE LABOI	PATORIO	Vo.Bo.	

	DESCI	RIPCION ESTR	ATIGRAFI	CA DE SONDEO	S A CIELO ABIERTO		
PROYECTO:	ESTUDIO Y PROYECTO EJECUT	IVO PARA LA RECONST	RUCCIÓN		ENSAYES No		8
CAMINO:	ACAMBARO - MORELIA				FECHA DE INICIO:	_	07-ago-06
TRAMO:	TZINTZIMEO - T. AEROPUE	ERTO			FECHA DE INFOR		21-ago-06
SUBTRAMO:	KM 41+000 AL 47+000					_	
P.C.A. No.:	P.C.A 8				PROFUNDIDAD DEL SO	ONDEO CM.	203.0
UBICACIÓN KM. LADO	: 44+700, LADO IZQU	JIERDO					
ANCHO DE CORONA:	:				REFERENCIA:	ESTE	290,057
						NORTE	2,196,515
						ELEV.	1,838
COLUMNA ESTRATIGRAFIO	CA	PROFUN		CAPA DETECTADA	CLASIFICACION Y DESCRIPCION		
		0.14	0.14	CARPETA	CTO. ASFÁLTICO		
		0.12	0.26	BASE HIDRAULICA	ARENA LIMOSA CON		
		0.27	0.53	SUBRASANTE	ARENA LIMOSA CON GRAVAS COLOR ROJIZO (TEZONTLE ROJO)		
	00000000	0.30	0.83	TERRAPLEN	ARENA LIMOSA COLOR CAFÉ CLARO		
		1.20	2.03	TERRENO NATURA	LIMO DE ALTA L PLASTICIDAD COLOR NEGRO		
	P00000					_	
	TERRAPLEN	BOLOGIA	CARAV	ÆGETAL	CARPETA ASFALTICA		
	GRAVA-ARENA	2072030203777	ARENA	:	BASE HIDRAULICA		
	ARCILLA	1505 1500	GRAVA	:	SUBRASANTE		
	LIMO	******	ROCA	'			
NOTA:						,	
	EXISTE SOBRECARPETA						_
OBSERVACIONES Y F	RECOMENDACIONES:						
LABO	RATORISTA	JEFE DE	LABORATOR	10	Vo.Bo.		
ING. MANUEL	DE J. AGUILAR JIMÉNEZ	ING. J. DE JES	ÚS DE LA CRU	IZ RODRÍGUEZ.	ING. SERGIO MONTOYA E	SPINOZA	

	DESCI	RIPCION EST	RATIGR	AFICA DE	SONDEOS A	CIELO ABIERTO		
PROYECTO: CAMINO: TRAMO: SUBTRAMO:	ESTUDIO Y PROYECTO EJECU ACAMBARO - MORELIA TZINTZIMEO - T. AEROPU KM 41+000 AL 47+000		ISTRUCCIÓN			ENSAYES NO FECHA DE INICIO: FECHA DE INFORI		9 07-ago-06 21-ago-06
P.C.A. No.: UBICACIÓN KM. LADO		RECHO				PROFUNDIDAD DEL SO		209.0
ANCHO DE CORONA:						REFERENCIA:	NORTE ELEV.	289,587 2,196,167 1,838
COLUMNA ESTRATIGRAFIO	CA R.S.	PROFUN		CAF	A DETECTADA	CLASIFICACION Y DESCRIPCION		
	R.S.	0.06	0.06		CARPETA	CTO. ASFALTICO	7	
		0.06	0.12		CARPETA	CTO. ASFALTICO]	
		0.16	0.28	BAS	SE HIDRAULICA	ARENA LIMOSA CON GRAVAS CAFÉ OSCURO (TEZONTLE NEGRO)		
		0.21	0.49	s	UBRASANTE	ARENA LIMOSA COLOR ROJIZO (TEZONTLE ROJO)		
	000000000 000000000 000000000 00000000	0.60	1.09	٦	ΓERRAPLEN	ARENA LIMOSA COLOR CAFÉ CLARO		
		1.00	2.09	TERI	RENO NATURAL	LIMO DE ALTA PLASTICIDAD COLOR NEGRO		
	SIM	IBOLOGIA					_	
	TERRAPLEN			APA VEGETAL	ļ	CARPETA ASFALTICA		
	GRAVA-ARENA	recessories		RENA	ļ	BASE HIDRAULICA		
	ARCILLA LIMO	555555 8888888		RAVA ROCA	ı	SUBRASANTE		
ı	Eimo	0.33.33.33					/	
NOTA:	R.S. = RIEGO DE SELLO							
OBSERVACIONES Y F								
LABOI	RATORISTA	JEFE I	DE LABORA	ATORIO		Vo.Bo.		
ING. MANUEL	DE J. AGUILAR JIMÉNEZ	ING. J. DE JE	ESÚS DE LA	A CRUZ RODR	iguez.	ING. SERGIO MONTOYA E	SPINOZA	J

	DESCI	RIPCION ESTRATI	GRAFI	CA DE SONDEOS A	A CIELO ABIERTO		
PROYECTO: CAMINO: TRAMO: SUBTRAMO:	ESTUDIO Y PROYECTO EJECU ACAMBARO - MORELIA TZINTZIMEO - T. AEROPU KM 41+000 AL 47+000		IVO PARA LA RECONSTRUCCIÓN			_ _ 1E: _	10 07-ago-06 21-ago-06
P.C.A. No.:	P.C.A 10				PROFUNDIDAD DEL SO	NDEO CM.	200.0
UBICACIÓN KM. LAD ANCHO DE CORONA		<u>UIERD</u> O			REFERENCIA:	ESTE NORTE ELEV.	289,203 2,195,881 1,842
COLUMNA ESTRATIGRAFI		PROFUN		CAPA DETECTADA	CLASIFICACION Y DESCRIPCION		
	R.S.	0.04 0.04	\exists	CARPETA	CTO. ASFALTICO	1	
	00000	0.14 0.18		CARPETA	CTO. ASFALTICO		
		0.12		BASE HIDRAULICA	ARENA LIMOSA CON GRAVAS CAFÉ OSCURO (TEZONTLE NEGRO)		
	***			SUBRASANTE	ARENA LIMOSA COLOR ROJIZO (TEZONTLE ROJO)		
	000000000	0.30		TERRAPLEN	ARENA LIMOSA COLOR CAFÉ CLARO		
		1.20		TERRENO NATURAL	LIMO DE ALTA PLASTICIDAD COLOR NEGRO		
	SIM	BOLOGIA					
I	TERRAPLEN		CAPA	VEGETAL	CARPETA ASFALTICA		
	GRAVA-ARENA		ARENA	4	BASE HIDRAULICA		
	ARCILLA	1232323	GRAVA	4	SUBRASANTE		
l	LIMO	855555	ROCA		,)	
NOTA: OBSERVACIONES Y	R.S. = RIEGO DE SELLO RECOMENDACIONES:						
LABOI	RATORISTA	JEFE DE LAB	ORATORI	то	Vo.Bo.		
ING. MANUEL	L DE J. AGUILAR JIMÉNEZ	ING. J. DE JESÚS E	DE LA CRU	UZ RODRÍGUEZ.	ING. SERGIO MONTOYA ES	SPINOZA	

DESCRIPCION ESTRATIGRAFICA DE SONDEOS A CIELO ABIERTO PROYECTO: ESTUDIO Y PROYECTO EJECUTIVO PARA LA RECONSTRUCCIÓN ENSAYES No 11 CAMINO: ACAMBARO - MORELIA FECHA DE INICIO: 07-ago-06 TRAMO: TZINTZIMEO - T. AEROPUERTO FECHA DE INFORME: 21-ago-06 SUBTRAMO: KM 41+000 AL 47+000 199.0 P.C.A. No.: P.C.A. - 11 PROFUNDIDAD DEL SONDEO CM. UBICACIÓN KM. LADO: 46+200, LADO DERECHO ESTE ANCHO DE CORONA: REFERENCIA: 288,945 NORTE 2.195.688 ELEV. 1.841 CLASIFICACION Y DESCRIPCION COLUMNA CAPA DETECTADA ESTRATIGRAFICA 0.08 CARPETA CTO. ASFALTICO 0.08 0.05 0.13 CARPETA CTO. ASFALTICO ARENA LIMOSA CON GRAVAS CAFÉ OSCURO 0.12 BASE HIDRAULICA (TEZONTLE NEGRO) 0.25 ARENA LIMOSA COLOR 0.19 SUBRASANTE ROJIZO (TEZONTLE 0.44 ROJO) ARENA LIMOSA COLOR 0.35 TERRAPLEN CAFÉ CLARO 0.79 LIMO DE ALTA 1.20 TERRENO NATURAL PLASTICIDAD COLOR NEGRO 1.99 SIMBOLOGIA TERRAPLEN CAPA VEGETAL CARPETA ASFALTICA GRAVA-ARENA ARENA BASE HIDRAULICA (2)(0)(2)(1) 1 ARCILLA GRAVA SUBRASANTE LIMO 333433 ROCA NOTA: R.S. = RIEGO DE SELLO OBSERVACIONES Y RECOMENDACIONES: LABORATORISTA JEFE DE LABORATORIO ING. MANUEL DE J. AGUILAR JIMÉNEZ ING. J. DE JESÚS DE LA CRUZ RODRÍGUEZ. ING. SERGIO MONTOYA ESPINOZA

OYECTO: ESTUDIO	Y PROYECTO EJECUTIVO PA	ARA LA RECO	ONSTRUCCIÓN		ENSAYES No		12
	BARO - MORELIA				FECHA DE INICIO:		07-ago-06
	IMEO - T. AEROPUERTO				FECHA DE INFORI	ME:	21-ago-06
BTRAMO: KM 41+	-000 AL 47+000						
C.A. No.:	P.C.A 12				PROFUNDIDAD DEL SO	ONDEO CM.	200.0
ICACIÓN KM. LADO:	46+800, LADO DERECHO)					
ICHO DE CORONA:					REFERENCIA:	ESTE	288,321
						NORTE	2,195,223
						ELEV.	1,841
COLUMNA ESTRATIGRAFICA			PROFUN	CAPA DETECTADA	CLASIFICACION Y DESCRIPCION		
		0.07	0.07	CARPETA	CTO. ASFALTICO	7	
		0.20	0.27	CAPA DE R	ENIVELACIÓN		
		0.13	0.40	BASE HIDRAULICA	ARENA LIMOSA CON GRAVAS CAFÉ OSCURO (TEZONTLE NEGRO)		
		0.25	0.65	SUBRASANTE	ARENA LIMOSA COLOR ROJIZO (TEZONTLE ROJO)		
		0.15	0.80	TERRAPLEN	ARENA LIMOSA COLOR CAFÉ CLARO		
		1.20	2.00	TERRENO NATURAL	LIMO DE ALTA PLASTICIDAD COLOR NEGRO		
	SIMBOL	OGIA					
	TERRAPLEN		CAPA V	/EGETAL	CARPETA ASFALTICA		
	GRAVA-ARENA		ARENA		BASE HIDRAULICA		
	ARCILLA		GRAVA		SUBRASANTE		
	LIMO		ROCA		•	J	
NOTA:							

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

FACULTAD DE INGENIERIA CIVIL

ANEXO 3 A

LOCALIZACION DE BANOS DE MATERIALES

BANCOS DE MATERIALES

Terraplén, Subyacente y capa subrasante

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Localización de Bancos de Material

Los bancos de materiales que se utilizarán en la construcción de esta obra son:

Banco No.1.- "La Mina" ubicado en el km 41+300 con 2,600 m, de desviación a la derecha, del mismo camino en estudio, que es tezontle rojo, que requiere tratamiento de disgregado y cribado a T. M. de 3"

Banco No.2.- "Uruetaro" ubicado en el km 57+000, con 200 m, de desviación a la izquierda, del mismo camino en estudio, que es una roca alterada que requiere tratamiento de disgregado y cribado a T. M. de 3"

Base Hidráulica

Banco No.2.- "Uruetaro" ubicado en el km 57+000, con 200 m, de desviación a la izquierda, del mismo camino en estudio, que es una roca alterada que requiere tratamiento de Trituración total y cribado a $\,$ T. M. de 1 $\,$ " $\,$ "

Carpeta de Concreto. Asfáltico

Banco No.2.- "Uruetaro" ubicado en el km 57+000, con 200 m, de desviación a la izquierda, del mismo camino en estudio, que es una roca alterada que requiere tratamiento de Trituración total y cribado a T. M. de 34"

FACULTAD DE INGENIERIA CIVIL

ANEXO 3 B

INFORME FOTOGRAFICO DE BANCOS DE MATERIALES

BANCO 1 "LA MINA", KM 41+300 D/D, 2,600m, MISMO CAMINO

BANCO2 "URUETARO ", KM 57+000 D/I, 200m, MISMO CAMINO

OTRA VISTA DEL FRENTE DE ATAQUE DEL BANCO DE MATERIALES

31

ANEXO 3 C

INFORME DE TERRRAGERIAS

OBRA: ESTUDIO Y PROYECTO EJECUTIVO PA CAMINO: ACAMBARO - MORELIA			PEDIENTE: PE RECIBO:	7 de agos	to de 2006
TRAMO: TZINTZIMEO - T. AEROPUERTO, KM 41-	+000 AL 47+000	FECHA DE	INFORME:	19 de ago	sto de 2006
IDENTIFICA CIÓN	336 KM 41+300 CON TERRACEF				
-	3" 7.9		3" 7.5		3" 8.0
	57		56		59
RIAL	25 7		24 8		25 8
MATE	, ,		8		
N ∃	20.1		21		20.9
ν Ο	INAP.		INAP.		INAP.
CARACTERISTICAS DEL MATERIAL	900		909		915
N S	1537		1525		1531
CH H	10.1		9.8		9.5
ARA(8.7		7.5		7.8
O	50		52		55
	0		0		0
	SP-SM		SP-SM		SP-SM
ESTUDIO DE ESPESORES					
OBSERVACIONES Y RECOMENDACIONES: EL MATERIAL ANALIZADO CUMPLE CON LOS REQUI:	SITOS DE CALIDAD PA	ARA CAPA SU	BRASANTE I	DE ACUERD	O CON
LA NORMATIVA SCT VIGENTE.					
EL LABORATORISTA	EL RESIDENTE DE LA	BORATORIO		Vo. Bo.	

32 ANEXO 3 C BANCOS DE MATERIALES

ANEXO 3 D

INFORME DE TERRACERIAS

OBRA: ESTUDIO Y PROYECTO EJECUTIVO PA	RA LA RECONSTRUCC		DIENTE:		
CAMINO: ACAMBARO - MORELIA		FECHA DE RECIBO:		7 de agosto de 2006	
TRAMO: TZINTZIMEO - T. AEROPUERTO, KM 41+000 AL 47+000		FECHA DE INFORME:		19 de agosto de 2006	
IDENTIFICA CIÓN	337		337-A		337-B
	BANCO "URUETARO"				
	KM 57+000 CON 200 m DE DESV. IZQ. DEL MISMO CAMINO				
	TERRACERIÁS INCLUYENDO CAPA SUBRASANTE				
CARACTERISTICAS DEL MATERIAL	3"		3"		3"
	20.4		21.0		20.8
	26		28		29
	16		18		15
	12		10		11
	44		42		43.1
Ω <i>S</i>	21.4	ļ	22.8		20.7
O S	1460		1.455		1460
ISI I	1466 2047		1455 2041		1462 2035
E R	9.5		9.1		9.0
ACT	8.3		8.5		7.9
A. A.	0.3		0.5		1.5
O	26		29		27
	3.8		3.7		3.5
	GP-GC		GP-GC		GP-GC
ESTUDIO DE ESPESORES					
OBSERVACIONES Y RECOMENDACIONES: EL MATERIAL ANALIZADO CUMPLE CON LOS REQUIS	SITOS DE CALIDAD PA	RA CAPA SUBF	RASANTE	DE ACUERD	O CON
LA NORMATIVA SCT VIGENTE.					
EL LABORATORISTA	EL RESIDENTE DE LA	BORATORIO	Vo. Bo.		

33 ANEXO 3 D BANCOS DE MATERIALES

FACULTAD DE INGENIERIA CIVIL

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

METODOLGIA DE CÁLCULO DE DEFLEXIONES CON VIGA BENKELMAN

Con las deflexiones producidas por el eje trasero de un camión lastrado con 8,200 kg, medidas a través de Viga Benkelman, se determina la capacidad estructural de la carpeta de los pavimentos flexibles evaluados en campo, mediante la medición directa de la máxima deflexión que presenta la carpeta. El estudio se realiza a lo largo de toda la carretera pavimentada, definiendo los cadenamientos en los cuales se someterá la carga de prueba estándar sobre el eje trasero del camión lastrado, y registrando las diferentes temperaturas presentadas dentro de la carpeta y la temperatura ambiental.

Con la finalidad de determinar las deflexiones por carga vehicular se empleo el método de la viga **Benkelman** .Cuyo Norma y procedimiento se describe a continuación.

NORMA PARA LA DETERMINACION DE LA DEFORMACION ELASTICA PUNTUAL DE UN PAVIMENTO FLEXIBLE, POR MEDIO DE LA VIGA BENKELMAN

1. OBJETO

Esta Norma indica el procedimiento a seguir para la determinación estática de la recuperación elástica de la deformación puntual de pavimentos flexibles, por medio de la Viga Benkelman, tras el paso de un eje, cuya carga, tamaño y separación de ruedas, y presión de neumáticos están normalizados.

2. EQUIPO

El equipo incluirá el siguiente material:

2.1 Viga Benkelman

La viga responderá al esquema de la figura A 1.1

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

2.2 Camión

El camión tendrá un eje trasero cuyas características serán las siguientes:

- Carga: 8.2 ton
- Ruedas: gemelas, con una distancia mínima entre ellas de 55 mm (recomendable 60 mm)
- Presión de inflado: 7 kgf/cm2 (deberá comprobarse cada 2 o 3 horas, ajustándose si es preciso)

2.3 Varios

Cinta métrica, pintura y tiza para marcar, termómetros, herramientas para ajustar la viga.

Para la medición de deflexiones en el campo se requiere del siguiente personal:

- a.- un responsable de mediciones
- b.- un técnico para Viga Benkelman
- c.- un ayudante de Viga Benkelman
- d.- dos bandereros como mínimo (antes y después del tren de medición).
- e.- un chofer del camión de volteo lastrado.

3 PROCEDIMIENTO OPERATIVO

3.1 Una vez elegida la situación longitudinal y transversal del punto a ensayar, se marca adecuadamente.

3.2

Se sitúa el camión paralelo al borde de la calzada, de manera que una pareja de ruedas gemelas se halle centrada sobre el punto a ensayar.

3.3

Se coloca la viga Benkleman paralela al eje de la calzada y nivelada transversalmente, de forma que su extremo de medida se introduzca entre las ruedas gemelas y se apoye firmemente sobre el punto a ensayar a una distancia de 30 cm hacia adelante del eje de dichas ruedas gemelas.

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Hay que cuidar de que la posición relativa de viga y camión sea tal, que al moverse éste último no rocen sus ruedas gemelas con la viga.

3.4

Se quita el pasador que sujeta el brazo de medida de la viga, ajustando su parte trasera de forma que el extremo del mismo se apoye en la punt a del vástago móvil del comparador.

3.5

Se coloca el limbo del comparador de modo que la aguja marque el "", ajustándose dicha aguja hasta que en un periodo de 15 segundos no varíe más de 0,01 mm.

3.6

El camión se desplaza lentamente hacia adelante de una manera continua y a una velocidad no superior a 3 km/hora.

Se toma la lectura máxima en la numeración roja (Lm) y que coincidirá sensiblemente con el paso del eje de las ruedas gemelas sobre la vertical del punto a ensayar.

3.8

Se toma la lectura final (Lf) cuando el camión está suficientemente alejado (mayor o igual de 10 m) y no exista variación de la aguja en periodos de 15 segundos superiores a "0.01 mm".

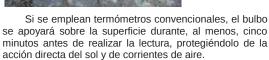
4. CALCULOS

4.1

Se calcula Lm + Lf

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL


4.2

La deformación elástica del pavimento es d = 2(Lm+Lf) siempre que el brazo móvil corto sea igual a la mitad del largo.

5. MEDIDA DE LA TEMPERATURA

En principio se medirá la temperatura de la superficie del pavimento cada hora, salvo cuando haya cambios bruscos de insolación en que se hará cada media hora.

6. NORMAS DE SEGURIDAD

6.1 El operador se encuentra siempre detrás del camión; a fin de evitar un accidente grave, se recomienda tener, a algunos centímetros detrás de los neumáticos una cuña de parada, de manera que evite un retroceso a destiempo del vehículo.

Esta precaución es particularmente importante cuando se opera en rampa.

En ningún caso esta cuña deberá servir para provocar la parada del camión: las cargas que repartiría al suelo perturbarían las medidas.

6.2 Los operadores y peones deberán llevar obligatoriamente chalecos rojos fluorescentes para su identificación diurna.

7. OBSERVACIONES

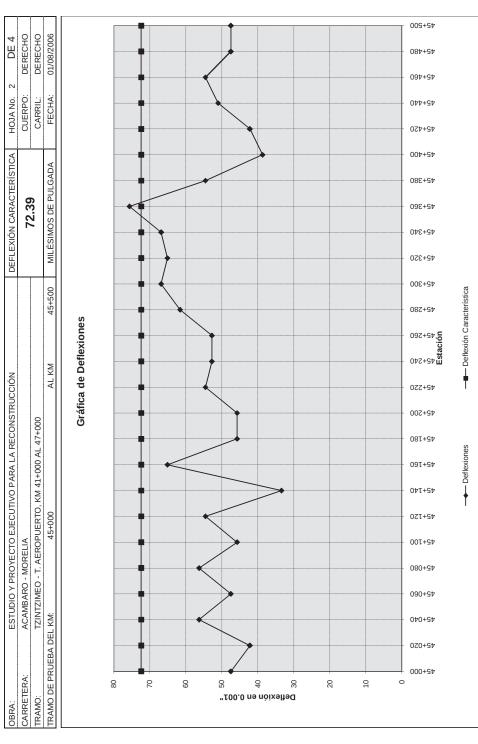
Antes de levantar la viga para su traslado a otro punto de medida, debe volver a colocarse el pasador que inmoviliza el brazo de medida: de lo contrario, puede dañarse el comparador. El quitar y poner dicho pasador debe hacerse suavemente.

OBRA:	ESTUDI	O Y PRO	YECTO EJ	IECUTIVO	PARA LA RECO	NSTRUC	CIÓN		HOJA No.	1 DE 4
CARRETERA:	ACAMB	ARO - MO	ORELIA						CUERPO:	UNICO
TRAMO:	TZINTZI	MEO - T.	AEROPUE	ERTO, KM	41+000 AL 47+0	000			CARRIL:	DERECHO
TRAMO DE PRU	EBA DEL	KM:	42+000		AL KM		42+500		FECHA:	01/08/2006
ESTA- R O	DADA	TEMP.	LECTU	JRAS EN	0.001"	Corr.	COF	RRECCION	OBSERVA-	Operador:
CIÓN Interio	Exterior	°C	Inicial	Final	Deflexión	brazos	Factor	Def Corr	CIONES	ING. J. DE LA CRUZ R.
42+000	*	27	51	15	36	2.0	0.90	65		
42+020 *		27	51	23	28	2.0	0.90	50		DATOS DE
42+040	*	27	52	12	40	2.0	0.90	72		LA VIGA:
42+060 *		27	54	20	34	2.0	0.90	61		
42+080	*	27	52	15	37	2.0	0.90	67		Relación del brazo de palanca
42+100 *		27	48	13	35	2.0	0.90	63		2:1
42+120	*	27	52	18	34	2.0	0.90	61		Aproximación
42+140 *		27	52	15	37	2.0	0.90	67		del micrómetro
42+160	*	27	53	20	33	2.0	0.90	59		
42+180 *		27	52	25	27	2.0	0.90	49		0.001 de
42+200	*	27	52	21	31	2.0	0.90	56		pulgada
42+220 *		27	48	18	30	2.0	0.90	54		
42+240	*	27	48	11	37	2.0	0.90	67		
42+260 *		27	52	31	21	2.0	0.90	38		
42+280	*	27	54	25	29	2.0	0.90	52		
42+300 *		27	48	25	23	2.0	0.90	41		
42+320	*	27	52	19	33	2.0	0.90	59		
42+340 *		27	51	33	18	2.0	0.90	32		
42+360	*	27	47	15	32	2.0	0.90	58		
42+380 *		27	51	29	22	2.0	0.90	40		TIPO DE SECCIÓN:
42+400	*	27	54	20	34	2.0	0.90	61		
42+420 *		27	50	29	21	2.0	0.90	38		
42+440	*	27	49	22	27	2.0	0.90	49		
42+460 *		27	48	27	21	2.0	0.90	38		
42+480	*	27	51	30	21	2.0	0.90	38		
42+500 *		27	48	32	16	2.0	0.90	29		
									52	
			La	deflexión	característica pa	a este tra	no es de:	76.92	milésimos de pulgada	<u> </u>
						or de capa		12.0	cm	

EVALUACION DE PAVIMENTO FLEXIBLE CON VIGA BENKELMAN, MÉTODO DEL INSTITUTO DEL ASFALTO

### ### ##############################	7+77
1	
1	·+ZÞ
+420 +420	
+340 +350 +350 +350 +350 +350 +350 +350 +35	' +∇ †
1300 CARACITER STICA TO BELLEXION CARACITER S	·+Z†
1280 MILESIMOS DE PULCADA 424500 MILESIMOS DE PULCADA 4340 MILESIMOS D	·+Z†
1280 MILÉSIMOS DE PUL 1300 MILÉSIMOS DE PUL	:+Z \
+340 MILESIMOS D CAP 1320 H300 MILESIMOS D CAP 1320 MILESI	:+24
+300 WILE SIL	;+ZÞ
0054 0054 0064	C+Z†
0824 0824	C+Z†
de la constant de la	42+7 erística
	arac
	Estación Deflexión C
AZ40 H200	
+220 Eige a d le	
000 000 000 0000 0000000000000000000000	42+
4180 AL 474 REC	
09T+	42+:
OPI + MX OPI + OPI	+27+
+120 +120 +120 +120 +120 +120 +120 +120	·+ZÞ
4200 4200 42 4000 42 4	+24
+080 +080 +080 +080 +080 +080 +080 +080	1+24
090+	1+24
### 1200 ### 12	1+24
020+	1+24
Deflexión en 0.001" RAMO DE PRUEBA DEL KNI. TZIN	
OBRA: CARRETERA CARRETERA TRAMO DE pl Deflexión en 0.001" Deflexión en 0.001" 0 90 0 00	4 2+i
OBRA: TRAMO "TRAMO "IN A MARKET IN A MARKE	1+74

DEFLEXIONES


OBRA:	ESTUDIO Y PROYECTO EJEC	UTIVO PARA LA RE	CONSTRUCCIÓN	HOJA No.	2 DE 4
CARRETERA:	ACAMBARO - MORELIA			CUERPO:	DERECHO
TRAMO:	TZINTZIMEO - T. AEROPUER	O, KM 41+000 AL 47	7+000	CARRIL:	DERECHO
TRAMO DE PRU	EBA DEL KM: 45+000	AL KM	45+500	FECHA:	01/08/2006

ESTA-	ROD	ADA	TEMP.	LECTU	JRAS EN	0.001"	Corr.		CORRECCION	OBSERVA-	Operador:
CIÓN	Interior	Exterior	°C	Inicial	Final	Deflexión	brazos	Factor	Def Corr	CIONES	ING. J. DE LA CRUZ R.
45+000		*	28	51	24	27	2.0	0.88	48		
45+020	*		28	51	27	24	2.0	0.88	42		DATOS DE
45+040		*	28	50	18	32	2.0	0.88	56		LA VIGA:
45+060	*		28	51	24	27	2.0	0.88	48		Relación del brazo
45+080		*	28	56	24	32	2.0	0.88	56		de palanca
45+100	*		28	51	25	26	2.0	0.88	46		2:1
45+120		*	28	54	23	31	2.0	0.88	55		Aproximación
45+140	*		28	52	33	19	2.0	0.88	33		del micrómetro
45+160		*	28	52	15	37	2.0	0.88	65		
45+180	*		28	49	23	26	2.0	0.88	46		0.001 de
45+200		*	28	48	22	26	2.0	0.88	46		pulgada
45+220	*		28	48	17	31	2.0	0.88	55		
45+240		*	28	50	20	30	2.0	0.88	53		
45+260	*		28	51	21	30	2.0	0.88	53		
45+280		*	28	52	17	35	2.0	0.88	62		
45+300	*		28	50	12	38	2.0	0.88	67		
45+320		*	28	52	15	37	2.0	0.88	65		
45+340	*		28	51	13	38	2.0	0.88	67		
45+360		*	28	52	9	43	2.0	0.88	76		
45+380	*		28	51	20	31	2.0	0.88	55		TIPO DE SECCIÓN:
45+400		*	28	51	29	22	2.0	0.88	39		
45+420	*		28	49	25	24	2.0	0.88	42		_
45+440		*	28	51	22	29	2.0	0.88	51		_
45+460	*		28	57	26	31	2.0	0.88	55		
45+480		*	28	53	26	27	2.0	0.88	48		
45+500	*		28	49	22	27	2.0	0.88	48		
										53	

La deflexión característica para este tramo es de:	72.39	milésimos de pulgada
Espesor de capa asfáltica:	12.0	cm

DEFLEXIONES

EVALUACION DE PAVIMENTO FLEXIBLE CON VIGA BENKELMAN, MÉTODO DEL INSTITUTO DEL ASFALTO

OBRA:	ESTUDIO Y PROYECTO EJECUTIVO PARA LA RECONSTRUCCIÓN	HOJA No.	4 DE 4
CARRETERA:	ACAMBARO - MORELIA	CUERPO:	IZQUIERDO
TRAMO:	TZINTZIMEO - T. AEROPUERTO, KM 41+000 AL 47+000	CARRIL:	IZQUIERDO
TRAMO DE PRU	EBA DEL KM: 43+000 AL KM 42+500	FECHA:	01/08/2006

