

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA CIVIL

ALTERNATIVA DE ANÁLISIS Y DISEÑO ESTRUCTURAL DE UNA VIVIENDA DE DOS NIVELES

TESINA

PARA OBTENER EL TÍTULO DE INGENIERO CIVIL

PRESENTA RODRIGO ALDANA SÁNCHEZ

ASESOR

M.I. ENRIQUE OMAR NAVARRO CABALLERO

MORELIA, MICHOACÁN, NOVIEMBRE DE 2012

ALTERNATIVA DE ANÁLISIS Y DISEÑO ESTRUCTURAL DE UNA VIVIENDA DE DOS NIVELES

ÍNDICE

INTRODUCCIÓN	3
OBJETIVO	4
CAPÍTULO I	_
DESCRIPCIÓN ARQUITECTÓNICA Y ESTRUCTURACIÓN DEL PROYECTO	5
ESPECIFICACIONES GENERALES	12
CAPÍTULO II	
ANÁLISIS Y DISEÑO ESTRUCTURAL DE LOSAS	13
DEFINICIÓN Y CLASIFICACIÓN DE LOSAS	14
ACCIONES SOBRE LAS LOSAS	14
PESO MUERTO EN LOSAS MACIZAS DE CONCRETO	15
II.1. LOSA DE AZOTEA	18
II.1.1. ANÁLISIS DE CARGAS	18
A) Losa horizontal	18
B) Losa inclinada	18
C) Carga en el tablero del tinaco	19
II.1.2. REVISIÓN DEL PERALTE MÍNIMO	20
II.1.3. CÁLCULO DE MOMENTOS DE DISEÑO	21
II.1.4. DISEÑO POR FLEXIÓN	27
II.1.5. REVISIÓN POR CORTANTE	28
II.2. LOSA DE ENTREPISO	29
II.2.1. ANÁLISIS DE CARGAS	29
II.2.2. REVISIÓN DEL PERALTE MÍNIMO	32
II.2.3. CÁLCULO DE MOMENTOS DE DISEÑO	33
II.2.4. DISEÑO POR FLEXIÓN	38
II.2.5. REVISIÓN POR CORTANTE	39
II.3. LOSA DE ESCALERA	40
II.3.1. ANÁLISIS DE CARGA	40
II.3.2. REVISIÓN DEL PERALTE MÍNIMO	40
II.3.3. CÁLCULO DE MOMENTOS DE DISEÑO	40
II.3.4. DISEÑO POR FLEXIÓN	41
II.3.5. REVISIÓN DE LA DEFLEXIÓN	41
OADÍTHI O III	
CAPÍTULO III ANÁLISIS Y DISEÑO ESTRUCTURAL DE TRABES	40
III.1. DEFINICIÓN Y CLASIFICACIÓN DE TRABES	42
III.2. RESISTENCIA A FLEXIÓN SIMPLE	43 43
III.3. RESISTENCIA A FLEXION SIMPLE	43 44
III.4. DEFLEXIÓN EN TRABES	44
III.5. REQUISITOS GENERALES EN TRABES	46
III.6. ANÁLISIS Y DISEÑO ESTRUCTURAL DE UNA TRABE SIMPLEMENTE APOYADA	48
III.7. ANÁLISIS Y DISEÑO ESTRUCTURAL DE UNA TRABE CONTINUA	53
7. U. L. C. C. P. D. C. T. C.	55

ALTERNATIVA DE ANÁLISIS Y DISEÑO ESTRUCTURAL DE UNA VIVIENDA DE DOS NIVELES

CAP	ÍTULO IV	
REVIS	IÓN DE MUROS	89
DEFIN	ICIÓN Y CLASIFICACIÓN DE MUROS DE MAMPOSTERÍA	90
CASTI	LLOS Y DALAS	91
IV.1. I	REVISIÓN DE MUROS POR CARGAS VERTICALES	95
IV.2. I	REVISIÓN DE MUROS POR CARGAS LATERALES	101
	PÍTULO V	
ANÁLI	SIS Y DISEÑO ESTRUCTURAL DE LA CIMENTACIÓN	117
DEFIN	ICIÓN Y CLASIFICACIÓN DE CIMENTACIONES	118
V.1. Z	ZAPATAS CORRIDA DE LINDERO BAJO MURO	122
V.2. Z	ZAPATAS CORRIDA DE CENTRO BAJO MURO	124
V.3. A	AMPLIACIONES BAJO CASTILLO QUE TRASMITEN CARGAS PUNTUALES	
Е	N ZAPATAS DE LINDERO	125
V.4. A	AMPLIACIONES BAJO CASTILLO QUE TRASMITEN CARGAS PUNTUALES	
E	N ZAPATAS DE CENTRO	127
PLAN	OS ESTRUCTURALES	132
CONC	LUSIONES	150
GLOS	ARIO	151
BIBLIC	OGRAFÍA	153

INTRODUCCIÓN

A lo largo de la historia, el hombre ha aprendido a construir estructuras que tienen la finalidad de cubrir sus necesidades, entre ellas está una casa habitación, la cual además de cumplir con la función para la que fue creada debe ofrecer, de preferencia, comodidad, buena apariencia y utilidad.

Una estructura puede concebirse como un sistema, un conjunto de partes o componentes que se combinan en forma ordenada para cumplir una función dada, con un grado razonable de seguridad y de manera que tenga un comportamiento adecuado ante ciertas cargas de servicio. Además deben satisfacer otros requisitos, como optimizar costos en el proceso constructivo, ahorrar materiales y además de satisfacer determinadas exigencias estéticas.

En los últimos años se han suscitado sismos en diferentes regiones de México, que han demostrado que no sólo los edificios o estructuras con grandes dimensiones y cargas pueden llegar a dañarse o colapsarse, sino también estructuras comunes como Casas Habitación de uno y dos niveles. Esto como consecuencia del poco interés que se tiene por hacer un diseño estructural cuando se desea construir una casa habitación, lo que puede generar el colapso de la construcción poniendo en peligro a quienes la habitan.

Al analizar las perdidas que se generan cuando falla una estructura de Casa Habitación, se entenderá el costo-beneficio que nos resultaría pagar un diseño estructural, puesto que no sólo resulta dañada la estructura, sino también muebles, equipo y personas.

OBJETIVO

El objetivo de esta tesina es realizar el diseño estructural de una casa habitación, con la finalidad de determinar las características físicas y mecánicas de la estructura, de manera que sea posible garantizar la absorción de las cargas a las que va a estar sujeta en las diferentes etapas de su vida útil, sin sufrir daño alguno; es decir la función adecuada de la estructura en condiciones de servicio.

El diseño estructural se hará respetando el diseño arquitectónico, el tipo de suelo donde se construirá, y se basará en las Normas Técnicas Complementarias del Reglamento de construcciones para el Distrito Federal.

Pág.5

CAPÍTULO I

DESCRIPCIÓN ARQUITECTÓNICA Y ESTRUCTURACIÓN DEL PROYECTO

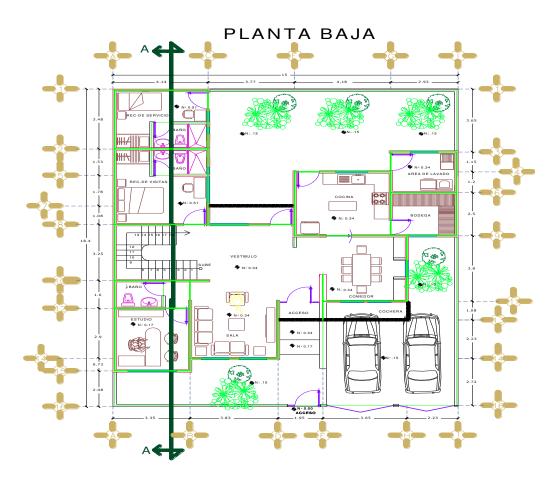
RODRIGO ALDANA SÁNCHEZ

DESCRIPCIÓN ARQUITECTÓNICA

El proyecto arquitectónico corresponde a una casa habitación de dos niveles ubicada en la calle Blas Bustamante No. 19, colonia Unión Ejidal Isaac Arriaga en Morelia Michoacán.

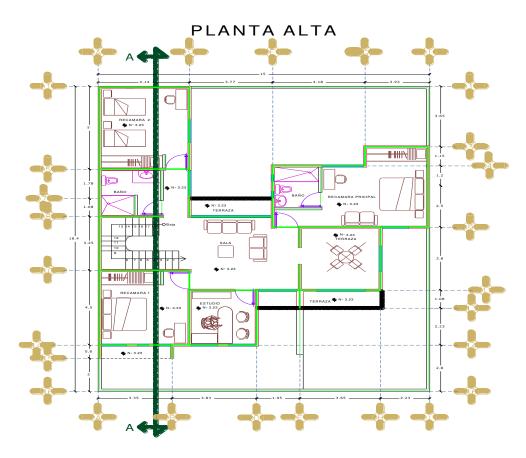
El terreno presenta un desnivel que va del fondo hacia el frente de 50 cm, sus dimensiones son de 15 m de ancho por 18.40 m de largo.

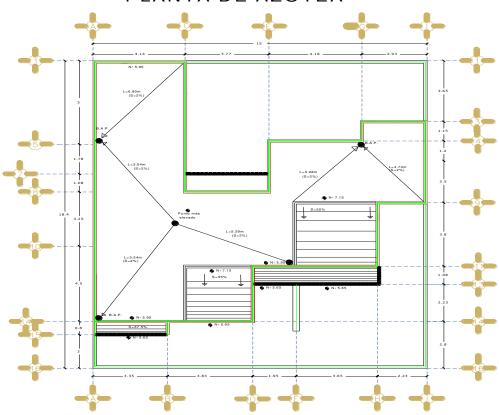
Los planos arquitectonicos muestran dos plantas. La planta Baja se conforma de las siguientes partes: sala, estudio, comedor, vestíbulo, cocina, bodega, área de lavado, recamara de visitas con baño, recamara de servicio con baño, medio baño y escalera; En la planta Alta: sala, terraza, estudio, recamara 1, recamara principal con baño, baño completo, recamara 2.

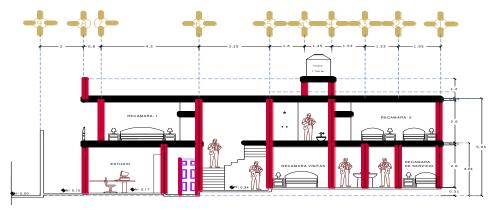

En la loza de azotea se construirá en forma horizontal, excepto los tableros de la terraza, el estudio y los dos balcones del frente que tendrán una pendiente mayor al 5 %; pretil en los ejes 10 A-C y 11 D-F; Dando una pendiente del 2 % para desalojar aguas pluviales.

El tinaco es de plástico de 1100 lts., se apoyara en una losa maciza que a la vez se apoyara en 2 muros de tabique de barro recocido, que descargan en azotea.

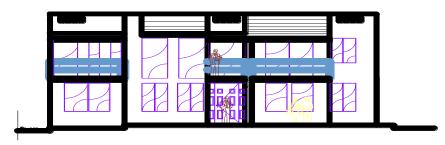
A continuación se muestran los planos arquitectónicos de nuestro proyecto.







PLANTA DE AZOTEA



CORTE A - A

FACHADA PRINCIPAL

ESTRUCTURACIÓN DEL PROYECTO

La estructuración es a base de muros de carga de mampostería de tabique de barro recocido, trabes de concreto reforzado, losa maciza de concreto reforzado. La escalera se proyecto a base de rampas inclinadas de concreto reforzado y escalones forjados de tabique de barro recocido. La cimentación se propondrá de zapatas corridas bajo muro, con ampliaciones donde se tengan cargas puntuales y sobre esta un muro de enrase (rodapié de tabique de concreto). La capacidad de carga del terreno $q = 5 \text{ t/m}^2$, la cual se tomó de un estudio de mecánica de suelos.

ESPECIFICACIONES GENERALES

- 1) El concreto tendrá una resistencia en losas, trabes y zapatas de f'c = 250 kg/cm², los castillos y dalas con f'c = 150 kg/cm², su peso volumétrico es de 2400 kg/cm³ y un agregado máximo de 3/4".
- 2) El acero de refuerzo tendrá un limite de fluencia de 4200 kg/cm², con excepción de la varilla de 1/4" que tendrá un limite de fluencia de fy = 2530 kg/cm² y la malla electrosoldada con fy = 5000 kg/cm².
- 3) El recubrimiento medido a partir de la superficie externa de la varilla, será 1.5 veces su diámetro, pero nunca menor a 2 cm, cuando se utilicen paquetes de varillas, se usará la varilla de diámetro mayor para el calculo anterior.
- 4) El mortero para unir tabiques tendrá:

Una relación volumétrica entre la arena y los cementantes entre 2.5 y 3.

Por cada parte de cemento se utilizará la mitad de cementó de albañilería o bien una cuarta parte de cal.

Se empleara la cantidad mínima de agua de un mortero trabajable.

5) Los castillos deberán cumplir con los siguientes requisitos:

Colocarse en todos los extremos e intersecciones de muros y a una distancia no mayor de 3.5m. Colocarse en todo perímetro de huecos cuya dimensión sea superior a la cuarta parte de la longitud del muro en la dirección considerada.

- 6) Se deberá colocar una dala en todo extremo horizontal de muro y en huecos cuya dimensión exceda la cuarta parte de la longitud del muro en la dirección considerada.
- 7) No deberán traslaparse de más del 50 % las varillas en la misma sección.
- 8) La longitud de traslape y anclaje de la varilla son las que se indican en la siguiente tabla.

No. Varılla	Diámetro (pul)	Longitud de traslape o anclaje (cm)
3	3/8	35
4	1/2	45
5	5/8	55
6	3/4	70
8	1	115

- 9) Rematar todos los estribos con un gancho de 10 cm de longitud, doblado con un ángulo exterior mínimo de 135º.
- La cimentación se diseñara para una capacidad de carga de acuerdo al estudio de mecánica de suelos.
- 11) Se aplicaran los reglamentos del Distrito federal.

CAPÍTULO II ANÁLISIS Y DISEÑO ESTRUCTURAL DE LOSAS

DEFINICIÓN Y CLASIFICACIÓN DE LOSAS

Definición.

Las losas son elementos estructurales, en los que una dimensión es pequeña comparada con las otras dos. Las cargas que actúan sobre las losas son esencialmente verticales, por lo que su comportamiento está dominado por la flexión.

Tipos de Losas.

Losas Perimetralmente Apoyadas: Están soportadas perimetralmente e interiormente por vigas monolíticas de mayor peralte, por vigas de otros materiales independientes o integradas a la losa; o soportadas por muros de concreto, mampostería o de otro material.

Losas Planas: Se apoyan directamente sobre las columnas, no son adecuadas para zonas de alto riesgo sísmico como las existentes en nuestro país, pues no disponen de capacidad resistente suficiente para desarrollar gran ductibilidad.

De acuerdo al tipo de material que compone la losa:

Losa Maciza: Cuando el concreto ocupa todo el espesor de la losa.

Losa Aligerada: Cuando parte del volumen de la losa es ocupada por materiales mas ligeros o espacios vacios.

De acuerdo a la geometría de la losa y el tipo de apoyo.

Losas Unidireccionales: Presentan flexión en una dirección, están apoyadas en sólo dos lados paralelos, o cuando, aunque se apoyan en sus cuatro lados (sobre vigas o muros), la relación largo/ancho es mayor o igual a 2.

Losas Bidireccionales: Presentan flexión en 2 direcciones, están apoyadas en todo su perímetro y que tienen una relación largo/ancho menor a 2.

ACCIONES SOBRE LAS LOSAS

En el diseño de toda estructura deben tomarse en cuenta los efectos de todas las cargas que actuarán sobre ella. Las intensidades de estas acciones que deban considerarse en el diseño y la forma que deben calcularse sus efectos se especifican en los reglamentos de construcción, y se clasifican de la siguiente manera.

Acciones Permanentes (Cargas Muertas).- Son aquellas que actúan en la estructura en forma continua, debido al peso propio de sus elementos como son: muros divisorios, pisos, recubrimientos, instalaciones, equipo o maquinaria fijos, etc., es decir aquellos elementos que conservan una posición fija en la estructura.

Acciones Variables (Cargas Vivas).- Son aquellas que actúan sobre la estructura con una intensidad variable respecto al tiempo, pero no alcanza valores significativos durante periodos grandes, no tienen un carácter permanente, como pueden ser: las personas, el mobiliario, maquinas.

Se manejan tres valores de carga viva

Carga Viva Máxima (Wm).- Esta carga se deberá emplear en el diseño estructural de los elementos sujetos a la acción de las cargas gravitacionales, así como el cálculo de asentamientos inmediatos del suelo y en el diseño de cimentaciones.

Carga Instantánea (Wa).- Esta carga se deberá utilizar para el diseño de las estructuras cuando estén sujetas a la acción de sismo o del viento.

Carga Media (W).- Esta carga deberá utilizarse para el cálculo de asentamientos diferidos, así como para el cálculo de flechas diferidas.

ALTERNATIVA DE ANÁLISIS Y DISEÑO ESTRUCTURAL DE UNA VIVIENDA DE DOS NIVELES

Acciones Accidentales.- Son aquellas que no se deben al funcionamiento normal de la estructura, pero que toman valores muy significativos durante breves periodos de tiempo en la vida útil de la construcción. En esta clasificación se tiene el sismo, el viento, el oleaje, las explosiones, etc.

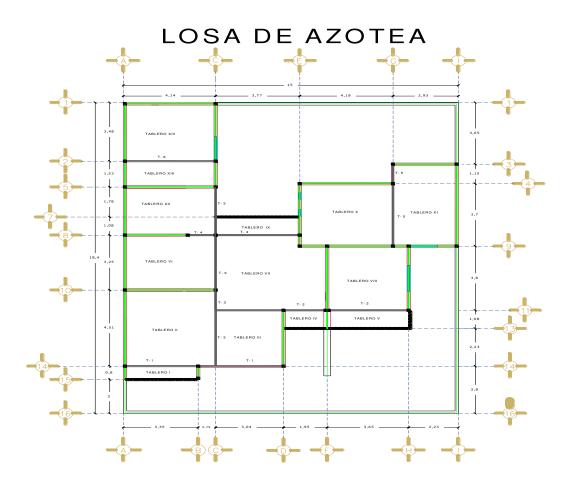
PESO MUERTO EN LOSAS MACIZAS DE CONCRETO

El RCDF especifica que en losas de concreto de peso volumétrico normal, coladas en el lugar, deberán incrementarse 20 kg/m² al peso propio que resulte de las dimensiones nominales de la losa y una cantidad igual deberá aumentarse al peso calculado por las dimensiones del firme que se coloque sobre la losa de concreto; de tal manera que en losas de concreto coladas en el lugar que lleven una capa de mortero, el incremento total será de 40 kg/m².

Para este proyecto las losas se diseñaran por cargas permanentes, realizando una suma de pesos volumétricos de materiales a emplear (carga muerta), sumando una carga adicional de acuerdo a reglamento y una carga viva (carga viva máxima) de acuerdo a la tabla 1.1.

TABLA I.I CARGAS VIVAS UNITARIAS (kg/m²)						
Destino de piso o cubierta	W	Wa	Wm			
a) Habitación (casa habitación, departamentos, viviendas, dormitorios, ciertos de hotel, internados de escuelas, cuarteles, cárceles, correccionales, hospitales y similares).	70	90	170			
d) Comunicación para peatones (pasillos, escaleras, rampas)	40	150	350			
h) Azotea con pendiente no mayor de 5%.	15	70	100			
i) Azotea con pendiente mayor de 5 %; otras cubiertas, cualquier pendiente.	5	20	40			
j) Volados en vía publica (marquesinas, balcones y similares).	15	70	300			

A continuación se muestran los planos correspondientes a la losa de azotea y loza de entrepiso.



LOSA DE ENTREPISO A C E G 15,00 1

II.1. LOSA DE AZOTEA

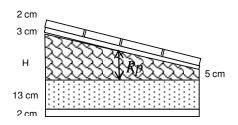
II.1.1. ANÁLISIS DE CARGAS

A) Losa horizontal

En el plano arquitectónico se presenta una losa horizontal a la cual se debe dar una pendiente con relleno que permita la bajada de aguas pluviales.

Para evaluar el peso del relleno, se calcula su altura promedio de relleno midiendo la distancia desde la bajada de agua pluvial al punto más alejado del escurrimiento, considerando una pendiente mínima de 2 % y considerando que el espesor mínimo es de 5 cm.

Datos

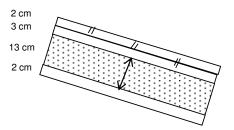

L= 680 cm H = L(2/100) + 5

 $H = 680(2/100) = 13.6 \ cm$

 $Rp = (14\ 2) + 5 = 12\ cm$

... H = 12 cm

MATERIAL	ESPESOR (m)	P. VOL. (t/m³)	PESO TOT (t/m²)
Enladrillado	0.02	1.5	0.030
Mortero	0.03	2.1	0.063
Relleno de tezontle	0.12	1.35	0.162
Losa de concreto	0.13	2.4	0.312
Recubrimiento de yeso	0.02	1.5	0.030
		∑ CM =	0.597


Cargas permanentes Cargas permanentes + accidentales

 $CM = 0.597 \text{ t/m}^2$ CM = 0.597 t/m² Cad = Cad = 0.040 t/m^2 0.040 t/m² $CV = 0.100 \text{ t/m}^2$ CV = 0.070 t/m² $CT = \overline{0.737} t/m^2$ CT = 0.707 t/m²

B) Losa inclinada

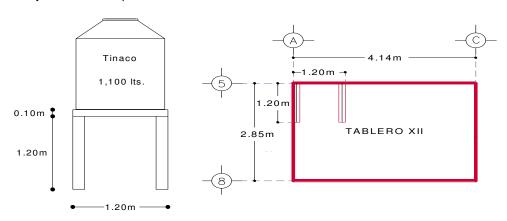
En el plano arquitectónico se tiene una losa con una pendiente mayor del 5 %, correspondiente a los tableros I, III, IV y V.

MATERIAL	ESPESOR (m)	PESO VOL (t/m³)	PESO TOT (t/m²)
Enladrillado	0.02	1.5	0.030
Mortero	0.03	2.1	0.063
Losa de concreto	0.13	2.4	0.312
Recubrimiento de	0.02	1.5	0.030
		∑ CM =	0.435

Cargas permanentes

Cargas permanentes + accidentales

CM = $CM = 0.435 \text{ t/m}^2$ 0.435 t/m² Cad = 0.040 t/m^2 Cad = 0.040 t/m² $CV = 0.040 \text{ t/m}^2$ CV = 0.020 t/m² $CT = 0.515 \text{ t/m}^2$ CT = 0.495 t/m²


RODRIGO ALDANA SÁNCHEZ

C) Carga en el tablero del tinaco (Tablero XII)

Se tiene un tinaco Rotoplas con capacidad de 1,100 lts., colocado sobre una losa de concreto armado y muros de tabique de barro recocido.

Peso de la base

Se cuenta con 2 muros de tabique de barro rojo recocido de 1.20 x 1.20 m, acabado morteromortero, de los cuales sólo uno descarga sobre el tablero XII.

P muro = b h W muro

P muro = ((1.1)(1.2)(0.276))/2 = 0.364 t

Losa de concreto armado de 10 cm de espesor, de la cual sólo la mitad de su peso descargara sobre el Tablero XII

Plosa=bhPVol. Concreto

P losa = ((1.2)(1.2)(0.1)(2.4))/2 = 0.173t

Pbase = Plosa + Pmuro

 $P \ base = 0.364 + 0.173 = 0.537 \ t$

Se tiene un tinaco con capacidad de 1,100 lts.

Peso propio = 0.022 t

Peso del agua = 1.100 t

Peso base = 0.537 t

Descarga total del muro sobre el tablero XII

$$W = \frac{P \ propio}{2} + \frac{P \ agua}{2} + P \ base$$

$$W = \frac{0.022}{2} + \frac{1.100}{2} + 0.537 = 1.098 t$$

Cargas lineales sobre las losas

Los efectos de cargas lineales debidas a muros que se apoyan sobre una losa pueden tomarse en cuenta con cargas uniformemente repartidas equivalentes. En particular, al dimensionar una losa perimetralmente apoyada, la carga uniforme equivalente en un tablero que soporta un muro paralelo a uno de sus lados, se obtiene dividiendo el peso del muro entre el área del tablero y multiplicando el resultado por el factor correspondiente, proporcionado por la tabla 6.2 de las NTC - Mampostería. La carga equivalente así obtenida se sumará a la carga que actúa en ese tablero en forma uniforme.

Tabla para calcular el factor que permite considerar las cargas lineales como cargas uniformes equivalentes.

Relación de lados m = a1/a2	0.5	0.8	1.0
Muro paralelo al lado corto	1.3	1.5	1.6
Muro paralelo al lado largo	1.8	1.7	1.6

Estos factores pueden usarse en relaciones de carga lineal a carga total no mayores de 0.5. Se interpolará linealmente entre los valores tabulados.

$$m = \frac{lado \quad corto}{lado \quad l \arg o}$$
$$m = \frac{2.85}{4.14} = 0.69$$

4.14

Se cuenta con un muro paralelo a lado corto, por lo tanto el factor correspondiente es de 1.4

$$W \quad muros \quad div = \frac{P \quad muro}{\acute{A}rea \quad tablero} \quad factor$$

W muros
$$div = \left[\frac{1.098}{(2.85)(4.14)}\right] (1.4) = 0.133 \ t/m^2$$

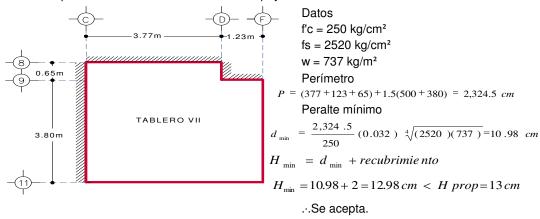
II.1.2. REVISIÓN DEL PERALTE MÍNIMO

Cuando sea aplicable la tabla de coeficientes de momentos flexionantes, podrá omitirse el cálculo de deflexiones si el peralte efectivo no es menor que el calculado con las siguientes expresiones.

$$d_{min} = \frac{Perímetro}{250}$$
 Para concreto clase 1
 $d_{min} = \frac{Perímetro}{170}$ Para concreto clase 2

Si fs > 2520 kg/cm² o w > 380 kg/cm², el peralte obtenido se multiplicará por: $(0.032^{-4} fsw)$

En este cálculo, la longitud de lados discontinuos se incrementará un 50 % si los apoyos de la losa no son monolíticos con ella, y un 25 % cuando lo sean.


RODRIGO ALDANA SÁNCHEZ

Revisión del peralte mínimo

Se tomara el tablero VII que es el más desfavorable, se propone utilizar concreto clase 1 y se considera que la losa no es monolítica con sus apoyos.

TABLA PARA	ABLA PARA CALCULAR "d min" $d_{\min} = \frac{Perímetro}{250} (0.032 \sqrt[4]{fsw})$							
TABLERO	LADOS DISCONTINUOS (cm)	LADOS CONTINUOS (cm)	PERÍMETRO (cm)	W (kg/m²)	f'c (kg/m²)	fy (kg/m²)	fs = 0.6fy (kg/m²)	d mín (cm)
	495.00	335.00	1077.50	515	250	4200	2520	4.66
II	530.00	1200.00	1995.00	737	250	4200	2520	9.43
Ш	748.27	0.00	1122.41	515	250	4200	2520	4.85
IV	196.00	411.00	705.00	515	250	4200	2520	3.05
V	480.00	480.00	1200.00	515	250	4200	2520	5.18
VI	325.00	1137.00	1624.50	737	250	4200	2520	7.68
VII	879.00	1006.00	2324.50	737	250	4200	2520	10.98
VIII	1506.00	0.00	2259.00	515	250	4200	2520	9.76
IX	376.50	591.50	1156.25	737	250	4200	2520	5.46
Х	630.00	804.30	1749.30	737	250	4200	2520	8.27
XI	1116.00	440.00	2114.00	737	250	4200	2520	9.99
XII	570.00	828.00	1683.00	870	250	4200	2520	8.29
XIII	306.00	828.00	1287.00	737	250	4200	2520	6.08
XIV	1102.00	406.00	2059.00	737	250	4200	2520	9.73

II.1.3 CÁLCULO DE MOMENTOS DE DISEÑO

Para el diseño de las losas que trabajan en dos direcciones las NTC-Concreto proponen usar el método de los coeficientes siempre y cuando se satisfagan los siguientes requisitos:

- a) Los tableros son aproximadamente rectangulares.
- b) La distribución de las cargas es aproximadamente uniforme en cada tablero.
- c) Los momentos flexionantes negativos en el apoyo común de dos tableros adyacentes difieren entre sí en una cantidad no mayor que el 50 % del menor de ellos; y
- d) La relación entre carga viva y muerta no es mayor de 2.5 para losas no monolíticas con sus apoyos, ni mayor de 1.5 en otros casos.

Tabla de momentos de diseño para losa de azotea

i abia de illolliei	mentos de diseño para losa de azotea						
	TABLERO	MOMENTO	CLARO	COEFICIENTE	Mu (t-m)	Mu ajustado (t-m)	
	1	Negativo en bordes	Corto		0.230		
	•	interiores	Largo				
	a1 = 0.80 m	Negativo en bordes	Corto				
	a2 = 3.35 m	discontinuos	Largo				
	m = 0.24	Positivo	Corto				
	w = 0.515 ton	1 0311140	Largo				
	l II	Negativo en bordes	Corto	0.00	0.000		
7////		interiores	Largo	710.00	1.208	0.866	
	a1 = 4.06 m	Negativo en bordes	Corto	0.00	0.000		
II I	a2 = 4.51 m	discontinuos	Largo	0.00	0.000		
	m = 0.90	Positivo	Corto	660.00	1.123		
	w = 0.737 ton		Largo	540.00	0.918		
	l 111	Negativo en bordes	Corto	0.00	0.000		
		interiores	Largo	0.00	0.000		
III	a1 = 3.04 m	Negativo en bordes	Corto	0.00	0.000		
	a2 = 3.31 m	discontinuos	Largo	0.00	0.000		
	m = 0.92	Positivo	Corto	926.00	0.617		
	W = 0.515 ton		Largo	830.00	0.553		
	IV	Negativo en bordes	Corto		0.418		
		interiores	Largo				
////	a1 = 1.08 m	Negativo en bordes	Corto				
IV 💆	a2 = 1.95 m	discontinuos	Largo				
	m = 0.55	Positivo	Corto				
	w = 0.515 ton		Largo		0.440		
	v	Negativo en bordes interiores	Corto		0.418		
	a.1 1.00 m		Largo				
/////	a1 = 1.08 m a2 = 3.73 m	Negativo en bordes discontinuos	Corto				
		diodontinado	Largo				
		Positivo	Corto				
	w = 0.515 ton	Negative on bordes	Largo Corto	403.74	0.440	0.866	
	VI	Negativo en bordes interiores	Largo	355.66	0.388	0.653	
	a1 = 3.25 m	Negativo en bordes	Corto	0.00	0.000	0.000	
VI	a2 = 4.14 m	discontinuos	Largo	0.00	0.000		
/////	m = 0.79		Corto	194.64	0.212		
	w = 0.737 ton	Positivo	Largo	135.26	0.147		
		Negativo en bordes	Corto	417.200	0.852	0.804	
111111	VII	interiores	Largo	414.700	0.847	0.653	
	a1 = 4.45 m	Negativo en bordes	Corto	0.000	0.000		
VII	a2 = 5.00 m	discontinuos	Largo	0.000	0.000		
<u> </u>	m = 0.89	D :::	Corto	203.800	0.41641		
	w = 0.737 ton	Positivo	Largo	154.200	0.315		

RODRIGO ALDANA SÁNCHEZ Pág.22

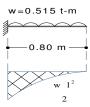
Largo 154.200

0.315

w = 0.737 ton

Tabla de momentos de diseño para losa de azotea

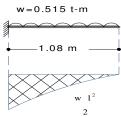
abia ac illollic	intoo de diserio p	dia 103a ac azotea				
	TABLERO	MOMENTO	CLARO	COEFICIENTE	Mu (t-m)	Mu ajustado (t-m)
	VIII	Negativo en bordes	Corto	0.00	0.000	
	VIII	interiores	Largo	0.00	0.000	
	a1 = 3.73 m	Negativo en bordes	Corto	0.00	0.000	
VIII	a2 = 3.80 m	discontinuos	Largo	0.00	0.000	
m = 0.98		Positivo	Corto	830.00	0.833	
	w = 0.515 ton	FOSILIVO	Largo	854.00	0.857	
	IX	Negativo en bordes	Corto		0.602	0.804
		interiores	Largo			
IV.	a1 = 1.08 m	Negativo en bordes	Corto			
IX	a2 = 3.77 m	discontinuos	Largo			
	m = 0.29	Positivo	Corto			
	w = 0.737 ton		Largo			
	х	Negativo en bordes	Corto	710.00	1.003	
2		interiores	Largo	0.00	0.000	
X Z	a1 = 3.70 m	Negativo en bordes	Corto	0.00	0.000	
	a2 = 4.18 m	discontinuos	Largo	0.00	0.000	
	m = 0.89	Positivo	Corto	668.00	0.944	
	w = 0.737 ton		Largo	540.00	0.763	
	ΧI	Negativo en bordes	Corto	1,010.00	0.895	
	7	interiores	Largo	0.00	0.000	
XI Z	a1 = 2.93 m	Negativo en bordes	Corto	0.00	0.000	
	a2 = 4.85 m	discontinuos	Largo	0.00	0.000	
	m = 0.60	Positivo	Corto	760.00	0.673	
	w = 0.737 ton	1 0011110	Largo	520.00	0.461	
	XII	Negativo en bordes	Corto	0.086	0.857	0.635
		interiores	Largo	0.086	1.727	
XII	a1 = 2.86 m	Negativo en bordes	Corto	0.000	0.000	
AII	a2 = 4.06 m	discontinuos	Largo	0.000	0.000	
''''	m = 0.70	Positivo	Corto	0.051	0.508	
	w = 0.870 ton	1 0011110	Largo	0.011	0.221	
	XIII	Negativo en bordes	Corto		0.050	0.692
		interiores	Largo			
7///	a1 = 1.53 m	Negativo en bordes	Corto			
XIII	a2 = 4.06 m	discontinuos	Largo			
'/////	m = 0.38	Positivo	Corto			
	w = 0.737 ton	1 0311110	Largo		0.100	
	XIV	Negativo en bordes	Corto	0.082	0.980	0.576
11111	VIA	interiores	Largo	0.082	1.398	
	a1 = 3.40 m	Negativo en bordes	Corto	0.000	0.000	
XIV	a2 = 4.06 m	discontinuos	Largo	0.000	0.000	
1////	m = 0.84	Positivo	Corto	0.046	0.5534	
	w = 0.737 ton	i Osilivo	Largo	0.018	0.313	
•		·				



Momentos para los Tableros I, IV, V y IX.

Los tableros I, IV, V y IX, no son perimetralmente apoyados, por lo que los momentos se calcularán de la siguiente manera.

Momento para tablero I

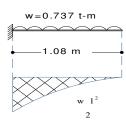


$$M \max (-) = \frac{w l^2}{2}$$

$$M \max(-) = \frac{(0.515)(0.8^2)}{2} = 0.165 t - m$$

$$Mu = 1.4M \max = (1.4)(0.165) = 0.230 t - m$$

Momento para tablero IV y V

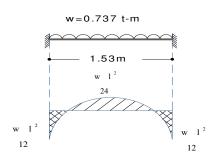


$$M \max (-) = \frac{w l^2}{2}$$

$$M \max (-) = \frac{(0.512)(1.08^2)}{2} = 0.299 t - m$$

M u = 1.4 M max = (1.4)(0.299) = 0.418 t - m

Momento para tablero IX


$$M \max (-) = \frac{w l^2}{2}$$

$$M \max (-) = \frac{(0.737)(1.08^2)}{2} = 0.430 t - m$$

$$Mu = 1.4M \max = (1.4)(0.43) = 0.602t - m$$

Momento para tablero XIII

En tableros que trabajan en una dirección (m < 0.5), las fracciones de carga que trabajan en cada sentido (tabla No. 3-ACI), son en el sentido corto Wa = 1.0 y en el sentido largo Wb = 0. En este tablero m = 0.38, por lo tanto solo analizaremos el lado corto.

* Sentido corto
$$wI^2 = (0.737)(153^2)$$

$$M \max(+) = \frac{w l^2}{24} = \frac{(0.737)(153^2)}{24} = 0.0712 t - m$$

$$Mu = 1.4M \text{ max} = (1.4)(0.0712) = 0.1t - m$$

$$M \max(-) = \frac{wl^2}{12} = \frac{(737)(1.53^2)}{12} = 0.036t - m$$

$$Mu = 1.4M \text{ max} = (1.4)(0.036) = 0.05 t - m$$

ALTERNATIVA DE ANÁLISIS Y DISEÑO ESTRUCTURAL DE UNA VIVIENDA DE DOS NIVELES

Momentos para los tableros XII y XIII

Al no existir un tablero con dos lados paralelos continuos y dos discontinuos en la tabla de coeficientes de las NTC, se utilizaron las tablas 1 y 2 del ACI, de la siguiente manera:

Para momento positivo y para momento negativo.

$$Ma = CawA^2$$
 Donde: A = claro corto
B = claro largo
 $Mb = CbwB^2$ w = carga en kg/m²

Ma = momento flexionante claro corto Mb = momento flexionante claro largo

Ca = coeficiente claro corto Cb = coeficiente claro largo

Ajuste de momentos en tableros adyacentes

Cuando los momentos obtenidos en el borde común de los tableros adyacentes sean distintos, se distribuirán dos tercios del momento de desequilibrio entre los tableros si estos son monolíticos con sus apoyos, o la totalidad de dicho momento si no lo son.

Para la distribución se supondrá que la rigidez del tablero es $k = \frac{d^{-3}}{a_{+}}$

Y el factor de distribución es $f_d = \frac{ki}{\sum ki}$

Cálculo de la rigidez en los tableros						
TABLERO	d (cm)	a (cm)	k (k <i>g/c</i> m²)			
I	11	80	16.638			
II	11	406	3.278			
III	11	304	4.378			
IV	11	108	12.324			
V	11	108	12.324			
VI	11	325	4.095			
VII	11	445	2.991			
VIII	11	373	3.568			
IX	11	108	12.324			
Х	11	370	3.597			
ΧI	11	293	4.543			
XII	11	286	4.654			
XIII	11	153	8.699			
XIV	11	340	3.915			

k

k

k

fd

Me

Md

Mdist.

M aj

ALTERNATIVA DE ANÁLISIS Y DISEÑO ESTRUCTURAL DE UNA VIVIENDA DE DOS NIVELES

Tablero II con VI

1.208 0.440 VΙ 3.278 4.095 fd 0.445 0.555 Me 1.208 -0.440 -0.768 Md Mdist. -0.341 -0.426 0.866 -0.866 Мај

Tablero VI con VII

0.388 0.847 VII k 4.095 2.991 fd 0.578 0.422 Me 0.388 -0.847 Md 0.460 Mdist. 0.266 0.194 M aj 0.653 -0.653

Tablero VII con IX

0.852 0.602 VII ΙX 2.991 12.324 fd 0.195 0.805 Me 0.852 -0.602 -0.250 Md Mdist. -0.049 -0.202 Мај 0.804 -0.804

Tablero XIII con XII

0.050 0.857 XII XIII 8.699 4.654 fd 0.651 0.349 Me 0.050 -0.8570.807 Md Mdist. 0.526 0.281 M aj 0.576 -0.576

k

k

fd

Me

Md

Mdist.

M aj

Tablero VI con XII

0.440

0.857

XII ۷I 4.095 4.654 0.532 0.468 0.440 -0.857 0.417 0.195 0.222 0.635 -0.635

Tablero XIII con XIV

0.050

0.980

XIV XIII 8.699 3.915 0.690 0.310 0.050 -0.980 0.930 0.642 0.289 0.692 -0.692

II.1.4. DISEÑO POR FLEXIÓN

a) Con el momento último obtenido se calcula el área de acero y la separación de varillas que habrá de cubrirla $\int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \frac{2Mu}{2Mu} \right]$

 $A_s = \frac{f''c}{fy} \left[1 - \sqrt{1 - \frac{2Mu}{F_R b d^2 f''c}} \right] bd$

- **b)** El refuerzo obtenido deberá ser mayor que el mínimo por temperatura; $A_{st} = \frac{660x_1}{fy(x_1 + 100)}$
- c) Para calcular la separación de las barras se podrá aplicar; $s=rac{100\,a_0}{As}$
- d) La separación no excederá de 50 cm ni 3.5 X

Momento negativo

a) Se toma el momento mayor, que en este caso corresponde al que se presenta en el claro largo del Tablero XIV

Diseño para 1 metro de ancho

b) Comparación con el área de acero mínimo por temperatura.

$$A_{st} = \frac{660(11)}{4200(11+100)}(100) = 1.56 \text{ cm}^2; \qquad As = 4.37 \text{ cm}^2 > Ast = 1.56 \text{ cm}^2$$

- ∴ se requiere un As = 3.56 cm²
- c) Separación de las varillas, proponiendo varillas del #3, a = 0.71 cm²

$$s = \frac{(100)(0.71)}{4.37} = 16.24 \ cm$$

d) Separación máxima

$$smax = (3.5)(11) = 38.5 cm$$

= 50 cm

$$S \max = 38.11 \, cm > s = 16.24 \, cm$$

... Se usarán varillas del #3 @ 15 cm c.a.c.

