

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE INGENIERÍA CIVIL

CUERPO ACADÉMICO DE GESTIÓN INTEGRAL DEL AGUA

FUNCIONAMIENTO HIDRÁULICO DE LA RED DE AGUA POTABLE DE JESÚS DEL MONTE, MUNICIPIO DE MORELIA, MICHOACÁN

TESIS PROFESIONAL PARA OBTENER EL TÍTULO DE INGENIERO CIVIL

PRESENTA JUAN CARLOS CHÁVEZ GUZMÁN

ASESOR DR. BENJAMÍN LARA LEDESMA

CONTENIDO

Capítulo 1.	Antecedentes de la localidad	3
Capítulo 2.	Levantamiento topográfico de la red de agua potable	12
Capítulo 3.	Determinación de los consumos de agua de la población	25
Capítulo 4.	Funcionamiento hidráulico de la red de agua potable en el software Epanet	27
Capítulo 5.	Conclusiones y recomendaciones	49
	Bibliografía	50

RESUMEN

En la actualidad reviste gran importancia el abastecimiento de agua potable en cualquier parte del mundo, y nuestro país no es la excepción; donde existe una gran cantidad colonias o localidades que padecen la escasez de este servicio tan necesario; de acuerdo al principio de la materia: no se crea ni se destruye sólo se transforma, es el ciclo del agua uno de los ejemplos más representativos, la cantidad de agua que existe actualmente es la misma que había desde hace miles de años, pero al paso de los años y la actividad humana ha provocado un crecimiento muchas veces desmedido de sus ciudades, así como su uso irracional e inequitativo lo cual da como resultado que cada día se a más difícil además de costoso tanto el proceso de extracción, conducción, potabilización, almacenamiento así como la distribución de este vital líquido.

Para el caso de este proyecto de investigación se trata de determinar el funcionamiento hidráulico de una red existente de agua potable en la localidad de Jesús del Monte, ubicada en el municipio de Morelia, Michoacán, dado que actualmente y desde hace algún tiempo sus habitantes enfrentan una fuerte escasez de agua, ya que el servicio de agua potable se da cada tercer día y por unas cuantas horas.

La red existente tiene más de 20 años por lo que es necesario rehabilitarla para que proporcione un mejor servicio a la población. Del análisis realizado hasta el momento se concluye que es necesario contar con un volumen de regulación más grande y para ello es necesario realizar un análisis de las fuentes de abastecimiento con las que se cuenta, ya que si no son suficientes es necesario localizar más de ellas para así poder contar con el agua suficiente para abastecer la población.

Hay que destacar que el agua que se consume en esta localidad no cuenta con la medición del agua que se consume, esto genera que se haga mal uso de este vital líquido, por lo que hay que proponer que se instalen contadores de agua en cada sitio donde se consuma el agua.

Palabras clave:
Agua potable
Epanet
Jesus del Monte
Matlatzinca
Funcionamiento hidráulico

ABSTRACT

At present it's very important the supply of drinkable water in any part of the world, and our country is not the exception; where a great quantity exists colonies or localities that suffer the shortage of this so necessary service; as the law of the matter says: do not create itself it nor is destroyed only transforms, is the hydrological cycle one of the most representative examples, the water quantity that exists nowadays is the same that existed for thousands of years, but the step of the years and the human activity it has provoked a growth often excessively of his cities, as well as his irrational and inequitable use which gives as result that every day to more difficult besides costly so much the process of extraction, conduction, to make the water drinkable, storage as well as the distribution of this vital liquid.

For the case of this project of investigation it is a question of determining the hydraulic functioning of an existing network of drinkable water in Jesús del Monte's locality, located in the municipality of Morelia, Michoacán, provided that nowadays and for some time his inhabitants face a strong shortage of water, since the service of drinkable water is given every third day and for a few hours.

The existing network has more than 20 years for what it is necessary to rehabilitate it in order that it provides a better service to the population. Of the analysis realized up to the moment one concludes that it is necessary to possess a volume of bigger control and for it to be necessary to realize an analysis of the sources of supply which one possesses, since if they are not sufficient it is necessary to locate more of them to be able like that to possess the sufficient water to supply the population.

It is necessary to emphasize that the water that is consumed in this locality does not possess the measurement of the water that is consumed, this generates that one uses badly of this vitally liquid, for what it is necessary to propose that they should install water meters in every site where the water is consumed.

CAPÍTULO 1

ANTECEDENTES DE LA LOCALIDAD

En la actualidad reviste una gran importancia el abastecimiento de agua potable en cualquier parte del mundo y nuestro país no es la excepción donde existen una gran cantidad de municipios con colonias o localidades que padecen la escasez de este servicio tan necesario, de acuerdo al principio de la energía nada de crea ni nada se destruye sólo se transforma, el ciclo del agua es uno de los ejemplos más representativos, la cantidad de agua que existe actualmente es la misma que había desde hace millones de años, pero debido al avance de la vida y la actividad humana ha provocado un crecimiento muchas veces desmedido de sus ciudades, así como su uso irracional e inequitativo lo cual da como resultado que cada día se a más difícil además de costoso tanto el proceso de extracción, potabilización, conducción, almacenamiento así como la distribución de este vital líquido.

También es cierto que muchas veces solamente nos preocupamos por la extracción y abastecimiento, pero no existen políticas eficaces para el tratamiento de las aguas residuales, inclusive ya al día de hoy el agua de lluvia ya lleva partículas suspendidas producto de la contaminación vehicular, y el desarrollo económico industrial.

Para el caso de este proyecto de investigación se trata del análisis de una red vigente de agua potable en la localidad de Jesús del Monte, ubicada en el municipio de Morelia, Michoacán, Figura 1, dado que actualmente y desde hace algún tiempo sus habitantes enfrentan una fuerte escasez de agua. Se realizará un diagnóstico de sus fuentes de abastecimiento, conducción y almacenamiento, así como proponer el diseño de una red a 20 años previendo las necesidades de crecimiento de la población, actividad económica y desarrollo urbano que están ocurriendo en esta zona de la cuidad.

Figura 1. Ortófoto satelital de Jesús del Monte tomada de Google Earth

Origen

El origen de Jesús del Monte es el de un pueblo indígena Matlatzinca o Pirinda, además de Purépecha, Nahua, Mazahua y Otomí, como pueblos originarios de la entidad.

Desde 2009 comenzó una lucha por el reconocimiento de los Pirindas, principalmente ubicados en Huetamo y Charo, dado que la forma de determinar la existencia de indígenas en una región por parte de dependencias gubernamentales es sólo a través del lenguaje, al dejar de lado todo el resto de prácticas culturales y sociales de un pueblo originario.

En el caso de los Pirindas-Matlatzincas, actualmente existen diversos trabajos etnográficos y antropológicos para rescatar la lengua y otros aspectos culturales de este pueblo originario de Michoacán, cuyos integrantes se distribuyen en diez municipios de la entidad, principalmente en Tierra Caliente. Cabe destacar que los Pirindas fueron aliados guerreros de los Purépechas y en el último reino de esta etnia varias localidades fueron entregadas a los Pirindas, entre ellas algunas localizadas en el Valle de Guayangareo, como Charo, y otras en Tierra Caliente, como Huetamo. Incluso, en la década de 1880 se tiene el registro de varios asentamientos Pirindas en territorios que actualmente son del municipio de Morelia, como Jesús del Monte, Santa María y Santiago Undameo, según un artículo académico elaborado por Martha Delfín Guillaumin, de la Escuela Nacional de Antropología e Historia del Instituto Nacional de Antropología e Historia.

Actualmente la localidad es una de las 14 tenencias del municipio de Morelia, siendo el propio Jesús del Monte la cabecera de la tenencia del mismo nombre, a la cual se suman, Río Bello, El Laurelito, San José de las Torres, Túmbisca y Los Pirules.

También cabe señalar que al día de hoy Jesús del Monte sigue conservando sus usos y costumbres en cuanto al uso de su agua eligiendo cada tres años a su comité de autoadministración y mantenimiento en una asamblea general de su localidad donde solamente asisten los usuarios registrados como cabeza de familia los cuales eligen a los miembros de dicho órgano de viva voz y a mano alzada.

Ubicación y estadística

Jesús del Monte se ubica en el estado de Michoacán en el municipio de Morelia. Localizado en una altura de 2 142 metros sobre el nivel medio del mar, brinda hogar para 4 182 habitantes de cuales 2 074 son hombres y 2 108 mujeres; 2 407 habitantes de esta población de son adultos y 242 son mayores de 60 años. Sobre acceso al seguro social disponen 1 965 habitantes.

Escolaridad

Aunque 143 personas entre los 15 años de edad no asistieron a la escuela sólo unos 159 no saben leer ni escribir bien. En comparación dentro del grupo de los jóvenes entre 6 y 14 años sólo un

pequeño número no tiene educación escolar. Así el tiempo promedio de escolaridad de un habitante de Jesús del Monte es de 8 años.

Hogares y viviendas 946 hogares equivalen a 1 004 viviendas habitables de cuales 55 consisten de un cuarto solo y 96 tienen piso de tierra.

De todas las viviendas 921 (la gran mayoría) tiene instalaciones sanitarias fijas y 883 son conectados a la red pública. Sobre el servicio de energía eléctrica disponen 940 viviendas, 243 hogares tienen una o más computadoras, 602 tienen una lavadora y la gran cantidad de 915 disfruta de una o más televisiones.

Datos geográficos

Jesús del monte está ubicado en la latitud 19.65° norte y la longitud es de 101.15° oeste.

Identificación de las fuentes de abastecimiento y su aforo

Antes de iniciar con el análisis de una red existente de agua potable o el diseño de una nueva es muy importante identificar las fuentes de abastecimiento así como la cantidad de líquido que habrá de necesitar dicho sistema de abastecimiento, para ello es muy importante realizar aforos.

Molinete hidráulico

El molinete hidráulico, Figura 2, ya sea mecánico o electrónico, es un instrumento que se utiliza para medir la velocidad del agua en un canal abierto la cual multiplicada por el área de la sección transversal del canal nos dará como resultado el gasto que conduce en L/s.

