

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA CIVIL

CUERPO ACADÉMICO DE GESTIÓN INTEGRAL DEL AGUA

COMPORTAMIENTO DEL ERROR DE MEDICIÓN EN UN MEDIDOR TIPO TURBINA

TESIS

QUE PARA OBTENER EL TÍTULO DE INGENIERO CIVIL

PRESENTA

DAVID LARIOS FRAGA

ASESOR

DR. BENJAMÍN LARA LEDESMA

MORELIA, MICH., DICIEMBRE DE 2010

AGRADECIMIENTOS

Al Dr. Benjamín Lara, todo mi agradecimiento por invitarme a participar en su investigación, por su paciencia y tolerancia, pero sobre todo por brindarme su incondicional amistad.

A mis amigos de laboratorio: la M.I. Pauline, el Ing. Leonel y el M.I. Martín, que me aconsejaron y auxiliaron en las pruebas de esta investigación.

A la Facultad de Ingeniería Civil, por permitir el uso de sus instalaciones y al personal que ahí labora.

A mi esposa Tere, por su constante invitación a seguir siempre adelante.

A mis padres, que siempre me han apoyado en todo lo que intento hacer.

A mi familia, que siempre me acompaña.

- "La Filosofía está escrita en ese gran libro del Universo, que está continuamente abierto nosotros para que lo observemos. Pero el libro no puede comprenderse sin que antes aprendamos el lenguaje y el alfabeto en que está compuesto. Está escrito en el lenguaje de las Matemáticas y sus caracteres son triángulos, círculos y otras figuras geométricas, sin las cuales es humanamente imposible entender una sola de sus palabras. Sin ese lenguaje, navegamos en un oscuro laberinto."
- "Primero que todo, vi la luna tan cerca como si estuviese apenas a una distancia de dos semidiámetros de tierra. la Después de la luna, observé frecuentemente otros cuerpos celestes, tanto estrellas fijas como planetas, con increíble deleite."
- "Es más fácil, amigo mío, conocer las leyes que gobiernan el movimiento de las esferas celestes que las leyes que rigen al movimiento del agua que corre frente a tu puerta."

Galileo Galilei (1564 - 1642)

CONTENIDO

1.	INTRODUCCIÓN	4
	1.1 La Finalidad de la Medición del Agua	5
	1.2 La Medición de Extracción de Agua de Pozos de Acuerdo con las Leyes	6
	1.3 Antecedentes	8
	1.4 Objetivo	11
	1.5 Metodología	12
2.	SOPORTE EXPERIMENTAL	13
3.	OBTENCIÓN DE RESULTADOS	18
4.	RESULTADOS Y CONCLUSIONE	28
5.	BIBLIOGRAFÍA	30

1. INTRODUCCIÓN

1.1 La Finalidad de la Medición del Agua

La medición del agua mediante el uso de dispositivos y técnicas tiene fines principalmente como los siguientes:

Cobro del suministro del agua.

Control de sobreexplotación de los acuíferos entre otros.

La autoridad del Agua en nuestro país no cobra por el derecho al agua, sino por la capacidad de entregarla en la cantidad solicitada, ya que involucra infraestructura hidráulica, personal, vehículos, inmuebles, etc., por lo que es indispensable conocer cuanta agua se entrega a cada usuario para poder cobrarle lo que le corresponda.

La sobreexplotación existe cuando los usuarios de pozos que tienen permitido la extracción de un volumen máximo anual estimado en función de la recarga del acuífero, extraen más agua de la que entra, con el riesgo del abatimiento del nivel freático, y como consecuencia un grave daño al medio ambiente. La importancia del agua subterránea queda de manifiesto por la magnitud del volumen utilizado, ya que el 37% del volumen total concesionado para usos agrícolas es de origen subterráneo (CNA, 2007).

El país está dividido en 653 acuíferos, que a partir de la década de los sesenta se han sobreexplotado de manera creciente y alarmante. La evolución de la extracción de agua de los acuíferos, no tiene un panorama muy favorable, llegando hasta la intrusión salina en algunos casos. La intrusión salina se entiende como el fenómeno en el que el agua de mar se introduce por el subsuelo hacia el interior del continente, ocasionando la salinización del agua subterránea; esto ocurre cuando la extracción de agua provoca abatimientos del nivel de agua subterránea por debajo del nivel del mar alterando el balance dinámico natural entre el agua de mar y el agua dulce.

Algunos de los efectos negativos por sobreexplotación son:

Desaparición de manantiales, vegetación nativa, humedales, lagos, gasto base de ríos y ecosistemas locales.

Reducción del gasto de los pozos y afectación en su vida útil.

Deterioro de la calidad del agua subterránea (intrusión salina).

Abatimiento del nivel del agua subterránea, lo que ha inducido el incremento de los costos de extracción debido a mayores consumos de energía eléctrica.

Asentamiento y agrietamiento del terreno.

Disminución de la rentabilidad de la actividad agrícola.

1.2 La Medición de Extracción de Agua de Pozos de Acuerdo con las Leyes

La obligatoriedad de la medición del agua se encuentra sustentada en la Constitución Política de los Estados Unidos Mexicanos y más especialmente en la Ley de Aguas Nacionales.

En el artículo 27 de la Constitución en materia de agua se menciona que "las aguas comprendidas dentro de los límites del territorio nacional son propiedad de la nación y ésta puede autorizar la explotación, el uso o el aprovechamiento a particulares conforme a las leyes mexicanas, mediante concesiones otorgadas por el Ejecutivo Federal, de acuerdo con las reglas y condiciones que establezcan las Leyes. Para lo cual se debe controlar la explotación de los acuíferos y dar un uso eficiente al recurso incluyendo el cumplimiento de las leyes que por cierto apoyan la medición".

La Ley de Aguas Nacionales y su Reglamento 2004, establece lo siguiente: "Cada concesionario tiene derecho a extraer un volumen máximo de agua, para que éste pueda ser otorgado debe cumplir con lo mencionado en el Reglamento". A continuación se toman algunos textos de dicha Ley con objeto de enfatizar la obligación legal que se tiene en la medición.

TÍTULO CUARTO. Derechos de explotación, uso o aprovechamiento de aguas nacionales. Capítulo III. Derechos y obligaciones de los concesionarios o asignatarios; Artículo 29.

Los concesionarios tendrán las siguientes obligaciones, en adición a las demás asentadas en el presente Título:

Párrafo II. "Instalar dentro de los cuarenta y cinco días siguientes a la recepción del título respectivo por parte del interesado, los medidores de agua respectivos o los demás dispositivos o procedimientos de medición directa o indirecta que señalen las disposiciones legales y reglamentarias aplicables, así como las Normas Oficiales Mexicanas".

Párrafo III. "Conservar y mantener en buen estado de operación los medidores u otros dispositivos de medición de volumen de agua explotada, usada u aprovechada".