Momento positivo

a) Se toma el momento mayor, que en este caso corresponde al que se presenta en el lado corto del Tablero XIV

Mu = 1.123 ton-m

$$A_{s} = \frac{170}{4200} \left[1 - \sqrt{1 - \frac{2(112,300)}{0.9(100)(11)^{2}170}} \right] 100(11) = 2.788 \text{ cm}^{2}$$

b) Comparación con el área de acero mínimo por temperatura

$$A_{st} = \frac{660 (11)}{4200 (11 + 100)} (100) = 1.56 cm^{-2}$$

ALTERNATIVA DE ANÁLISIS Y DISEÑO ESTRUCTURAL DE UNA VIVIENDA DE DOS NIVELES

$$As = 2.79 \text{ cm}^2 > Ast = 1.56 \text{ cm}^2$$

... se requiere As = 2.79 cm²

c) Separación de las varillas, proponiendo varillas del #3

$$s = \frac{(100)(0.71)}{2.79} = 25.45 \text{ cm};$$
 $S \text{ max} = 38.11 \text{ cm} > s = 25.45 \text{ cm}$

Se usarán varillas del # 3 @ 25 cm c.a.c.

II.1.5. REVISIÓN POR CORTANTE

Debe verificarse que el cortante resistente sea mayor o igual al cortante último es decir:

$$V_{CR} = 0.5 F_R b d \sqrt{f * c} \ge Vu = \left(\frac{a_1}{2} - d\right) \left(0.95 - 0.5 \frac{a_1}{a_2}\right) (Wu)$$

Se revisará el Tablero VII por ser el más desfavorable

$$V_{CR} = (0.5)(0.8)(100)(11)^2 \sqrt{(0.8)(250)} = 6,222.54 \text{ kg}$$

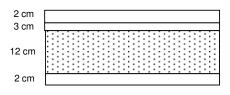
$$Vu = \left(\frac{4.45}{2} - 0.11\right) \left(0.95 - 0.5 \frac{4.45}{5.00}\right) (1.4)(737) = 1,102.05 \ kg$$

Se incrementa un 15% por haber bordes continuos y discontinuos

$$V_{U} = (1,102)(1.15) = 1,267 .3 kg$$

$$V_{CR} = 6,222.54 \ kg > Vu = 1,267.3 \ kg$$

De acuerdo a lo anterior el concreto resiste el cortante por lo que se acepta el peralte



II.2. LOSA DE ENTREPISO

IL2.1 ANÁLISIS DE CARGAS

II.Z. I AITALISIS DE CAITGAS						
MATERIAL	ESPESOR (m)	PESO VOL. (t/m³)	PESO TOTAL (t/m²)			
Loseta	0.02	-	0.010			
Mortero	0.03	2.1	0.063			
Losa de conc.	0.12	2.4	0.288			
Plafón de yeso	0.02	1.5	0.030			
		∑CM =	0.391			

Cargas permanentes

$$\begin{array}{rcl} \text{CM} = & 0.391 & \text{t/m}^2 \\ \text{Cadic} = & 0.040 & \text{t/m}^2 \\ \text{CV} = & 0.170 & \text{t/m}^2 \\ \text{CT} = & 0.601 & \text{t/m}^2 \end{array}$$

Cargas permanentes + accidentales

$$\begin{array}{cccc} CM = & 0.391 & t/m^2 \\ Cadic = & 0.040 & t/m^2 \\ CV = & 0.090 & t/m^2 \\ CT = & 0.521 & t/m^2 \end{array}$$

Cargas lineales

En este caso se cuenta con muros de planta alta que descargan en la losa de entrepiso y no tienen continuidad en la planta baja, por lo que la carga en el tablero debe incrementarse.

Muro divisorio 1 (tablero 1)

Muro divisorio

L = 1 mH = 2.6 m

 $A = 2.6 \text{ m}^2$

* Peso para un muro con recubrimiento yeso mortero-mortero $yeso = 0.285 t/m^2$

Tablero I

 $a_1 = 3.35 \text{ m}$

 $a_2 = 3.63 \text{ m}$

 $A = (a_1)(a_2) = 12.16 \text{ cm}^2$

 $m = a_1/a_2 = 0.92$ $W = 0.601 t/m^2$

Tablero II $a_1 = 3.31 \text{ m}$

 $a_1 = 3.83 \text{ m}$

 $A = 12.68 \text{ cm}^2$ m = 0.92

 $W = 0.601 t/m^2$

* Peso propio del muro = A w = (2.60)(0.285) = 0.741 t

* Factor (Muro divisorio paralelo al lado corto) = 1.56

$$W \ muros \ div = \frac{P \ muro}{\acute{A}rea \ tablero} factor; \qquad W \ muro \ div = \left[\frac{0.741}{12.16}\right] (1.56) = 0.095 \ t \ / \ m^2$$

W total = W muro div + W losa de entrepiso = $0.95 + 0.601 = 0.696 \text{ t/m}^2$

Muro divisorio 2 (tablero II)

Muro divisorio

L = 3.01 mH = 2.60 m

 $A = 7.83 \text{ m}^2$

* Peso para un muro con recubrimiento yeso mortero-mortero $yeso = 0.285 t/m^2$

- * Factor (Muro divisorio paralelo al lado corto) = 1.53

W muros div =
$$\left[\frac{2.230}{12.677}\right]$$
 (1.53) = 0.269 t/m²

Wtotal= Wmuro div + W losa de entrepiso = 0.269 + 0.601 = 0.870 t/m²

Muro divisorio 3 (tablero V)

Muro divisorio	Tablero V
L = 0.80 m	$a_1 = 1.6 \text{ m}$
H = 2.60 m	$a_2 = 4.16 \text{ m}$
$A = 2.08 \text{ m}^2$	$A = 6.66 \text{ cm}^2$
* Peso para un muro con recubrimiento yeso mortero-mortero	m = 0.38
yeso = 0.285 t/m ²	$W = 0.601 \text{ t/m}^2$

- * Peso propio del muro = A w = (2.08)(0.285) = 0.593 t
- * Factor (Muro divisorio paralelo al lado corto) = 1.22

W muros
$$div = \left[\frac{0.593}{6.66}\right] (1.22) = 0.109 \ t / m^2$$

Wtotal = Wmuro div + W losa de entrepiso = $0.109 + 0.601 = 0.710 \text{ t/m}^2$

En el tablero X se tiene 2 muros divisorios Muro divisorio 4 (tablero X)

L = 2.15 m	$a_1 = 3.7 \text{ m}$
H = 2.60 m	$a_2 = 4.18 \text{ m}$
$A = 5.59 \text{ m}^2$	$A = 15.47 \text{ cm}^2$
* Peso para un muro con recubrimiento azulejo- mortero	m = 0.89
$yeso = 0.310 \text{ t/m}^2$	$W = 0.601 \text{ t/m}^2$

- * Peso propio del muro = A w = (5.59)(0.310) = 1.733 t
- * Factor 2 (Muro divisorio paralelo al lado largo) = 1.66

Muro divisorio 5 (tablero X)

 $L = 1.52 \, \text{m}$

H = 2.60 m

 $A = 3.95 \text{ m}^2$

- * Peso para un muro con recubrimiento azulejo -mortero yeso = 0.310 t/m²
- * Peso propio del muro = A w = (3.95)(0.310) = 1.126 t
- * Factor 3 (Muro divisorio paralelo al lado corto) = 1.55

W muros
$$div = \frac{P \text{ muro } 2}{\text{Área tablero}} f + \frac{P \text{ muro } 3}{\text{Área tablero}} f$$
W muros $div = \left[\frac{1.733}{15.47}(1.66)\right] + \left[\frac{1.126}{15.47}(1.55)\right] = 0.298 \text{ t/m}^2$

Wtotal = Wmuro div + W losa de entrepiso = $0.298 + 0.601 = 0.899 \text{ t/m}^2$

Para el tablero XIII se tiene 2 muros divisorios, paralelos al lado corto.

Muro divisorio 6 (tablero XIII)

Tablero XIII

Tablero X

 $\begin{array}{lll} L = 1.22 \text{ m} & & a_1 = 2.85 \text{ m} \\ H = 2.60 \text{ m} & & a_2 = 4.21 \text{ m} \\ A = 3.17 \text{ m}^2 & & A = 12.00 \text{ cm}^2 \\ ^*\text{ Peso para un muro con recubrimiento azulejo} & & m = 0.68 \\ & & \text{mortero} = 0.287 \text{ t/m}^2 & & W = 0.601 \text{ t/m}^2 \end{array}$

- * Peso propio del muro = A w = (3.17)(0.287) = 0.910 t
- * Factor 4 (Muro divisorio paralelo al lado corto) = 1.42

ALTERNATIVA DE ANÁLISIS Y DISEÑO ESTRUCTURAL DE UNA VIVIENDA DE DOS NIVELES

Muro divisorio 7 (tablero XIII)

Muro divisorio

L = 1.80 m

H = 2.60 m

 $A = 4.68 \text{ m}^2$

- * Peso para un muro con recubrimiento azulejo mortero = 0.287 t/m²
- * Peso propio del muro = $A \times w = (4.68)(0.287) = 1.343 t$
- * Factor de carga 5 (Muro divisorio paralelo al lado corto) = 1.42

$$W \ muros \ div = \frac{P \ muro \, 6}{\text{\'A}rea \ tablero} \ f + \frac{P \ muro \, 7}{\text{\'A}rea \ tablero} \ f$$

$$W \ muros \ div = \left[\frac{0.910}{12.00} (1.42)\right] + \left[\frac{1.343}{12.00} (1.42)\right] = 0.267 \ t / m^2$$

Wtotal = Wmuro div + W losa de entrepiso = $0.267 + 0.601 = 0.868 \text{ t/m}^2$

Muro divisorio 8 (tablero XV)

Muro divisorio Tablero XV

* Peso para un muro con recubrimiento yeso mortero-mortero m = 0.38yeso = 0.285 t/m² W = 0.601 t/m²

* Peso propio del muro = A x w = (2.08)(0.285) = 0.593 t

* Factor de carga (Muro divisorio paralelo al lado corto) = 1.22

W muros div =
$$\left[\frac{0.593}{6.21} \right] (1.22) = 0.116 t / m^2$$

Wtotal = Wmuro div + W losa de entrepiso = $0.116 + 0.601 = 0.717 \text{ t/m}^2$

Muro divisorio 9 (tablero XIV)

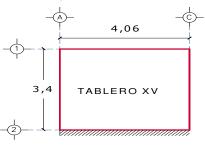
Muro divisorio L= 0.80 m

* Peso propio del muro = A x w = (2.08)(0.287) = 0.597 t W = 0.601 t/m² * Factor de carga 2 (Muro divisorio paralelo al lado corto) = 1.18

W muros $div = \begin{bmatrix} 0.597 \\ 5.684 \end{bmatrix} (1.18) = 0.124 \ t / m^2$

Wtotal = Wmuro div + W losa de entrepiso = 0.124 + 0.601 = 0.725 t/m²

Tablero XIV



II.2.2. REVISIÓN DEL PERALTE MÍNIMO

Se tomara el tablero XV que es el más desfavorable, se propone utilizar concreto clase 1 y se considera que la losa no es monolítica con sus apoyos.

...Se acepta.

Tabla para calcular "d mın" $d_{\min} = \frac{Perímetro}{250} (0.032) \sqrt[4]{fsw}$								
TABLERO	LADOS CONTINUOS (cm)	LADOS DISCONTINUOS (cm)	PERÍMETRO (cm)	W (kg/m²)	f'c (kg/m²)	fy (kg/m²)	fs = 0.6 fy (kg/m²)	d min (cm)
1	619.00	763.00	1,763.50	696	250	4200	2520	8.21
[]	821.00	606.00	1,730.00	870	250	4200	2520	8.52
III	411.00	195.00	703.50	601	250	4200	2520	3.16
IV	481.00	481.00	1,202.50	601	250	4200	2520	5.40
V	972.00	160.00	1,212.00	710	250	4200	2520	5.67
VI	603.00	325.00	1,090.50	601	250	4200	2520	4.90
VII	1838.00	0.00	1,838.00	601	250	4200	2520	8.25
VIII	1110.00	380.00	1,680.00	601	250	4200	2520	7.54
IX	593.00	377.00	1,158.50	601	250	4200	2520	5.20
Х	960.50	615.50	1,883.75	899	250	4200	2520	9.35
XI	543.78	465.00	1,241.28	601	250	4200	2520	5.57
XII	421.00	651.00	1,397.50	601	250	4200	2520	6.28
XIII	936.00	463.00	1,630.50	868	250	4200	2520	8.03
XIV	812.00	306.00	1,271.00	725	250	4200	2520	5.98
ΧV	406.00	1086.00	2,035.00	717	250	4200	2520	9.55

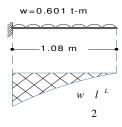
II.2.3. CÁLCULO DE MOMENTOS DE DISEÑO

,,,,,	_
I	9

TABLERO	MOMENTO	CLARO	COEFICIENTE	Mu (t-m)	Mu ajustado (t-m)
	Negativo en bordes	Corto	412.00	0.432	0.466
ı	interiores	Largo	410.00	0.430	0.339
a1 = 3.28 m	Negativo en bordes	Corto			
a2 = 3.63 m	discontinuos	Largo			
m = 0.90	Positivo	Corto	199.00	0.209	
w = 0.696 ton	FOSILIVO	Largo	154.00	0.161	
II	Negativo en bordes	Corto	432.80	0.578	0.573
"	interiores	Largo	428.80	0.572	0.466
a1 = 3.31 m	Negativo en bordes	Corto			
a2 = 3.83 m	discontinuos	Largo			
m = 0.86	Positivo	Corto	218.20	0.291	
w = 0.870 ton	i Osilivo	Largo	218.20	0.291	
III	Negativo en bordes	Corto		0.490	0.555
""	interiores	Largo			
a1 = 1.08 m	Negativo en bordes	Corto			
a2 = 1.95 m	discontinuos	Largo			
m = 0.55	Positivo	Corto			
w = 0.601 ton	Positivo	Largo			
IV	Negativo en bordes	Corto		0.490	0.424
IV	interiores	Largo			
a1 = 1.08 m	Negativo en bordes	Corto			
a2 = 3.65 m	discontinuos	Largo			
m = 0.30	Positivo	Corto			
w = 0.601 ton	1 OSILIVO	Largo			
٧	Negativo en bordes interiores	Corto	760.80	0.194	0.339
٧		Largo	596.78	0.152	
a1 = 1.60 m	Negativo en bordes	Corto			
a2 = 4.06 m	discontinuos	Largo			
m = 0.39	Positivo	Corto	525.12	0.134	
w = 0.710 ton	1 0311110	Largo	177.68	0.045	
VI	Negativo en bordes	Corto	653.36	0.106	0.448
••	interiores	Largo	446.82	0.073	
a1 = 1.39 m	Negativo en bordes	Corto			
a2 = 3.25 m	discontinuos	Largo			
m = 0.43	Positivo	Corto	399.68	0.065	
w = 0.601 ton	FUSITIVU	Largo	154.32	0.025	
VII	Negativo en bordes	Corto	342.90	0.571	0.573
	interiores	Largo	333.10	0.555	0.448
a1 = 4.45 m	Negativo en bordes	Corto			
a2 = 4.99 m	discontinuos	Largo			
m = 0.89 m	Positivo	Corto	167.50	0.279	
w = 0.601 ton	. 55/476	Largo	131.20	0.219	

CÁLCULO DE MOMENTOS DE DISEÑO

TABLERO	MOMENTO	CLARO	COEFICIENTE	Mu (t-m)	Mu ajustado (t-m)
VIII	Negativo en bordes	Corto	332.20	0.372	0.473
V III	interiores	Largo	361.20	0.405	0.424
a1 = 3.65 m	Negativo en bordes	Corto			
a2 = 3.80 m	discontinuos	Largo			
m = 0.96	Positivo	Corto	151.00	0.169	
w = 0.601 ton	1 0011110	Largo	144.40	0.162	
l ix	Negativo en bordes	Corto		0.490	0.555
	interiores	Largo			
a1 = 1.08 m	Negativo en bordes	Corto			
a2 = 2.50 m	discontinuos	Largo			
m = 0.43	Positivo	Corto			
w = 0.601 ton		Largo			
x	Negativo en bordes	Corto	417.20	0.719	0.602
	interiores	Largo	414.70	0.714	0.500
a1 = 3.70 m	Negativo en bordes	Corto			
a2 = 4.18 m	discontinuos	Largo			
m = 0.89	Positivo	Corto	203.80	0.351	
w = 0.899 ton	1 00/11/0	Largo	154.20	0.266	
XI	Negativo en bordes	Corto	396.60	0.209	0.300
	interiores	Largo	346.60	0.182	0.500
a1 = 2.50 m	Negativo en bordes	Corto			
a2 = 2.85 m	discontinuos	Largo			
m = 0.88	Positivo	Corto	188.60	0.099	
w = 0.601 ton		Largo	136.20	0.072	
XII	Negativo en bordes	Corto	854.00	0.397	0.300
	interiores	Largo			
a1 = 2.35 m	Negativo en bordes	Corto			
a2 = 2.85 m	discontinuos	Largo			
m = 0.82	Positivo	Corto	640.00	0.297	
w = 0.601 ton		Largo	520.00	0.242	
XIII	Negativo en bordes	Corto	940.00	0.928	0.673
	interiores	Largo			
a1 = 2.85 m	Negativo en bordes	Corto			
a2 = 4.06 m	discontinuos	Largo			
m = 0.70	Positivo	Corto	710.00	0.701	
w = 0.868 ton		Largo	520.00	0.513	
XIV	Negativo en bordes	Corto		0.198	0.673
	interiores	Largo			
a1 = 1.53 m	Negativo en bordes	Corto			
a2 = 4.06 m	discontinuos	Largo			
m = 0.38	Positivo	Corto		0.099	
w = 0.725 ton		Largo			



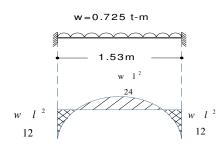
	TABLERO	MOMENTO	CLARO	COEFICIENTE	Mu (t-m)	Mu ajustado (t-m)
	χV	Negativo en bordes interiores	Corto	838	0.973	0.732
	^*		Largo			
a1 =	3.40 m	Negativo en bordes discontinuos	Corto			
a2 =	4.06 m		Largo			
m =	0.84	Positivo	Corto	630	0.731	
w =	0.717 ton		Largo	520	0.604	

Momentos para los Tableros III, IV, IX Yy XIV

Los tableros III, IV, IX y XIV, no son perimetralmente apoyados, por que los momentos se calcularán de la siguiente manera.

Momento para tablero III, IV y IX

$$M \max(-) = \frac{w l^2}{2}$$


$$M \max(-) = \frac{(0.601)(1.08^2)}{2} = 0.350 t - m$$

Mu = 1.4M max = (1.4)(0.35) = 0.49 t - m

Momento para tablero XIV

En tableros que trabajan en una dirección (m < 0.5), las fracciones de carga que trabajan en cada sentido (tabla No. 3-ACI), son en el sentido corto Wa = 1.0 y en el sentido largo Wb = 0. En este tablero m = 0.38, por lo tanto solo analizaremos el lado corto.

* Sentido corto

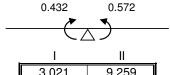
$$M \max(+) = \frac{wl^2}{24} = \frac{(0.725)(1.53^2)}{24} = 0.0707 \ t - m$$

$$Mu = 1.4Mmax = (1.4)(0.0712) = 0.099 t - m$$

$$M \max(-) = \frac{wl^2}{12} = \frac{(725)(1.53^2)}{12} = 0.141 \ t - m$$

$$M u = 1.4 M \max = (1.4)(0.141) = 0.198 t - m$$

TABLERO


(kg/cm²)

Ajuste del momento en tableros adyacentes

Para la distribución se supondrá que $k=\frac{d^{-3}}{a_{1}}$ la rigidez del tablero es

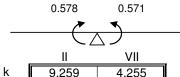
Y el factor de distribución es $f_d = \frac{ki}{\sum ki}$

Tablero I con II

	<u> </u>	<u>II</u>
k	3.021	9.259
fd	0.246	0.754
Me	0.432	-0.572
Md	0.140	
Mdist.	0.035	0.106
Мај	0.466	-0.466
	•	•

3.021 1 10 331 П 10 108 9.259 Ш 10 108 9.259 IV 10 108 9.259 ٧ 10 160 6.250 VΙ 10 139 7.194 VII 2.247 10 445 VIII 365 2.740 10 IX 10 108 9.259 Χ 10 370 2.703 ΧI 250 4.000 10 XII 10 235 4.255 XIII 10 285 3.509 XIV 10 153 6.536 X۷ 340 2.941 10

Cálculo de la rigidez en los tableros


d (cm)

Tablero III con VII

0.490 0.571

	III	VII
k	9.259	2.247
fd	0.805	0.195
Me	0.490	-0.571
Md	0.081	
Mdist.	0.065	0.016
Мај	0.555	-0.555

Tablero II con VII

fd
Me
Md
Mdist.
Мај

	VII	
9.259	4.255	
0.685	0.315	
0.578	-0.571	
-0.006		
-0.004	-0.002	
0.573	-0.573	

Tablero I con V

0.430 0.152

	<u> </u>	V
k	3.021	6.250
fd	0.326	0.674
Me	0.430	-0.152
Md	-0.278	
Mdist.	-0.091	-0.187
Мај	0.339	-0.339

0.106

0.342

0.448

Tablero VI con VII

0.555

0.107

-0.448

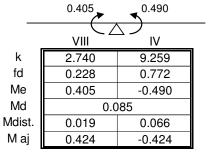
VI VII

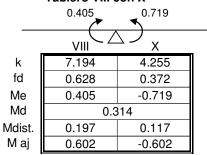
k 7.194 2.247
fd 0.762 0.238
Me 0.106 -0.555
Md 0.449

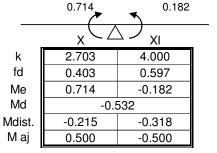
RODRIGO ALDANA SÁNCHEZ Pág.36

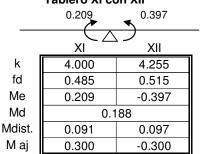
Mdist.

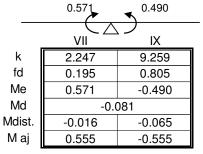
Мај

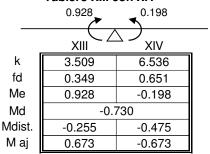

ALTERNATIVA DE ANÁLISIS Y DISEÑO ESTRUCTURAL DE UNA VIVIENDA DE DOS NIVELES

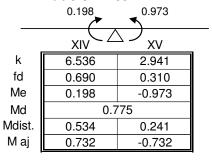

Tablero VII con VIII


Tablero VIII con IV


Tablero VIII con X


Tablero X con XI


Tablero XI con XII


Tablero VII con IX

Tablero XIII con XIV

Tablero XIV con XV

II.2.4. DISEÑO POR FLEXIÓN

Momento negativo

a) Se toma el momento mayor, que en este caso corresponde al que se presenta en el lado largo del Tablero XV

Diseño para 1 metro de ancho

$$Mu(-) = 0.732 t-m$$

$$A_{s} = \frac{170}{4200} \left[1 - \sqrt{1 - \frac{2(0.732x10^{5})}{0.9(100)(10)^{2}170}} \right] 100(10) = 1.98 \ cm^{2}$$

Datos

 $f'c = 250 \text{ kg/cm}^2$

 $f''c = 170 \text{ kg/cm}^2$

 $fy = 4200 \text{ kg/cm}^2$

FR = 0.9

b = 100 cm

d = 10 cm

b) Comparando con el área de acero mínimo por temperatura.

$$A_{st} = \frac{660(10)}{4200(10+100)}(100) = 1.43 \text{ cm}^2; \quad As = 1.98 \text{ cm}^2 > Ast = 1.43 \text{ cm}^2$$

Por lo tanto se requiere un As =1.98cm²

c) Separación de las varillas, proponiendo varillas del #3

$$s = \frac{(100)(0.71)}{1.98} = 35.86 \ cm$$

d) Separación máxima

 $S \max = (3.5)(10) = 35 \text{ cm}$

Smax = 50 cm

 $s = 35.86 \ cm > S \ max = 35 \ cm$

Se usarán varillas del # 3 @ 35 cm c.a.c.

Momento positivo

a) Se toma el momento mayor, que en este caso corresponde al que se presenta en el lado corto del Tablero XV

Mu = 0.731 t/m

$$A_{s} = \frac{170}{4200} \left[1 - \sqrt{1 - \frac{(2)(0.731)(10^{5})}{0.9(100)(10)^{2}170}} \right] 100(10) = 1.98 \ cm^{2}$$

b) Comparación con el área de acero mínimo por temperatura.

$$A_{st} = \frac{660(10)}{4200(10+100)}(100) = 1.43 \text{ cm}^2$$

 $A = 1.98 \ cm^2 > Ast = 1.43 \ cm^2$

Por lo tanto se requiere un As = 1.98cm²

c) Separación de las varillas, proponiendo varillas del # 3

$$s = \frac{(100)(0.71)}{1.98} = 35.86 \ cm$$

d) Separación máxima

$$S \max = 35 \ cm < s = 35.86 \ cm$$

Se usarán varillas del # 3 @ 35 cm c.a.c.

ALTERNATIVA DE ANÁLISIS Y DISEÑO ESTRUCTURAL DE UNA VIVIENDA DE DOS NIVELES

II.2.5. REVISIÓN POR CORTANTE

Debe verificarse que el cortante resistente sea mayor o igual al cortante último es decir:

$$V_{CR} = 0.5 F_R b d \sqrt{f * c} \qquad \geq \qquad Vu = \left(\frac{a_1}{2} - d\right) \left(0.95 - 0.5 \frac{a_1}{a_2}\right) (Wu)$$

Se revisará el Tablero XV por ser el más desfavorable

$$V_{CR} = (0.5)(0.8)(100)(9)^2 \sqrt{(0.8)(250)} = 5,059.64 \text{ kg}$$

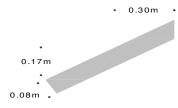
$$Vu = \left(\frac{3.40}{2} - 0.10\right) \left(0.95 - 0.5\frac{3.40}{4.06}\right) (1.4)(717) = 853.79 \ kg$$

Se incrementa un 15 % por haber bordes continuos y discontinuos

$$V_U = (853.79)(1.15) = 981.86 \ kg$$

$$V_{CR} = 5,059.64 \, kg > Vu = 981.86 \, kg$$

De acuerdo a lo anterior el concreto resiste el cortante por lo que se acepta el peralte.



II.3. LOSA DE ESCALERA

II.3.1. ANÁLISIS DE CARGA

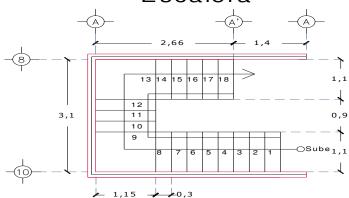
Se propone una losa de 8 cm de espesor con plafón de yeso y escalones de tabique

MATERIAL	ESPESOR (m)	PESO VOL. (t/m³)	PESO TOT (t/m²)
Escalón	0.085	1.500	0.128
Losa de Concreto	0.080	2.400	0.192
Recubrimiento de yeso	0.020	1.500	0.030
		∑ CM =	0.350

Peso del escalón por m²

$$We = \frac{h}{2} Peso Vol.$$

Cargas permanentes

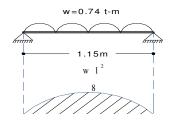

 $CM = 0.350 t/m^2$ Cadic = 0.040 t/m^2

 $CV = 0.350 t/m^2$ $CT = 0.740 t/m^2$ Cargas permanentes + accidentales

 $CM = 0.350 \quad t/m^2$ $Cadic = 0.040 \quad t/m^2$ $CV = 0.150 \quad t/m^2$

 $CT = 0.540 \text{ t/m}^2$

II.3.2. REVISIÓN DEL PERALTE MÍNIMO


Losa en una dirección (escalera)

La escalera es una losa unidireccional que se comporta como una viga ancha, por lo que se diseñará como tal, tomando una franja de ancho unitario.

Revisión del peralte de la losa

$$h = \frac{l}{24}$$
; $h = \frac{115}{24} = 4.79 \, cm < 8 \, cm$

II.3.3. CÁLCULO DE MOMENTOS DE DISEÑO

$$M \max (+) = \frac{w l^2}{8}$$

$$M \max (+) = \frac{(0.74)(1.15^2)}{8} = 0.061 t - m$$

II.3.4. DISEÑO POR FLEXIÓN

Datos

H = 8 cmFR(flexion) = 0.9b = 100 cmFc = 1.4 $f'c = 250 \text{ kg/cm}^2$ d = 6 cmrec = 2 cm $f^*c = 200 \text{ kg/cm}^2$ $fy = 4200 \text{ kg/cm}^2$ $f''c = 170 \text{ kg/cm}^2$

a).- Momento positivo

 $M \max (+) = 0.061 \text{ t/m}$

Momento último

$$Mu = 1.4M = (1.4)(0.061) = 0.086 t - m$$

Cálculo del porcentaje de acero

$$A_{S} = \frac{f''c}{fy} \left[1 - \sqrt{1 - \frac{2Mu}{F_{R}bd^{2}f''c}} \right] bd; \quad As = \frac{170}{4200} \left[1 - \sqrt{1 - \frac{2*8,600.00}{(0.9)(100)(6^{2})(170)}} \right] (6)(100) = 0.38 \text{ cm}^{2}$$

Área de acero mínimo

$$A_s = \frac{0.7\sqrt{f'c}}{fy}bd;$$
 $A_s = \frac{0.7\sqrt{250}}{4200}(6)(100) = 1.58 \text{ cm}^2 > 0.38 \text{ cm}^2$

Área de acero por temperatura

$$As_{t} = \frac{660(x_{1})}{f_{y}(100 + x_{1})}b \qquad A_{st} = \frac{(660)(6)}{4200(100 + 6)}100 = 0.89 \text{ cm}^{2}$$

∴ Se requiere un As = 1.58 cm²

Separación de barras

$$s = \frac{100a_o}{As}$$
 $s = \frac{(100)(0.71)}{1.58} = 44.94 \ cm$

Separación máxima

$$smax = (3.5)(6) = 21 \text{ cm}$$
 $s = 44.94 \text{ cm} > s \text{ max} = 21 \text{ cm}$
 $smax = 50 \text{ cm}$

Se usarán varillas del # 3 @ 20 cm c.a.c.

b) En dirección perpendicular

Se colocará acero por temperatura.

$$s = \frac{(100)(0.71)}{0.80} = 79.78 \text{ cm};$$
 $s = 79.78 \text{ cm} > s \text{ max} = 21 \text{ cm}$

Se usarán varillas del # 3 @ 20 cm c.a.c.

II.3.5. REVISIÓN DE LA DEFLEXIÓN

La deflexión máxima de una viga libremente apoyada con carga uniformemente distribuida, es:

$$\delta$$
 max = $\frac{5 w l^4}{384 E I}$ donde: I = Inercia de la sección E= Modulo de elasticidad del concreto L= Longitud de la rampa
$$I = \frac{bh^3}{12} = \frac{(100)(8^3)}{12} = 4,266.67 cm^4; Ec = 10,000 \sqrt{250} = 158,113.88 kg / cm^2$$

$$1 - \frac{1}{12} - \frac{1}{12} - \frac{4,200.07 \text{ cm}}{12} = \frac{150,000\sqrt{250 - 158,113.88 \text{ kg}/\text{cm}}}{12}$$

$$\delta \max = \frac{(5)(7.40)(115^4)}{(384)(158,113.88)(4,266.67)} = 0.025 \ cm$$

Deflexión admisible

$$\delta adm = \frac{L}{240} + 0.5 \ cm;$$
 $\delta adm = \frac{115}{240} + 0.5cm = 0.98 \ cm$

$$Sadm = 0.98 \ cm > S \ max = 0.025 \ cm$$
 .. Se acepta el peralte de la losa.

CAPÍTULO III ANÁLISIS Y DISEÑO ESTRUCTURAL DE TRABES

III.1. DEFINICIÓN Y CLASIFICACIÓN DE TRABES

Se llama viga o trabe a aquel elemento horizontal cuya longitud es considerablemente mayor a sus dimensiones transversales, que reciben cargas perpendiculares a su eje, por lo que trabajan a flexión y cortante. Las vigas pueden tener uno o varios tramos y, dependiendo de esto, son llamadas vigas de un claro o vigas continuas, respectivamente.

Cuando a una viga de concreto reforzado se le aplica la carga máxima, la falla se puede presentar de diferentes maneras, de acuerdo con la cantidad de acero longitudinal que tenga, presentándose tres casos:

a) Viga subreforzadas

La cantidad de acero longitudinal es pequeña y por lo tanto fluye, se producen deflexiones considerables antes de alcanzar el colapso, apareciendo grietas importantes en la zona de tensión. El comportamiento del miembro es dúctil.

b) Viga sobreforzadas

La cantidad de acero de tensión es grande y en consecuencia no fluye, la zona de aplastamiento de concreto a compresión es mayor que en el caso anterior y las grietas en la zona de tensión son menores. El elemento falla por aplastamiento del concreto y se presenta una falla frágil.

c) Sección balanceada

El acero y el concreto alcanzan la fluencia al mismo tiempo, por lo que presentan una falla dúctil. Cabe mencionar que la existencia de acero longitudinal en la zona de compresión, adecuadamente, restringido por refuerzo transversal (estribos), aumenta la ductibilidad y resistencia del elemento considerablemente.

III.2. RESISTENCIA A FLEXIÓN SIMPLE

Hipótesis en las que se basa el diseño por flexión.

- 1.- La distribución de deformaciones unitarias en la sección transversal de un elemento es plana.
- 2.- Se conoce la distribución de los refuerzos de compresión del elemento.
- 3.- No existen corrimientos relativos en el acero y el concreto que lo rodea, es decir, existe una adherencia perfecta entre el concreto y el acero.
- 4.- El concreto no resiste esfuerzos de tensión.
- 5.- Se considera que el concreto trabaja a una deformación útil ξcu = 0.003

Criterio básico de diseño

El diseño por flexión debe cumplir la condición, la cual establece que la resistencia a la flexión de una sección de concreto reforzado debe tener una magnitud que exceda o cuando menos sea igual a la del momento último producidas por las cargas, es decir: $_{M_n} \ge _{M} u$

Momento resistente.

 $M_{p} = F_{p} bd^{2} f''c q(1-0.5q)$

Se define como resistencia a la flexión MR al momento flexionante que es capaz de soportar una sección de concreto reforzado.

MR = momento resistente

FR = 0.9 factor de reducción de resistencia a la flexión

f"c = esfuerzo uniforme de compresión

b = ancho de la sección

d = peralte efectivo

q = relación entre el esfuerzo del acero y del concreto

Momento último

Para determinar el momento último, el RCDF establece el empleo de unos factores denominados de carga (Fc), los cuales deberán multiplicar a las combinaciones de las acciones calculadas convirtiéndolas en cargas o acciones últimas, las que se emplearán en el diseño.

$$Mu = 1.4Fc$$

El factor de carga toma un valor de 1.4 para la combinación de acciones de cargas muertas más vivas en estructuras del grupo B (como es el caso de una casa habitación).

Porcentaje de acero

Con la siguiente expresión se calcula el porcentaje de acero de refuerzo requerido.

$$\rho = \frac{f''c}{fy} \left[1 - \sqrt{1 - \frac{2Mu}{F_R b d^2 f''c}} \right]$$

Áreas de acero máxima y mínima reglamentarias

Área de acero máxima: El RCDF establece que el comportamiento de las estructuras debe ser dúctil en zona sísmica y para garantizarlo se limita cantidad máxima de acero equivalente a 75 % de la cantidad balanceada.

donde:

$$\rho \max = 0.75 \, pb = 0.75 \, \frac{f^{\,\prime\prime} \, c}{fy} \, \frac{6000 \, \beta_1}{fy + 6000} \quad \text{pb = porcentaje de acero la sección balanceada} \\ \beta_1 = \text{parámetro adicional} = 0.85 \, \text{si f^*c} \, \leq 280 \, \text{kg/cm^2}$$

Área mínima de acero: el RCDF establece para secciones rectangulares de concreto reforzado de peso normal, la siguiente expresión. $\rho \min = 0.7 \frac{\sqrt{f'c}}{fy}$

III.3. RESISTENCIA A FUERZA CORTANTE

El efecto de la fuerza cortante en elementos de concreto, es el desarrollo de esfuerzos de tensión inclinados con respecto al eje longitudinal del miembro, los cuales pueden originar la falla del elemento antes de que alcance su resistencia máxima a flexión.

Refuerzo por tensión diagonal. Las NTC del RCDF proponen el siguiente criterio para la obtención del refuerzo transversal (estribos) en trabes de concreto reforzado:

1.- Se calcula la fuerza cortante que toma el concreto

$$\rho \geq 0.015 \qquad V_{CR} = 0.5 F_R b d \sqrt{f * c}$$

$$\rho < 0.015 \qquad V_{CR} = F_R b d (0.2 + 20 \rho) \sqrt{f * c}$$
 Fr = 0.8 factor de reducción para cortante

Estas ecuaciones son aplicables siempre y cuando el peralte total de la viga no sea mayor de 70 cm

2.- Se compara el Vu con el VcR

Si
$$Vu>V_{CR}$$
 Se colocará el refuerzo mínimo $A_{\min}=0.25\sqrt{f*c}\,\frac{bs}{fy}$

Este refuerzo estará formado por estribos verticales de diámetro no menor de número 2.5, cuya separación no excederá de medio peralte efectivo, d/2.

Si $Vu \leq V_{CR}$ Se colocará el refuerzo a una separación calculada con la siguiente expresión:

Donde: Av = área transversal del refuerzo por tensión diagonal

comprendido en una distancia S

 $S = \frac{P_R A_V Jyd (sen \theta + \cos \theta)}{v_{SR}}$ \emptyset = ángulo que dicho refuerzo forma con el eje de la pieza V_{CR} = fuerza cortante de diseño que toma el concreto

 $V_{SR} = Vu - V_{CR}$ VSR = fuerza cortante de diseño que toma el acero transversal

Pág.45

Limitaciones

$$_S \ge 6 cm$$
 $_Si \ 1.5 F_R bd \sqrt{f * c} < Vu$
 $S_{max} = 0.25 d$
 $_Si \ 1.5 F_R bd \ f * c > Vu > V_{CR}$
 $S_{max} = 0.5 d$

III.4. DEFLEXION EN TRABES

Se le llama deflexión al desplazamiento vertical del eje de una viga, producto de la aplicación de cargas y de las condiciones ambientales, que pueden provocar problemas estructurales, técnicos y estéticos.

Se considera calcular las deflexiones de miembros estructurales bajo cargas y condiciones ambientales conocidas y comparar este valor con uno admisible.

Deflexiones inmediatas

Son las que se presentan justo después de aplicar las cargas. En vigas de concreto reforzado, las NTC establece el cálculo de las deflexiones, considerando para ello la carga de servicio y tomando un momento de inercia el de la sección transformada.

Sección transformada: Es aquella en la cual el área de acero se sustituye por una área equivalente de concreto numéricamente igual al área de la sección transversal de las barras multiplicada por la relación "n" de módulos de elasticidad de acero y concreto

Sección transforma da = nAs Donde:

 $n = \frac{Es}{Ec}$ As = área de acero Es = módulo de elasticidad del acero, Es = 2,000,000kg/cm²

 $Ec = 10,000 \sqrt{f'c}$ Ec = módulo de elasticidad del concreto

Deflexiones diferidas

Son las que ocurren a largo plazo, se considera que sobre el elemento estructural analizado, lacarga viva que no se aplicará en forma sostenida, sólo se tomara una carga media (carga viva para el calculo de flechas diferidas). Y consiste en calcular el momento de inercia de la sección agrietada transformada y la combinación de cargas antes mencionadas, y multiplicar este resultado por el factor que toma en cuenta el periodo en que la deflexión ya no varia con el tiempo.

 $f = \frac{2}{1 + 50\rho'}$ Donde: ρ' corresponde a la cuantía de acero en la zona de compresión, este factor es aplicable para concreto clase 1, y deberá duplicarse para concreto clase 2.