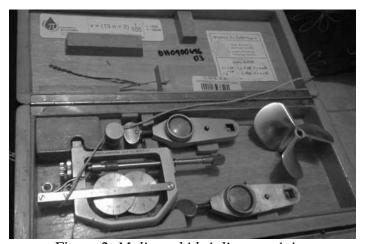


Figura 2. Molinete hidráulico mecánico

Fuentes de abastecimiento

Visitamos el manantial "El Ojo de Agua", Figura 3, el cual se encuentra dentro de las instalaciones del gimnasio del Instituto Tecnológico de Monterrey (ubicado en la zona de Altozano) y el cual descarga a un tanque de almacenamiento de aproximadamente 16 m³, actualmente dicho manantial sigue siendo parte de la localidad de Jesús del Monte teniendo los derechos de su usufructo por parte de la Comisión Nacional del Agua. En este manantial se realizó un aforo con un medidor electrónico al determinar la velocidad del flujo por el área de la sección transversal resultó un gasto de 0.0012 L/s.

Figura 3. Tanque de captación del manantial "El Ojo de Agua"

También se realizó una visita al manantial "El Mastranto", Figura 4, el cual se alimenta del acuífero Ojo de Agua teniendo un tanque de aproximadamente 16 m³, con una bomba sumergible. Cuenta con un vertedor de excedencias que a su vez descarga a un humedal natural en el cual abundan la chuspata, el carrizo, árboles como el pirul, el sauce, también habitan una comunidad de garzas todo esto como parte de la flora y fauna endémicas de la región. En este caso no fue posible medir el caudal debido a que el tanque tiene un nivel de agua de 2.60 m lo cual hizo inaccesible dado que la descarga con esa altura se encontraba ahogada dentro del tanque.

Actualmente a pesar de contar con sistema de bombeo a la línea de abastecimiento, este flujo no entra en la red de agua potable debido a que se ubica en una zona baja y al existir vecinos propietarios en la parte superior de este sector descargan sus aguas residuales en fosas sépticas que ocasionan la infiltración por el terreno natural contaminando el líquido de este lugar siendo necesario resolver este problema para lo cual se propone que los colindantes cuenten con un sistema de bombeo de aguas residuales que descargue en un colector aguas arriba y que conecta a la planta de tratamiento de aguas residuales de la localidad.

Figura 4. Manantial "El Mastranto"

En los manantiales "Ojo de Agüita" y "El Agua Zarca" no fue posible realizar un aforo dado que se trata de estanques naturales donde el agua se encuentra estática y su uso es meramente para abastecer una zona de lavaderos de uso doméstico para amas de casa cuando escasea el agua en la red de distribución.

"El Peral", el manantial de dicho nombre se ubica en la sierra de San Miguel del Monte hacia el sur a unos cinco kilómetros de distancia de su vecino Jesús del Monte. La diferencia del alturas, entre el manantial y los tanques es de aprosimadamente 62 metros. Actualmente el gasto de este manantial llega por gravedad de una población a otra hasta los tanques que abastecen la red en estudio.

No se pudo realizar el aforo debido a la lejania del terreno, el cual es de difícil acceso en época de lluvias, pero se tienen datos de los administradores que realizan trabajos de mantenimiento cada cierto tiempo, Figura 5, se estima que el caudal es de aproximadamente 1 L/s.

Figura 5. Mantenimiento del manantial "El Peral"

Tratamiento

Actualmente Jesús del Monte cuenta con una planta de tratamiento de aguas residuales construida por gobierno municipal a principios de la década pasada la cual tuvo un costo de alrededor de 10 millones de pesos. Dicha planta recaba cerca del 50% del gasto desechado de uso doméstico, pero funciona de manera deficiente dado que por una deficiente planeación y quizá desconocimineto de la mecánica de suelos, sufrió un hundimiento diferencial por la composición de un suelo con comportamiento plástico en su base de apoyo y desplante, Figura 6.

Figura 6. Planta de tratamiento de Jesús del Monte

Potabilización

Se realizó una visita a la planta potabilizadora del Organismo Operador del Agua Potable Alcantarillado y Saneamiento (OOAPAS), Figura 7, quien es la depencencia encargada de la administración, la potabilización, el abastecimiento de agua y mantenimiento del drenaje en el

municipio de Morelia por parte del gobierno municipal, con la finalidad de comparar los sistemas de admimistración de agua potable, entre el municipio y la localidad, en dicha planta potabilizadora se conoció el costo beneficio del servicio, asi como las diferentes etapas del tren de tratamiento para la potablización del agua el cual dura aproximadamente 45 minutos entre los cuales cabe destacar el filtrado de arcillas, la aplicación de cloro en gas, polímeros, y asi como el proceso de asimilación de los mismo en tanque con arenas denominadas andrositas.

Figura 7. Planta potabilizadora del OOAPAS

Sistema de extracción, bombeo, conducción y almacenamiento

Actualmente se cuenta con un pozo profundo, Figura 8, perforado en el año de 1998, el cual se encuentra ubicado en el camino de Jesús del Monte a Río Bello, dicho pozo tiene una profundidad de perforación de 300 metros, con un nivel dinámico y estático de aproximadamente 100 y 150 metros, respectivamente, produciendo un gasto de 8 L/s conducido por una tubería de 200 milímetros de diámetro. Este pozo profundo cuenta con un sistema de bombeo el cual funciona diariamente siete horas para cubrir la demanda de los tanques de almacenamiento. Se utiliza una bomba sumergible de 40 HP de potencia.

Figura 8. Purgado de bomba de extracción de agua

Línea de conducción y tanques de almacenamiento

Se cuenta con una línea de conducción, Figuras 9 y 10, la cual parte del pozo profundo impulsando el flujo promedio del sistema bombeo anteriormente descrito, y consta inicialmente de una tubería de PVC de 200 milímetros de diámetro, en el tramo más crítico de la topografía, cambia a fierro fundido (36 metros de longitud) del mismo diámetro y en el tramo final hacia los tanques nuevamente se conduce a través de tubería de PVC. La longitud de la línea de conducción es de 860.8 m y la diferencia de cotas entre el punto inicial y final es de 71.8m.

Figura 9. Red de conducción de agua potable

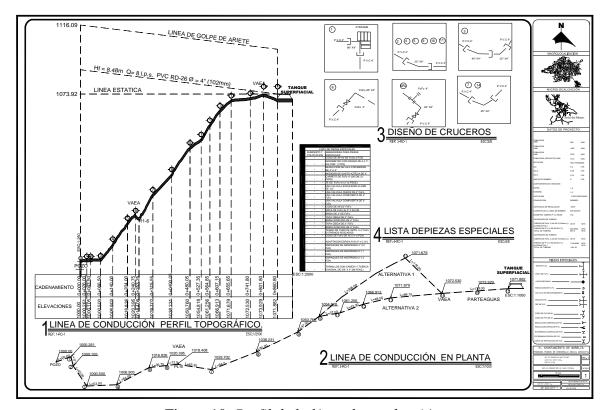


Figura 10. Perfil de la línea de conducción

Tanques de almacenamiento

En cuanto a los tres tanques se encuentran en excelente estado, son de mampostería de piedra con tapa de concreto armado, dos de 100 mil litros y uno de 20 mil litros, sumando una capacidad máxima entre los tres de 220 mil litros (220 m³), Figura 11. Actualmente se construye un tanque elevado el cual tendrá la capacidad de 20 m³, Figura 12, con lo cual una vez terminado dará como resultado un sistema de almacenamiento de 240 m³.

Figura 11. Tanques de almacenamiento

Figura 12. Tanque elevado en construcción

CAPÍTULO 2

LEVANTAMIENTO TOPOGRÁFICO DE LA RED DE AGUA POTABLE

La topografía es la representación gráfica de la de la superficie en estudio, con sus formas y detalles; tanto naturales como artificiales, se toman puntos y longitudes acotados, mostrando la elevación del terreno. La topografía es la parte más importante para cualquier proyecto de ingeniería, ya que nos arroja los datos necesarios para la realización de cualquier proyecto de ingeniería como es este caso el análisis y diseño de redes de agua potable, para este proyecto se utilizó una estación total marca Topcom, Figura 13.

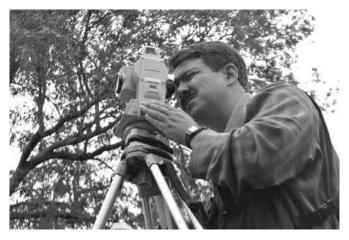


Figura 13. Estación total marca Topcom utilizada

Se realizó el levantamiento topográfico del sistema de distribución de agua potable (tuberías, válvulas, diámetros, cruceros, elevaciones de puntos) con una brigada de topografía, Figuras 14, 15 y 16, y un equipo electrónico para topografía con reflexión láser sobre un prisma.

Figura 14. Levantamiento topográfico de la traza urbana

Figura 15. Levantamiento topográfico de los tanques de almacenamiento

Figura 16. Levantamiento de válvulas e identificación de diámetros

En la Tabla 1 se muestran los resultados obtenidos en el levantamiento topográfico realizado en la comunidad de Jesús del Monte.