Párrafo VIII. "Permitir al personal de "la Autoridad del Agua" o, en su caso, de "la Procuraduría", según competa y conforme a esta ley y sus reglamentos, la inspección de las obras hidráulicas para explotar, usar o aprovechar las aguas nacionales, incluyendo la perforación y alumbramiento de aguas del subsuelo; los bienes nacionales a su cargo; la perforación y alumbramiento de aguas nacionales del subsuelo; y permitir la lectura y verificación del funcionamiento y precisión de los medidores, y las demás actividades que se requieran para comprobar el cumplimiento de lo dispuesto en esta Ley y sus disposiciones reglamentarias, normas y títulos de concesión, de asignación o permiso de descarga";

Párrafo XI. "No explotar, usar, aprovechar o descargar volúmenes mayores a los autorizados en los títulos de concesión".

Párrafo XII. "Permitir a "la Autoridad del Agua" con cargo al concesionario, asignatario o permisionario y con carácter de crédito fiscal para su cobro, la instalación de dispositivos para la medición del agua explotada, usada o aprovechada, en el caso de que por si mismos no la

realicen, sin menoscabo de la aplicación de las sanciones previstas en esta Ley sus respectivos reglamentos".

Párrafo XIII. "Dar aviso inmediato por escrito a "la Autoridad del Agua" en caso de que los dispositivos de medición dejen de funcionar, debiendo el concesionario o asignatario reparar o en su caso remplazar dichos dispositivos dentro del plazo de 30 días naturales".

También en el TÍTULO DÉCIMO. Infracciones, Sanciones y Recursos. Capítulo I Infracciones y Sanciones Administrativas; Artículo 119; se encuentra lo siguiente:

Párrafo VII. "No instalar, no conservar, no reparar o no sustituir, los dispositivos necesarios para el registro de la medición de la cantidad y calidad de las aguas, en los términos que establece esta Ley, su reglamento y demás disposiciones aplicables, o el modificar o alterar las instalaciones y equipos para medir los volúmenes de agua explotados, usados o aprovechados, sin permiso correspondiente, incluyendo aquellos que en ejercicio de sus facultades hubiere instalado "la Autoridad del Agua"".

Párrafo X. "Impedir u obstaculizar las visitas, inspecciones, reconocimientos, verificaciones y fiscalizaciones que realice "la Autoridad del Agua" en los términos de esta Ley y sus reglamentos".

Párrafo XI. "No entregar los datos requeridos por "la Autoridad del Agua" o "la Procuraduría", según el caso, para verificar el cumplimiento de las disposiciones contenidas en esta Ley y sus títulos de concesión, asignación o permiso de descarga, así como en otros ordenamientos jurídicos".

Con esto, se concluye que por disposición legal "se pide medir" los volúmenes de agua explotados, usados o aprovechados.

1.3 Antecedentes

En el caso de pozos agrícolas es muy común que no se dejan tramos rectos suficientes para colocar correctamente los medidores.

Tres casos de tramo recto insuficiente para la correcta colocación de un medidor.

Durante el año 2004 se realizaron experimentos en el laboratorio de hidráulica de la Universidad de Guanajuato con un medidor colocado con insuficientes tramos rectos. Los resultados de las pruebas señalaron que el medidor presenta los menores errores cuando está colocado en la posición de tramos rectos requeridos; es decir, de 5 diámetros aguas arriba y tres aguas abajo, esto para todos los valores de gasto utilizados. El mayor error se obtuvo cuando el medidor no tenía tramos rectos aguas arriba (3.6%).

Como recomendación del trabajo se señaló la conveniencia de continuar realizando experimentos con diferentes medidores al fin de comparar los resultados con los obtenidos en este trabajo. Esto es muy importante ya que los resultados pueden ser mal interpretados en el sentido que valen para todos los casos y todos los medidores.

Por tal motivo se llevó a cabo el presente trabajo, que consistió en cuantificar los errores de un medidor de flujo volumétrico tipo turbina modelo WOLTMAN TURBO WT II, de 12" de diámetro, que están diseñados para medir altos caudales con una mínima pérdida de carga; La medición es por medio de una turbina plástica que gira proporcionalmente a la velocidad del flujo (Diseñados y producidos de acuerdo a los requisitos de la norma Internacional ISO 4064 Clase B. Cumple con la norma Mexicana NOM-008-SCFI-2002), colocado en una tubería de PVC de 12 pulgadas de diámetro, el cuál fue ubicado en diferentes posiciones a lo largo de la tubería.

Esta es la imagen del medidor en cuestión.

A continuación se detallan los componentes del medidor

No.	Description
1	Body WT 12" iso
2	Inlet flow straightener
3	Sleeve
4	Adaptor pipe bushing
5	Sleeve screw
6	Front spider
7	Bearing bushing
8	Impeller
9	M5 nut
10	M5 screw
11	Cover O-Ring
12	Worm assy
13	Rear spider cap O-Ring
14	Transmission shaft bushing
15	Rear spider cap
16	Rear spider cap lock ring
17	Rear flow straightener
18	Spider
19	Hex. Cap screw
20	Clamping plate for spider
20a	Clamping plate for spider
21	Rear spider washer
22	Driven magnet bushing
23	Spider O-ring

No.	Description
24	Transmission shaft
25	Transmission cover
26	Transmission cover screw
27	Upper transmission shaft
28	Cover ring
29	Regulator
30	O-Ring
31	Cover (paint)
32	Regulator lock nut
33	O-ring
34	Regulator cap screw
35	Hex. Cap screw (drilled)
36	Hex cap screw
37	Upper bearing o-ring
38	Upper spindle bearing
39	Pressure ring
40	Register O-Ring
41	Sealed register
42	Sliding ring
43	Cover assembly
44	Measuring unit WT 12"
	Including parts: 6-10,12-18,21-24

1.4 Objetivo

Determinar el comportamiento del error de medición de un medidor tipo turbina ubicado en diferentes posiciones a lo largo del eje de la tubería, o sea variando el tramo recto requerido, tanto aguas arriba como aguas abajo, Figura 1. El gasto descargado se variará en cada una de las posiciones del medidor.

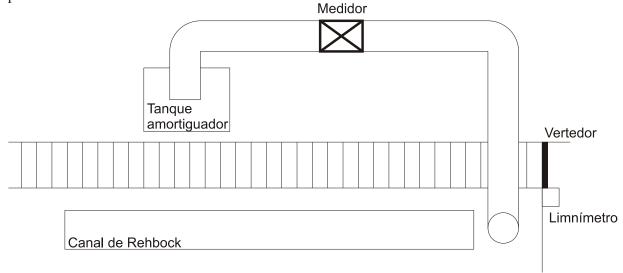


Figura1. Esquema del módulo experimental

1.5 Metodología

En el laboratorio de hidráulica de la Universidad Michoacana se tienen las instalaciones necesarias para realizar este tipo de trabajo.