Deflexiones admisibles

La suma de las deflexiones inmediatas y diferidas deberá comparase con la admisible, debiendo ser menor que esta. Las NTC establecen que la flecha vertical admisible para miembros que no afecten elementos no estructurales equivaldrá a: $\delta adm = \frac{L}{240} + 0.5 \, cm$

Y para miembros que afecten a elementos estructurales la flecha admisible equivale a:

$$\delta adm = \frac{L}{480} + 0.3 \, cm$$

Para el caso de voladizos se duplicarán.

RODRIGO ALDANA SÁNCHEZ

III.5. REQUISITOS GENERALES EN TRABES

El claro se contará a partir del centro del apoyo, siempre que el ancho de éste no sea mayor que el peralte efectivo de la viga; en caso contrario, el claro se contará a partir de la sección que se halla a medio peralte efectivo del paño interior del apoyo.

En toda sección se dispondrá de refuerzo tanto en el lecho inferior como en el superior, no menor al área de acero mínimo y constará de por lo menos dos barras corridas de 12.7 mm de No.4, pero no excederá el área de acero máximo.

En el dimensionamiento de vigas continuas monolíticas con sus apoyos puede usarse el momento en el paño del apoyo.

Para calcular momentos flexionantes en vigas que soporten losas de tableros rectangulares, se puede tomar la carga tributaria de la losa como si estuviera uniformemente repartida a lo largo de la viga.

La relación entre la altura y el ancho de la sección transversal, h/b, no debe exceder de 6.

Anclajes y traslapes

La fuerza de tensión o compresión que actúa en el acero de refuerzo en toda sección debe desarrollarse a cada lado de la sección considerada por medio de adherencia en una longitud suficiente de barra o de algún dispositivo mecánico

La longitud de desarrollo, Ld, en la cual se considera que una barra a tensión se ancla de modo que desarrolle su esfuerzo de fluencia, se obtendrá multiplicando la longitud básica por el factor que afecta la longitud básica de desarrollo, y se calcula con la siguiente expresión.

$$Ld = \frac{asfy}{3(c+ktr)\sqrt{f'c}} \ge 0.11 \frac{d_bfy}{\sqrt{f'c}}$$

Aplicables a barras de diámetro no mayor que 3.81 cm (No. 12)

donde:

as = área transversal de la barra

d_b = diámetro nominal de la barra

c = separación o recubrimiento; úsese el menor de los valores siguientes:

- 1.- distancia del centro de la barra a la superficie de concreto más próxima;
- 2.- la mitad de la separación entre centros de barras

kt r= índice del refuerzo transversal. Por sencillez en el diseño, se permite suponer ktr = 0 aunque haya refuerzo transversal.

Limitaciones

- _ En ningún caso Ld < 30 cm
- _ La longitud de desarrollo, de cada barra que conforme parte de un paquete de tres barras será igual a la que requeriría si estuviera aislada, multiplicada por 1.2
- _ Cuando el paquete es de dos barras no se modifica Ld

Tabla de factores que afectan la longitud básica de desarrollo	
Condiciones de refuerzo	factor
Barras de diámetro igual a 1.91cm (No. 6) o menor	0.8
Varilla con más de 30cm de bajo	1.3
Acero de flexión en exceso	A _s requerida A _s proporcion ada

ALTERNATIVA DE ANÁLISIS Y DISEÑO ESTRUCTURAL DE UNA VIVIENDA DE DOS NIVELES

Dobleces del refuerzo: En todo doblez o cambio de dirección de aceros deberán cumplir los siguientes requisitos, dobleces a 90 ó 180 grados seguidos de tramos rectos de longitud no menor que 12db para dobleces a 90 grados, ni menor que 4db para dobleces a 180 grados. El radio interior de un doblez no será menor que:

$$R \ge \frac{fy}{60\sqrt{f'c}}$$

Traslape: En lo posible deben evitarse uniones en secciones de máximo esfuerzo de tensión. Se procurará, asimismo, que en cierta sección cuando más se unan barras alternadas. La longitud de un traslape será mayor o igual que.

$$Lt \ge 1.33 \ Ldb$$

$$Lt \ge (0.01 \ fy - 6) db$$

Paquetes de barras: Las barras longitudinales pueden agruparse formando paquetes con un máximo de dos en vigas. Los paquetes se usarán sólo cuando queden alojados en un ángulo de los estribos.

Separación de barras: La separación libre entre barras paralelas (excepto en columnas y entre capas de barras en vigas) no será menor que el diámetro nominal de la barra ni 1.5 veces el tamaño máximo del agregado.

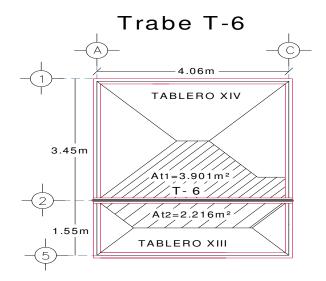
Anclaje del refuerzo transversal

Este refuerzo debe estar formado por estribos cerrados perpendiculares u oblicuos al eje de la pieza, barras dobladas o una combinación de estos elementos, con un fy no mayor a 4200 kg/cm².

Los estribos deben rematar en una esquina con dobleces de 135 grados, seguidos de tramos rectos de no menos de 6db (diámetro nominal de la barra) de largo, ni menos de 8 cm. En cada esquina del estribo debe quedar por lo menos una barra longitudinal.

Diseño estructural de trabes

El proyecto cuenta con 15 trabes, de las cuales a continuación se mostrará el diseño de una simplemente apoyada (Trabe T-6), y una viga continua (Trabe T-1). Los resultados del diseño del resto de las trabes se muestra al final en 2 tablas.


III.6. ANÁLISIS Y DISEÑO ESTRUCTURAL DE UNA TRABE SIMPLEMENTE APOYADA

TRABE T-6

Transmisión de cargas

Las cargas que actúan sobre la trabe T-6 son: a

- a).- Losa de azotea
- b).- Peso propio de la trabe

a) Losa de azotea

_ Longitud del Tramo = 4.06 m

 $_$ Área tributaria 1 = 3.901 m²

Área tributaria 2 = 2.216 m^2

Peso de la losa = 0.709 t/m²

 $W_1 = At1 w$

 $W_1 = (3.901)0.709) = 2.766 t$

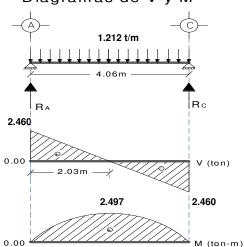
 $W_2 = At2 w$

 $W_1 = (2.216)0.709) = 1.571 t$

WTml = 1.068 t/m

b).- Peso propio de la trabe.

Proponiendo Trabe de 15 x 40 cm WPP = b h P.Vol. del concreto WPP = (0.15)(0.40)(2.4) = 0.144 t/m


WPP = 0.144 t/m

Descarga por metro lineal

 $WT_{A-C} = WT \ ml + WPP$ $WT_{A-C} = 1.068 + 0.144 = 1.212 \ t / m$

WTA-C= 1.212 t/m

Diagramas de V y M

Calculo de las reacciones

$$R_A = R_B = \frac{WL}{2}$$

$$R_A = R_B = \frac{(1.212)(4.06)}{2} = 2.461t$$

Calculo de momento máximo

$$M \max (+) = \frac{W L^2}{8}$$

$$M \max(+) = \frac{(1.254)(4.06^2)}{8} = 2.498 t - m$$

Diseño por flexión

Datos Constantes de Diseño

 $\begin{array}{lll} H = 40 \text{ cm} & FR(\text{flexión}) = 0.9 \\ b = 15 \text{ cm} & FR(\text{cortante}) = 0.8 \\ d = 38 \text{ cm} & FC = 1.4 \\ \text{rec} = 2 \text{ cm} & \beta = 0.85 \\ \text{f'c} = 250 \text{ kg/cm}^2 & \text{f*c} = 200 \text{ kg/cm}^2 \\ \text{fy} = 4200 \text{ kg/cm}^2 & \text{f"c} = 170 \text{ kg/cm}^2 \end{array}$

a) Momento positivo

 $M \max (+) = 2.498 \text{ t/m}$

Momento último

$$Mu = 1.4M = (1.4)(2.498) = 3.497 \ t - m = 349,700 \ kg - cm$$

Según el RCDF, se debe cumplir Mr

Cálculo del porcentaje de acero

$$\rho = \frac{f^{\prime\prime}c}{fy} \left[1 - \sqrt{1 - \frac{2Mu}{F_Rbd^2f^{\prime\prime}c}} \right]; \quad \rho = \frac{170}{4200} \left[1 - \sqrt{1 - \frac{(2)(349,700.00)}{(0.9)(15)(38^2)(170)}} \right] = 0.00452$$

Cálculo del porcentaje de acero mínimo

$$\rho \min = 0.7 \frac{\sqrt{f'c}}{fy}; \quad \rho \min = 0.7 \frac{\sqrt{250}}{4200} = 0.00264$$

Cálculo del porcentaje de acero máximo (para zona sísmica)

$$\rho \max = 0.75 pb = 0.75 \frac{f''c}{fy} \frac{6000\beta_1}{fy + 6000}; \quad \rho \max = \left[0.75 \left(\frac{\sqrt{250}}{4200}\right) \left(\frac{6000*0.85}{4200 + 6000}\right)\right] = 0.0152$$

Comparando porcentajes

$$\rho \min = 0.00264 < \rho cal = 0.00452 < \rho \max = 0.0152$$

$$\therefore$$
 Utilizaremos $\rho = 0.00452$

Área de acero

$$As = (0.00452)(15)(38) = 2.58cm^2$$

Proponiendo varillas

$$2 \text{ var # } 4 = (2)(1.27) = 2.54 \text{ cm}^2$$

 $1 \text{ var # } 3 = (1)(0.71) = 0.71 \text{ cm}^2$
 $\sum = 3.25 \text{ cm}^2 > 2.58 \text{ cm}^2$

.. Se usarán 2 var # 4 y 1 var # 3 en el lecho inferior

Comparando MR con Mu

$$\rho real = \frac{As \ real}{bd}; \ \rho real = \frac{3.25}{(15)(38)} = 0.0057$$

$$q = \frac{fy}{f''c}\rho; \qquad q = \frac{(4200)(0.0057)}{170} = 0.141$$

$$M_R = F_R bd^2 f''c \ q(1 - 0.5q)$$

$$M_R = (0.9)1(5)(38^2)(170)(0.141)((1-(0.5)(0.141)) = 4339 \, kg \, / \, cm > M \, u = 349,700 \, kg \, / \, cm$$

Momento negativo

Como no se presenta momento negativo, en el lecho superior se colocará el refuerzo mínimo. ρ min = 0.00264

$$As = (0.00264)(15)(38) = 2.003 cm^2$$

$$No.deVar = \frac{As}{Ao}$$

$$No.deVar = \frac{2.003}{1.27} = 1.58$$

Por reglamento (RCDF) se utilizaran 2 varillas del # 4

.. Se usaran 2 var # 4 en el lecho superior

Diseño por cortante

Cortante último, a un peralte del paño del apoyo

$$V = 2.546 \ t = 2,461 \ kg$$

$$Vu = 1.4(2.461 - 1.212(0.44)) = 2.699 \ t = 2,699 \ kg$$

Fuerza cortante que toma el concreto VCR

$$\rho_{\, real} \; = \; 0.0057 \qquad \quad \rho < 0.015 \qquad \quad V_{_{CR}} \; = F_{_{R}} \, bd \, (0.2 \, + \, 20 \, \rho) \sqrt{f \, * \, c}$$

$$V_{CR} = (08)(15)(38)(0.2 + (20)(0.0057)\sqrt{200} = 2,025.15 \text{ kg}$$

Comparando VcR con Vu

 $V_{CR} = 2,025.15 \ kg < Vu = 2,699 \ kg$ \therefore se requiere refuerzo por tensión diagonal

Fuerza que debe resistir los estribos

$$V_{SR} = Vu - V_{CR}$$

$$V_{SR} = 2,699 - 2,025.15 = 673.26 \, kg$$

Se proponen estribos del # 2.5 en 2 ramas

$$Av = (2)(0.49) = 0.98 \text{ cm}^2$$

$$S = \frac{F_R A_V fyd}{V_{SR}}; \qquad S = \frac{(0.8)(0.98)(4200)(38)}{673.26} = 185.9 cm$$

Limitaciones según RCDF

$$S \ge 6 \ cm$$

$$1.5F_R b d\sqrt{f * c} = (1.5)(0.8)(15)(38)\sqrt{200} = 9,678 \, kg > Vu > V_{CR}$$

$$S \max = (0.5)(38) = 19 \ cm$$

$$S \max = 19 \ cm < Scal = 185.9 \ cm$$

.. Se colocarán estribos # 2.5 @ 18.00 cm c.a.c.

Deflexiones

Deflexiones inmediatas

Módulo de elasticidad del concreto y el acero

$$Ec = 10,000 \sqrt{250} = 158,113.88 \, kg / cm^2$$
; Es = 2,000,000 kg / cm²

$$n = \frac{E_{accro}}{E_{connecto}}; \qquad n = \frac{2,000,000.00}{158,113.88} = 12.649$$

Sección transformada

As =
$$3.25 \text{ cm}^2$$
; n As = $(12.649)(3.25) = 41.11 \text{ cm}^2$

Profundidad del eje neutro

$$b c \left(\frac{c}{2}\right) = n As \left(d - c\right)^{2}; \qquad \frac{bc^{2}}{2} + n Asc - n Asd = 0$$

$$7.5c^2 + 41.11c - 1562.17d = 0$$

Resolviendo ecuación

$$c = 11.95 \text{ cm}$$

Momento de Inercia (con respecto al eje neutro)

$$I_{ag} = \frac{b c^{3}}{3} + n As(d - c)^{2}; \qquad I_{ag} = \frac{(15)(11.95^{3})}{3} + (41.11)(38 - 11.95)^{2} = 36,429.53$$

$$\delta_{m\acute{a}x} = \frac{5 w l^{4}}{384 E I}; \qquad \delta_{m\acute{a}x} = \frac{(5)(1.212)(406^{4})}{(384)(158,113.88)(36,429.53)} = 0.74cm$$

Deflexiones diferida

Cambiando la carga de servicio, para el cálculo de flechas diferidas. En losa de azotea con pendiente menor a 5 %, W = 15 kg/cm²

Tramo A-C

_ Longitud del Tramo = 4.06 m	Losa de azotea (tablero XIII y XIV)
$_{\rm A}$ Área tributaria 1 = 3.901 m ²	CM de la losa de entrepiso = 0.597 t/m²
$_$ Área tributaria 2 = 2.216 m ²	$Cadic = 0.040 t/m^2$
Peso de la losa = 0.652 t/m^2	CV para flechas diferidas = 0.015 t/m²
$_{\rm Peso\ por\ ml}$ = 0.98 t/m	Carga de servicio = 0.652 t/m ²
_ Peso de la trabe = 0.14 t/m	

_ Descarga total = 1.13 t/m

Cálculo del factor que toma en cuenta el periodo en que la deflexión ya no varía

$$\rho' = 0.0045 \qquad \left(\frac{2}{1+50\rho'}\right) = \left(\frac{2}{(1+((50)(0.0045))}\right) = 1.636$$

Cálculo del deflexión con la carga para flechas diferidas

$$\delta = \frac{5 \text{ w } 1^4}{384 \text{ E I}}; \quad \delta = \frac{5 (1,300)(406^{4})}{(384)(158,113.88)(36,429.53)} = 0.98 \text{ cm}; \quad \delta_{\text{dif}} = (0.982)(1.1639) = 1.13 \text{ cm}$$

Deflexión total

Suma de deflexión inmediata con deflexión diferida.

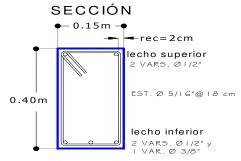
$$\delta_{total} = \delta_{inm} + \delta_{diferida}$$
 $\delta_{total} = 0.74 + 1.13 = 1.87 \, cm$

Deflexión admisible

Para miembros que no afecten elementos no estructurales.

$$\delta_{adm} = \frac{L}{240} + 0.5 cm \, ; \qquad \delta_{adm} = \frac{406}{240} + 0.5 cm = 2.19 cm$$
 Comparando resultados

$$\delta_{adm} = 2.19 \, cm > \delta = 1.87 \, cm$$
 ... Se acepta la sección


Requisitos complementarios en trabes

1.- Recubrimiento

El recubrimiento de toda barra de refuerzo no será menor que su diámetro, ni menor en columnas y trabes de 2cm, si las barras forman paquetes el recubrimiento libre no será menor que 1.5 el diámetro de la barra mas gruesa del paquete.

_ Ø de la barra mas gruesa = 1.27 cm

$$_{rec} = _{2cm} > _{1.27 cm}$$
 ... Se acepta

2.- Anclaie

Longitud de desarrollo debe cumplir con la siguiente condición

$$Ld = \frac{asfy}{3(c + ktr)\sqrt{f'c}} \ge 0.11 \frac{d_b fy}{\sqrt{f'c}}$$

donde:

as = área de acero de la barra mas grande, as = 1.27 cm²

c = separación o recubrimiento, úsese el menor de los valores siguientes

a) Distancia del centro de la barra a la superficie de concreto mas próxima (recubrimiento a ejes de varillas) c = 2 cm

$$c_1 = \frac{b - 2rec}{No. \text{ var} - 1};$$
 $c = \frac{15 - (2)(2)}{3 - 1} = 5.5 cm$

b) La mitad de la separación entre centros de barras

$$c_2 = \frac{c_1}{2}$$
; $c_2 = \frac{5.5}{2} = 2.75 \text{ cm}$ Se utilizará c = 2.75 cm

ktr = Índice de refuerzo transversal y las NTC permiten suponer al valor ktr = 0

Calcular condición

$$Ld = \frac{(1.27)(4200)}{(3)(2.75+0)\sqrt{250}} = 49.54 \text{ cm}; \quad 0.11 \frac{(1.27)(4200)}{\sqrt{250}} = 37.10 \text{cm}$$

$$\therefore \text{ Se utilizará } \text{Ld} = 49.54 \text{ cm}$$

Multiplicar por factor(es).

_ 0.8 barras de diámetro menor a 1.91 cm

_ 1.3 varilla con mas de 30 cm debajo

_ Acero de flexión en exceso

$$\frac{As requerida}{As proporcionada} = \frac{2.71}{3.25} = 0.833; \quad Ld = (49.54)(0.8)(1.3)(0.833) = 42.92 cm$$

En la practica Lab la podemos calcular

$$Ld = 40 db = (40)(1.127) = 50.8 cm$$

Considerando la mayor, Ld = 50.8 cm

Los traslapes deberán tener una longitud mínima de:

$$Lt \ge (0.01 \, fy - 6) db; \ Lt = ((0.01)(4200) - 6))(1.27) = 45.72 cm$$

$$Lt \ge 1.33 Ld$$
; $Lt = (1.33)(50.8) = 67.56cm$

... Se utilizara L t= 70 cm

RODRIGO ALDANA SÁNCHEZ

III.7. ANÁLISIS Y DISEÑO ESTRUCTURAL DE UNA TRABE CONTINUA TRABE T-1

Transmisión de cargas

Las cargas que actúan sobre la trabe T-1 son:

- a).- Losa de azotea
- b).- Peso propio de pretil
- c).- Peso propio de la trabe
- d).- Descarga de la trabe T-3

a).- Losa de azotea

Trainio A	
_ Área tributaria 1	$= 3.822 \text{ m}^2$
_ Longitud del tramo	= 4.06 m
_ Peso de la losa	= 0.737 t
_ Wazotea = At w	= 2.817 t
Descarga por ml	= 0.694 t/m

Tramo A - B

_ Área tributaria 2 = 1.736 m²
_ Longitud del tramo = 3.28 m
_ Peso de la losa = 0.515 t/m²
_ Wazotea = At w = 0.894 t

Descarga por ml = 0.273 t/m

Descarga total tramo A - B por ml = 0.694 + 0.273 = 0.966 t/m

Descarga total tramo B - C por ml = 0.694 t/m

Tramo C - D

```
_ Área tributaria 1 = 2.088 m²

_ Longitud del Tramo = 3.04 m

_ Peso de la losa = 0.515 t/m²

Wazotea = At w = 1.075 t
```

Descarga total tramo C - D por ml = 0.354 t/m

b).- Peso propio de pretil

Tramo A - B

_ Longitud del pretil	= 3.28 m	
_ Altura del pretil	= 1.20 m	
_ Área del pretil	= 3.936	
_ w muro	$= 0.270 \text{ t/m}^2$	
_ W pretil	= 1.063 t	
_ Descarga por ml	= 0.324 t/m	

Tramo B - C

_ Longitud del pretil	= 0.80 m
_ Altura del pretil	= 1.20 m
_ Área del pretil	$= 0.960 \text{ m}^2$
_ w muro	$= 0.270 \text{ t/m}^2$
_ W pretil	= 0.259 t
Descarga por ml = 0.324 t/m	

c).- Peso propio de la trabe.

Proponiendo trabe de 20 x 30 cm WPP = b h P Vol. del concreto WPP = (0.2)(0.3)(2.4) = 0.14 t/m

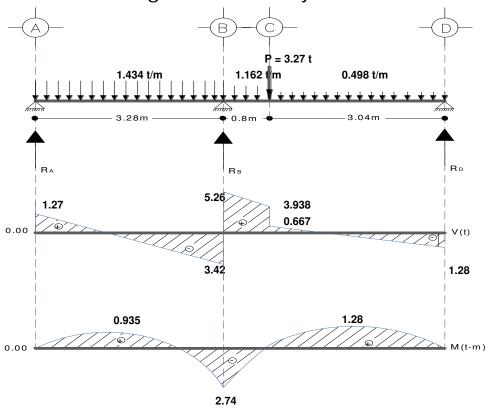

d) Descarga de la trabe T-3

_ Eje 14-C _ P = 3.27 t

Descarga total = Peso azotea + Peso pretil + Peso trabe

_ Descarga total tramo A - B = 0.966 + 0.324 + 0.14	= 1.434 t/m
_ Descarga total tramo B - C = 0.694 + 0.324 + 0.14	= 1.162 t/m
_ Descarga total tramo C - D = $0.354 + 0.000 + 0.14$	= 0.498 t/m
Decearge on all signal C	-


_ Descarga en el eje 14-C = 3.27 t



Diagramas de V y M

RODRIGO ALDANA SÁNCHEZ

Diseño por flexión

Datos

H = 30 cmb = 20 cm

d = 28 cm

recubrimiento = 2 cm

 $f'c = 250 \text{ kg/cm}^2$

 $fy = 4200 \text{ kg/cm}^2$

Constantes de diseño

FR(flexion) = 0.9

FR(cortante) = 0.8

FC = 1.4

 $\beta = 0.85$

 $f^*c = 200 \text{ kg/cm}^2$

 $f''c = 170 \text{ kg/cm}^2$

a) Momento positivo

 $M \max (+) = 1.280 t/m$

Momento último

Mu = 1.4M = (1.4)(1.280) = 1.790 t - m = 179,000kg - cm

Según el RCDF, se debe cumplir

Cálculo del porcentaje de acero

$$\rho = \frac{f''c}{fy} \left[1 - \sqrt{1 - \frac{2Mu}{F_R b d^2 f''c}} \right]; \quad \rho = \frac{170}{4200} \left[1 - \sqrt{1 - \frac{(2)(179,000)}{(0.9)(20)(28^2)(170)}} \right] = 0.0031$$

Cálculo del porcentaje de acero mínimo

$$\rho \min = 0.7 \frac{\sqrt{f'c}}{fy}; \ \rho \min = 0.7 \frac{\sqrt{250}}{4200} = 0.00264$$

Cálculo del porcentaje de acero máximo

$$\rho \max = \left[0.75 \left(\frac{\sqrt{250}}{4200}\right) \left(\frac{6000*0.85}{4200+6000}\right)\right] = 0.0152$$
Comparando porcentajes

 $\rho \min = 0.00264 < \rho cal = 0.0031 < \rho \max = 0.0152$

Área de acero

As = ρ bd : $As = (0.0031)(20)(28) = 1.75cm^2$

Proponiendo varilla de # 4

$$No.deVar = \frac{As}{Ao}$$
; No.de $Var = \frac{1.75}{1.27} = 1.38$

... Se usarán 2 var # 4 en el lecho inferior

Comparando MR con Mu

$$\rho real = \frac{As \ real}{h \ d}; \ \rho real = \frac{(2)(1.27)}{(20)(28)} = 0.00454 \qquad q = \frac{fy}{f''c} \ \rho; \ q = \frac{(4200)(0.00454)}{170} = 0.112$$

$$\frac{fy}{c} \rho; \ \ q = \frac{(4200)(0.00454)}{170} = 0.112$$

$$M_R = F_R b d^2 f'' c \ q(1 - 0.5q)$$

$$M_R = (0.9)(20)(28^2)(170)(0.112)(1-(0.5)(0.112)) = 25,3645$$
. $7 kg / cm > 179,000 kg / cm$

b) Momento negativo

 $M \max (-) = 2.740 \text{ t/m}$

Momento último

$$Mu = 1.4M = (1.4)(2.740) = 3.836 t - m = 383,600 kg - cm$$

Cálculo del porcentaje de acero

$$\rho = \frac{170}{4200} \left[1 - \sqrt{1 - \frac{(2)(3,83600.00)}{(0.9)(20)(28^2)(170)}} \right] = 0.0071$$

Comparando porcentajes

$$\rho_{\min} = 0.00264 < \rho_{cal} = 0.0071 < \rho_{\max} = 0.0152$$

∴ Se usara ρ diseño = 0.0071

Área de acero

 $As = (0.0071)(20)(28) = 3.97cm^2$

Proponiendo varillas

$$3 \text{ var } # 4 = (3)(1.27) = 3.81 \text{ cm}^2$$

1 var # 3 = (1)(0.71) = 0.71 cm²

$$\sum = 4.52 \text{ cm}^2 > 3.97 \text{ cm}^2$$

.. Se usarán 3 var # 4 y 1 var # 3 en el lecho superior

comparando MR con Mu

$$\rho real = \frac{As \, real}{bd}; \quad \rho \, real = \frac{4.52}{(20)(28)} = 0.0081 \qquad q = \frac{fy}{f''c} \rho; \quad q = \frac{(4200)(0.0081)}{170} = 0.199$$

$$M_R = (0.9)(20)(28^2)(170)(0.199)(1 - (0.5)(0.199) = 432,000 \text{ kg/cm} > 383,600 \text{ kg/cm}$$

Diseño por cortante

Cortante último, para un peralte del paño del apoyo

$$V = 5.26 \ t = 5,260 \ kg$$

$$Vu = (1.4) [5.26 - (0.28 + 0.06)(1.162)] = 6.811 t = 6,811 kg$$

Fuerza cortante que toma el concreto VCR

$$\rho real = 0.00454$$

$$\rho$$
 < 0.015

$$V_{CR} = F_R bd(0.2 + 20\rho) \sqrt{f * c}$$

$$V_{CR} = (08)(20)(28)(0.2 + 20(0.00454) \setminus 200 = 1,841.87 \ kg$$

Comparando VcR con Vu

 $V_{CR} = 1,841.87 \ kg < Vu = 6,811 \ kg$ Por lo tanto se requiere refuerzo por tensión diagonal

Fuerza que de debe resistir los estribos

$$V_{SR} = Vu - V_{CR}$$
; $V_{SR} = 6.811 - 1.841 .87 = 4.969 .02 kg$

Separación de estribos, proponiendo del No. 2.5 en 2 ramas

$$Av = (2)(0.49) = 0.98 \text{ cm}^2$$

$$S = \frac{F_R A_V F_y d}{V_{SR}}; \qquad S = \frac{(0.8)(0.98)(4200)(28)}{4,969.02} = 18.55cm$$

Limitaciones según RCDF

$$_S \ge 6 \text{ cm}$$

$$1.5F_Rbd\sqrt{f*c} = (1.5)(0.8)(20)(33)\sqrt{200} = 11,200kg > Vu > V_{CR}$$

$$S \max = (0.5)(28) = 14 cm$$

$$S \max = 14 \ cm \ < Scal = 18.55 \ cm$$

... Se colocarán estribos @ 14 cm c.a.c.

Deflexiones

Transmisión de cargas usando carga viva para flechas diferidas

CV para de flechas diferidas =	0.015 t
Cadic =	0.040 t
CM de la losa de entrepiso =	0.597 t
Losa de azotea horizontal	

Losa de azotea S > 5%	
CM de la losa de entrepiso =	0.435 t
Cadic =	0.040 t
CV para de flechas diferidas =	0.005 t
Carga de servicio =	0.480 t

Las Cargas que actúan sobre la trabe T-1 son: a

- a).- Losa de azotea
- b).- Peso propio de pretil
- c).- Peso propio de la trabe
- d).- Descarga de la trabe T-3

a).- Losa de azotea

Tramo A - C	
-------------	--

_ Årea tributaria 1	$= 3.822 \text{ m}^2$
_ Longitud del tramo	= 4.06 m

- _ Peso de la losa = 0.652 t/m² _ Wazotea = At w = 2.492 t
- Descarga por ml = 0.614 t/m

Tramo A - B

_ Área tributaria 2 = 1.736 m²
_ Longitud del tramo = 3.28 m
Peso de la losa = 0.480 t/m²

_ Wazotea = At w = 0.833 t _ Descarga por ml = 0.254 t/m

Descarga total tramo A - B por ml = 0.614 + 0.254 = 0.868 t/m

_ Descarga total tramo B - C por ml = 0.614 t/m

Tramo C - D

_ Área tributaria 3 = 2.088 m² _ Longitud del tramo = 3.04 m _ Peso de la losa = 0.480 t/m² Wazotea = At w = 1.002 t

Descarga total tramo B - C por ml = 0.330 t/m

b).- Peso propio de pretil

Tramo A - B

_ Longitua dei pretii	= 3.28 m
_ Altura del pretil	= 1.20 m
_ Área del pretil	$= 3.936 \text{ m}^2$
_ w muro	$= 0.270 \text{ t/m}^2$
_ W pretil	= 1.063 t
_ Descarga por ml	= 0.324 t/m

Tramo B - C

_ Longitud del pretil	= 0.80 m
_ Altura del pretil	= 1.20 m
_Área del pretil	$= 0.960 \text{ m}^2$
_ w muro	$= 0.270 \text{ t/m}^2$
_ W pretil	= 0.259 t
_ Descarga por ml	= 0.324 t/m

c).- Peso propio de la trabe.

WPP = (0.2)(30)(2.4) = 0.14 t/m

d).- Descarga de la trabe T-3

P = 3.05 t

Descarga Total = Peso azotea + Peso pretil + Peso trabe

- Descarga total tramo A B = 0.868 + 0.324 + 0.14 = 1.336 t/m

 Descarga total tramo B C = 0.614 + 0.324 + 0.14 = 1.082 t/m

 Descarga total tramo C D = 0.330 + 0.000 + 0.14 = 0.474 t/m
- _ Descarga de la trabe T-3 = 3.05 t

Deflexiones inmediatas

Con ayuda del programa SAP encontramos la deflexión inmediata para una combinación de carga muerta mas carga viva.

Ī	Claro	Longitud	δ_{inm}	a una distancia
	1	328 cm	0.0785 cm	140.6 cm
	2	384 cm	0.2558 cm	210 cm

$$Ec = 10,000\sqrt{250} = 158113.88kg / cm^2$$

 $Es = 2,000,000 kg / cm^2$

$$\therefore \delta inm \max = 0.2558 \ cn$$

Deflexiones diferida

Con ayuda del programa SAP encontramos la deflexión inmediata para una combinación de carga muerta mas carga viva para flechas diferidas.

Claro	Longitud	δ dif	ρ'	a una distancia
1	328 cm	0.0769 cm	0.0081	140.6 cm
2	384 cm	0.2359 cm	0.0081	210 cm

$$\therefore \delta_{dif \text{ max}} = 0.2359 \text{ cm}$$

Multiplicando por el factor, donde ρ' es el porcentaje de acero en la zona de compresión

$$\delta_{dif} = \delta_{dif} \left(\frac{2}{1 + 50 \, \rho'} \right); \qquad \delta_{dif} = (0.2359) \left(\frac{2}{(1 + 50(0.0081))} \right) = 0.3358 \, cm$$

Deflexión total

Suma de deflexión inmediata con deflexión diferida.

$$\delta_{total} = \delta_{inm} + \delta_{diferida}$$

$$\delta_{total} = 0.2558 + 0.3358 = 0.59 \ cm$$

Deflexión admisible

Para miembros que afecten a elementos estructurales.

$$\delta_{adm} = \frac{L}{480} + 0.3 \text{ cm}$$

 $\delta_{adm} = \frac{384}{240} + 0.3 \text{ cm} = 1.10 \text{ cm}$

$$\delta_{adm} = 0.59 \text{ cm} < \delta = 1.10 \text{ cm}$$
 \therefore Se acepta la sec ción

A continuación se muestra la obtención de las cargas actuantes y los diagramas de V y M para las demás trabes

TRABE T-2

Transmisión de cargas

Las cargas que actúan sobre la trabe T-2 son: a).- Losa de azotea

b).- Peso propio de pretil

c).- Peso propio de la trabe

a).- Losa de azotea

Tramo C - F		Tramo C - D	
_ Área tributaria 1	$= 5.696 \text{ m}^2$	_ Área tributaria 2	$= 2.088 \text{ m}^2$
_ Longitud del tramo	= 4.99 m	_ Longitud del tramo	= 3.04 m
_ Peso de la losa	$= 0.737 \text{ t/m}^2$	_ Peso de la losa	$= 0.515 \text{ t/m}^2$
_ Wazotea = At w	$= 5.696 \times 0.737 = 4.198 \text{ t/m}^2$	_ Wazotea = At w	$= 1.075 \text{ t/m}^2$
_ Descarga por ml	= 4.198 / 4.990 = 0.841 t/m	_ Descarga por ml	= 0.354 t/m
December total trains	- C D new mal 0.044 . 0.054 . 1.105 t/m		

Descarga total tramo C-D por ml = 0.841 + 0.354 = 1.195 t/m

Tramo D - F Tramo C - F

```
_ Área tributaria 3
                           = 0.734 \text{ m}^2
                                                                              _ Descarga por ml
                                                                                                        = 0.841 \text{ t/m}
```

_ Longitud del tramo = 1.95 m

Peso de la losa $= 0.515 \text{ t/m}^2$

 $= 0.734 \times 0.515 = 0.378$ t Wazotea = At w = 0.378 / 1.950 = 0.194 t/mDescarga por ml

Descarga total tramo F-H por ml = 0.194 + 0.842

Tramo F - H

_ Área tributaria 4	$= 3.063 \text{ m}^2$		_ Área tributaria 5	$= 3.075 \text{ m}^2$
_ Longitud del tramo	= 3.65 m		_ Longitud del tramo	= 3.65 m
_ Peso de la losa	= 0.515 t/m	l ²	_ Peso de la losa	$= 0.515 \text{ t/m}^2$
_ Wazotea = At w	= 3.063 x	0.515 = 1.577 t	_ Wazotea = At w	= 1.584 t
_ Descarga por m	= 1.577 /	3.650 = 0.432 t/m	_ Descarga por ml	= 0.434 t/m

_ Descarga total tramo H-J por ml = 0.432 + 0.434 = 0.866 t/m

b).- Peso propio del muro

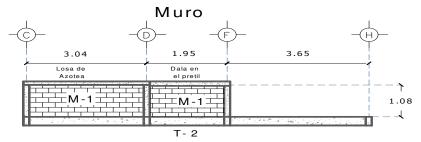
Tramo F-H _ Longitud del muro = 4.99 m Altura del muro = 1.08 m

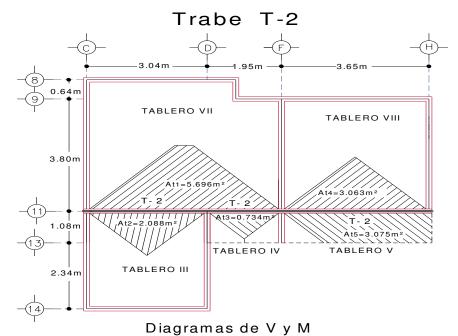
Área del muro $= 5.389 \text{ m}^2$ _w muro = 0.270 t/m= 1.455 tW muro

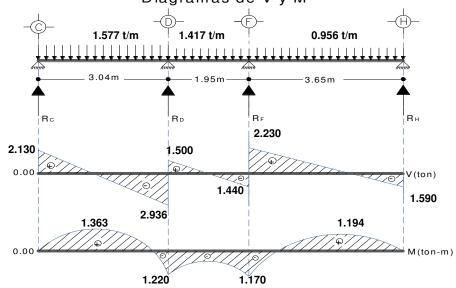
_ Descarga por metro lineal = | 0.292 t/m

c).- Peso propio de la trabe.

Proponiendo trabe de 15 x 25 cm WPP = b h P Vol. del concreto WPP= (0.15)(0.25)(2.4) = 0.09 t/m


Descarga total = Peso azotea + Peso pretil + Peso trabe


```
_ Descarga total tramo C- D = 1.195 + 0.292 + 0.09 = 1.577 \text{ t/m}
_ Descarga total tramo D- F = 1.035 + 0.292 + 0.09 = 1.417 \text{ t/m}
_ Descarga total tramo F- H = 0.866 + 0.000 + 0.09 = 0.956 \text{ t/m}
```



Pág.60

Transmisión de cargas

Las Cargas que actúan sobre la trabe T-3 son: a).- Losa de azotea

b).- Peso propio del muroc).- Peso propio de la trabe

d).- Descarga de la trabe T-3

a).- Losa de Azotea

Tramo 14-11 Tramo 14-10

_ Descarga por ml = 1.273 / 3.31 = 0.384 t/m __ Descarga por ml _ Descarga total tramo 14 -11 por ml = 0.384 + 0.767 = 1.151 t/m

Tramo 8-11

_ Área tributaria 3 = 4.623 m² _ Longitud del tramo = 4.44 m Peso de la losa = 0.737 t/m²

_ Wazotea = At w = $4.623 \times 0.737 = 3.407 \text{ t}$ _ Descarga por ml = 3.407 / 4.44 = 0.767 t/m

Descarga total tramo 14 -11 por ml = 0.767 + 0.767 = 1.534 t/m

Tramo 10 - 8

_ Área tributaria 4 = 2.399 m² _ Longitud del tramo = 3.25 m _ Peso de la losa = 0.737 t/m²

_ Wazotea= At w = 2.399 x 0.737 = 1.768 t _ Descarga por ml = 1.768 / 3.25 = 0.544 t/m

Descarga total tramo 10-8 por ml = 0.554 + 0.767 = 1.311 t/m

Tramo 8 - 5 Tramo 8 - 7

_ Área tributaria 5 Área tributaria 6 $= 1.985 \text{ m}^2$ $= 0.500 \text{ m}^2$ Longitud del tramo = 2.86 m Longitud del tramo = 1.08 m $= 0.870 \text{ t/m}^2$ $= 0.737 t/m^2$ Peso de la losa Peso de la losa $= 1.985 \times 0.870 = 1.727 t$ _ Wazotea = At w Wazotea = At w = 0.369 t= 1.727 / 2.86 = 0.604 t/mDescarga por ml Descarga por ml = 0.129 t/m

_ Descarga total tramo 10 -7 por ml = 0.604 + 0.129 = 2.331 t/m

b).- Peso propio del muro

Tramo 14-11

_ Longitud del Pretil = 3.31 m _ Altura del pretil = 0.54 m _ Área del pretil = 1.787 m² _ w muro = 0.270 t/m² _ W pretil = 0.483 t/m

Descarga por metro lineal = 0.146 t/m

c).- Peso propio de la trabe.