Tabla 1. Datos obtenidos del levantamiento topográfico

1 40		1	vantamiento topo	д <i>гансо</i>
PUNTO	X (m)	Y	ELEVACIÓN	TIPO
JM001	(m)	(m)	(m) 1,000,022	TAPA
	5,997,254	7,007,135	, ,	
JM002	5,997,936	7,004,309	1,000,005	TAPA
JM003	5,993,872	7,003,335	999.99	TAPA
JM004	5,989,276	7,010,722	1,000,019	LOSA
JM005	5,991,207	7,002,725	1,000,005	LOSA
JM006	5983.13	7,000,856	999,999	LOSA
JM007	5,994,566	7,002,007	997,767	TAPA
JM008	6,001,064	6985.05	995,862	EJE
JM009	6,004,165	6,967,067	994.76	EJE
JM010	6,009,122	6,949,335	993.59	EJE
JM011	6,013,941	6,931,173	992,391	EJE
JM012	6,017,902	6,912,827	991,296	EJE
JM013	6,021,533	6,894,192	990.32	EJE
JM014	6,025,174	6,875,638	989,526	EJE
JM015	6,028,342	6,857,245	988,946	EJE
JM016	6,031,089	6,838,497	988,428	EJE
JM017	6,033,765	6,820,467	987,951	EJE
JM018	6,034,898	6,806,735	987,682	EJE
JM019	5,997,214	7,014,757	997,979	TERRENO
JM020	6,000,591	7,002,861	997,006	TERRENO
JM021	5,992,021	6,998,254	997,545	TERRENO
JM022	5,981,603	6,998,697	997.72	TERRENO
JM023	5,981,246	7,000,117	997,805	TERRENO
JM024	5968.07	7,010,553	998,004	TERRENO
JM025	5,952,855	7,001,755	997,711	TERRENO
JM026	5,944,382	6,995,994	997,622	TERRENO
JM027	5,964,663	7,003,127	997.92	EJE
JM028	5,969,548	7,008,394	999,733	LOSA
JM029	5,977,519	7,009,988	999,739	LOSA
JM030	5,979,234	7002.01	999,718	LOSA
JM031	5898.78	6,956,907	994,728	EJE
JM032	5,911,731	6,956,317	993,906	EJE
JM033	5,929,682	6,955,652	993,389	EJE
JM034	5,948,016	6,954,931	993,114	EJE

Tabla 1. Datos obtenidos del levantamiento topográfico

Tabla 1. Datos obtenidos del levantamiento topográfico				
PUNTO	X (m)	Y	ELEVACIÓN	TIPO
IM025	(m) 5966.38	(m)	(m) 993.15	EJE
JM035 JM036	5,984,239	6,954,627 6,953,875	993.13	EJE EJE
JM030 JM037		, , , , , , , , , , , , , , , , , , ,	· ·	EJE EJE
	5,998,971	6,953,618	993,388	
JM038	6,004,714	6,954,063	993,857	EJE
JM039	5,924,739	6,816,485	986,825	EJE
JM040	5,944,874	6,815,383	986.36	EJE
JM041	5,965,698	6,814,244	986,251	EJE
JM042	5,987,821	6,813,089	986,537	EJE
JM043	6,010,134	6,811,815	986,972	EJE
JM044	6,030,934	6,810,705	987,555	EJE
JM045	6,049,605	6,809,179	987,462	EJE
JM046	6,064,714	6,809,285	987.07	EJE
JM047	6083.87	6,809,149	986.47	EJE
JM048	6083.88	6,809,150	986.48	EJE
JM049	6083.89	6,809,151	986.49	EJE
JM050	6083.90	6,809,152	986.50	EJE
JM051	6083.91	6,809,153	986.51	EJE
JM052	6083.92	6,809,154	986.52	EJE
JM053	6083.93	6,809,155	986.53	EJE
JM054	6083.94	6,809,156	986.54	EJE
JM055	6083.95	6,809,157	986.55	EJE
JM056	6083.96	6,809,158	986.56	EJE
JM057	6083.97	6,809,159	986.57	EJE
JM058	6083.98	6,809,160	986.58	EJE
JM059	6083.99	6,809,161	986.59	EJE
JM060	6083.100	6,809,162	986.60	EJE
JM061	6083.101	6,809,163	986.61	EJE
JM062	6083.102	6,809,164	986.62	EJE
JM063	6083.103	6,809,165	986.63	EJE
JM064	6083.104	6,809,166	986.64	EJE
JM065	6083.105	6,809,167	986.65	EJE
JM066	6083.106	6,809,168	986.66	EJE
JM067	6083.107	6,809,169	986.67	EJE
JM068	6083.108	6,809,170	986.68	EJE
JM069	6083.109	6,809,171	986.69	EJE
JM070	6083.110	6,809,172	986.70	EJE
JM071	6083.111	6,809,173	986.71	EJE
JM072	6083.112	6,809,174	986.72	EJE
JM073	6083.113	6,809,175	986.73	EJE

Tabla 1. Datos obtenidos del levantamiento topográfico

Tabla 1. Datos obtenidos del levantamiento topográfico				
PUNTO	X (m)	Y (m)	ELEVACIÓN (m)	TIPO
JM074	6083.114	6,809,176	986.74	EJE
JM074 JM075	6083.115	6,809,170	986.75	EJE EJE
JM075 JM076	6083.116	6,809,177	986.76	EJE
JM077	6083.117	6,809,179	986.77	EJE
JM078	6083.117	6,809,179	986.78	EJE
JM079	6083.119	6,809,181	986.79	EJE
JM080	6083.120	6,809,182	986.80	EJE
JM080	6083.121	6,809,183	986.81	EJE EJE
JM082	6083.122	6,809,184	986.82	EJE
JM082	6083.123	6,809,185	986.83	EJE
JM084	6083.124	6,809,186	986.84	EJE
JM085	6083.125	6,809,187	986.85	EJE
JM086	6083.126	6,809,188	986.86	EJE
JM087	6083.127	6,809,189	986.87	EJE
JM088	6083.128	6,809,190	986.88	EJE
JM089	6083.129	6,809,191	986.89	EJE
JM090	6083.130	6,809,192	986.90	EJE
JM091	6083.131	6,809,193	986.91	EJE
JM092	6083.132	6,809,194	986.92	EJE
JM093	6083.133	6,809,195	986.93	EJE
JM094	6083.134	6,809,196	986.94	EJE
JM095	6083.135	6,809,197	986.95	EJE
JM096	6083.136	6,809,198	986.96	EJE
JM097	6083.137	6,809,199	986.97	EJE
JM098	6083.138	6,809,200	986.98	EJE
JM099	6083.139	6,809,201	986.99	EJE
JM100	6083.140	6,809,202	986.100	EJE
JM101	6083.141	6,809,203	986.101	EJE
JM102	6083.142	6,809,204	986.102	EJE
JM103	6083.143	6,809,205	986.103	EJE
JM104	6083.144	6,809,206	986.104	EJE
JM105	6083.145	6,809,207	986.105	EJE
JM106	6083.146	6,809,208	986.106	EJE
JM107	6083.147	6,809,209	986.107	EJE
JM108	6083.148	6,809,210	986.108	EJE
JM109	6083.149	6,809,211	986.109	EJE
JM110	6083.150	6,809,212	986.110	EJE
JM111	6083.151	6,809,213	986.111	EJE
JM112	6083.152	6,809,214	986.112	EJE

Tabla 1. Datos obtenidos del levantamiento topográfico

Tabla 1. Datos obtenidos del levantamiento topográfico X Y ELEVACIÓN				
PUNTO	X	_	ELEVACIÓN (m)	TIPO
JM113	(m) 6083.153	(m) 6,809,215	986.113	EJE
JM113 JM114	6083.154	6,809,215	986.113	EJE EJE
JM114 JM115	6083.155	6,809,217	986.115	EJE
JM113 JM116	6083.156	6,809,217	986.116	EJE EJE
JM117	6083.157	6,809,218	986.117	EJE EJE
JM117 JM118	6083.158	6,809,219	986.118	EJE EJE
	6083.159			EJE EJE
JM119		6,809,221	986.119	
JM120	6083.160	6,809,222	986.120	EJE
JM121	6083.161	6,809,223	986.121	EJE
JM122	6083.162	6,809,224	986.122	EJE
JM123	6083.163	6,809,225	986.123	EJE
JM124	6083.164	6,809,226	986.124	EJE
JM125	6083.165	6,809,227	986.125	EJE
JM126	6083.166	6,809,228	986.126	EJE
JM127	6083.167	6,809,229	986.127	EJE
JM128	6083.168	6,809,230	986.128	EJE
JM129	6083.169	6,809,231	986.129	EJE
JM130	6083.170	6,809,232	986.130	EJE
JM131	6083.171	6,809,233	986.131	EJE
JM132	6083.172	6,809,234	986.132	EJE
JM133	6083.173	6,809,235	986.133	EJE
JM134	6083.174	6,809,236	986.134	EJE
JM135	6083.175	6,809,237	986.135	EJE
JM136	6083.176	6,809,238	986.136	EJE
JM137	6083.177	6,809,239	986.137	EJE
JM138	6083.178	6,809,240	986.138	EJE
JM139	6083.179	6,809,241	986.139	EJE
JM140	6083.180	6,809,242	986.140	EJE
JM141	6083.181	6,809,243	986.141	EJE
JM142	6083.182	6,809,244	986.142	EJE
JM143	6083.183	6,809,245	986.143	EJE
JM144	6083.184	6,809,246	986.144	EJE
JM145	6083.185	6,809,247	986.145	EJE
JM146	6083.186	6,809,248	986.146	EJE
JM147	6083.187	6,809,249	986.147	EJE
JM148	6083.188	6,809,250	986.148	EJE
JM149	6083.189	6,809,251	986.149	EJE
JM150	6083.190	6,809,252	986.150	EJE
JM151	6083.191	6,809,253	986.151	EJE

Tabla 1. Datos obtenidos del levantamiento topográfico

Tabla 1. Datos obtenidos del levantamiento topográfico				
PUNTO	X (m)	Y	ELEVACIÓN	TIPO
JM152	(m) 6083.192	(m) 6,809,254	(m) 986.152	EJE
JM152 JM153	6083.192	6,809,255	986.153	EJE EJE
JM153 JM154	6083.194	6,809,256	986.154	EJE
JM154 JM155	6083.194	6,809,257	986.155	EJE EJE
JM155 JM156	6083.196	6,809,257	986.156	EJE EJE
JM150 JM157	6083.190	6,809,259	986.157	EJE EJE
			986.158	
JM158	6083.198	6,809,260		EJE
JM159	6083.199	6,809,261	986.159	EJE
JM160	6083.200	6,809,262	986.160	EJE
JM161	6083.201	6,809,263	986.161	EJE
JM162	6083.202	6,809,264	986.162	EJE
JM163	6083.203	6,809,265	986.163	EJE
JM164	6083.204	6,809,266	986.164	EJE
JM165	6083.205	6,809,267	986.165	EJE
JM166	6083.206	6,809,268	986.166	EJE
JM167	6083.207	6,809,269	986.167	EJE
JM168	6083.208	6,809,270	986.168	EJE
JM169	6083.209	6,809,271	986.169	EJE
JM170	6083.210	6,809,272	986.170	EJE
JM171	6083.211	6,809,273	986.171	EJE
JM172	6083.212	6,809,274	986.172	EJE
JM173	6083.213	6,809,275	986.173	EJE
JM174	6083.214	6,809,276	986.174	EJE
JM175	6083.215	6,809,277	986.175	EJE
JM176	6083.216	6,809,278	986.176	EJE
JM177	6083.217	6,809,279	986.177	EJE
JM178	6083.218	6,809,280	986.178	EJE
JM179	6083.219	6,809,281	986.179	EJE
JM180	6083.220	6,809,282	986.180	EJE
JM181	6083.221	6,809,283	986.181	EJE
JM182	6083.222	6,809,284	986.182	EJE
JM183	6083.223	6,809,285	986.183	EJE
JM184	6083.224	6,809,286	986.184	EJE
JM185	6083.225	6,809,287	986.185	EJE
JM186	6083.226	6,809,288	986.186	EJE
JM187	6083.227	6,809,289	986.187	EJE
JM188	6083.228	6,809,290	986.188	EJE
JM189	6083.229	6,809,291	986.189	EJE
JM190	6083.230	6,809,292	986.190	EJE