Los experimentos se realizarán colocando inicialmente el medidor en la entrada del tramo de pruebas y terminarán con el medidor colocado junto al codo del cuello de ganso (ver Figura 1). El tramo pruebas T será de 12 pulgadas de diámetro con la longitud siguiente:

$$T = (A + B) D + L$$

Donde:

T es la longitud del tramo de pruebas;

A es el número de diámetros de tramo recto aguas arriba del medidor;

B es el número de diámetros de tramo recto aguas abajo del medidor

D es el diámetro del tubo; y,

L es la longitud del carrete del medidor.

El medidor se irá colocando con los tramos rectos aguas arriba y aguas abajo, de acuerdo a la Tabla 1, considerando A = 5 y B = 3.

Tabla 1. Colocación del medidor tipo turbina para cada prueba

Número de	Número de diámetros	Número de diámetros
prueba	del tramo aguas arriba	del tramo aguas abajo
prucba	del medidor	del medidor
1	0	8
2	1	7
3	2	6
4	3	5
5	4	4
6	5	3
7	6	2
8	7	1
9	8	0

Este arreglo requiere de contar con varios carretes y sus correspondientes bridas. De acuerdo con la Tabla 1, para el caso de los valores de *A* y *B* ya indicados, los carretes necesarios se muestran en la Tabla 2.

Ejemplo de un arreglo de 5 diámetros aguas arriba y 3 diámetros aguas abajo

Tabla 2. Número y longitudes de los carretes

Número de		Longitudes de los carretes	
carrete	En número de diámetros	En pulgadas	En metros
1	8	96	2.44
2	7	84	2.13
3	6	72	1.83
4	5	60	1.52
5	4	48	1.22
6	3	36	0.91
7	2	24	0.61
8	1	12	0.30
	Total	432	10.97

2. SOPORTE EXPERIMENTAL

El modelo se construyó de la siguiente manera:

Alimentación. El gasto es suministrado por un tanque de carga constante de 8 m de altura (Fotografía 1), que a su vez es alimentado por una o dos bombas, dependiendo del gasto demandado, desde una cisterna, (Fotografía 2).

Fotografía 1. Tanque de carga constante

Fotografía 2. Equipo de bombeo que alimenta al tanque de carga constante

Fotografía 3. Conexión del modelo a la red del laboratorio

Fotografía 4. Medidor colocado dos tramos rectos aguas arriba y seis aguas abajo

Fotografía 6. Descarga al canal de retorno que la conduce al vertedor y de ahí a la cisterna

Fotografía 7. Medición de la descarga mediante el vertedor rectangular

Fotografía 8. Medición de la carga sobre el vertedor para determinar la descarga

3. OBTENCIÓN DE RESULTADOS

A continuación se presenta cada una de las nueve pruebas que se analizaron con diferentes gastos. En primera instancia, se tenía la recomendación de que el tramo que presentaría los mejores resultados sería la posición del medidor cinco diámetros aguas arriba y tres diámetros aguas abajo, los resultados gráficos se presentan en las figuras siguientes.

					Tiempo		Lectura Limnimetro		medidor magnetico	medidor magnetico	Vertedor	Vertedor	((Qver-Qmed)/Qver) x 100
	Lectura Inicial	Lectura Final	diferencia m3/s	min (')	seg (")	Segundos Decimales	m	Carga sobre el vertedor (m)	Q = V/t (m3/s)	Gasto (I/s)	Q = 1.5457y2+0.2222y+0.0019V/t (m3/s)	Gasto (I/s)	% de error
1	36,261	36,266	5	1	54.48	114.48	0.4392	0.1092	0.0437	43.68	0.0408	40.78	-7.09
2	36,167	36,172	5	1	48.96	108.96	0.4413	0.1113	0.0459	45.89	0.0420	41.97	-9.35
3	36,244	36,249	5	1	42.97	102.97	0.4463	0.1163	0.0486	48.56	0.0448	44.83	-8.30
4	36,269	36,274	5	1	39.35	99.35	0.4497	0.1197	0.0503	50.33	0.0468	46.83	-7.47
5	36,253	36,258	5	1	36.63	96.63	0.4523	0.1223	0.0517	51.74	0.0484	48.38	-6.95
6	36,177	36,182	5	1	35.69	95.69	0.4533	0.1233	0.0523	52.25	0.0490	48.98	-6.68
7	36,146	36,151	5	1	35.27	95.27	0.4539	0.1239	0.0525	52.48	0.0493	49.34	-6.36
8	36,207	36,212	5	1	30.79	90.79	0.4582	0.1282	0.0551	55.07	0.0520	51.97	-5.96
9	36,278	36,283	5	1	30.08	90.08	0.4594	0.1294	0.0555	55.51	0.0527	52.72	-5.29
10	36,125	36,130	5	1	30.00	90.00	0.4576	0.1276	0.0556	55.56	0.0516	51.60	-7.66
11	36,235	36,240	5	1	28.75	88.75	0.4605	0.1305	0.0563	56.34	0.0534	53.40	-5.49
12	36,157	36,162	5	1	26.26	86.26	0.4624	0.1324	0.0580	57.96	0.0546	54.60	-6.17
13	36,216	36,221	5	1	26.19	86.19	0.4637	0.1337	0.0580	58.01	0.0554	55.42	-4.67
14	36,135	36,140	5	1	25.81	85.81	0.4632	0.1332	0.0583	58.27	0.0551	55.10	-5.74
15	36,187	36,192	5	1	23.04	83.04	0.4655	0.1355	0.0602	60.21	0.0566	56.57	-6.44
16	36,286	36,291	5	1	22.53	82.53	0.4672	0.1372	0.0606	60.58	0.0577	57.66	-5.07
17	36,302	36,307	5	1	20.76	80.76	0.4682	0.1382	0.0619	61.91	0.0583	58.31	-6.18
18	36,226	36,231	5	1	20.19	80.19	0.4682	0.1382	0.0624	62.35	0.0583	58.31	-6.93
19	36,197	36,202	5	1	18.43	78.43	0.4721	0.1421	0.0638	63.75	0.0609	60.87	-4.74
20	36,294	36,299	5	1	15.79	75.79	0.4753	0.1453	0.0660	65.97	0.0630	63.00	-4.72

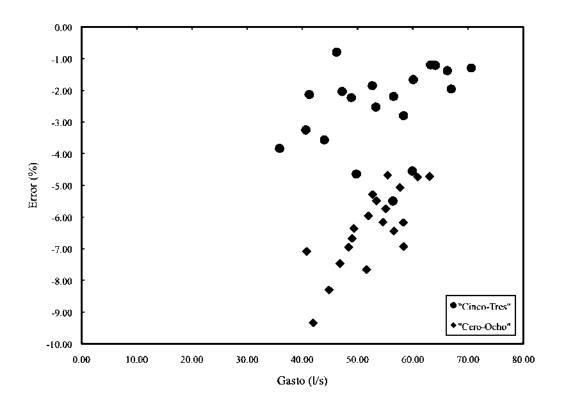


Figura 1. Comparación de la posición "Cero-Ocho" contra la posición "Cinco-Tres"