Proponiendo trabe de 20 x 30 cm WPP = b h P Vol. del concreto

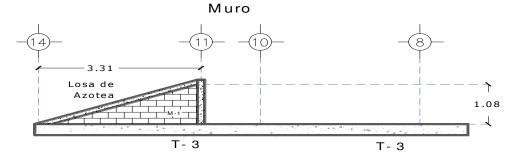
WPP = (0.2)(0.30)(2.4) = 0.144 t/m

d).-Descarga de la trabe T-3

Eje 11-C

P = 2.13 t

Descarga total

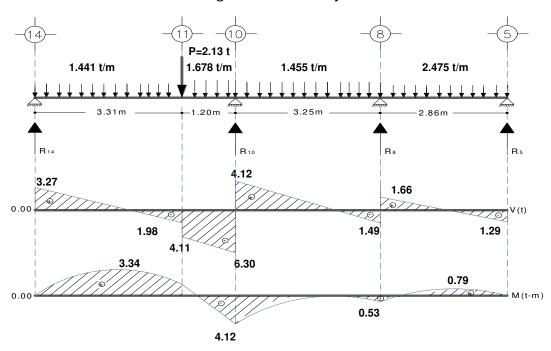

Descarga total tramo 14-11 = 0.14 + 1.151 = 1.441 t/m

Descarga total tramo 11-10 = 0.14 + 1.534 = 1.678 t/m

Descarga total tramo 10-8 = 0.14 + 1.311 = 1.455 t/m

Descarga total tramo 8-5 = 0.14 + 2.331 = 2.475 t/m

Descarga en el eje 11-C = 2.13 t



Trabe T-3 3.77m 1 23m 1.78m TABLERO XII TABLERO IX 1.08m At6=1.985m² At5=0.50m² At4=2.399m² TABLERO VII 3.25m At3=4.623m² TABLERO VI At2= 4.692m² 1.20m T- 2 At1= 2.471m² 3.31m T- 3 TABLERO II TABLERO III T- 1 T- 1

Diagramas de V y M

Transmisión de cargas

Las cargas que actúan sobre la trabe T-4 son: a).- Losa de azotea

b).- Peso propio de la trabe

a).- Losa de azotea

Tramo A'-E

```
Área tributaria 1
                        = 0.690 \text{ m}^2
                                                                     Área tributaria 2
                                                                                            = 0.690
_ Longitud del tramo = 1.25 m
                                                                      Longitud del tramo = 1.25 m
                       = 0.870 \text{ t/m}^2
 Peso de la losa
                                                                      Peso de la losa
                                                                                            = 0.737 \text{ t/m}^2
                        = 0.601 t
 Wazotea = At w
                                                                      Wazotea = At w
                                                                                            = 0.509 t
  Descarga por ml
                       = 0.480 \text{ t/m}
                                                                      Descarga por ml
                                                                                           = 0.407 t/m
```

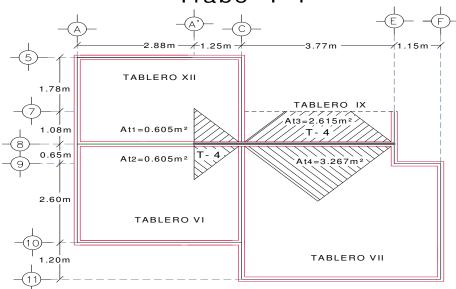
Descarga total tramo A'-E por ml = 0.480 + 0.407 = 0.887 t/m

Tramo E-G

_ Área tributaria 3	$= 2.615 \text{ m}^2$	_ Área tributaria 4	$= 3.267 \text{ m}^2$
_ Longitud del tramo	= 3.77 m	_ Longitud del tramo	= 3.77 m
_ Peso de la losa	$= 0.737 \text{ t/m}^2$	_ Peso de la losa	$= 0.737 \text{ t/m}^2$
_ Wazotea = At w	= 9.859 t	_ Wazotea = At w	= 2.408 t
_ Descarga por ml	= 2.615 t/m	_ Descarga por ml	= 0.639 t/m
Descarga total tram	o A'-F por ml = 2.615 + 0.639	= 3.254 t/m	

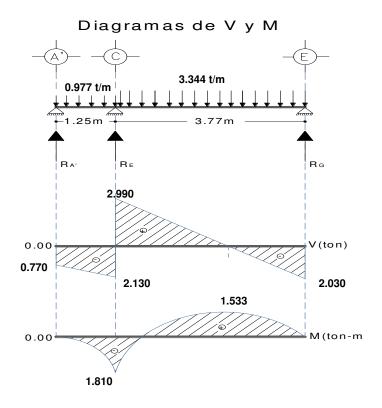
b).- Peso propio de la trabe.

Proponiendo trabe de 15 x 25 cm


WPP = b h P Vol. del concreto

WPP = (0.15)(0.25)(2.4) = 0.09 t/m

Descarga total por ml


Descarga total tramo A'-E = 0.09 + 0.887 = 0.977 t/mDescarga total tramo E-G = 0.09 + 3.254 = 3.344 t/m

Trabe T-4

Transmisión de cargas

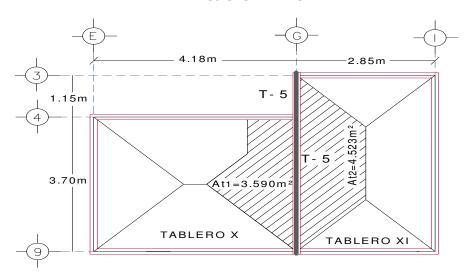
Las cargas que actúan sobre la trabe T-5 son: a).- Losa de azotea

b).- Peso propio de la trabe.

a).- Losa de azotea

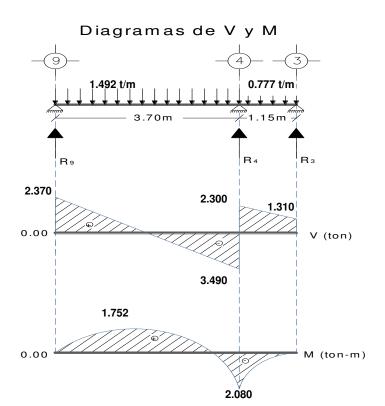
Tablero X		Tablero XI	
_ Área tributaria 1	$= 3.59 \text{ m}^2$	$_$ Área tributaria 2	$= 4.523 \text{ m}^2$
_ Longitud del tramo	= 3.70 m	_ Longitud del tramo	= 4.85 m
_ Peso de la losa	$= 0.737 ton/m^2$	_ Peso de la losa	$= 0.737 \text{ t/m}^2$
_ Wazotea = At w	= 2.646 t	_ Wazotea = At w	= 3.333 t
_ Descarga por ml	= 0.715 t/m	_ Descarga por ml	= 0.687 t/m

_ Descarga total tramo 3 - 4	por ml = $0.000 + 0.687$	= 0.687 t/m
Descarga total tramo 4 - 9	por ml = 0.715 + 0.687	= 1.402 t/m


b).- Peso propio de la trabe.

Proponiendo trabe de 15 x 25 cm WPP = b h P Vol. del concreto WPP = (0.15)(0.25)(2.4) = 0.090 t/m

Descarga total por ml


Descarga total tramo 3-4 = 0.09 + 0.687 Descarga total tramo 4-9 = 0.09 + 1.402 = 1.492 t/m

Trabe T-5

Transmisión de cargas

Las cargas que actúan sobre la trabe T-7 son: a).- Losa de entrepiso

b).- Peso propio de la trabe

a).-Losa de entrepiso

Tramo A - B

_ Área tributaria 1 = 2.441 m²

_Longitud del tramo = 3.28 m

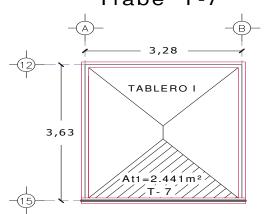
 $_$ Peso de la losa = 0.696 t/m²

 $_$ Wazotea = At w = 1.699 t

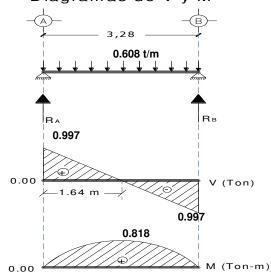
_ Descarga por ml = 0.518 t/m

Descarga total por metro lineal

WTA-B = 0.518 + 0.090 = 0.608 t/m


b).- Peso propio de la trabe.

Proponiendo trabe = $15 \times 25 \text{ cm}$


WPP = b h P Vol. del concreto

WPP = (0.15) (0.25) (2.40) = 0.090 t/m

Trabe T-7

Diagramas de V y M

Transmisión de cargas

Las cargas que actúan sobre la trabe T-1 son:

a).- Losa de entrepiso

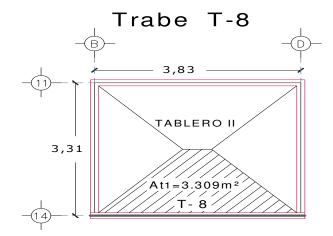
b).- Peso propio de la trabe

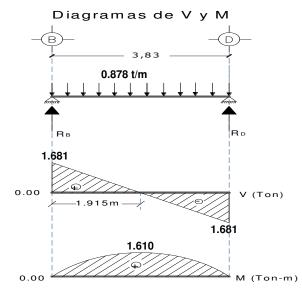
a).- Losa de entrepiso

Tramo B - D

_ Área tributaria 1 = 3.309 m²
_ Longitud del tramo = 3.83 m
_ Peso de la losa = 0.870 t/m²
_ Wazotea = At w = 2.879 t
_ Descarga por ml = 0.752 t/m

Descarga total por metro lineal


WTB-D = 0.126 + 0.752 = 0.878 t/m


b).- Peso propio de la trabe.

Proponiendo trabe = $15 \times 35 \text{ cm}$

WPP = b h P Vol. del concreto

WPP = (0.15) (0.35) (2.40) = 0.126 t/m

Transmisión de cargas

Las cargas que actúan sobre la trabe T-9 son: a).- Losa de entrepiso

b).- Muro

c).- Carga concentrada

d).- Peso propio de la trabe

a).- Losa de entrepiso

Tranio B-C	Traino B-D	
_ Área tributaria 1 = 0.334 m²	_ Área tributaria 2	$= 3.309 \text{ m}^2$
_ Longitud del tramo = 0.79 m	_ Longitud del tramo	= 3.04 m
Peso de la losa = 0.710 t/m^2	_ Peso de la losa	$= 0.870 \text{ t/m}^2$
$_{\rm Wazotea} = At w = 0.237 t$	_ Wazotea = At w	= 1.000 t
_ Descarga por ml = 0.062 t/m	_ Descarga por ml	= 0.261 t/m
_ Descarga total tramo B - C por ml = 0.062 + 0.261	= 0.323 t/m	

Tramo C -F

```
_ Área tributaria 3 = 5.696 m²
_ Longitud del tramo = 4.99 m
_ Peso de la losa = 0.601 t/m²
_ Wazotea = At w = 3.423 t
_ Descarga por ml = 0.686 t/m
```

Descarga por ml = 0.226 t/m

Descarga total tramo C - D por ml = 0.261 + 0.686 = 0.947 t/m

Tramo D - F Tramo C - F

__ Descarga total tramo D - F por ml = 0.226 + 0.686 = 0.912 t/m

Tramo F - H

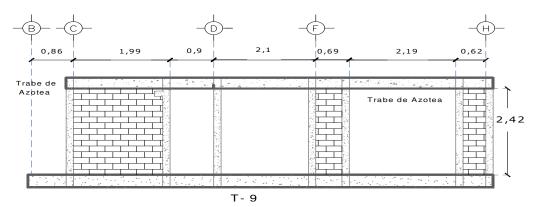
$_{\rm A}$ Área tributaria 5 = 3.075 m ²	_ Área tributaria 6	$= 3.063 \text{ m}^2$
_ Longitud del tramo = 3.65 m	_ Longitud del tramo	= 3.65 m
Peso de la losa = 0.601 t/m^2	_ Peso de la losa	$= 0.601 \text{ t/m}^2$
Wazotea = At w = 1.848 t/m ²	_ Wazotea = At w	= 1.841 t
_ Descarga por ml = 0.506 t/m	_ Descarga por ml	= 0.504 t/m
Descarga total tramo $F - H$ por $ml = 0.506 + 0.504$	= 1.011 t/m	

b).- Muro (yeso mortero-mortero yeso)

Tramo B - D		Tramo F - H	
_ Longitud del muro	= 1.99 m	_ Longitud del muro	= 1.31 m
_ Altura del muro	= 2.42 m	_ Altura del muro	= 2.42 m
_Área del muro	$= 4.816 \text{ m}^2$	_ Área del muro	$= 3.170 \text{ m}^2$
_ w muro	= 0.285 t/m	_ w muro	= 0.285 t/m
_ W muro	= 1.373 t	_W muro	= 0.904 t
_ Descarga por ml	= 0.358 t/m	_ Descarga por ml	= 0.258 t/m

c).-Carga concentrada

En la trabe T-9, en el eje C descarga una carga concentrada, producto de la trabe T-11, que se genera en el tramo 10-11 ya que su apoyo será el eje C de la T-9


R11 = 0.033 t

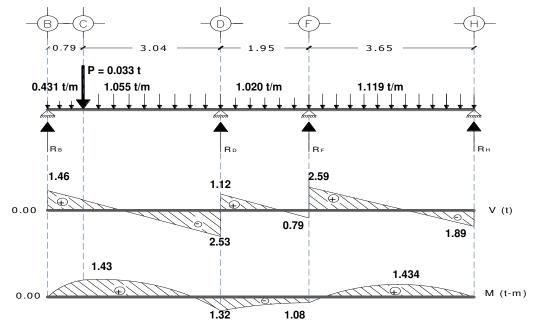
d).- Peso propio de la trabe.

Proponiendo trabe de 15 x 30 cm WPP = b h P Vol. del concreto WPP = (0.15)(0.30)(2.4) = 0.108 t/m

Descarga total por metro lineal

Muro C - H

RODRIGO ALDANA SÁNCHEZ Pág.71



Pág.72

Diagramas de V y M

RODRIGO ALDANA SÁNCHEZ

TRABE T-10

Transmisión de cargas

Las cargas que actúan sobre la trabe T-10 son:

a).- Losa de entrepiso

b).- Losa de azotea

c).- Muro de carga

d).- Peso propio de la trabe

a).-Losa de entrepiso

Tablero VII

- Área tributaria 1 $= 3.331 \text{ m}^2$ Longitud del tramo = 3.80 m Peso de la losa $= 0.601 \text{ t/m}^2$ = 2.002 tWazotea = At w Descarga por ml = 0.527 t/m
- Descarga Total por ml tramo 9 11 := 1.083 t/m

b).-Losa de azotea

Tablero VII

- _ Área tributaria 1 $= 3.515 \text{ m}^2$ _ Longitud del tramo = 3.80 m Peso de la losa $= 0.737 \text{ t/m}^2$ Wazotea = At w = 2.591 t= 0.682 t/mDescarga por ml
- Descarga Total por ml tramo 9 11 := 1.132 t/m

Tablero VIII

- Área tributaria 1 $= 3.518 \text{ m}^2$ Longitud del tramo = 3.80 mPeso de la losa $= 0.601 \text{ t/m}^2$ Wazotea = At w = 2.114 t
- _ Descarga por ml = 0.556 t/m

Tablero VIII

Área tributaria 1 $= 3.325 \text{ m}^2$ = 3.80 mLongitud del tramo Peso de la losa $= 0.515 \text{ t/m}^2$ Wazotea = At w = 1.712 t= 0.451 t/mDescarga por ml

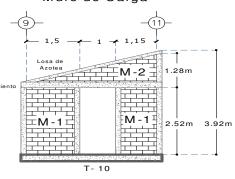
c).- Muro de carga (yeso mortero-mortero yeso)

Tramo M-1

_ Longitud del muro = 2.65 m_ Altura del muro = 2.52 mÁrea del muro $= 6.678 \text{ m}^2$ $= 0.285 \text{ t/m}^2$ w muro W pretil = 1.903 t

Descarga total por ml tramo 9 - 11 == 0.501 t/m

Muro de carga (yeso mortero-mortero)


Tramo M-2

= 3.65 mLongitud del muro _ Altura del muro = 0.64 mÁrea del muro $= 2.336 \text{ m}^2$ w muro $= 0.263 \text{ t/m}^2$ = 0.614 tW pretil

Descarga total por ml tramo 9 - 11 = 0.162 t/m

Muro de Carga

Dala de

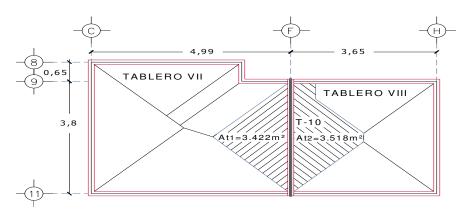
d).- Peso propio de la trabe.

Proponiendo trabe = 25 x 40 cm

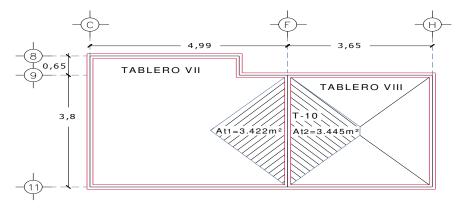
WPP = b h P Vol. del Concreto

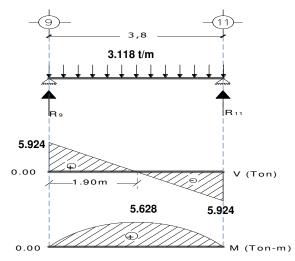
WPP = (0.25) (0.40) (2.4) =

Descarga total por metro lineal


WT 9-11 = 1.083 + 1.132 + 0.501 + 0.162 + 0.240 = 3.118 t/m

RODRIGO ALDANA SÁNCHEZ




Trabe T-10

Losa de Azotea

Diagramas de V y M

TRABE T-11

Transmisión de cargas

Las cargas que actúan sobre la trabe T-11 son: a).- Losa de entrepiso

b).- Muro

c).- Peso propio de la trabe

a).- Losa de entrepiso

a) Losa de entrepis	0								
Tramo 1 - 2		Tramo 2 - 5							
_ Área tributaria 1	$= 2.641 \text{ m}^2$	_ Área tributaria 2	$= 0.473 \text{ m}^2$						
_ Longitud del tramo	= 3.40 m	_ Longitud del tramo	= 1.53 m						
_ Peso de la losa	$= 0.717 \text{ t/m}^2$	_ Peso de la losa	$= 0.725 \text{ t/m}^2$						
_ Wazotea = At w	= 1.895 t	_ Wazotea = At w	= 0.343 t						
_ Descarga por ml	= 0.557 t/m	_ Descarga por ml	= 0.101 t/m						
_ Descarga total tram	o 1 - 2 por ml = 0.557 t/m								
_ Descarga total tram	0.2 - 5 por ml = 0.101 t/m								
Tramo 5 - 8		Tramo 7 - 8							
_ Área tributaria 3	$= 1.823 \text{ m}^2$	_ Área tributaria 4	$= 0.500 \text{ m}^2$						
_ Longitud del tramo	= 2.86 m	_ Longitud del tramo	= 1.78 m						
_ Peso de la losa	$= 0.868 \text{ t/m}^2$	_ Peso de la losa	$= 0.601 t/m^2$						
_ Wazotea = At w	= 1.582 t	_ Wazotea = At w	= 0.301 t						
_ Descarga por ml	= 0.553 t/m	_ Descarga por ml	= 0.105 t/m						
_ Descarga total tram	o 5 - 8 por ml = 0.553 + 0.105	= 0.658 t/m							
Tramo 8 -10		Tramo 8 -11							
_ Área tributaria 5	$= 1.405 \text{ m}^2$	_ Área tributaria 6	$= 4.623 \text{ m}^2$						
_ Longitud del Tramo	= 3.26 m	_ Longitud del Tramo	= 4.46 m						
_ Peso de la losa	$= 0.601 \text{ t/m}^2$	_ Peso de la losa	$= 0.601 t/m^2$						
_ Wazotea = At w	= 0.844 t	_ Wazotea = At w	= 2.778 t						
_ Descarga por ml	= 0.259 t/m	_ Descarga por ml	= 0.623 t/m						
_ Descarga total tram	o 8 - 10 por ml = 0.259 + 0.623	= 0.882 t/m							
Tramo 10 - 11		Tramo 8 -11							
_ Área tributaria 7	$= 0.276 \text{ m}^2$	_ Descarga por m l	= 0.623 t/m						
_ Longitud del tramo	= 1.20 m								
_ Peso de la losa	$= 0.710 \text{ t/m}^2$								
_ Wazotea = At w	= 0.196 t								
_ Descarga por ml	= 0.163 t/m								
Descarga total tramo 10 - 11 por ml = 0.163 + 0.623 = 0.786 t/m									

b).- Losa de azotea

D) LOSA de azotea	
Tramo 1 - 2	Tramo 2 - 5
$_$ Área tributaria 1 = 2.453 m²	$_{\rm A}$ Área tributaria 2 = 0.633 m ²
_ Longitud del tramo = 3.48 m	_ Longitud del tramo = 1.53 m
Peso de la losa = 0.737 t/m^2	Peso de la losa = 0.737 t/m^2
_ Wazotea = At w = 1.808 t	$_{\rm Wazotea} = At w = 0.467 t$
_ Descarga por ml = 0.520 t/m	_ Descarga por ml = 0.134 t/m
_ Descarga total tramo 1 - 2 por ml = 0.520 t/m	
Descarga total tramo 2 - 5 por ml = 0.134 t/m	

c).- Muro (yeso mortero-mortero yeso)

Tramo 5-8

_ Longitud del muro = 2.70 m _ Altura del muro = 2.40 m

_ Área del muro = $((2.7)(2.4)) - ((1.6)(1.5)) = 4.080 \text{ m}^2$

 $_$ w muro = 0.285 t/m² W muro = 1.163 t

Descarga por metro lineal = 0.431 t/m

Tramo 1-2

_ Longitud del muro = 3.40 m _ Altura del muro = 2.60 m

_ Área del muro = $((3.4)(2.6)) - ((1.8)(1.4)) = 6.320 \text{ m}^2$ w muro = 0.285 t/m²

_ W Muro = 1.801 t

Descarga por metro lineal = 0.530 t/m

Tramo 2-5

_ Longitud del muro = 1.53 m

_ Altura del muro = 2.60 m_ Área del muro = 3.978 m^2

_ w muro = 0.285 t/m²

W muro = 1.134 tDescarga por ml = 0.741 t/m

c).- Peso propio de la trabe.

Proponiendo trabe = $15 \times 30 \text{ cm}$

WPP = b h P Vol. del concreto

WPP = (0.15)(0.30)(2.4) = 0.11 t/m

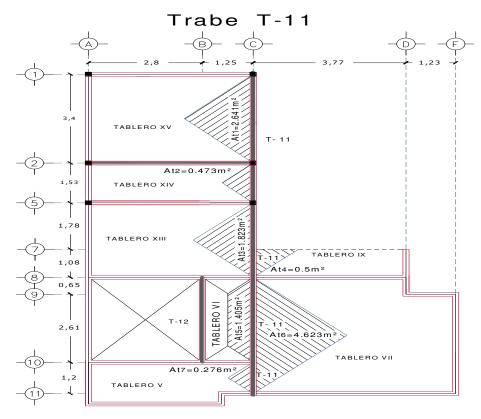
Descarga total por metro lineal

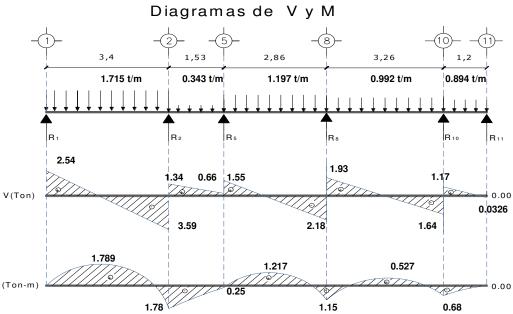
Descarga total tramo 1-2 = 0.11 + 1.077 + 0.530 = 1.715 t/m

Descarga total tramo 2-5 = 0.11 + 0.235 + 0.741 = 0.343 t/m

Descarga total tramo 5-8 = 0.11 + 0.658 + 0.431 = 1.197 t/m

Descarga total tramo 8-10 = 0.11 + 0.882 + 0.000 = 0.992 t/m


Descarga total tramo 10-11 = 0.11 + 0.786 + 0.000 = 0.894 t/m


Muros

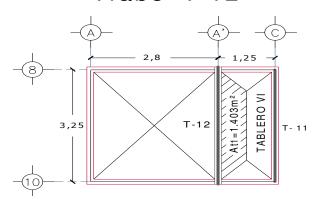
TRABE T-12

Transmisión de cargas

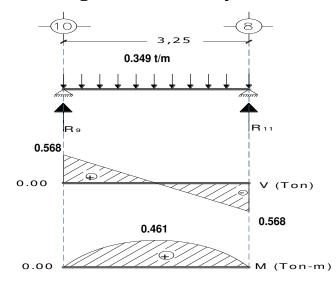
Las cargas que actúan sobre la trabe T-12 son:

- a).- Losa de entrepiso
- b).- Peso propio dela trabe

a).- Losa de entrepiso Tablero 8-10


_ Área tributaria 1 $= 1.403 \text{ m}^2$ _Longitud del tramo = 3.25 m _ Peso de la losa $= 0.601 t/m^2$ _ W azotea = At w = 0.843 t= 0.259 t/mDescarga por ml

Descarga total tramo 8 - 10 por ml = 0.349 t/m


b).- Peso propio de la trabe.

Proponiendo trabe = 15 x 25 cm WPP = b h P Vol. del concreto WPP = (0.15)(0.25)(2.4) = 0.090 t/m

Trabe T-12

Diagramas de V y M

TRABE T-13

Transmisión de cargas

Las cargas que actúan sobre la trabe T-13 son:

a).- Losa de entrepiso

b).- Losa de azotea

c).- Peso propio del muro

d).- Peso propio de la trabe

a).- Losa de entrepiso

Tramo E-G

_ Área tributaria 1 = 4.169 m²
_ Longitud del tramo = 4.18 m
_ Peso de la losa = 0.899 t/m²
Wazotea = At w = 3.748 t

Descarga total tramo E - G por ml = 0.897 t/m

b).- Losa de azotea

Tramo E-G

_ Área tributaria 1 = 3.554 m²
_ Longitud del tramo = 4.18 m
_ Peso de la losa = 0.727 t/m²
_ Wazotea = At w = 2.584 t

Descarga total tramo E - G por ml = 0.618 t/m

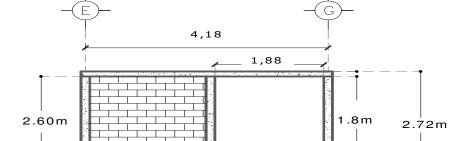
c).- Muro (yeso mortero-mortero yeso)

Tramo E-G

_ Longitud del muro = 4.18 m _ Altura del muro = 2.60 m _ Área del muro = 7.484 m² _ w muro = 0.285 t/m² _ W muro = 2.133 t

Descarga por metro lineal = 0.510 t/m

Descarga total por metro lineal

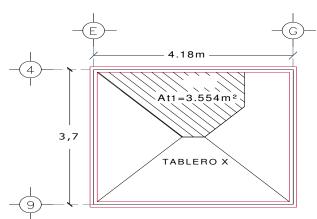

WTE-G = 0.897 + 0.618 + 0.510 + 0.126 = 2.193 t/m

d).- Peso propio de la trabe.

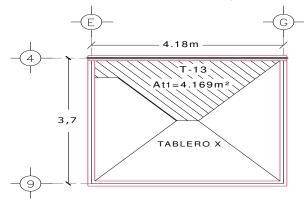
0.80m

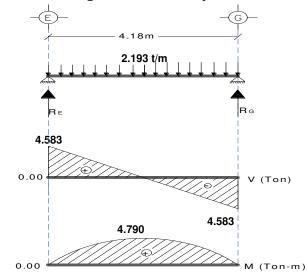
Proponiendo trabe = $20 \times 35 \text{ cm}$ WPP = $6 \times 10^{-2} \text{ kg}$

WPP = (20)(35)(2.4) = 0.168 ton/m


Muros

T-13




Losa de Azotea

Losa de Entrepiso

Diagramas de V y M

TRABE T-14

Transmisión de cargas

Las cargas que actúan sobre la trabe T-14 son: a).- Losa de entrepiso

b).- Peso propio de la trabe

a).- Losa de entrepiso

Tramo A'-C

_ Área tributaria 1	$= 0.690 \text{ m}^2$	_ Área tributaria 2	$= 0.303 \text{ m}^2$
_ Longitud del tramo	= 1.25 m	_ Longitud del tramo	= 1.25 m
_ Peso de la losa	$= 0.868 \text{ t/m}^2$	_ Peso de la losa	$= 0.601 \text{ t/m}^2$
_ Wazotea = At w	= 0.599 t	_ Wazotea = At w	= 0.182 t
_ Descarga por ml	= 0.479 t/m	_ Descarga por ml	= 0.146 t/m
December 4-4-14	- AL O 0.470 0.440	0.005 +	

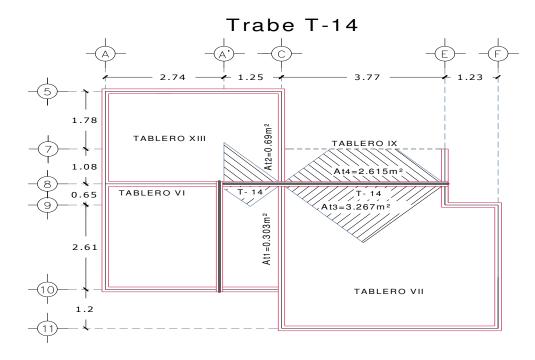
Descarga total tramo A' - C por ml = 0.479 + 0.146 = 0.625 t-m

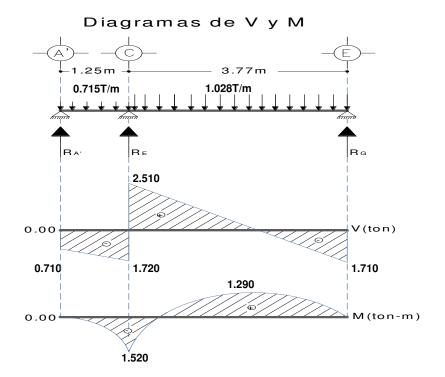
Tramo C - E

_ Área tributaria 3	$= 3.267 \text{ m}^2$	_ Área tributaria 4	$= 2.615 \text{ m}^2$
_ Longitud del tramo	= 3.77 m	_ Longitud del tramo	= 3.77 m
_ Peso de la losa	$= 0.601 \text{ t/m}^2$	_ Peso de la losa	$= 0.601 \text{ t/m}^2$
_ Wazotea = At w	= 1.963 t	_ Wazotea = At w	= 1.572 t
_ Descarga por ml	= 0.521 t/m	_ Descarga por ml	= 0.417 t/m
Descarga total tran	0.0 C - F por ml = 0.521 + 0.417 = 0.000	0.938 t-m	

b).- Peso Propio de la trabe.

Proponiendo trabe de 15 x 25 cm WPP = b h P Vol. del concreto


WPP = (0.15)(0.25)(2.4) = 0.09 t/m


Descarga total por metro lineal

Descarga total tramo	A'-C = 0.09 + 0.625 =	0.715 t/m
Descarga total tramo	C-E = 0.09 + 0.938 =	1.028 t/m

TRABE T-15

Transmisión de cargas

Las cargas que actúan sobre la trabe T-15 son:

a).- Losa de entrepiso

b).- Losa de azotea

c).- Muro de carga

d).- Peso propio de la trabe

a).-Losa de entrepiso

Tablero XIV

_ Area tributaria 1	$= 2.232 \text{ m}^2$
_ Longitud del tramo	= 4.06 m
_ Peso de la losa	$= 0.725 \text{ t/m}^2$
_ Wazotea = At w	= 1.618 t
_ Descarga por ml	= 0.399 t/m

_ Descarga total por ml = 1.137 t/m

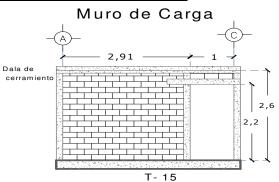
b).-Losa de azotea

Tablero XIII

_ Area tributaria 1	$= 2.128 \text{ m}^2$
_ Longitud del tramo	= 4.06 m
_ Peso de la losa	$= 0.737 \text{ t/m}^2$
_ Wazotea = At w	= 1.568 t
_ Descarga por ml	= 0.386 t/m
_ Descarga Total por	ml = 1.108 t/m

c).- Muro de carga (yeso mortero-mortero yeso)

Tramo A - C


- _ Longitud del muro = 3.91 m _ Altura del muro = 2.60 m
- _ Área del muro = $((3.91)(2.6)) ((1)(2.2)) = 7.966 \text{ m}^2$
- _ w muro = 0.285 t/m _ W pretil = 2.270 t _ Descarga por ml = 0.559 t/m

d).- Peso propio de la trabe.

Proponiendo trabe = $20 \times 40 \text{ cm}$ WPP = b h P Vol. del concreto WPP = (0.2)(0.4)(2.4) = 0.192 t/m

Descarga total por metro lineal

WT 9-11 = 1.137 + 1.108 + 0.559 + 0.19 = 2.997 t/m

Tablero XIII

_ Área tributaria 2	$= 3.456 \text{ m}^2$
Longitud del tramo	= 4.06 m
Peso de la losa	$= 0.868 \text{ t/m}^2$
_ Wazotea = At w	= 2.999 t
Descarga por ml	= 0.739 t/m

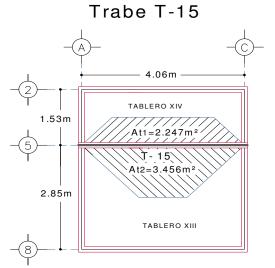
Tablero XII

$= 3.369 \text{ m}^2$
= 4.06 m
$= 0.870 \text{ t/m}^2$
= 2.932 t
= 0.722 t/m

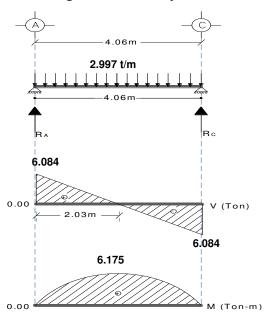
RODRIGO ALDANA SÁNCHEZ

Losa de Azotea

4.06m


TABLERO XIII

1.53m


At1=2.247m²

At2=3.456m²

TABLERO XII

Diagramas de V y M

Pág.85

Con los datos obtenidos del análisis de las trabes se procederá a diseñarlas aplicando el mismo procedimiento que para las trabes T-6 y T-1. Los resultados del diseño se muestran en las siguientes tablas.

Diseño de trabes simplemente apoyadas

Datos de Diseño

f'c = 250 kg/cm² p min = 0.00126fy = 4200 kg/cm² p max = 0.152

recubrimiento = 2 cm

Constantes de Diseño FR(cortante) = 0.8 FR(Flexión) = 0.9

Fc = 1.4

Т		DIMEN	ISIONI	E 5				DISEÑ	O POR	FLEXIÓN POR MO	MENTO	POSITIVO)		
TRABE	L (m)	ь (ст)	H (cm)	rec (cm)	d (cm)	Mmax(+) (t-m)	Mu (t-m)	ρ calc.	As (cm²)	Acero lecho inferior	٩	preal	As (cm²)	MR (t-m)	MR> Mu
T-6	4.06	15	40	2	38	2.498	3.497	0.00452	2.579	2 Vars. # 4 y 1 Var. # 3	0.141	0.00570	3.25	4.339	PASA
T-7	3.28	15	25	2	23	0.818	1.145	0.00402	1.385	2 Vars. # 4	0.182	0.00736	2.54	2.007	PASA
T-8	3.83	15	35	2	33	1.609	2.253	0.00383	1.896	2 Vars. # 4	0.127	0.00513	2.54	2.968	PASA
T-10	3.8	25	40	2	38	5.628	7.879	0.00626	5.945	2 Vars. # 6 y 1 Var. # 3	0.167	0.00675	6.41	8.440	PASA
T-12	3.25	15	25	2	23	0.461	0.646	0.00221	0.814		0.182	0.00736	2.54	2.007	PASA
T-13	4.18	20	35	2	33	4.790	6.706	0.00919	6.064	2 Vars. # 6 y 1 Var # 3	0.240	0.00971	6.41	7.037	PASA
T-15	4.06	20	40	2	38	6.175	8.644	0.00890	6.761	3 Vars. # 6	0.278	0.01125	8.55	10.574	PASA

TD.4	DIS	EÑO PO	OR FLEXIÓN M (-)		DISEÑO POR FUERZA CORTANTE						
TRA BE	_ Ast	Acero lecho superior	V (kg)	W (t/m)	Vu (kg)	VCR (kg)	VSR (kg)	5 (cm)	Smax (cm)	Refuerzo por tensión diagonal	
T-6	0.0024	1.35	2 Vars. # 4	2461	1.212	2698	2025.15	673.26	185.9	19.0	Estr. # 2.5 @ 18 cm
T-7	0.0024	0.81	2 Vars. # 4	997	0.608	1149	1355.38	-206.29	S max	11.5	Estr. # 2.5 @ 10 cm
T-8	0.0024	1.17	2 Vars. # 4	1681	0.878	1874	1694.79	179.09	606.7	16.5	Estr. # 2.5 @ 15 cm
T-10	0.0024	2.24	2 Vars. # 4	5924	3.118	6373	3600.02	2772.95	45.1	19.0	Estr. # 2.5 @ 18 cm
T-12	0.0024	0.81	2 Vars. # 4	568	0.349	653	1355.38	-702.38	S max	11.5	Estr. # 2.5 @ 10 cm
T-13	0.0024	1.56	2 Vars. # 4	4584	2.193	5220	2943.83	2275.80	47.7	16.5	Estr. # 2.5 @ 15 cm
T-15	0.0024	1.79	2 Vars. # 4	6083	2.997	6671	3654.33	3016.28	41.5	19.0	Estr. # 2.5 @ 18 cm

RODRIGO ALDANA SÁNCHEZ

Т					DEFL	EXIONES					
TRABE	L	Ec	Es	n	ρ'	A's	nAs'	nAs	ec. Prof del eje neutro		
	(m)	(kg/cm²)	(kg/cm²)		·	(cm²)	(cm²)	(cm²)	C ²	С	а
T-6	4.06	158113.88	2000000	12.6491	0.00446	2.54	32.129	41.1096	7.5	41.1096	-1562.17
T-7	3.28	158113.88	2000000	12.6491	0.00736	2.54	32.129	32.1287	7.5	32.1287	-738.96
T-8	3.83	158113.88	2000000	12.6491	0.00513	2.54	32.129	32.1287	7.5	32.1287	-1060.25
T-10	3.8	158113.88	2000000	12.6491	0.003	2.54	32.129	81.0808	12.5	81.0808	-3081.07
T-12	3.25	158113.88	2000000	12.6491	0.007	2.54	32.129	32.1287	7.5	32.1287	-738.96
T-13	4.18	158113.88	2000000	12.6491	0.004	2.54	32.129	81.0808	10	81.0808	-2675.67
T-15	4.06	158113.88	2000000	12.6491	0.00334	2.54	32.129	108.15	10	108.15	-4109.70

					DEF	LEXIONES				
TRABE	с (ст)	lag (cm⁴)	δ inm (cm)	W dıf. (t/m)	f	5	δ dif (cm)	δ total	δ _{adm} (cm)	$\delta_{per} < \delta_{total}$
T-6	11.950	36429.53	0.74	1.126	1.636	0.69	1.132	1.88	2.19	SE ACEPTA SECCIÓN
T-7	8.013	9788.94	0.59	0.551	1.462	0.54	0.784	1.38	1.87	SE ACEPTA SECCIÓN
T-8	9.939	21995.43	0.71	0.804	1.592	0.65	1.031	1.74	2.10	SE ACEPTA SECCIÓN
T-10	12.788	68965.76	0.78	2.915	1.764	0.73	1.281	2.06	2.08	SE ACEPTA SECCIÓN
T-12	8.013	9788.94	0.33	0.313	1.462	0.29	0.430	0.76	1.85	SE ACEPTA SECCIÓN
T-13	12.800	47065.22	1.17	0.980	1.677	0.52	0.878	2.05	2.24	SE ACEPTA SECCIÓN
T-15	14.960	79730.94	0.84	2.535	1.714	0.71	1.219	2.06	2.19	SE ACEPTA SECCIÓN

Diseño de trabes continuas

recubrimiento = 2 cm

Datos de diseño f'c = 250 kg/cm^2 pmin = 0.00126 fy = 4200 kg/cm^2 pmax = 0.152

Constantes de diseño $F_R(cortante) = 0.8$ $F_R(flexión) = 0.9$ FC = 1.4

	D	IMENSI	ONES					DISEÑO F	OR FLEXIÓN POR	R MOME	NTO POSI	DISEÑO POR FLEXIÓN POR MOMENTO POSITIVO											
TRABE	L (m)	ь (cm)	H (cm)	d (cm)	Mmax (+) (t-m)	Mu (t-m)	ρ calc.	As (cm²)	Acero lecho ınferior	9	preal	As (cm²)	MR (t-m)	MR>Mu									
T-1	7.17	20	30	28	1.28	1.79	0.0031	1.75	2 Vars. # 4	0.112	0.00454	2.54	2.54	PASA									
T-2	8.64	15	25	23	1.36	1.91	0.0070	2.40	2 Vars. #4	0.182	0.00736	2.54	2.01	PASA									
T-3	10.60	20	30	28	3.34	4.68	0.0089	4.96	2 Vars. # 4 y 1 var. # 6	0.238	0.00963	5.39	5.03	PASA									
T-4	4.95	15	25	23	1.53	2.15	0.0079	2.74	2 Vars. # 4 y 1 Var. # 3	0.233	0.00942	3.25	2.50	PASA									
T-5	5.02	15	25	23	1.75	2.45	0.0092	3.18	2 Vars. # 4 y 1 Var. # 3	0.233	0.00942	3.25	2.50	PASA									
T-9	9.43	15	30	28	1.43	2.00	0.0048	2.01	2 Vars. # 4	0.191	0.00774	3.25	3.11	PASA									
T-11	12.24	15	30	28	1.79	2.50	0.0061	2.56	2 Vars. # 4 y 1 Var. # 3	0.191	0.00774	3.25	3.11	PASA									
T-14	4.18	15	25	23	1.29	1.81	0.0066	2.26	2 Vars. # 4	0.182	0.00736	2.54	2.01	PASA									

_				DISEÑO	POR FLEXIÓN POR MOM	ENTO NE	GATIVO			
TRABE	Mmax(-) (t- m)	Mu (t-m)	ρ calc.	As (cm²)	Acero lecho superior	ρ'	A's (cm²)	9	MR (t-m)	MR>Mu
T-1	2.74	3.84	0.0071	3.97	3 Vars. # 4 1 Var. # 3	0.0081	4.52	0.199	4.32	PASA
T-2	1.22	1.71	0.0062	2.13	2 Vars. #4	0.0074	2.54	0.182	2.01	PASA
T-3	4.12	5.77	0.0113	6.34	2 Vars. # 6 y 1 Var. # 3	0.0114	6.41	0.283	5.83	PASA
T-4	1.81	2.53	0.0096	3.31	3 Vars. del # 4	0.0110	3.81	0.273	2.86	PASA
T-5	2.08	2.91	0.0113	3.89	2 Vars. # 4 y 2 Var. # 3	0.0115	3.96	0.284	2.95	PASA
T-9	1.32	1.85	0.0044	1.85	2 Vars. #4	0.0060	2.54	0.149	2.49	PASA
T-11	1.78	2.49	0.0061	2.54	2 Vars. # 4 y 1 Var. # 3	0.0077	3.25	0.191	3.11	PASA
T-14	1.52	2.13	0.0079	2.71	2 Vars. # 4 y 1 Var. # 3	0.0094	3.25	0.233	2.50	PASA

П				DISEÑO POR	FUERZA C	ORTANTE		
TRABE	V (kg)	Vu (kg)	VCR (kg)	V5R (kg)	5 (kg)	Smax (cm)	W (t/m)	Refuerzo por tensión diagonal
T-1	5260.00	6810.89	1841.87	4969.02	18.55	14.00	1.162	Estr. # 2.5 @ 14 cm
T-2	2936.00	3470.14	1355.38	2114.76	35.81	11.50	1.577	Estr. # 2.5 @ 10 cm
T-3	5260.00	6565.27	2486.75	4078.52	22.61	14.00	1.678	Estr. # 2.5 @ 14 cm
T-4	2990.00	2828.34	1516.04	1312.30	57.71	11.50	3.344	Estr. # 2.5 @ 10 cm
T-5	3490.00	4280.25	1516.04	2764.21	27.40	11.50	1.492	Estr. # 2.5 @ 10 cm
T-9	2530.00	3039.82	1685.74	1354.08	68.09	14.00	1.055	Estr. # 2.5 @ 14 cm
T-11	3590.00	4215.85	1685.74	2530.11	36.44	14.00	1.702	Estr. # 2.5 @ 14 cm
T-14	2510.00	3096.63	1355.38	1741.25	43.49	11.50	1.028	Estr. # 2.5 @ 10 cm

П				DEF	LEXIONE	5	
TRABE	δ _{inm max} (cm)	δ _{dif max} (cm)	f	δ dif	δ total (cm)	δ _{adm} (cm)	$\delta_{per} < \delta_{total}$
T-1	0.26	0.2359	1.42	0.34	0.59	1.10	SE ACEPTA SECCIÓN
T-2	0.46	0.44	1.46	0.64	1.10	2.02	SE ACEPTA SECCIÓN
T-3	0.89	0.8399	1.27	1.07	1.96	2.38	SE ACEPTA SECCIÓN
T-4	0.50	0.53	1.29	0.68	1.18	2.07	SE ACEPTA SECCIÓN
T-5	0.66	0.68	1.27	0.86	1.52	2.07	SE ACEPTA SECCIÓN
T-9	0.35	0.34	1.54	0.52	0.87	1.10	SE ACEPTA SECCIÓN
T-11	0.34	0.32	1.44	0.46	0.80	0.99	SE ACEPTA SECCIÓN
T-14	0.30	0.27	1.36	0.37	0.67	1.09	SE ACEPTA SECCIÓN

CAPÍTULO IV

REVISIÓN DE MUROS

DEFINICIÓN Y CLASIFICACIÓN DE MUROS DE MAMPOSTERÍA

Los muros de mampostería son elementos estructurales empleados frecuentemente en la construcción de diversas edificaciones, tales como estructuras de retención (de agua y de tierras), de almacenamiento (bodegas, silos, tanques), pero su mayor uso se presenta en viviendas.