ESTA-	ROD	ADA	TEMP.	LECT	JRAS EN	0.001"	Corr.		CORRECCION	OBSERVA-	Operador:
CIÓN	Interior	Exterior	°C	Inicial	Final	Deflexión	brazos	Factor	Def Corr	CIONES	ING. J. DE LA CRUZ R.
43+000		*	30	52	19	33	2.0	0.86	57		
42+980	*		30	50	28	22	2.0	0.86	38		DATOS DE
42+960		*	30	50	30	20	2.0	0.86	34		DATOS DE LA VIGA:
42+940	*		30	48	27	21	2.0	0.86	36		
42+920		*	30	52	31	21	2.0	0.86	36		Relación del brazo de palanca
42+900	*		30	50	27	23	2.0	0.86	40		2:1
42+880		*	30	50	17	33	2.0	0.86	57		Aproximación
42+860	*		30	51	29	22	2.0	0.86	38		del micrómetro
42+840		*	30	48	27	21	2.0	0.86	36		
42+820	*		30	52	25	27	2.0	0.86	46		0.001 de
42+800		*	30	51	20	31	2.0	0.86	53		pulgada
42+780	*		30	53	22	31	2.0	0.86	53		
42+760		*	30	51	23	28	2.0	0.86	48		
42+740	*		30	52	20	32	2.0	0.86	55		
42+720		*	30	50	19	31	2.0	0.86	53		
42+700	*		30	50	20	30	2.0	0.86	52		
42+680		*	30	53	18	35	2.0	0.86	60		
42+660	*		30	51	21	30	2.0	0.86	52		
42+640		*	30	49	24	25	2.0	0.86	43		TIPO DE
42+620	*		30	51	19	32	2.0	0.86	55		SECCIÓN:
42+600		*	30	50	18	32	2.0	0.86	55		
42+580	*		30	54	21	33	2.0	0.86	57		
42+560		*	30	51	19	32	2.0	0.86	55		
42+540	*		30	51	20	31	2.0	0.86	53		
42+520		*	30	52	21	31	2.0	0.86	53		
42+500	*		30	50	23	27	2.0	0.86	46		
										49	

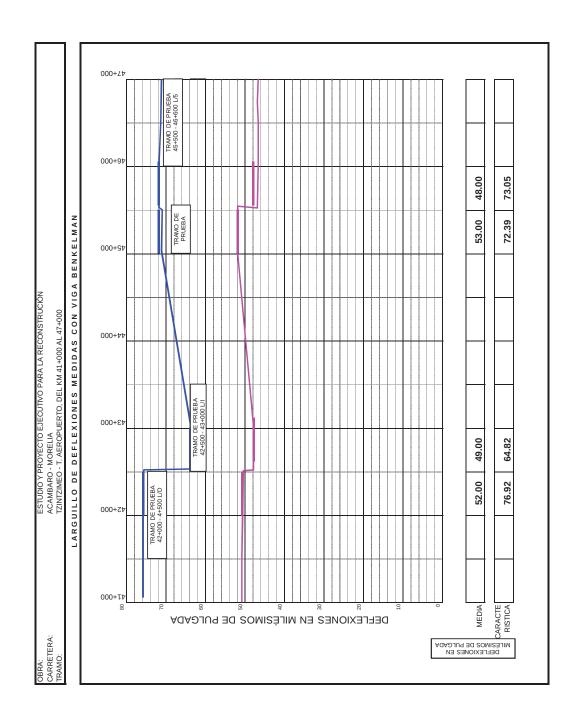
La deflexión característica para este tramo es de:	64.82	milésimos de pulgada
Espesor de capa asfáltica:	11.0	cm

DEFLEXIONES

IZQUIERDO IZQUIERDO DE 4 42+500 42+520 HOJA No. 4 CUERPO: CARRIL: 45+540 45+260 DEFLEXIÓN CARACTERÍSTICA 42+580 42+600 64.82 42+620 42+640 45+660 42+680 --- Deflexión Característica 42+700 Gráfica de Deflexiones Estación 42+720 42+740 ESTUDIO Y PROYECTO EJECUTIVO PARA LA RECONSTRUCCIÓN ACAMBARO - MORELIA 42+760 42+780 TZINTZIMEO - T. AEROPUERTO, KM 41+000 AL 47+000 42+800 → Deflexiones 42+820 42+840 42+860 42+880 45+900 42+920 42+940 45+960 OBRA: CARRETERA: 42+980 "£00.0 nə nöixəlfəQ TRAMO: 000+€₺ 20 20 0 9 4 30 20 10

EVALUACION DE PAVIMENTO FLEXIBLE CON VIGA BENKELMAN, MÉTODO DEL INSTITUTO DEL ASFALTO

OBRA:	ESTUDIO Y PROYECTO EJE	CUTIVO PARA LA RE	CONSTRUCCIÓN	HOJA No.	3 DE 4
CARRETERA:	ACAMBARO - MORELIA			CUERPO:	IZQUIERDO
TRAMO:	TZINTZIMEO - T. AEROPUER	RTO, KM 41+000 AL 4	7+000	CARRIL:	IZQUIERDO
TRAMO DE PRU	JEBA DEL KM: 46+000	AL KM	45+500	FECHA:	01/08/2006


ESTA-	ROD	ADA	TEMP.	LECT	JRAS EN	0.001"	Corr.		CORRECCION	OBSERVA-	Operador:
CIÓN	Interior	Exterior	°C	Inicial	Final	Deflexión	brazos	Factor	Def Corr	CIONES	ING. J. DE LA CRUZ R.
46+000		*	28	51	20	31	2.0	0.89	55		
45+980	*		28	50	18	32	2.0	0.89	57		DATOS DE
45+960		*	28	52	28	24	2.0	0.89	43		LA VIGA:
45+940	*		28	50	13	37	2.0	0.89	66		Relación del brazo
45+920		*	28	53	33	20	2.0	0.89	36		de palanca
45+900	*		28	52	21	31	2.0	0.89	55		2:1
45+880		*	28	51	25	26	2.0	0.89	46		- Aproximación
45+860	*		28	50	22	28	2.0	0.89	50		del micrómetro
45+840		*	28	53	23	30	2.0	0.89	53		_
45+820	*		28	50	33	17	2.0	0.89	30		0.001 de
45+800		*	28	51	27	24	2.0	0.89	43		pulgada
45+780	*		28	50	29	21	2.0	0.89	37		_
45+760		*	28	52	33	19	2.0	0.89	34		
45+740	*		28	53	18	35	2.0	0.89	62		_
45+720		*	28	49	26	23	2.0	0.89	41		_
45+700	*		28	52	32	20	2.0	0.89	36		_
45+680		*	28	50	35	15	2.0	0.89	27		_
45+660	*		28	52	14	38	2.0	0.89	68		
45+640		*	28	50	32	18	2.0	0.89	32		TIPO DE
45+620	*		28	48	13	35	2.0	0.89	62		SECCIÓN:
45+600		*	28	51	25	26	2.0	0.89	46		_
45+580	*		28	53	23	30	2.0	0.89	53		_
45+560		*	28	51	21	30	2.0	0.89	53		_
45+540	*		28	50	9	41	2.0	0.89	73		_
45+520		*	28	51	25	26	2.0	0.89	46		_
45+500	*		28	54	24	30	2.0	0.89	53		_
										48	

La deflexión característica para este tramo es de:	73.05	milésimos de pulgada
Espesor de capa asfáltica:	18.0	cm

EVALUACION DE PAVIMENTO FLEXIBLE CON VIGA BENKELMAN, MÉTODO DEL INSTITUTO DEL ASFALTO

2+540 2+640 2+640 2+640 2+70 2+70 2+70 2+70 2+70 2+70 2+70 2+70 2+70 2+70 2+70
--

DEFLEXIONES

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

INFORME DE ENSAYE DE CONCRETO ASFALTICO

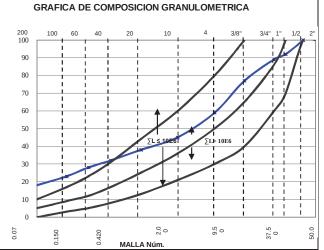
OBRA :		ESTUDIO Y PR	OYECTO EJEC	CUTIVO PARA LA RECONSTRUCCIÓN				El	ENSAYE No. 398						
CARRETERA: ACAMBARO - MORELIA								FE	FECHA DE RECIBO 07/08/2006)6			
TRAMO):	TZINTZIMEO -	T. AEROPUER	TO, KM 41+000 A	L 47+00	0			FE	FECHA DE INFORME 19/08/2006					
o	DESCRIP	CION DEL MATE	RIAL	CONCRET	CONCRETO ASFALTICO PARA USARSE EN CARPETA ASFÁLTICA						TICA	4			
造문	TRATAMI	ENTO PREVIO AI	MUESTREO		NINGUNO										
DATOS DEL MUESTREO	CLASE DI	E DEPOSITO MUI	ESTREADO	PCA No. 1, KM 41+300, LADO DERECHO											
MU	UBICAC	CION DEL BANG	CO	SE DESCONOCE	E DESCONOCE										
	UBICACI	ÓN DE LA PLAN	ITA:	SE DESCONOCE											
VIAJE N	lo.	TENDI	DO EN Km.		A Km.			CARRIL			FRAN				
TEMP. DE LA MEZCLA AL SALIR DE LA PLANTA			°(C EN EI	TENDIDO			°C AL	. INICIAR L	A COMPAC	т			.°C	
	P.E. DE LA	A MEZCLA kg/m ³ .				0.1	24510	A DE 6	OMBO	NOION OD		DIC A			
	-	MALLAS Núm.	% QUE PASA	DEL PROYECTO		GI	RAFIC	A DE C	OMPOS	SICION GRA	ANULOMET	RICA			
	COMPOSICION GRANULOMETRICA	25.0	100		100								T		
	l H	19.0	98		90								V_{k}		
0	₩.	12.5	92		90								Λ		
<u> </u>	٦ ۲	9.5	79		80							\perp			
PETREO	Ž	6.3	61		00							- 1/,	//		1
7	8	4.75	55		70							_//	4		-
MATERIAL	Z	2.00	35									////			1
\ATE	S	0.850	27		S 60								\pm		
È	SIS	0.425	22	Ī	Δ.	ļ				-			11	ļ	
DEL	₩	0.250	19		3 50										
0	Ö	0.150	15		60 Sone basa 40										
CARACTERISTICAS		0.075	9		00										
Ę	P.E. (8p)	kg /m3			30								+		
8	ABSORC	ION %													1
	DESGAS	TE %			20								11		
Ä		ITURACION			40										1
S		_ARGADAS %			10		_								
		AJEADAS %			0								44	\square	
	_ `	E ARENA %				0.075	0.250	0.425	0850	00	4.75	6.3	9.5		19. 25.
		TE LIQUIDO				o 0	Ö	0							
	INDIC	E PLASTICO							MA	LLAS Núm	s.				
	CA	RACTERISTICA	S	DEL	C	ARACTER	ISTIC	AS	FODEO	FIGACION	CAR	ACTE	RISTIC	CAS	
		DE LA MEZCLA		PROYECTO		DEL ESPE	CIME	N	ESPECI	FICACION		EL AS			
		FALTO %	8.5		P.E. K	g/m3.					TIPO		Α	C - 2	20
90	MARCA TIPO					BILIDAD kg				Mínimo	PENETRA				
FER	TIPO				FLUJC					2 a 4	VISCOSID				
ADI- US/	CANTIDA	ND %			VACIO					3 a 5	TEMP. RE				
AFINID.	AD				V.A.M	%			14	Mínimo	TEMP. DE	APLIC			
OBSER	RVACIONE	S Y RECOMEN	DACIONES												
	LA CUF	RVA GRANULON	//ETRICA SE E	NCUENTRA FUEF	RA DE L	A ZONA ES	SPEC	IFICAD	A POR L	A NORMA	DE LA SCT	, VIGE	NTE.		
	EL I	ABORATORIST	·A	EL JE	FE DEI	LABORAT	ORIC)			Vo. E	30.			
IN	IG. MANU	EL J. AGUILAR	JIMÉNEZ	ING. J. DE	JESÚS	DE LA CRI	UZ RO	GUEZ.		ING. SE	RGIO MON	TOYA E	ESPIN	IOZA	

INFORME DE ENSAYE DE CONCRETO ASFALTICO

OBRA:		ESTUDIO Y PR	OYECTO EJEC	CUTIVO PARA LA RECONSTRUCCIÓN				E1	ENSAYE No. 304						
CARRETERA: ACAMBARO - MORELIA								FE	FECHA DE RECIBO 07/08/2006						
TRAMO):	TZINTZIMEO -	T. AEROPUER	TO, KM 41+000 A	L 47+00	00			FE	FECHA DE INFORME 19/08/2006					
0	DESCRIP	CION DEL MATEI	RIAL	CONCRET	O ASF	ALTICO			PARA	JSARSE EN	CARF	PETA A	SFÁL	TICA	
造문	TRATAMI	ENTO PREVIO AI		NINGUNO											
DATOS DEL MUESTREO	CLASE D	E DEPOSITO MUI	ESTREADO	PCA No. 2, KM 41+950, LADO IZQUIERDO											
MU	UBICAC	CION DEL BANG	CO	SE DESCONOCE											
UBICACIÓN DE LA PLANTA:				SE DESCONOCE									-	-	
VIAJE N	lo.	TENDI	DO EN Km.		A Km.		C	CARRIL			FRAN				
TEMP. DE LA MEZCLA AL SALIR DE LA PLANTA					TENDIDO			°C AL	. INICIAR LA	A COMPAC	т			°C	
	P.E. DE LA	A MEZCLA kg/m ³ .				0.1	24510	4 DE 0	OMBO	NOION OD		DICA			
	4	MALLAS Núm.	% QUE PASA	DEL PROYECTO		GI	KAFIC	A DE C	OMPOS	SICION GRA	ANULOMET	RICA			
	Š	25.0	100		100								T		~
	l Ľ	19.0	97		90								$V_{\mathbf{k}}$		
	ME	12.5	89		90								/I //		
<u> </u>) 	9.5	78		80							\perp	/		41
PETREO	N N	6.3	60		00								<i>1</i>		
ᅱ	8	4.75	54		70							_//	$^{\prime}$	+	+
MATERIAL	Z	2.00	34									/\//			
\ ATE	000	0.850	28		S 60								+		1
È	SIS	0.425	24	Ī	Δ.	ļ				ļ			11	ł	
DEL	COMPOSICION GRANULOMETRICA	0.250	20		60 Sone PASA 40										
	Ö	0.150	16		9 4∩								\perp		
CAS		0.075	9		U 0						///				
)Ti	P.E. (8p)	kg /m3			30		-						+	+	
88	ABSORC	ION %									_				
	DESGAS	TE %			20								+		\exists
CARACTERISTICAS		ITURACION			10										
CA		ARGADAS %			10										
		AJEADAS %			0								Щ		
	_	E ARENA %				0.075	0.250	0.425	0.850	200	27.75	6.3	9.5	19.	25.
		TE LIQUIDO				0 0	o.	Ö							
	INDIC	E PLASTICO							MA	LLAS Núm	s.				
	CA	RACTERISTICA:	S	DEL	C	ARACTER	STICA	AS		=	CAR	ACTE	≀ISTIC	:AS	
		DE LA MEZCLA		PROYECTO		DEL ESPE	CIMEN	٧	ESPECI	FICACION		EL AS	-ALTC)	
		FALTO %	8.7		P.E. K	g/m3.					TIPO		Α	C - 20)
99	MARCA TIPO				ESTA	BILIDAD kg			_	Mínimo	PENETRA	CION			
. ₹ ₹	TIPO				FLUJO				De	2 a 4	VISCOSID	AD			
ADI- US/	CANTIDA	ND %			VACIO	S %			De	3 a 5	TEMP. RE				
AFINID	AD				V.A.M	%			14	Mínimo	TEMP. DE	APLIC			
OBSER	RVACIONE	S Y RECOMEN	DACIONES]
	LA CUI	RVA GRANULON	METRICA SE E	NCUENTRA FUEF	RA DE L	A ZONA ES	SPECI	FICADA	A POR L	A NORMA	DE LA SCT	, VIGE	NTE.		
	EL I	ABORATORIST	·A	EL JE	FE DEI	LABORAT	ORIO)			Vo. E	30.			
IN	IG. MANU	EL J. AGUILAR	JIMÉNEZ	ING. J. DE	JESÚS	DE LA CRI	JZ RG	SUEZ.		ING. SEI	RGIO MON	TOYA E	SPIN	OZA	

INFORME DE ENSAYE DE CONCRETO ASFALTICO

OBRA : ESTUDIO Y PROYECTO EJECUTIVO PARA LA RECONSTRUCCIÓN ENSAYE NO. 33 CARRETERA: ACAMBARO - MORELIA FECHA DE RECIBO TRAMO: TZINTZIMEO - T. AEROPUERTO, KM 41+000 AL 47+000 FECHA DE INFORME DESCRIPCION DEL MATERIAL CONCRETO ASFALTICO PARA USARSE EN CARPETA A TRATAMIENTO PREVIO AL MUESTREO NINGUNO CLASE DE DEPOSITO MUESTREADO PCA No. 3, KM 42+400 LADO DERECHO UBICACIÓN DEL BANCO SE DESCONOCE UBICACIÓN DE LA PLANTA: SE DESCONOCE VIAJE No. TENDIDO EN KM. A KM. CARRIL FRANJA TEMP. DE LA MEZCLA AL SALIR DE LA PLANTA COMPACT.	07/08/2006 19/08/2006							
DESCRIPCION DEL MATERIAL TRATAMIENTO PREVIO AL MUESTREO CLASE DE DEPOSITO MUESTREADO UBICACIÓN DEL BANCO UBICACIÓN DE LA PLANTA: SE DESCONOCE VIAJE No. TENDIDO EN Km. CARPETA DE INITIONICATION PARA USARSE EN CARPETA DE INITIONICATION ON CARPETA DE INITIONICATION DE INITIONICAT								
TRATAMIENTO PREVIO AL MUESTREO CLASE DE DEPOSITO MUESTREADO UBICACIÓN DEL BANCO UBICACIÓN DE LA PLANTA: SE DESCONOCE VIAJE NO. TENDIDO EN Km. A Km. CARRIL FRANJA	0561704							
TRATAMIENTO PREVIO AL MUESTREO CLASE DE DEPOSITO MUESTREADO UBICACIÓN DEL BANCO UBICACIÓN DE LA PLANTA: SE DESCONOCE VIAJE NO. TENDIDO EN Km. A Km. CARRIL FRANJA	ASFALTICA							
UBICACIÓN DE LA PLANTA: SE DESCONOCE VIAJE No. TENDIDO EN Km. A Km. CARRIL FRANJA								
UBICACIÓN DE LA PLANTA: SE DESCONOCE VIAJE No. TENDIDO EN Km. A Km. CARRIL FRANJA	PCA No. 3, KM 42+400 LADO DERECHO							
VIAJE NO. TENDIDO EN Km. A Km. CARRIL FRANJA								
TEMP DE LA MEZCI A AL SALIP DE LA PLANTA °C EN EL TENDIDO °C AL INICIAR LA COMPACT								
TEINI DE LA MILZOLA AL SALIN DE LA LENTA CENTE TEINDIDO C AL INICIAN LA COMI ACT.	°C							
P.E. DE LA MEZCLA kg/m³.								
MALLAS Núm. % QUE PASA DEL PROYECTO GRAFICA DE COMPOSICION GRANULOMETRICA								
Second S								
19.0 100								
OH WE DO NOT THE WORLD BE SEED TO SEED THE WORLD BE SEED THE WORLD	/ //							
9.5 81 80	/// /							
H R 6.3 62	// / /							
HEAD 4.75 55 70 UNION 2.00 36 0.850 26 0.425 19	/							
	11111							
$\begin{bmatrix} \overline{\xi} & \overline{0} \end{bmatrix} = 0.850 $ $\begin{bmatrix} 26 & \overline{y} \end{bmatrix} $ $\begin{bmatrix} \overline{y} \end{bmatrix} $ $\begin{bmatrix} 60 & \overline{y} \end{bmatrix} $								
\(\begin{array}{c cccc} \overline{\pi} & 0.425 & 19 & \overline{\pi} & \ov								
ш 0.250 15 0.150 12	11 11							
Head 100								
Š 0.075 8	11111							
F.E. (8p) kg /m3								
E ABSORCION %	11 11							
DESGASTE %								
S								
	11 11							
PART. LAJEADAS %								
EQUIV. DE ARENA % CO. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	9.5 12.5 19. 25.							
INDICE PLASTICO MALLAS Núms.								
CARACTERISTICAS DEL CARACTERISTICAS CARACTE								
DE LA MEZCLA PROYECTO DEL ESPECIMEN DEL AS	SFALTO							
CONTENIDO ASFALTO % 7.5 P.E. Kg/m3.	AC - 20							
MARCA ESTABILIDAD kg. 700 Mínimo PENETRACION VISCOSIDAD								
E U TIPO								
AFINIDAD V.A.M. % 14 Mínimo TEMP. DE APLI	ز.							
OBSERVACIONES Y RECOMENDACIONES								
LA CURVA GRANULOMETRICA SE ENCUENTRA FUERA DE LA ZONA ESPECIFICADA POR LA NORMA DE LA SCT, VIGI	ENTE.							
EL LABORATORISTA EL JEFE DEL LABORATORIO Vo. Bo.								
ING. MANUEL J. AGUILAR JIMÉNEZ ING. J. DE JESÚS DE LA CRUZ RGUEZ. ING. SERGIO MONTOYA	ESPINOZA							


INFORME DE ENSAYE EN MATERIALES PARA BASE

OBRA O CAMINO:	ESTUDIO Y PROYECTO EJECUTIVO PARA LA RE	300	
CARRETERA:	ACAMBARO - MORELIA	FECHA DE RECIBO:	07-ago-06
TRAMO:	TZINTZIMEO - T. AREOPUERTO	FECHA DE INFORME:	19-ago-06
SUBTRAMO :	KM 41+000 AL KM 47+000		

	MATERIAL PARA CAPA DE :	BASE HIDRÁULICA
E.	DESCRIPCION PETROGRAFICA DEL MATERIAL :	GRAVA LIMOSA COLOR CAFÉ OSCURO (TEZONTLE NEGRO)
1 5	CLASE DE DEPÓSITO MUESTREADO :	PCA No. 1, KM 41+300, LADO DERECHO
T.A.	TRATAMIENTO PREVIO AL MUESTREO :	NINGUNO
	UBICACIÓN DEL BANCO : SE DESCONOCE	

P.E. SECO SUELTO kg/m ³	1,195	P.V.S.M. AASHTO kg/m ³	1,766		
P.V.S.M. PORTER kg/m ³		HUMEDAD ÓPTIMA AASHTO, en %	6.6		
w OPTIMA PORTER, %					
P.E. DEL LUGAR kg/m ³		GRAFICA DE COMPO	SICION GRAN	JLOMETRICA	Α

COMPACTACIÓN, % MALLA	% RETENIDO
MALLA	% RETENIDO
EN 50.00	
EN 37.50	
	% QUE PASA
50.00	
37.50 1	.00.0
25.00	92.0
19.00	89.0
9.500	77.0
4.750	59.0
2.00	45.0
0.850	38.0
0.420	32.0
0.250	28.0
0.150	23.0
0.075	18.0

		NORMA					
V.R.S. ESTÁNDAR %	100 MIN.		PRUEBAS EI	N MAT. MAYOR QUE L	A MALLA No. 9	9.5 mm	
EXPANSIÓN %	0.18		AB	SORCIÓN %	5.1		
VALOR CEMENTANTE kg/cm ²			DE	NSIDAD	1.83		
EQUIVALENTE DE AREN	A 9 29.0	50 MIN.	DU	RABILIDAD			

PRUEBAS SOBRE MATERIAL TAMIZADO POR LA MALLA No. 0.425								
LÍMITE LÍQUIDO %	25.5	25 MAX.	EQUIV. HUM. DE CAMPO %					
LÍMITE PLÁSTICO %	INAP.		CONTRACCIÓN LINEAL %					
ÍNDICE PLÁSTICO %	INAP.	6 MAX.	CLASIFICACIÓN SCT SUCS GM/SM					

OBSERVACIONES Y RECOMENDACIONES:

EL MATERIAL ANALIZADO NO CUMPLE CON LOS PARAMETROS DE CALIDAD, DE ACUERDO A LAS NORMAS DE LA SCT, EN CUANTO A SU GRANULOMETRIA, VRS Y EQUIVALENTE DE ARENA

EL LABORATORISTA	EL JEFE DEL LABORATORIO	Vo. Bo.
LE L'ABOTOTTOTATOTA	LE GET E DEL EMBOTOMO	VO. DO.
ING. MANUEL J. AGUILAR JIMÉNEZ	ING. J. DE JESÚS DE LA CRUZ RGUEZ	ING. SERGIO MONTOYA ESPINOZA

INFORME DE ENSAYE EN MATERIALES PARA BASE

OBRA	O CAMINO:	ESTUDIO \	Y PROYECT	TO EJECUTIVO PARA LA RECONSTRUCCIÓN ENSAYES No. 393
CARRETERA: ACAMBARO - MORELIA				
TRAMO	O:	TZINTZIME	O - T. AREC	OPUERTO FECHA DE INFORME: 19-ago-06
	RAMO :) AL KM 47+	
	MATERIAL PARA CA	APA DE :		BASE HIDRÁULICA
DEL	DESCRIPCION PET	ROGRAFICA	DEL MATE	ERIAL: GRAVA LIMOSA COLOR CAFÉ OSCURO (TEZONTLE NEGRO)
	CLASE DE DEPÓSIT	O MUESTRE	EADO :	PCA No. 2, KM 41+950, LADO IZQUIERDO
DATOS	TRATAMIENTO PRE	VIO AL MUE	STREO:	NINGUNO
L " .	UBICACIÓN DEL BAI	NCO :	SE DESCON	NOCE
P.E. SE	ECO SUELTO kg/m³	1,202		P.V.S.M. AASHTO kg/m ³
P.V.S.N	Л. PORTER kg/m³			HUMEDAD ÓPTIMA AASHTO, en %
w OPTI	MA PORTER, %			
P.E. DE	EL LUGAR kg/m³			GRAFICA DE COMPOSICION GRANULOMETRICA
HUME	DAD DE LUGAR %			
COMP	ACTACIÓN, %			200 100 60 40 20 10 4 3/8" 3/4" 1" 1/2 2
	MALLA	% RET	ENIDO	100
	EN 50.00			90 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	EN 37.50			80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		% QUE	PASA	70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	50.00			
	37.50	100.0		60
	25.00	93.0		50
	19.00	88.0		ΣΔ 40Ε61 Σ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	9.500	76.0		40
l i	4.750	58.0		30
	2.00	46.0		20
	0.850	39.0		
	0.420	32.0		10
	0.250	27.0		
	0.150	22.0		0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
	0.075	17.0		MALLA Núm.
			NORMA	
V.R.S.	ESTÁNDAR %		100 MIN.	PRUEBAS EN MAT. MAYOR QUE LA MALLA No. 9.5 mm
	ISIÓN %			ABSORCIÓN %
	CEMENTANTE kg/ci			DENSIDAD
EQUIV	ALENTE DE ARENA	%	50 MIN.	DURABILIDAD
			PRUEBAS	SOBRE MATERIAL TAMIZADO POR LA MALLA No. 0.425
LÍMITE	LÍQUIDO %	23.8	25 MAX.	EQUIV. HUM. DE CAMPO %
LÍMITE	PLÁSTICO %	INAP.		CONTRACCIÓN LINEAL %
ÍNDICE	PLÁSTICO %	INAP.	6 MAX.	CLASIFICACIÓN SCT SUCS GM
OBSE	RVACIONES Y RECO	OMENDACIO	DNES:	
	EL LABORA	TORISTA		EL JEFE DEL LABORATORIO Vo. Bo.
		2		3. 3. 3.
	ING. MANUEL J. AG	UILAR JIMÉ	NEZ	ING. J. DE JESÚS DE LA CRUZ RGUEZ ING. SERGIO MONTOYA ESPINOZA