				Tiempo		Lectura Limnimetro		medidor magnetico	medidor magnetico	Vertedor	Vertedor	((Qver-Qmed)/Qver) x 100
Lectura Inicial	Lectura Final	diferencia m3/s	min (')	seg (")	Segundos Decimales	m	Carga sobre el vertedor (m)	Q = V/t (m3/s)	Gasto (I/s)	Q = 1.5457y2+0.2222y+0.0019V/t (m3/s)	Gasto (l/s)	% de error
1 36,435	36,440	5	3	19.51	199.51	0.4025	0.0725	0.025061	25.06	0.022329	22.33	-12.24
2 36,427	36,432	5	2	8.48	128.48	0.4302	0.1002	0.038917	38.92	0.035873	35.87	-8.48
3 36,485	36,490	5	1	54.09	114.09	0.4389	0.1089	0.043825	43.83	0.040617	40.62	-7.90
4 36,442	36,447	5	1	52.45	112.45	0.4403	0.1103	0.044464	44.46	0.041402	41.40	-7.40
5 36,366	36,371	5	1	45.87	105.87	0.4437	0.1137	0.047228	47.23	0.043334	43.33	-8.99
6 36,418	36,423	5	1	42.67	102.67	0.4462	0.1162	0.048700	48.70	0.044777	44.78	-8.76
7 36,374	36,379	5	1	42.45	102.45	0.4478	0.1178	0.048804	48.80	0.045711	45.71	-6.77
8 36,493	36,498	5	1	38.16	98.16	0.4512	0.1212	0.050937	50.94	0.047721	47.72	-6.74
9 36,382	36,387	5	1	37.32	97.32	0.4517	0.1217	0.051377	51.38	0.048020	48.02	-6.99
10 36,450	36,455	5	1	33.37	93.37	0.4551	0.1251	0.053550	53.55	0.050072	50.07	-6.95
11 36,477	36,482	5	1	31.60	91.60	0.4561	0.1261	0.054585	54.59	0.050682	50.68	-7.70
12 36,358	36,363	5	1	29.05	89.05	0.4582	0.1282	0.056148	56.15	0.051974	51.97	-8.03
13 36,502	36,507	5	1	23.87	83.87	0.4653	0.1353	0.059616	59.62	0.056441	56.44	-5.63
14 36,458	36,463	5	1	22.30	82.30	0.4658	0.1358	0.060753	60.75	0.056762	56.76	-7.03
15 36,390	36,395	5	1	22.18	82.18	0.4661	0.1361	0.060842	60.84	0.056954	56.95	-6.83
16 36,511	36,516	5	1	16.36	76.36	0.4732	0.1432	0.065479	65.48	0.061595	61.60	-6.31
17 36,409	36,414	5	1	15.78	75.78	0.4748	0.1448	0.065980	65.98	0.062662	62.66	-5.30
18 36,467	36,472	5	1	14.20	74.20	0.4763	0.1463	0.067385	67.39	0.063670	63.67	-5.84
19 36,399	36,404	5	1	11.25	71.25	0.4786	0.1486	0.070175	70.18	0.065229	65.23	-7.58
20 36,345	36,350	5	1	4.34	64.34	0.4912	0.1612	0.077712	77.71	0.074058	74.06	-4.93

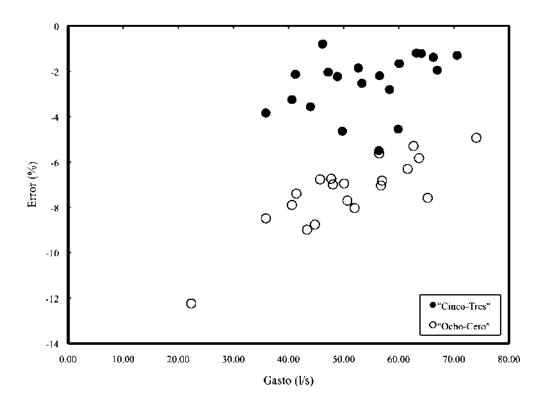


Figura 2. Comparación de la posición "Ocho-Cero" contra la posición "Cinco-Tres"

				Tiempo		Lectura Limnimetro		medidor magnetico	medidor magnetico	Vertedor	Vertedor	((Qver-Qmed)/Qver) x 100
Lectura Inicial	Lectura Final	diferencia m3/s	min (')	seg (")	Segundos Decimales	m	Carga sobre el vertedor (m)	Q = V/t (m3/s)	Gasto (l/s)	Q = 1.5457y2+0.2222y+0.0019V/t (m3/s)	Gasto (l/s)	% de error
1 36,665	36,670	5	2	36.49	156.49	0.4166	0.0866	0.0320	31.95	0.0289	28.93	-10.45
2 36,673	36,678	5	2	28.92	148.92	0.4203	0.0903	0.0336	33.58	0.0308	30.76	-9.15
3 36,657	36,662	5	2	9.75	129.75	0.4302	0.1002	0.0385	38.54	0.0359	35.87	-7.42
4 36,680	36,685	5	2	6.33	126.33	0.4323	0.1023	0.0396	39.58	0.0370	37.00	-6.98
5 36,688	36,693	5	1	57.30	117.30	0.4403	0.1103	0.0426	42.63	0.0414	41.40	-2.96
6 36,649	36,654	5	1	51.33	111.33	0.4437	0.1137	0.0449	44.91	0.0433	43.33	-3.64
7 36,696	36,701	5	1	46.69	106.69	0.4482	0.1182	0.0469	46.86	0.0459	45.95	-2.00
8 36,704	36,709	5	1	37.42	97.42	0.4551	0.1251	0.0513	51.32	0.0501	50.07	-2.50
9 36,640	36,645	5	1	35.73	95.73	0.4562	0.1262	0.0522	52.23	0.0507	50.74	-2.93
10 36,712	36,717	5	1	31.15	91.15	0.4617	0.1317	0.0549	54.85	0.0542	54.16	-1.29
11 36,632	36,637	5	1	27.71	87.71	0.4642	0.1342	0.0570	57.01	0.0557	55.74	-2.27
12 36,724	36,729	5	1	26.27	86.27	0.4668	0.1368	0.0580	57.96	0.0574	57.40	-0.96
13 36,769	36,774	5	1	25.96	85.96	0.4644	0.1344	0.0582	58.17	0.0559	55.87	-4.12
14 36,779	36,784	5	1	25.66	85.66	0.4682	0.1382	0.0584	58.37	0.0583	58.31	-0.10
15 36,733	36,738	5	1	20.89	80.89	0.4727	0.1427	0.0618	61.81	0.0613	61.26	-0.90
16 36,760	36,765	5	1	17.59	77.59	0.4756	0.1456	0.0644	64.44	0.0632	63.20	-1.97
17 36,742	36,747	5	1	16.23	76.23	0.4783	0.1483	0.0656	65.59	0.0650	65.02	-0.87
18 36,613	36,618	5	1	14.05	74.05	0.4814	0.1514	0.0675	67.52	0.0671	67.15	-0.56
19 36,751	36,756	5	1	11.70	71.70	0.4842	0.1542	0.0697	69.74	0.0691	69.09	-0.93
20 36,600	36,605	5	1	4.25	64.25	0.4982	0.1682	0.0778	77.82	0.0792	79.18	1.71