Los muros comúnmente están constituidos por piezas de mampostería unidas por un material cementante llamado mortero. Cabe mencionar que ambos materiales deben cumplir con los reguisitos generales establecidos en los reglamentos

Las piezas de mampostería más empleadas en la construcción de los muros pueden ser de dos tipos:

- 1. Tabiques o ladrillos de barro o arcilla.
- 2. Bloques, tabiques o tabicones de concreto (cemento-arena)

Ambos tipos de piezas se pueden clasificar en huecas o macizas de acuerdo con ciertas características definidas en el reglamento.

Piezas huecas: son aquellas que en su sección transversal más desfavorable tiene un área mínima de al menos el 45 % del área total y las paredes de las piezas no deben tener espesores menores de 1.5 cm.

Piezas macizas: son aquellas que en su sección transversal más desfavorable tiene un área mínima de por lo menos el 75 % del área total y las paredes de las piezas no deben tener espesores menores de 2 cm.

De acuerdo a su funcionamiento podemos tener muros de carga, muros de contención, muros divisorios y bardas.

De acuerdo a la manera en que trabajan se clasifican en muros diafragma, muros de mampostería confinados y muros de mampostería reforzados.

Muros diafragma: son aquellos que se encuentran rodeados en su perímetro por vigas y columnas, proporcionándole a los marcos una mayor rigidez contra la acción de cargas horizontales.

Muros de Mampostería confinados: son aquellos que se encuentran rodeados por dalas o castillos cuya función es ligar al muro, proporcionándole un confinamiento que le permita un mejor comportamiento.

Muros de mampostería reforzados: son aquellos a los queque se les coloca acero de refuerzo tanto vertical como horizontalmente.

CASTILLOS Y DALAS

Los castillos y dalas según el RDF, deberá cumplir con lo siguiente:

- a) Existirán castillos por lo menos en los extremos de los muros e intersecciones con otros muros, y en puntos intermedios del muro a una separación no mayor que 1.5H ni 4 m, los parapetos o pretiles deberán tener castillos con una separación no mayor que 4 m.
- b) Existirá una dala en todo extremo horizontal de muros, además existirán dalas en el interior del muro a una separación no mayor de 3 m y en la parte superior de parapetos o pretiles cuya altura sea superior a 50 cm.
- c) Los castillos y dalas tendrá una dimensión mínima igual al espesor de muro t.
- d) El concreto de castillos y dalas tendrán una resistencia a compresión, f'c, no menor a 150 kg/cm²
- e) El refuerzo longitudinal del castillo y la dala deberá dimensionarse para resistir las componentes vertical y horizontal correspondientes del puntal de compresión que se desarrolla en la mampostería para resistir las cargas laterales y verticales. En cualquier caso, estará formado por lo menos de tres barras, cuya área total sea al menos:

$$As = 0.2 \frac{f'c}{fy}t^2$$
 donde: As = área total de acero de refuerzo longitudinal colocada en castillos o dalas

g) Los castillos y dalas estarán reforzados transversalmente por estribos cerrados y con un área:

$$Asc = \frac{100 \text{ s}}{fy hc}$$
 donde: Asc = área de los estribos
hc = es la dimensión del castillo o dala en el plano del muro
s = la separación de los estribos, s, no excederá de 1.5t ni de 20 cm

h) Cuando la resistencia de diseño a compresión diagonal de la mampostería, vm*, sea superior a 6 kg/cm², se suministra refuerzo transversal, con área igual a la calculada con la expresión anterior y con una separación no mayor que una hilada dentro de la longitud Ho en cada extremo de los castillos.

Ho se tomará con el mayor de H/6, 2hc y 40 cm.

DISEÑO DE CASTILLO Y DALAS

Aplicando estos incisos a nuestro proyecto:

a) Se tienen muros con H que van de 2.6 m a 3.8 m donde la separación de castillos será:

$$L \le 1.5H$$
 $L = (1.5)(3.8) = 5.7m > 4m$
 $L \le 4$ $L = (1.5)(2.6) = 3.9m < 4m$

- ... Se utilizará una separación de castillos no mayor a 4 m, al igual en pretiles.
- b) Se tienen muros con H que van de 2.6 m a 3.8 m donde la separación de dalas será: $L \le 3$
- ... Al tener muros mayores a 3 m, se opta por colocar una dala intermedia, en pretiles se tiene una H = 1.2 m en los que se colocara una dala en la parte superior.
- c) Se propone castillos de 15 x 12 cm, mayores al espesor del muro (t = 12 cm)
- d) Se propone un f'c = 150 kg/cm²
- e) Se propone 4 varillas del #3

$$As = (4)(0.71) = 2.84 \text{ cm}^2$$

$$As = 0.2 \frac{f'c}{fy}t^2;$$
 $As = 0.2 \frac{150}{4200}12^2 = 1.029 \text{ cm}^2$

... Se acepta el armado ya que es mayor al requerido.

g) Refuerzo transversal, se propone estribo del #2, (2 ramas)

Calculando s

$$s \le 1.5 t$$
 $As = (2)(0.32) = 0.64 cm^2$
 $s \le 20 cm$ $s = (1.5)(12) = 18 cm$

Comparando Asc

$$Asc = \frac{1000 \, s}{fyhc};$$
 $Asc = \frac{(1000)(18)}{(2530)(12)} = 0.593 \, cm^2 < 0.64 \, cm^2$

- ... Se utilizaran estribos de # 2 @ 18 cm c.a.c.
- h) La resistencia de diseño a compresión diagonal de la mampostería $v^*m = 3 \text{ kg/cm}^2$, por lo tanto se utiliza el refuerzo calculado en el inciso g.

Revisión de castillos por aplastamiento

El castillo deberá resistir cargas verticales, correspondientes a cargas puntuales de compresión, y la calcularemos con la siguiente expresión.

Donde: FR = 0.8 para estribos que confinen bien el núcleo
$$p_{RO} = F_R[f''cbh(1-\rho) + fybh\rho]$$
 PRO = carga axial resistente de diseño

Revisión del castillo X 8-c por aplastamiento

Con los siguientes datos: P = 16.61 t, b = 12 cm, h = 15 cm, As = 2.84 cm², $\rho = 0.0158$, fy = 4200 kg/cm², f'c = 150 kg/cm², f'c = 102 kg/cm², FC = 1.1, FR = 0.8.

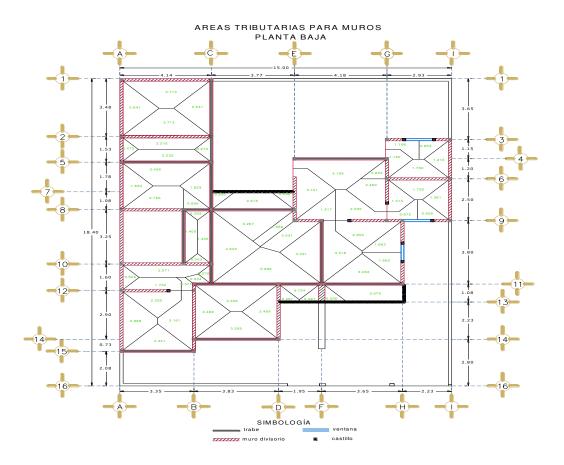
Carga última

$$Pu = FCP$$
; $Pu = (1.1)(16.61) = 18.271t$

Carga resistente

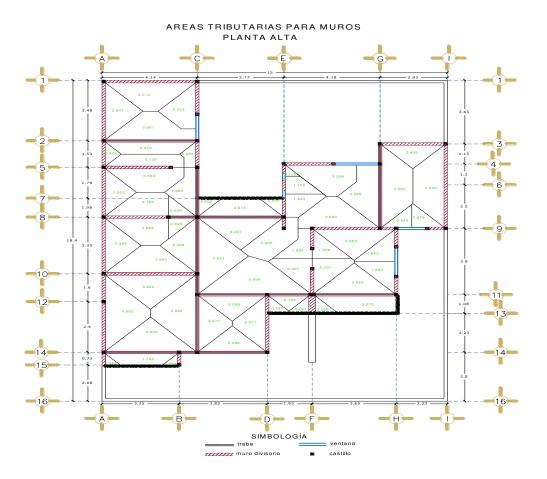
$$\begin{aligned} p_{RO} &= F_R \left[f^{\prime\prime} cbh(1-\rho) + fybh\rho \right] \\ p_{RO} &= (0.8) \left[(102)(12)(15)(1-0.0158) + (4200)(12)(15)(0.0158) \right] = 24,011.76 \ kg \end{aligned}$$

Comparando Pro con Pu $Pu = 18.271 t < P_{RO} = 24.01 t$


... Se acepta el diseño del castillo

Nota: Al tener en este proyecto castillos con cargas menores de P = 16.61 t, se omite el cálculo, ya que sobrepasan la carga resistente ante la carga última.

A continuación se muestran los planos de áreas tributarias para muros de planta baja y planta alta.



Pág.95

IV.1. REVISIÓN DE MUROS POR CARGA VERTICALES

El RCDF establece que la resistencia de un muro ante carga vertical debe ser mayor o igual a la carga ultima aplicada sobre él. $P_R \ge Pu$

$$P_R = F_R F_E (f * m + 4) A_T$$

$$A_T = L t; \quad Pu = 1.4P$$

donde.

PR = carga vertical resistente del muro

Pu = carga vertical última aplicada

FR = factor de reducción de resistencia, y vale 0.6 para muros confinados o reforzados interiormente y 0.3 para muros no confinados ni reforzados interiormente.

f*m = resistencia de diseño a compresión de la mampostería, referida al área bruta

AT = área del muro en planta

Será admisible determinar las cargas verticales que actúan sobre cada muro mediante una bajada de cargas por áreas tributarias.

En el diseño, se deberán tomar en cuenta los efectos de excentricidad y esbeltez. Optativamente, se puede considerar mediante los valores aproximados del factor de reducción FE

- a) Se podrá tomar FE igual a 0.7 para muros interiores que soporten claros que no difieren en más de 50 por ciento. Se podrá tomar FE igual a 0.6 para muros extremos o con claros que difieran en más de 50 por ciento así como para casos en que la relación entre cargas vivas y cargas muertas de diseño excede de uno. Para ambos casos, se deberá cumplir simultáneamente que:
- 1) Las deformaciones de los extremos superior e inferior del muro en la dirección normal a su plano están restringidas por el sistema de piso, por dalas o por otros elementos;
- 2) L a excentricidad en la carga axial aplicada es menor que t/12 y no hay fuerzas significativas que actúan en dirección normal al plano del muro;
- 3) La relación altura libre a espesor del muro, H/t, no excede a 20

Cuando no se cumplan las condiciones de del inciso a, el factor de reducción se calculara con la ecuación.

$$F_E = \left(1 - \frac{2e'}{t}\right) \left[1 - \left(\frac{KH}{30t}\right)^2\right]$$

H = altura libre de un muro entre elementos capaces de darle apoyo lateral;

k = factor de altura efectiva del muro que se determinará según el criterio siguiente:

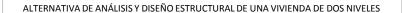
k = 1 para muros extremos en que se apoyan losas; y

k = 0.8 para muros limitados por dos losas continuas a ambos lados del muro.

e' = excentricidad calculada para la carga vertical más una excentricidad accidental que se tomará igual a t / 24

$$\mathbf{e'} = \left(\frac{t}{24}\right) + \left[\left(\frac{w losa}{w total}\right)\!\!\left(\frac{t}{2} - \frac{b}{3}\right)\right] \ \, \text{donde } t \text{ es el espesor del muro y b es longitud de apoyo de una losa soportada por el muro.}$$

A continuación se realiza la revisión ante cargas verticales de los muros: 1A-C de planta baja y el 1A-C de planta alta, el resto de los muros se muestran al final en forma de resumen en 2 tablas.


Datos del proyecto

F_R = 0.60 para muros confinados

fm* = 15 kg/cm² para mortero tipo II

Tabique de barro recosido 24 cm - 1 2 cm - 7 cm

RODRIGO ALDANA SÁNCHEZ

Factor de reducción por efectos de excentricidad y esbeltez

$$\frac{H}{t} = \frac{260}{12} = 21.60 > 20$$
Por lo tanto FE se calculara con la $F_E = \left(1 - \frac{2e'}{t}\right) \left[1 - \left(\frac{KH}{30t}\right)^2\right]$
siguiente expresión

Revisión del muro 1A-C ante cargas verticales

a) Planta alta

Datos del Muro

L = 406 cm Wlosa = 737 kg/m² At = 3.713 m² Wmuro = 7.41 kg/cm

Carga última aplicada

$$P = (AT * WLosa) + (hmuro * Wmuro);$$
 $P = (737)(3.713) + (406)(741) = 5,745 kg$ $Pu = 1.4Pu;$ $Pu = (1.4)(5,745) = 8,043kg$

Factor de reducción

$$F_E = \left(1 - \frac{2e'}{t}\right) \left[1 - \left(\frac{KH}{30t}\right)^2\right]; \qquad F_E = \left(1 - \frac{(2)(1.77)}{12}\right) \left[1 - \left(\frac{(0.8)(260)}{(30)(12)}\right)^2\right] = 0.47$$

Excentricidad

$$e' = \left(\frac{t}{24}\right) + \left[\left(\frac{Wlosa}{Wtotal}\right)\left(\frac{t}{2} - \frac{b}{3}\right)\right]; \qquad e' = \left(\frac{12}{24}\right) + \left[\left(\frac{2,736}{5,745}\right)\left(\frac{12}{2} - \frac{10}{3}\right)\right] = 1.77$$

Carga resistente

$$P_R = F_R F_E (f * m + 4) A_T;$$
 $P_R = (0.6)(0.47)(15 + 4(12)(406)) = 26,084 \text{ kg} > Pu$

. . El muro 1A-c resiste la carga vertical

b) Planta baja

Datos del muro

L = 408 cm Wlosa = 717 kg/m² At = 3.713 m² Wmuro = 7.41 kg/cm

Peso de la planta alta

$$Peso \ de \ PA = \frac{\sum PPA}{\sum AtPB}$$
 donde $\sum AtPB =$ sumatoria del áreas tributarias de losa de planta baja $\sum PPA =$ sumatoria del peso total de la planta alta

$$Pesode PA = \frac{104,404.58}{70.33} = 1,484.47 \, kg / m^2$$

Carga resistente

$$P = (AT * WLosa) + (hmuro * Wmuro) + (Peso de la PA * At)$$

$$P = [(3.713)(717)] + [(406)(7.41)] + [(1,484.47)(3.71)] = 11,183 kg$$

$$Pu = (1.4)(11,083) = 15,656 \ kg$$

Factor de reducción

$$F_E = \left(1 - \frac{2e'}{t}\right) \left[1 - \left(\frac{KH}{30t}\right)^2\right]; \quad F_E = \left(1 - \frac{(2)(1.15)}{12}\right) \left[1 - \left(\frac{(0.8)(260)}{(30)(12)}\right)^2\right] = 0.54$$

Excentricidad

$$e' = \left(\frac{t}{24}\right) + \left[\left(\frac{Wlosa}{Wtotal}\right)\left(\frac{t}{2} - \frac{b}{3}\right)\right]; \quad e' = \left(\frac{12}{24}\right) + \left[\left(\frac{2,662}{11,182}\right)\left(\frac{12}{2} - \frac{10}{3}\right)\right] = 1.13$$

Carga resistente

$$P_R = F_R F_E (f * m + 4) A_T;$$
 $P_R = (0.6)(0.54)(15 + 4)(12)(406) = 30,002 \text{ kg} > Pu$

. El muro 1A-C resiste la carga vertical

Resumen de la revisión de muros ante cargas verticales, en planta alta y planta baja.

l	CARGAS VERTICALES EN PLANTA ALTA															
Muro	Long (cm)	t (cm)	At (m²)	W Losa Az (kg/ m²)	Carga Tot. de la losa (kg)	h Mu- ro (m)	W muro (kg/ cm)	Peso propio del muro (kg)	Carga Vo Actua	ertical	ea	ec	e'	FE	Pr Carga Vertical Rest. (kg)	Pr>Pu
1 A-C	406	12	3.71	737	2,736	2.60	7.41	3008	5,745	8,043	0.50	1.27	1.77	0.47	26,084	PASA
3 G-I	286	12	2.49	737	1,834	2.60	7.41	2119	3,954	5,535	0.50	1.24	1.74	0.47	18,517	PASA
4 E-G'	230	12	3.55	737	2,619	2.60	7.41	1704	4,324	6,053	0.50	1.62	2.12	0.43	13,570	PASA
5 A-B'	308	12	2.13	737	4,499	2.60	7.41	2282	6,782	9,494	0.50	1.33	1.83	0.46	19,522	PASA
			3.37	870						<u> </u>					-	
8 A-C'	298	12	2.77	870	4,595	2.60	7.41	2208	6,803	9,524	0.50	1.35	1.85	0.46	18,780	PASA
			2.97	737												
9 F-H	373	12	4.74	727	5,020	3.80	11.97	4465	9,485	13,278	0.50	1.06	1.56	0.21	10,837	NO PASA
			3.06	515												
9 H-I	80	12	0.98	737	721	2.60	7.41	593	1,314	1,839	0.50	1.46	1.96	0.45	4,905	PASA
10 A-C	406	12	3.82	737	5,514	2.60	7.41	3008	8,523	11,932	0.50	1.29	1.79	0.47	25,937	PASA
			3.66	737												
A 1-15	1,643	12	10.21	737	9,240	2.60	7.41	12175	21,416	29,983	0.50	1.15	1.65	0.48	108,540	PASA
			1.82	870												
			0.26	515												
B14-15	80	12	0.26	515	133	2.45	6.98	559	692	969	0.50	0.51	1.01	0.58	6,399	PASA
C 1-1'	200	12	2.45	737	1,808	2.60	7.41	1482	3,290	4,606	0.50	1.47	1.97	0.45	12,256	PASA
C 2-5	153	12	0.63	737	467	2.60	7.41	1134	1,600	2,240	0.50	0.78	1.28	0.52	10,975	PASA
D11-14	331	12	2.96	515	1,525	3.20	9.12	3019	4,544	6,361	0.50	2.39	2.89	0.26	11,615	PASA
E 4-4'	53	12	0.22	737	161	2.60	7.41	393	553	775	0.50	1.16	1.66	0.48	3,493	PASA
E 4'-7'	60	12	0.22	737	161	2.60	7.41	445	605	847	0.50	0.71	1.21	0.53	4,367	PASA
E 7-9	183	12	5.47	737	4,031	2.60	7.41	1356	5,387	7,542	0.50	1.50	2.00	0.44	11,128	PASA
F 9-10'	122	12	1.58	737	1,888	3.48	9.92	1210	3,098	4,337	0.50	1.22	1.72	0.29	4,787	PASA
			1.40	515												
F10"-11	150	12	2.01	737	2,510	2.88	8.21	1231	3,741	5,237	0.50	1.34	1.84	0.41	8,396	PASA
			2.00	515												
F11-13	108	24	0.99	515	510	2.45	13.97	1508	2,019	2,826	1.00	1.01	2.01	0.77	22,773	PASA
H 9-9'	105	12	1.66	515	856	3.20	9.12	958	1,814	2,540	0.50	1.26	1.76	0.35	5,019	PASA
H10'-11	113	12	1.66	515	856	2.90	8.27	934	1,790	2,507	0.50	1.28	1.78	0.41	6,364	PASA
I 3-9	485	12	4.52	737	3,333	2.60	7.41	3594	6,927	9,698	0.50	1.28	1.78	0.47	31,063	PASA
SUMA	17,33	5.00							104,405							

Datos

ka = 1

ke = 0.8

Pu = 1.4P

FR = 0.6

 $fm^* = 15$

Muro	_ong			W													
	(cm)	t (cm)	At (m²)	Losa Entr (kg/	Carga Tot. de la losa	h Mu- ro (m)	W mu- ro (kg/	Peso propio del muro	Peso del Nivel 2 (kg)	Carga V Actu	ante	ea	ec	ē	FE	PR Carga Vertical Rest	PR>PU
				m²)	(kg)		cm)	(kg)		P (kg)	Pu(kg)					(kg)	5.0.
	406	12	3.71	717	2662	2.60	7.4	3,008	5,512	11,183	15,656	0.5	0.63	1.13	0.54	30,002	PASA
2 A-C	406	12	3.71	717	4269	2.60	7.4	3,008	8,801	16,079	22,510	0.5	0.53	1.03	0.55	30,642	PASA
	0.5	4.0	2.22	725		0.77		074	1 0 1 5			0.5	0.00	4.40	0.54		D404
	85	12	1.11	601	666	2.77	7.9	671	1,645	2,982	4,174	0.5	0.60	1.10	0.51	5,903	PASA
	73	12	0.85	601	513	2.77	7.9	576	1,266	2,355	3,297	0.5	0.58	1.08	0.51	5,086	PASA
	293	12	3.55	601	2135	2.77	7.9	2,313	5,273	9,721	13,609	0.5	0.44	0.94	0.52	20,998	PASA
	273	12	2.77	868	2401	2.77	7.9	2,155	4,106	8,662	12,127	0.5	0.55	1.05	0.51	19,120	PASA
9 E-F 1	115	12	2.03	601	2674	2.77	8.7	1,003	5,415	9,093	12,730	0.5	0.59	1.09	0.51	7,999	NO PASA
	040	-10	1.62	899	4000			0.404	0.070	40.505	00.440			4.0=	0.74	4= 000	NO D404
9 F'-H 2	248	12	3.93	601	4692	2.77	8.7	2,164	9,679	16,535	23,148	0.5	0.57	1.07	0.51	17,322	NO PASA
0.5"	90	12	1.00	899 601	598	2.77	7.9	632	1 477	0.707	0.700	0 E	0.50	1.00	0 E1	F FC0	DACA
	80								1,477	2,707	3,789	0.5	0.59	1.09	0.51	5,563	PASA
10 A-C 4	406	12	0.30	601	1795	2.77	7.9	3,205	3,821	8,821	12,349	0.5	0.41	0.91	0.53	29,282	PASA
10 4 41 6	010	10	2.27	710	0000	0.04	0.0	1 070	C 007	10.908	15.070	0.5	0.50	1.00	0.40	10.045	NO DACA
12 A-A' 2	213	12	1.73	710 696	2869	2.94	9.3	1,973	6,067	10,908	15,272	0.5	0.53	1.03	0.48	13,845	NO PASA
A4 45 3	340	12	2.36	717	6272	2.60	7.4	11,636	12,545	20.452	40.604	0.5	0.55	1.05	0.55	00.416	PASA
		12	0.47		0272			11,030	12,545	30,453	42,634	0.5	0.55	1.05	0.55	92,416	FASA
	153			725		2.60	7.4										
	286 325	12 12	1.82	868		2.60	7.4										
	160	12	0.53	710			7.6										
	290	12	2.99	696		2.60	7.4										
	410	12	3.16	696	4629	2.94	8.4	0.405	8,938	17.000	00.000	0.5	0.54	1.04	0.47	00 554	PASA
B11-15 4	410	12	0.37	710	4029	2.94	0.4	3,435	0,930	17,002	23,803	0.5	0.54	1.04	0.47	26,551	FASA
		12	2.49	870													
D11-14 3	331	12	2.49	870	2461	2.77	7.9	2,613	4,424	9,497	13,296	0.5	0.69	1.19	0.50	22,542	PASA
511-14	JJ 1	14	0.49	601	2701	2.11	1.9	2,013	7,724	3,737	10,230	0.5	0.09	1.19	0.50	22,342	I AUA
E 4'-9 2	263	12	1.57	601	3731	2.77	7.9	2,076	6,932	12,740	17,835	0.5	0.78	1.28	0.49	17,575	NO PASA
_ 4-5	_00	14	3.10	899	0/01	2.11	1.3	2,010	0,332	12,740	17,000	0.0	0.70	1.20	U.#3	17,373	HO I AGA
F11-13 1	108	24	0.99	601	596	2.45	14.0	1,508	1,471	3,575	5,005	1.0	0.67	1.67	0.80	23,560	PASA
	273	12	3.08	899	4258	2.77	8.7	2,382	8,248	14.888	20,843	0.5	0.57	1.07	0.51	19,051	NO PASA
~ T / 2	_, 0		2.47	601	1200	,,	J.,	_,002	J,E-10	. 4,000	20,040	5.5	3.57	1.01	5.51	.5,551	I AGA
H 9-9' 1	142	12	1.66	601	999	2.77	7.9	1,121	2,469	4,589	6,425	0.5	0.58	1.08	0.51	9,892	PASA
	142	12	1.66	601	999	2.77	7.9	1,121	2,469	4,589	6,425	0.5	0.58	1.08		9,892	PASA
	235	12	1.21	601	727	2.77	7.9	1,855	1,796	4,379	6,130	0.5	0.44	0.94	0.52	16,829	PASA
	250	12	1.38	601	830	2.77	7.9	1,974	2,050	4,854	6,795	0.5	0.46	0.96	0.52	•	PASA
SUMA			70.3	551		,,		50,431	_,500	1,004	5,. 55	0.0	0.10	5.55	0.02	,557	

Nota: En el tramo A 5-8, se agrego 1.098 t producto de la descarga del tinaco. $PescalePA = \frac{\sum PPA}{\sum AtPB} = 1,484.47 \text{ kg}$

$$PesodePA = \frac{\sum PPA}{\sum AtPB} = 1,484.47 \text{ kg}$$

Resultados del análisis ante cargas verticales

Tipo de Muros

En este proyecto se utilizo muros a base de tabique de barro recosido con un espesor de 12 cm, excepto el muro F11-13 que por diseño arquitectónico se diseño de 24 cm. Con una junta de 2 cm, mortero tipo II.

Análisis ante cargas verticales

Los muros que no resisten ante cargas verticales son: en la planta alta el muro 9 E-F; en planta baja los muros: 9 E-F, 9 F'-H, 12 A-A', E 4'-9, G 4-7'.

Refuerzo de muros con malla electrosoldada

Los muros antes mencionados que no resisten ante cargas verticales, se opto por aumentar su resistencia con el uso de malla electrosoldada.

Malla electrosoldada

Se propone malla electrosoldada 6 x 6 - 08/08, fy = 5000 kg/cm², anclada a la mampostería, así como en castillos y dalas, las mallas deberán rodear los bordes verticales de muros y los bordes de las aberturas, evitando traslapes horizontales, y si los hay que sean de 3 cuadros. Para fijar la malla se usarán conectores (clavos de acero de 2 pulgadas) a una distancia máxima de 45 cm.

Refuerzo para el Muro 9 F-H Planta Alta, con malla electrosoldada

Para el muro 9 E-F planta alta.

Datos del muro

L = 373 cm

t = 12 cm

 $P_R = 10,837.35 \text{ kg}$

Pu = 13,278.44 kg

FE = 0.21

 $F_{B} = 0.6$

Datos de la malla

Tipo de malla = $6 \times 6 - 08/08$

Sh = 15.24 cm

 $Asv = 0.1326 \text{ cm}^2$

 $fyh = 5000 \text{ kg/cm}^2$

Datos del mortero

Mortero Tipo I

Espesor = 2 cm

Carga resistente de la malla

_ Porcentaje de acero de la malla

$$\sum AS = \frac{Asv*Lmuro}{Sh}$$

Donde: Asv = área de acero vertical de la malla

Sh = separación entre alambres de la malla

$$\sum AS = \frac{(0.1326)(373)}{15.24} = 3.25 \ cm^2$$

Carga resistente de la malla

$$P_{_{RM}} = F_{_{R}}F_{_{E}}(f_{_{m}}*A_{_{T}}+\sum$$
 $ASfy$) Donde: AT = área de la junta de mortero

f*m = para este caso tomaremos igual a 15 kg/cm²,

$$A_T = (2)(376) = 746 \text{ cm}^2$$

$$P_{RM} = (0.6)(0.21)[(15)(746) + (5000)(3.25)] = 3,454.54 \ kg$$

Carga resistente total

$$P_{\rm \scriptscriptstyle RT}$$
 = $P_{\rm \scriptscriptstyle R}$ + $P_{\rm \scriptscriptstyle RM}$ donde: PRT = carga vertical resistente total

PR = carga vertical resistente del muro

PRM = carga vertical resistente de la malla

$$P_{RT} = 10,837.35 + 3,454.54 = 14,291.89 \ kg > P_u = 13,278.44 \ kg$$

Por lo tanto se acepta el refuerzo con malla electrosoldada tipo 6 x 6 - 08/08

En la siguiente tabla se muestran resultados de muros reforzados con malla electrosoldada.

	REFUERZO CON MALLA ELECTROSOLDADA											
MURO	L (cm)	FE	t Junta (cm)	AT mortero (cm²)	Malla 6x6- 08/08 Asv (cm²)	Sh (cm)	∑AS (cm²)	Malla Pmr (kg)	Muro PR (kg)	Prt (kg)	Pu (kg)	Prt>Pu
PLANT	A ALTA											
9 F-H	373	0.21	2	746	0.1326	15.24	3.25	3454.54	10837.35	14291.89	13278.44	PASA
PLANT	A BAJA											
9 E-F	115	0.51	2	230	0.1326	15.24	1.00	5173.21	7998.86	13172.06	12730.35	PASA
9 F'-H	248	0.51	2	496	0.187	15.2	3.04	6929.47	17322.36	24251.83	23148.20	PASA
12 A-A'	213	0.48	2	426	0.1326	15.24	1.85	4463.44	13845.05	18308.49	15271.73	PASA
E 4'-9	263	0.49	2	526	0.1326	15.2	2.29	5654.02	17575.26	23229.28	17835.22	PASA
G 4-7'	273	0.51	2	546	0.1326	15.24	2.38	6132.56	19051.24	25183.80	20842.65	PASA

Nota: en el muro 9 F'-H, se reforzó con malla 6x6 - 06/06

IV.2. REVISIÓN DE MUROS POR CARGAS LATERALES

El RCDF establece que la resistencia de un muro a cortante debe ser mayor o igual al cortante último aplicado sobre él, es decir: $V_R \ge V_U$

Donde Vu es la fuerza cortante última aplicada, la cual resulta de multiplicar el cortante producido por la acción del sismo por el factor de carga Fc = 1.1 para cargas de poca duración; y V_R es el cortante resistente del muro, que se obtiene:

$$V_R = F_R (0.5V * m A_T + 0.3P) \le 1.5 F_R V * m A_T$$

Donde:

F_R = factor de reducción, que de acuerdo a reglamento vale 0.7 para muro diafragma, muros confinados y muros con refuerzo interior y 0.4 para muros no confinados ni reforzados interiormente.

V*m = es la resistencia de diseño a compresión diagonal de la mampostería interiormente.

P = es la carga vertical soportada por el muro, se deberá tomar positiva en compresión

AT = es el área de la sección transversal del muro.

El área transversal AT se afecta por el factor FAE, que está dado por:

MÉTODO DETALLADO DE DISEÑO

Las cargas horizontales que actúan sobre estructuras de mampostería se deben a diversas causas. Sin embargo la causa más frecuente e importante es el sismo. La acción sísmica produce efectos diversos, de los cuales el más importante, es la fuerza cortante en la estructura. Esta debe ser resistida mediante elementos estructurales (marcos rígidos, muros).

Se usa para el presente caso, el método detallado de diseño en la revisión de muros ante carga laterales, para lo cual se procederá a describir los pasos generales del método, seguido del análisis de los muros 1A-C de planta alta y 1AC de planta baja, finalizando con un resumen en tablas del análisis del resto de los muros .

1.- Tipo de estructura y de terreno.

Ubicación: En el municipio de Morelia Michoacán

Zona Sísmica: "B"

Tipo de Suelo: Intermedio

Tipo de construcción: "B"

Coeficiente Sísmico reducido: 0.15

El coeficiente sísmico reducido se obtuvo por medio del programa Prodisis, utilizando los datos antes mencionados.

2.- Peso de la estructura

PLANTA ALTA								
W LOSA DE AZOTEA	=	105,617.01 kg						
W MUROS PLANTA ALTA	=	72,958.29 kg						
W TINACO	=	0,268.56 kg						
W PRETIL PLANTA ALTA	=	2,313.36 kg						
W TRABES DE AZOTEA	=	3,140.16 kg						
SUMA	=	184,297.38 kg						

PLANTA BAJA							
W LOSA PLANTA BAJA =	88,929.73 kg						
W MUROS PLANTA BAJA =	83,870.77 kg						
W ESCALERA =	6,969.68 kg						
W TRABES DE ENTREPISO =	4,408.86 kg						
SUMA =	184,179.04 kg						

3.- Determinación de las fuerzas sísmicas de los pisos

$$Fi = \frac{Cs(PiHi)}{\sum_{i} PiHi} P$$

Donde:

Fi = fuerza actuante en el nivel (i) debida al sismo

Cs = coeficiente sísmico

Hi = altura del nivel (i) respecto del suelo

P = peso total de la construcción

Vi = fuerza cortante basal

	Fuerzas debidas al sismo										
NIVEL	Pı (t)	Hı (m)	PıHı (t-m)	Fı (t)	Vı (t)						
2	184.30	5.37	989.68	36.47	36.47						
1	184.18	2.77	510.18	18.80	55.27						
SUMA	368.48		1,499.85								

4.- Rigidez en muros de mampostería

Inercia del muro

$I = (tL^3 / 12) + (tbL^2 / 2)$	Donae:
b = 6t	I = inercia del muro
	t = espesor del muro
b = Hs / 16	L = largo del muro

b = ancho del patín, el menor de las dos expresiones Hs = altura del muro arriba del muro en cuestión

Rigidez del muro

$$km = \left[\frac{1}{(H)((H^2/3EI) + (1/AG))}\right] \qquad \text{km = rigidez de muros} \\ H = \text{altura del muro} \\ E = \text{modulo de elasticidad de la mampostería} \\ G = \text{modulo de cortante de la mampostería} \\ E = 600 \, f * m \qquad \qquad \text{f*m = resistencia de diseño a compresión de la mampostería}$$

5.- Cortante directo

Una vez obtenido las rigideces, se distribuye la fuerza cortante basal de manera proporcional a su rigidez. $V = \frac{Ki}{\sum Ki} Vi$

6.- Coordenadas del centro de torsión

$$Xt = \frac{\sum (kmyXi)}{\sum km y}$$

$$Xt, Yt = \text{coordenadas del centro de torsión.}$$

$$kmx, kmy = \text{rigidez del muros en el eje X,Y}$$

$$Yt = \frac{\sum (kmxYi)}{\sum km x}$$

$$Xi, Yi = \text{coordenadas con respecto a los ejes de referencia}$$

Planta alta

$$Xt = \frac{113,864.82}{22,195.05} = 5.13 \ m$$
 $Yt = \frac{184,876.58}{17,113.61} = 10.73 \ m$

Planta baja

$$Xt = \frac{123,983.07}{26,896.41} = 4.61 m$$
 $Yt = \frac{205,377.83}{19,282.83} = 10.65 m$

Los valores para el cálculo del las coordenadas del centro de torsión, se obtienen de las tablas: resumen de la revisión ante cargas horizontales en planta baja y resumen de la revisión ante cargas horizontales en planta alta.

7.- Coordenadas del centro de la masa.

Las coordenadas del centro de masa, definido como el punto en el cual se considera concentrado el peso de cada nivel de la estructura, se obtiene calculando las áreas de los tableros de las losas y tomando momentos de primer orden respecto al sistema de ejes.

$$X_{C} = \frac{\sum XA}{\sum A}; \quad Y_{C} = \frac{\sum YA}{\sum A}$$

Donde: Yc, Xc = coordenadas del centro de masa

X,Y = coordenadas respecto al eje de referencia

A = área del tablero

Planta alta

$$Xc = \frac{921.74}{151.33} = 6.09 m;$$
 $Yc = \frac{1,11063}{151.33} = 7.34 m$

Planta baja

$$Xc = \frac{907.38}{141.64} = 6.41 \, m;$$
 $Yc = \frac{1,082.10}{141.64} = 7.64 \, m$

Los valores para el cálculo de las coordenadas del centro de la masa se obtienen de la tabla que calculan las coordenadas del centro de la masa.

8.- Excentricidades

Para ello primero se obtiene las diferencias entre las coordenadas del centro de masa contra las de el centro de torsión, a las que llamaremos excentricidades calculadas.