Tabla 1. Datos obtenidos del levantamiento topográfico

Tabla 1. Datos obtenidos del levantamiento topográfico X Y ELEVACIÓN TRO				
PUNTO	(m)	(m)	ELEVACIÓN (m)	TIPO
JM191	6083.231	6,809,293	986.191	EJE
JM191 JM192	6083.232	6,809,294	986.191	EJE
JM192 JM193	6083.233	6,809,294	986.193	EJE EJE
JM193 JM194	6083.234	6,809,296	986.194	EJE EJE
JM194 JM195	6083.235	6,809,290	986.195	EJE
JM196	6083.236	6,809,297	986.196	EJE
JM190 JM197	6083.237	6,809,299	986.197	EJE EJE
JM197 JM198	6083.238	6,809,300	986.198	EJE EJE
		1		
JM199	6083.239	6,809,301	986.199	EJE
JM200	6083.240	6,809,302	986.200	EJE
JM201	6083.241	6,809,303	986.201	EJE
JM202	6083.242	6,809,304	986.202	EJE
JM203	6083.243	6,809,305	986.203	EJE
JM204	6083.244	6,809,306	986.204	EJE
JM205	6083.245	6,809,307	986.205	EJE
JM206	6083.246	6,809,308	986.206	EJE
JM207	6083.247	6,809,309	986.207	EJE
JM208	6083.248	6,809,310	986.208	EJE
JM209	6083.249	6,809,311	986.209	EJE
JM210	6083.250	6,809,312	986.210	EJE
JM211	6083.251	6,809,313	986.211	EJE
JM212	6083.252	6,809,314	986.212	EJE
JM213	6083.253	6,809,315	986.213	EJE
JM214	6083.254	6,809,316	986.214	EJE
JM215	6083.255	6,809,317	986.215	EJE
JM216	6083.256	6,809,318	986.216	EJE
JM217	6083.257	6,809,319	986.217	EJE
JM218	6083.258	6,809,320	986.218	EJE
JM219	6083.259	6,809,321	986.219	EJE
JM220	6083.260	6,809,322	986.220	EJE
JM221	6083.261	6,809,323	986.221	EJE
JM222	6083.262	6,809,324	986.222	EJE
JM223	6083.263	6,809,325	986.223	EJE
JM224	6083.264	6,809,326	986.224	EJE
JM225	6083.265	6,809,327	986.225	EJE
JM226	6083.266	6,809,328	986.226	EJE
JM227	6083.267	6,809,329	986.227	EJE
JM228	6083.268	6,809,330	986.228	EJE
JM229	6083.269	6,809,331	986.229	EJE

Tabla 1. Datos obtenidos del levantamiento topográfico

Tabla 1. Datos obtenidos del levantamiento topográfico X Y ELEVACIÓN TRO				
PUNTO	(m)	(m)	ELEVACIÓN (m)	TIPO
JM230	6083.270	6,809,332	986.230	EJE
JM231	6083.270	6,809,332	986.231	EJE
JM232	6083.271	6,809,334	986.232	EJE EJE
JM232	6083.272	6,809,335	986.233	EJE
JM234	6083.274	6,809,336	986.234	EJE
JM235	6083.275	6,809,337	986.235	EJE EJE
JM236	6083.276	6,809,338	986.236	EJE
JM237	6083.277	6,809,339	986.237	EJE EJE
JM238	6083.278	6,809,340	986.238	EJE
JM239	6083.279	6,809,341	986.239	EJE
JM240	6083.280	6,809,342	986.240	EJE EJE
JM241	6083.281	6,809,343	986.241	EJE
JM242	6083.282	6,809,344	986.242	EJE
JM243	6083.283	6,809,345	986.243	EJE EJE
JM244	6083.284	6,809,346	986.244	EJE
JM245	6083.285	6,809,347	986.245	EJE
JM246	6083.286	6,809,348	986.246	EJE
JM247	6083.287	6,809,349	986.247	EJE
JM248	6083.288	6,809,350	986.248	EJE
JM249	6083.289	6,809,351	986.249	EJE
JM250	6083.290	6,809,352	986.250	EJE
JM251	6083.291	6,809,353	986.251	EJE
JM252	6083.292	6,809,354	986.252	EJE
JM253	6083.293	6,809,355	986.253	EJE
JM254	6083.294	6,809,356	986.254	EJE
JM255	6083.295	6,809,357	986.255	EJE
JM256	6083.296	6,809,358	986.256	EJE
JM257	6083.297	6,809,359	986.257	EJE
JM258	6083.298	6,809,360	986.258	EJE
JM259	6083.299	6,809,361	986.259	EJE
JM260	6083.300	6,809,362	986.260	EJE
JM261	6083.301	6,809,363	986.261	EJE
JM262	6083.302	6,809,364	986.262	EJE
JM263	6083.303	6,809,365	986.263	EJE
JM264	6083.304	6,809,366	986.264	EJE
JM265	6083.305	6,809,367	986.265	EJE
JM266	6083.306	6,809,368	986.266	EJE
JM267	6083.307	6,809,369	986.267	EJE
JM268	6083.308	6,809,370	986.268	EJE

Tabla 1. Datos obtenidos del levantamiento topográfico

PUNTO	X	Y	ELEVACIÓN	TIPO
PUNTO	(m)	(m)	(m)	TIFO
JM269	6083.309	6,809,371	986.269	EJE
JM270	6083.310	6,809,372	986.270	EJE
JM271	6083.311	6,809,373	986.271	EJE
JM272	6083.312	6,809,374	986.272	EJE
JM273	6083.313	6,809,375	986.273	EJE
JM274	6083.314	6,809,376	986.274	EJE
JM275	6083.315	6,809,377	986.275	EJE
JM276	6083.316	6,809,378	986.276	EJE
JM277	6083.317	6,809,379	986.277	EJE
JM278	6083.318	6,809,380	986.278	EJE
JM279	6083.319	6,809,381	986.279	EJE
JM280	6083.320	6,809,382	986.280	EJE
JM281	6083.321	6,809,383	986.281	EJE
JM282	6083.322	6,809,384	986.282	EJE
JM283	6083.323	6,809,385	986.283	EJE
JM284	6083.324	6,809,386	986.284	EJE
JM285	6083.325	6,809,387	986.285	EJE
JM286	6083.326	6,809,388	986.286	EJE
JM287	6083.327	6,809,389	986.287	EJE
JM288	6083.328	6,809,390	986.288	EJE
JM289	6083.329	6,809,391	986.289	EJE
JM290	6083.330	6,809,392	986.290	EJE
JM291	6083.331	6,809,393	986.291	EJE

Topografía digital

El siguiente paso es trasladar los puntos de la traza urbana (por medio de un software o editando un archivo tipo scrip de coordenadas) a un sistema de dibujo asistido por computadora (CAD), Figura 17.

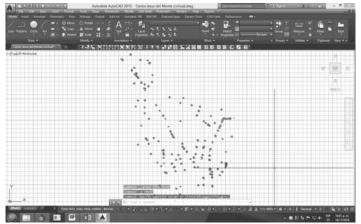


Figura 17. Puntos obtenidos de la topografía en un sistema de dibujo CAD

Posteriormente dicho dibujo se exportará como imagen al modelador hidráulico Epanet donde trazaremos las tuberías así como los puntos con sus longitudes y elevaciones reales (se hace la representación gráfica de calles).

Cálculo de crecimiento de población a futuro

Con la finalidad de determinar la población del proyecto en un futuro (se calculó sólo para ver el crecimiento de la demanda) se realizó un análisis histórico de las características demográficas a escala local, utilizando la información que proporciona el Instituto de Estadística, Geografía e Informática.

Para realizar el proyecto de abastecimiento de agua, es necesario conocer la información demográfica de la localidad para realizar un conteo de habitantes existentes en esa localidad.

Se deben tener antecedentes de censos para conocer como ha crecido la población con el paso de los años, por eso ello que realizar proyectos de abastecimiento de agua es importante conocer la población a futuro para realizar un proyecto rentable, realizando un porcentaje de incremento a su desarrollo rural.

Generalmente existen datos censales, Tabla 2, que en nuestro caso en particular, contamos con la información relativa a los censos de 1900 a 2010, por lo que se consideran estos datos en el cálculo, considerando que son suficientes para analizar el comportamiento demográfico, histórico y futuro de la localidad de Jesús del Monte.

Tabla 2. Censos de Jesús del Monte

Año	Habitantes
2010	4 182
2005	2 989
2000	2 665
1995	2 375
1990	1 422
1980	803
1970	877
1960	775
1950	510
1940	468
1930	453
1921	384
1910	396
1900	454

Consumo

Para el cálculo de la dotación a la población se define a partir de la clasificación socioeconómica de la población y del clima, Tablas 3 y 4, datos propuestos por la Comisión Nacional del Agua.

Tabla 3. Definición de la clase socioeconómica

Clase socioeconómica	Descripción del tipo de vivienda
Residencial	Casas solas o departamentos de lujo, que cuentan con dos o más baños, jardín grande, cisterna, lavadora, etc.
Media	Casas y departamentos que cuentan con uno o dos baños, jardín mediano y tinaco
Popular	Vecindades y casas habitadas por una o varias familias de las cuales cuentan con jardín pequeño con un solo baño o compartiéndolo

Tabla 4. Definición del tipo de clima

Temperatura media anual en °C	Tipo de clima
Mayor de 22	Cálido
De 18 a 22	Semicálido
De 12 a 17.9	Templado
De 5 a 11.9	Semifrío
Menor a 5	Frío

Para elegir la dotación, se tiene que es una población media la cual presenta un clima semicálido, por lo tanto se le asigna una dotación determinada por habitante al día tomando como referencia los valores de la Tabla 5.