INFORME DE ENSAYE EN MATERIALES PARA BASE

OBRA	O CAMINO:	ESTUDIO Y	Y PROYECT	O EJECUTIVO PARA LA RECONSTRUCCIÓN ENSAYES No	305					
CARRETERA: ACAMBARO - MORELI					07-ago-06					
TRAMO : TZINTZIMEO - T. AREC				PUERTO FECHA DE INFORME:	19-ago-06					
SUBTR	RAMO :	KM 41+000	AL KM 47+	000						
	MATERIAL PARA CA	APA DE ·		BASE HIDRÁULICA						
	DESCRIPCION PET		A DEL MATE							
	CLASE DE DEPÓSIT			PCA No. 3, KM 42+400, LADO DERECHO						
	TRATAMIENTO PRE			NINGUNO						
D _Z	UBICACIÓN DEL BAI		SE DESCON							
P.E. SE	ECO SUELTO kg/m ³	1,219		P.V.S.M. AASHTO kg/m ³						
P.V.S.N	И. PORTER kg/m ³			HUMEDAD ÓPTIMA AASHTO, en %						
	MA PORTER, %									
P.E. DI	EL LUGAR kg/m³			GRAFICA DE COMPOSICION GRANULOMETRIC	Α					
	DAD DE LUGAR %									
	ACTACIÓN, %			200 100 60 40 20 10 4 3/8"	3/4" 1" 1/2 2"					
	MALLA	06.007	ENIDO	100						
		₩ KEI	LIVIDO	90 1 1 1 1 1	 					
	EN 50.00	1		80						
	EN 37.50	 % OUE	E PASA							
	50.00		1 707	70 1 1 1 1	 					
	50.00	100		60						
	37.50	98.0	ļ							
	25.00	92.0		50 St. 10E6 St. 10E6						
	19.00	89.0		40						
	9.500	75.0	ļ	30						
	4.750	61.0								
	2.00	48.0		20						
	0.850	40.0		10	<u> </u>					
	0.420	34.0								
	0.250	28.0		0 10	ω ο					
	0.150	21.0		7 25	37.5					
	0.075	15.0	NORMA	ਂ ਯALLA Núm.						
V.R.S.	ESTÁNDAR %		100 MIN.	PRUEBAS EN MAT. MAYOR QUE LA MALLA No.	9.5 mm					
EXPAN	ISIÓN %			ABSORCIÓN %						
VALOR	CEMENTANTE kg/ci	m²		DENSIDAD						
EQUIV	ALENTE DE ARENA	%	50 MIN.	DURABILIDAD						
			PRUEBAS	SOBRE MATERIAL TAMIZADO POR LA MALLA No. 0.425						
LÍMITE	LÍQUIDO %	24.5	25 MAX.	EQUIV. HUM. DE CAMPO %						
LÍMITE PLÁSTICO % INAP.			CONTRACCIÓN LINEAL %							
ÍNDICE	ÍNDICE PLÁSTICO % INAP. 6 MAX.			CLASIFICACIÓN SCT SUCS SM						
OBSE	RVACIONES Y RECO	DMENDACIO	ONES:							
	EL LABORA	TORISTA		EL JEFE DEL LABORATORIO Vo. Bo.	Vo. Bo.					
	ING. MANUEL J. AG	UILAR JIMÉ	NEZ	ING. J. DE JESÚS DE LA CRUZ RGUEZ ING. SERGIO MONTO	/A ESPINOZA					

OBRA:	OBRA: ESTUDIO Y PROYECTO EJECUTIVO PARA LA RECONSTRUCCIÓN ENSAYE: 303										
CARRE	ETERA:	ACAMBARO - MORELIA				FECHA D	E RECIBO:	7 de agos	sto de 2006		
TRAMO	D:	TZINTZIMEO - T. AEROF	PUERTO, DEL KM 41	+000 AL 47+	-000	FECHA DE	INFORME:	19 de ago	sto de 2006		
DESCR	DESCRIPCION DEL MAT: ARCILLA DE COLOR NEGRO										
DEPOS	DEPOSITO MUESTREADO POZO A CIELO ABIERTO No 1										
BANCO:											
	POZO 4	CIELO ABIERTO N° :				1					
IDENTIFI CACION	ESTACIO					41+300					
E S	LADO	511				DERECHO					
⊡ 3	CAPA			TERRENO NATURAL							
_	071171				12111	KENO WIT	JI O IL				
		OMIXAMO				No. 4					
		ETENIDO EN MALLA DE 1				0.0					
٦		PASA EN MALLA DE 4.75				100					
쭚		PASA EN MALLA DE 0.42				95					
	_ `	PASA EN MALLA DE 0.07				92					
Σ		LENTE DE No. DE CAMP	0 %								
H		IQUIDO %				77					
Ö		PLASTICO %				37					
AS		ACCION LINEAL %									
2		ELTO kg/m ³				842					
CARACTERISTICAS DEL MATERIAI		LUGAR kg/m ³				996					
		kimo kg/m³			1497						
		AD OPTIMA %				30.1					
		AD NATURAL %				25.5					
		CTACION DEL LUGAR %				66.5					
		STANDAR SATURADO %)			6.6					
	EXPANS					4.2					
	CLASIFI	CACION S.C.T				МН					
	TIPO DE	PRUEBA			PORT	ER MODIFI	CADA VARI	ANTE II			
	CURVA	DEL PROYECTO									
	Z E	HUMEDAD DE PRUEBA	%								
S	COND. DEL LUGAR	VALOR RELATIVO DE S	OPORTE %								
ORE	00 11	ESPESOR REQUERIDO	cm.								
ES	MP.	HUMEDAD DE PRUEBA	%			33.1					
ESF	90% СОМР	VALOR RELATIVO DE S	OPORTE %			3.97					
DE		ESPESOR REQUERIDO	cm.								
ESTUDIO DE ESPESORES	COMP.	HUMEDAD DE PRUEBA	%			31.6					
T.	00 %	VALOR RELATIVO DE S	OPORTE %			4.99					
ES	95%	ESPESOR REQUERIDO	cm.		-						
	ωn'	HUMEDAD DE PRUEBA	%								
	100% COMP.	VALOR RELATIVO DE S	OPORTE %								
ESPESOR REQUERIDO cm.											
OBSEF	RVACION	ES Y RECOMENDACION	IES:								
	EL LA	BORATORISTA	EL JEFE DEL	LABORATO	RIO		Vo. Bo.				
					-						
ING.	MANUEL	. J. AGUILAR JIMENEZ	ING. J. DE JESI	ÚS DE LA CF	RUZ R.	ING. S	SERGIO MO	NTOYA ES	PINOZA		
ING. MANUEL J. AGUILAR JIMENEZ											

CARRE		ACAMBADO - MODELIA		ANA LA RECUI	ISTRUCCION		NSATE.		to do 2006		
	ARRETERA: ACAMBARO - MORELIA FECHA DE RECIBO: 7 de agosto de 2006 RAMO: TZINTZIMEO - T. AEROPUERTO, DEL KM 41+000 AL 47+000 FECHA DE INFORME: 19 de agosto de 2006										
						FECHA DE INF	-ORME:	19 de ago	sto de 2006		
	PCION DE			A DE COLOR N							
	DEPOSITO MUESTREADO POZO A CIELO ABIERTO No 2										
BANCO:	BANCO:										
	POZO A	CIELO ABIERTO N° :				2					
IDENTIFI CACION	ESTACIO				+	41+950					
PC.	LADO	511			IZQUIERDO						
₫ %	CAPA				TERRENO NATURAL						
	0.11.71				TEIX	RENO NATOR	-\L				
	TAMAÑO	O MAXIMO				No. 4					
	% DE RE	ETENIDO EN MALLA DE 7	75 mm.			0.0					
7	% QUE F	PASA EN MALLA DE 4.75	mm.			100					
₩	% QUE F	PASA EN MALLA DE 0.42	5 mm.			95					
TE	% QUE F	PASA EN MALLA DE 0.07	5 mm.			92					
Ψ	EQUIVA	LENTE DE No. DE CAMP	O %								
ΓΝ	LIMITE L	IQUIDO %				68					
DE	INDICE F	PLASTICO %				28					
S	CONTRA	ACCION LINEAL %									
S	P.S. SUE	ELTO kg/m³				932					
ST	P.S. DEL LUGAR kg/m³										
CARACTERISTICAS DEL MATERIAL	P.S. Max	kimo kg/m³									
	HUMEDA	AD OPTIMA %									
	HUMEDA	AD NATURAL %									
		CTACION DEL LUGAR %									
	V.R.S. E	STANDAR SATURADO %)								
	EXPANS	SION %									
	CLASIFI	CACION S.C.T				MH					
						'					
		PRUEBA			POR1	ER MODIFICA	DA VARIAI	NTE II			
		DEL PROYECTO									
	COND. DEL LUGAR	HUMEDAD DE PRUEBA	%								
ES	ND.	VALOR RELATIVO DE S	OPORTE %								
SOR	8 7	ESPESOR REQUERIDO	cm.								
ESTUDIO DE ESPESORES	MP.	HUMEDAD DE PRUEBA	%								
ES	90% COMP.	VALOR RELATIVO DE S	OPORTE %								
DE		ESPESOR REQUERIDO	cm.								
DIO	сомР.	HUMEDAD DE PRUEBA	%								
TU.	00%	VALOR RELATIVO DE S	OPORTE %								
E	95%	ESPESOR REQUERIDO	cm.								
	۰° ۰.	HUMEDAD DE PRUEBA	%								
	100% COMP.	VALOR RELATIVO DE S	OPORTE %								
	0	ESPESOR REQUERIDO	cm.								
OBSEE	RVACION	ES Y RECOMENDACION	IES:								
32021											
	EL L A	BORATORISTA	EI 1FF	E DEL LABORA	TODIO .	1/0	o. Bo.				
	EL LAI	BURATURISTA	EL JEF	L DEL LABURA	ORIO	VC	J. DU.				
INC	MANIII	1 ACLULAD TIMENET	ING 1 DE	E JESÚS DE LA	CDI IZ D	ING SEL	RGIO MON	TOVA EST	DINIO7A		
ING. MANUEL J. AGUILAR JIMENEZ			iivo. J. Di	L VESUS DE LA	UNUL R.	IING. SEP	VOIO MON	IOIN ESP	IINOLA		

CADDE		ACAMBARO - MORELIA		FARA LA	RECONSTRUC		ENSATE.		sto do 2006		
	ARRETERA: ACAMBARO - MORELIA FECHA DE RECIBO: 7 de agosto de 2006 RAMO: TZINTZIMEO - T. AEROPUERTO, DEL KM 41+000 AL 47+000 FECHA DE INFORME: 19 de agosto de 2006										
						FECHA DE	INFORME:	19 de ago	sto de 2006		
	IPCION DE				DLOR NEGRO						
	ITO MUES	TREADO	POZO A	CIELO	ABIERTO No 3						
BANCO	ANUU.										
= -	POZO A CIELO ABIERTO N° :					3					
F	ESTACIO	ACION				42+400					
IDENTIFI CACION	LADO					DERECHO					
10	CAPA				TERRENO NATURAL						
	TAMAÑIC	O MA VIMO				No. 4					
	TAMAÑO MAXIMO % DE RETENIDO EN MALLA DE 75 mm.					0.0					
		PASA EN MALLA DE 4.75				100					
₹		PASA EN MALLA DE 0.42				97					
ER		PASA EN MALLA DE 0.07				94					
ΑT		LENTE DE No. DE CAMP				34					
Σ		IQUIDO %	J 70			69					
Щ		PLASTICO %				27					
S		ACCION LINEAL %									
Ä		ELTO kg/m ³				913					
Ë	P.S. DEL LUGAR kg/m³										
CARACTERISTICAS DEL MATERIAL	P.S. Maximo kg/m³										
		AD OPTIMA %									
		AD NATURAL %									
		CTACION DEL LUGAR %									
		STANDAR SATURADO %)								
	EXPANS	SION %									
	CLASIFICACION S.C.T					MH					
	TIPO DE PRUEBA					PORTER MODIF	CADA VARIA	ANIEII			
		DEL PROYECTO	0/	-							
	COND. DEL LUGAR	HUMEDAD DE PRUEBA									
RES	OND	VALOR RELATIVO DE S									
SO		ESPESOR REQUERIDO									
ESTUDIO DE ESPESORES	90% COMP.	HUMEDAD DE PRUEBA VALOR RELATIVO DE S									
Ш	0 %0	ESPESOR REQUERIDO									
0		HUMEDAD DE PRUEBA									
Idn	COMP.	VALOR RELATIVO DE S									
EST	95% (ESPESOR REQUERIDO									
_	6	HUMEDAD DE PRUEBA		-							
	100% COMP.	VALOR RELATIVO DE S									
	38	ESPESOR REQUERIDO									
OBSEF	RVACION	ES Y RECOMENDACION	IES:								
	E	DODATORICTA	EL 155	- DE: :	ADODATODIO		\/o_D-				
	EL LA	BORATORISTA	EL JEF	-E DEL L	ABORATORIO		Vo. Bo.				
ING	MANII IEI	1 ACIULAR IMENET	ING 1 D	E IESIÍIS	DE LA CRUZ F) ING	SERGIO MOI	NTOVA ES	DINIO7A		
ING. MANUEL J. AGUILAR JIMENEZ			iivG. J. D	L JL3U3	PL LA CRUZ P	ing.	PERGIO IVIO	MIOIN ES	INOZA		

CARRE		ACAMBADO - MODELIA		ANA LA NECONSTRU		ATE. 302					
CARRETERA: ACAMBARO - MORELIA FECHA DE RECIBO: 7 de agosto de 2006 TRAMO: TZINTZIMEO - T. AEROPUERTO, DEL KM 41+000 AL 47+000 FECHA DE INFORME: 19 de agosto de 2006											
	*RAMO: TZINTZIMEO - T. AEROPUERTO, DEL KM 41+000 AL 47+000 FECHA DE INFORME: 19 de agosto de 2006 DESCRIPCION DEL MAT: ARENA LIMOSA CON GRAVAS DE COLOR CAFÉ CLARO										
DESCRI	PCION DE	L MAT: ARENA									
	DEPOSITO MUESTREADO POZO A CIELO ABIERTO No 1										
BANCO:	BANCO:										
	POZO A	CIELO ABIERTO N° :			1						
불	ESTACIO				41+300						
IDENTIFI CACION	LADO	J.,			DERECHO						
<u>0</u> 0	CAPA				TERRAPLEN						
	O/11 / 1				TERROR EER						
	TAMAÑO	OMIXAMO			3/4"						
	% DE RE	ETENIDO EN MALLA DE 7	75 mm.		0.0						
٦٢	% QUE I	PASA EN MALLA DE 4.75	mm.		75						
<u>R</u>	% QUE I	PASA EN MALLA DE 0.42	5 mm.		42						
쁘	% QUE I	PASA EN MALLA DE 0.07	5 mm.		20						
Ā	EQUIVA	LENTE DE No. DE CAMP	0 %								
I.	LIMITE L	IQUIDO %			32						
DE	INDICE I	PLASTICO %			INAP.						
S	CONTRA	ACCION LINEAL %									
C/	P.S. SUE	ELTO kg/m ³			1219						
ST	P.S. DEI	LUGAR kg/m ³									
<u>~</u>	P.S. Max	kimo kg/m³			1652						
CARACTERISTICAS DEL MATERIAL	HUMED	AD OPTIMA %			15.2						
	HUMED	AD NATURAL %			12.5						
	COMPA	CTACION DEL LUGAR %			0.0						
	V.R.S. E	STANDAR SATURADO %			65.7						
	EXPANS	SION %			0.09						
	CLASIFICACION S.C.T				SM						
				1							
		PRUEBA			PORTER MODIFICADA	VARIANTE II					
		DEL PROYECTO	0.4								
		HUMEDAD DE PRUEBA									
3ES	COND. I	VALOR RELATIVO DE S									
SOF		ESPESOR REQUERIDO									
SPE	90% COMP.	HUMEDAD DE PRUEBA									
Ě	% C	VALOR RELATIVO DE S									
IO O		ESPESOR REQUERIDO	i i								
ESTUDIO DE ESPESORES	COMP.	HUMEDAD DE PRUEBA									
STL	95% C	VALOR RELATIVO DE S									
ш	96	ESPESOR REQUERIDO									
	% L	HUMEDAD DE PRUEBA									
	100% COMP.	VALOR RELATIVO DE S									
		ESPESOR REQUERIDO	cm.								
OBSEF	RVACION	ES Y RECOMENDACION	IES:								
	EL LA	BORATORISTA	EL JEFE	DEL LABORATORIO	Vo. B	0.					
ING.	ING. MANUEL J. AGUILAR JIMENEZ			JESÚS DE LA CRUZ	R. ING. SERGI	O MONTOYA ESPINOZA					

OBRA:											
CARRE	IRRETERA: ACAMBARO - MORELIA FECHA DE RECIBO: 7 de agosto de 2000.										
TRAMO	RAMO: TZINTZIMEO - T. AEROPUERTO, DEL KM 41+000 AL 47+000 FECHA DE INFORME: 19 de agosto de 2006 ESCRIPCION DEL MAT: ARENA LIMOSA DE COLOR CAFÉ CLARO										
DESCRI	IPCION DE	EL MAT:									
DEPOSI	DEPOSITO MUESTREADO POZO A CIELO ABIERTO No 2										
BANCO:	ANCO:										
	POZO A	CIELO ABIERTO N° :					2				
I NO	ESTACION						41+950				
IDENTIFI CACION	LADO	0.1				IZQUIERDO)				
<u>0</u> 0	CAPA				-	TERRAPLEN					
	TAMAÑ	OMIXAM C					1"				
		ETENIDO EN MALLA DE 7					0.0				
۸L		PASA EN MALLA DE 4.75					88				
3	% QUE	PASA EN MALLA DE 0.42	5 mm.				53				
1	% QUE	PASA EN MALLA DE 0.07	5 mm.				22				
ΑM	EQUIVA	LENTE DE No. DE CAMP	O %								
	LIMITE I	-IQUIDO %					23.5				
DE	INDICE	PLASTICO %					INAP.				
٦S	CONTR	ACCION LINEAL %									
)	P.S. SU	ELTO kg/m ³					1228				
ST	P.S. DEL LUGAR kg/m ³										
R	P.S. Maximo kg/m³										
) TE	HUMED.	AD OPTIMA %									
CARACTERISTICAS DEL MATERIAL	HUMED	AD NATURAL %									
	COMPA	CTACION DEL LUGAR %									
O		STANDAR SATURADO %)								
	EXPANS										
	CLASIFI	CACION S.C.T					SM				
	TIPO DE	PRUEBA			I	DODI	ED MODIEI	CADA VARI	ANITE II		
		DEL PROYECTO				1 01(1	LIK WIODII I	CADA VAINI	-1N1 L 11		
		HUMEDAD DE PRUEBA	0/6								
w	COND. DEL LUGAR	VALOR RELATIVO DE S									
RE	NO 3	ESPESOR REQUERIDO									
ESC		HUMEDAD DE PRUEBA									
SP	00 00	VALOR RELATIVO DE S									
)E E	90% COMP	ESPESOR REQUERIDO									
ESTUDIO DE ESPESORES		HUMEDAD DE PRUEBA									
dn.	COMP	VALOR RELATIVO DE S									
EST	95%	ESPESOR REQUERIDO									
		HUMEDAD DE PRUEBA									
	100% COMP.	VALOR RELATIVO DE S									
	≒ ÿ	ESPESOR REQUERIDO									
00055	2) (4 0) 0.1										
OBSER	KVACION	IES Y RECOMENDACION	IES:								
	FI I ^	BORATORISTA	EI 10	EE DEI	LABORATO	RIO		Vo. Bo.			
	LLLA	DOMATOMOTA	LL JE	., L <i>U</i> LL	LADORATO			v О. DО.			
ING. MANUEL J. AGUILAR JIMENEZ			ING. J. I	DE JESÚ	ÚS DE LA CR	UZ R.	ING. S	SERGIO MOI	NTOYA ESI	PINOZA	

CADDE		ACAMBARO - MORELIA		FANA LA	RECONSTRUCCIO		ENSATE.		to do 2006	
CARRETERA: ACAMBARO - MORELIA FECHA DE RECIBO: 7 de agosto de 2006 TRAMO: TZINTZIMEO - T. AEROPUERTO, DEL KM 41+000 AL 47+000 FECHA DE INFORME: 19 de agosto de 2006										
							NFORME:	19 de ago	sto de 2006	
	PCION DE				DLOR CAFÉ CLAR	0				
	TO MUES	TREADO	POZO A	CIELO A	ABIERTO No 3					
BANCO:										
_	POZO A	CIELO ABIERTO N° :				3				
# 6	ESTACIO				42+400					
IDENTIFI CACION	LADO	-	I			DERECHO				
□ O	CAPA			TERRAPLEN						
				_						
		OMIXAMO				1"				
		ETENIDO EN MALLA DE 7				0.0				
AL	_	PASA EN MALLA DE 4.75				87				
N.		PASA EN MALLA DE 0.42				51				
E,		PASA EN MALLA DE 0.07				25				
ΜA		LENTE DE No. DE CAMP	O %							
님	LIMITE L	IQUIDO %				24.5				
DE	INDICE I	PLASTICO %				INAP.				
٩S	CONTRA	ACCION LINEAL %								
)	P.S. SUE	ELTO kg/m ³				1200				
ST	P.S. DEL LUGAR kg/m ³									
띪	P.S. Max	kimo kg/m³								
CARACTERISTICAS DEL MATERIAL	HUMED	AD OPTIMA %								
	HUMED	AD NATURAL %								
	COMPA	CTACION DEL LUGAR %								
	V.R.S. E	STANDAR SATURADO %)							
	EXPANS	SION %								
	CLASIFI	CACION S.C.T				SM				
	TIDO DE	DDUEDA			PO	RTER MODIFIC	ADA VADI	ANTEIL		
	TIPO DE PRUEBA CURVA DEL PROYECTO				FOI	RIER WODIFIC	ADA VARI	AIN I E II		
		HUMEDAD DE PRUEBA	0.4							
(0		VALOR RELATIVO DE S								
RE	COND. I									
ESTUDIO DE ESPESORES		ESPESOR REQUERIDO	T i							
SPE	90% COMP.	HUMEDAD DE PRUEBA VALOR RELATIVO DE S								
EE	0%0									
ОО		ESPESOR REQUERIDO HUMEDAD DE PRUEBA	T i							
IDN	COMP.	VALOR RELATIVO DE S								
EST	95% 0									
ш	66	ESPESOR REQUERIDO		-+						
	100% COMP.	HUMEDAD DE PRUEBA VALOR RELATIVO DE S								
	9 S									
		ESPESOR REQUERIDO	·							
OBSEF	RVACION	ES Y RECOMENDACION	IES:	_			·	·		
	EL LA	BORATORISTA	EL JEF	E DEL L	ABORATORIO	,	Vo. Bo.			
						1				
ING. MANUEL J. AGUILAR JIMENEZ			ING. J. D	E JESÚS	DE LA CRUZ R.	ING. SI	ING. SERGIO MONTOYA ESPINOZA			

CADDE		ACAMBARO - MORELIA		ARA LA R	LCONSTRUCCIO		SATE.	do agosto do 2006		
	CARRETERA: ACAMBARO - MORELIA FECHA DE RECIBO: 7 de agosto de 2006 TRAMO: TZINTZIMEO - T. AEROPUERTO, DEL KM 41+000 AL 47+000 FECHA DE INFORME: 19 de agosto de 2006									
								de agosto de 2006		
	IPCION DE				OLOR ROJIZO (1	rezontle rojo	0)			
	TO MUES	TREADO	POZO A	CIELO AB	IERTO No 1					
BANCO:										
_	POZO A	CIELO ABIERTO N° :				1				
불	ESTACIO				41+300					
IDENTIFI CACION	LADO	-	I			DERECHO				
_ ე	CAPA				SUBRASANTE					
	_						<u> </u>			
		OMIXAM C				2"				
		ETENIDO EN MALLA DE 7				0.0				
٩F		PASA EN MALLA DE 4.75				61				
낊		PASA EN MALLA DE 0.42				36				
		PASA EN MALLA DE 0.07				19				
Σ		LENTE DE No. DE CAMP	0 %							
닖		LIQUIDO %				30				
DE		PLASTICO %				INAP.				
AS		ACCION LINEAL %								
2	P.S. SUELTO kg/m ³					1111				
CARACTERISTICAS DEL MATERIAL	P.S. DEL LUGAR kg/m ³									
		ximo kg/m³				1627				
		AD OPTIMA %				13.2				
		AD NATURAL %				11.3				
		CTACION DEL LUGAR %				0.0				
	V.R.S. E	STANDAR SATURADO %)			78				
	EXPANS					0.35				
	CLASIFI	CACION S.C.T				SM				
	TIPO DE	PRUEBA			POF	RTER MODIFICAT	DA VARIANT	FII		
		DEL PROYECTO			1 0.1		57 C V7 (I CI) (I V I			
		HUMEDAD DE PRUEBA	0/0							
S		VALOR RELATIVO DE S								
A E	VALOR RELATIVO D ESPESOR REQUERI									
ESC		HUMEDAD DE PRUEBA								
SP	90% COMP.	VALOR RELATIVO DE S								
)E E	%06	ESPESOR REQUERIDO								
0		HUMEDAD DE PRUEBA								
ESTUDIO DE ESPESORES	COMP.	VALOR RELATIVO DE S								
ES	95%	ESPESOR REQUERIDO								
		HUMEDAD DE PRUEBA								
	100% COMP.	VALOR RELATIVO DE S								
	3 8	ESPESOR REQUERIDO								
0005	N (A C'C'				<u>'</u>					
OBSER	RVACION	IES Y RECOMENDACION	IES:							
						1	_			
	EL LA	BORATORISTA	EL JEF	E DEL LAE	BORATORIO	Vo.	. Bo.			
						1				
		1 401111 45		- 150/10 -	op: :		010 1/2: :-	EODIL: 0 - :		
ING. MANUEL J. AGUILAR JIMENEZ			ING. J. DE	E JESUS D	E LA CRUZ R.	ING. SER	GIO MONTO	YA ESPINOZA		

CARRE		ACAMBADO - MODELIA		FANA LA	RECONSTRUCCIO		DECIDO:		sto do 2006		
	ARRETERA: ACAMBARO - MORELIA FECHA DE RECIBO: 7 de agosto de 2006 RAMO: TZINTZIMEO - T. AEROPUERTO, DEL KM 41+000 AL 47+000 FECHA DE INFORME: 19 de agosto de 2006										
						FECHA DE II	NFORME:	19 de ago	sto de 2006		
DESCRI	IPCION DE	EL MAT:	ARENA LIN	IOSA DE	COLOR ROJIZO						
DEPOSI	DEPOSITO MUESTREADO POZO A CIELO ABIERTO No 2										
BANCO:	BANCO:										
	POZO A	CIELO ABIERTO N° :				2					
트징	ESTACIO					41+950					
IDENTIFI CACION	LADO	0.1				IZQUIERDO					
<u>0</u> 0	CAPA				SUBRASANTE						
	57471					COBITION INTE	-				
	TAMAÑO	OMIXAM C				1 1/2"					
	% DE RE	ETENIDO EN MALLA DE 7	75 mm.			0.0					
7	% QUE I	PASA EN MALLA DE 4.75	mm.			66					
꼾	% QUE I	PASA EN MALLA DE 0.42	5 mm.			38					
쁘	% QUE I	PASA EN MALLA DE 0.07	5 mm.			20					
Ā	EQUIVA	LENTE DE No. DE CAMP	O %								
I.	LIMITE L	IQUIDO %				26					
DE	INDICE I	PLASTICO %				INAP.					
St	CONTRA	ACCION LINEAL %									
C/	P.S. SUE	ELTO kg/m ³				1087					
RISTI	P.S. DEL LUGAR kg/m ³										
	P.S. Max	kimo kg/m³									
1	HUMED	AD OPTIMA %									
CARACTERISTICAS DEL MATERIAL	HUMED	AD NATURAL %									
	COMPA	CTACION DEL LUGAR %									
	V.R.S. E	STANDAR SATURADO %)								
	EXPANS	SION %									
	CLASIFICACION S.C.T					SM					
	TIPO DE PRUEBA				POF	RTER MODIFIC	ADA VARIA	ANIEII			
		DEL PROYECTO									
	COND. DEL LUGAR	HUMEDAD DE PRUEBA									
RES	OND	VALOR RELATIVO DE S									
SOF		ESPESOR REQUERIDO	T i								
ESTUDIO DE ESPESORES	90% COMP.	HUMEDAD DE PRUEBA									
E	Ö %	VALOR RELATIVO DE S									
) DE		ESPESOR REQUERIDO	T i								
DIC	COMP.	HUMEDAD DE PRUEBA									
STL	95% CI	VALOR RELATIVO DE S									
Ш	92	ESPESOR REQUERIDO									
	% ₫.	HUMEDAD DE PRUEBA									
	100% COMP.	VALOR RELATIVO DE S									
		ESPESOR REQUERIDO	cm.								
OBSEF	RVACION	ES Y RECOMENDACION	IES:								
	EL LA	BORATORISTA	EL JEF	E DEL L	ABORATORIO	\	/o. Bo.	· ·			
ING.	ING. MANUEL J. AGUILAR JIMENEZ			E JESÚS	DE LA CRUZ R.	ING. SE	ERGIO MOI	NTOYA ESI	PINOZA		

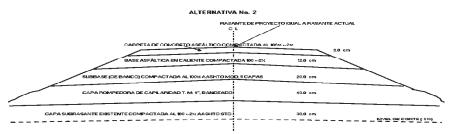
CARRE		ACAMBARO - MORELIA		A LA RECONSTRUCCION	FECHA DE RECIB		to de 2006			
				41±000 AL 47±000						
TRAMO		TZINTZIMEO - T. AEROF			FECHA DE INFORM	⊏. тэ ие ago	SIU UE 2000			
	PCION DE			ELO ABIERTO No 3						
BANCO:		TREADU	POZO A CIE	ELO ABIERTO NO 3						
DANCO.	WINOU.									
īī Z	POZO A	CIELO ABIERTO N°:			3					
IDENTIF! CACION	ESTACI	ON			42+400					
CAC	LADO				DERECHO					
	CAPA			S	SUBRASANTE					
	TAMAÑO	OMIXAM			1 1/2"					
		ETENIDO EN MALLA DE 7	'5 mm.		0.0					
_		PASA EN MALLA DE 4.75			69					
₹		PASA EN MALLA DE 0.42			43					
ш		PASA EN MALLA DE 0.07			21					
Ι¥Ι		LENTE DE No. DE CAMP								
2		IQUIDO %			28					
		PLASTICO %			INAP.					
S		ACCION LINEAL %								
CA		ELTO kg/m ³			1022					
Ξ		_ LUGAR kg/m³								
꼾		kimo kg/m³								
CARACTERISTICAS DEL MATERIAL		AD OPTIMA %								
		AD NATURAL %								
	COMPA	CTACION DEL LUGAR %								
	V.R.S. E	STANDAR SATURADO %	ı							
	EXPANS	SION %								
	CLASIFICACION S.C.T				SM					
	TIDO DE	PRUEDA		1 200	FED 1400/FIG 10 1 1 1 1	DIANTE				
		PRUEBA		PORT	TER MODIFICADA VA	ARIANTEII				
		DEL PROYECTO	0/							
"	. DE	HUMEDAD DE PRUEBA								
ESTUDIO DE ESPESORES	COND. DEL LUGAR	VALOR RELATIVO DE S								
SS		ESPESOR REQUERIDO HUMEDAD DE PRUEBA								
SPE	90% COMP	VALOR RELATIVO DE S								
Щ	0%0	ESPESOR REQUERIDO								
0		HUMEDAD DE PRUEBA								
ā	COMP.	VALOR RELATIVO DE S								
EST	95% (ESPESOR REQUERIDO								
_	6	HUMEDAD DE PRUEBA								
	100% COMP.	VALOR RELATIVO DE S								
	38	ESPESOR REQUERIDO								
OBSER	RVACION	ES Y RECOMENDACION	ES:							
	F	DOD 4 TODIOT:	-, -	NEL 1 ADODATOS:0						
	EL LA	BORATORISTA	EL JEFE D	DEL LABORATORIO	Vo. Bo.					
INIC		1 ACHII AD MAENEZ	INC 3 DE 3	CÚC DE LA ODUZ D	INC CERCIC:	AONTOVA FO				
ING. MANUEL J. AGUILAR JIMENEZ			ING. J. DE J	ESÚS DE LA CRUZ R.	ING. SERGIO MONTOYA ESPINOZA					

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

ANEXO 6

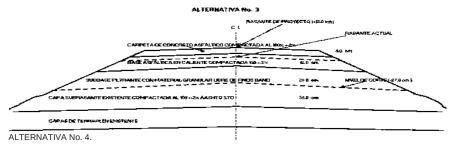
ALTERNATIVAS


De acuerdo los resultados de campo y laboratorio se presentan 4 propuestas de estructuras de pavimento con espesores necesarios para el tramo en estudio de las cuales dos consideran la reestructuración desde las terracerías y las dos últimas ofrecen una solución en las capas que conforman la estructura del pavimento, mismas que ofrecen mayores ventajas constructivas.