COORDENADA	S DE LA MASA
XcPA =	6.09 m
YcPA =	7.34 m
XcPB =	6.41 m
YcPB =	7.64 m

COORDENADAS DEL CENTRO DE TORSIÓN					
XtPA =	5.13 m				
YtPA = 10.73 m					
XtPB =	4.61 m				
YtPB =	10.65 m				

EXCENTRICIDADES CALCULADAS				
ecX PA =	0.96 m			
ecy PA =	3.39 m			
ecX PB =	1.80 m			
ecY PB =	3.01 m			

Excentricidades de diseño

Las excentricidades de diseño se obtienen mediante las expresiones que señala el RCDF ed = 1.5ec + 0.1b \acute{o} ed = ec - 0.1b La que resulte mayor

b = es la dimensión de la planta que se este considerando, medida perpendicularmente a la acción del sismo

Planta alta

$$edX = (1.5)(0.96) + (0.1)(16.4) = 3.08 \, m$$
 Rige $edY = (1.5)(3.39) + (0.1)(15) = 6.59 \, m$ Rige $edX = 0.96 - (0.1)(16.4) = -0.68 \, m$ $edY = 3.39 - ((0.1)(15)) = 1.89 \, m$ Planta baja $edX = (1.5)(1.80) + (0.1)(16.4) = 4.34 \, m$ Rige $edX = 1.80 - (0.1)(16.4) = -0.16 \, m$ $edY = 3.01 - (0.1)(15) = 1.51 \, m$

Nota: el valor de b es igual a 16.4 m paralelo al eje X y 15 m paralelo al eje Y.

9.- Momento torsionante

Debido a los diferentes valores de las coordenadas del centro de la masa con respecto a las de torsión, la fuerza cortante generada por el sismo, originan momentos torsionantes de entrepiso.

$$MTX=ViedY;$$
 $MTY=ViedX$

Para la planta alta

$$MTX = (36.47)(6.59) = 240.34 t/m;$$
 $MTY = (36.47)(3.08) = 11233 t/m$

Para la planta baja

MTX = (55.27)(6.015) = 332.45 t/m; MTY = (55.27)(4.34) = 239.87 t/mDonde Vi es la fuerza cortante basal en cada nivel.

10.- Cortante por torsión

$$VTX = \frac{\sum (kmyXit)}{\sum (kmyXitXit + kmxYitYit)} MTX \; ; \quad VTY = \frac{\sum (kmxYit \;)}{\sum (kmyXitXit \; + kmxYitYit \;)} MTY$$

11.- Cortante último

Vu = 1.1V = 1.1(VD + VT) donde: VD = cortante directo VT= cortante torsionante

Fc = 1.1 para cargas de poca duración

Revisión del muro 1 A-C, de Planta Alta ante cargas laterales

Datos:

L = 406 cm Material = Tabique de barro recocido

 $\begin{array}{ll} t = 12 \text{ cm} & \text{Tipo de Mortero} = II \\ H = 260 \text{ cm} & \text{V*m} = 3 \text{ kg/cm}^2 \\ & \text{f*m} = 15 \text{ kg/cm}^2 \end{array}$

Rigidez del muro

Área

$$A = tL$$
; $A = (12)(406) = 4,878 \text{ cm}^2$

Inercia

b = 0 Ya que Hs = 0, por ser planta alta

E = 600 f * m;
$$E = (600)(15) = 9,000 \, kg / cm^2$$

 $G = 0.4 \, E$; $G = (0.4)(9,000) = 3,600 \, kg / cm^2$
 $I = (tL^3 / 12) + (tbL^2 / 2)$; $I = (12)(406^3) / 12 = 66,923,416 \, cm^2$

Rigidez

Higher Higher
$$km = \left[\frac{1}{H(H^2/3EI) + (1/AG)}\right];$$

$$km = \left[\frac{1}{260((260^2)/(3)(9000)(66923416)) + ((1/4878)(3600))}\right] = 40,731.67 \text{ kg/cm} = 4,073.61 \text{ t/m}$$

Cortante directo

$$V = \frac{Ki}{\sum Kiy} Vi$$
; $Vi = \frac{4,073.61}{17,113.61} (36.47) = 8.68 t$

Cortante torsionante

$$VTX = \frac{\sum{(kmyXit)}}{\sum{(kmyXitXit + kmxYitYit)}}MTX \; ; \qquad VTX = \frac{23,\!101.66}{(280,\!037.17 + 887,\!094.84)}240.34 = 4.757 \; t$$

Los valores utilizados en el cálculo del cortante torsionante se obtienen de la tabla que muestra el resumen de la revisión de muros ante cargas horizontales en planta alta.

Cortante último

$$Vu = 1.1V = 1.1(VD + VT); Vu = 1.1(8.68 + 4.757) = 14.78t$$

Área equivalente

$$\frac{H}{L} = \frac{260}{406} = 0.64 < 1.33 \quad \therefore \quad F_{AE} = 1 \qquad AT = (1)(0.12)(4.06) = 4,872 \, cm^2$$

Cortante resistente

$$V_R = F_R(0.5V * mA_T + 0.3P);$$
 $P = 5,610 kg$

RODRIGO ALDANA SÁNCHEZ

$$V_R = (0.7)[(0.5)(3)(4,875) + (0.3)(5,650)] = 63021 kg = 6.3 t$$

El valor de la carga vertical se obtiene de la tabla para el calculo de P en planta alta.

Comparando VR con Vu

$$V_u = 14.78 t > V_R = 6.3 t$$

Por lo tanto se requiere reforzar el muro

Revisión del muro 1 A-C, de Planta baja ante cargas laterales

Datos:

$$L = 406 \text{ cm}$$
 Material = tabique de barro recocido $E = 9,000 \text{ kg/cm}^2$
 $t = 12 \text{ cm}$ Tipo de mortero = II $G = 3,600 \text{ kg/cm}^2$

$$H = 260 \text{ cm}$$
 $V^*m = 3 \text{ kg/cm}^2$ $f^*m = 15 \text{ kg/ cm}^2$

Rigidez del muro

Área

$$A = t L$$
; $A = (12)(406) = 4,878 \text{ cm}^2$

Ancho del patín

$$b = 6 t;$$
 $b = 6(12) = 72 cm$
 $b = H s / 16;$ $b = 260/16 = 16.25 cm rige$

$$I = (tL^3/12) + (tbL^2/2);$$
 $I = [(12)(406^3)/12] + [(12)(16.25^3)/12] = 82,994,926 \text{ cm}^2$

Rigidez

$$km = \left[\frac{1}{H((H^2/3EI) + (1/AG))}\right]$$

$$km = \left[\frac{1}{((260)(260^2/3)(9000)(82,994,926)) + ((1/4878)(3600))}\right] = 44,116.33 \text{ kg/cm} = 4,411.63 \text{ t/m}$$

Cortante directo

$$Vi = \frac{Ki}{\sum Kiy}V;$$
 $Vi = \frac{4,411.63}{19,282.83}(55.27) = 12.65 t$

Cortante torsionante

$$VTX = \frac{\sum{(kmyXit)}}{\sum{(kmyXitXit + kmxYitYit)}}MTX; \qquad VTX = \frac{25,363}{(341,49295 + 816201.39)}33245 = 7.28\,t$$

Los valores utilizados en el cálculo del cortante torsionante se obtienen de la tabla que muestra el resumen de la revisión de muros ante cargas horizontales en planta baja.

Cortante último

$$Vu = 1.1V = 1.1(VD + VT)$$
; $Vu = 1.1(12.65 + 7.28) = 21.92t$

Cortante resistente

$$\frac{H}{L} = \frac{260}{406} = 0.64 < 1.33 \quad \therefore \quad F_{AE} = 1 \quad AT = (1)(0.12)(4.06) = 4,872 \text{ cm}^2$$

$$P = 11,150 \quad kg$$

$$V_R = (0.7)[(0.5)(3)(4,872) + (0.3)(11,150)] = 22,460 \quad kg = 22.26 \quad t$$

El valor de la carga vertical se obtiene de la tabla para el calculo de P en planta baja.

Comparando Vu v VR

$$Vu = 21.92t < V_R = 22.26t$$
 ... El muro resiste las cargas horizontales

Resumen de pesos de la estructura, en las dos plantas

F	PESO DE MUROS PLANTA ALTA					
L (cm)	H (cm)	w (kg/cm²)	W (kg)			
376	245	6.98	2,625.42			
7225	260	7.41	53,537.25			
1422	320	9.12	12,968.64			
373	3,826.98					
	SUMA					

	PESO DE MUROS PLANTA BAJA					
L (cm)	H (cm)	w (kg/cm²)	W (kg)			
3401	260	7.41	25,201.41			
5950	277	7.89	46,972.28			
1396	1396 294 8.38 11,697.08					
	SUMA					

PE:	PESO TOTAL EN LOSA DE AZOTEA						
TABLERO	W (kg/m²)	AT (m²)	W (kg)				
I	515	2.68	1380.20				
II	737	18.3106	13494.91				
Ш	515	9.999	5149.49				
IV	515	2.106	1084.59				
V	515	4.4712	2302.67				
VI	737	13.195	9724.72				
VII	737	20.97	15454.89				
VIII	515	14.326	7377.89				
IX	737	4.0716	3000.77				
Х	737	15.466	11398.44				
ΧI	737	13.8225	10187.18				
XII	870	11.571	10070.24				
XIII	737	6.2118	4578.10				
XIV	737	14.1288	10412.93				
SU	MA	151.3295	105617.01				

PE	PESO TOTAL EN LOSA DE ENTREPISO							
TABLERO	W (kg/cm²)	AT (m²)	W (kg)					
I	616	12.16	7,491.58					
II	790	12.64	9,987.14					
III	521	2.11	1,097.23					
IV	521	3.94	2,053.78					
V	630	4.29	2,701.23					
VI	521	6.19	3,224.99					
VII	521	20.97	10,925.37					
VIII	521	13.87	7,226.27					
IX	521	4.07	2,120.47					
Χ	819	15.47	12,669.18					
XI	521	7.33	3,816.33					
XII	521	6.70	3,489.40					
XIII	788	11.57	9,114.48					
XIV	645	6.21	4,006.24					
XV	637	14.13	9,006.07					
SU	MA	141.64	88,929.73					

	PESO DE TRABES DE AZOTEA						
L (m)	ь (m)	H (m)	P Vol.(kg/m³)	w (kg)			
18.44	0.15	0.25	2,400	995.76			
4.06	0.15	0.40	2,400	438.48			
17.77	17.77 0.2 0.30 2,400						
	SUMA						

PESO DE TRABES DE ENTREPISO							
L (m)	ь (m)	H (m)	P Vol.(kg/m³)	w (kg)			
10.71	0.15	0.25	2,400	578.34			
12.24	0.15	0.30	2,400	881.28			
13.26	0.15	0.35	2,400	1,193.40			
4.06	0.2	0.35	2,400	487.20			
4.06	0.2	0.40	2,400	584.64			
3.8	0.25	0.40	2,400	684.00			
	SUMA						

Resumen de rigidez de muros en planta alta

	RIGIDEZ EN PLANTA ALTA PARA MUROS PARALELOS AL EJE Y							
MURO	LONG. (cm)	ESPE- SOR (cm)	H MURO (cm)	A (cm²)	(cm)	Km (kg/cm)		
A 1-2	340	12	260	4,080.00	19,652,000.00	19,674.95		
A 2-5	153	12	260	1,836.00	3,581,577.00	4,523.05		
A 5-8	286	12	260	3,432.00	23,393,656.00	20,462.35		
A 8-10	325	12	260	3,900.00	34,328,125.00	26,679.84		
A 10-14	451	12	260	5,412.00	91,733,851.00	48,921.18		
A 14-15	80	12	245	960.00	512,000.00	881.29		
B 14-15	80	12	245	960.00	512,000.00	881.29		
C 1-1'	200	12	260	2,400.00	8,000,000.00	8,971.59		
C 2-5	153	12	260	1,836.00	3,581,577.00	4,523.05		
D 11-14	331	12	320	3,972.00	36,264,691.00	17,906.79		
E 8-9	73	12	260	876.00	389,017.00	569.54		
E 6'-8	112	12	260	1,344.00	1,404,928.00	1,933.94		
F 9-10'	122	12	348	1,464.00	1,815,848.00	1,080.35		
F 10'-11	150	12	288	1,800.00	3,375,000.00	3,261.70		
F 11-13	108	24	245	2,592.00	2,519,424.00	4,124.65		
H 9-9'	105	12	320	1,260.00	1,157,625.00	893.71		
H 10'-11	113	12	290	1,356.00	1,442,897.00	1,458.92		
l 3-9	485	12	260	5,820.00	114,084,125.00	55,201.93		
	SUMA 221,950.13							

	RIGIDEZ EN PLANTA ALTA PARA MUROS PARALELOS AL EJE X							
MURO	LONG. (cm)	ESPE- SOR (cm)	H MURO (cm)	A (cm²)	(cm)	Km (kg/cm)		
1 A-C	406	12	260	4,872.00	66,923,416.00	40,731.67		
3 G-I	286	12	260	3,432.00	23,393,656.00	20,462.35		
4 E-G'	230	12	260	2,760.00	12,167,000.00	12,551.81		
5 A-B'	308	12	260	3,696.00	29,218,112.00	23,911.96		
8 A-C'	298	12	260	3,576.00	26,463,592.00	22,324.02		
9 F-G	295	12	380	3,540.00	25,672,375.00	9,175.93		
9 G-H	70	12	260	840.00	343,000.00	504.08		
9 H-I	80	12	260	960.00	512,000.00	742.59		
10 A-C	406	12	260	4,872.00	66,923,416.00	40,731.67		
SUMA						171,136.07		

Resumen de rigidez de muros en planta baja

		RIGID	ez en planta	BAJA PARA M	IUROS PAR	ALELOS AL EJE Y			
MURO	LONG. (cm)	ESPE- SOR (cm)	H MURO (cm)	A (cm²)	b (cm)	4 (cm)	Km (kg/cm)		
A 1-2	340	12	260	4,080.00	16.25	50,575,000.00	32,708.85		
A 2-5	153	12	260	1,836.00	8.13	4,722,765.75	5,644.24		
A 5-8	286	12	260	3,432.00	16.25	31,368,766.00	23,925.90		
A 8-10	A 8-10 325 12 277 3,900.00 8.13 39,477,343.75								
A 10-12	160	12	277	1,920.00	16.25	6,592,000.00	6,269.98		
A 12-15	436	12	294	5,232.00	16.25	101,416,216.00	40,177.49		
B 11-15	403	12	294	4,836.00	0.00	65,450,827.00	31,982.22		
D 11-14	331	12	277	3,972.00	0.00	36,264,691.00	24,343.75		
E 4'-9	263	12	274	3,156.00	8.13	21,563,435.75	16,821.29		
F11-13	108	24	245	2,592.00	8.13	3,656,664.00	5,707.47		
G 4-7'	273	12	277	3,276.00	8.13	23,979,705.75	17,757.46		
H 9-9'	142	12	277	1,704.00	8.13	3,846,283.00	4,002.95		
H 10'-11	142	12	277	1,704.00	8.13	3,846,283.00	4,002.95		
l 3-6	235 12 277		277	2,820.00	16.25	18,362,312.50	14,254.20		
l 6-9	250	12	277	3,000.00	16.25	21,718,750.00	16,157.04		
			(SUMA	•		268,964.10		

		RIGID	DEZ EN PLANTA	BAJA PARA M	UROS PAR	ALELOS AL EJE X				
MURO	LONG. (cm)	ESPE- SOR (cm)	H MURO (cm)	A (cm²)	b (cm)	(cm)	Km (kg/cm)			
1 A-C	406	12	260	4,872.00	16.25	82,994,926.00	44,116.33			
2 A-C	2 A-C 406 12 260 4,872.00 8.13 74,959,171									
3 G-H'	85	12	277	1,020.00	16.25	1,318,562.50	1,487.13			
3 H"-I	73	12	277	876.00	8.13	648,805.75	768.57			
6 G-I	293	12	277	3,516.00	16.25	33,524,034.50	22,043.31			
8 A-B'	273	12	277	3,276.00	16.25	27,612,994.50	19,232.62			
9 E-F	115	12	277	1,380.00	0.00	1,520,875.00	1,744.16			
9 F'-H	248	12	277	2,976.00	0.00	15,252,992.00	12,909.32			
9 F"-I	80	12	277	960.00	8.13	824,000.00	965.75			
10 A-C	A-C 406 12 277		277	4,872.00	8.13	74,959,171.00	38,030.51			
12 A-A' 213 12 294 2,556.00 8.13 11,875,335.75										
						SUMA	192,828.33			

Tablas que calculan FAE

	ÁREA	EQUIVA	ALENTE PL	LANTA A	LTA	
MURO	LONG. (cm)	ESPE- SOR (cm)	H MURO (cm)	MURO FAE		AT (m²)
A 1-2	340	12	260	1.00	4080	0.41
A 2-5	153	12	260	0.61	1125	0.11
A 5-8	286	12	260	1.00	3432	0.34
A 8-10	325	12	260	1.00	3900	0.39
A 10-14	451	12	260	1.00	5412	0.54
A 14-15	80	12	245	0.19	181	0.02
B 14-15	80	12	245	0.19	181	0.02
C 1-1'	200	12	260	1.00	2400	0.24
C 2-5	153	12	260	0.61	1125	0.11
D 11-14	331	12	320	1.00	3972	0.40
E 8-9	73	12	260	0.14	122	0.01
E 6'-8	112	12	260	0.33	441	0.04
F 9-10'	122	12	348	0.22	318	0.03
F 10'-11	150	12	288	0.48	864	0.09
F 11-13	108	24	245	0.34	891	0.09
H 9-9'	105	12	320	0.19	240	0.02
H 10'-11	113	12	290	0.27	364	0.04
I 3-9	485	12	260	1.00	5820	0.58

	ÁRE	A EQUI	/ALENTE I	PLANTA	ALTA	
MURO	LONG. (cm)	ESPE- SOR (cm)	H MURO (cm)	FAE AT (cm²)		AT (m²)
1 A-C	406	12	260	1.00	4872	0.49
3 G-I	286	12	260	1.00	3432	0.34
4 E-G'	230	12	260	1.00	2760	0.28
5 A-B'	308	12	260	1.00	3696	0.37
8 A-C'	298	12	260	1.00	3576	0.36
9 F-G	295	12	380	1.00	3540	0.35
9 G-H	70	12	260	0.13	108	0.01
9 H-I	80	12	260	0.17	161	0.02
10 A-C	406	12	260	1.00	4872	0.49

	ÁREA EQUIVALENTE PLANTA BAJA												
MURO	LONG. (cm)	ESPE- SOR (cm)	H MURO (cm)	FAE	AT (cm²)	AT (m²)							
A 1-2	340	12	260	1.00	4080	0.41							
A 2-5	153	12	260	0.61	1125	0.11							
A 5-8	286	12	260	1.00	3432	0.34							
A 8-10	325	12	277	1.00	3900	0.39							
A 10-12	160	12	277	0.59	1133	0.11							
A 12-15	436	12	294	1.00	5232	0.52							
B 11-15	363	12	294	1.00	4356	0.44							
D 11-14	331	12	277	1.00	3972	0.40							
E 4'-9	263	12	274	1.00	3156	0.32							
F11-13	108	24	245	0.34	891	0.09							
G 4-7'	273	12	277	1.00	3276	0.33							
H 9-9'	142	12	277	0.46	792.1	0.08							
H 10'-11	142	12	277	0.46	792.1	0.08							
l 3-6	235	12	277	1.00	2820	0.28							
l 6-9	250	12	277	1.00	3000	0.30							

	ÁRE	A EQUIV	/ALENTE F	LANTA	BAJA	
MURO	LONG. (cm)	ESPE- SOR (cm)	SOR MURO FAE		AT (cm²)	AT (m²)
1 A-C	406	12	260	1.00	4872	0.49
2 A-C	406	12	260	1.00	4872	0.49
3 G-H'	85	12	277	0.17	169.9	0.02
3 H"-I	73	12	277	0.12	107.6	0.01
6 G-I	293	12	277	1.00	3516	0.35
8 A-B'	273	12	277	1.00	3276	0.33
9 E-F	115	12	277	0.30	420.7	0.04
9 F'-H	248	12	277	1.00	2976	0.30
9 F"-I	80	12	277	0.15	141.6	0.01
10 A-C	408	12	277	1.00	4896	0.49
12 A-A'	213	12	294	0.93	2373	0.24

Tablas que calculan las coordenadas del centro de masa

COORDENADAS DEL CENTRO DE MASA EN PB												
CC	ORDENADA	45 DEL CE	NIRO DE M	ASA EN P	В							
TABLERO	A (m²)	X (m)	XA	Y (m)	YA							
I	12.16	1.85	22.50	1.85	22.50							
II	12.64	5.27	66.54	2.46	31.03							
III	2.11	8.16	17.17	3.57	7.52							
IV	3.94	11.00	43.36	3.57	14.07							
V	4.29	2.07	8.88	4.50	19.31							
VI	6.19	3.51	21.73	6.94	42.96							
VII	20.97	6.64	139.24	6.34	132.95							
VIII	13.87	11.00	152.57	6.01	83.36							
IX	4.07	6.03	24.52	9.02	36.71							
Х	15.47	10.00	154.70	9.68	149.75							
ΧI	7.33	13.56	99.29	9.23	67.61							
XII	6.70	13.56	90.82	11.66	78.06							
XIII	11.57	2.07	23.95	9.91	114.67							
XIV	6.21	2.07	12.86	12.11	75.19							
XV	14.13	2.07	29.25	14.61	206.42							
SUMA	141.64		907.38		1082.10							
		Xc =	6.41 m	Yc =	7.64 m							

CC	OORDENADA	AS DEL CE	NTRO DE M	ASA EN F	² A
TABLERO	A (m²)	X (m)	X(A)	Y (m)	Y(A)
I	2.68	1.68	4.49	0.40	1.07
11	18.31	2.07	37.90	3.06	55.94
III	10.00	5.66	56.59	2.46	24.55
IV	2.11	8.16	17.17	3.57	7.52
V	4.47	11.00	49.18	3.57	15.96
VI	13.20	2.07	27.31	6.94	91.51
VII	20.97	6.64	139.14	6.34	132.95
VIII	14.33	11.00	157.59	6.01	86.10
IX	4.07	6.03	24.55	9.02	36.73
Χ	15.47	10.00	154.66	9.68	149.71
XI	13.82	13.54	187.09	10.34	142.86
XII	11.57	2.07	23.95	7.13	82.50
XIII	6.21	2.07	12.86	12.19	75.69
XIV	14.13	2.07	29.25	14.69	207.55
SUMA	151.33		921.74		1110.63
-		Xc =	6.09 m	Yc =	7.34 m

Tabla para el cálculo de P en planta alta

ταυια μα	ra er car	culo u	e r en pi	anta alta						
Muro	Long. (cm)	t (cm)	At (m²)	W Losa de Azotea (kg/m²)	Carga total de la losa (kg)	H Muro (m)	W muro (kg/cm)	Peso propio del muro (kg)	P (kg)	P (t)
1 A-C	406	12	3.713	707	2625.09	2.60	7.41	3008.46	5,633.55	5.63
3 G-I	286	12	2.489	707	1759.72	2.60	7.41	2119.26	3,878.98	3.88
4 E-G'	230	12	3.554	707	2512.68	2.60	7.41	1704.30	4,216.98	4.22
5 A-B'	308	12	2.128	707	4334.46	2.60	7.41	2282.28	6,616.74	6.62
			3.369	840						
8 A-C'	298	12	2.766	840	4422.52	2.60	7.41	2208.18	6,630.70	6.63
			2.969	707						
9 F-G	295	12	3.890	707	4169.40	3.80	11.97	3531.15	7,700.55	7.70
			2.867	495						
9 G-H	70	12	0.197	495	694.93	3.80	11.97	837.90	1,532.83	1.53
			0.845	707						
9 H-I	80	12	0.978	707	691.45	2.60	8.19	655.20	1,346.65	1.35
10 A-C	408	12	3.822	707	4513.85	2.60	7.41	3023.28	7,537.13	7.54
			3.660	495						
A 1-2	340	12	2.641	707	1867.19	2.60	7.41	2519.40	4,386.59	4.39
A 2-5	153	12	0.473	707	334.41	2.60	7.41	1133.73	1,468.14	1.47
A 5-8	286	12	1.823	840	1531.32	2.60	7.41	2119.26	3,650.58	3.65
A 8-10	325	12	2.339	707	1653.67	2.60	7.41	2408.25	4,061.92	4.06
A 10-14	451	12	4.692	707	3317.24	2.60	7.41	3341.91	6,659.15	6.66
A 14-15	80	12	0.259	495	128.21	2.45	6.9825	558.60	686.81	0.69
B 14-15	80	12	0.259	707	183.11	2.45	6.98	558.60	741.71	0.74
C 1-1'	200	12	2.453	707	1734.27	2.60	7.41	1482.00	3,216.27	3.22
C 2-5	153	12	0.633	707	447.53	2.60	7.41	1133.73	1,581.26	1.58
D 11-14	331	12	2.961	495	1465.70	3.20	9.12	3018.72	4,484.42	4.48
E 8-9	73	12	3.965	707		2.6	7.41	540.93	540.93	0.54
E 6'-8	112	12	1.625	707	1148.88	2.6	7.41	829.92	1,978.80	1.98
			0.500	707						
F 9-10'	122	12	1.584	707	1812.39	3.48	9.92	1210.00	3,022.39	3.02
			1.399	495						
F 10"-11	150	12	2.007	707	2409.44	2.88	8.21	1231.20	3,640.64	3.64
			2.001	495						
F 11-13	108	24	0.991	495	490.55	2.45	13.97	1508.22	1,998.77	2.00
H 9-9'	105	12	1.663	495	823.19	3.20	9.12	957.60	1,780.79	1.78
H 10'-11	113	12	1.663	495	823.19	2.90	8.27	933.95	1,757.13	1.76
I 3-9	485	12	4.523	707	3197.76	2.60	7.41	3593.85	6,791.61	6.79

Tabla para el cálculo de P en planta baja

Muro	Long. (cm)	t (cm)	At (m²)	W Losa de Azotea (kg/m²)	Carga total de la losa (kg)	h Muro (m)	W muro (kg/cm)	Peso propio del muro (kg)	Peso del Nivel 2 (kg)	P (kg)	Pu (kg)
1 A-C	406	12	3.913	637	2,492.58	2.60	7.41	3008.46	5,633.55	11,134.59	11.13
2 A-C	406	12	3.713	637	3,794.50	2.60	7.41	3008.46		6,802.96	6.80
			2.216	645							
3 G-H'	85	12	1.108	521	577.27	2.77	7.89	671.03	1,939.49	3,187.79	3.19
3 H"-I	73	12	0.853	521	444.41	2.77	7.89	576.30	1,939.49	2,960.20	2.96
6 G-I	293	12	3.552	521	1,850.59	2.77	7.89	2313.09		4,163.68	4.16
8 A-B'	273	12	2.766	788	2,179.61	2.77	7.89	2155.20	6,630.70	10,965.51	10.97
9 E-F	115	12	2.031	521	2,382.47	2.77	8.73	1003.43		3,385.91	3.39
			1.617	819							
9 F'-H	248	12	3.925	521	4,170.23	2.77	8.73	2163.92	9,233.38	15,567.53	15.57
			2.595	819							
9 H"-I	80	12	0.995	521	518.40	2.77	7.89	631.56	1,346.65	2,496.60	2.50
10 A-C	406	12	0.303	521	1,588.59	2.77	7.89	3205.17	7,537.13	12,330.89	12.33
			2.271	630							
12 A-A'	213	12	1.732	630	2,730.24	2.94	9.26	1972.59		4,702.83	4.70
			2.355	696							
A 1-2	340	12	2.641	637	1,682.32	2.60	7.41	2519.40	4,386.59	8,588.30	8.59
A 2-5	153	12	0.473	645	305.09	2.60	7.41	1133.73	1,468.14	2,906.96	2.91
A 5-8	286	12	1.823	788	1,436.52	2.60	7.41	2119.26	3,650.58	7,206.36	7.21
A 8-10	325	12				2.73	7.78	2528.66	4,061.92	6,590.59	6.59
A 10-12	160	12	0.526	630	331.38	2.60	7.41	1185.60	2,362.67	3,879.65	3.88
A 12-15	290	12	2.988	616	1,840.61	2.60	7.41	2148.90	4,983.29	8,972.80	8.97
B 14-15	363	12	3.161	616	4,147.22	2.94	8.38	3041.58	741.71	7,930.51	7.93
		12	0.371	630							
		12	2.489	790							
D 11-14	331	12	2.489	790	2,222.12	2.77	7.89	2613.08	4,484.42	9,319.62	9.32
			0.491	521							
E 4'-9	263	12	1.569	521	3,357.17	2.77	7.89	2076.25	2,519.73	7,953.15	7.95
			3.101	819							
F 11-13	108	24	0.991	521	516.31	2.45	13.97	1508.22	1,998.77	4,023.30	4.02
G 4-7'	273	12	3.083	819	3,813.41	2.77	8.73	2382.06		6,195.47	6.20
			2.473	521							
H 9-9'	142	12	1.663	521	866.42	2.77	7.89	1121.02	1,780.79	3,768.23	3.77
H 10'-11	142	12	1.663	521	866.42	2.77	7.89	1121.02	1,757.13	3,744.57	3.74
I 3-6	235	12	1.21	521	630.41	2.77	7.89	1855.21	3,290.54	5,776.15	5.78
l 6-9	250	12	1.381	521	719.50	2.77	7.89	1973.63	3,501.08	6,194.20	6.19
SUMA			70.531					50036.83			

Resumen de la revisión de muros ante cargas horizontales, en planta alta

		REVISION	ÓN POR	CORTANT	Е ЅІ́ЅМІ	CO DE N	/UROS DE P	LANTA AL	ΓΑ (PARA	LELOS .	AL EJE '	Y)	
MURO	Kmy (t/m)	VD (t)	Xı (m)	KmyXı	Xıt (m)	KmyXıt	kmyXıtXıt	VT (t)	Vu (t)	AE (m²)	P (t)	VR (t)	VR > Vu
A 1-2	1967.50	3.23	0.00	0	-5.13	-10094	51781	-0.9714	4.62	0.41	4.39	5.21	PASA
A 2-5	452.30	0.74	0.00	0	-5.13	-2320	11904	-0.2233	1.06	0.11	1.47	1.49	PASA
A 5-8	2046.23	3.36	0.00	0	-5.13	-10497	53854	-1.0103	4.81	0.34	3.65	4.37	NO PASA
A 8-10	2667.98	4.38	0.00	0	-5.13	-13687	70217	-1.3173	6.27	0.39	4.06	4.95	NO PASA
A 10-14	4892.12	8.04	0.00	0	-5.13	-25097	128753	-2.4155	11.50	0.54	6.66	7.08	NO PASA
A 14-15	88.13	0.14	0.00	0	-5.13	-452	2319	-0.0435	0.21	0.02	0.69	0.33	PASA
B 14-15	88.13	0.14	3.35	295	-1.78	-157	279	-0.0151	0.18	0.02	0.74	0.35	PASA
C 1-1'	897.16	1.47	4.14	3714	-0.99	-888	880	-0.0855	1.72	0.24	3.22	3.20	PASA
C 2-5	452.30	0.74	4.14	1873	-0.99	-448	443	-0.0431	0.86	0.11	1.58	1.51	PASA
D 11-14	1790.68	2.94	7.18	12857	2.05	3671	7524	0.35328	3.63	0.40	4.48	5.11	PASA
E 8-9	56.95	0.09	7.91	451	2.78	158	440	0.01524	0.12	0.01	0.54	0.24	PASA
E 6'-8	193.39	0.32	7.91	1530	2.78	538	1494	0.05174	0.41	0.04	1.98	0.88	PASA
F 9-10'	108.04	0.18	9.13	986	4.00	432	1728	0.04159	0.24	0.03	3.02	0.97	PASA
F 10"-11	326.17	0.54	9.13	2978	4.00	1305	5218	0.12556	0.73	0.09	3.64	1.67	PASA
F11-13	412.46	0.68	9.13	3766	4.00	1650	6599	0.15878	0.92	0.09	2.00	1.36	PASA
H 9-9'	89.37	0.15	12.86	1149	7.73	691	5340	0.06649	0.23	0.02	1.78	0.63	PASA
H 10'-11	145.89	0.24	12.86	1876	7.73	1128	8717	0.10854	0.38	0.04	1.76	0.75	PASA
l 3-9	5520.19	9.07	14.93	82389	9.79	54069	529602	5.20389	15.70	0.58	6.79	7.54	NO PASA
SUMA	22195.01			113864	5.13		887095		53.59			47.63	NO PASA

		REVISION	ÓN POR	CORTANT	E SÍSMI	ICO DE N	JUROS DE P	'LANTA AL'	ΓA (PARA	LELOS	AL EJE .	X)	
MURO	Kmx (t/m)	VD (t)	Yı (m)	KmxYı	Yıt (m)	KmxYıt	kmxYıtYıt	VT (t)	Vυ (t)	AT (m²)	P (t)	VR (t)	VR > Vu
1 A-C	4073.17	8.68	16.40	66800	5.67	23102	131025	4.75718	14.78	0.49	5.65	6.30	NO PASA
3 G-I	2046.23	4.36	12.75	26089	2.02	4137	8363	0.85187	5.73	0.34	3.88	4.42	NO PASA
4 E-G'	1255.18	2.67	11.60	14560	0.87	1094	954	0.2253	3.19	0.28	4.22	3.78	PASA
5 A-B'	2391.20	5.10	11.39	27236	0.66	1582	1047	0.32581	5.96	0.37	6.62	5.27	NO PASA
8 A-C'	2232.40	4.76	8.53	19042	-2.20	-4908	10788	-1.0106	6.34	0.36	6.63	5.15	NO PASA
9 F-G	917.59	1.96	7.91	7258	-2.82	-2586	7288	-0.5325	2.74	0.35	7.70	5.33	PASA
9 G-H	50.41	0.11	7.91	399	-2.82	-142	400	-0.0293	0.15	0.01	7.70	1.73	PASA
9 H-I	74.26	0.16	7.91	587	-2.82	-209	590	-0.0431	0.22	0.02	1.35	0.45	PASA
10 A-C	4073.17	8.68	5.31	21629	-5.42	-22070	119581	-4.5447	14.55	0.49	7.54	6.70	NO PASA
SUMA	17113.61			183600	10.73		280037		53.67			39.14	NO PASA

Resumen de la revisión de muros ante cargas horizontales, en planta baja

		REVISIÓ	N POR (CORTANTE S	і́ѕмісо	DE MUR	OS DE PLAI	NTA BA.	JA (PAR	ALELOS	AL EJE `	Y)	
MURO	kmy (t/m)	VD (t)	Xı (m)	kmyXı	Xıt (m)	kmyXıt	kmyXıtXıt	VT (t)	Vu (t)	AT (m²)	P (t)	VR (t)	VR > Vu
A 1-2	3270.89	6.72	0.00	0.00	-4.61	-15078	69503	-3.12	10.83	0.41	8.59	6.09	NO PASA
A 2-5	564.42	1.16	0.00	0.00	-4.61	-2602	11993	-0.54	1.87	0.11	2.91	1.79	PASA
A 5-8	2392.59	4.92	0.00	0.00	-4.61	-11029	50840	-2.29	7.92	0.34	7.21	5.12	NO PASA
A 8-10	2520.83	5.18	0.00	0.00	-4.61	-11620	53565	-2.41	8.35	0.39	6.59	5.48	NO PASA
A 10-12	627.00	1.29	0.00	0.00	-4.61	-2890	13323	-0.60	2.08	0.11	3.88	2.00	PASA
A 12-15	4017.75	8.26	0.00	0.00	-4.61	-18520	85373	-3.84	13.30	0.52	8.97	7.38	NO PASA
B 11-15	3198.22	6.57	3.35	10714.04	-1.26	-4029	5075	-0.83	8.15	0.44	7.93	6.24	NO PASA
D11-14	2434.38	5.00	7.18	17478.81	2.57	6257	16083	1.30	6.93	0.40	9.32	6.13	NO PASA
E 4'-9	1682.13	3.46	7.91	13305.64	3.30	5552	18322	1.15	5.07	0.32	7.95	4.98	PASA
F11-13	570.75	1.17	9.13	5210.92	4.52	2580	11662	0.53	1.88	0.09	4.02	1.78	PASA
G 4-7'	1775.75	3.65	12.07	21433.26	7.46	13248	98832	2.74	7.03	0.33	6.20	4.74	NO PASA
H 9-9'	400.29	0.82	12.77	5111.77	8.16	3267	26656	0.68	1.65	0.08	3.77	1.62	PASA
H10'-11	400.29	0.82	12.77	5111.77	8.16	3267	26656	0.68	1.65	0.08	3.74	1.62	PASA
I 3-6	1425.42	2.93	15.00	21381.31	10.39	14811	153887	3.07	6.60	0.28	5.78	4.17	NO PASA
I 6-9	1615.70	3.32	15.00	24235.56	10.39	16788	174430	3.48	7.48	0.30	6.19	4.45	NO PASA
SUMA	26896		4.61	123983			816201		90.8			63.6	NO PASA

		REVISIÓ	N POR (CORTANTE S	і́ѕмісо	DE MUR	OS DE PLAN	NTA BA	IA (PAR	ALELOS	AL EJE X	()	
MURO	kmx (t)	VD (t)	Yı (m)	kmxYı	Yıt (m)	kmxYıt	kmxYitYit	VT (t)	Vυ (t)	AT (m²)	P (t)	VR (t)	VR > Vu
1 A-C	4411.63	12.65	16.40	72350.78	5.75	25363	145818	7.28	21.92	0.49	11.15	22.46	PASA
2 A-C	4253.84	12.19	12.92	54959.61	2.27	9653	21904	2.77	16.46	0.49	6.82	14.08	NO PASA
3 G-H'	148.71	0.43	12.75	1896.09	2.10	312	655	0.09	0.57	0.02	3.19	0.85	PASA
3 H"-I	76.86	0.22	12.75	979.93	2.10	161	339	0.05	0.29	0.01	2.96	0.73	PASA
6 G-I	2204.33	6.32	10.40	22925.05	-0.25	-553	139	-0.16	6.78	0.35	4.16	9.17	PASA
8 A-B'	1923.26	5.51	8.55	16443.89	-2.10	-4040	8488	-1.16	4.79	0.33	10.97	5.74	PASA
9 E-F	174.42	0.50	7.90	1377.89	-2.75	-480	1320	-0.14	0.40	0.04	3.39	1.15	PASA
9 F'-H	1290.93	3.70	7.90	10198.36	-2.75	-3551	9768	-1.02	2.95	0.30	15.57	6.39	PASA
9 F"-I	96.57	0.28	7.90	762.94	-2.75	-266	731	-0.08	0.22	0.01	2.50	0.67	PASA
10 A-C	3803.05	10.90	5.30	20156.17	-5.35	-20349	108886	-5.84	5.56	0.49	12.35	7.73	PASA
12 A-A'	899.22	2.58	3.70	3327.13	-6.95	-6250	43445	-1.79	0.86	0.24	4.70	3.48	PASA
SUMA	19283		10.65	205378			341493		60.8			72.5	PASA

REFUERZO DE MUROS DE MAMPOSTERÍA CON MALLA ELECTROSOLDADA

Con el uso de la Malla electrosoldada se incrementa la resistencia del muro a tensión diagonal.