Tabla 5. Dotación en litros por habitante al día

Clima	Residencial	Media	Popular
Cálido	400	230	185
Semicálido	300	205	130
Templado	200	195	100

Cálculo de la población de proyecto

La población de proyecto, también conocida como población futura, se definirá basándose en el crecimiento histórico de la localidad y los años a los que se proyectará el sistema de abastecimiento irán de acuerdo con el tipo de población. Existen varios métodos por medio de los cuales se puede calcular la población de proyecto, siendo algunos de ellos, método gráfico, aritmético, geométrico, interés compuesto y mínimos cuadrados.

Para el cálculo de la población futura, se utilizarán los datos censados a partir de 1900 y el dato a encontrar será para el año 2036, es decir, se proyectará la población a 20 años, con la finalidad de conocer a futuro cual será la demanda de la población en un momento dado.

Para el cálculo de la población de proyecto se emplearo cuatro métodos: aritmético, geométrico por porcentaje (1), geométrico por incremento medio total (2), y el de mínimos cuadrados. En la Tabla 6 se muestran los cálculos de la población obtenidos con las cuatro metodologías. Se utilizará el valor promedio.

Tabla 6. Cálculo de población actual y futura de Jesús del Monte

Año	Método aritmético	Método geométrico (1)	Método geométrico (2)	Método de mínimos cuadrados	Promedio
2016	4 386	4 820	4 862	3 577	4 411
2036	5 066	6 945	8 030	4 673	6 179

CAPÍTULO 3

DETERMINACIÓN DE LOS CONSUMOS DE AGUA DE LA POBLACIÓN

Aunque para el caso de nuestra red la finalidad es realizar un diagnóstico actual del funcionamiento del sistema de distribución de agua potable de la localidad de Jesús del Monte haremos un análisis de los gastos a futuro basados en los cálculos anteriormente ejecutados esto con la finalidad de hacer una comparativa al final de las conclusiones de nuestro proyecto, es muy importante para proponer posteriormente un serie de sugerencias a los habitantes de dicho lugar sobre cuales deberán ser las acciones a seguir para el aseguramiento eficiente de agua en un futuro próximo.

Clima

Nuestra localidad Se localiza en el occidente del país. El clima es cálido subhúmedo, principalmente, con una temperatura media anual de 20 grados centígrados, y una precipitación anual promedio de 850 mm. La temperatura media anual es de 20 grados centígrados, clima semicálido, y la localidad cuenta con clase socioeconómico media, mediante la Tabla 5, del manual de la Comisión Nacional del Agua, la dotación para la localidad de Jesús del Monte será de 205 litros por habitante al día.

Gasto medio diario

El gasto medio diario (Qm), es el agua que un usuario o población necesita en un día de consumo promedio y para una localidad. Se obtiene multiplicando la población por la dotación dividida entre los segundos que tiene un día resultando un valor de 14.66 L/s.

Gasto máximo diario

El gasto máximo diario (Qmd), es el gasto máximo que se consume en un día. Se obtiene al multiplicar el gasto medio diario por un coeficiente de variación diaria que tiene un valor de 1.2 para poblaciones rurales y 1.4 para las poblaciones urbanas. Por lo que utilizaremos el segundo de ellos.

 $Qmd = Qm \times C.V.D.$

 $Qmd = 14.66 \times 1.4$

Qmd = 20.52 L/s

Gasto máximo horario

El gasto máximo horario (Qmh), es el gasto máximo que se consume en una determinada hora. Se obtiene al multiplicar el gasto máximo diario por un coeficiente de variación horaria que tiene un valor de 1.5 para poblaciones rurales y 1.55 para las poblaciones urbanas. Por lo que utilizaremos el segundo de ellos.

Qmh = Qmd x C.V.H.
Qmh =
$$20.52 \times 1.55$$

$$Qmh = 31.77 L/s$$

Volumen de regulación

Para ello se utlliza el gasto máximo diario, con este dato se procede a efectuar el cálculo del volumen de regulación (capacidad del tanque).

Volumen de regulación =
$$19 \times 20.52 = 390 \text{ m}^3$$

Donde el gasto máximo diario es de 20.52 L/s multiplicado por un coeficiente de regulación asignado por la Comisión Nacional del Agua, y tiene un valor de 19, pensando en un tiempo de suministro al tanque de 16 horas (de las 5 h a las 21 h).

El tanque de regulación deberá tener una capacidad de 390 m³, actualmente se cuenta con tres tanques en funcionamiento, sumando entre todos su volumen nos da una capacidad de almacenamiento de 220 m³, cabe destacar que al día de hoy está en construcción un tanque elevado con capacidad 20 m³ lo cual da un volumen total 240 m³, por lo que existe un déficit de 150 m³ en la capacidad de regulación.

CAPÍTULO 4

FUNCIONAMIENTO HIDRÁULICO DE LA RED DE AGUA POTABLE EN EL SOFTWARE EPANET

Una vez que contamos con los datos obtenidos de la topografía realizamos el plano de la misma enseguida calculamos los gastos de proyecto. Comenzamos a realizar el modelo de la red de agua potable (para esta caso nuestra red cuenta con 122 tramos de tubería que suman una longitud total de 14 043.34 m, 123 nodos y tres tanques interconectados por lo cual lo modelaremos como un solo tanque de almacenamiento haciendo uso del modelador hidráulico Epanet, en el cual ejecutaremos nuestro análisis. Por medio de un archivo de imagen exportado de nuestra herramienta de dibujo (ordenando todo por capas), para después importarla con Epanet, Figura 18.

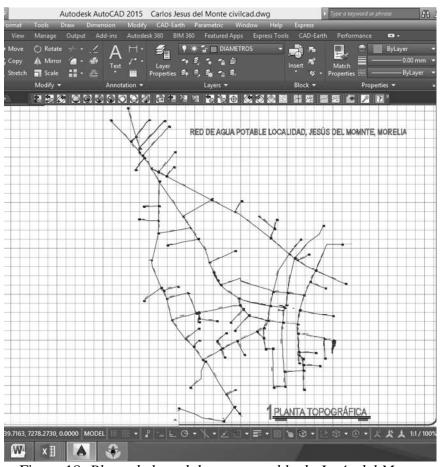


Figura 18. Plano de la red de agua potable de Jesús del Monte

Modelando en Epanet

Importamos la imagen de nuestro sistema de dibujo, Figura 19, y trazamos sobre ella nuestra red, editando en el mismo simulador hidráulico tanto las longitudes de la tubería, como los diámetros, rugosidades, en si todas las características hidráulicas de nuestra red, aquí no importa la escala Epanet ajusta todas las características de nuestra red.

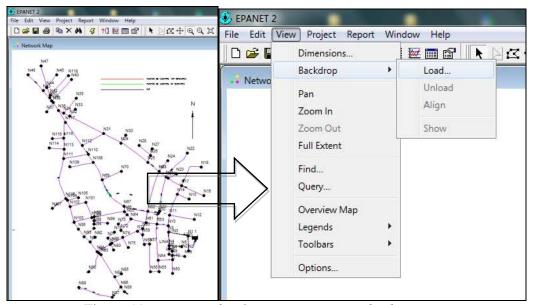


Figura 19. Importando plano como imagen desde Epanet

Modelando la red

Añadir tanque. Se modela como un embalse ya que la variación que tiene el nivel del agua en el tanque se considera el mismo nivel de agua, enseguida agregamos los nodos y el sistema de tuberías. Lo más importante entes de empezar es designar los valores por defecto, Figura 20.

Sobre la imagen importada en Epanet trazamos cada uno de los elementos, tanques, tuberías y nodos, con sus respectivas longitudes y elevaciones según cada componente de nuestra red. Figura 21.

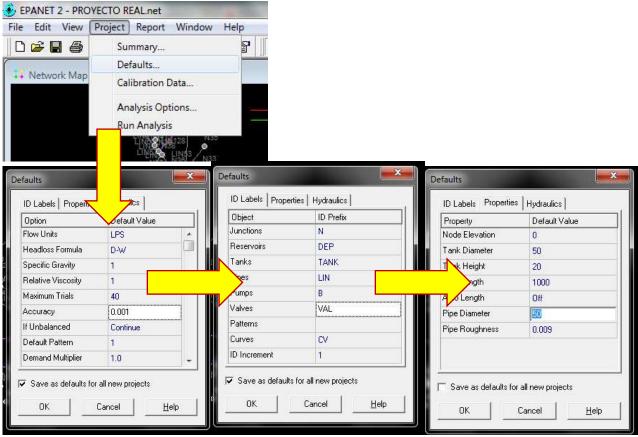


Figura 20. Parámetros por defecto en el modelador hidráulico Epanet

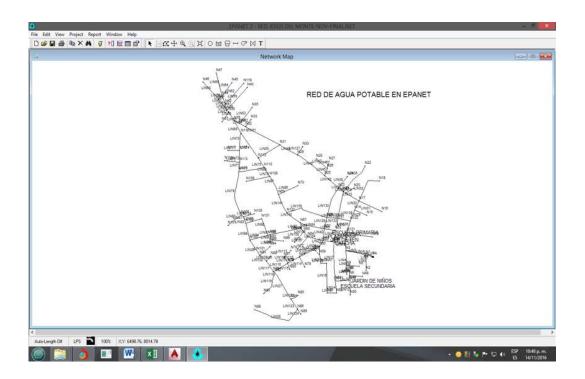


Figura 21. Red de agua potable de Jesús del Monte

Los datos de las características topográficas e hidráulicas de nuestros componentes obtenidos de cada elemento de nuestra red los ingresamos en los cuadros de diálogo correspondientes de Epanet. Copiamos una a una las longitudes o coordenadas de nuestra tuberías y nodos según sea el caso, Figura 22.