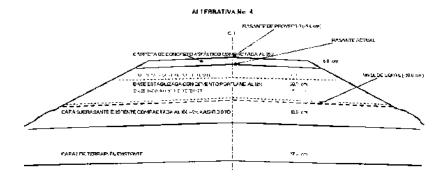
ALTERNATIVA No. 1.

CORTAR HASTA LA CAPA SUBRASANTE EXISTENTE, CONTRUIR UNA CAPA ROMPEDORA DE CAPILARIDAD DE 40 .0 cm MAS CAPAS DEL PAVIMENTO DE DISEÑO, ELEVANDOSE LA RASANTE EN 35.0 cm.

CORTAR EL ESPESOR NECESARIO (1.10 m), PARA CONSTRUIR CON MATERIAL NUEVO DE BANCO DESDE LA SUBRASANTE DE 30.0 cm, LA CAPA ROMPEDORA DE CAPILARIDAD DE 40 .0 cm MAS CAPAS DEL PAVIMENTO DE DISEÑO; CONSERVANDO EL NIVEL DE RASANTE ACTUAL.



UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO


FACULTAD DE INGENIERIA CIVIL

ALTERNATIVA No. 3.

CORTAR EL ESPESOR DE LA CARPETA ASFÁLTICA MAS LA BASE EXISTENTES (27.0 cm), PARA CONSTRUIR CON MATERIAL GRANULAR LIBRE DE FINOS LA CAPA DE SUBBASE DE 20.0 cm, MAS LAS CAPAS DEL PAVIMENTO DE DISEÑO; ELEVANDOSE LA RASANTE ÚNICAMENTE 13.0 cm.

RECUPEAR 30.0 cm A PARTIR DE LA SUPERFICIE DE RODAMIENTO ACTUAL, RECARGAR EL MATERIAL NECESARIO, PARA GARANTIZAR UN ESPESOR DE CAPA TERMINADA DE 30.0 cm, ADICIONAR EL 12.0% DE CEMENTO PORTLAND, Y CONFORMAR UNA CAPA DE BASE ESTABILIZADA, MAS UNA CARPETA DE CONCRETO ASFÁLTICO DE 5.0 cm DE ESPESOR.

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Como ya se describió anteriormente la gran mayoría del tramo en estudio se ubica en terraplén y en tangente donde se combinan dos situaciones de operación del camino que deben ser tomadas en cuenta para el proceso de reconstrucción, que son el limitado ancho de corona y las altas velocidades que desarrollan los vehículos debido al alineamiento.

Debido a lo anterior se recomienda optar por una estructuración que comprenda únicamente las capas del pavimento, con la finalidad de obtener un proceso ágil y con el mínimo de riesgo para los usuarios; esta se definirá posteriormente según el análisis correspondiente y se explicará el Proceso Constructivo como se describe en el Capítulo 3 de esta presentación

ALTERNATIVA DEFINITIVA

ALTERNATIVA No. 4 RESENT DE PROTECULAS AMIL CARMETA DE CONSTITUTA D'ACTUAL CARMETA SE SE SENTE CONSTITUTA AL INC. CARMETA D'ACTUAL CARMETA DE TORRES D'ACTUAL CARMETA DE CONSTITUTA DE LA INC. CARMETA D'ACTUAL CARMETA DE CONSTITUTA D'ACTUAL CARMETA DE CONSTITUTA D'ACTUAL CARMETA DE CONSTITUTA D'ACTUAL CARMETA D'ACTUA

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

1.2.- Estudio Hidrológico

1.2.1.- Zonas Inestables y de Riesgo

Uno de causales de fallas en los pavimentos es la saturación de sus terrearías, por lo que este estudio está enfocado a determinar los sitios en que por saturación pluvial presenten zonas inestables y de alto riesgo, siendo necesario proyectar en dichos sitios obras hidráulicas que garanticen la estabilidad de la obra en condiciones extremas de saturación pluvial y fluvial ocasionados por cuestiones climatológicas y de operación.

1.2.2.- Hidrológica

El lago de Pátzcuaro-Cuitzeo y Laguna de Yuriria comprende una superficie de 4,269.59 km2 en Michoacán. El lago de Pátzcuaro, el de Cuitzeo y la laguna de Yuriria ligan su origen al sistema volcánico que fue afectado por fallas durante largos periodos de erosión las amplias depresiones han sido azolvadas, reflejándose principalmente en el lago de Cuitzeo.

En la zona central de la porción de esta cuenca se localiza el distrito de riego "Morelia-Queréndaro". En la porción suroeste se encuentra el distrito No. 21 "Tzurumutaro".

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

1.2.3 Almacenamientos

En esta porción del estado se localiza el mayor número de obras de almacenamiento, entre las que sobresalen: la presa Tepuxtepec sobre el río Lerma, con una capacidad de 585,000,000 m3 de agua; y la de Cointzio sobre el río Grande de Morelia, que tiene una capacidad total de 84,800,000 m3 y es usada para abastecer de agua potable a la ciudad de Morelia.

Los almacenamientos de esta región son aprovechados también en la generación de energía eléctrica, por lo que esta porción tiene una gran importancia dentro del marco económico del estado.

1.2.4 Climatología

El clima de la región, de acuerdo con el sistema Kôpen Gager, modificado por García, se clasifica como templados subhumedos con precipitaciones en verano, y menos del 5.0% en el invierno, la precipitación media anual varía de 600 a 800 mm, y la temperatura media anual, va de 16° C a 24° C , recomendándose mantener las precauciones necesarias durante la época de lluvias, para evitar la saturación de las capas en proceso, y con ello atrasos en el cumplimiento del programa de obra.

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

1.3 ESTUDIO GEOMETRICO

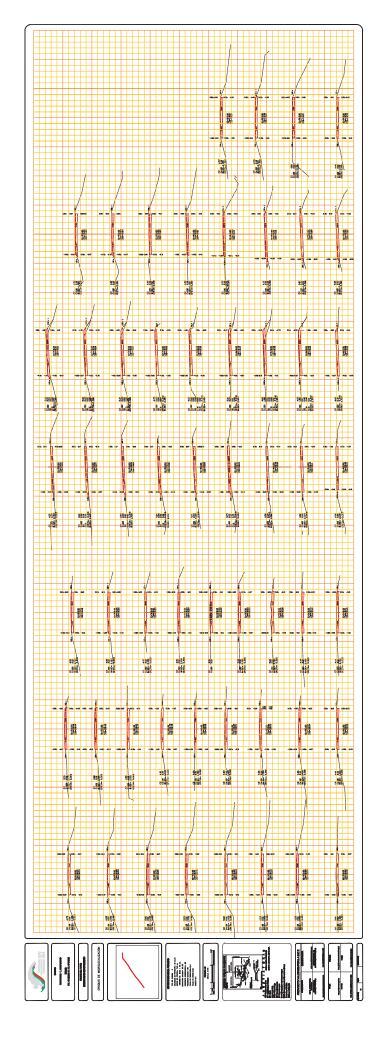
Con la finalidad de optimizar la operatividad del camino en cuanto a velocidad vehicular y seguridad se realizaron una serie de actividades geométricas tales como:

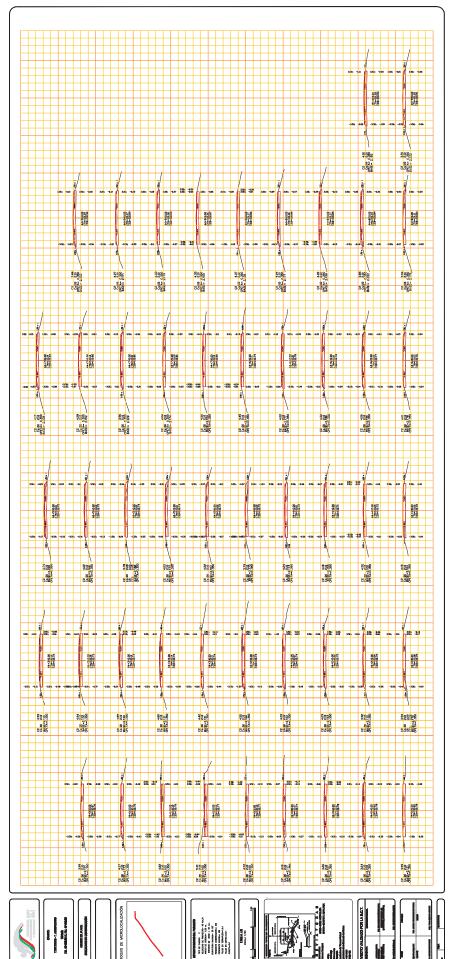
Calculo de curvas verticales y horizontales Anchos de corona Zona de acotamientos Velocidades

Presentándose en el anexo No. 7 los proyectos respectivos de:

Planta de Proyecto Geométrico.

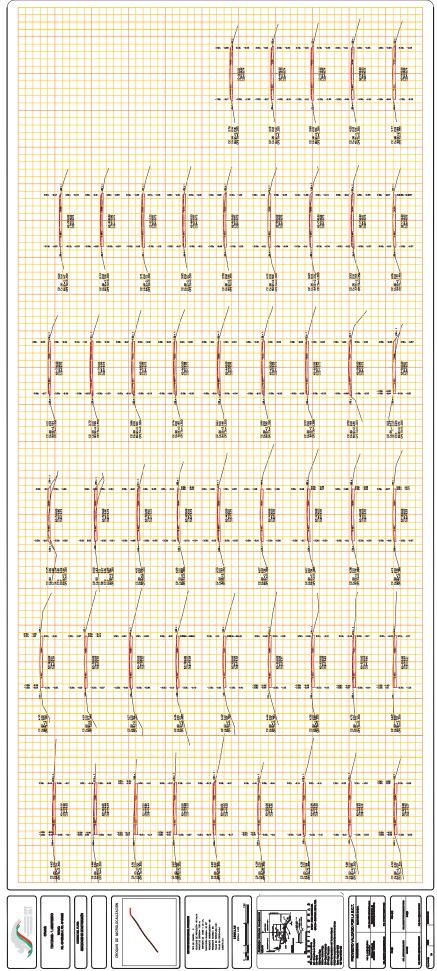
Secciones Transversales del Camino.

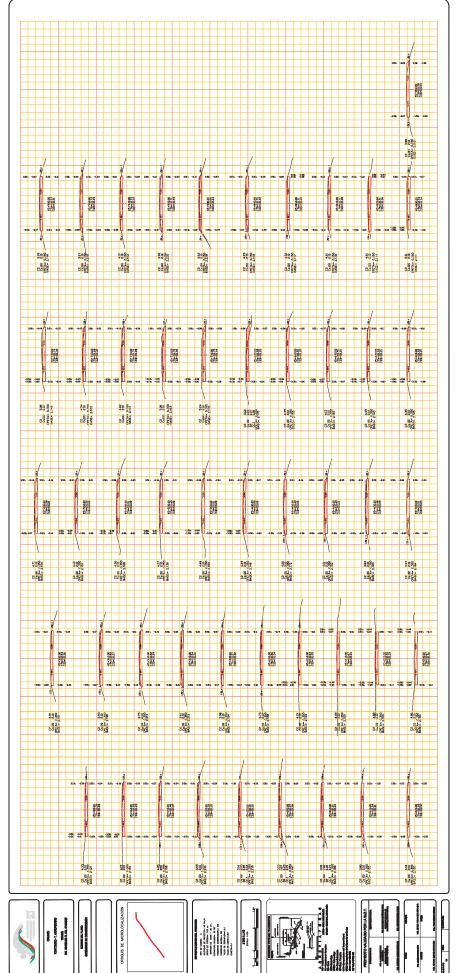




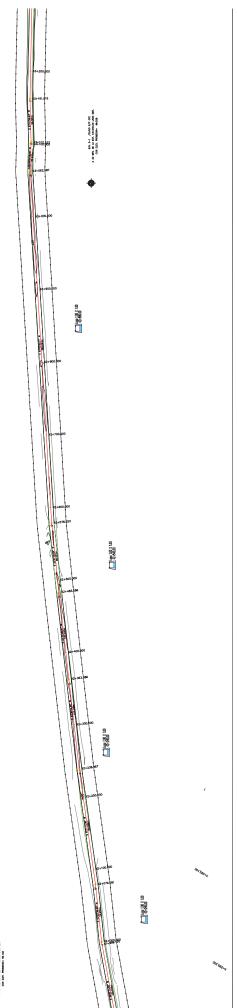
UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

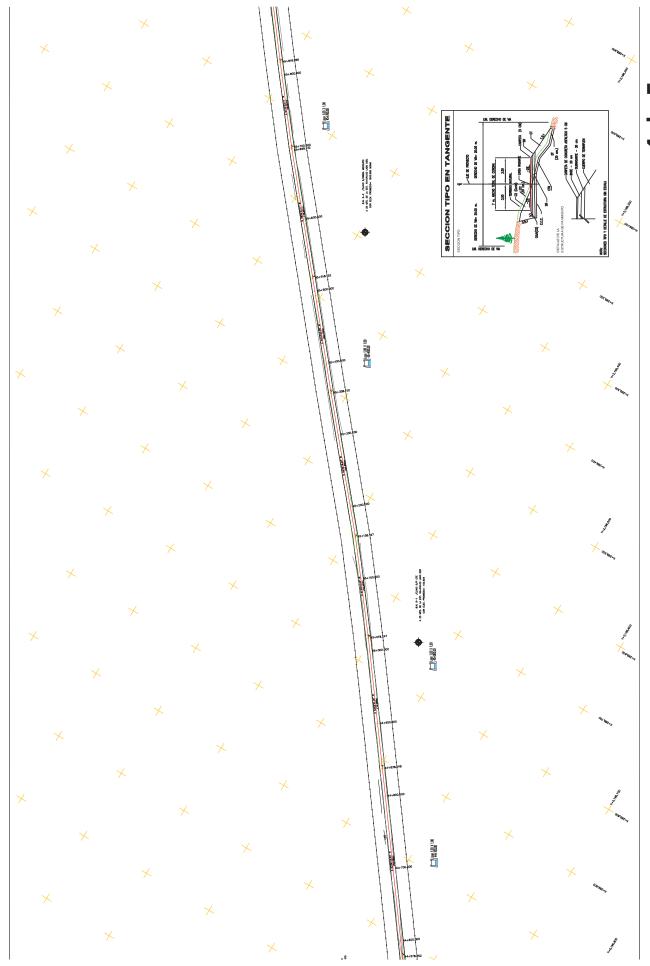
FACULTAD DE INGENIERIA CIVIL

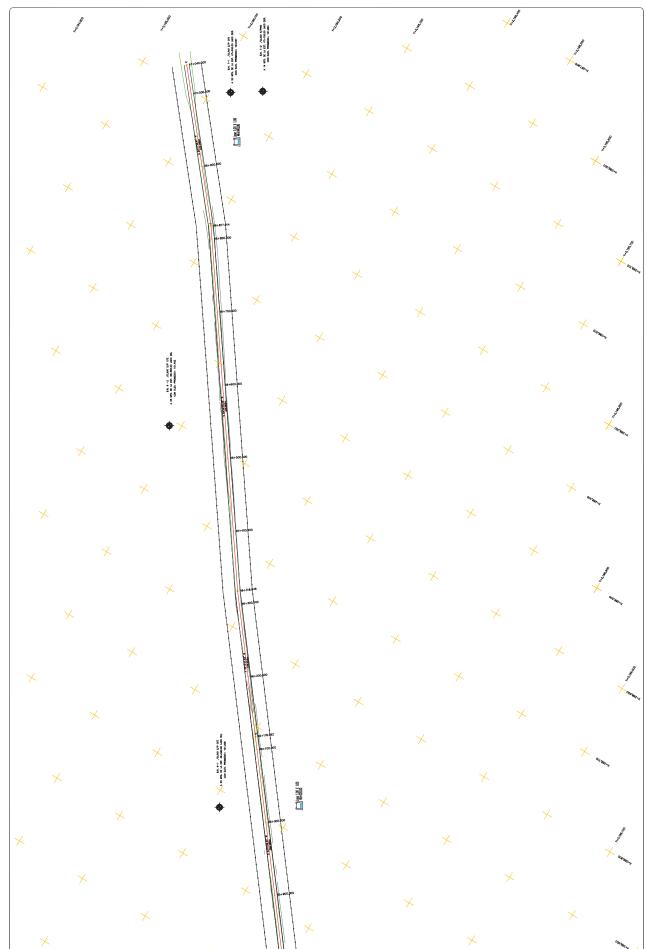












1 de 5

CON UTAL NATIONAL PROPERTY.

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

1.4.-Estudio Topográfico

1.4.1.- TOPOGRAFIA

En la actualidad, la topografía es una de las partes más importantes que intervienen dentro de de la construcción de obras de ingeniería en todos los campos.

La topografía es la ciencia que estudia el conjunto de principios y procedimientos que tienen por objeto la representación gráfica de la superficie de la tierra, con sus formas y detalles, tanto naturales como artificiales. De "Topos" que significa lugar, y de "Grafos", descripción. Esta representación tiene lugar sobre superficies planas limitándose a pequeñas extensiones de terreno, utilizando la denominación de geodesia para áreas mayores. De manera muy simple, podemos decir que para un topógrafo la tierra es plana, mientras que para un geodesta no lo es.

Para eso se utiliza un sistema de coordenadas tridimensional siendo la X y la Y competencia de la planimetría, y la Z de la altimetría.

Los mapas topográficos utilizan el sistema de representación de planos acotados mostrando la elevación del terreno utilizando líneas que conectan los puntos con la misma cota respecto de un plano de referencia, denominadas curvas de nivel, en cuyo caso se dice que el mapa es hipsográfico. Dicho plano de referencia puede ser o no el nivel del mar, pero en caso de serlo se hablará de altitudes en lugar de cotas.

1.4.2 Trabajos Topográficos

La topografía es una ciencia geométrica aplicada a la descripción de la realidad física inmóvil circundante, es plasmar en un plano topográfico la realidad vista en campo, en el ámbito rural ó natural, de la superficie terrestre; en el ámbito urbano, es la descripción de los hechos existentes en un lugar determinado: muros, edificios, calles, entre otros.

Se puede dividir el trabajo topográfico como dos actividades congruentes: llevar "el terreno al gabinete" (mediante la medición de puntos ó relevamiento, su archivo en el instrumental electrónico y luego su edición en la computadora) y llevar "el gabinete al terreno" (mediante el replanteo por el camino inverso, desde un proyecto en la computadora a la ubicación del mismo mediante puntos sobre el terreno). Los puntos relevados o replanteados tienen un valor

mediante puntos sobre el terreno). Los puntos relevados o replanteados tienen un valor tridimensional, es decir, se determina la ubicación de cada punto en el plano horizontal (de dos dimensiones, norte y este) y en altura (tercera dimensión).

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

En obras civiles (edificios, puentes, etcétera) la tarea del topógrafo es previa al inicio de un proyecto y de apoyo imprescindible durante la construcción de la misma. El arquitecto ó ingeniero proyectista debe contar con un buen levantamiento planimétrico ó tridimensional del terreno y de "hechos existentes" (elementos inmóviles y fijos al suelo) ya sea que la obra se construya en el ámbito rural ó urbano. Realizado el proyecto en base a este relevamiento, el topógrafo se encarga del "replanteo" del mismo: ubica los límites de la obra, los ejes desde los cuales se miden los elementos (columnas, tabiques...); establece los niveles o la altura de referencia. Luego la obra avanza y en cualquier momento, el ingeniero jefe de obra puede solicitar un "estado de obra" (relevantamiento in situ) al topógrafo para verificar si se está construyendo dentro de la precisión establecida en los proyectos. La precisión de una obra varía: no es lo mismo una central nuclear que la ubicación del eje de un canal de riego.

1.4.3.-Mediciones

En agrimensura se utilizan elementos como la cinta de medir, podómetro, o incluso el número de pasos de un punto a otro.

En topografía clásica, para dar coordenadas a un punto, no se utiliza directamente un sistema cartesiano tridimensional, sino que se utiliza un sistema de coordenadas esféricas que posteriormente nos permiten obtener coordenadas cartesianas. Para ello necesitamos conocer dos ángulos y una distancia. Existen diversos instrumentos que pueden medir ángulos, como el teodolito , la estación total, etc. Para la medida de distancias tenemos dos métodos: distancias estadimétricas o distanciometría electrónica, siendo más precisa la segunda. Para el primer caso utilizaremos un taquímetro o cinta balizas y estadal y para el segundo la estación total.

En la actualidad se combina el uso del GPS con la estación total.

1.4.4.-Toma de Datos

Actualmente el método más utilizado para la toma de datos se basa en el empleo de una estación total, con la cual se pueden medir ángulos horizontales, ángulos verticales y distancias. Conociendo las coordenadas del lugar donde se ha colocado la estación es posible determinar las coordenadas tridimensionales de todos los puntos que se midan. Procesando posteriormente las coordenadas de los datos tomados es posible dibujar y representar

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

gráficamente los detalles del terreno considerados. Con las coordenadas de dos puntos se hace posible además calcular las distancias o el desnivel entre los mismos puntos aunque no se hubiese estacionado en ninguno. Se considera en topografía como el proceso inverso al replanteo, pues mediante La toma de Datos se dibuja en planos los detalles del terreno actual.

1.4.5.-Replanteo

Eje de rotación.

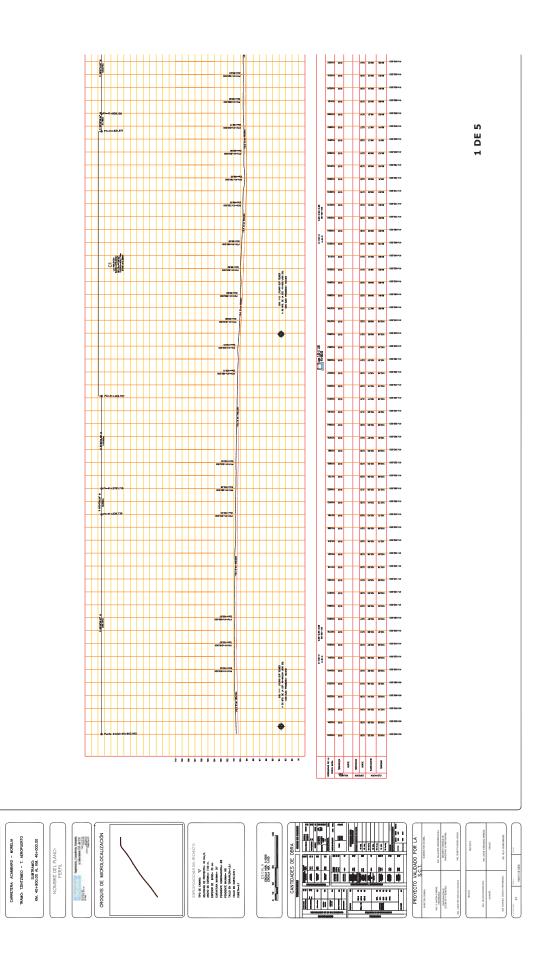
El Replanteo es el proceso Inverso a la Toma de Datos, consiste en plasmar en el terreno detalles representados en planos, como por ejemplo ubicar en el terreno el eje central del camino, ancho de calzada, los PT y PI de las curvas horizontales con respectivas elevaciones., anteriormente dibujados en planos. El replanteo al igual que la alineación son partes indispensables ya que la construcción de la obra no sería posible al omitirse estos.

1.4.5.1 Ejes del replanteo

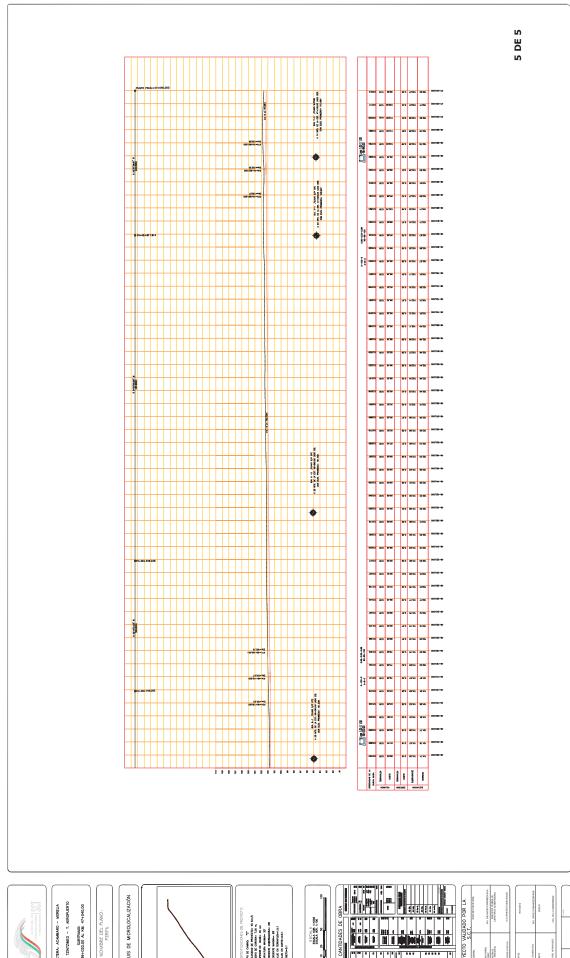
Los ejes que se necesitan para realizar el replanteo son:
Eje horizontal.
Eje vertical.
Eje de cotas.

1.4.6.-Planos Topográficos

En el anexo No.8 se presentan diversos planos topográficos relacionados a esta obra.


UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL


		CUADRO DE	CONS	STR	RUCCION	
LA	DO		DICTANIOLA	.,	COORDE	NADAS
EST	PV	RUMBO	DISTANCIA	V	Y	X
				1	2,198,236.5607	293,285.0801
1	2	S 88°46'56.33" W	339.736	2	2,198,229.3410	292,945.4206
2	3	S 83°54'58.29" W	39.980	3	2,198,225.1038	292,905.6658
3	4	N 87°30′12.38" W	143.046	4	2,198,231.3348	292,762.7555
4	6	S 72°42'32.39" W CENTRO DE CURVA DELTA = 40°29'50.15 RADIO = 579.000	400.778 " LONG. CURV SUB.TAN.= 2			292,380.0901 292,732.8806
6	7	S 52°08'38.94" W	27.186	7	2,198,095.5303	292,358.6253
7	8	S 48°51'10.55" W	139.974	8	2,198,003.4285	292,253.2218
8	9	S 53°03'36.89" W	79.951	9	2,197,955.3798	292,189.3194
9	10	S 51°11'14.46" W	159.886	10	2,197,855.1670	292,064.7362
10	11	S 52°36′04.66" W	124.118	11	2,197,779.7828	291,966.1331
11	12	S 52°44'09.91" W	120.000	12	2,197,707.1243	291,870.6305
12	13	S 53°01'09.84" W	95.437	13	2,197,649.7146	291,794.3916
13	14	S 55°42'53.71" W	484.064	14	2,197,377.0361	291,394.4361
14	15	S 60°54'18.16" W	39.946	15	2,197,357.6118	291,359.5303
15	16	S 57°41'56.64" W	59.381	16	2,197,325.8805	291,309.3382
16	17	S 60°19'47.39" W	340.574	17	2,197,157.2943	291,013.4171
17	18	S 55°27'28.91" W	219.998	18	2,197,032.5531	290,832.2021
18	19	S 56°53'09.60" W	179.985	19	2,196,934.2261	290,681.4493
19	20	S 56°55'28.68" W	239.998	20	2,196,803.2491	290,480.3420
20	21	S 55°59'42.80" W	275.893	21	2,196,648.9524	290,251.6289
21	22	S 56°21'36.96" W	159.889	22	2,196,560.3790	290,118.5157
22	23	S 53°06'33.43" W	259.996	23	2,196,404.3059	289,910.5757
23	24	S 53°02'51.36" W	179.999	24	2,196,296.0992	289,766.7320
24	25	S 51°55'14.44" W	139.950	25	2,196,209.7849	289,656.5694
25	26	S 49°35'18.24" W	199.955	26	2,196,080.1592	289,504.3222
26	27	S 50°07'20.25" W	160.000	27	2,195,977.5751	289,381.5360
27	28	S 49°59'37.11" W	179.981	28	2,195,861.8705	289,243.6757
28	29	S 51°33'23.74" W	119.964	29	2,195,787.2839	289,149.7172
29	30	S 52°14'08.22" W	299.995	30	2,195,603.5620	288,912.5600
30	31	S 52°14'01.83" W	199.954	31	2,195,481.1023	288,754.4932
31	32	S 54°59'58.55" W	499.869	32	2,195,194.3864	288,345.0266
32	33	S 50°37'28.61" W	222.085	33	2,195,053.4959	288,173.3534

LONGITUD = 6,140.035 m

3 DE 5

100,334.0°

CARRETERA: ACAMBARO - MOREUA IRAMO: TZINTZIMEO - T. AEROPUERTO SUBTRAMO: KM. 48+020.00 AL KM. 47+040.00

CONTRACTOR OF THE STATE OF THE

PROYECTO VALIDADO POR LA S.C.T.	ABD NO D NO	NO. SAVIORIEFEMBEZANIA	SASCIENT CEMPACIE CAPATIBAS ALHBOYCOMS.	IN CLERALISTO MURIO ANADS	
PROYECTO VAL	DRICCOLOROPAL.	N.G.G. ANTON ONDIG.	STORES Y PRODUCE	IND. AGUSTN WARDING CASTILLO	

0.000.000	843, LORICE PERMANDEZISPINCIA	ONNO	HIG. PUX GONDSHOOZ	CINE
101150	IN G. J ESCOS PAMBIO DÁ/Z	UNACTO	NS ASAMBLE CO FID HERMADEZ	0.000,000

TESIS PROFESIONAL SERGIO MONTOYA ESPINOZA

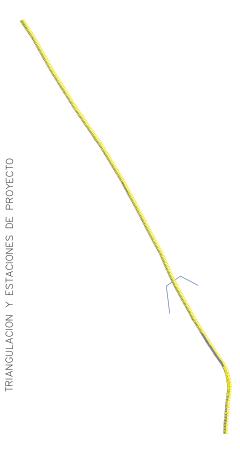
FACULTAD DE INGENIERIA CIVIL

OBRA: SERVICIO DE SUPERVISION Y CONTROL DE CALIDAD DE LA OBRA:

MANTENIMIENTO DE LA AUTOPISTA MARAVATIO-ZAPOTLANEJO TRAMO: DEL KM 41+000 AL KM 47+000

SUPERVISION: SUPERVISION, CONSULTORIA, ASESORIA Y LABORATORIO, S.A. DE, C.V.

SUPERFICIE DE RODAMIENTO


PLANOS TOPOGRAFICOS

TESIS PROFESIONAL SERGIO MONTOYA ESPINOZA

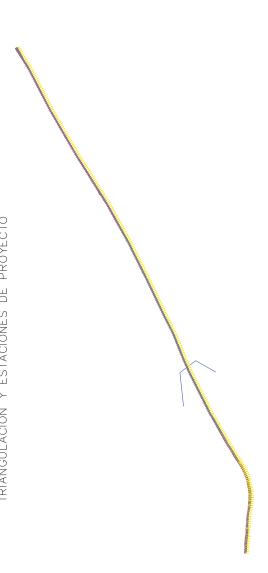
FACULTAD DE INGENIERIA CIVIL

ESTUDIO Y PROYECTO EJECUTIVO PARA LA EVALUACION DEL PAVIMENTO PARA SU RECONSTRUCCION DEL KM. 41+000 AL KM. 47+000, DEL TRAMO LIMITES DE ESTADOS GUANAJUATO - MICHOACAN, TRAMO SAN JOSE, ACAMBARO- MORELIA EN EL ESTADO DE MICHOACAN

PLANOS TOPOGRAFICOS

6

PLANOS TOPOGRAFICOS


UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

TESIS PROFESIONAL SERGIO MONTOYA ESPINOZA

FACULTAD DE INGENIERIA CIVIL

ESTUDIO Y PROYECTO EJECUTIVO PARA LA EVALUACION DEL PAVIMENTO PARA SU RECONSTRUCCION DEL KM. 41+000 AL KM. 47+000, DEL TRAMO LIMITES DE ESTADOS GUANAJUATO — MICHOACAN, TRAMO SAN JOSE, ACAMBARO— MORELIA EN EL ESTADO DE MICHOACAN

TRIANGULACION Y ESTACIONES DE PROYECTO

Topográfia mediante triangulación de puntos

FACULTAD DE INGENIERIA CIVIL

1.5.-ESTUDIO DE TRANSITO

Para realizar el diseño de pavimentos, un parámetro a considerar es el conocimiento de :

Número de vehículos que transitan ó se prevea transitarán por el pavimento a diseñar Tipo de vehículos Intensidad de cargas Incremento anual vehicular

Estos datos es posible obtenerlos de las siguientes formas:

Directa: Realizando en el sitio un aforo vehicular en el mes crítico de afluencia vehicular

Indirectos: Recabando información del departamento de ingeniería de transito de la S.C.T.

En nuestro caso particular para determinar el volumen (TDPA), la composición vehicular y su tasa de crecimiento, se efectuó el método directo mediante un aforo vehicular de la zona recabando los datos durante 6 horas por día y durante un periodo de 3 días tomando las horas de mayor tráfico (ver anexo 9)

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

ANEXO 9 ESTUDIOS DE TRANSITO

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

ANEXO 9 A

INFORME FOTOGRÁFICO

OSRA.	ESTUDIO N' PROYECTO SECUTIVO PARA LA RECONSTRUCCIÓN	EXPEDIENTE.	
CAFFETERA.	ACAMBARC - MCRELYA	ESCHARDE RECIBO.	07-a yo-96
TRAMO.	OTRIEL FORM STRIET	PAROTA DE ANGER	19-ago-96
SUBTEAMO.	KM 411090 AL 471030		

VISTA PANORAMICA DONDE SE APRECIA LA ESTACIÓN DE AFORO

SE APRECIA AFORADOR ANOTANDO LOS DATOS EN EL SENTIDO HACIA ACAMBARO

EN ESTA VISTA SE APRECIA EL AFORADOR ANONTANDO LOS DATOS CORRESPONDIENTES EN EL SENTIDO HACIA MORELIA

ACERCAMIENTO DONDE SE OBSERVA LA ESTACIÓN DE AFORO

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

ANEXO 9 B AFORO VEHICULAR

CARRETER		AMBARO - MO INTZIMEO - T.		ETO km	41+000 AL 4	7+000							RVADOR			
	15				ICULAR			N 104 4	6+901	0						
TIPO	ESQUEMA		,	,			но	RA			<u>,</u>	,	,	•	SUMA /190	96
111.7	20402011	12 - 13	13 - 14	14-13	9	7-18	15-19	19-20					9 0		/1990	
A-2	← >	121	108	97		126	125	107							722	38.2
A'-2		171	172	144		152	131	X17							887	46.9
B-2	and	25	25	25	1	15	16	12							118	6.25
B-3	600000														0	0.00
B-4	(00000)														0	0.00
C-2		· ·	25	25		12	12	ē							105	5.6
C-3	55	t:	3	4		4	3	28.							18	0.98
C-4	5														0	0.0
T2-S2															0	0.0
T2-S3															0	0.0
T3-S2		2	2	2		4	s	11.							17	0.90
T3-S3		2	đ	3		2	3								17	0.90
T3-S2-R4	~~~~~					20. 200-4									0	0.00
OTROS				t		2	1								4	0.2
	SUMA/HORA	351	348	304	0	331	306	249	0	0	0	0	0	0	1	889

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

ANEXO 9 C

OSRA: CARRETE	DA -		Y PROY		ситио	PARA LA	RECONS	TRUCOC	W.					FECHA		02-ago-0	6
RAMO:	<u> </u>				RTO, km	41+000	AL 47+000						OBS	PODAVE	ING. 2 04	J45U S 04	us colum
				AFOR	O VE	HICUL	AR EST	TACIÓN	N 104 4	6+900	0						
TIPO	ESQUEMA	t-a	3-10	10-11		Γ	12-14	14-13	10-14		Ι	<u> </u>	ļ	I	l	5,MA (1990)	96
A-2	A			1112			102	122	21			was the s				573	32.1
A'-2		126	134	141	- costonu	Savanico.	tra	188	144			eternico se			e-101,121.ec	879	49.2
B-2	(0000)	18	=	34			22	22	21							133	7.45
B-3	400000			(2000	eczniliecz	SETTING US	98999	CHARLES		JACTALLIS	escurero escurero				4	0.06
B-4	(COCCCC)															0	0.00
C-2		=	24	28			25	19	22							137	7.63
C-3			2				2	2								24	1.34
C-4																0	0.0
T2-S2																0	0.0
T2-S3	mar of 5															0	0.0
T3-S2				:					:							114	0.71
T3-S3	000 50 5			1			1	1			Looses II so					8	0.45
T3-62-R4	00 00 00 W	b														٥	0.00
OTROS			:	4			+									16	0.90
	SUMAHORA	239	282	324	0	0	338	310	292	0	0	0	0	0	0	. 1	785

ANEXO 9 ESTUDIOS DE TRANSITO

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

ANEXO 9 D

OBRA: CARRETE	RA:		Y PROYE		CUTIVO	PARA LA	RE CONS	TRUCCIÓ	N.					FECHA		03-ago-0	6
RAMO:	000000000000000000000000000000000000000				RTO, kn	41+000	AL 47+000)					OBS	RVADOR	(NG. J. DE	JE9J 50E	LA CRUIE
		0.02		AFOR	D VE	HICUL	AR E 91	TACIÓ	N KM 4	6+a00	0						
TIPO	ESQUEMA	9-10	10-11	11-12			12-14	H C	R A 15-18							SURA	96
A-2	₹	105	107	126			109	27	104							650	33.68
A'-2	₩	/28	ATS	170			160	157	161							949	49.17
B-2	800	24	22	22			21	26	22	2007-0-00						140	7.25
B-3	6 0000															0	0.00
B-4	(CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC															0	0.00
C-2		12	24	23			22	22	24							133	6.89
C-3	60 B] :		2			1	đ	•							19	0.98
C-4																0	0.00
T2-S2	₩. #\$							1								7	0.05
T2-S3																(0)	0.00
T3-S2		i		*	D-2002000			1						0-2923233		10	0.52
T3-S3	000-60-6	54	2	£			920									6	0.31
T3-S2-R4	WW 65-1	P	2					Ē	Y							4	0.21
OTROS		33	.02	e		•	39%	4	3							18	0.93
-	SUMA/HORA	275	338	356	0	0	318	321	322	0	0	0	0	0	0	-1	930

ANEXO 9 ESTUDIOS DE TRANSITO

FACULTAD DE INGENIERIA CIVIL

ANEXO 9 F

RESUMEN

OBRA:	ESUDIO Y PROYECTO EJECUTIVO PARA LA RECONSTRUCCIÓN	FECHA:	04-ago-06
CARRETERA:	ACAMBARO - MORELIA		
TRAMO:	TZINTZIMEO - T. AEROPUERTO, km 41+000 AL 47+000	OBSRVADOR:	ING. J. DE JESUS DE LA CRUZ R.

AFORO VEHICULAR ESTACIÓN KM 46+900

Е	DIRECCIÓN										
1	01-ago-06										
	02-ago-06										
	03-ago-06										
-											

OBSEV.	Hr	Hr DIA	Hr NOCHE	T. DIA	T. NOCHE		T. DIARIO	F. AJ.	TDPA
1889	6	14	10	4408	0.2	630	5037	0.9	4,534
1785	6	14	10	4165	0.2	595	4760	0.9	4,284
1930	6	14	10	4503	0.2	643	5147	0.9	4,632

TDPA = **4,483** VEHICULOS

DETERMINACIÓN DE LA CLASIFICACIÓN VEHICULAR													
		PORC	ENTAJES										
TIPO DE VEHICULO	01/08/06	02/08/06	03/08/06	PROMEDIO									
A-2	38.22	32.10	33.69	34.67									
A'-2	46.96	49.24	49.17	48.46									
B-2	6.25	7.45	7.25	6.98									
B-3	0.00	0.06	0.00	0.02									
B-4	0.00	0.00	0.00	0.00									
C-2	5.61	7.68	6.89	6.73									
C-3	0.95	1.34	0.98	1.09									
C-4	0.00	0.00	0.00	0.00									
T2-S2	0.00	0.00	0.05	0.02									
T2-S3	0.00	0.00	0.00	0.00									
T3-S2	0.90	0.78	0.52	0.73									
T3-S3	0.90	0.45	0.31	0.55									
T3-S2-R4	0.00	0.00	0.21	0.07									
OTROS	0.21	0.90	0.93	0.68									
SUMA:	100.00	100.00	100.00	100.00									

ANEXO 9 ESTUDIOS DE TRANSITO

FACULTAD DE INGENIERIA CIVIL

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

2.- Diseño del pavimento

En el diseño de un pavimento se consideran los conceptos siguientes:

Características mecánicas de las terracerías.

Este concepto se define mediante el estudio geotécnico practicado en sitio.

Características del Tránsito:

Este aspecto se define mediante el estudio de aforo practicado en sitio o por información del Departamento de Ingeniería de Tránsito del Centro de S.C.T.

Características Climatológicas:

Se definen con la práctica del estudio hidrológico realizado en sitio.

Criterios de Diseño:

En este trabajo se emplearon los siguientes criterios de diseño:

INSTITUTO DE IGENIERÍA DE LA UNAM

AASHTO

En nuestro caso particular se definieron los siguientes conceptos:

Características mecánicas de las terracerías

Para el caso de las terracerías, se consideró como VRS crítico, el calculado por el método del . de la UNAM;, donde

VRS medio = 3.97 % Desviación Estándar = 2.04 C. V = 0.52

VRS crítico = VRS medio x (1-(0.84 C V))

VRS crítico = 2.25%

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Mientras que para las demás capas por estar consideradas con material de banco, se toman para el diseño las que establecen las Normas de Calidad de Materiales de la SCT vigentes; quedando para el diseño los VRS siguientes:

Terracerías 2.25	5% (calculado)
------------------	----------------

Subrasante 20.0% (mínimo Norma SCT)
Subbase 50.0% (mínimo Normas SCT)
Base 100.0% (mínimo Normas SCT)

Características del Tránsito

Se consideró un tránsito de 4,483 vehículos diarios, de acuerdo con los aforos realizados durante la etapa de estudios de campo; con una tasa de crecimiento vehicular calculada del 2.5%; cuya distribución vehicular es la siguiente:

A-2	34.6%
A'-2	48.5%
B-2	7.0%
C-2	6.7%
C-3	1.1%
T3-S2	0.7%
T3-S3	0.6%
T3-S2-R4	0.8%
SUMA	100.0%

El horizonte de proyecto considerado es de 15 años, y el porcentaje de vehículos en el carril de diseño es del 50%, por tratarse de un camino de dos carriles de circulación, con lo que el factor de distribución vehicular es de 0.5.

Características Climatológicas

Se consideró la humedad del suelo más desfavorable por saturación pluvial .

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Criterios de Diseño:

Método del Instituto de Ingeniería de la UNAM

Considerando los parámetros descritos en la sub-capitulo anterior, se procedió al cálculo de la estructura del pavimento, aplicando par ello el método del Instituto de Ingeniería de la UNAM, de donde se obtuvo en primera instancia el tránsito acumulado en ejes equivalentes de 8.2 ton aplicando un nivel de confianza del 90% (Qu = 0.9), que se lista a continuación:

Para Z=0.0 cm 10'436,100 ejes

Para Z=15.0 cm 6'912,282 ejes Para Z=30.0 cm 7'498,504 ejes Para Z=60.0 cm 8'903,821 ejes

Cabe mencionar que los coeficientes de daño considerados en el cálculo del tránsito equivalente, son los especificados por el método, para caminos tipo "B", por tratarse de una obra de características geométricas que se apegan a las normas establecidas para caminos de este tipo.

Una vez obtenidos los ejes equivalentes para cada profundidad, se procedió a la determinación de los espesores sobre cada una de las capas involucradas, obteniéndose los siguientes:

Sobre la base 17.0 cm de G.E.
Sobre la subbase 29.1 cm de G.E.
Sobre la subrasante 31.7 cm de G.E.
Sobre las terracerías 105.8 cm de G.E.

Realizando la estructuración en espesores de Grava Equivalente (G. E.), se obtiene lo siguiente:

Carpeta 17.0 cm de G.E.
Base 12.1 cm de G.E.
Subbase 2.6 cm de G.E.
Subrasante 34.1 cm de G.E.
Subyacente 40.0 cm de G.E.
SUMA 105.8 cm de G.E.

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

De acuerdo con lo anterior, aplicando los factores de equivalencia del propio método, y optando por una estructura con capas de espesores técnicamente construibles, se obtiene la siguiente estructura del pavimento:

SUMA	98.0 cm = 106.0 cm de G. E
Subyacente	40.0 cm = 30.0 cm de G. E.
Subrasante	30.0 cm = 30.0 cm de G. E.
Base hidráulica	20.0 cm = 20.0 cm de G. E.
Asfáltico	8.0 cm = 16.0 cm de G. E.
Carpeta de concreto	

Las estructuras propuesta es superior en Grava Equivalente a la estructura requerida por el análisis, considerando espesores técnicamente construibles, sobre las terracerías, es decir hasta la capa subrasante.

Método mecanicista del Instituto de Ingeniería de la UNAM, DIS-PAV-5 versión 2

Se realizó el diseño del pavimento aplicando los lineamientos del método mecanicista del Instituto de Ingeniería de la UNAM, DIS-PAV – 5, versión 2, efectuando también la revisión por deformación permanente y fatiga, obteniéndose los resultados siguientes:

Para el tránsito en el carril de diseño, que es del 50% del TDPA por tratarse de una vía de 2 carriles (uno para cada sentido de circulación), estimándose un 80% de los vehículos pesados en este, se tiene que para el caso de la deformación se debe considerar una estructura que supere en vida útil los 10.3 millones de ejes, mientras que para el caso de la fatiga se debe superar los 7.3 millones de ejes estándar.

La estructura calculada por deformación permanente es la siguiente: Diseño por deformación para un camino de tipo normal, con un nivel de confianza de 90 % Para un tránsito de proyecto de 10.3 millones de ejes estándar

Сара	Espesor calculado	Espesor proyecto
Carpeta	8.5	8.5
Base granular	7.4	15.0
Sub-base	7.8	15.0
Subrasante	16.4	30.0

Fatiga

TESIS PROFESIONAL SERGIO MONTOYA ESPINOZA

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Revisando esta estructura por fatiga, considerando una base hidráulica, mas la carpeta de concreto asfáltico, se tiene:

Camino de tipo normal. Nivel de confianza en el proyecto : 90 %

Capa	H cm	VRSz %	E kg/cm²	V	Vida p Def	revisible Fatiga
Carpeta Base granular Sub-base Subrasante Terracería	8.5 15.0 15.0 30.0 Semi-inf	100.0 50.0 20.0 10.0	26000 3265 2010 1058 652	0.35 0.35 0.45 0.45 0.45	10.3 96.5 > 150 > 150	2.1
Deformaciór	Vida pre	evisible 0.3	Tránsito proyecto 10.3			

El diseño no es adecuado.

2.1

Realizando una estructuración, contemplando una base asfáltica de mezcla en caliente, más la carpeta de concreto asfáltico, se tiene:

7.3

Camino de tipo normal. Nivel de confianza en el proyecto : 90 %

Carpeta Base asfáltica Sub-base Subrasante Terracería	8.0 12.0 20.0 30.0 Semi-inf	50.0 20.0 10.0	26000 20000 2010 1058 652	0.35 0.35 0.45 0.45 0.45	> 150 > 150 > 150	> 150 9.3
Deformación Fatiga	Vida previsible > 150 9.3		Tránsito de 10.3 7.3	e proyecto)	

(OK)

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Realizando una estructuración, contemplando una base estabilizada con cemento Pórtland, mas una carpeta delgada de concreto asfáltico, se tiene:

Camino de tipo normal. Nivel de confianza en el proyecto: 90 %

Capa	Н	VRSz	E	V	Vida pre	
	cm	%	kg/cm ²		Def I	-atiga
Carpeta	5.0		26000	0.35		> 150
Base estabilizada	30.0		10000	0.35		19.9
Subrasante	30.0	20.0	1058	0.45	> 150	
Terracería	Semi-inf	10.0	652	0.45	> 150	
	Vida previsib	ole Tráns	ito proyecto			
Deformación		> 150	10.3			
Fatiga	19.9		7.3			

(OK)

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Anexo No 10 A

METODO DIS-PAV I.M.T./I.I. DE LA U.N.A.M.

CALCULO DE LA ESTRUCTURA Y REVISIÓN POR DEFORMACIÓN PERMANENTE Y FATIGA

ESTUDIO Y PROYECTO EJECUTIVO PARA LA RECINSTRUCCIÓN OBRA:

CARRETERA: ACÁMBARO - MORELIA, TRAMO: TZINTZIMEO - T. AEROPUERTO,

km 41+000 AL 47+000.

DATOS DE PROYECTO:

TDPA en el carril de diseño: 2,242 vehículos Tasa de crecimiento vehicular: 2.5% 15 años Periodo de diseño: Vehículos pesados en el carril de diseño: 80%

Composición del tránsito,

Se requiere conocer la composición del tránsito, introduzca el porcentaje de cada tipo de vehículo.

Tracto camión articulado Automóvil

A: 83.1 T2-S1: T2-S2: Autobus T3-S2: 0.7 T3-S3: 0.6

B2: 7.0 B3:

B4: Tracto camión doblemente articulado

T2-S1-R2:

Camión unitario T3-S1-R2: T3-S2-R2: C2: 6.7 T3-S2-R3: C3: 1.1 T3-S2-R4: 0.8 T3-S3-S2:

Camion remolque

C2-R2: C3-R2: C3-R3: C2-R3:

109

DISEÑO DEL PAVIMENTO

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Se han indicado las cargas máximas legales por eje, en toneladas, según aparecen en el decreto publicado el 7 de enero de 1997 (en algunos casos la carga por eje se ajustó para no sobrepasar la carga máxima total del vehículo). Puede modificarlas de acuerdo con su proyecto.

		Autobús B2
Eje	1	2
Tipo	Sencillo	Sencillo
Carga* Presión**	6.5 6.0	11.0 6.0
		Camión C2
Eje	1	2
Tipo	Sencillo	Sencillo
Carga* Presión**	6.5 6.0	11.0 6.0
		Camión C3
Eje	1	2
Tipo	Sencillo	Doble
Carga* Presión**	6.5 6.0	19.5 6.0

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO Camión T3-S2

FACULTAD DE INGENIERIA CIVIL

Eje	1	2	3		
Tipo	Sencillo	Doble	Doble		
Carga* Presión**	6.5 6.0	19.5 6.0	18.0 6.0		
		Camión T3-	S3		
Eje	1	2	3		
Tipo	Sencillo	Doble	Triple		
Carga* Presión**	6.5 6.0	19.5 6.0	22.5 6.0		
		Camión T3-	S2-R4		
Eje	1	2	3	4	5
Tipo	Sencillo	Doble	Doble	Doble	Doble
Carga* Presión**	5.7 6.0	17.1 6.0	15.7 6.0	8.8 6.0	15.7 6.0

COEFICIENTES DE EQUIVALENCIA DEL VEHICULO CARGADO

Autobús B2

EJE	PROFUNDIDAD					
	5	15	30	60	90	120
1 2					0.28 5.01	

DISEÑO DEL PAVIMENTO

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO FACULTAD DE INGENIERIA CIVIL TOTAL 2.40 2.73 3.93 4.99 5.29 5.41 Camión C2 EJE PROFUNDIDAD 5 15 30 60 90 120 1.12 0.62 0.37 0.29 0.28 0.27 1.28 2.11 3.55 4.69 5.01 5.14 TOTAL 2.40 2.73 3.93 4.99 5.29 5.41 Camión C3 PROFUNDIDAD EJE 15 30 60 90 120 1.12 0.62 0.37 0.29 0.28 0.27 2.50 3.30 3.34 4.34 4.61 4.72 TOTAL 3.62 3.92 3.71 4.63 4.89 4.99 Camión T3-S2 EJE PROFUNDIDAD 15 30 60 90 1 2.50 3.30 3.34 4.34 4.61 4.72 $2.46 \quad 2.78 \quad 2.42 \quad 2.87 \quad 2.98 \quad 3.03$ 3 TOTAL 6.08 6.70 6.13 7.50 7.87 8.02 Camión T3-S3 EJE PROFUNDIDAD

DISEÑO DEL PAVIMENTO

4.61

4.72

15

3.30

2.50

3

30

60

1.12 0.62 0.37 0.29 0.28 0.27

3.34 4.34

3.52 2.70 2.41 2.86 2.98 3.02

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

TOTAL	7.14	6.62	6.13	7.49	7.87	8.01
			Camio	ón T3-S	52-R4	
EJE		PROF	UNDII	DAD		
	5	15	30	60	90	120
1	1.07	0.42	0.20	0.15	0.14	0.13
2	2.43	2.47	1.96	2.19	2.25	2.28
3	2.38	2.01	1.37	1.40	1.41	1.42
4	1.88	0.38	0.10	0.06	0.06	0.06
5	2.38	2.01	1.37	1.40	1.41	1.42
TOTAL	10.13	7.30	4.99	5.21	5.27	5.29
2 3 4 5	1.07 2.43 2.38 1.88 2.38	0.42 2.47 2.01 0.38 2.01	0.20 1.96 1.37 0.10 1.37	0.15 2.19 1.40 0.06 1.40	0.14 2.25 1.41 0.06 1.41	0.13 2.28 1.42 0.06 1.42

Tránsito de proyecto en millones de ejes estándar para una profundidad de :

Z = 5 cm	Z = 15 cm	Z = 30 cm	Z = 60 cm	Z = 90 cm	Z = 120 cm
7.3	6.8	8.3	10.3	10.9	11.1

Se empleará el tránsito de proyecto determinado a 5 y 60 cm para diseño por fatiga y deformación permanente, respectivamente.

El tránsito de proyecto, en millones de ejes estándar, es :

(a) Por fatiga en las capas estabilizadas :	7.3
(b) Por deformación en capas no estabilizadas :	10.3

Capa	VRSz	VRSp	Mod de rigidez
Carpeta			26000
Base granular	100	100	3265
Sub-base	50	30	2010
Subrasante	20	20	1058
Terracería	10	10	652

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Se han calculado los valores como módulos de rigidez de capas no estabilizadas, a partir de la expresión: E=130 (VRSz^.7); esta ecuación se obtiene para condiciones generales.

Se proponen valores para las relaciones de Poisson de cada capa,

Capa	VRSz	VRSp	Mod de rigidez	Poisson
Carpeta			26000	0.35
Base granular	100	100	3265	0.35
Sub-base	50	30	2010	0.45
Subrasante	20	20	1058	0.45
Terracería	10	10	652	0.45

Diseño por deformación para un camino de tipo normal, con un nivel de confianza de 90 % Para un tránsito de proyecto de 15.8 millones de ejes estándar

Capa	Esp. diseño (cm)	
Carpeta Base granular Sub-base Subrasante	8.5 7.4 7.8 16.4	
Сара	Espesor calculado	Espesor proyecto
Carpeta Base granular Sub-base Subrasante	8.5 7.4 7.8 16.4	8.5 15.0 15.0 30.0

El diseño anterior previene contra la deformación excesiva; a continuación se revisa para prevenir el agrietamiento por fatiga,

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

DATOS Y RESULTADOS DEL DISEÑO (1ª Aproximación), considerando una base hidráulica, mas la carpeta de concreto asfáltico.

Camino de tipo normal. Nivel de confianza en el proyecto : 90 %

Сара	H cm	VRSz %	E kg/cm²	V	Vida p Def	revisible Fatiga
Carpeta	8.5		26000	0.35		2.1
Base granular	15.0	100.0	3265	0.35	10.3	
Sub-base	15.0	50.0	2010	0.45	96.5	
Subrasante	30.0	20.0	1058	0.45	> 150	
Terracería	Semi-inf	10.0	652	0.45	> 150	
Deformación Fatiga	Vida previ 10. 2.1		Tránsito pr 10. 7.3	3		

El diseño no es adecuado.

DATOS Y RESULTADOS DEL DISEÑO (2ª. Aproximación), considerando una base asfáltica de mezcla en caliente, mas la carpeta de concreto asfáltico.

Camino de tipo normal. Nivel de confianza en el proyecto : 90 %

Capa	H cm	VRSz %	E kg/cm²	V	Vida p Def	revisible Fatiga
Carpeta	8.0		26000	0.35		> 150
Base asfáltica	12.0		20000	0.35		9.3
Sub-base	20.0	50.0	2010	0.45	> 150	
Subrasante	30.0	20.0	1058	0.45	> 150	
Terracería	Semi-inf	10.0	652	0.45	> 150	
Deformación Fatiga	Vida previsi > 15 9.3		Tránsito proyecto 10.3 7.3			

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

DATOS Y RESULTADOS DEL DISEÑO

Camino de tipo normal. Nivel de confianza en el proyecto : 90 %

Capa	H	VRSz	E	V	Vida pı	evisible
-	cm	%	kg/cm²		Def	Fatiga
Carpeta	5.0		26000	0.35		> 150
Base estabilizada	30.0		10000	0.35		19.9
Subrasante	30.0	20.0	1058	0.45	> 150	
Terracería	Semi-inf	10.0	652	0.45	> 150	
	Vida previs	ible	Tránsito proyecto			
Deformación	> 15	50	10.3			
Fatiga	19.9)	7.3			

OK

Las respectivas memorias de cálculo se presentaN en el Anexo No 10 A

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Método AASHTO de los Estados Unidos de Norteamérica.