Refuerzo con malla electrosoldada para el muro 1 A-C en planta alta.

$$L = 406 \text{ cm} \qquad V_{MR} = 6.30 \text{ t} \qquad AT = 4,872 \text{ cm}^2$$

$$t = 12 \text{ cm} \qquad Vu = 14.78 \text{ t}$$

Fuerza cortante resistida por la malla electrosoldada.

$$V_{sR} = F_R \eta \rho h f y h A_T;$$
 $V_{TR} = V_{mR} + V_{sR}$

Donde:

VsR = cortante resistente de la malla electrosoldada

VmR = cortante resistente del muro

VTR = cortante resistente total

FR = factor de reducción de resistencia, igual a 0.7 para mampostería confinada o reforzada.

$$\eta = \text{factor de eficiencia}; \quad \eta = 0.6 \text{ si } phfyh \le 6 \text{ kg/cm}^2 \quad \text{y} \quad \eta = 0.2 \text{ si } phfyh \ge 9 \text{ kg/cm}^2$$

fyh = esfuerzo de fluencia del acero horizontal, de la malla electrosoldada fyh = 5,000 kg/cm²

AT = área transversal efectiva del muro

ph = porcentaje de acero de refuerzo horizontal

$$ph = \frac{Ash}{Snt}$$
; $ph \min \ge \frac{3}{fyh}$; $ph \min \ge \frac{VmR}{F_R fyhA_T}$
 $ph \max \le \frac{9}{fyh}$ $piezas hueca$ $ph \max \le \frac{12}{fyh}$ $piezas mazisa$.
Proponiendo 3 tipos de malla electrosoldada, con fy = 5000 kg/cm²

i ropomenao o n	POS C
Tipo de Malla	
6x6 - 10/10	
Sh = 15.24 cm	
$Ash = 0.0924 \text{ cm}^2$	

C.	trosoldada, con t
	Tipo de Malla
	6x6 - 08/08
ſ	Sh = 15.24 cm
I	Ash = 0.1326 cm ²

Tipo de Malla
6x6 - 06/06
Sh = 15.24 cm
$Ash = 0.187 \text{ cm}^2$

Porcentaje de acero de la malla

Porcentaje de acero de la malla
$$ph_{_{10/10}} = \frac{0.0924}{(15.24)(12)} = 0.0005 \; ; \qquad ph_{_{08/08}} = \frac{0.1326}{(15.24)(12)} = 0.00073 ; \quad ph_{_{06/06}} = \frac{0.187}{(15.24)(12)} = 0.001$$

Porcentaje de acero mínimo
$$ph \min = \frac{3}{5000} = 0.0006;$$
 $ph \min = \frac{63000}{(0.7)(5000)(4872)} = 0.000369$

Porcentaje de acero máximo

$$ph \max = \frac{12}{5000} = 0.0024$$
 ; $ph \max = 0.3 \frac{15}{5000} = 0.0009$

Rige
$$6x6 - 08/08 - ph = 0.00073$$

Factor de eficiencia

$$\eta = 0.6$$
: $phfyh = (0.00073)(5000) = 3.65 kg / cm^2 \le 6kg / cm^2$

Fuerza cortante resistida por la Malla Electro soldada.

$$V_{sR} = (0.7)(0.6)(0.00073)(5000)(4872) = 7,468.78 \text{ kg} / \text{cm}^2$$

Cortante resistente Total

$$V_{TR} = V_{mR} + V_{sR}$$
; $V_{TR} = 6300 + 7,468.78 = 13,768.78 kg$

Comparando VTR con Vu

$$V_{TR} = 13.768.78 \, kg < Vu = 14,800.00 \, kg$$

∴ Al no ser suficiente el refuerzo, se opta por utilizar malla electrosoldada 6x6-08/08 en ambas caras del muro, con lo cual se rebasa el Vu.

Resumen de muros con refuerzo con malla electrosolda, para resistir cargas horizontales en planta alta y planta baja

				REFU	ERZO CC	N MALLA EL	.ECTR	OSOLDAD/	4		
MURO	Área (cm²)	t (cm)	VmR (kg)	ph min	ph max	ph Malla 6x6-08/08	n	VsR (kg)	VTR (kg)	Vu (kg)	VTR >Vu
PLANTA A	LTA										
A 5-8	3432	12	4370	0.0006	0.0009	0.00073	0.6	5261.26	9631.26	4810.00	PASA
A 8-10	3900	12	4950	0.0006	0.0009	0.00073	0.6	5978.70	10928.70	6270.00	PASA
A 10-14	5412	12	7080	0.0006	0.0009	0.00073	0.6	8296.60	15376.60	11500.00	PASA
I 3-9	5820	13	7540	0.0006	0.0009	0.00073	0.6	8922.06	16462.06	15700.00	PASA
1 A-C	4872	14	6300	0.0006	0.0009	0.00073	0.6	7468.78	21237.55	14780.00	PASA
3 G-I	3432	15	4420	0.0006	0.0009	0.00073	0.6	5261.26	9681.26	5730.00	PASA
5 A-B	3696	16	5270	0.0006	0.0009	0.00073	0.6	5665.97	10935.97	5960.00	PASA
8 A-C	3576	17	5150	0.0006	0.0009	0.00073	0.6	5482.01	10632.01	6340.00	PASA
10 A-C	4872	18	6700	0.0006	0.0009	0.00073	0.6	7468.78	21637.55	14550.00	PASA
PLANTA B	AJA										
A 1-2	4080	12	6088	0.0006	0.0009	0.00073	0.6	6254.64	12342.18	10830.18	PASA
A 5-8	3432	12	5117	0.0006	0.0009	0.00073	0.6	5261.26	10378.19	7922.07	PASA
A 8-10	3900	12	5479	0.0006	0.0009	0.00073	0.6	5978.70	11457.72	8346.69	PASA
A 12-15	5232	12	7378	0.0006	0.0009	0.00073	0.6	8020.66	15398.54	13303.11	PASA
B 11-15	4836	12	6239	0.0006	0.0009	0.00073	0.6	7413.59	13652.79	8147.69	PASA
D 11-14	3972	12	6128	0.0006	0.0009	0.00073	0.6	6089.08	12216.80	6928.95	PASA
G 4-7'	3276	15	4741	0.0006	0.0009	0.00073	0.6	5022.11	9762.96	7033.39	PASA
I 3-6	2820	18	4174	0.0006	0.0009	0.00073	0.6	4323.06	8497.05	6597.70	PASA
I 6-9	3000	19	4451	0.0006	0.0009	0.00073	0.6	4599.00	9049.78	7478.45	PASA
2 A-C	4872	20	4566	0.0006	0.0009	0.00073	0.6	7468.78	19503.72	16460.00	PASA

Nota: Para los muros: 1 A-C y 10 A-C de la planta alta; 2 A-C en planta baja, se opto de reforzar en ambas caras del muros con malla electrosoldada.

CAPÍTULO V

ANÁLISIS Y DISEÑO ESTRUCTURAL DE LA CIMENTACIÓN

DEFINICIÓN Y CLASIFICACIÓN DE CIMENTACIONES

Las cimentaciones son los elementos estructurales encargados de trasmitir las cargas de la estructura a los estratos resistentes del terreno, sin que se produzcan fallas o deformaciones excesivas en el terreno.

La subestructura o cimentación está compuesta por todos aquellos elementos de transición entre la superestructura y el suelo.

La función de una cimentación es brindar al edificio una base rígida y capaz de trasmitir al suelo las acciones que se generen, de una cimentación correcta depende el éxito de una estructura.

Las cimentaciones deben cumplir:

- _ Trasmitir al terreno las cargas estáticas y dinámicas.
- _ Buscar que los asentamientos no superen los limites admisibles.
- _ Prevenir los asentamientos por sobre consolidación.
- Prevenir la licuefacción del suelo en caso de sismos.
- _ Trabajar en conjunto, limitando los desplazamientos diferenciales, horizontales y verticales, entre apoyos.

Dado que durante el diseño de la cimentación es difícil controlar o mejorar las propiedades mecánicas del subsuelo, los asentamientos absolutos como diferenciales se deben controlar mediante las características de los elementos que forman la cimentación.

Cuando es factible elegir el sitio donde se ubicará la estructura, es conveniente sea en un terreno firme, libre de las amplificaciones locales del movimiento del terrenos blandos, y de asentamientos excesivos y pérdida de capacidad de apoyo que ocurre en algunas arenas poco compactas.

Para el diseño de una cimentación debemos conocer la capacidad de carga del terreno. Esta capacidad se determina generalmente mediante un estudio de mecánica de suelos. La carga admisible depende principalmente de los asentamientos, los cuales deben ser compactibles con la capacidad de deformación de la estructura.

	permisibles		

- _ Tipo de terreno
- Tipo de construcción
- _ Los asentamientos que se pueden producir
- _ Las dimensiones de la cimentación
- _ Tiempo de carga de la construcción
- Las vibraciones que pueden afectar a la construcción

Clasificación

Las cimentaciones se clasifican en función a su profundidad en superficiales y profundas. Las superficiales que son las mas comunes en casa habitación, se dividen en: losas de cimentación, retículas y zapatas. Estas ultimas a la vez se dividen en: zapatas aisladas, zapatas combinadas, zapatas corridas bajo columnas y zapatas corridas bajo muro.

Zapatas

Las zapatas son cimentaciones superficiales que se usan cuando las descargas de la estructura son relativamente pequeñas y tenemos a poca profundidad un estrato con la capacidad de carga y rigidez necesarias para aceptar las presiones transmitidas por la cimentación sin que ocurran fallas o hundimientos excesivos

Por su forma de trabajar la zapatas se clasifican:
Aisladas
Combinadas
Continuas bajo columnas
Continuas bajo muros
Arriostradas

Zapatas aisladas

Es aquella zapata en la que descansa o recae una sola columna, el uso de las zapatas aisladas está limitado a aquellos casos en que el terreno tiene una resistencia media o alta en relación con las cargas, y es suficientemente homogéneo como para que los asentamientos diferenciales que se puedan presentar no sean importantes.

Zapatas corridas

Las zapatas corridas pueden ser bajo columnas o muros, son cimentaciones de gran longitud en comparación con su sección transversal, y se usan cuando.

- 1.- Se trata de cimentar un elemento continuo, como por ejemplo un muro.
- 2.- Se busca homogenizar los asentamientos de una alineación de columnas.
- 3.- Se guieren reducir los esfuerzos en el terreno.
- 4.- Para puntear defectos y heterogeneidades del terreno.
- 5.- Por la proximidad de zapatas aisladas, resulta más sencillo realizar una zapata corrida.

Zapatas corridas bajo muro

La carga que recae sobre la zapata es uniformemente distribuida, no hay trasmisión de momento. Para el diseño se toma un segmento de longitud unitaria.

Losas de cimentación

Las losas de cimentación se emplean en suelos poco resistentes, para integrar superficialmente la cimentación de varias columnas. Cuando la superficie de la cimentación supera el 66% del área total, es recomendable utilizar losa de cimentación.

Las losas de cimentación pueden ser de varios tipos, lo más comunes son:

- a) Losa plana de espesor uniforme.
- b) Losa plana con mayor espesor bajo columnas.
- c) Retícula
- d) Losa con muro de sótano (cajón de cimentación).

Análisis y diseño estructural de la cimentación

Trasmisión de cargas para zapatas de lindero

Para el diseño de la cimentación se revisará en que tramo ó eje se presenta la carga mayor por metro lineal, para esto se hará la bajada de cargas para cada tramo y se diseñará con la carga mas desfavorable.

En la siguiente tabla se presenta el análisis resumido para cada tramo.

	long (m)			Planta Ba	ıja				Planta Al	ta			
Tramo		At (m²)	Wlosa (kg/cm²)	Wlosa (kg)	Wmuro (kg/m²)	Wmuro (kg)	At (m²)	Wlosa (kg/cm²)	Wlosa (kg)	Wmuro (kg/m²)	WMuro (kg)	W/ml (kg/m)	
A 1-2	3.40	2.64	717.00	1893.60	741.00	2519.40	2.64	737.00	1946.42	741	2519.40	2611.42	
A 2-5	1.53	0.47	725.00	342.93	741.00	1133.73	0.47	737.00	348.60	741	1133.73	1933.98	
A 5-8	2.86	1.82	868.00	1582.36	741.00	2119.26	1.82	870.00	1586.01	741	2119.26	2974.12	
A 8-10	3.25				789.45	2565.71	2.34	737.00	1723.84	741	2408.25	2060.86	
A 10-12	1.60	0.53	710.00	373.46	789.45	1263.12	1.63	737.00	1199.84	741	1185.60	2513.76	
A 12-15	3.63	2.99	696.00	2079.65	886.35	3217.45	3.06	737.00	2391.55	741	2689.83	2859.09	
							0.26	515.00					
I 3-6	2.35	1.21	601.00	727.21	789.45	1855.21	2.16	737.00	1591.92	741	1741.35	2517.31	
I 6-9	2.50	1.38	601.00	829.98	789.45	1973.63	2.36	737.00	1741.53	741	1852.50	2559.05	
1 A-C	4.06	3.71	717.00	2662.22	741.00	3008.46	3.71	737.00	2736.48	741	3008.46	2811.73	

Nota: En el tramo A 5-8, se agrego 1.098 t producto de la descarga del tinaco.

En este caso el tramo A 5-8 resulto ser el más desfavorable.

Trasmisión de cargas para zapatas de centro

En la siguiente tabla se presenta el análisis resumido para cada tramo.

				Planta Baja	a				Planta Al	Ita		
Tramo	long (m)	At (m ²)	Wlosa (kg/cm²)	Wlosa (kg)	Wmuro (kg/m²)	WMuro (kg)	At (m²)	Wlosa (kg/cm²)	Wlosa (kg)	Wmuro (kg/m²)	WMuro (kg)	W/ml (kg/m)
B11-15	4.03	2.50	870.00	4636.73	886.35	3571.99	0.00	0.00	0.00		0.00	2036.90
		3.16	696.00	2200.06								
		0.37	710.00	263.41								
D11-14	4.31	2.49	870.00	2460.52	789.45	3402.53	2.49	515.00	1534.70	912	3930.72	2628.42
		0.49	601.00				0.49	515.00				
E 4-9	3.05	3.10	899.00	3729.87	789.45	2407.82	3.00	737.00	2579.50	741	2260.05	3599.10
		1.57	601.00				0.50	737.00				
F 11-13	1.08	0.99	601.00	595.59	789.45	852.61	0.99	737.00	729.63	741	800.28	2757.51
G 3-6	2.35	1.16	601.00	1257.24	789.45	1855.21				741	1741.35	2065.44
		0.62	899.00									
G 6-9	2.50	1.31	601.00	3000.65	789.45	1973.63				741	1852.50	2730.71
		2.46	899.00									
H 9-11	3.80	3.33	601.00	1998.93	789.45	2999.91	3.33	515.00	1712.89	912	3465.60	2678.24
2 A-C	4.06	3.71	717.00	4268.82	741.00	3008.46				741	3008.46	2533.43
		2.22	725.00									
3 G-I	2.93	1.96	601.00	1178.56	789.45	2313.09	2.49	737.00	1834.39	741	2171.13	2558.76
6 G-I	2.93	3.52	601.00	2115.52	789.45	2313.09						1511.47
8 A-À	2.66	2.77	868.00	2400.89	789.45	2099.94	2.77	870.00	4594.57	741	1971.06	4160.32
							2.97	737.00				
9 E-F	1.08	2.03	601.00	2674.31	789.45	852.61						3265.67
		1.62	899.00									
9 F-H	3.65	2.60	899.00	4691.83	789.45	2881.49	3.89	737.00	5067.14	1083	3952.95	4546.14
		2.95	601.00				3.06	515.00				
		0.97	601.00				0.85	737.00				
9 H-I	2.23	0.96	601.00	573.96	789.45	1760.47	0.98	737.00	720.79	741	1652.43	2111.05
10 A-C	4.06	0.30	601.00	1794.51	789.45	3205.17	3.66	737.00	5514.23	741	3008.46	3330.63
		2.27	710.00				3.82	737.00				
12 A-B	4.06	1.73	710.00	2868.80	886.35	3598.58						1592.95
		2.36	696.00									

En este caso el tramo 9 F-H resulto ser el mas desfavorable

V.1. ZAPATA CORRIDA DE LINDERO BAJO MURO

Las propiedades del suelo se obtuvieron en un previo estudio de mecánica de suelos, que presentaron los siguientes datos.

Datos:

Peso volumétrico del suelo $(\gamma_{j}) = 1.3 \text{ t/m}^3$	Fc = 1.4
Esfuerzo de diseño del terreno $(q r) = 5 t/m^2$	C = 0.24 m
Profundidad de desplante (Df) = 1.20 m	rec = 5 cm
P vol. del material de la zapata $(\gamma_c) = 2.4 \text{ t/m}^3$	$f'c = 200 \text{ kg/cm}^2$
F_R (cortante) = 0.8	$fy = 4200 \text{ kg/cm}^2$
F_R (flexión) = 0.9	

1.- Cálculo de la descarga total de la cimentación

Diseñaremos para el caso más desfavorable E 5-8, P = 2.974 t/m

Ancho de la Zapata

$$B = 1.25 \left(\frac{P}{q_r}\right); \qquad B = 1.25 \left(\frac{2.974}{5}\right) = 0.74 \ m \approx 0.75 \ m$$

Peso propio de la zapata

$$W_S = \left(\frac{\gamma_c + \gamma_s}{2}\right) B L D_f$$
 donde: Ws = peso propio supuesto de la zapata
 $W_S = \left(\frac{1.3 + 2.4}{2}\right) (0.75)(1)1.2) = 1.666 t/m$ Us = peso propio supuesto de la zapata
 $U_S = \left(\frac{1.3 + 2.4}{2}\right) (0.75)(1)1.2) = 1.666 t/m$ Us = peso propio supuesto de la zapata
 $U_S = \left(\frac{1.3 + 2.4}{2}\right) (0.75)(1)1.2) = 1.666 t/m$ Us = peso propio supuesto de la zapata
 $U_S = \left(\frac{1.3 + 2.4}{2}\right) (0.75)(1)1.2) = 1.666 t/m$ Us = peso propio supuesto de la zapata
 $U_S = \left(\frac{1.3 + 2.4}{2}\right) (0.75)(1)1.2) = 1.666 t/m$ Us = peso propio supuesto de la zapata

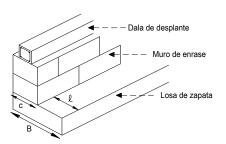
Descarga total (PT)

$$P_T = P + W_s$$
; $P_T = 2.974 + 1.666 = 4.64 t/m$

2.- Dimensionamiento de la zapata

$$B = \frac{P_T}{q_r}$$
; $B = \frac{4.64}{5} = 0.93 \text{ m} \approx 0.95 \text{ m}$

3.- Cálculo de la presión de contacto


$$q = \frac{P_T}{BL} \le q_r;$$
 $q = \frac{4.63}{(0.95)(1)} = 4.87 t/m^2 < q_r$

4.- Cálculo de la presión neta última

$$q_{\scriptscriptstyle n} = \frac{P}{BL}; \qquad q_{\scriptscriptstyle nu} = F_{\scriptscriptstyle c} \ q_{\scriptscriptstyle n} \qquad \text{donde:} \ q_{\scriptscriptstyle n} = \text{Presión neta del terreno}$$

$$q_{\scriptscriptstyle nu} = \text{Presión neta ultima del terreno}$$

$$q_{\scriptscriptstyle n} = \frac{2.974}{(0.95)(1)} = 3.13 \ t \ / \ m^2; \ q_{\scriptscriptstyle nu} = (1.4)(3.13) = 4.38 \ t \ / \ m^2$$

5.- Diseño de la losa

a) Por cortante

Vuelo de la zapata

$$\ell = (1.1 - 0.24) = 0.86 \text{ m}$$

Esfuerzo cortante resistente

$$V_{CR} = (0.5)(0.8)\sqrt{160} = 5.06 \text{ kg/cm}^2$$

Peralte

$$d = \frac{(0.438)(86)}{(5.06 + 0.438)} = 6.851 cm < d \min = 10 cm$$
 Por lo tanto se tomará d = 10 cm

Espesor total

$$H = d + recubrimiento$$

$$H = 10 + 5 = 15 cm$$

Revisión del peso real

MATERIAL	ESPESOR (m)	(m) ANCHO (m) PESO VOL. (t /m ³⁾		TOTAL (t/m)
W plantilla	0.05	0.95	2.2	0.105
W losa	0.15	0.95	2.4	0.342
muro _ enrase	1.00	0.24	1.8	0.432
W relleno	1.00	0.71	1.3	0.923

W real = > Ws = 1.66 t/m 1.802

Cuando W real es mayor que el supuesto, pero no más que un 10 %, se acepta las dimensiones de la zapata. En este caso se acepta, se excede 9%.

b) Por flexión

Sentido transversal

Momento último

$$Mu = \frac{q_{nu} (\ell + c/4)^2}{2}$$
; $Mu = \frac{(4.38)((0.86 + 0.24/4)^2)}{2} = 1.85 \text{ t} - \text{m}$

Cálculo del acero requerido

$$\rho = \frac{f''c}{fy} \left[1 - \sqrt{1 - \frac{2Mu}{F_R bd^2 f''c}} \right]$$

$$\rho = \frac{f''c}{fy} \left[1 - \sqrt{1 - \frac{2Mu}{F_Rbd^2f''c}} \right]; \qquad \rho = \frac{136}{4200} \left[1 - \sqrt{1 - \frac{(2)(185,000.00)}{(0.9)(100)(10^2)(136)}} \right] = 0.0053$$

Comparando con pmin y pmax

pmin = 0.00236

$$pmax = 0.012$$

Área de acero

$$As = \rho bd$$
; $As = (0.0053)(100)(10) = 5.33 \text{ cm}^2$

Comparando con Ast

$$Ast = \frac{660 \ x_1}{fy(x_1 + 100)} 1.5b; \ Ast = \frac{(660)(15)}{(4200)(15 + 100)} (1.5)(100) = 3.07 \ cm^2; \ Ast < As \ \therefore \ utilizarenos \ As$$

Proponiendo varillas de #3

$$s = \frac{(100)(0.71)}{5.33} = 13.32 \ cm$$

∴ Se usarán Varilla de #3 @ 12 cm c.a.c. en el sentido corto

Sentido Longitudinal

Como la zapata sólo se flexiona en el sentido transversal, por lo tanto en el sentido longitudinal únicamente se colocará acero por temperatura.

$$s = \frac{(100)(0.71)}{3.07} = 23.12 \ cm$$

·. Se usarán Varilla de # 3 @ 20 cm c.a.c. en el sentido largo

RODRIGO ALDANA SÁNCHEZ

Dala de desplante

Pág.124

V.2. ZAPATA CORRIDA DE CENTRO BAJO MURO

1.- Cálculo de la descarga total de la cimentación

Diseñaremos para el caso mas desfavorable $\,9\,\,\text{F-H}$, $P=4.546\,\,\text{t/m}$

Ancho de la zapata

$$B = 1.25 \left(\frac{P}{q_r}\right)$$
; $B = 1.25 \left(\frac{4.546}{5}\right) = 1.14 \ m \approx 1.15 \ m$

Peso propio de la zapata

$$Ws = \left(\frac{\gamma_c + \gamma_s}{2}\right) BLD_f; \quad Ws = \left(\frac{1.3 + 2.4}{2}\right) (1.15)(1)1.2) = 2.553 \ t/m$$

Descarga Total (PT)

$$P_T = P + W_s$$
; $P_T = 4.546 + 2.553 = 7.099 t/m$

2.- Dimensionamiento de la zapata

$$B = \frac{P_T}{q_r}; B = \frac{7.099}{5} = 1.42 m \approx 1.45 m$$

3.- Cálculo de la presión de contacto

$$q = \frac{P_T}{BL} \le q_r$$
; $q = \frac{7.099}{(1.45)(1)} = 4.90 \ t/m^2 < q_r$

4.- Cálculo de la presión neta última

$$q_n = \frac{4.90}{(1.45)(1)} = 3.38 \ t/m^2;$$
 $q_{nu} = (1.4)(3.38) = 4.73 \ t/m^2$

5.- Diseño de la losa

a) Por cortante

Vuelo de la zapata

Peralte de la zapata

$$d = \frac{q_{nu} \ \ell}{V_{CR} + q_{nu}}; \qquad d = \frac{(0.490)(60.5)}{(5.06 + 0.490)} = 5.341 \ cm < d \ \min = 10 \ cm$$

Por lo tanto d = 10 cm

Espesor total

$$H = d + recubrimiento$$
 $H = 10 + 5 = 15cm$

Revisión del peso real

MATERIAL	ESPESOR (m)	ANCHO (m)	PESO VOL. (t /m 3)	TOTAL (t/m)
W plantilla	0.05	1.45	2.2	0.160
W losa	0.15	1.45	2.4	0.522
W muro _ enrase	1.00	0.24	1.8	0.432
W relleno	1.00	1.21	1.3	1.573

W real = 2.687 > Ws = 2.553 t/m

 \dots Se acepta, se excede un 5 %

RODRIGO ALDANA SÁNCHEZ

b) Por flexión

Sentido transversal

Momento último

$$Mu = \frac{q_{nu} (\ell + c/4)^2}{2}; \quad Mu = \frac{(4.9)(0.605 + 0.24/4)^2}{2} = 1.083 t - m$$

Cálculo del acero requerido.

$$\rho = \frac{f''c}{fy} \left[1 - \sqrt{1 - \frac{2Mu}{F_R b d^2 f''c}} \right]; \quad \rho = \frac{136}{4200} \left[1 - \sqrt{1 - \frac{(2)(108300)}{(0.9)(100)(10^2)(136)}} \right] = 0.003 \quad > \quad \rho \min = 0.0023$$

Área de acero

$$As = (0.003)(100)(10) = 3.00 \text{ cm}^2$$

$$Ast = \frac{660x_1}{fy(x_1 + 100)} 1.5b; Ast = \frac{(660)(15)}{(4200)(15 + 100)} (1.5)(100) = 3.07 \, cm^2; Ast > As :: utilizaremos Ast$$

Proponiendo varillas del #3

$$s = \frac{(100)(0.71)}{3.07} = 23.12 \ cm$$

.. Se usarán Varilla de # 3 @ 20 cm c.a.c. en el sentido corto

Sentido Longitudinal

Como la zapata sólo se flexiona en el sentido transversal, por lo tanto en el sentido longitudinal únicamente se colocará acero por temperatura.

∴ Se usarán Varilla de #3 @ 20cm c.a.c. en el sentido largo

V.3. AMPLIACIÓN BAJO CASTILLO QUE TRASMITEN CARGAS PUNTUALES EN ZAPATAS DE LINDERO

Se diseñará la ampliación como si fuera una zapata aislada sujeta a carga axial.

A continuación se diseña una ampliación en zapata de lindero, al castillo X 2-C que transmite una carga puntual de CP = 6.397 t

Datos de la zapata de lindero

$$P = 4.64 \text{ t/m}$$

$$B = 0.95 cm$$

$$C = 24 \text{ cm}$$

$$Az = 0.95 \text{ m}^2$$

1) Descarga total.

$$P_T = C_P + P$$

$$P_T = 6.397 + (4.64)(0.95) = 10.81t$$

P = carga sobre la zapata por el ancho de la zapata

 $P_T = 6.397 + (4.64)(0.95) = 10.81t$ P = carga sobre la zapat 2) Área requerida para absorber la carga (dimensionamiento)

Donde: Az = área requerida $Az = \frac{P}{q_r}$ P = peso total

$$Az = \frac{P}{a}$$

qr = esfuerzo de diseño del terreno

$$Az_{requerida} = \frac{10.81}{5} = 2.16 \ m^2$$

$$Az_{existente} = (1)(10.95) = 0.95 m^2 < Az_{requeridd} = 2.16 m^2$$
 ... Se requiere hacer una ampliación

3) Dimensionamiento de la ampliación

$$B = \sqrt{Az_{requerida}}$$

$$B = \sqrt{2.16} = 1.47 \ m \approx 1.5 \ m$$
; $Az_{dise\tilde{n}o} = (1.5)(1.5) = 2.25 \ m^2$

4) Presión neta última

$$q_{nu} = Fc \frac{P_T}{A_T}; \quad q_{nu} = 1.4 \frac{10.81}{2.25} = 6.72 t/m^2$$

5) Cortante

a) Peralte requerido por cortante como viga ancha

* Vuelo de la zapata

$$\ell = B - C$$
; $\ell = (1.5 - 0.24) = 1.26 m$

* Peralte de la zapata

$$d = \frac{q_{nu}\ell}{v_{CR} + q_{nu}};$$
 $d = \frac{(0.672)(126)}{(5.06 + 0.672)} = 14.78 \text{ cm}$

b) Peralte requerido por cortante por penetración

$$\left[\begin{array}{c} q_{\,nu} \\ 2 \end{array} + 2 \ V_{CR} \ \right] d^2 \ + \ \left[(\frac{q_{\,nu}}{2} + V_{CR}) * (2 \ C_1 + C_2) \right] d \ + \ q_{\,nu} \ C_1 \ C_2 - Pu \\$$

Donde:

C₁ = dimensión menor del dado

C₂ = dimensión mayor del dado

d = peralte

Pu = carga última aplicada, Fc = 1.1

VcR = resistencia de diseño del concreto

* Carga última aplicada

$$Pu = FcP$$
; $Pu = (1.1)(10.81) = 11.89 t$

* Resistencia de diseño del concreto

$$V_{CR} = \begin{cases} F_R \sqrt{f_c^*} & V_{CR} = 0.8\sqrt{160} = 10.12 \ kg / cm^2 \\ F_R \left(0.5 + \frac{c_1}{c_2} \right) \sqrt{f_c^*} & V_{CR} = 0.8 \left(0.5 + \frac{24}{15} \right) \sqrt{160} = 21.25 \, kg / cm^2 \end{cases}$$

*Resolviendo la ecuación

$$\left[\frac{0.672}{2} + (2)(10.12)\right]d^2 + \left[\left(\frac{0.672}{2} + 10.12\right)(2)(24 + 15)\right]d + \left(\left(0.672\right)(24)(15)\right) - 11,890 = 0$$

$$20.58 \ d^2 + 658.74 \ d^{-11,643}.47 = 0$$

d = 14.78 cm < d = 14.85 cm Por lo tanto utilizaremos d = 15 cm

*Espesor total

$$H = 15 + 5 = 20 \ cm$$

6) Por flexión

a) Sentido transversal

Momento último

$$Mu = \frac{q_{nu} \ell^2}{2}$$
; $Mu = \frac{(6.73)(1.26^2)}{2} = 5.34 t/m$

Cálculo del acero requerido

$$\rho = \frac{136}{4200} \left[1 - \sqrt{1 - \frac{(2)(534,000)}{(0.9)(100)(15^2)(136)}} \right] = 0.00704; \quad \rho > \rho \text{ min } \therefore \text{ utilizaremos } \quad \rho$$

Área de acero

$$As = (0.00704)(100)(15) = 10.56 \text{ cm}^2$$

$$Ast < As$$
: $utilizaremos$ $As = 10.56 cm^2$

Proponiendo varillas del # 4

$$s = \frac{(100)(1.27)}{10.56} = 12.03 \ cm$$

... Se usarán Varilla de # 4 @ 12 cm c.a.c. en el sentido corto

b) Sentido Longitudinal

Vuelo de la zapata

$$\ell = \frac{B - C}{2}$$

donde: B = ancho de la zapata

C = ancho del dado en el sentido largo

$$\ell = \frac{1.5 - 0.15}{2} = 0.675cm$$

Momento último

$$Mu = \frac{q_{nu} \ell^2}{2};$$

$$Mu = \frac{q_{nu} \ell^2}{2}; \qquad Mu = \frac{(6.73)(0.675^2)}{2} = 1.53 t/m$$

Cálculo del acero requerido.

$$\rho = \frac{136}{4200} \left[1 - \sqrt{1 - \frac{(2)(15400000)}{(0.9)(100)(13^2)(136)}} \right] = 0.0019 \quad \rho < \rho \, \text{min} : utilizaremos \quad \rho \, \text{min} = 0.0023$$

Área de acero

$$As = (0.0023)(100)(15) = 3.45 \text{ cm}^2$$
 $Ast > As : utilizaremos$ $Ast = 3.92 \text{ cm}^2$

$$Ast > As$$
 · utilizaremos $Ast = 3.92 \text{ cm}^2$

Proponiendo varillas del # 3

$$s = \frac{(100)(0.71)}{3.92} = 18.11 \ cm$$

... Se usarán varilla de # 3 @ 18 cm c.a.c. en el sentido Largo

V.4. AMPLIACIÓN BAJO CASTILLO QUE TRASMITEN CARGAS PUNTUALES **EN ZAPATAS DE CENTRO**

Se diseñara la ampliación como si fuera una zapata aislada sujeta a carga axial.

A continuación se diseña una ampliación en zapata de lindero, al castillo X 8-C que transmite una carga puntual de CP = 16.61 t

Datos de la zapata de lindero

$$P = 7.099 \text{ t/m}^2$$

$$B = 1.45 cm$$

$$C = 24cm$$

$$Az = 1.4m^2$$

1) Descarga total.

$$P_T = C_P + P$$

$$P_T = 16.61 + ((7.099)(1.45)) = 26.90 t$$

2) Área requerida para absorber la carga (dimensionamiento)

$$Az_{requerida} = \frac{26.90}{5} = 5.38 \ m^2$$

 $Az_{existente} = (1)(1.45) = 1.45 \ m^2 < Az_{requerida} = 5.38 \ m^2$

... Se requiere hacer una ampliación

3) Dimensionamiento de la ampliación

$$B = \sqrt{Az}_{requerida}$$
; $B = \sqrt{5.30} = 2.30$ donde: B= ampliación requerida $B = \sqrt{5.38} = 2.32$ $m \approx 2.35$ m

$$A_{Z_{diseño}} = (2.35)(2.35) = 5.52 m^2$$

4) Presión neta última

$$q_{nu} = Fc \frac{P_T}{Az};$$
 $q_{nu} = 1.4 \frac{26.90}{5.52} = 6.82 t/m^2$

5) Cortante

a) Peralte requerido por cortante como viga ancha

Vuelo de la zapata

$$\ell = \frac{B-C}{2}$$
; $\ell = \frac{2.35-0.24}{2} = 1.06 \text{ cm}$

$$d = \frac{q_{nu}\ell}{v_{CR} + q_{nu}}; \quad d = \frac{(0.682)(106)}{(5.06 + 0.682)} = 12.53 \text{ cm}$$

b) Peralte requerido por cortante por penetración

$$[\,q_{\it nu}\,+4V_{\it CR}\,]\,\,d^{\,2}+[(\,q_{\it nu}\,+2\,V_{\it CR}\,)\,\,(\,\,C_{\it 1}+C_{\it 2}\,)]d+\,q_{\it nu}\,\,C_{\it 1}\,\,C_{\it 2}-Pu$$
 Donde: C1 = dimensión menor del dado

Donde:

C₂ = dimensión mayor del dado

d = peralte

Pu = Carga ultima aplicada, Fc=1.1

Vcr =r resistencia de diseño del concreto

Carga última aplicada

$$Pu = FcP$$
; $Pu = (1.1)(26.90) = 29.59 t$

Resistencia de diseño del concreto

$$V_{CR} \ = \begin{cases} F_R \ \sqrt{f_c^*} & V_{CR} = 0.8\sqrt{160} = 10.12 \ kg/cm^2 \\ \\ F_R \ \left(0.5 + \frac{c_1}{c_2}\right) \sqrt{f_c^*} & V_{CR} = 0.8 \left(0.5 + \frac{24}{15}\right) \sqrt{160} = 21.25 \ kg/cm^2 \end{cases}$$

Resolviendo la ecuación

$$[(0.682 + 4)(10.12)]d^{2} + [0.682 + (2)(10.12)(24 + 15)]d + (0.682)(24)(15) - 29,590 = 0$$

$$41.16 \ d^2 + 815.96d - 29,348.38 = 0$$

 $d = 18.57 \ cm > d = 12.53 \ cm$

Por lo tanto utilizaremos d = 19 cm

Espesor total

$$H = 19 + 5 = 24 m$$

6) Por flexión

a) Sentido transversal

Momento último

$$Mu = \frac{q_{nu} \ell^2}{2}; \qquad Mu = \frac{(6.82)(1.06^2)}{2} = 3.80 t/m$$

Cálculo del acero requerido.

$$\rho = \frac{136}{4200} \left[1 - \sqrt{1 - \frac{(2)(380,000.00)}{(0.9)(100)(19^2)(136)}} \right] = 0.0029 \qquad \rho > \rho \text{ min } \therefore \text{ utilizaremos} \quad \rho = 0.0029$$

Área de acero

$$As = (0.0029)(100)(19) = 5.53 \, cm^2$$

$$Ast = \frac{(660)(24)}{4200(24+100)}(2.35)(100) = 4.56 \ cm^2 \ Ast < As \ \therefore utilizaremos \quad As$$

Proponiendo varillas del # 3

$$s = \frac{(100)(0.71)}{5.53} = 12.83 \ cm$$

... Se usaran Varilla de #3 @ 12 cm c.a.c. en el sentido corto

b) Sentido longitudinal

Vuelo de la zapata

$$\ell = \frac{B-C}{2}$$
 donde: B = ancho de la zapata
$$\ell = \frac{2.35-0.15}{2} = 1.1 cm$$

Momento último

$$Mu = \frac{q_{nu} \ell^2}{2}; \qquad Mu = \frac{(6.82)(1.11^2)}{2} = 4.13t/m$$

Cálculo del acero requerido.

$$\rho = \frac{136}{4200} \left[1 - \sqrt{1 - \frac{(2)(413,000.00)}{(0.9)(100)(19^2)(136)}} \right] = 0.0032 \qquad \rho > \rho \text{ min } \therefore \text{ utilizaremos} \quad \rho = 0.0032$$

Área de acero

$$As = (0.0032)(100)(19) = 6.04 cm^2$$
 $Ast < As$: utilizaremos As Proponiendo varillas del # 3

$$s = \frac{(100)(0.71)}{6.04} = 11.80 \ cm$$

.. Se usarán Varilla de #3 @ 12 cm c.a.c. en el sentido corto

En seguida se muestran 2 tablas con un resumen de las ampliaciones bajo castillo que trasmiten cargas puntuales, en zapatas de centro como zapatas de lindero.