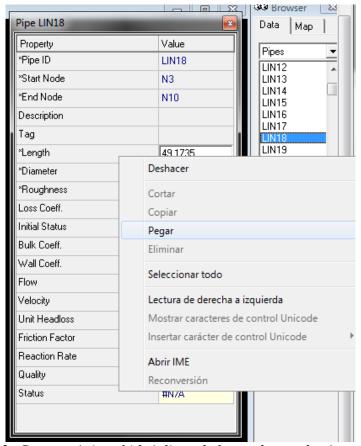


Figura 22. Características hidráulicas de los nodos y tuberías en Epanet

Una vez trazada nuestra red correctamente exportamos de Epanet a hoja del cálculo los datos de nuestra red lo cual nos facilitará obtener la longitud total de la red y el cáculo de la demanda base en cada uno de los nodos de nuestro sistema de agua potable, Figura 23.

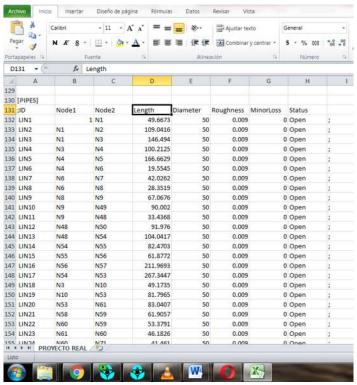


Figura 23. Exportando datos de Epanet hacia hoja de cálculo

Importando datos desde Epanet a hoja de Cálculo en formato texto sin formato o bloc de notas asc II, Figura 24.

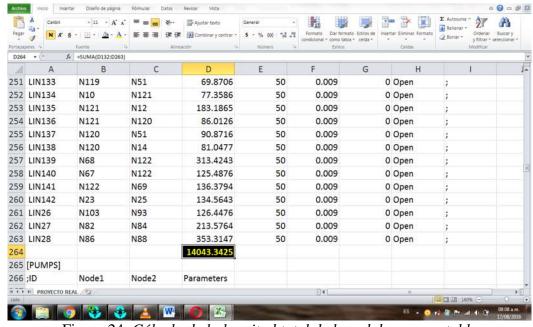


Figura 24. Cálculo de la longitud total de la red de agua potable

Coeficiente de rugosidad

La rugosidad de las paredes de los canales y tuberías se determina en función del material con que están construidos, el acabado de la construcción y el tiempo de uso. Los valores son determinados en mediciones tanto de laboratorio como en el campo. La variación de este parámetro es fundamental para el cálculo hidráulico por un lado, y para el buen desempeño de las obras hidráulicas, Tabla 7. Para nuestro caso la tubería es de PVC y el factor de fricción seleccionado fue de 0.009 mm.

Tabla 7. Valores de la rugosidad para diferentes de materiales

Material	Rugosidad (mm)
PVC y polietileno de alta densidad	0.009
Asbesto-cemento nuevo	0.01
Asbesto-cemento usado	0.011 a 0.015
Fierro fundido nuevo	0.013
Fierro fundido usado	0.017
Concreto liso	0.012
Concreto áspero	0.016
Concreto pre-esforzado	0.012
Concreto con buen acabado	0.014
Mampostería con mortero de cemento	0.02
Acero soldado con revestimiento interior a base de epoxy	0.011
Acero sin revestimiento	0.014
Acero galvanizado nuevo o usado	0.014

Cálculo de la demanda base (análisis actual)

Con el dato de la población actual, 4 411 habitantes, se realiza el cálculo del gasto medio diario, gasto máximo diario y gasto máximo horario. De manera analóga al cálculo realizado anteriormente se obtienen los siguientes resultados.

$$Qm = 10.47 \text{ L/s}$$

$$Qmd = 14.65 L/s$$

$$Qmh = 22.71 L/s$$

Longitud total de la tubería = 14 043.34 m

Gasto específico (q) = Qmh / longitud total de la tubería

$$q = Qmh / 14043.34 = 0.0016 L/(s.m)$$

$$QN = qL/2$$

Siendo

QN = gasto en el nodo "X"

L= longitud del tramo que llega al nodo

Los gastos de consumo en cada nodo se obtienen como se indica en la Figura 25.

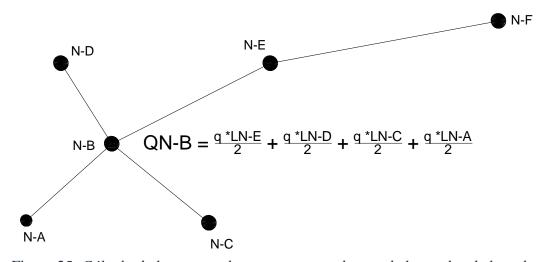


Figura 25. Cálculo de los gastos de consumo en cada uno de los nodos de la red

Se realizará el mismo cálculo repetitivo en cada una de las líneas de la red de distribución de agua potable. Los resultados del cálculo de los gastos de consumo en cada uno de los nodos de la red se muestran en la Tabla 8.

Tabla 8. Gastos en los nodos finales de la red

Tubería	Nodo	Nodo	Longitud	Q
	inicial	final	(m)	(L/s)
LIN0	1	N0	3.00	0.005
LIN1	1	N1	46.67	0.075
LIN2	N1	N2	109.04	0.088
LIN3	N1	N3	146.49	0.118
LIN4	N3	N4	100.21	0.081
LIN5	N4	N5	166.66	0.135
LIN6	N4	N6	19.55	0.016
LIN7	N6	N7	42.03	0.034
LIN8	N6	N8	28.35	0.023
LIN9	N8	N9	67.07	0.054
LIN10	N9	N49	90.00	0.073
LIN11	N9	N48	33.44	0.027

Tabla 8. Gastos en los nodos finales de la red

Nodo	Nodo	Longitud	
inicial		_	Q
inicial	final	(m)	(L/s)
			0.074
			0.084
			0.067
			0.050
			0.171
			0.216
			0.040
			0.066
			0.067
N58	N59		0.050
N60	N59	53.38	0.043
N61	N60	46.18	0.037
N60	N71	41.46	0.034
N59	N71	49.98	0.040
N14	N15	90.32	0.073
N14	N17	68.47	0.055
N17	N16	176.63	0.143
N17	N18	237.09	0.192
N17	N19	113.76	0.092
N19	N20	68.07	0.055
N21	N22	238.41	0.193
N19	N21	19.04	0.015
N21	N23	36.86	0.030
N23	N24	102.59	0.083
N51	N21	192.56	0.156
N53	N52	82.46	0.067
N61	N62	83.21	0.067
N52	N62	78.29	0.063
N25	N26	56.00	0.045
N26	N27	51.65	0.042
N26	N28	106.46	0.086
N25	N29	241.41	0.195
N29	N31	143.57	0.116
N31	N112	179.87	0.145
N31	N32	277.20	0.224
N32	N33	64.65	0.052
N34	N35	141.77	0.115
N32	N34	49.53	0.040
N34	N36	42.37	0.034
	N48 N48 N48 N54 N55 N56 N56 N54 N3 N10 N53 N58 N60 N61 N60 N59 N14 N17 N17 N17 N17 N17 N17 N19 N21 N21 N23 N51 N53 N61 N52 N25 N26 N25 N26 N25 N26 N25 N26 N25 N27 N27 N31 N31 N31 N32 N34 N32	N48 N50 N48 N54 N54 N55 N55 N56 N56 N57 N54 N53 N3 N10 N10 N53 N53 N61 N58 N59 N60 N59 N61 N60 N60 N71 N59 N71 N14 N15 N14 N17 N17 N16 N17 N18 N17 N19 N19 N20 N21 N22 N19 N21 N21 N23 N22 N21 N23 N24 N51 N21 N53 N52 N61 N62 N52 N62 N25 N26 N26 N27 N26 N28 N25 N26 N26	N48 N50 91.98 N48 N54 104.04 N54 N55 82.47 N55 N56 61.88 N56 N57 211.97 N54 N53 267.34 N3 N10 49.17 N10 N53 261.91 N10 N53 81.80 N53 N61 83.04 N58 N59 61.91 N60 N59 53.38 N61 N60 46.18 N60 N71 41.46 N59 N71 49.98 N14 N15 90.32 N14 N15 90.32 N14 N17 68.47 N17 N16 176.63 N17 N18 237.09 N17 N19 113.76 N19 N20 68.07 N21 N22 238.41 N19 N21 19.04

Tabla 8. Gastos en los nodos finales de la red

Table			os jinaies ae i	ı
Tubería	Nodo	Nodo	Longitud	Q
	inicial	final	(m)	(L/s)
LIN56	N36	N38	69.55	0.056
LIN57	N38	N37	69.55	0.056
LIN58	N38	N39	16.51	0.013
LIN59	N39	N40	214.79	0.174
LIN60	N39	N41	23.20	0.019
LIN61	N41	N42	22.85	0.018
LIN62	N42	N118	200.30	0.162
LIN63	N42	N44	65.24	0.053
LIN64	N44	N45	140.34	0.114
LIN65	N44	N47	163.67	0.132
LIN66	N44	N43	39.10	0.032
LIN67	N41	N43	76.16	0.062
LIN68	N43	N46	160.24	0.130
LIN69	N36	N117	81.09	0.066
LIN70	N117	N115	135.14	0.109
LIN71	N115	N116	82.79	0.067
LIN72	N115	N113	80.95	0.065
LIN73	N113	N114	108.99	0.088
LIN74	N117	N112	231.85	0.188
LIN75	N112	N110	74.85	0.061
LIN76	N110	N111	179.53	0.145
LIN77	N113	N111	68.76	0.056
LIN78	N108	N109	170.39	0.138
LIN79	N111	N106	309.60	0.250
LIN80	N106	N107	118.39	0.096
LIN81	N106	N104	21.06	0.017
LIN82	N104	N105	79.98	0.065
LIN83	N104	N102	48.76	0.039
LIN84	N62	N67	173.85	0.141
LIN86	N69	N70	152.57	0.123
LIN87	N69	N108	144.47	0.117
LIN88	N108	N110	72.47	0.059
LIN89	N67	N66	37.71	0.031
LIN90	N66	N96	226.31	0.183
LIN91	N96	N100	14.61	0.012
LIN92	N100	N101	120.61	0.098
LIN93	N101	N102	121.48	0.098
LIN94	N100	N103	137.34	0.111
LIN95	N96	N97	33.14	0.027