Tránsito

En lo referente al tránsito del tramo, se consideró un transito diario promedio anual de 4,483 vehículos como se mencionó anteriormente, con una tasa de crecimiento anual calculada de 2.5% de acuerdo con los datos proporcionados por la SCT, con una composición vehicular con las siguientes características:

A-2	34.6%
A'-2	48.5%
B-2	7.0%
C-2	6.7%
C-3	1.1%
T3-S2	0.7%
T3-S3	0.6%
T3-S2-R4	0.8%
SUMA	100.0%

Confiabilidad

Es la probabilidad de que un pavimento desarrolle su función durante su vida útil, en condiciones adecuadas para su operación.

Aquí se considera una confiabilidad "R" del 90%, lo cual nos indica que estamos permitiendo que el 10% de nuestra estructura de pavimento alcance al final de su vida útil una serviciabilidad igual a la final seleccionada en el diseño.

Desviación Estándar (So)

Es la cantidad de error estadístico presente en la ecuación de la AASHTO, y esta muy relacionada con la confiabilidad, dado que entre ambos componen el Factor de Seguridad.

La desviación estándar utilizada es de 0.45

Módulo de Resiliencia del Suelo (Mr)

Está directamente relacionado con el valor de CBR de Kentucky, dado que de los estudios previos de laboratorios, tenemos un valor de CBR de 20%, se tiene un Módulo de Resiliencia de 15,089 **psi**, para la capa subrasante.

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Serviciabilidad Inicial (Po)

Se considera que el índice de servicio inicial será de **4.5**, lo cual representa un pavimento en condiciones de muy buenas a excelentes, y es el valor recomendado por la AASHTO.

Serviciabilidad Final (Pt)

Al final de la vida útil, se considera que el índice de servicio será de **2.5** que es el establecido para carreteras en nuestro país.

Coeficiente de Drenaje (D)

El coeficiente de drenaje utilizado es de **1.0** en la capa superior, lo cual indica una condición de drenaje regular considerando algunas condiciones de saturación durante la vida útil del pavimento. Sin embargo, se considera un factor de drenaje de **0.95** en las capas inferiores, de acuerdo con el tiempo en que estas capas estarán expuestas a la saturación asociado a la calidad de las obras menores y complementarias con que contará la vía.

Coeficiente de Capa (a)

De acuerdo a los coeficientes propuestos por la AASHTO, se tomaron los valores siguientes:

0.44	Carpeta de concreto asfáltico		
0.38	Base asfáltica en caliente		
0.10	Subbase		

Tabla de coeficientes de capa

Cálculo del Número Estructural (SN)

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

El número estructural es función de los valores anteriores, se puede obtener mediante el programa, o bien mediante nomogramas. Para este caso se aplicó el programa, se calculo el número estructural que debería de tener el pavimento, para hacerlo adecuado a las condiciones y características particulares de nuestro caso. Todo esto mediante la siguiente ecuación:

$$T = \left| \frac{MZ + 2.51}{10.96} \right|^{3/2} \leq \left| \frac{P_{\pi} - P_{\pi}}{P_{\pi} + 1.5} \right|^{2} + MAR^{2.32} + 10^{-2.34},$$

Donde: K= 1/C

$$\mathcal{L}^{*}=0, \ 1+\left\lfloor \frac{9.75}{2.75} - \frac{5.76}{2.54} \right\rfloor$$

En donde:

T = Tránsito, expresado en ejes equivalentes a 8.2 Ton. Para la vida de diseño.

NE = Número Estructural adimensional

NE = a1*h1 + a2*h2*m2 +a3*h3*m3

ai ,hi : Coeficiente estructural y espesor de la capa i del pavimento.

mi : Coeficiente de drenaje de las capas de base y subbase granulares

Po = Índice de serviciabilidad inicial

Pt = Índice de serviciabilidad final

MR = Módulo de resiliencia del suelo de subrasante (kg/cm2)

FR = Factor de confiabilidad del diseño

FR = 10Zr*So

Zr = Coeficiente de Student para el nivel de confiabilidad (R%) adoptado.

So = Desviación normal del error combinado en la estimación de los parámetros de diseño y modelo de deterioro.

El número estructural que resuelve la ecuación es 3.83.

E) Espesores de las capas de estructura de Pavimento

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Finalmente se obtienen los espesores de Pavimento y características de cada una de las capas que formarán la estructura del pavimento. Todo esto de acuerdo con la aportación del número estructural de cada una de ellas dependiendo de las características particulares de cada capa.

La estructura podrá ser el óptima con las siguientes alternativas:

Carpeta de concreto asfáltico	8.0 cm.
Base asfáltica en frío	12.0 cm.
Subbase	20.0 cm

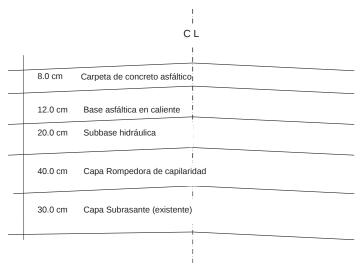
Estructura recomendada

Como los espesores de capas que ofrecen mayor seguridad para las solicitaciones de carga tanto por deformación, como para prevenir el agrietamiento por fatiga, son los calculados mediante el método DIS-PAV, se establece como definitiva la calculada como tercera alternativa por este método.

Por otro lado se tiene que los daños en el pavimento, tienen su origen, sin duda en la mala calidad del material con que se construyó la primera parte del terraplén, que es el terreno natural de la zona, es decir de prestamos laterales, aunado a la presencia de agua acumulada en la mayoría del tramo, debido a que topográficamente se aloja en una zona de muy poca pendiente.

De acuerdo con lo anterior, se deberá colocar una capa filtrante en la parte inferior de las que constituyan el pavimento, a fin de protegerlas de la humedad en exceso que las ponga en mayor riesgo de falla; que dando la estructura definitiva de la siguiente manera:

Carpeta de concreto	
asfáltico	8.0 cm
Base asfáltica en caliente	12.0 cm
Subbase hidráulica	20.0 cm
Subrasante	30.0 cm



UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Que se puede apreciar con detalle en la siguiente figura:

Las respectivas memorias de cálculo se presentan en el Anexo No 10 B

kay:

F- Front

1- Single

D- Day

TESIS PROFESIONAL SERGIO MONTOYA ESPINOZA

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Anexo No 10 B

METODO DIS-PAV AASHTO

CALCULO DE LA ESTRUCTURA Y REVISIÓN POR DEFORMACIÓN PERMANENTE Y FATIGA

OBRA: ESTUDIO Y PROYECTO EJECUTIVO PARA LA RECINSTRUCCIÓN CARRETERA: ACÁMBARO - MORELIA, TRAMO: TZINTZIMEO – T. AEROPUERTO, km 41+000 AL 47+000.

30-08-2006 Job Number: ESTUDIO Y PROYECTO EJEC PARA LA RECONSTRUCCION State: MICHOACAN Agency: SCT Location C. ACAMBARO-MORELIA T TZINTZIMEO - ENT AEROPUERTO Compuny Contractor Enginer: J DE LA CRUZ R km 41+000-47+000 _____Traffic Conversion To E 16's___ E 18 CONVERSION FROM VEHICLE DATA Estimated Rigid Depth = Structural Number = 3 83 Pt = Annual Growth Rate = Design Life NUMBER/(D M,Y) F- 14 30 1 N- 24 20 2 1,087 D N- 24 20 2 R- 39 60 2 R- 2.00 1 F- 14.30 1 F- 14 30 1 M- 0 00 H- 42 90 R- 24.20 1 oo R− 49 50 3 13 D F 14.30 1 F 12 54 1 25 D C R- 88 44 3 18 D R- 42.90 2 Rigid E 18's

DISEÑO DEL PAVIMENTO

R-Read Axle

3- Triden Axle

7- Year

Middle

Tanden

Month

M-

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL 30-08-2006

State: MICHOACAN Job Number: ESTUDIO Y PROYECTO EJEC Agency: SCT PARA LA RECONSTRUCCIÓN Agency: SCT

Location: C. ACAMBARO-MORELIA Company: Contractor: T. TZINTZIMEO - ENT

Enginer: J DE LA CRUZ R AEROPUERTO km 41+000-47+000

Structural Number	=	3.83		
Design E 18's	=	11,714,140		
Reliability	=	90.00	percent	
Overall Deviation	=	0.45		
Resilent Modulus	=	15,089.0	psi	
Initial Serviceability	=	4.50		
Terminal Serviceability	=	2.50		

Layer	Layer	Drainage	Layer	
Number	Coefficient	Coefficient	Thickness	a(i)*Cd*t
2222222	==== a (i)=====:	***** Cd *****	t	
1	0.44	1.00	3.15	1.39
2	0.38	0.95	4.72	1.70
3	0.10	0.95	7.87	0.75
4				
5				
6				

Total SN = 3.84

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL 30-08-2006

State: MICHOACAN Job Number: ESTUDIO Y PROYECTO EJEC

Agency: SCT PARA LA RECONSTRUCCIÓN Location: C. ACAMBARO-MORELIA

Company: Contractor: T. TZINTZIMEO - ENT

Enginer: J DE LA CRUZ R AEROPUERTO

km 41+000-47+000

Structural Number Design E 18's 11,714,140

90.00 percent Reliability 0.45

Overall Deviation = Resilent Modulus = Initial Serviceability = Terminal Serviceability = 15,089.0 psi 4.50 2.50

Drainage Layer Layer Layer Coefficient Coefficient Thickness a(i)*Cd*t Number ***** (i)***** ***** Cd ***** **** t **** 2222222 0.44 1.00 1 1.97 0.87 1.05 2 0.24 11.81 2.98 3 4 5 6

Total SN = 3.84

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

3.- PROCESO CONSTRUCTIVO ALTERNATIVA DEFINITIVA.

Un concepto importante para garantizar la calidad de una obra al menor costo posible es el aspecto constructivo de la misma, Para ello en este trabajo se propone en siguiente proceso constructivo:

3.1-.- Pavimento Actual

Con el empleo de máquina recuperadora del tipo RS-500 de Caterpillar o similar, se realizará el corte de los 30.0 cm superiores a partir de la superficie de rodamiento actual, adicionando el 12.0% (en peso) de cemento Pórtland, que equivale aproximadamente a 210 kg/m³ del material existente, previo al corte, considerando también el recargue del material que pudiera faltar para garantizar el espesor de capa terminada de 30.0 cm, esto debido a las fuertes deformaciones existentes.

3.2.-Base Estabilizada

Una vez contando con el material cortado, el recargue si fuera el caso, y el cemento Pórtland, se realizará el mezclado correspondiente, hasta lograr un material de características homogéneas, adicionando durante este paso el agua necesaria para obtener la óptima de compactación. Inmediatamente después del mezclado, se perfilará la capa, dotándola del bombeo y sobreelevaciones de proyecto, y se le aplicará la compactación necesaria, hasta alcanzar el 100% de su P. V. S. M. calculado con la prueba AASHTO .

Es importante resaltar que el tiempo que transcurra desde la aplicación del agua de compactación, hasta alcanzar finalizar la capa, no deberá ser mayor de 2 horas.

Sobre la base estabilizada debidamente terminada, se aplicará un riego de impregnación con emulsión asfáltica para impregnar, del tipo ECI-60, o similar, a razón de 1.4 a 1.6 lt/m², que funcionará en esta caso como membrana de curado, durante los 7 días que deberán transcurrir antes de colocar la carpeta de concreto asfáltico.

3.3.-Carpeta de Concreto

Sobre la base estabilizada e impregnada satisfactoriamente, se aplicará un barrido enérgico con equipo mecánico, para eliminar todo tipo de material suelto y/o contaminante, para de inmediato proceder a la aplicación del riego de liga para la carpeta, con emulsión asfáltica de rompimiento rápido del tipo ECR-65 o similar, a razón de 0.5 lt/m².

Una vez que la emulsión haya alcanzado su rompimiento, se dará paso a la construcción de la carpeta de concreto asfáltico de 5.0 cm de espesor compacto, utilizando mezcla asfáltica en caliente elaborada en planta estacionaria a tamaño máximo de ¾", y extendida con máquina pavimentadora (finisher); cuyo grado de compactación será como mínimo del 95% de su P.V.M., calculado con la prueba Marshall. (Norma N-CMT.4.04/02 y N-CMT.4.05.003).

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Para el caso de los subtramos donde se debe respetar la rasante actual, como es el cruce de la vía de ferrocarril del km 41+200, y del "Puente Blanco", del km 45+160, se deberá realizar el corte con la recuperadora en un espesor de 35.0 cm, que es el total del pavimento por construir, de los cuales se emplearán únicamente 30.0 cm para conformar la base estabilizada, esto en dos estaciones (40.0 m), a cada lado de este, como se puede apreciar en las esquemas mostrados a continuación.

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

PROCESO CONSTRUCTIVO

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Capítulo 4 Obras de Drenaje

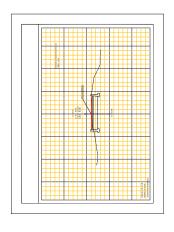
4.1.- Estudio de Subdrenaje

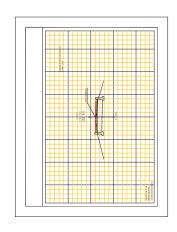
A pesar de que una de las causas principales del deterioro del pavimento del tramo en estudio sea originada por el exceso de humedad en las capas de terracerías, no se cuenta actualmente con subdrenaje en ninguna de sus modalidades por lo que se recomienda como se ha venido mencionando la construcción de una capa rompedora de capilaridad como protección de las terracerías y que impida el acenso de humedad hacia la estructura del pavimento

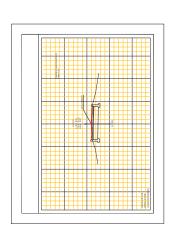
4.2.- Estudio de Drenaje de las obras complementarias

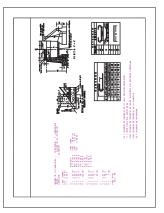
Las obras de drenaje se encuentra en una cuenca con pendiente casi plana, sin tener cauce definido, pero se alojan en la parte inferior del terraplén con el que consecuentemente se tiene problema de acumulación de material de arrastre y crecimiento de vegetación, condiciones que impiden el flujo libre del agua generándose con ello acumulación de esta al pie del terraplén; independientemente de la suficiencia en su área hidráulica, es deseable que para obtener un correcto funcionamiento hidráulico de estas, sean cambiadas las que actualmente constan de tubo de 90 cm. de diámetro, por losas de 1.0 m de luz y 2.0 m de altura, quedando estas a nivel de la capa subrasante de proyecto.

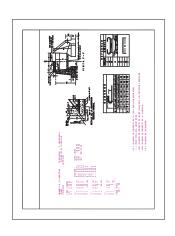
En el Anexo No.12 se presentan algunos planos de las obras de drenaje construidas en la obra en estudio.

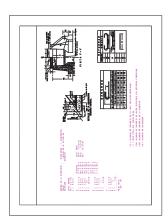


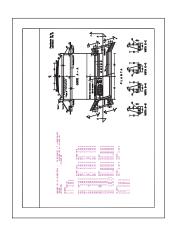

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

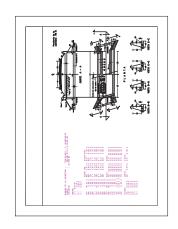

FACULTAD DE INGENIERIA CIVIL

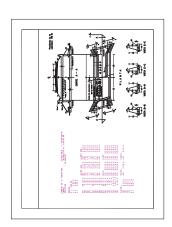


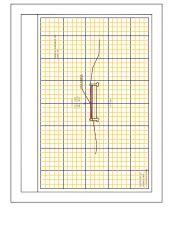

LOSAS

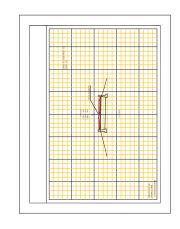


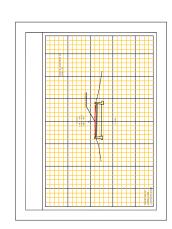


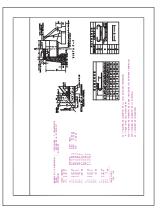


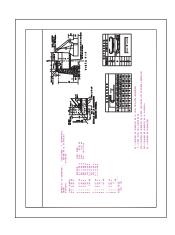


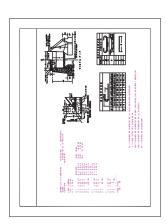


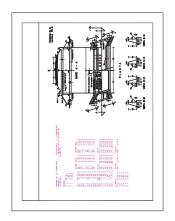


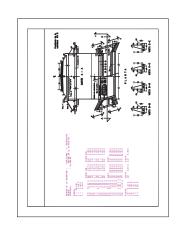




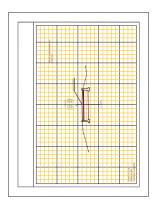

LOSAS

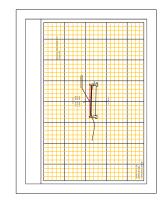


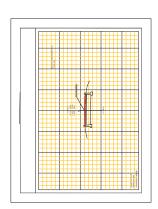


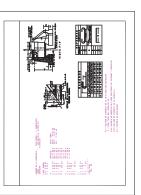


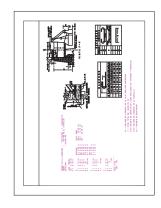


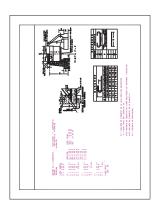


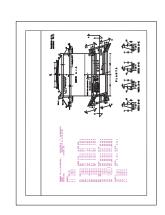


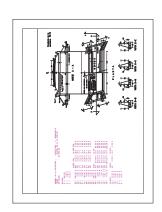





LOSAS







UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

SERGIO MONTOYA ESPINOZA

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Capitulo 5 Señalamiento

Con la finalidad de garantizar que el camino sea transitado por vehículos con la velocidad considerada en el proyecto respectivo en una seguridad óptima, es necesario que este cuente con un número adecuado de señales restrictivas , informativas y preventivas, así como también deberá contar con el balizamiento adecuado.

Estas señales son elementos visuales instalados como marcas y objetos en o cerca de las vías o caminos.

Estos elementos permiten regular y guiar el tráfico, por una parte, y por otra, avisar oportunamente sobre las condiciones de la vía, a continuación se presentan algunos tipos de las señales mas usuales del tramo en cuestion

El uso de los elementos controladores permite que el flujo vehicular se efectúe con un mínimo de demora e inconvenientes, ya que proveen a los conductores con información oportuna.

SERGIO MONTOYA ESPINOZA

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Un factor esencial de estos elementos es su estandarización, ya que los conductores deben esperar que ellos tengan siempre el mismo significado. La instalación de un determinando elemento de control debe estar basado en ciertos principios de ingeniería apoyados con los resultados de estudios, tales como tipo y cantidad de vehículos, accidentes, velocidad, demora y condiciones físicas del lugar. El estudio cuidadoso y el análisis de la información requerida, conjuntamente con la experiencia profesional, permitirán una solución que debe ser considerada como tentativa, ya que siempre será desconocida la reacción del público.

5.1 FUNCION DE LOS CONTROLADORES:

La función de los controladores es proveer a los usuarios de la red vial la información necesaria a lo largo de ella. Estos controladores pueden ser complementarios y/o modificadores de las reglamentaciones básicas de la red; por lo tanto, la información debe ser entregada en forma adecuada, y en el momento y lugar oportuno. Los controladores pueden ser clasificados en tres tipos:

- Aquellos que informan sobre regulaciones propias de un lugar determinado.
- Aquellos que informan sobre las condiciones de la red que pueden significar un peligro potencial
- Aquellos que informan sobre dirección, distancia, puntos de interés, delineación del camino, etc.

5.2. REQUERIMIENTOS BASICOS DE LOS CONTROLADORES:

Los controladores de tráfico deben cumplir con ciertos requerimientos básicos:

- Deben satisfacer una importante necesidad.
- Deben llamar la atención.
- Deben entregar un mensaje simple y claro.
- Deben inspirar respeto a los usuarios, y
- Deben estar ubicados en el lugar adecuado para cumplir con su objetivo.

Estos requerimientos básicos serán cumplidos si se observan ciertas normas básicas con respecto a su diseño, ubicación, mantención y uniformidad.

SERGIO MONTOYA ESPINOZA

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

La eficiencia y claridad con que los mensajes llegan a los usuarios depende de la habilidad de estos últimos para interpretarlos automáticamente. La uniformidad de los controladores ayuda a producir este efecto y otros tales como:

- Reconocimiento.
- Aumento de la seguridad vial.
- Ayuda a los conductores en zonas desconocidas.
- Ayuda a la operación del tráfico,
- Ayuda a evitar confusión y produce economía en su operación.

5.3 TIPOS DE SEÑALES:

5.3.1 SEÑALES REGLAMENTARIAS:

Las Señales Reglamentarias tienen por finalidad notificar a los usuarios de la vía sobre prohibiciones, restricciones, obligaciones y autorizaciones que gobiernen el uso de ella y cuya transgresión constituye una infracción. Atendiendo a su espíritu o intención se han subdividido en:

• Señales de Prioridad

SERGIO MONTOYA ESPINOZA

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

• Señales de Prohibición

Prohibido Rebasar

Prohibido Prohibida la Prohibido el

Estacionarse Vuelta a la

Derecha

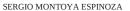
Paso de Vehiculos Pesados

• Señales de restricción

Derecha Continua

• Señales de obligación

Solo Vuelta Doble Conserve Paso Izquierda Circulación su Derecha Restringido


• Señales de autorización

140

SEÑALAMIENTOS

FACULTAD DE INGENIERIA CIVIL

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

5.3.2 Señales preventivas:

Las señales preventivas, llamadas también de advertencia de peligro, tienen como propósito advertir a los usuarios la existencia de riesgos y/o situaciones imprevistas en la vía, de carácter permanente o temporal e indicarles su naturaleza.

Estas señales requieren que los conductores tomen las precauciones del caso, ya sea reduciendo la velocidad o realizando maniobras necesarias para su propia seguridad, la del resto de los vehículos y las de los peatones.

El uso de estas señales es de gran importancia para los conductores. Sin embargo, su empleo debe reducirse al mínimo posible, porque el uso innecesario de ellas para prevenir peligros aparentes tiende a disminuir el respeto y obediencia de estas señales.

Las Señales Preventivas se han dividido en cuatro grupos, de acuerdo a los riesgos que previenen:

• Por diseño de la vía.

Por irregularidades físicas de la vía.

• Generales en la vía.

· Otros.

Escolares

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

5.3.3 Señales Informativas.

Las señales informativas tienen como propósito ayudar a los conductores en su desplazamiento por la vía que les permita llegar a su destino de la manera más simple y directa posible.

Las señales informativas se clasifican en:

Señales que guían al usuario a su destino

· Señales con otra información de interés

A continuación ejemplos de señales informativas

De atractivo turístico

TESIS PROFESIONAL

SERGIO MONTOYA ESPINOZA

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

• De autopista y autovias

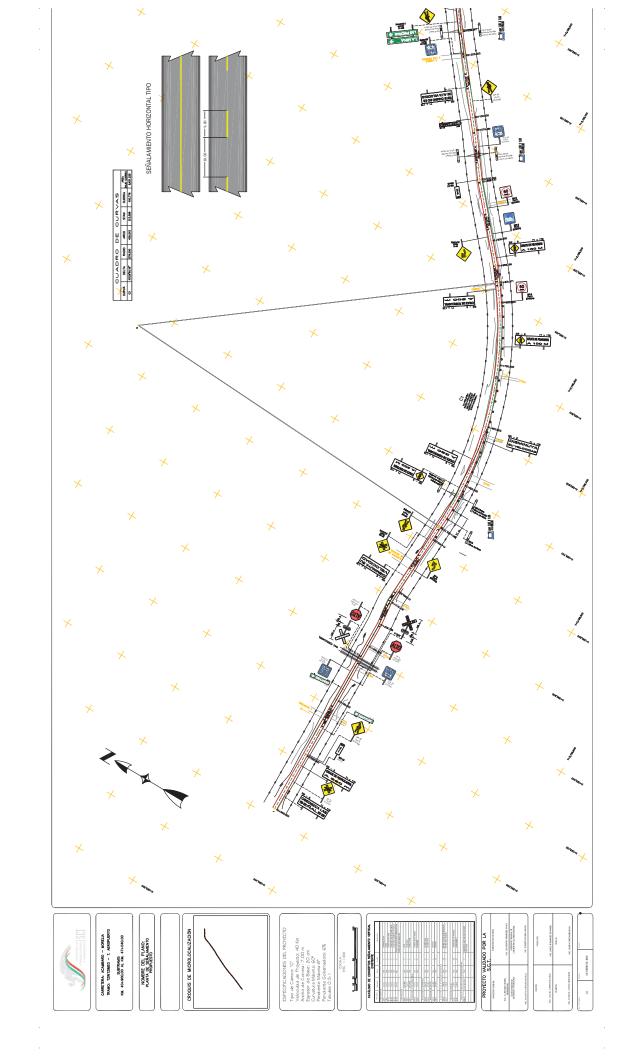
• De ruta

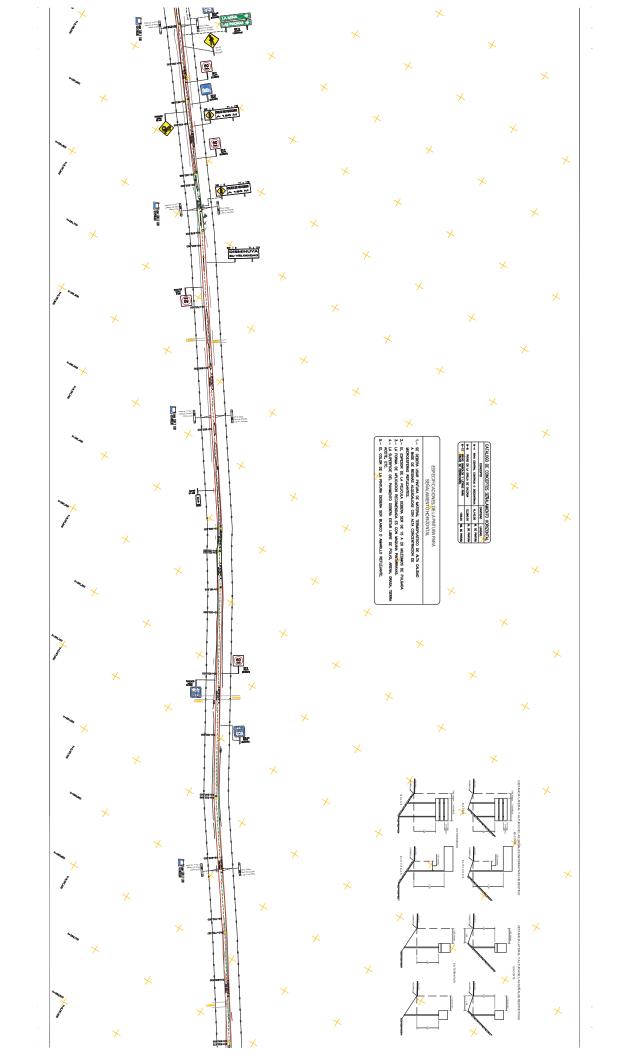
5.3.4 SEÑALZACIÓN DE PELIGRO

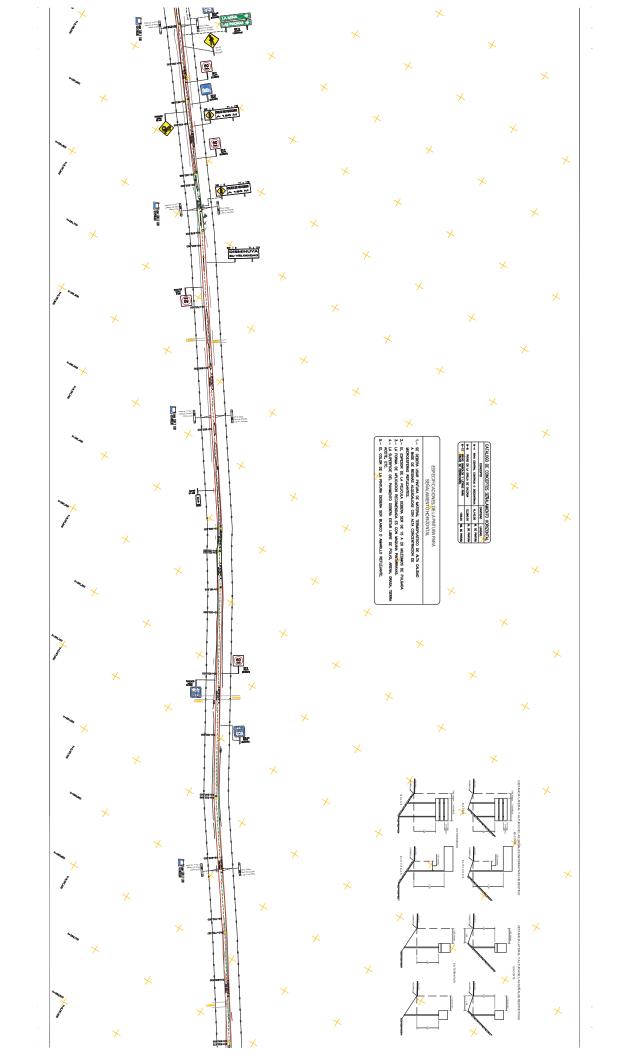
Las señales que anuncian Peligro son del tipo preventivas e informativas pero con un fondo naranja, indican la transitoriedad de ellas.