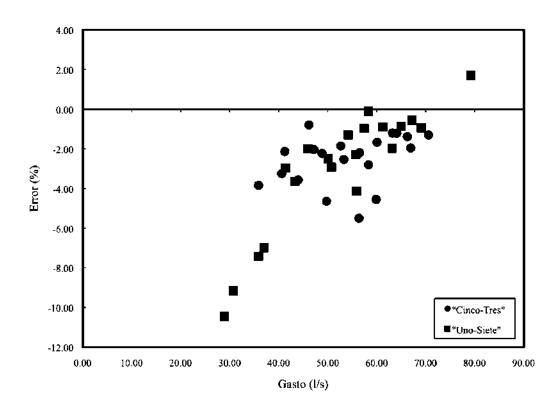


Figura 3. Comparación de la posición "Uno-Siete" contra la posición "Cinco-Tres"

				Tiempo		Lectura Limnimetro		medidor magnetico	medidor magnetico	Vertedor	Vertedor	((Qver-Qmed)/Qver) x 100
Lectura Inicial	Lectura Final	diferencia m3/s	min (')	seg (")	Segundos Decimales	m	Carga sobre el vertedor (m)	Q = V/t (m3/s)	Gasto (I/s)	Q = 1.5457y2+0.2222y+0.0019V/t (m3/s)	Gasto (I/s)	% de error
1 36,867	36,872	5	2	52.23	172.23	0.4137	0.0837	0.029031	29.03	0.027520	27.52	-5.49
2 36,874	36,879	5	2	25.14	145.14	0.4265	0.0965	0.034449	34.45	0.033927	33.93	-1.54
3 36,859	36,864	5	2	16.28	136.28	0.4290	0.0990	0.036689	36.69	0.035237	35.24	-4.12
4 36,786	36,791	5	2	16.18	136.18	0.4272	0.0972	0.036716	36.72	0.034292	34.29	-7.07
5 36,793	36,798	5	2	9.15	129.15	0.4323	0.1023	0.038715	38.71	0.036997	37.00	-4.64
6 36,881	36,886	5	1	57.79	117.79	0.4402	0.1102	0.042448	42.45	0.041345	41.35	-2.67
7 36,801	36,806	5	1	55.28	115.28	0.4405	0.1105	0.043373	43.37	0.041514	41.51	-4.48
8 36,851	36,856	5	1	48.46	108.46	0.4454	0.1154	0.046100	46.10	0.044313	44.31	-4.03
9 36,809	36,814	5	1	43.58	103.58	0.4493	0.1193	0.048272	48.27	0.046593	46.59	-3.60
10 36,778	36,783	5	1	40.03	100.03	0.4517	0.1217	0.049985	49.99	0.048020	48.02	-4.09
11 36,889	36,894	5	1	39.69	99.69	0.4542	0.1242	0.050155	50.16	0.049525	49.53	-1.27
12 36,817	36,822	5	1	34.88	94.88	0.4564	0.1264	0.052698	52.70	0.050866	50.87	-3.60
13 36,897	36,902	5	1	32.11	92.11	0.4608	0.1308	0.054283	54.28	0.053591	53.59	-1.29
14 36,843	36,848	5	1	31.36	91.36	0.4602	0.1302	0.054729	54.73	0.053216	53.22	-2.84
15 36,825	36,830	5	1	27.33	87.33	0.4641	0.1341	0.057254	57.25	0.055675	55.68	-2.84
16 36,905	36,910	5	1	25.56	85.56	0.4678	0.1378	0.058439	58.44	0.058051	58.05	-0.67
17 36,834	36,839	5	1	21.80	81.80	0.4705	0.1405	0.061125	61.12	0.059812	59.81	-2.19
18 36,769	36,774	5	1	20.98	80.98	0.4709	0.1409	0.061744	61.74	0.060075	60.07	-2.78
19 36,913	36,918	5	1	19.54	79.54	0.4739	0.1439	0.062861	62.86	0.062061	62.06	-1.29
20 36,757	36,762	5	1	4.48	64.48	0.4933	0.1633	0.077543	77.54	0.075578	75.58	-2.60

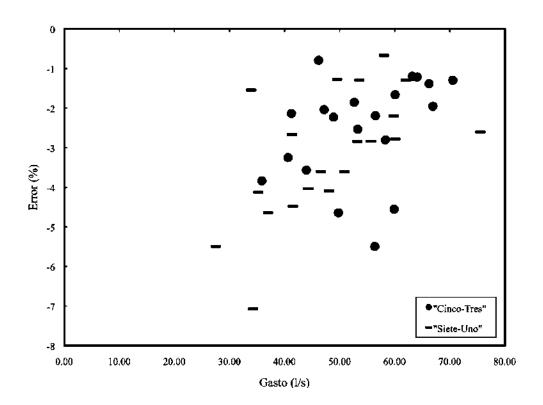


Figura 4. Comparación de la posición "Siete-Uno" contra la posición "Cinco-Tres"

				Tiempo		Lectura Limnimetro		medidor magnetico	medidor magnetico	Vertedor	Vertedor	((Qver-Qmed)/Qver) x 100
Lectura Inicial	Lectura Final	diferencia m3/s	min (')	seg (")	Segundos Decimales	m	Carga sobre el vertedor (m)	Q = V/t (m3/s)	Gasto (l/s)	Q = 1.5457y2+0.2222y+0.0019V/t (m3/s)	Gasto (l/s)	% de error
1 37,227	37,232	5	11	10.62	670.62	0.3598	0.0298	0.007456	7.46	0.006093	6.09	-22.36
2 37,215	37,220	5	5	35.89	335.89	0.3814	0.0514	0.014886	14.89	0.013602	13.60	-9.44
3 37,131	37,136	5	4	57.57	297.57	0.3849	0.0549	0.016803	16.80	0.014955	14.95	-12.36
4 37,139	37,144	5	4	1.62	241.62	0.3934	0.0634	0.020694	20.69	0.018396	18.40	-12.49
5 37,123	37,128	5	3	13.48	193.48	0.4041	0.0741	0.025842	25.84	0.023047	23.05	-12.13
6 37,206	37,211	5	3	0.47	180.47	0.4091	0.0791	0.027705	27.71	0.025341	25.34	-9.33
7 37,235	37,240	5	2	45.80	165.80	0.4145	0.0845	0.030157	30.16	0.027905	27.91	-8.07
8 37,147	37,152	5	2	27.57	147.57	0.4202	0.0902	0.033882	33.88	0.030710	30.71	-10.33
9 37,113	37,118	5	2	0.20	120.20	0.4357	0.1057	0.041597	41.60	0.038845	38.84	-7.09
10 37,158	37,163	5	1	54.11	114.11	0.4409	0.1109	0.043817	43.82	0.041740	41.74	-4.98
11 37,246	37,251	5	1	51.98	111.98	0.4431	0.1131	0.044651	44.65	0.042990	42.99	-3.86
12 37,169	37,174	5	1	42.30	102.30	0.4489	0.1189	0.048876	48.88	0.046357	46.36	-5.43
13 37,077	37,082	5	1	40.41	100.41	0.4500	0.1200	0.049796	49.80	0.047008	47.01	-5.93
14 37,102	37,107	5	1	32.82	92.82	0.4568	0.1268	0.053868	53.87	0.051111	51.11	-5.39
15 37,180	37,185	5	1	29.44	89.44	0.4601	0.1301	0.055903	55.90	0.053154	53.15	-5.17
16 37,192	37,197	5	1	17.02	77.02	0.4727	0.1427	0.064918	64.92	0.061263	61.26	-5.97