Tabla 8. Gastos en los nodos finales de la red

1 4010			os jinaies ae i	
Tubería	Nodo	Nodo	Longitud	Q (L/a)
I INIOC	inicial	final	(m)	(L/s)
LIN96	N97	N98	18.28	0.015
LIN97	N97	N99	98.90	0.080
LIN98	N102	N103	119.84	0.097
LIN101	N93	N94	90.53	0.073
LIN102	N93	N91	60.97	0.049
LIN103	N91	N92	46.34	0.037
LIN104	N61	N64	106.01	0.086
LIN105	N64	N65	45.51	0.037
LIN106	N65	N66	356.44	0.288
LIN107	N64	N72	112.59	0.091
LIN108	N65	N73	97.44	0.079
LIN109	N71	N74	119.67	0.097
LIN110	N74	N76	89.59	0.072
LIN111	N76	N79	7.00	0.006
LIN112	N76	N77	48.42	0.039
LIN113	N77	N78	66.77	0.054
LIN114	N74	N75	84.60	0.068
LIN115	N79	N80	47.47	0.038
LIN116	N79	N81	116.17	0.094
LIN117	N91	N81	86.06	0.070
LIN118	N81	N82	16.45	0.013
LIN119	N82	N90	174.73	0.141
LIN122	N84	N85	54.68	0.044
LIN123	N84	N86	83.28	0.067
LIN124	N86	N89	42.68	0.035
LIN127	N29	N30	68.75	0.056
LIN128	N58	N57	39.22	0.032
LIN129	N62	N68	78.45	0.063
LIN130	N68	N23	226.73	0.183
LIN132	N51	N68	78.71	0.064
LIN133	N119	N51	69.87	0.057
LIN134	N10	N121	77.36	0.063
LIN135	N121	N12	183.19	0.148
LIN136	N121	N120	86.01	0.070
LIN137	N120	N51	90.87	0.073
LIN138	N120	N14	81.05	0.066
LIN139	N68	N122	313.42	0.253
LIN140	N67	N122	125.49	0.101
LIN141	N122	N69	136.38	0.110
	l .			

Tabla 8. Gastos en los nodos finales de la red

Tubería	Nodo	Nodo	Longitud	Q
Tuberra	inicial	final	(m)	(L/s)
LIN142	N23	N25	134.56	0.109
LIN26	N103	N93	126.45	0.102
LIN27	N82	N84	213.58	0.173
LIN28	N86	N88	353.31	0.286

Una vez obtenidos los gastos se asignan a cada uno de los nodos en la red de distribución de agua potable, Tabla 9.

Tabla 9. *Cálculo de demanda base*

Número		Demanda
de nodo		base
uc ii	04 0	(L/s)
N-	A	0.080
N -	1	0.282
N -	2	0.088
N -	3	0.239
N -	4	0.232
N -	5	0.135
N -	6	0.073
N -	7	0.034
N -	8	0.077
N -	9	0.154
N -	10	0.168
N -	12	0.148
N -	14	0.194
N -	15	0.073
N -	16	0.143
N -	17	0.482
N -	18	0.192
N -	19	0.162
N -	20	0.055
N -	21	0.394
N -	22	0.193
N -	23	0.405
N -	24	0.083
N -	25	0.349
N -	26	0.173
N -	27	0.042

Tabla 9. *Cálculo de demanda base*

aemanaa base				
Núm	ero	Demanda		
de nodo		base		
		(L/s)		
N -	28	0.086		
N -	29	0.367		
N -	30	0.056		
N -	31	0.486		
N -	32	0.317		
N -	33	0.052		
N -	34	0.074		
N -	35	0.115		
N -	36	0.156		
N -	37	0.056		
N -	38	0.126		
N -	39	0.206		
N -	40	0.174		
N -	41	0.099		
N -	42	0.281		
N -	43	0.191		
N -	44	0.330		
N -	45	0.114		
N -	46	0.130		
N -	47	0.132		
N -	48	0.159		
N -	49	0.073		
N -	50	0.074		
N -	51	0.349		
N -	52	0.130		
N -	53	0.416		
N -	54	0.367		
N -	55	0.117		
N -	56	0.221		
N -	57	0.203		
N -	58	0.082		
N -	59	0.134		
N -	60	0.114		
N -	61	0.190		
N -	62	0.335		
N -	64	0.214		
N -	65	0.325		

Tabla 9. *Cálculo de demanda base*

aemanaa base					
Nún	nero	Demanda			
de nodo		base			
		(L/s)			
N -	66	0.502			
N -	67	0.273			
N -	68	0.564			
N -	69	0.351			
N -	70	0.123			
N -	71	0.171			
N -	72	0.091			
N -	73	0.079			
N -	74	0.238			
N -	75	0.068			
N -	76	0.117			
N -	77	0.039			
N -	78	0.054			
N -	79	0.138			
N -	80	0.038			
N -	81	0.427			
N -	82	0.213			
N -	83	0.071			
N -	84	0.240			
N -	85	0.044			
N -	86	0.388			
N -	88	0.286			
N -	89	0.035			
N -	90	0.066			
N -	91	0.156			
N -	92	0.037			
N -	93	0.225			
N -	94	0.073			
N -	96	0.222			
N -	97	0.122			
N -	98	0.015			
N -	99	0.080			
N -	100	0.220			
N -	101	0.196			
N -	102	0.235			
N -	103	0.310			
N -	104	0.121			

Tabla 9. *Cálculo de demanda base*

	dementate seise					
Nún	nero	Demanda				
	odo	base				
uc n	louo	(L/s)				
N -	105	0.065				
N -	106	0.363				
N -	107	0.096				
N -	108	0.175				
N -	109	0.138				
N -	110	0.264				
N -	111	0.451				
N -	112	0.394				
N -	113	0.209				
N -	114	0.088				
N -	115	0.242				
N -	116	0.067				
N -	117	0.362				
N -	118	0.162				
N -	119	0.057				
N -	120	0.209				
N -	121	0.280				
N -	122	0.465				
	$\Sigma =$	22.71				

Una vez ingresados los datos finales del cálculo del gasto en cada nodo de la red tenemos como resultado el modelo final sobre el cual realizaremos el diagnóstico de la red de agua potable de Jesús del Monte. Figuras 26 y 27.

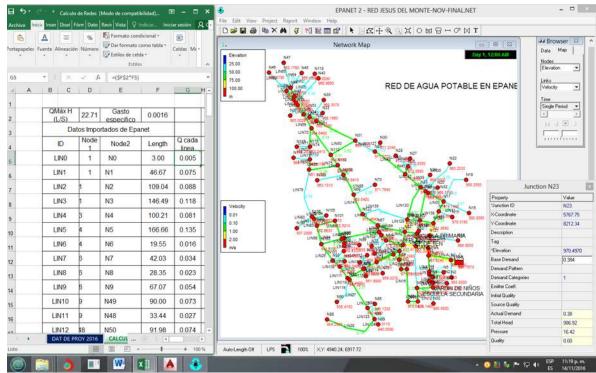


Figura 26. Ingreso de cada uno de los gastos de cada nodo del sistema en el modelador Epanet



Figura 27. Resultados del modelo de la red de agua potable de Jesús del Monte usando Epanet

Una vez realizado el funcionamiento de la red de abastecimiento de agua potable se obtienen los resultados de la carga de presión obtenida en los nodos de la red, Tabla 10. En un solo nodo se tiene una presión negativa, nodo 49; en el nodo 90 se tiene la máxima carga, 50.41 m; y, en el nodo 12, la mínima de 1.13 m.

Tabla 10. Resultados en los nodos

Mada	Elevación	Demanda	Carga	Presión
Nodo	(m)	(L/s)	(m)	(m)
N1	993.83	0.232	997.40	3.57
N2	993.83	0.084	997.39	3.56
N3	987.62	0.227	996.34	8.72
N4	986.74	0.220	995.35	8.61
N5	989.13	0.128	995.32	6.19
N6	987.04	0.069	994.92	7.89
N7	987.82	0.032	994.92	7.10
N8	988.41	0.073	994.36	5.95
N9	989.33	0.146	993.13	3.80
N10	986.46	0.160	994.12	7.66
N12	989.92	0.140	991.05	1.13
N14	975.69	0.184	987.66	11.96
N15	979.32	0.069	987.65	8.33
N16	980.86	0.135	987.08	6.23
N17	974.15	0.457	987.12	12.97
N18	958.26	0.182	987.03	28.78
N19	969.31	0.154	987.01	17.70
N20	968.57	0.052	987.00	18.43
N21	969.35	0.373	987.00	17.66
N22	960.20	0.183	986.92	26.72
N23	970.50	0.384	986.92	16.42
N24	968.50	0.079	986.91	18.41
N25	971.87	0.331	985.88	14.01
N26	972.07	0.164	985.84	13.77
N27	972.84	0.040	985.83	13.00
N28	972.06	0.082	985.83	13.77
N29	971.07	0.348	985.44	14.37
N30	971.23	0.053	985.44	14.21
N31	969.12	0.460	985.43	16.32
N32	966.20	0.300	984.62	18.42
N33	968.20	0.050	984.62	16.43
N34	965.17	0.070	984.59	19.42
N35	968.31	0.109	984.57	16.27

Tabla 10. Resultados en los nodos

	Elevación	Demanda	Carga	Presión
Nodo	(m)	(L/s)	(m)	(m)
N36	964.20	0.148	984.59	20.39
N37	965.00	0.053	983.15	18.14
N38	963.41	0.119	983.15	19.74
N39	963.17	0.195	982.86	19.69
N40	966.97	0.165	982.80	15.83
N41	966.97	0.094	982.59	15.63
N42	963.27	0.267	982.50	19.23
N43	961.05	0.181	982.45	21.40
N44	962.97	0.313	982.43	19.47
N45	966.20	0.108	982.42	16.22
N46	956.58	0.123	982.42	25.85
N47	962.18	0.125	982.41	20.23
N48	989.78	0.150	992.65	2.87
N49	993.22	0.069	993.13	-0.09
N50	985.95	0.071	992.64	6.69
N51	979.94	0.331	988.22	8.29
N52	982.64	0.123	990.78	8.14
N53	982.21	0.395	991.42	9.21
N54	982.66	0.348	991.49	8.83
N55	978.15	0.111	991.10	12.95
N56	970.64	0.210	990.88	20.23
N57	975.74	0.193	990.45	14.72
N58	971.72	0.078	990.42	18.70
N59	972.66	0.127	990.38	17.72
N60	975.29	0.108	990.44	15.16
N61	977.87	0.180	990.54	12.67
N62	977.94	0.317	990.19	12.26
N64	972.26	0.202	990.24	17.98
N65	971.23	0.308	990.12	18.89
N66	970.74	0.476	989.39	18.65
N67	971.31	0.535	989.37	18.05
N69	968.54	0.332	987.83	19.29
N70	971.76	0.117	987.81	16.05
N71	971.84	0.162	990.30	18.45
N72	964.15	0.086	990.23	26.08
N73	963.92	0.075	990.12	26.20
N74	962.03	0.225	989.75	27.72
N75	959.01	0.065	989.75	30.74
N76	951.78	0.111	988.38	36.60
N77	952.53	0.037	988.37	35.84