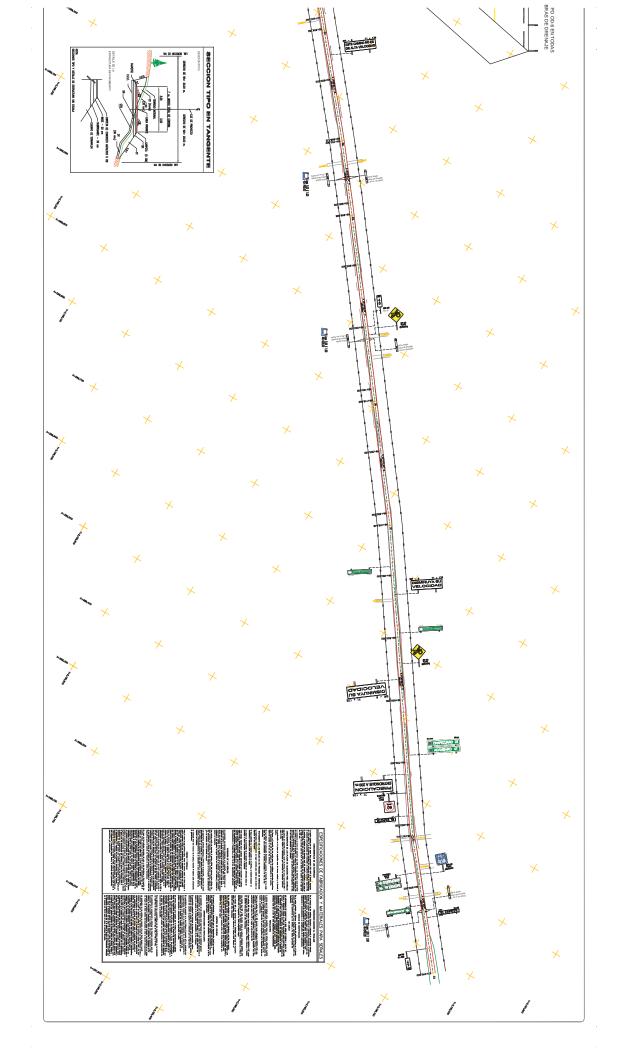
En el $\bf Anexo\ No.\ 14$ se presenta el plano donde deberán ser colocadas las señales respectivas

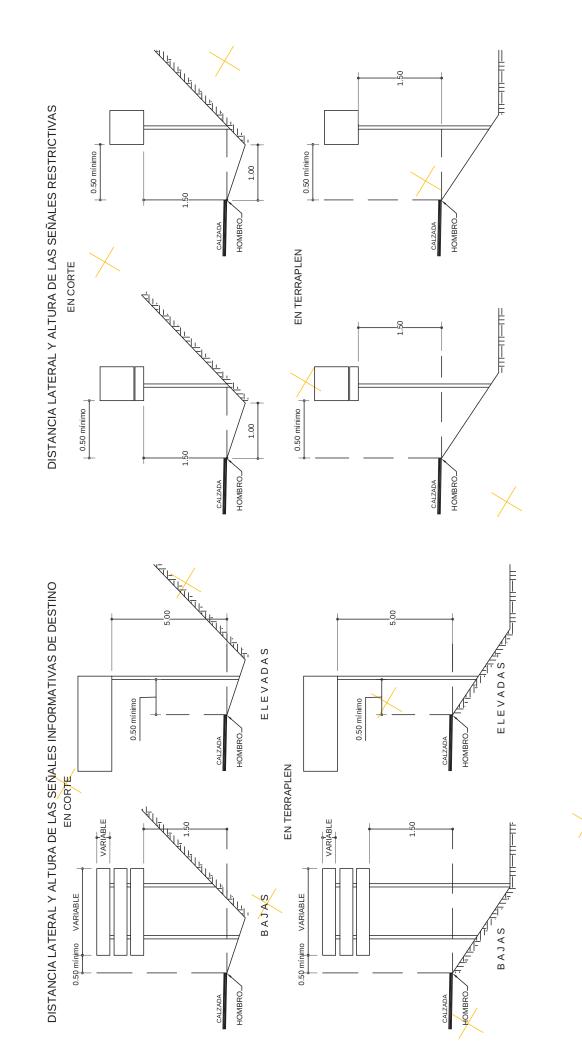
TESIS PROFESIONAL

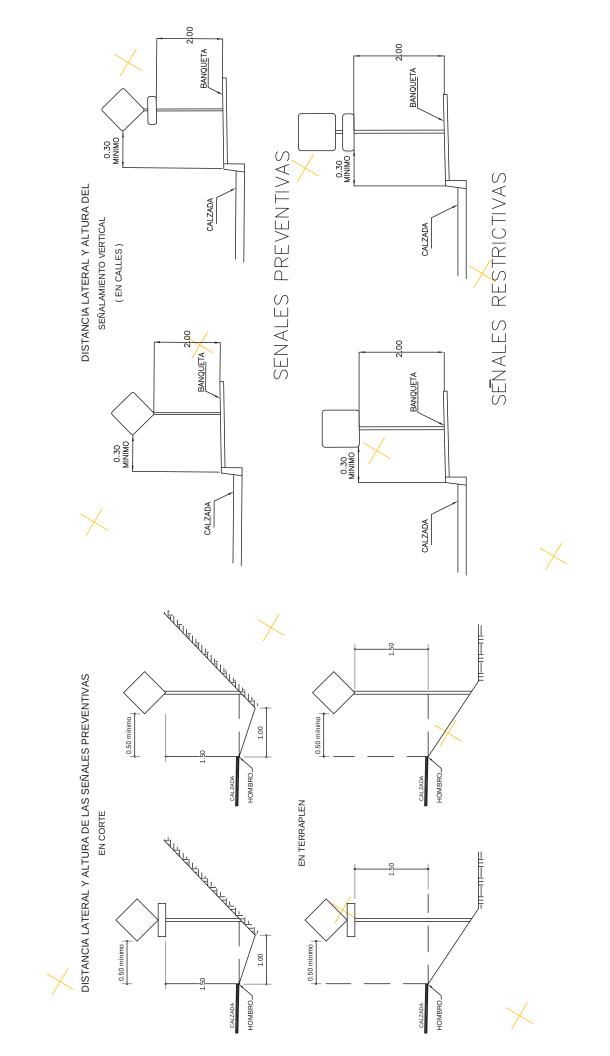

SERGIO MONTOYA ESPINOZA




UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO







ESPECIFICACIONES DE FABRICACION Y MATERIALES PARA SEÑALES

CARACTERISTICAS DE LOS MATERIALES

La lamina dederá ser de acero tipo comercial SAE-1010 6 similar, laminado en frío, colibre 16 y de primera calidad, sin escamas, grieta y ondulaciones; el acabado será galvanizado por inmersión en caliente contínuo capa G-90.

El costado y doblado de las charolas será del tamaño solicitado y en base al manual oficial, todas las charolas serán fabricadas con las esquinas redondeadas, el radio de las curvos será de R=4 cm. El ancho del dobles de la cejo será el radio de de 2.5 cm.

La soldadura se hará con electrodo de 2.28 mm. de diámetro clase E-6013 en curvos y placas de sujeción, el cordon de soldadura se hará completo, sin quemar el galvanizado de la lamina, debiendo eliminar todas las saplicaduras que queden en la superficie, cubriendo con pintura primario inorganico de zinc en las zonas dañadas en el proceso

CARACTERISTICAS DE LAS PLACAS DE SUJECCION PARA CHAROLAS

Las placas de sujección (orejas), serán de lamina de acero comercial SAE 100 o similar calibre 14. Galvanizada por inmersión en caliente contínuo capa G-90.

La perforación en la placa de sujección sera de forma ovalada y la llevará al centro.

La forma y el tamaño de las orejas para las señales cuadradas Preventivas será trapezcidal de 7.5 cm. de ancho con la perforación en el centro, debiendo quedar a 10 cm. de los extremos.

En las señales de información Restrictivas y general, el tamaño de la oreja será de 7cm. con perforación al centro, colocadas a 10 cm. de los será de 7 extremos.

TRATAMIENTO DE LAS SEÑALES EN SU PROCESO DE FABRICACION

La fabricación deberá hacerse en lugar cerrado para evitar que el polvo se deposite en las charolas.

Si hay oxidación en cualquier grado en la lámina, se deberá emplear un tratamiento adecuado para eliminar el oxido.

La grasa de la superfície de la charola deberá ser eliminada antes de proceder a darle cualquier tratamiento o acabado.

Toda lamina deberá tener acabado galvanizado por inmersión en caliente capa G-90 y deberá de estar formada la charola o tablero, provista de orejas, bastidor y sujecciones según sea el caso; antes de proceder a colocar cualquier material o pintura en su superficie, debiendo cumplir co los requerimientos de caliada establecidos por las normas de la Secretar Comunicaciones y Transportes, y por la de su especificación particular.

ACABADOS DE LAS SEÑALES

La colocación de películas reflejantes y la serigrafía, se deberá hacer en lugares cerrados y a una temperatura ambiente de 20°C. previo a la colocación de la película feflejante se deberá de limpiar el poco polvo 6 grasa que pudiese tener la superficie de los tobleros y charolas para obtener una buena calidad en la adherencias de la película, logrando una superficie uniforme y sin relieves, de igual forma se tratarán los tableros y charolas al aplicar la serigrafía.

Los colores serán de acuerdo al patron oficial del manual antes citado. De igual manéra las leyendas, escudos, flechas, simbolos y filetes, deberán tener las dimensiones y espesores que se indiquen en el proyecto de señalamiento y/o de acuerdo con el referido manual.

Los pigmentos, pelicula reflejantes y tintas de la impresión, deberán de estar garantizados por un mínimo de 7 años contra defectos de fabricación por mala calidad de los materiales ó mala aplicación o degradación de los colores, independientemente de la ubicación o zona Geográfica donde se instalan los señales.

El acabado final del reverso de la placa, charola δ tablero será unicamente

POSTES Y TORNILLO

Para el caso de las señales bajos, todos los postes serán de fierre ángulo ó perfil cuadrado (PTR) con dimensiones y espesores deducidos del diseño estructural. Los perforaciones de postes se harón de acuerdo al tipo de señal, los tornillo serán galvanizado electrolítico o cadminizados con diametro de 3/8" (Grado 2 de acuerdo a ASTM A-307 con turca y dos rondanas planas, la longitud dependera del tipo de poste a utilizar, las señales bajos de tableros diagramáticas y de señalamiento mátitiple de servicio y turísticos; los postes serán diseñados con estructura tipo MON-TEN habilitados con placas para el montaje con los tableros; a su vez los postes se apoyarán en base de cimiento de concreto armado de fo=150 kg/cm2 por medio de naclas de acuerdo a ASTM A-449; tanto la sección del poste, colibre, número de anclas y dimensiones del cimiento, deberán de ser analizados, para su fabricación deberán contar con la revisión y autorización de la dependencia. Tadas los postes, anclas y herrajes tendrán acabado galvanizado por inmersión en caliente de acuerdo a la norma ASTM A-123 la instalación de postes de fierro ángulo y/o de perfil cuadrado PTR se hará a base de concreto hidráulico f'a-100 kg/cm2 a una profundidad mínima de 70 cm. bajo el nivel del suelo, en una Grea de 30 cm. *30cm. La instalación de los postes de los tableros para señales diagramáticas o de señalamiento múltiple de servicio y turísticas, se hará de acuerdo a la propuesta del contratista previa revisión y aceptación de la dependencia; y serán instalación o una distancia y altura del hombro del camino especificada en el Manaul de Dispositivos para e el Control de Transito en Calles y Carreteras. Para el caso de las señales bajas, todos los postes serán de fierre ángulo ó

Dispositivos para el Control de Transito en Calles y Carreteras.

En caso de las señales elevadas, de una o dos banderas, y tipo puente, los postes, trobes, columnos y brazos serán de acero estructural tipo H-55 ó similar con sección tipo MON-TEN, y perfil cuadrado (PTR). La sección, materiales y calibres de las estructuras serán determinadas del diseño presentado en la propuesta técnica y debiendo ser suficiente para risistir vientos de la zona Geográfica donde se instalará el señalamiento; para su fabricación el diseño deberán contar con la revisión y acaptación de la dependencia. Los bastidores de los tableros serán abricados con perfil caudrado (PTR) de 2**2" calibre 12 y/o perfil zeta calibre 12 debiendo considerar lo necesario para las placas de montaje con las trobes y brazos, su acabado será galvanizado por immersión en caliente; Las calumnas y postes se analarán en la base de cimiento de concreto hidrábulto de f'c=150 kg/cm² mediante anclas de acuerdo a ASTM A-449 cuyo diámetro y número al liguid que las dimensiones del cimiento y forma del analaje, será la analizada por el proponente; Para la fabricación de las estructuras y cimientos, se deberá contar con revisión y la autorización de los diseños por la dependencia. El acabado de los postes, columnas, trabes, brazos, bastidores, analas y cancias y herrojes deberán do ser a glavanizados por immersión en collente de acuerdo a normas ASTM A-123, toda la tornillería será grado 2 con diómetros y espesores según diseño, el acabado será galvanizados electrolítico y/o cadminizado.

PROTECCION DURANTE EL TRASLADO

En el manejo de las señales, (charolas y tableros) el contratista deberá proteger las señales acabadas durante el transporte, almacenaje y maniobras, intercalando carton corrugado, y/o algun otro material resistente entre las piezas con objeto de evitar que súfran daños en su acabado y será responsabilidad del contratista el entregar las señales instaladas sin daños, raspaduras o enmendaduras; y a satisfaccción de la dependencia.

MARCAS DE IDENTIFICACION

En la parte posterior de tableros y charolas del señalamientos, en el ángulo inferior derecho, se colocará una etiqueta adherible, con las siglas S.C.T. con la leyenda de advertencia que se detalla, y los datos generales del fabricante.

NO DAÑAR

SE IMPRONDRAN DE QUINCE DIAS A SEIS AÑOS DE PRISION Y MULTA DE SE IMPROMUMAN DE QUINCE DIAS A SEIS ANOS DE PRISION Y MULTA DE \$10.00 A \$500.00 PESSOS AL QUE DE CUALQUIER MODO DESTRUYA, INUTILICE, APAGUE, QUITE O CAMBIE ESTA SEÑAL ESTABLECIDA PARA LA SEGURIDAD EN EL TRANSITO POR LAS VIAS GENERALES DE COMUNICACION O MEDIOS DE TRANSPORTE AL QUE COLOQUE INTENCIONALMENTE SEÑALES QUE PUEDAN OCACIONAR, LA PERDIDA O GRAVE DETERIORO DE VEHICULOSE EN CIRCULACION, SERA CASTIGADO CON PRISION DE UNO A CINCO AÑOS. ARTICULO 536 DE LA LEY DE VIAS GENERALES DE COMUNICACION.

REFLEJANTES

A menos que se indique otras condición todas las señales utilizarán material reflejante marca SCOTCH—LITE (o similar), debiendo cumplir este material las normas de calidad, duración y color que marque la dependencia, con un mínimo de 7 años sin importar la zona Geográfica de la Republica donde se instale el señalamiento.

Todas las señales tipo SP y SR tendrán fondo reflejante SCOTCH—LITE alta intensidad en color amarillo tránsito para las preventivas y blanco para las restrictivas, los simbolos filetes y leyendas y números en impresión con tinta serigrafíca negra para las SP y negra y roja para las SR.

Las señales SID baja, tendran fondo en pelicula reflejante SCOTCH—LITE grado de ingeniería en color verde y leyendas, símbolos, filetes, números y flechas en SCOTCH—LITE blanco de alta intensidad.

Las señales tipo SIR y SIG, tendrán fondo en pelicula reflejante SCOTCH-LITE grado de ingeniería en color blanco, leyendas, símbolos, números y filetes en SCHTCH-CAL, ó impresión en tinta serigráfica negra.

Las señales SIS y SIT tendrán fondo en SCOTCH—LITE grado de ingeniería color azul y leyendas, símbolos, números y filetes color blanco en SCOTCH—LITE alta intensidad.

En las señales elevadas de una y dos banderas y en las tipo puente informativas de destino y general, tendrán fondo reflejante en SCOTCH-LITE grado de ingeniería de color verde y los leyendes fíletes escudos, números y flechas serán en material reflejante SCOTCH-LITE alta íntensidad color blanco, las impresiones de los escudos serán con tintas serigráfica y/o SCOTCH-CAL en color negro.

CONTROL DE CALIDAD

El personal autorizado y designado por la dependencia, hará los muestreos que considere conveniente en las distintas etapas de fabricación e instalación, pedirá si lo estima necesario señales representativas para hacer estudios y comprobar la calidad de los materiales de cada producto y de su proceso de fobricacion.

ESPECIFICACIONES DE INSTALACION

La instalación de las señales será supervisada por la residencia general correspondiente y/o personal autorizado; ante la cuál deberán presentarse el contratista antes de iniciar cualquier trabajo, y quien podra resolver las dudas en cuanto a la instalación y aceptación de los trabajos.

El contratista realizará los trabajos de despalme, excavación, relleno, habilitado de refuerzo y colado de cimientos para el apoyo de los postes o columnas de acuerdo al poyecto 6 lo ordenado por la dependencia.

El contratista de acuerdo a lo que indique el proyecto y/o lo ordenado p la dependencia, hincará o en su caso cimentara en el suelo (terracerías terreno natural), a la distancia y altura indicados en el manual de dispositivos para el control del transito en calles y carreteras. El 6 los postes, columnas o estructuras que soportarán la señal.

En terreno rocoso y/o cuando así lo indique la dependencia las señales bajas se cimentarán embebiendolas en un muerto de concreto hidráulico simple f°c=100 kg/cm², de 25 cm, de diámetro y 70 cm, de profundidad; y en los señales elevadas o las bajas con tableros multiples o diagramáticas, a solicitud escrita del contratista, la dependencia analizará el diseño de la cimentación para determinar si es posible recortar la profundidad de la cimentación, ya que aún cuando el suelo de apoyo sea bueno, el diseño por volteamiento determinará si nos permite varior la profundidad del desplante, en todos los casos se deberá cumplir con los requisitos de recubrimiento de concreto para su protección.

Para determinar las características de los materiales usados en la instalación ver 039-Bis-C referencias y NMX H-38, H-39, H-148 y H-116.

El contratista se compromete a efectuar los trabajos necesarios para reparación y/o reposición de las señales colocadas, que presenten algún defecto de frabicación, instalación, daño no atribuible a ccidentes en la operación del camino 6 bandalismo, estos trabajos se realizarán en un plaza no mayor de 5 días habiles de levantada el acta o reporte correspondiente.

La instalación de las señales de charola a los de fierro ángulo ó perfil cuadrado PTR para el caso de las señales bajos se hará mediante tornillos y tuercos de 3/8" de diámetro grado 2 de acuerdo a ASTM A-307, con dos rondanos planos en cada unión y el acabado será galvanizado electrolítico y/o cadminizado la longitu del tornillo será la requerida de acuerdo al diseño del poste. Para el caso de los señales elevados de una 6 dos banderas o los tipo puente o los bajos con tablero multiple y diagramática, el analoje de los postes, estructuras 6 columnas se hará en base de cimentación de concreto hidráulico auyas dimensiones, armado y forma de analoje, será de acuerdo al cálculo presentado en la propuesta técnica por el contratista, el que será revisado y autorizado por la dependencia, debiendo ser los analo de un mínimo de 1" 6 1 1/4", de diámetro y de acuerdo a ASTM A-449 y el número será según diseño autorizado por la dependencia; el acobado será galvanizado por inmersión en caliente de acuerdo a norma ASTM A-135. Para unir los brazos ó trabes a los postes o columnas estan se harán mediante placas de montoje de acuerdo al diseño del fabricante y deberá lener una sección suficiente para resistir los vientos el diseño por la zona geográfica de la Republica dande se instalará el señalamiento; para el montaje de la los señales elevados de tablero, sobre los brazos, trabes o postes de la estructura, deberá de estar provisto tanto los brazos, trabes o postes de los estructura, deberá de estar provisto tanto los brazos, trabes o postes como el bostidor de las señal de tablero, con placas de montaje con la disposición correcta para dar a la señal el ángulo de inclinación solicitado en el manual de S.C.T. para el caso de señales selevados. La instalación de las señales de charola a los de fierro ángulo ó perfil cuadrado PTR para el caso de las señales bajas se hará mediante torr

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Capitulo 6 Control de Calidad

Cabe recordar que el nivel de calidad de una obra civil es fijada por el **proyectista** bajo los criterios de Normas y Especificaciones de la Institución que licita la obra, y el **constructor** de la obra es el encargado de asegurar que se cumpla dicho nivel de calidad, para ello , será necesario que se cuente en todo momento con un **laboratorio de control de calidad**, que garantice la terminación de cada una de las etapas constructivas con el estricto apego a las especificaciones del proyecto.

Los trabajos deberán apegarse a lo que establecen las Normas de Construcción N-CTR de la SCT (vigentes), mientras que la calidad de los materiales deberá cumplir con las especificaciones del presente estudio, que se apegan a las Normas de Calidad de los Materiales N-CMT de la SCT, vigentes; y que serán complementadas en su caso con los parámetros de calidad no descritos en el presente, y estipulados por propias Normas antes mencionadas

Obvio que tanto proyectista, constructor y laboratorio de control de calidad serán los responsables de garantizar la calidad de la obra civil , por ello es indispensable que estas instancias tengan el conocimiento de las especificaciones de calidad que fija la S.C.T. para el caso de caminos , por lo que a continuación se presentan el nivel de calidad que estas instancias deberán considerar en sus respectivos trabaios

Especificaciones de Calidad de los Materiales

carpeta de concreto asfáltico

Tamaño máximo	3/4"	
Contracción lineal	2.0% (máxi	mo)
Equivalente de arena	50% (r	nínimo)
Desgaste de los Ángeles.	40 %	(máximo)
Partículas alargadas y/o		
en forma de laja	35%	(máximo)

PARA LA MEZCLA

Espesor	8.0 cm. (mínimo)
Compactación (%)	95 (mínimo) MAŔSHALL.
Tamaño máximo (pulg.)	3/4"
Estabilidad N (lb _f)	8000 (1800) (mínimo)
Flujo (mm.) (10 ⁻² in)	2 - 3.5 (8 - 14)
Vacíos en la mezcla asf.	
(VMC); (%)	3 - 5
Vacíos ocupados por el	
Asfalto (VFA); (%)	65 – 75
VAM (%)	14 (mínimo)

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Base hidráulica

Espesor (cm.) Compactación (%) 30.0

100 (mínimo) AASHTO modif.

Tamaño máximo (pulg.) 1 ½"

100 (mínimo) VRS (%) Equivalente de Arena (%) 50 (mínimo)

Capa subrasante:

Espesor (cm.) 30.0

Compactación (%) 100 (mínimo) AASHTO std.

Tamaño máximo (pulg.)

VRS (%) 20 (mínimo) Expansión (%) 2.0 (máximo)

Capa subyacente (Rompedora de capilaridad):

Espesor (cm.)

Compactación (%) Bandeo. Tamaño máximo (pulg.) 4

Capas de terraplén:

Espesor (cm) 30.0 (máximo)

Compactación (%) 90 (mínimo) AASHTO std.

Tamaño máximo (pulg.) VRS (%) 5.0 (mínimo) Expansión (%) 5.0 (máximo)

Riego de impregnación ECI-60

Contenido de C. A. en masa 60% (mínimo) Viscosidad Saybol-Furol a 25°C 5.0 s (mínimo) Asentamiento en 5 días (dif. en %) 10% (máximo) Retenido en malla 20 0.1% (máximo) Pasa malla 20 y retiene en 60 0.25% (máximo)

Carga eléctrica de las partículas Disolvente en volumen 15% (máximo)

Pruebas al residuo de la destilación

500 +- 100 poises Viscosidad dinámica a 60°C 100 – 400 (0.1 mm) Penetración a 25°C en 100 g y 5.0s

Solubilidad 97.5% (mínimo)

139 CONTROLDE CALIDAD

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL 40 cm (mínimo)

Ductilidad a 25°C

Riego de liga ECR-65

Contenido de C. A. en masa 65% (mínimo)
Viscosidad Saybol-Furol a 50°C 40 s (mínimo)
Asentamiento en 5 días (dif. en %) 5% (máximo)
Retenido en malla 20 0.1% (máximo)
Pasa malla 20 y retiene en 60 0.25% (máximo)
Carga eléctrica de las partículas
Disolvente en volumen 3.0% (máximo)
Indice de ruptura < 100 (%)

Pruebas al residuo de la destilación

Viscosidad dinámica a 60° C 500 +- 100 poises Penetración a 25° C en 100 g y 5.0s 110 - 250 (0.1 mm) Solubilidad 97.5% (mínimo) Ductilidad a 25° C 40 cm (mínimo

En el **Anexo 16** se presentan algunos reportes de laboratorio correspondientes a la ejecución de la obra

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

CONSTRUCTORA EUNICE, S.A. DE C.V. LABORATORIO DE CONTROL DE CALIDAD

INFORME DE ENSAYE EN MATERIALES PARA BASE

OBRA	O CAMINO:	RECONST	RUCCION R	ECUPERADA		ENSAYES No		6102-6104
CARRE	ETERA :	ACAMBAR	O-MORELIA	i		FECHA DE RECI	BO:	
TRAM	O:	LIM. EDOS	. MICH./GTC).		FECHA DE INFO	RME:	
SUBTF	RAMO :	KM 41+000	A 47+000					
	MATERIAL DARA CA	IBA DE :			DACE LICA MATURAL VICTAR	II IZADA		
	MATERIAL PARA CA		DEL MATE	DIAL :	BASE HCA. NATURAL Y ESTAB			
DATOS DEL MUESTREO	DESCRIPCION PETI			NIAL.	GRAVA ARENA LIMOSA O VOLO	CANICA		
DATC MUE!	CLASE DE DEPÓSITO				DE KM 46+480 A 46+660 F/IZQ			
1 ~	TRATAMIENTO PREV		TREO:					
	UBICACIÓN DEL BAN						T	
P.E. SE	CO SUELTO kg/m ³	1,194	1,200	P.V.S.M. AAS	-	1,750		
P.V.S.N	I. PORTER kg/m ³	1,785	1,790	HUMEDAD Ó	PTIMA AASHTO, en %	13.0		
,								
	MA PORTER, %	11.8	12.7		CDATION DE COM	DOCICION OD ANI	II OMETRICA	
	EL LUGAR kg/m³				GRAFICA DE COM	POSICION GRANI	ULUMETRICA	
	DAD DE LUGAR %			100 200	100 60 40 20	10 4	3/8" 3/4" 1" 1	/2 2"
COMPA	ACTACIÓN, %	1		100		i		/
	MALLA	% RET	TENIDO	90		/		<u> </u>
	EN 50.00			80	i i i i		//:	
	EN 37.50	0/ 0/11	- DACA					:
пСА		% QUI	E PASA	70	1 1 1		//	:
COMPOSICIÓN GRANULOMÉTRICA	50.00	100		60		/	/ //	<u>:</u>
MO,	37.50	98.0		50				% QUE PASA
NOI	25.00	94.0		30		∑L ± 10E6	61 1 1	PAS
GRA	19.00	90.0		40			/ !!	i š
ÔN (9.500	70.0		30			1 1 1	<u> </u>
iCi	4.750	50.0				!		:
iPO	2.00	33.0		20			 	:
OOM	0.850	24.0		10		<u>i i</u>	<u>i ii</u>	i I
	0.420	20.0 17.0						<u> </u>
	0.150	14.0		0.075	0.250	2.00	9.50	20.00
	0.075	12.0				MALLA Núm.		
	0.075	12.0	NORMA			WALLA HUIII		
V.R.S. I	ESTÁNDAR %	95	100 MIN.	196	PRUEBAS EN	MAT. MAYOR QUE L	A MALLA No. 9.5	mm
EXPAN	SIÓN %	0.22		0	ABSORCIÓN %	6.1		
VALOR	CEMENTANTE kg/cm	2			DENSIDAD	1.94		
EQUIV	ALENTE DE ARENA %	40.0	50 MIN.	77	DURABILIDAD			
			PRUEBAS S	OBRE MATER	IAL TAMIZADO POR LA MALLA	A No. 0.425		
LÍMITE	LÍQUIDO %	27	25 MAX.	35.00	EQUIV. HUM. DE CAMPO %			
LÍMITE	PLÁSTICO %	18		INAP.	CONTRACCIÓN LINEAL %	3.1	0.6	
ÍNDICE	PLÁSTICO %	9	6 MAX.	INAP.	CLASIFICACIÓN SCT SUCS			
OBSER	RVACIONES Y RECC	MENDACIO	NES:					
				SISTENSIA A I	LA COMPRESION SIN CONFI	INAR 62		
	EL LABORA	TORISTA		EL JE	FE DEL LABORATORIO		Vo. Bo.	
				ING. JU	VENAL RUIZ MALDONADO			

Constructora Eunice S.A. de C.V.