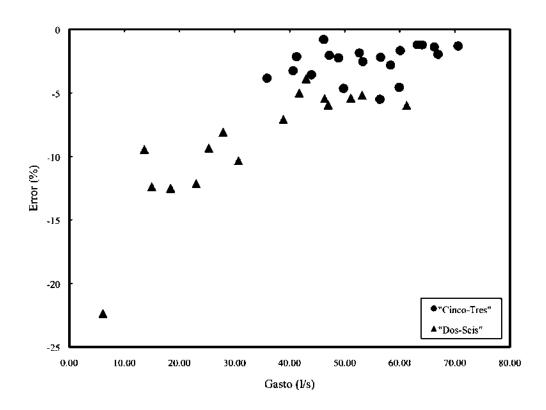


Figura 5. Comparación de la posición "Dos-Seis" contra la posición "Cinco-Tres"

				Tiempo		Lectura Limnimetro		medidor magnetico	medidor magnetico	Vertedor	Vertedor	((Qver-Qmed)/Qver) x 100
Lectur Inicial		diferencia m3/s	min (')	seg (")	Segundos Decimales	m	Carga sobre el vertedor (m)	Q = V/t (m3/s)	Gasto (I/s)	Q = 1.5457y2+0.2222y+0.0019V/t (m3/s)	Gasto (I/s)	% de error
1 37,214	37,219	5	6	28.07	388.07	0.3746	0.0446	0.012884	12.88	0.011083	11.08	-16.25
2 37,22		5	4	43.65	283.65	0.3823	0.0523	0.017627	17.63	0.013946	13.95	-26.39
3 37,23	37,236	5	3	20.57	200.57	0.4034	0.0734	0.024929	24.93	0.022732	22.73	-9.67
4 37,176	37,181	5	2	21.45	141.45	0.4232	0.0932	0.035348	35.35	0.032227	32.23	-9.69
5 37,166	37,171	5	2	4.60	124.60	0.4474	0.1174	0.040128	40.13	0.045477	45.48	11.76
6 37,239	37,244	5	1	51.22	111.22	0.4423	0.1123	0.044956	44.96	0.042534	42.53	-5.69
7 37,185	37,190	5	1	48.92	108.92	0.4434	0.1134	0.045905	45.91	0.043162	43.16	-6.36
8 37,248	37,253	5	1	35.17	95.17	0.4552	0.1252	0.052538	52.54	0.050133	50.13	-4.80
9 37,195		5	1	31.46	91.46	0.4581	0.1281	0.054669	54.67	0.051912	51.91	-5.31
10 37,257	37,262	5	1	25.43	85.43	0.4636	0.1336	0.058527	58.53	0.055357	55.36	-5.73
11 37,152	37,157	5	1	22.49	82.49	0.4645	0.1345	0.060613	60.61	0.055930	55.93	-8.37
12 37,267	37,272	5	1	21.96	81.96	0.4681	0.1381	0.061005	61.01	0.058246	58.25	-4.74
13 37,205	37,210	5	1	21.12	81.12	0.4691	0.1391	0.061637	61.64	0.058896	58.90	-4.65
14 37,278	37,283	5	1	17.24	77.24	0.4732	0.1432	0.064733	64.73	0.061595	61.60	-5.10
15 37,288	37,293	5	1	12.01	72.01	0.4787	0.1487	0.069435	69.43	0.065297	65.30	-6.34
16 37,298	37,303	5	1	9.39	69.39	0.4845	0.1545	0.072056	72.06	0.069302	69.30	-3.97
17 37,308		5	1	6.36	66.36	0.4871	0.1571	0.075347	75.35	0.071131	71.13	-5.93
18 37,138	37,143	5	1	5.19	65.19	0.4881	0.1581	0.076699	76.70	0.071841	71.84	-6.76
19 37,318	37,323	5	1	4.96	64.96	0.4907	0.1607	0.076970	76.97	0.073699	73.70	-4.44

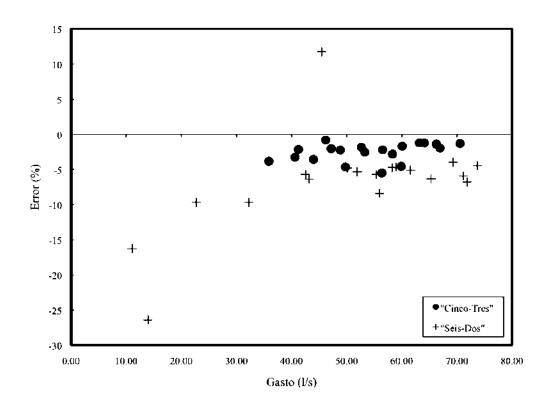


Figura 6. Comparación de la posición "Seis-Dos" contra la posición "Cinco-Tres"