AMPLIACIÓN BAJO CASTILLO QUE TRASMITEN CARGAS PUNTUALES

EN ZAPATAS DE LINDERO

EN ZAPATAS DE LINDERO														
	CARGA5					DIMENSIONAMIENTO								
CAS- TILLO	ELEMENTO DEL QUE RECIBE LA CARGA.	P (t)	PT (t)	Ρυ (t)	Az reque- rido (m²)	B calcu- lado (m)	B de diseño (m)	Az de diseño (m²)	qπυ (t/m²)	€ (m)	como viga ancha d (cm)	por pene- traci- on d	de dise- ño d	espesor total H (cm)
X 15-A	T-7	1.00	5.41	5.95	1.08	1.04	1.20	1.44	5.25	0.96	9.03	7.18	15	20
X 14-A	T-1	1.27	5.68	6.25	1.14	1.07	1.20	1.44	5.52	0.96	9.44	7.50	15	20
X 2-A	T-6	2.55	6.95	7.65	1.39	1.18	1.20	1.44	6.76	0.96	11.32	8.81	15	20
X 1-C	T-24	2.55	6.95	7.65	1.39	1.18	1.20	1.44	6.76	0.96	11.32	8.81	15	20
X 5-A	T-15	6.40	10.81	11.89	2.16	1.47	1.50	2.25	6.72	1.26	14.78	12.66	15	20
EN ZAP	ATA DE CENTRO													
X 15-B	T-7	1.00	11.29	12.42	2.26	1.50	1.65	2.72	5.81	0.71	7.26	9.99	15	20
X 14-D	T-1,T-8	2.96	13.25	14.58	2.65	1.63	1.65	2.72	6.82	0.71	8.37	11.22	15	20
X 11-B	T-9	1.47	11.76	12.94	2.35	1.53	1.65	2.72	6.05	0.71	7.53	10.85	15	20
X 11-H	T-2,T-9	3.53	13.82	15.21	2.76	1.66	1.65	2.72	7.11	0.71	8.68	11.57	15	20
X 10-A'	T-12	0.57	10.86	11.95	2.17	1.47	1.65	2.72	5.59	0.71	7.01	9.71	15	20
X 8-A'	T-4,T-12,T-14	2.26	12.55	13.80	2.51	1.58	1.65	2.72	6.45	0.71	7.97	10.79	15	20
X 8-E	T-4,T-14	3.74	14.03	15.44	2.81	1.68	1.65	2.72	7.22	0.71	8.80	11.68	15	20
X 9-G	T-5	2.37	12.66	13.93	2.53	1.59	1.65	2.72	6.51	0.71	8.04	10.86	15	20
X 3-G	T-5	1.31	11.60	12.76	2.32	1.52	1.65	2.72	5.97	0.71	7.44	10.19	15	20
X 2-C	T-6,T-11	2.55	12.84	14.12	2.57	1.60	1.65	2.72	6.60	0.71	8.14	10.97	15	20
X 14-B	T-1,T-8	10.54	20.83	22.92	4.17	2.04	2.05	4.20	6.94	0.91	10.92	15.56	16	21
X 11-D	T-2,T-9	8.09	18.38	20.22	3.68	1.92	2.05	4.20	6.12	0.91	9.77	14.79	16	21
X 9-F	T-10	5.92	16.22	17.84	3.24	1.80	2.05	4.20	5.40	0.91	8.73	13.09	16	21
X 4-6	T-5,T-13	10.29	20.58	22.64	4.12	2.03	2.05	4.20	6.86	0.91	10.80	15.43	16	21
X 4-E	T-13	4.50	14.79	16.27	2.96	1.72	2.05	4.20	4.93	0.91	8.03	12.27	16	21
X 5-C	T-3,T-11,T-15	8.90	19.19	21.11	3.84	1.96	2.05	4.20	6.39	0.91	10.15	14.71	16	21
X 11-F	T-2,T-9,T-10	13.03	23.33	25.66	4.67	2.16	2.35	5.52	5.91	1.06	11.04	16.89	19	24
X 10-C	T-3,T-11	13.23	23.52	25.88	4.70	2.17	2.35	5.52	5.96	1.06	11.12	16.99	19	24
X 8-C	T-3,T-4,T-11,T-14	16.61	26.90	29.59	5.38	2.32	2.35	5.52	6.82	1.06	12.53	18.57	19	24

Zapata de lindero

Datos

 $qr = 5 t/m^2$

 $P = 4.64 \text{ t/m}^2$

B = 0.95 cm

 $Az = 0.95 \text{ m}^2$

C = 24 cm

Dado = 24x15 cm

Rec = 5 cm

 $V_{CR} = 10.12 \text{ kg/cm}^2$

fy = 4200 kg/cm²

f'c = 200 kg/cm²

pmin = 0.00236

pmax = 0.012

Zapata de centro

 $qr = 5 t/m^2$

 $P = 7.099 \text{ t/m}^2$

B = 1.45 cm

Az = 1.45 m²

C = 24 cm

Dado = 24x15 cm

Rec = 5 cm

 $V_{CR} = 10.12 \text{ kg/cm}^2$

fy = 4200 kg/cm²

f'c = 200 kg/cm²

pmin = 0.00236

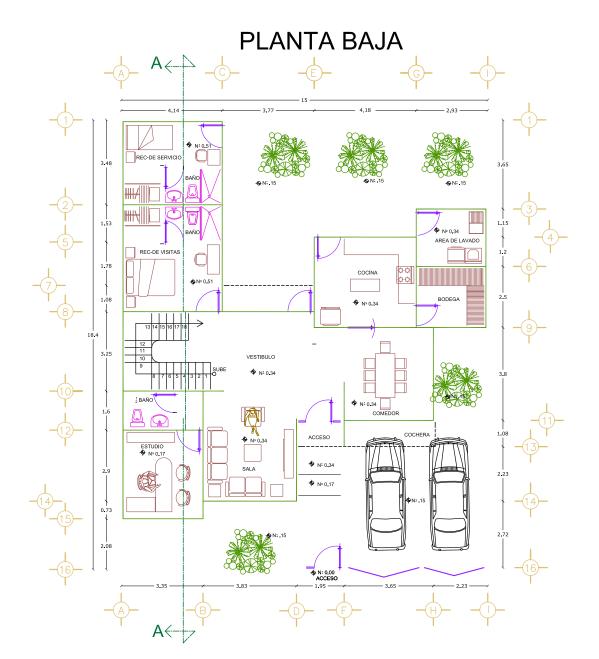
pmax = 0.012

pmax = 0.012

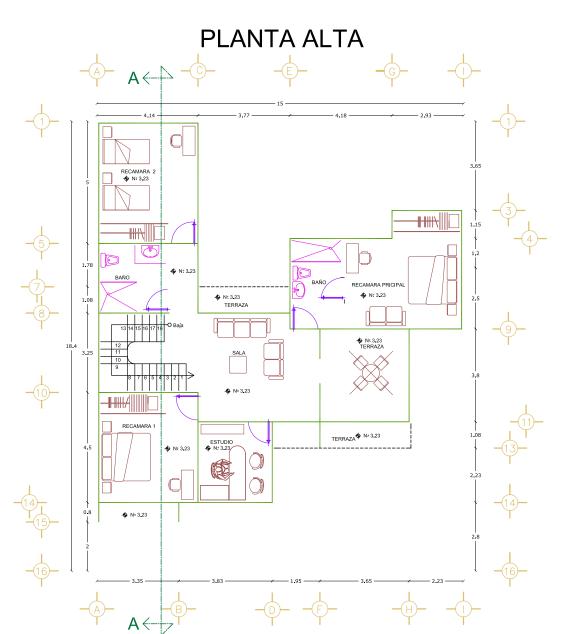
AMPLIACIÓN BAJO CASTILLO QUE TRASMITEN CARGAS PUNTUALES

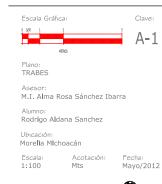
EN ZAPATAS DE LINDERO

EN ZAPA	EN ZAPATAS DE LINDERO												
	DISEÑO POR FLEXIÓN												
CAS-			SEN	ITIDO TR	RANSVER	RSAL .	SENTIDO LONGITUDINAL						
TILLO	Μυ (t-m)	ρ	As (cm²)	Ast (cm²)	s (cm)	separación c.a.c	l	Μυ (t-m)	% de acero p	As (cm²)	s (cm)	separación c.a.c	
X 15-A	2.42	0.0030	4.48	3.93	15.86	Vars. # 3 @ 12 cm	0.53	0.72	0.0009	3.54	18.1	Vars. # 3 @ 15 cm	
X 14-A	2.54	0.0031	4.72	3.93	15.06	Vars. # 3 @ 12 cm	0.53	0.76	0.0009	3.54	18.1	Vars. # 3 @ 15 cm	
X 2-A	3.12	0.0039	5.85	3.93	12.14	Vars. # 3 @ 12 cm	0.53	0.93	0.0011	3.54	18.1	Vars. # 3 @ 15 cm	
X 1-C	3.12	0.0039	5.85	3.93	12.14	Vars. # 3 @ 12 cm	0.53	0.93	0.0011	3.54	18.1	Vars. # 3 @ 15 cm	
X 5-A	5.34	0.0070	10.56	3.93	12.03	Vars. # 4 @ 12 cm	0.68	1.53	0.0019	3.54	18.1	Vars. # 3 @ 15 cm	
EN ZAPA	EN ZAPATA DE CENTRO												
X 15-B	1.44	0.0023	3.45	3.93	18.07	Vars. # 3 @ 18 cm	0.75	1.63	0.0020	3.54	18.1	Vars. # 3 @ 15 cm	
X 14-D	1.69	0.0023	3.45	3.93	18.07	Vars. # 3 @ 18 cm	0.75	1.92	0.0023	3.54	18.1	Vars. # 3 @ 15 cm	
X 11-B	1.50	0.0018	2.73	3.93	18.07	Vars. # 3 @ 18 cm	0.75	1.70	0.0021	3.54	18.1	Vars. # 3 @ 15 cm	
X 11-H	1.77	0.0023	3.45	3.93	18.07	Vars. # 3 @ 18 cm	0.75	2.00	0.0024	3.66	18.1	Vars. # 3 @ 15 cm	
X 10-A'	1.39	0.0023	3.45	3.93	18.07	Vars. # 3 @ 18 cm	0.75	1.57	0.0019	3.54	18.1	Vars. # 3 @ 15 cm	
X 8-A'	1.60	0.0023	3.45	3.93	18.07	Vars. # 3 @ 18 cm	0.75	1.81	0.0022	3.54	18.1	Vars. # 3 @ 15 cm	
X 8-E	1.79	0.0023	3.45	3.93	18.07	Vars. # 3 @ 18 cm	0.75	2.03	0.0025	3.72	18.1	Vars. # 3 @ 15 cm	
X 9-G	1.62	0.0023	3.45	3.93	18.07	Vars. # 3 @ 18 cm	0.75	1.83	0.0022	3.54	18.1	Vars. # 3 @ 15 cm	
X 3-G	1.48	0.0023	3.45	3.93	18.07	Vars. # 3 @ 18 cm	0.75	1.68	0.0020	3.54	18.1	Vars. # 3 @ 15 cm	
X 2-C	1.64	0.0023	3.45	3.93	18.07	Vars. # 3 @ 18 cm	0.75	1.86	0.0023	3.54	18.1	Vars. # 3 @ 15 cm	
X 14-B	2.84	0.0031	4.93	4.09	14.39	Vars. # 3 @ 12 cm	0.95	3.13	0.0034	5.47	13.0	Vars. # 3 @ 12 cm	
X 11-D	2.51	0.0027	4.33	4.09	16.41	Vars. # 3 @ 12 cm	0.95	2.76	0.0030	4.79	14.8	Vars. # 3 @ 12 cm	
X 9-F	2.21	0.0024	3.80	4.09	17.36	Vars. # 3 @ 12 cm	0.95	2.44	0.0026	4.20	16.9	Vars. # 3 @ 12 cm	
X 4-6	2.81	0.0030	4.87	4.09	14.58	Vars. # 3 @ 12 cm	0.95	3.09	0.0034	5.40	13.2	Vars. # 3 @ 12 cm	
X 4-E	2.02	0.0023	3.68	4.09	17.36	Vars. # 3 @ 12 cm	0.95	2.22	0.0024	3.82	17.4	Vars. # 3 @ 12 cm	
X 5-C	2.62	0.0028	4.53	4.09	15.69	Vars. # 3 @ 12 cm	0.95	2.88	0.0031	5.01	14.2	Vars. # 3 @ 12 cm	
X 11-F	3.29	0.0025	4.77	4.56	14.89	Vars. # 3 @ 12 cm	1.10	3.58	0.0027	5.20	13.6	Vars. # 3 @ 12 cm	
X 10-C	3.32	0.0025	4.81	4.56	14.76	Vars. # 3 @ 12 cm	1.10	3.61	0.0028	5.25	13.5	Vars. # 3 @ 12 cm	
X 8-C	3.80	0.0029	5.53	4.56	12.83	Vars. # 3 @ 12 cm	1.10	4.13	0.0032	6.04	11.8	Vars. # 3 @ 12 cm	

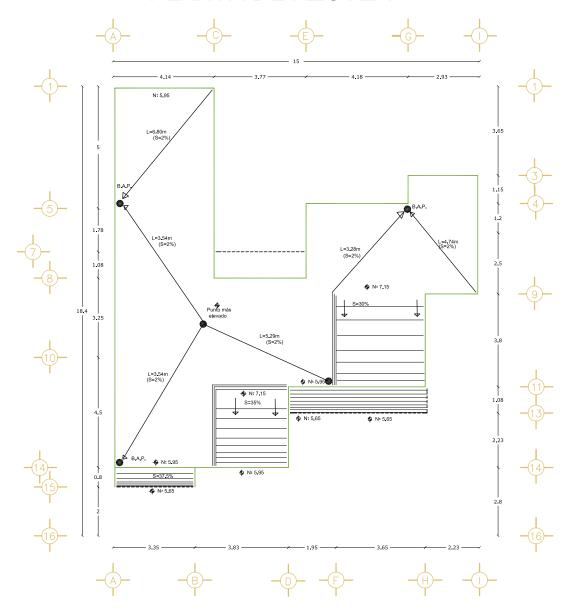

RESUMEN DE ZAPATAS

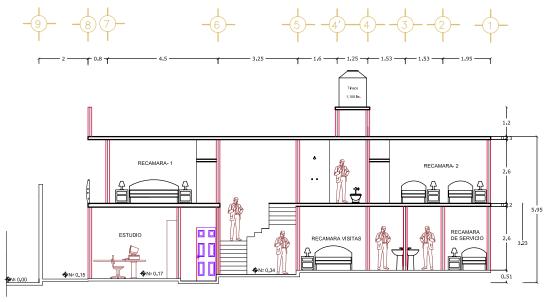
ZAPATA	B (m)	d(cm)	H(cm)	Armado transversal	Armado longitudinal					
ZAPATA CORRIDA DE LINDERO										
ZC-1	0.95	10	15	Vars. # 3 @ 12 cm	Vars. # 3 @ 20 cm					
ZAPATAS CORRIDA DE CENTRO										
ZC-2	1.45	10	15	Vars. # 3 @ 20 cm	Vars. # 3 @ 20 cm					
AMPLIACIÓN DE ZAPATA DE LINDERO										
AZ-3	1.20	15	20	Vars. # 3 @ 12 cm Vars. # 3 @ 15 c						
AZ-4	1.50	15	20	Vars. # 4 @ 12 cm	Vars. # 3 @ 15 cm					
AMPLIACIÓN DE ZAPATA DE CENTRO										
AZ-5	1.65	15	20	Vars. # 3 @ 18 cm	Vars. # 3 @ 15 cm					
AZ-6	2.05	16	21	Vars. # 3 @ 12 cm	Vars. # 3 @ 12 cm					
AZ-7	2.35	19	24	Vars. # 3 @ 12 cm	Vars. # 3 @ 12 cm					

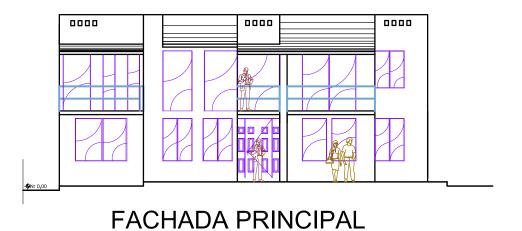


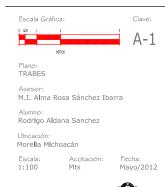


PLANOS ESTRUCTURALES



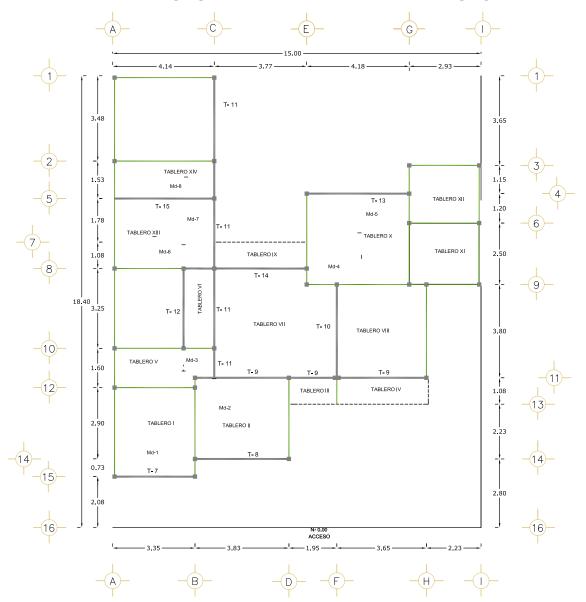


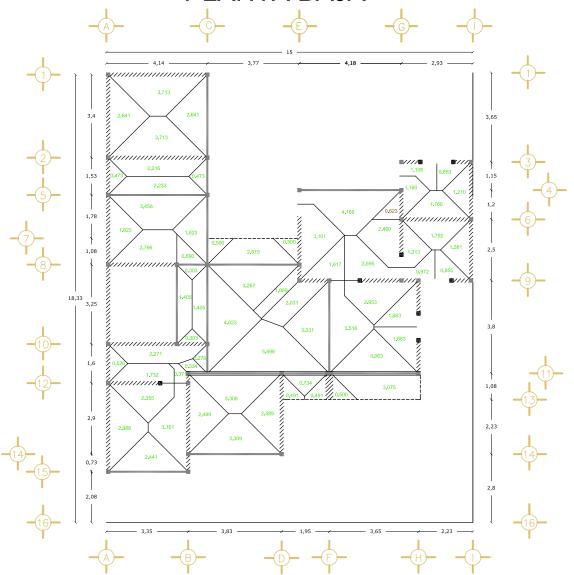

PLANTA DE AZOTEA



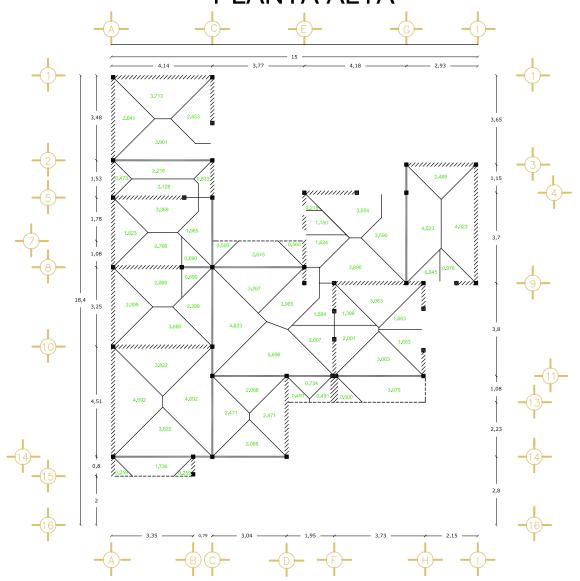
CORTE A-A

LOSA DE AZOTEA

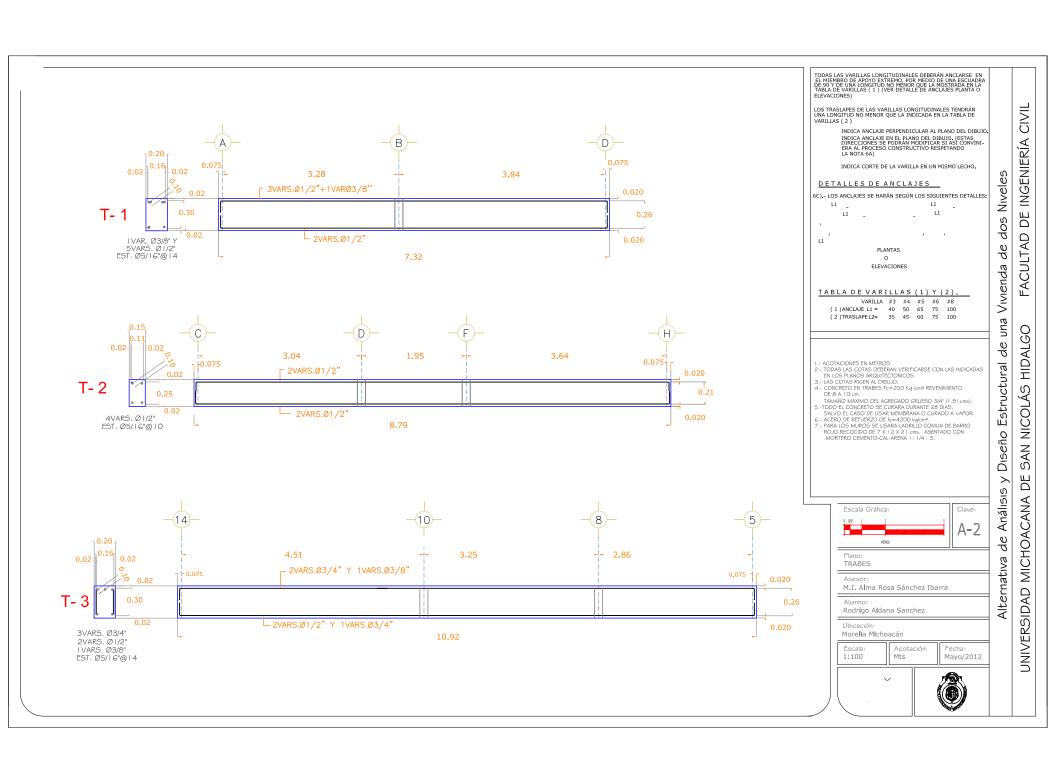


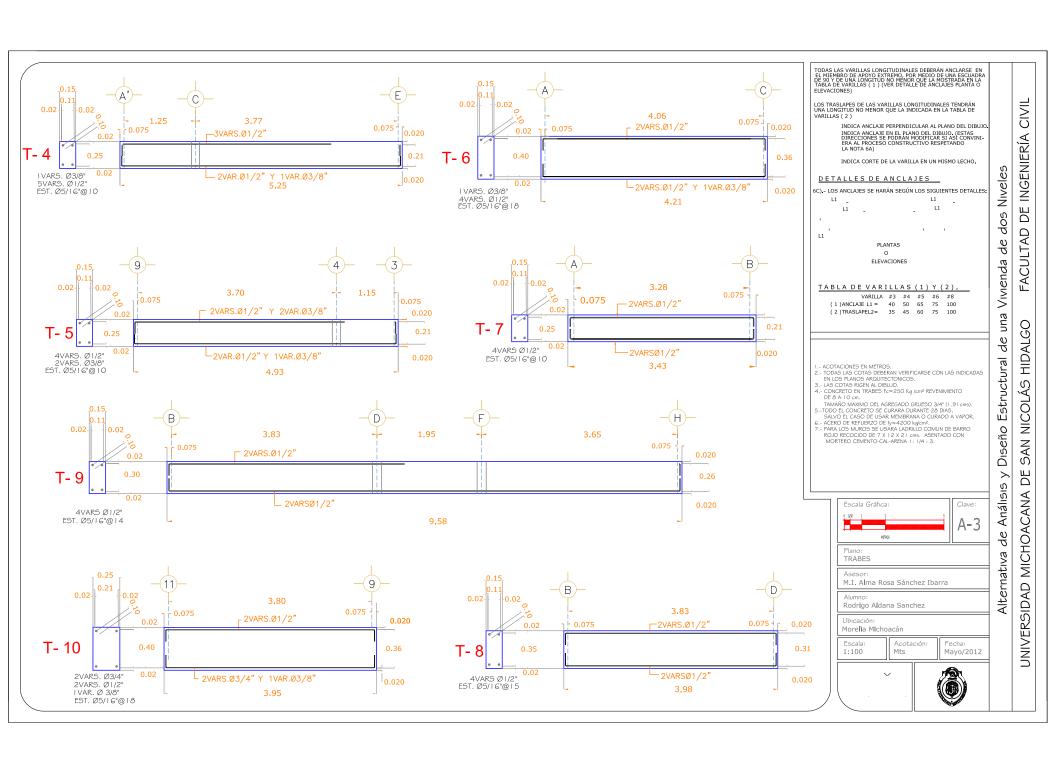


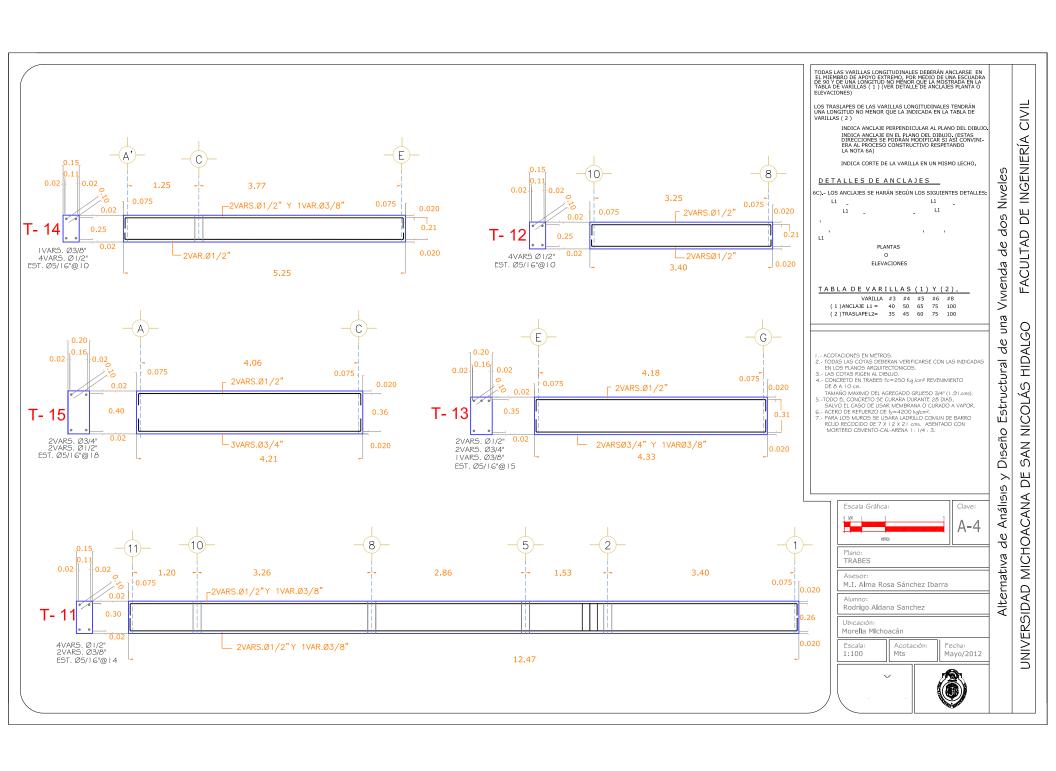
LOSA DE ENTREPISO

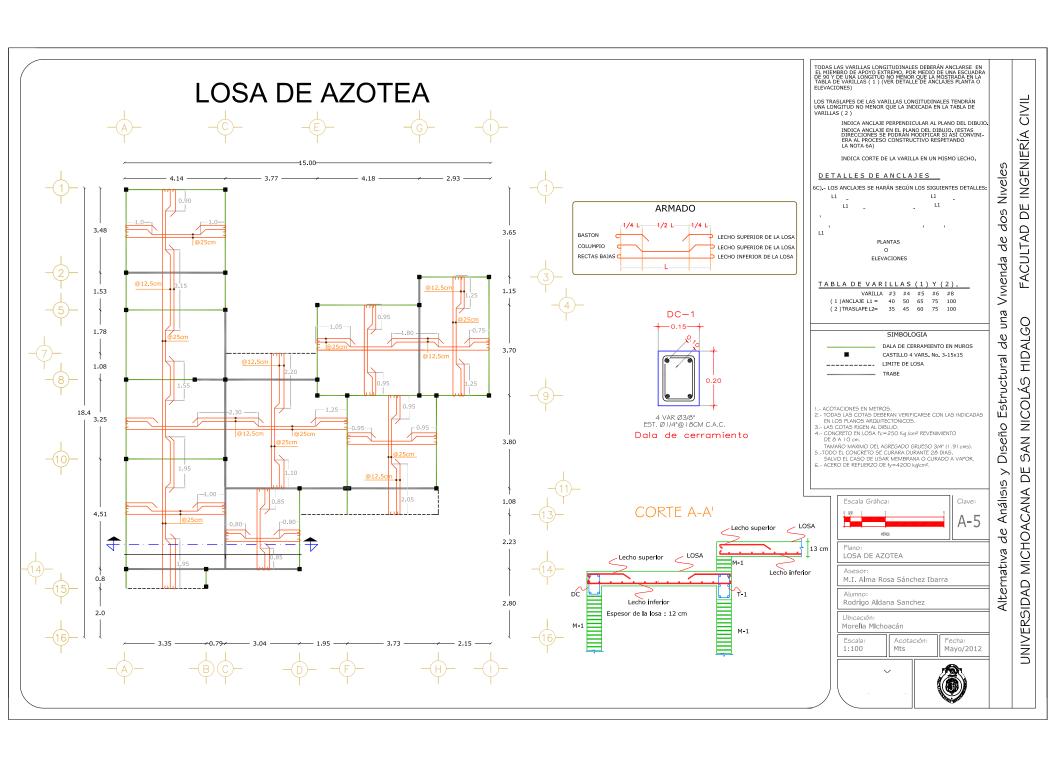


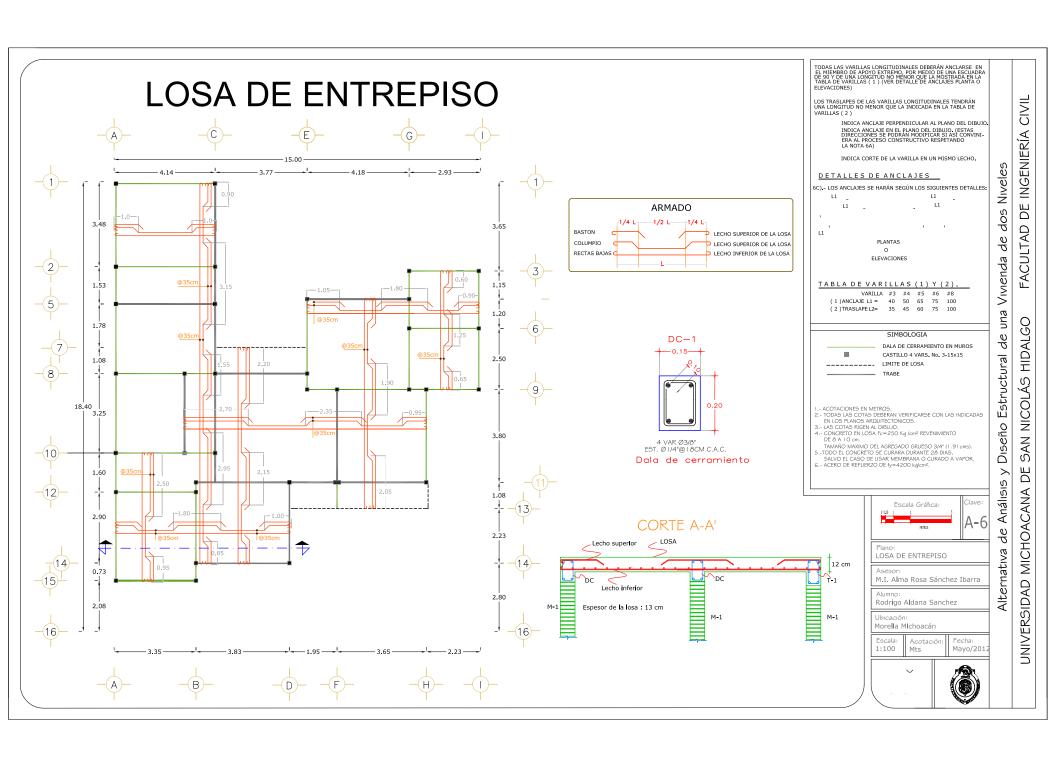
AREAS TRIBUTARIAS PARA MUROS PLANTA BAJA

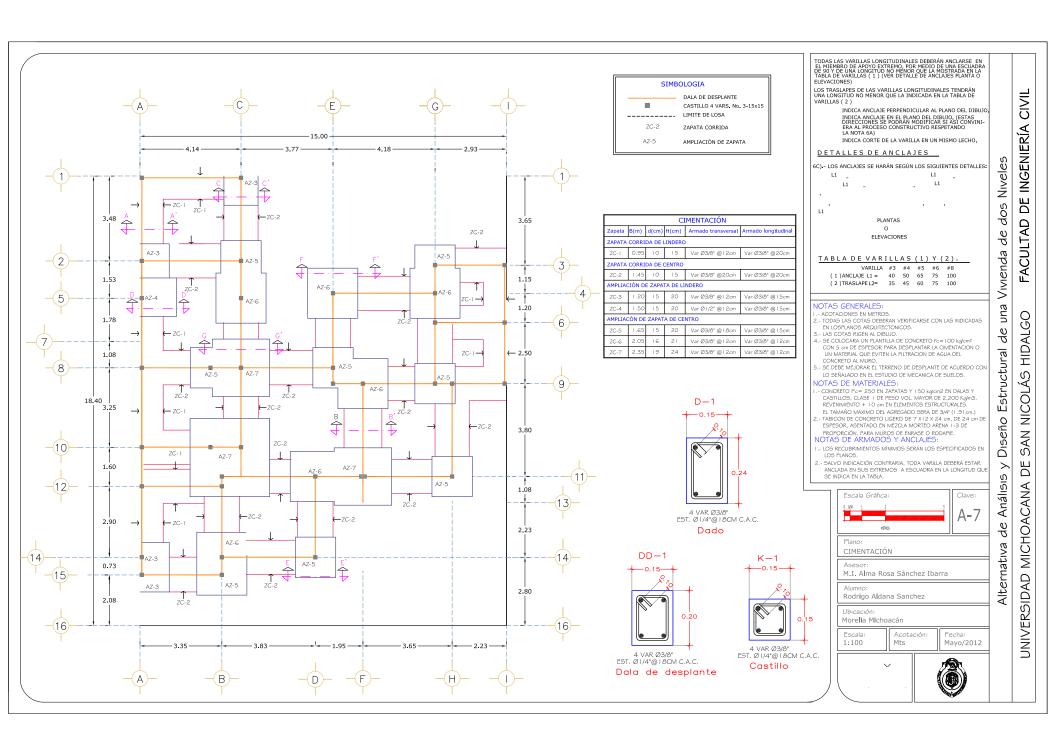

AREAS TRIBUTARIAS PARA MUROS PLANTA ALTA

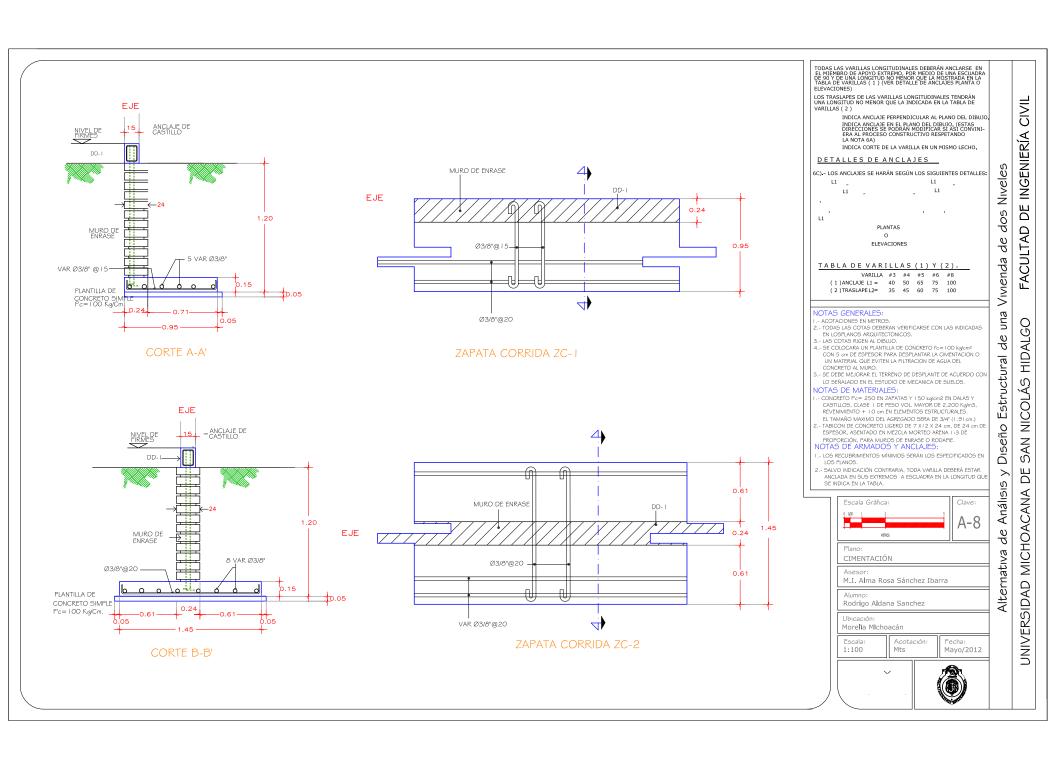


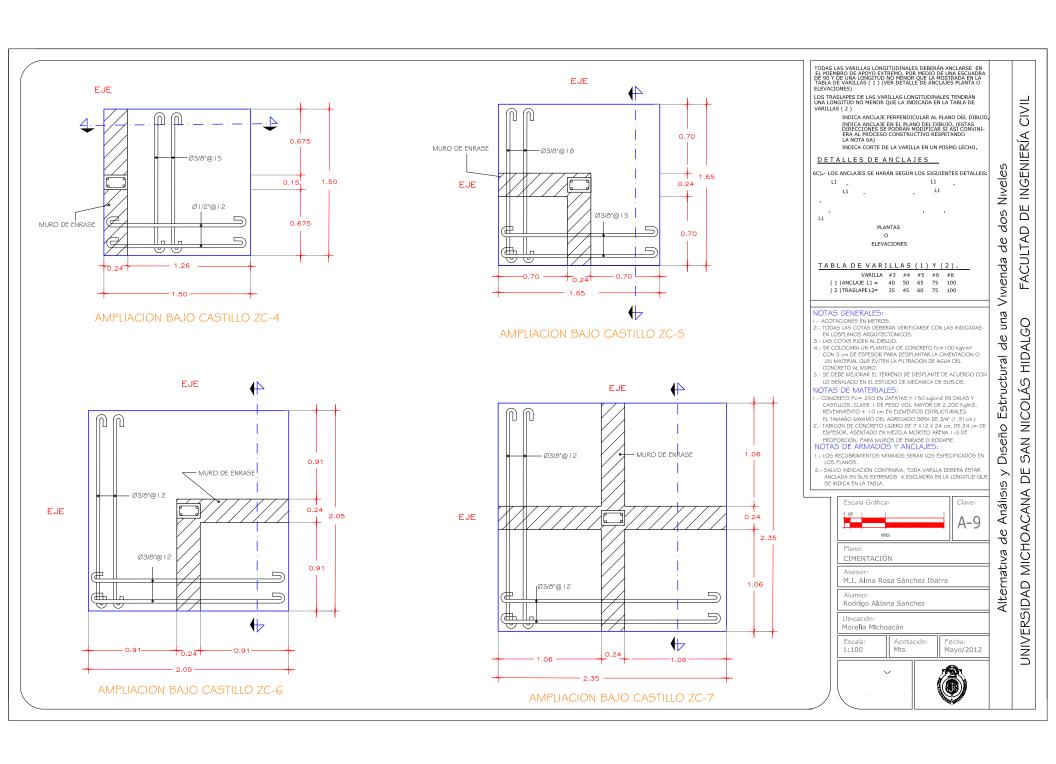












CONCLUSIONES

La realización de esta tesina tuvo la finalidad de hacer un análisis y diseño estructural adecuado, buscando seguridad y economía, basándose en el reglamentos de construcción vigentes, por lo que se puede tener la confianza de que la estructura trabajara adecuadamente.

Para los ingenieros civiles es de gran importancia saber en que consiste un buen diseño estructural, que nos permita ahorrar tanto en materiales como costos en mano de obra, ya que un buen criterio estructural no se basa sólo en practica o intuición, si no que también debe estar respaldado por conocimientos teóricos.

El diseño y análisis estructural para una casa de dos niveles no debe pasarse por alto, debido a que es un patrimonio valorado para cualquier persona, por lo que se pretende que tenga una larga vida útil, sin que se presenten fallas que puedan significar riesgo para las personas que la habiten.

Pág.151

GLOSARIO

Ag área bruta de la sección transversal

As área de refuerzo longitudinal en tensión en acero de elementos a flexión

Asmin área mínima de refuerzo longitudinal de secciones rectangulares

Av área de acero transversal de fuerzo por tensión diagonal

Ast área de acero por temperatura as área transversal de la barra
Asv área de acero vertical de la malla
Asc área de acero de los estribos

a1, a2 respectivamente, claro corto y claro largo de un tablero de una losa

AT área bruta de la sección transversal del muro o segmento de muro, que incluye a los

castillos

B ancho de la zapata

C1, C2 respectivamente, dimensión menor del dado y dimensión mayor del dado Ca, Cb respectivamente, coeficiente del claro corto y coeficiente claro largo

d peralte efectivo en la dirección de flexión

Df profundidad de desplante db diámetro nominal de una barra

E módulo de elasticidad

Ec módulo de elacticidad del concreto de peso normal

Es módulo de elasticidad del acero

ec excentricidad que se trasmite la carga de la losa a muros extremos

e' excentricidad calculada para obtener el factor de reducción por excentricidad y esbeltez

FAE factor de área efectiva de los muros de carga

FE factor de reducción para efectos de excentricidad y esbeltez

FR factor de resistencia

f'c resistencia especificada de concreto a compresión

f"c magnitud del bloque equivalente de esfuerzos del concreto a compresión

f*c resistencia nominal del concreto a compresión

f*m resistencia de diseño a compresión de la mampostería referida al área bruta

fs esfuerzo en el acero en condiciones de servicio

fy esfuerzo especificado de fluencia del acero de refuerzo

fyh esfuerzo especificado de fluencia del refuerzo horizontal de malla electrosoldada

fd factor de distribución

H longitud libre o altura de segmento

h peralte total de un elemento, o dimensión transversal de miembro paralelo a la flexión o a

la fuerza cortante.

I inercia de la sección

k rigidez de tableros en losas ktr índice de refuerzo transversal

Ld longitud de desarrollo Lt longitud de traslape

PR carga nominal resistente de diseño
PRO carga axial resistente de diseño
Pu carga vertical última de diseño

RODRIGO ALDANA SÁNCHEZ

PRM carga vertical resistente de la malla q capacidad de carga del terreno qr esfuerzo de diseño del terreno qn presión neta del terreno

qnu presión neta última del terreno s separación del refuerzo transversal

Sh separación entre alambres de la malla electrosoldada

Rp relleno promedio en losas de azotea V fuerza cortante que actúa una sección

VcR fuerza cortante de diseño que toma el concreto

VsR fuerza cortante de diseño que el acero de refuerzo transversal

Vu fuerza cortante de diseño VR cortante resistente por el muro

VD cortante directo VT cortante torsionante

V*m resistencia de diseño a compresión diagonal de la mampostería interior

W carga media Wa carga instantánea Wm carga viva máxima

ξcu deformación útil de concreto

ρ cuantía de acero de refuerzo longitudinal a tensión
 ρb porcentaje de acero de la sección transversal

 $\beta \text{\scriptsize 1}$ parámetro adicional que especifica la profundidad del bloque equivalente de esfuerzos a

compresión

δ deflexión de una sección

vuelo de la zapataη factor de eficiencia

y peso volumétrico del suelo

BIBLIOGRAFÍA

Gallo Ortiz G. O., Espino Márquez L. I., Olvera Montes A. E., Diseño estructural de casas habitación, 2da. edición Ed. McGraw-Hill, Interamericana, 2005.
 González Cuevas O., y Robles O., Aspectos fundamentales del concreto reforzado, 3ª. Ed., Noriega Limusa, México 2002.
 Meli R., Bazán E., Diseño sísmico de edificios, Ed. Noriega Limusa, México, 2001.
 Normas Técnicas complementarías del Reglamento de construcción para el Distrito Federal.