AV. MORELOS NORTE No. 3191

TELEFONO 313 - 76 - 44

COL. EJIDO LA SOLEDAD

MORELIA, MICH. FAX 317 - 14 - 18 **LABORATORIO DE CONTROL DE CALIDAD**

EUNICE, S.A.	DE C.V.						
INFORME DE COM	MPACTACIO	N Y ESPESORES	DE:	BASE ESTAE	BILIZADA		
OBRA.	T SAN JOS	E - LIM. EDOS.	MICH /GTO			ENSAYES:	6417-6420
LOCALIZACION:				ARO-MORELIA	١		0.2. 0.20
		: 23/jun/2007			-		
		,					
GRADO DE COMP	PACTACION	MINIMO ESPECI	FICADO PARA I	_A (S) CAPA (S	5)	10	00 %
ESPESOR DE PRO	OYECTO OR	IGINAL	30	_CMS.			_
		ESPESOR	PESO ES	PECIFICO	HUME	DAD %	% DE
ESTACION	LADO	DE LA CAPA		KG/M3			COMPAC-
		ENSAYADA	DEL LUGAR		DEL LUGAR	OPTIMA	TACION
		CUD TRAMO	I/M 41 1020	N KM 42+000	LADO DEDECL	10	
1		SUB. I RAIVIO	KIVI. 41+920 /	1 KIVI. 42+060	LADO DERECH		-
42+060	D	30.0	1687	1650	8.0	12.4	102
42.000		30.0	1007	1000	0.0	12.7	102
41+960	D	30.0	1652	1650	8.1	12.4	100
		SUB.TRAMO	KM. 41+930 A	KM. 42+100	LADO IZQUIER	DO	
42+040	1	30.0	1640	1650	0.0	12.4	99
42+040	ı	30.0	1640	1050	8.9	12.4	99
41+960	I	30.0	1645	1650	9.2	12.4	100
				Ì			
			90.0 1645 10				
				1			
				.			
		-					_
OBSERVACIONES	S:	1		1			
		ERIFICADA CUN R EL PROYECTO		GRADO DE C	OMPACTACIÓN	1	
			-				
	EOD	MULO		1	\/o	Bo.	
		RATORISTA			EL JEFE DEL L		0

FORMULO	Vo. Bo.
EL LABORATORISTA	EL JEFE DEL LABORATORIO
ING. DAVID GUERRERO FLORES	ING. JUVENAL RUIZ MALDONADO

CONSTRUCTORA EUNICE, S.A. DE C.V. LABORATORIO DE CONTROL DE CALIDAD

INFORME DE ENSAYE EN MATERIALES PARA BASE

LUM	ICE, S.A. DE C.V.					
OBRA	O CAMINO:	RECONSTR	RUCCION RECUP	RADA	ENSAYES No	6096-6098
CARR	ETERA:	ACAMBARO)-MORELIA		FECHA DE RECIBO:	
TRAM	O:	LI. EDOS. M	IICH./GTO.		FECHA DE INFORME:	
	RAMO :	KM 41+000	A 47+000			
SOBI	TAIVIO .					
	MATERIAL PARA C	APA DE :		BASE HCA. NATURAL Y EST	TABILIZADA	
DATOS DEL MUESTREO	DESCRIPCION PET	ROGRAFICA	DEL MATERIAL :	GRAVA ARENA LIMOSA O V	VOLCANICA	
OSI	CLASE DE DEPÓSIT	O MUESTREAD	OO .	DE KM 46+940 A 47+000 F/I	70	
DAT	TRATAMIENTO PRE			DE NW 401340 / 411000 171		
	UBICACIÓN DEL BAI		NEO .			
	OBICACION DEL BAI	VCO .				
P.E. S	ECO SUELTO kg/m ³	1,195	1,205	P.V.S.M. AASHTO kg/m ³	1,740	
P.V.S.	M. PORTER kg/m³	1,800	1,830	HUMEDAD ÓPTIMA AASHTO, en %	13.7	
w ÓPT	IMA PORTER, %	11.8	12.9			
P.E. D	EL LUGAR kg/m³			GRAFICA DE CO	OMPOSICION GRANULOMETRICA	4
	DAD DE LUGAR %					
	ACTACIÓN, %			200 100 60 40 20	10 4 3/8" 3/4" 1"	1/2 2"
	ı	0/ 1	DETENIDO			7
	MALLA	%1	RETENIDO	90		/ :
	EN 50.00			80		<u> </u>
	EN 37.50	0.4				<u> </u>
COMPOSICIÓN GRANULOMÉTRICA		% (QUE PASA	70		<u> </u>
TR	50.00	100		60 1 1		
Į Į	37.50	98.0				¦ ĝ
) I	25.00	94.0		50	ΣL \$ 10E6	% QUE PASA
NA.	19.00	90.0		40	ΣL>10E6	- ASA
5	9.500	72.0				
ĵ	4.750	50.0		30		+
SIC	2.00	33.0		20		<u> </u>
Į .	0.850	23.0			/	
CO	0.420	20.0		10	1 1 1 1	1
	0.250	17.0				
				0.075	2.00 4.750 9.50 25.00	37.50 50.00
	0.150	15.0				., -,
	0.075	13.0	NORMA		MALLA Núm.	
VPS	ESTÁNDAR %	95	100 MIN.	107 BBUEDAG	ENIMAT MAYOR OUE LA MALLA NA C	
			TOO IVIIIN.		S EN MAT. MAYOR QUE LA MALLA No. 9.	3 11111
	NSIÓN %	0.16		0 ABSORCIÓN %	6.1	+
	R CEMENTANTE kg/cr			DENSIDAD	1.95	-
EQUIV	ALENTE DE ARENA 9	% 44.0	50 MIN.	70 DURABILIDAD		
			PRUEBAS SOBRE	ATERIAL TAMIZADO POR LA MALLA No.	. 0.425	
LÍMITE	LÍQUIDO %	27	25 MAX.	34.00 EQUIV. HUM. DE CAMPO	%	
LÍMITE	PLÁSTICO %	19		INAP. CONTRACCIÓN LINEAL %	2.9 0.5	
ÍNDICI	E PLÁSTICO %	8.6	6 MAX.	INAP. CLASIFICACIÓN SCT SUC	cs	
_	RVACIONES Y REC			·	•	
OBSE	NVACIONES I REC	OMENDACION		ENSIA A LA COMPRESION SIN CONFI	NAR 55	
	EL LABO	ORATORIST.	A	EL JEFE DEL LABORATORI	O Vo. Bo.	
				ING. JUVENAL RUIZ MALDONAD	00	
					•	

CONSTRUCTORA EUNICE, S.A. DE C.V. LABORATORIO DE CONTROL DE CALIDAD

EUN	IICE, S.A. DE C.V.		INFO	RME DE E	NSAYE EN	MATE	RIALES	PARA BASE		
OBRA	O CAMINO:	RECONST	RUCCION F	RECUPERADA	\			ENSAYES No		6058-6060
CARF	RETERA:	ACAMBAR	O-MORELIA	Ą				FECHA DE RECI	BO:	
TRAM	10 :	LI. EDOS. I	MICH./GTO.	•				FECHA DE INFO	RME:	
SUBT	RAMO :	KM 41+000	A 47+000					_		
	MATERIAL PARA CA	PA DE :			BASE HCA. N	ATURAL				
DEL REO	DESCRIPCION PETF	ROGRAFICA	A DEL MATE	ERIAL :	GRAVA AREN	A LOMO	SA O VOLCA	NICA		
DATOS DEL MUESTREO	CLASE DE DEPÓSITO	MUESTREA	ADO :		DE KM 46+000) A 46+5	00			
DAJ	TRATAMIENTO PREV	IO AL MUES	TREO :							
	UBICACIÓN DEL BANG									
	•			D.V.C.M. AA	31.170 1/3					
	ECO SUELTO kg/m³	1,250		P.V.S.M. AAS				1,780		
P.V.S.	M. PORTER kg/m ³	1,821		HUMEDAD C	PTIMA AASHT	O, en %)	13.0		
				l						
	TIMA PORTER, %	12.0		11	CDA		E COMPO	SICION CDAN	III OMETRICA	
	EL LUGAR kg/m³			11	GRA	-ICA D	E COMPC	SICION GRAN	OLUME I RICA	
	DAD DE LUGAR %			200 100	100 60	40	20	10 4	3/8" 3/4" 1"	1/2 2"
COMF	PACTACIÓN, %				1 1	-		i i		#
	MALLA	% RET	TENIDO	90	+ +	i	 	+ + /		/ :
	EN 50.00			80	<u> </u>	<u>i</u>	i			<u>' </u>
	EN 37.50				- i - i -	į	i	/		
COMPOSICIÓN GRANULOMÉTRICA		% QUE	E PASA	70	- i	+	1	1/1	/-//-	1
ÉTR	50.00	100		60	1 1	 	-		/	<u> </u>
OM	37.50	97.0			-	I I				% QUE PASA
MUL	25.00	95.0		50			Σι	± 10E6		E PA
RA	19.00	88.0		40		<u> </u>	/	ΣL> 10E		SA SA
S Z	9.500	73.0								<u> </u>
CIÓ	4.750	52.0		30		/		1	1 11	
ISO	2.00	33.0		20					<u> </u>	<u>i</u>
]ME	0.850	23.0		10						1
ŭ	0.420	17.0					i		1 1 1	
	0.250	14.0		0.075	0.150	0.420	0.850	2.00 –	9.50	37.50
	0.150	12.0]] 3	0.7	9.0	9.0	2, 4,	19 25 25	37.
	0.075	10.0][М	ALLA Núm.		
			NORMA							
	ESTÁNDAR %	97	100 MIN.				EBAS EN MA	AT. MAYOR QUE I	LA MALLA No. 9.	5 mm
	NSIÓN %	0.18			ABSORCIÓN	%		6.2		
	R CEMENTANTE kg/cm				DENSIDAD			1.97		
EQUI	/ALENTE DE ARENA %	49.0	50 MIN.		DURABILIDA	כ				
			PRUEBAS S	SOBRE MATER	RIAL TAMIZAD	O POR I	LA MALLA N	lo. 0.425		
LÍMITI	E LÍQUIDO %	28	25 MAX.		EQUIV. HUM.					
LÍMITE	E PLÁSTICO %	18			CONTRACCI	ÓN LINE	AL %	3.5		
ÍNDIC	E PLÁSTICO %	10	6 MAX.		CLASIFICACI	ÓN SCT	SUCS			
OBSE	RVACIONES Y RECO	MENDACIC	NES:							
	EL LABORAT	TORISTA		EL JI	EFE DEL LA	3ORAT	ORIO		Vo. Bo.	
				ING. JU	JVENAL RUIZ	MALDO	NADO	1		

Constructora Eunice S.A. de C.V. AV MOREIGISMORTE NA 3181 TELECANO 313 - 76-44 COL EJIDOLA SOLEMOREIA MICH. FAX317-14-18

AM EIGALPEIREO
Ympraying
Ympraying DATOS COMP. .a=1.505 gbm8 ar g'ord 6027-6038 7700 mts. DE LA CARRETERA MORELIA SALAMANCA

CALCULO DE PRUEBA MARS HALL

ESTUDIO POR EFECTUAR: CARRELERA: ACAN TRAMO: LIM.EDOS.N SUBTRAMO: DELKM.41±1 UBICACIÓN DE LA PLANTA Prob. ısaye

MEZCIA DE PETREOS 15% GRAVA BESALTICA TRITURADA 34° BANCO TRITURADOS AMADEO 17% GRAVA BESALTICA TRITURADA 12° FINOS TRITURADOS Y ACARREOS SA DEC.V. 15% POLVO (ARENA PUMITICA) BANCOMORELOS

CONSTRUCTORA EUNICE, S.A. DE C.V. LABORATORIO DE CONTROL DE CALIDAD

OBRA:			T. SAN JOSE - LIM. EDOS. MICH./GTO	E - LIM. EL	JOS. MIC	сн./6то.							ENSAYES.		
CARRELERA: TRAMO:	:KA:		ACAMBARO - MORELIA DEL KM. 41+000 AL KM. 47+000) - MUREL +000 AL KI	IA VI. 47+00	Q							FECHA:	16 de julio de 2007	de 2007
			A S N H	I I	PRORET	TASDE	SUFLO	O T N H M H O	∥⊲	M O O	N O I S I	Ш	NENAR		
				7			2022	7	ζ			Ш			
UBICACIÓN	SIÓN	V V C C C C C C C C	DIÁMETRO	ALTURA	ÁREA	VOLUMEN	PESO	P.V.	HUMEDAD	CARGA	RESISTENCIA	EDAD	ESPECIF.	FECHA:	IA:
DEL KM. AL KM.	AL KM.	ACNIANT	cm	сш	cm ²	cm ³	g	kg/m³	%	kg	kg/cm²	DÍAS	kg/cm ²	ELABORACIÓN	ENSAYE
44+700	45+050	IZO.	12.60	25.35	124.7	3160.9	6010	1901	14.90	6.500.0	52.1	7	30	18-may-07	25-mav-07
		,	12.68	25.20	126.3	3182.2	0909	1904	14.90	8,400.0	66.5	28		18-may-07	15-jun-07
44+400	44+700	IZQ.	12.70	25.32	126.7	3207.5	0809	1896	15.00	7,460.0	58.9	7	30	21-may-07	28-may-07
			12.65	25.38	125.7	3189.8	6040	1894	15.00	10,120.0	80.5	28		21-may-07	18-jun-07
44+100	44+400	IZQ.	12.66	25.30	125.9	3184.8	2960	1871	14.20	6,950.0	55.2	7	30	23-may-07	30-may-07
			12.68	25.26	126.3	3189.8	2980	1875	14.20	7,200.0	57.0	7		23-may-07	30-may-07
44+050	43+760	DER.	12.65	25.18	125.7	3164.7	2970	1886	14.50	7,300.0	58.1	7	30	26-may-07	02-jun-07
			12.70	25.46	126.7	3225.2	6010	1863	14.50	7,150.0	56.4	7		26-may-07	02-jun-07
43+300	43+600	IZQ.	12.66	25.40	125.9	3197.4	2970	1867	14.60	6,400.0	50.8	7	30	07-jun-07	14-jun-07
			12.65	25.15	125.7	3160.9	2980	1892	14.60	7,800.0	62.1	28		07-jun-07	05-jul-07
43+000	43+300	DER.	12.65	25.30	125.7	3179.7	6050	1903	14.90	7,500.0	59.7	7	30	09-jun-07	16-jun-07
			12.70	25.40	126.7	3217.6	0909	1883	14.90	9,750.0	77.0	28		09-jun-07	07-jul-07
42+800	43+000	DER.	12.60	25.26	124.7	3149.7	2960	1892	15.00	6,750.0	54.1	7	30	13-jun-07	20-jun-07
			12.68	25.30	126.3	3194.8	0209	1900	15.00	7,350.0	58.2	7		13-jun-07	20-jun-07
42+620	42+800	DER.	12.70	25.50	126.7	3230.3	0609	1885	14.50	7,750.0	61.2	7	30	15-jun-07	22-jun-07
			12.66	25.42	125.9	3199.9	0809	1900	14.50	7,400.0	58.8	7		15-jun-07	22-jun-07
OBSERVACIONES	CIONES:														

EL JEFE DEL LABORATORIO:	ING. JUVENAL RUIZ MALDONADO
EL LABORATORISTA:	TEC. MIGUEL CORTEZ ZAVALA

Constructora Eunice S.A. de C.V.

AV. MORELOS NORTE No. 3191 COL. EJIDO LA SOLEDAD

MORELIA, MICH.

TELEFONO 313 - 76 - 44 FAX 317 - 14 - 18

LABORATORIO DE CONTROL DE CALIDAD

APLICACIÓN DE RIEGOS ASFALTICOS

	ELIA	PRODUCTO APLICADO: EMULSION ASFALTICA ECM-65		
	RRETERA: ACAMBARO - MOF	PRODUCTO APLICADO:	PARA:	
- LIM. EDOS. MICH./GTO.	KM. 41+000 AL KM. 47+000 DE LA CARRETERA: ACAMBARO - MORELIA	30 de mayo de 2007	IÓN	
OBRA: T. SAN JOSE - I	LOCALIZACIÓN:	FECHA DEL INFORME:	RIEGO DE: IMPREGNACI	

		TRAMO		LONGITUD	ANCHO	AREA	LECTURAS PE	LECTURAS PETROLIZADORA	LITROS	SO
FECHA	DEL KM.	AL KM.	FRANJA	Σ	Σ	M2	INICIAL	FINAL	REGADOS	/ M2
18-may-07	44+700	45+050	45+050 IZQUIERDA	320	3.80	1,330	5,800	3,850	1,950	1.47
19-may-07	44+700	44+900	44+900 DERECHA	200	3.80	092	3,850	2,750	1,100	1.45
21-may-07	44+310	44+700	44+700 IZQUIERDA	390	3.80	1,482	2,750	009	2,150	1.45
22-may-07	44+330	44+700	44+700 DERECHA	370	3.80	1,406	000'9	3,950	2,050	1.46
23-may-07	43+960	44+310	44+310 IZQUIERDA	320	3.80	1,330	3,950	2,050	1,900	1.43

Vo. Bo. EL JEFE DEL LABORATORIO	ING. JUVENAL RUIZ MALDONADO
FORMULO EL LABORATORISTA	ING. DAVID GUERRERO FLORES

1.46

1,750

2,750

760

3.80

3.80

DERECHA

43+960

43+760

26-may-07 28-may-07 29-may-07

1,750

114

3.80

43+600 DERECHA

43+570

43+760 DERECHA

150

1,100

2,750

3,850

2,050

2,050

1,406

3.80

360 200 180 30

44+330 DERECHA

43+960

24-may-07 25-may-07

3,850

5,900

1,368

3.80

43+960 IZQUIERDA

Constructora Eunice S.A. de C.V.

AV. MORELOS NORTE No. 3191 COL. EJIDO LA SOLEDAD

MORELIA, MICH.

TELEFONO 313 - 76 - 44 FAX 317 - 14 - 18

LABORATORIO DE CONTROL DE CALIDAD

		INI	ORME D	INFORME DE TENDIDO DE CARPETA DE CONCRETO ASFÁLTICO	ODE CARP	ETA DE C	ONCRETO	ASFÁLTIC	00		
OBRA:	T. SAN JOSE	_	IM. EDOS. MICH./GTO.	/GTO.							
LOCALIZACION:	KM. 41+000 AL		+000 DE LA	KM. 47+000 DE LA CARRETERA: ACAMBARO - MORELIA	A: ACAMBAR	O - MORELIA	,				
FECHA DEL INFORME:	FEL INFORME: 20 de junio de 2007	20 de junio	de 2007			ACSEGSE B	SPESOR DE	PROYECTO	ESPESOR DE PROYECTO DE LA CAPA: ESPESOR DE LA CAPA ANTES DE COMPACTAPE		
ш		75000	2			LSL	7 2 27	א שוויה ל			
VIAJES			Ė	TRAMO			HOR,	HORARIO	TEN	TEMPERATURAS	್ರಿ
CAMION VOL. M3	M3 DEL KM.	AL KM.	FRANJA	LADO	ANCHO (M)	ESPESOR	SALIDA	LLEGADA	PLANTA	TENDIDO	COMPATADO
	44+570	45+418	A	IZQUIERDA	3.60				4,300	- 4,300	
	44+410	45+400	4	IZOUIERDA	3.60				2.500	- 2.500	
				IZQUIERDA							
	44+165	5 44+570	∢	IZQUIERDA	3.60				1,750	- 1,750	
				IZQUIERDA							
	43+650	44+410	Α	IZQUIERDA	3.60				4,400	- 4,400	
				IZQUIERDA							
	43+600	44+165	Α	IZQUIERDA	3.60				3,300	- 3,300	
				IZQUIERDA							
	43+250	43+650	Α	IZQUIERDA	3.60				2,550	- 2,550	
				IZQUIERDA							
	42+660	43+600	А	IZQUIERDA	3.60				-	-	
				IZQUIERDA							
		FORMULO	07						Vo. Bo.		
		EL LABORATORISTA	ORISTA					EL JEF	EL JEFE DEL LABORATORIO	ATORIO	
	ING. DA	ING. DAVID GUERRERO FLORES	ERO FLOR	ES				ING. JUV	ING. JUVENAL RUIZ MALDONADO	ALDONADO	

CONSTRUCTORA EUNICE, S.A. DE C.V. LABORATORIO DE CONTROL DE CALIDAD

ENSAYES.

T. SAN JOSE - LIM. EDOS. MICH./GTO. ACAMBARO - MORELIA DEL KM. 41+000 AL KM. 47+000

16 de julio de 2007 FECHA:

	:	000
ENSAYE DE PROBETAS DE SUELO CEMENTO A COMPRESIÓN SIN CONFINA	NFINAR	

	FECHA:	ENSAYE	22-jun-07	13-jul-07	28-jun-07	19-jul-07	29-jun-07	29-jun-07	04-jul-07	04-jul-07	10-jul-07	10-jul-07	13-jul-07	13-jul-07	14-jul-07	14-jul-07		
	FE(ELABORACIÓN	15-jun-07	15-jun-07	21-jun-07	21-jun-07	22-jun-07	22-jun-07	27-jun-07	27-jun-07	03-jul-07	03-jul-07	70-lnl-90	06-jul-07	07-jul-07	07-jul-07		
	ESPECIF.	kg/cm ²	30		30		30		30		30		30		30			
	EDAD	DÍAS	7	28	7	28	7	7	7	7	7	7	7	7	7	7		
	HUMEDAD CARGA RESISTENCIA	kg/cm ²	0.09	79.6	57.2	74.6	59.7	55.4	72.7	70.0	50.1	53.3	54.9	51.5	74.0	71.8		
	CARGA	kg	7,600.0	10,000.0	7,200.0	9,300.0	7,450.0	7,000.0	9,150.0	8,800.0	6,350.0	6,700.0	0.006,9	6,500.0	9,300.0	9,100.0		
	HUMEDAD	%	15.00	15.00	13.90	13.90	15.00	15.00	16.00	16.00	15.80	15.80	15.20	15.20	15.00	15.00		
7	P.V.	kg/m³	1898	1923	1889	1880	1897	1884	1889	1901	1852	1881	1879	1868	1864	1847		
2	PESO	ß	0209	0609	2970	5920	5950	6010	6040	6020	5950	2980	5950	2990	5910	5920		
	VOLUMEN	cm ³	3198.6	3167.2	3159.6	3148.4	3137.2	3189.8	3197.4	3167.2	3212.5	3179.7	3167.2	3207.5	3170.9	3204.9		
	ÁREA	cm ²	126.7	125.7	125.9	124.7	124.7	126.3	125.9	125.7	126.7	125.7	125.7	126.3	125.7	126.7		
	ALTURA	cm	25.25	25.20	25.10	25.25	25.16	25.26	25.40	25.20	25.36	25.30	25.20	25.40	25.23	25.30		
	DIÁMETRO ALTURA ÁREA VOLUMEN	cm	12.70	12.65	12.66	12.60	12.60	12.68	12.66	12.65	12.70	12.65	12.65	12.68	12.65	12.70		
	FDANIA	CNICAL	DER.		IZQ.		DER.		DER		DER		IZQ.		IZQ.			
	CIÓN	AL KM.	42+620		42+220		42+000		41+800		41+420		41+250		41+050			
	UBICACIÓN	DEL KM. AL KM	42+400		42+110		41+800		41+600		41+250		41+050		41+000			

OBSERVACIONES:

EL JEFE DEL LABORATORIO:	ING. JUVENAL RUIZ MALDONADO
EL LABORATORISTA:	TEC. MIGUEL CORTEZ ZAVALA

CONSTRUCTORA EUNICE, S.A. DE C.V. LABORATORIO DE CONTROL DE CALIDAD

INFORME DE ENSAYE EN MATERIALES PARA BASE

OBRA	O CAMINO:	RECONST	RUCCION R	ECUPERADA				ENSAYES No	ENSAYES No						
CARRE	ETERA:	ACAMBAR	O-MORELIA			FECHA DE RECI	BO:								
TRAMO:		LIM. EDOS	. MICH./GT0	D.	FECHA DE INFO	RME:									
SUBTE	RAMO :	KM 41+000	A 47+000					-							
	MATERIAL PARA CA	APA DE ·			BASE HCA N	ΔΤΙΙΡΔΙ	V ESTARII 17	ΔDΔ							
	DESCRIPCION PETE		DEL MATE	BASE HCA. NATURAL Y ESTABILIZADA RIAL: GRAVA ARENA LIMOSA O VOLCANICA											
SL															
DAT	CLASE DE DEPÓSITO				DE KM 45+380	J A 45+6	00 F/IZQ								
	TRATAMIENTO PREV UBICACIÓN DEL BAN		IREU.												
			1 000	DV 014 440	3			4.740							
	CO SUELTO kg/m³	1,190	1,200	P.V.S.M. AAS				1,746							
P.V.S.N	I. PORTER kg/m ³	1,777	1,782	HUMEDAD O	PTIMA AASHT	O, en %		13.8							
ÓDTI	MA DODTED 0/	11.7	12.0												
	MA PORTER, %	11.7	12.9	GRAFICA DE COMPOSICION GRANULOMETRICA											
	L LUGAR kg/m³				GRAI	-ICA D	E COMPO	SICION GRAN	DECIVIETRICA						
	DAD DE LUGAR %			100 200	100 60	40	20	10 4 :	3/8" 3/4" 1" 1	/2 2"					
COMPACTACIÓN, %				100		i .	1								
MALLA			ENIDO	90	-	-	-	/		<u> </u>					
	EN 50.00			80	<u> </u>	į	į		//	<u> </u>					
	EN 37.50				1	İ	1	/	1//:1/	¦					
ICA		% QUI	E PASA	70	 	1	+		// : /	1					
TR	50.00	100		60	_ 	-	-		/						
COMPOSICIÓN GRANULOMÉTRICA	37.50	98.0				I I	/	77 //	/	i l ĝ					
	25.00	94.0		50	+ +	i .	- Σι	₫ 10E6	1/11	% QUE PASA					
	19.00	91.0		40	_	1	/	ΣL>10E	61/	·······································					
Ū Z	9.500	70.0							1	!					
CIÓ	4.750	51.0	51.0						1 11	<u>:</u>					
OSI	2.00	35.0		20					<u> </u>	<u>i</u>					
MP	0.850	24.0						į į	1 11	<u> </u>					
5	0.420	19.0		10			1	<u> </u>	i i i	-					
	0.250	17.0		0 5		i	<u>i</u>	0 00	1 1 1	1 8					
	0.150	15.0		0.07	0.150	0.420	0.850	2.00	9.50 19.00 25.00	20.00					
	0.075	12.0			MALLA Núm.										
		1	NORMA												
V.R.S. ESTÁNDAR % 98 100 MIN.				195		A MALLA No. 9.5	mm								
EXPANSIÓN %		0.15		0	ABSORCIÓN	%		6.5							
VALOR CEMENTANTE kg/cm		2			DENSIDAD			1.95							
EQUIVA	ALENTE DE ARENA %	43.0	50 MIN.	75	DURABILIDA	D									
			PRUEBAS S	OBRE MATER	IAL TAMIZADO	O POR L	A MALLA N	o. 0.425	1						
LÍMITE LÍQUIDO % 27		25 MAX.	33.00 EQUIV. HUM. DE CAMPO %												
LÍMITE PLÁSTICO % 18			INAP.	CONTRACCIO	ÓN LINE	AL %	3.0	0.6							
ÍNDICE PLÁSTICO % 9 6 MAX.				INAP.	CLASIFICACI	ÓN SCT	SUCS								
OBSEF	RVACIONES Y RECC	MENDACIO		SISTENSIA A I	LA COMPRES	SION SII	N CONFINA	R 54							
	EL LABORA	TORISTA		EL JE	FE DEL LAE	BORAT	ORIO		Vo. Bo.						
				ING. JU	IVENAL RUIZ	MALDO	NADO								

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

Conclusiones

Del estudio adecuado de las condiciones y características generales de una carretera para su reconstrucción, mantenimiento o mejoramiento, se puede concluir que:

Los Estudios Previos en relación a esta obra son de gran importancia ya que permiten tener un conocimiento de las condiciones actuales del la carretera.

Los estudios correspondientes definen de una manera clara el procedimiento adecuado para lograr que las condiciones de operación sean las que mejoran considerablemente el estado de la carretera.

Aplicando las técnicas, criterios y procedimientos apropiados se lograra un proyecto que cumpla en forma óptima con la finalidad principal de toda obra relacionada con la ingeniería actual, o sea Estable, Durable, Económica, Funcional y Necesariamente Social.

El control de calidad deberá ser constante durante la construcción ya que garantizará la calidad de la obra en sus diferentes etapas, para ello los reportes deberán ser oportunos y dirigidos al personal cuya decisión sea trascendente en la obra (Residente)

El empleo de personal apropiado tanto técnico como de mano de obra es de suma importancia, por lo que en toda obra se deberá contar con Profesionales responsables en el proceso de construcción así como mano de obra calificada y con experiencia en todas y cada una de las etapas según el proceso de obra correspondiente.

Por lo anterior y referente a la obra en estudio se concluirá:

- 1.- La obra se realizó de acuerdo a especificaciones.
- 2.- Las deficiencias de calidad de materiales empleados en la construcción de la obra fueron atendidos oportunamente por el residente de obra.
- 3.- Por condiciones climatológicas se consideró para garantizar la calidad de la obra evitar efectuar trabajos de la misma, lo anterior repercutió en no cumplir el programa de trabajo previsto, sin embargo si se cumplió con el tiempo de entrega de la misma.

CONCLUSIONES

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

- 4.-Durante la presencia de factores climatológicos se verificó en forma satisfactoria el funcionamiento de las obras de drenaje construidas.
- 5.- Se constata actualmente que los señalamientos y balizamientos fueron los adecuados, lo anterior basado en ocurrencia casi nula de accidentes de transito.
- 6.- En relación al control de calidad se recomienda que su presencia sea permanente en la obra para que el apoyo al residente de la misma sea totalmente efectivo, y las acciones de corrección que dictamine sean atendidas por el mismo residente de obra oportunamente y no demeriten la calidad de la obra

CONCLUSIONES

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO

FACULTAD DE INGENIERIA CIVIL

BIBLIOGRAFIA

Mier Suárez, José Alfonso; Solorio Cano, Horacio – Ingeniería de Caminos en México

Mier Suárez, José Alfonso, "Introducción a la Ingeniería de Caminos" U.M.S.N.H. Morelia, Michoacán 1998

Mejía Ramírez, Joaquín; Hernández Guzmán Salvador- "Apuntes sobre Control de Calidad" U.M.S.N.H. Morelia,

Juárez Badillo, Eulalio; Rico Rodríguez, Alfonso- "Mecánica de Suelos Tomo I " Fundamentos de Mecánica de Suelos Tercera Edición ,Editorial Limusa, S.A. México, D.F. 1981

Coordinación de Normas SCT del Instituto Mexicano del Transporte, "Normativa para la Infraestructura del transporte". Edición 2000,2003,2003,, México, D.F.