					Tiempo		Lectura Limnimetro	_	medidor magnetico	medidor magnetico	Vertedor	Vertedor	((Qver-Qmed)/Qver) x 100
	Lectura Inicial	Lectura Final	diferencia m3/s	min (')	seg (")	Segundos Decimales	m	Carga sobre el vertedor (m)	Q = V/t (m3/s)	Gasto (l/s)	Q = 1.5457y2+0.2222y+0.0019V/t (m3/s)	Gasto (l/s)	% de error
1	37,010	37,015	5	2	32.24	152.24	0.4202	0.0902	0.032843	32.84	0.030710	30.71	-6.94
2	37,017	37,022	5	2	27.17	147.17	0.4236	0.0936	0.033974	33.97	0.032431	32.43	-4.76
3	37,003	37,008	5	2	7.16	127.16	0.4323	0.1023	0.039321	39.32	0.036997	37.00	-6.28
4	37,025	37,030	5	2	4.57	124.57	0.4362	0.1062	0.040138	40.14	0.039119	39.12	-2.60
5	37,033	37,038	5	1	50.78	110.78	0.4464	0.1164	0.045135	45.13	0.044893	44.89	-0.54
6	36,995	37,000	5	1	49.96	109.96	0.4442	0.1142	0.045471	45.47	0.043621	43.62	-4.24
7	36,987	36,992	5	1	38.89	98.89	0.4544	0.1244	0.050561	50.56	0.049646	49.65	-1.84
8	37,041	37,046	5	1	38.15	98.15	0.4563	0.1263	0.050942	50.94	0.050804	50.80	-0.27
9	36,896	36,901	5	1	31.13	91.13	0.4603	0.1303	0.054867	54.87	0.053279	53.28	-2.98
10	37,049	37,054	5	1	30.51	90.51	0.4636	0.1336	0.055243	55.24	0.055357	55.36	0.21
11	36,906	36,911	5	1	26.48	86.48	0.4651	0.1351	0.057817	57.82	0.056313	56.31	-2.67
12	36,972	36,977	5	1	25.73	85.73	0.4669	0.1369	0.058323	58.32	0.057469	57.47	-1.48
13	37,057	37,062	5	1	24.26	84.26	0.4693	0.1393	0.059340	59.34	0.059027	59.03	-0.53
14	36,914	36,919	5	1	19.77	79.77	0.4732	0.1432	0.062680	62.68	0.061595	61.60	-1.76
15	36,963	36,968	5	1	19.51	79.51	0.4749	0.1449	0.062885	62.89	0.062729	62.73	-0.25
16	37,066	37,071	5	1	18.50	78.50	0.4761	0.1461	0.063694	63.69	0.063535	63.54	-0.25
17	36,923	36,928	5	1	15.31	75.31	0.4786	0.1486	0.066392	66.39	0.065229	65.23	-1.78
18	36,954	36,959	5	1	12.90	72.90	0.4823	0.1523	0.068587	68.59	0.067771	67.77	-1.20
19	36,936	36,941	5	1	12.58	72.58	0.4844	0.1544	0.068890	68.89	0.069232	69.23	0.50
20	36,945	36,950	5	1	7.84	67.84	0.4931	0.1631	0.073703	73.70	0.075432	75.43	2.29

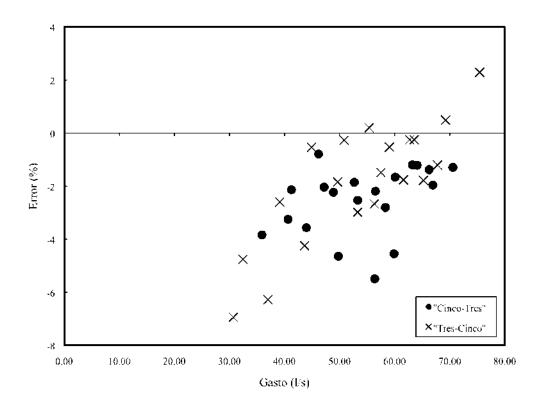


Figura 7. Comparación de la posición "Tres-Cinco" contra la posición "Cinco-Tres"

					Tiempo		Lectura Limnimetro		medidor magnetico	medidor magnetico	Vertedor	Vertedor	((Qver-Qmed)/Qver) x 100
	Lectura Inicial	Lectura Final	diferencia m3/s	min (')	seg (")	Segundos Decimales	m	Carga sobre el vertedor (m)	Q = V/t (m3/s)	Gasto (I/s)	Q = 1.5457y2+0.2222y+0.0019V/t (m3/s)	Gasto (l/s)	% de error
1	36,268	36,273	5	8	12.85	492.85	0.3663	0.0363	0.010145	10.15	0.008201	8.20	-23.70
2	36,275	36,280	5	3	24.53	204.53	0.4015	0.0715	0.024446	24.45	0.021884	21.88	-11.71
3	36,520	36,525	5	2	56.51	176.51	0.4089	0.0789	0.028327	28.33	0.025248	25.25	-12.20
4	36,255	36,260	5	2	41.08	161.08	0.4146	0.0846	0.031040	31.04	0.027954	27.95	-11.04
5	36,283	36,288	5	2	26.45	146.45	0.4205	0.0905	0.034141	34.14	0.030861	30.86	-10.63
6	36,530	36,535	5	2	16.50	136.50	0.4257	0.0957	0.036630	36.63	0.033512	33.51	-9.31
7	36,512	36,517	5	2	10.81	130.81	0.4282	0.0982	0.038223	38.22	0.034816	34.82	-9.79
8	36,291	36,296	5	2	5.38	125.38	0.4316	0.1016	0.039879	39.88	0.036621	36.62	-8.90
9	36,247	36,252	5	2	4.89	124.89	0.4318	0.1018	0.040035	40.04	0.036728	36.73	-9.00
10	36,538	36,543	5	1	54.85	114.85	0.4382	0.1082	0.043535	43.54	0.040226	40.23	-8.23
11	36,447	36,452	5	1	50.72	110.72	0.4414	0.1114	0.045159	45.16	0.042023	42.02	-7.46
12	36,238	36,243	5	1	40.50	100.50	0.4495	0.1195	0.049751	49.75	0.046712	46.71	-6.51
13	36,504	36,509	5	1	38.80	98.80	0.4497	0.1197	0.050607	50.61	0.046830	46.83	-8.07
14	36,455	36,460	5	1	38.21	98.21	0.4515	0.1215	0.050911	50.91	0.047901	47.90	-6.29
15	36,464	36,469	5	1	28.72	88.72	0.4607	0.1307	0.056357	56.36	0.053529	53.53	-5.28
16	36,494	36,499	5	1	25.03	85.03	0.4637	0.1337	0.058803	58.80	0.055421	55.42	-6.10
17	36,474	36,479	5	1	20.47	80.47	0.4696	0.1396	0.062135	62.13	0.059222	59.22	-4.92
18	36,228	36,233	5	1	16.75	76.75	0.4744	0.1444	0.065147	65.15	0.062395	62.39	-4.41
19	36,483	36,488	5	1	14.65	74.65	0.4773	0.1473	0.066979	66.98	0.064346	64.35	-4.09

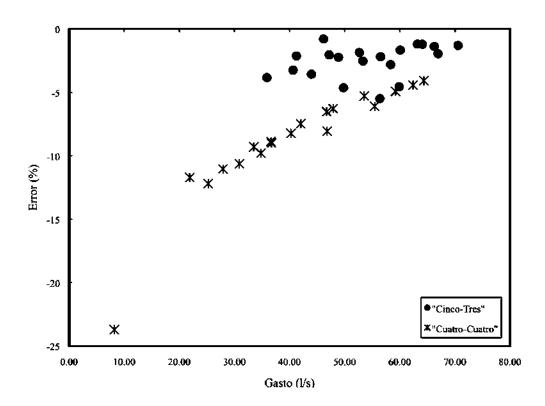


Figura 8. Comparación de la posición "Cuatro-Cuatro" contra la posición "Cinco-Tres"

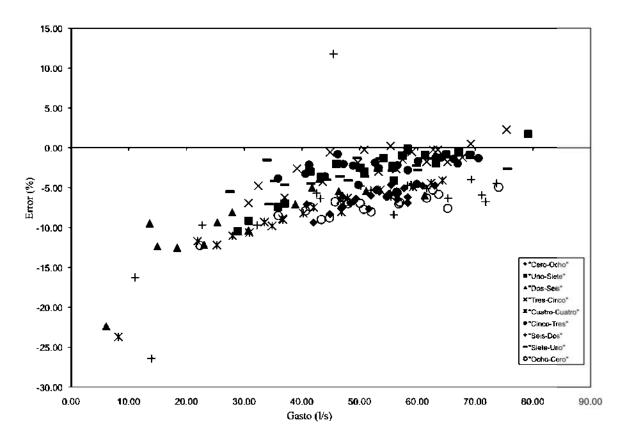


Figura 9. Comparación de "Todas las Posiciones" contra la posición "Cinco-Tres"

4. RESULTADOS Y CONCLUSIONES

Al analizar la Figura 1, en donde se compara la posición "Cero-Ocho" contra la posición "Cinco-Tres", se observa que para el mismo rango de gastos medidos (35 a 70 l/s) el error en la medición es mayor en la posición "Cero-Ocho" que para la medición hecha en la posición "Cinco-Tres", que de aquí en adelante le llamaremos posición de referencia. De aquí, se concluye que la posición "Cero-Ocho" no es adecuada para el rango de gastos medidos.

Para la Figura 2, en donde se compara la posición "Ocho-Cero" contra la posición de referencia, se observa el mismo comportamiento que para la posición "Cero-Ocho", con la diferencia de que aquí se midió un gasto más pequeño, de 22 l/s, con un error negativo del 12%. Desafortunadamente no se puede comparar este gasto en la posición de referencia, ya que el gasto medido más pequeño fue de 36 l/s con un error negativo del 4%. De aquí, se concluye que la posición "Ocho-Cero" no es adecuada para el rango de gastos medidos.

Del análisis de la Figura 3, en donde se compara la posición "Uno-Siete" contra la posición de referencia, se observa un comportamiento similar al de la posición de referencia, para cierto rango de gastos. Incluso, cuando el gasto aumenta para dicha posición el error de medición pasa de negativo a positivo. Para el gasto más pequeño en la posición de referencia, de 36 l/s con un error negativo del 4%, en la posición "Uno-Siete" se tiene un error negativo en la medición del 7%. Al analizar los resultados podemos concluir que para la posición analizada al medir gastos pequeños el error aumenta con respecto a la posición de referencia; sin embargo, para gastos grandes no es posible concluir nada ya que no se puede comparar el error obtenido porque no existe una medición similar en la posición de referencia.

Para la Figura 4, en donde se compara la posición "Siete-Uno" contra la posición de referencia, se observa un comportamiento similar al de la posición de referencia, para cierto rango de gastos. Para el gasto más pequeño en la posición de referencia, de 36 l/s con un error negativo del 4%, en la posición "Siete-Uno" se tiene un error negativo en la medición del 7%. Al analizar los resultados podemos concluir que para la posición analizada al medir gastos pequeños el error aumenta con respecto a la posición de referencia; sin embargo, para el resto de gastos se tiene un comportamiento similar al de la posición de referencia.

Del análisis de la Figura 5, en donde se compara la posición "Dos-Seis" contra la posición de referencia, se observa el error de medición aumenta considerablemente para gastos pequeños, llegando a ser de -22% para un gasto de 6 l/s, desafortunadamente no podemos hacer la comparación con la posición de referencia, por la razón expuesta anteriormente. En donde se puede hacer la comparación se observa que se tiene una mejor medición en la posición de referencia, por lo tanto esta posición no es adecuada para este rango de gastos medidos.

Para la Figura 6, en donde se compara la posición "Seis-Dos" contra la posición de referencia, se observa un comportamiento similar que para la posición anterior. Se observa un error de medición positivo para el gasto de 45 l/s, que quizá se pueda deber a un error humano. En donde se puede hacer la comparación se observa que se tiene una mejor medición en la posición de referencia, por lo tanto esta posición no es adecuada para este rango de gastos medidos.

Del análisis de la Figura 7, en donde se compara la posición "Tres-Cinco" contra la posición de referencia, se observa el error de medición disminuye para esta posición, excepto para gastos pequeños. Para el rango de gastos comparable podemos concluir que esta posición se tiene un mejor desempeño del medidor de turbina. Para tener la certeza de esta afirmación se necesitarían hacer más pruebas para gastos más grandes, desafortunadamente no se pudieron llevar a cabo por las limitaciones en las instalaciones del laboratorio de hidráulica.

En la Figura 8, en donde se compara la posición "Cuatro-Cuatro" contra la posición de referencia, se observa un comportamiento peor que para la posición de referencia. Lo mismo que sucede para gastos pequeños se tiene en esta posición, o sea errores considerables. En donde se puede hacer la comparación se observa que se tiene una mejor medición en la posición de referencia, por lo tanto esta posición no es adecuada para este rango de gastos medidos.

Por último, en la Figura 9 se tienen representados los errores para las posiciones probadas para determinar el error en la medición de gastos. Como una conclusión general, podemos afirmar que para gastos pequeños este tipo de medidor no es adecuado su empleo, ya que hay que recordar que es un medidor de 12 pulgadas. O sea, que debe utilizarse para medir caudales mayores. Otra conclusión que podemos hacer es que para poder afirmar que la posición "Tres-Cinco" es más adecuada que la posición de referencia es necesario llevar a cabo pruebas con gastos mayores, por ejemplo hasta 150 l/s, para ello hay que adaptar las instalaciones en el laboratorio de hidráulica para realizar estas pruebas.

5. BIBLIOGRAFÍA

Carreño, A.E.P. (2008). *Estudio Experimental del Efecto de Acondicionadores de Flujo en la Medición*; Tesis de Maestría; División de Estudios de Posgrado de la Facultad de Ingeniería de la Universidad Nacional Autónoma de México.

Lara, L.B. (2010). Comportamiento del Error en Medidores de Turbina con Insuficientes Tramos Rectos; Informe Final; Convenio UMSNH/IMTA; Universidad Michoacana de San Nicolás de Hidalgo.

Ortiz, M.J. (2005). *Comportamiento del Error en Medidores de Propela con Insuficientes Tramos Rectos*; Informe Final; Convenio UG/IMTA; Universidad de Guanajuato.