Tabla 10. Resultados en los nodos

	Elevación	Demanda	Carga	Presión
Nodo	(m)	(L/s)	(m)	(m)
N78	959.90	0.051	988.37	28.47
N79	950.98	0.131	988.28	37.30
N80	951.69	0.036	988.28	36.59
N81	942.44	0.405	986.88	44.44
N82	942.22	0.201	986.83	44.61
N84	940.50	0.228	986.40	45.90
N85	946.13	0.042	986.39	40.26
N86	940.01	0.367	986.12	46.11
N88	954.29	0.271	985.89	31.59
N89	940.06	0.033	986.12	46.06
N90	936.42	0.063	986.82	50.41
N91	943.22	0.148	986.71	43.48
N92	949.25	0.036	986.70	37.46
N93	944.03	0.213	986.62	42.59
N94	955.46	0.069	986.61	31.15
N96	962.50	0.210	986.73	24.23
N97	960.03	0.115	986.72	26.68
N98	958.43	0.014	986.72	28.28
N99	959.36	0.076	986.71	27.35
N100	961.57	0.209	986.64	25.07
N101	962.62	0.186	986.42	23.80
N102	952.56	0.222	986.33	33.77
N103	948.51	0.294	986.54	38.03
N104	954.54	0.115	986.22	31.68
N105	957.87	0.061	986.22	28.35
N106	954.77	0.344	986.20	31.43
N107	937.29	0.091	986.19	48.90
N108	965.84	0.166	987.16	21.32
N109	960.13	0.131	987.13	27.00
N110	964.61	0.251	986.86	22.25
N111	961.01	0.428	986.21	25.20
N112	964.61	0.373	986.65	22.04
N113	962.17	0.198	986.18	24.01
N114	968.19	0.084	986.17	17.99
N115	963.04	0.229	986.18	23.14
N116	966.26	0.063	986.18	19.92
N117	964.64	0.344	986.34	21.70
N118	966.63	0.154	982.45	15.82
N68	978.42	0.535	988.45	10.03
N119	982.54	0.054	988.22	5.68

Tabla 10. Resultados en los nodos

Nodo	Elevación	Demanda	Carga	Presión
Nodo	(m)	(L/s)	(m)	(m)
N120	981.87	0.198	988.58	6.71
N121	985.71	0.266	991.09	5.38
N122	970.46	0.441	988.56	18.09
NA	995.00	0.040	997.74	2.74
E1	997.77	N/D	997.77	0.00

En la Tabla 11 se presnta la longitud, diámetro, caudal, velocidad, pérdida y factor de fricción en cada una de las líneas que componen la red de agua potable de Jesús del Monte.

Tabla 11. Resultados de las tuberías de la red de agua potable de Jesús del Monte

Tubería	Longitud	Diámetro	Caudal	Velocidad	Pérdida	Factor de
	(m)	(mm)	(L/s)	(m/s)	(m/km)	fricción
LIN2	109.04	50	0.08	0.04	0.06	0.031
LIN3	146.49	150	19.97	1.13	7.20	0.017
LIN4	100.21	62.5	2.30	0.75	9.93	0.022
LIN5	166.66	50	0.13	0.07	0.15	0.035
LIN6	19.55	50	1.95	0.99	21.70	0.022
LIN7	42.03	50	0.03	0.02	0.02	0.079
LIN8	28.35	50	1.85	0.94	19.72	0.022
LIN9	67.07	50	1.78	0.9	18.35	0.022
LIN10	90.00	50	0.07	0.04	0.05	0.037
LIN11	33.44	50	1.56	0.79	14.56	0.023
LIN12	91.98	50	0.07	0.04	0.05	0.036
LIN13	104.04	50	1.34	0.68	11.09	0.023
LIN14	82.47	50	0.83	0.42	4.73	0.026
LIN15	61.88	50	0.72	0.37	3.67	0.027
LIN16	211.97	50	0.51	0.26	2.00	0.029
LIN17	267.34	50	0.16	0.08	0.29	0.041
LIN18	49.17	100	18.51	2.36	45.12	0.016
LIN19	81.80	100	15.64	1.99	33.10	0.016
LIN20	83.04	100	8.37	1.07	10.57	0.018
LIN21	61.91	50	0.24	0.12	0.54	0.036
LIN22	53.38	50	0.36	0.18	1.12	0.032
LIN23	46.18	100	3.37	0.43	2.06	0.022
LIN24	41.46	75	2.12	0.48	3.58	0.023
LIN25	49.98	50	0.47	0.24	1.77	0.03
LIN29	90.32	50	0.07	0.04	0.05	0.037
LIN30	68.47	50	1.11	0.56	7.88	0.024
LIN31	176.63	50	0.14	0.07	0.18	0.037

Tabla 11. Resultados de las tuberías de la red de agua potable de Jesús del Monte

Tubería	Longitud	Diámetro	Caudal	Velocidad	Pérdida	Factor de
	(m)	(mm)	(L/s)	(m/s)	(m/km)	fricción
LIN32	237.09	50	0.18	0.09	0.34	0.039
LIN33	113.76	50	0.33	0.17	0.96	0.033
LIN34	68.07	50	0.05	0.03	0.03	0.049
LIN35	238.41	50	0.18	0.09	0.35	0.039
LIN36	19.04	50	0.13	0.06	0.14	0.035
LIN37	36.86	50	0.55	0.28	2.28	0.029
LIN38	102.59	50	0.08	0.04	0.05	0.033
LIN39	192.56	50	0.98	0.5	6.33	0.025
LIN41	82.46	100	7.04	0.9	7.72	0.019
LIN42	83.21	50	0.77	0.39	4.14	0.027
LIN43	78.29	100	6.92	0.88	7.47	0.019
LIN45	56.00	50	0.29	0.15	0.74	0.034
LIN46	51.65	50	0.04	0.02	0.03	0.065
LIN47	106.46	50	0.08	0.04	0.06	0.031
LIN48	241.41	50	0.48	0.24	1.81	0.03
LIN49	143.57	50	0.08	0.04	0.05	0.033
LIN50	179.87	50	-1.01	0.52	6.74	0.025
LIN51	277.20	50	0.63	0.32	2.92	0.028
LIN52	64.65	50	0.05	0.03	0.03	0.052
LIN53	141.77	50	0.11	0.06	0.10	0.03
LIN54	49.53	50	0.28	0.14	0.72	0.035
LIN55	42.37	50	0.10	0.05	0.08	0.029
LIN56	69.55	50	1.90	0.97	20.66	0.022
LIN57	69.55	50	0.05	0.03	0.04	0.048
LIN58	16.51	50	1.73	0.88	17.42	0.022
LIN59	214.79	50	0.17	0.08	0.29	0.04
LIN60	23.20	50	1.37	0.7	11.46	0.023
LIN61	22.85	50	0.77	0.39	4.17	0.027
LIN62	200.30	50	0.15	0.08	0.26	0.041
LIN63	65.24	50	0.35	0.18	1.05	0.032
LIN64	140.34	50	0.11	0.06	0.09	0.03
LIN65	163.67	50	0.12	0.06	0.14	0.034
LIN66	39.10	50	-0.20	0.1	0.39	0.038
LIN67	76.16	50	0.50	0.25	1.95	0.03
LIN68	160.24	50	0.12	0.06	0.14	0.034
LIN69	81.09	50	-1.94	0.99	21.58	0.022
LIN70	135.14	50	0.36	0.18	1.12	0.032
LIN71	82.79	50	0.06	0.03	0.04	0.041
LIN72	80.95	50	0.07	0.04	0.05	0.036
LIN73	108.99	50	0.08	0.04	0.06	0.031

Tabla 11. Resultados de las tuberías de la red de agua potable de Jesús del Monte

Tabla 11. Resul	Longitud	<i>Is tubertas</i> Diámetro	Caudal	Velocidad	Pérdida	Factor de
	(m)	(mm)	(L/s)	(m/s)	(m/km)	fricción
LIN74	231.85	100	-2.65	0.34	1.34	0.023
LIN75	74.85	100	-4.04	0.51	2.84	0.021
LIN76	179.53	50	0.71	0.36	3.61	0.027
LIN77	68.76	50	-0.21	0.11	0.44	0.037
LIN78	170.39	50	0.13	0.07	0.16	0.036
LIN79	309.60	50	0.07	0.04	0.05	0.036
LIN80	118.39	50	0.09	0.05	0.06	0.029
LIN81	21.06	50	-0.36	0.19	1.12	0.032
LIN82	79.98	50	0.06	0.03	0.04	0.043
LIN83	48.76	50	-0.54	0.27	2.23	0.029
LIN84	173.85	100	5.39	0.69	4.76	0.02
LIN86	152.57	50	0.12	0.06	0.12	0.032
LIN87	144.47	100	5.29	0.67	4.62	0.02
LIN88	72.47	100	5.00	0.64	4.16	0.02
LIN89	37.71	100	-1.52	0.19	0.50	0.026
LIN90	226.31	50	1.38	0.7	11.74	0.023
LIN91	14.61	50	0.97	0.49	6.23	0.025
LIN92	120.61	50	0.48	0.24	1.80	0.03
LIN93	121.48	50	0.29	0.15	0.77	0.034
LIN94	137.34	50	0.28	0.14	0.73	0.034
LIN95	33.14	50	0.20	0.1	0.42	0.038
LIN96	18.28	50	0.01	0.01	0.01	0.236
LIN97	98.90	50	0.08	0.04	0.05	0.034
LIN98	119.84	50	-0.47	0.24	1.75	0.03
LIN101	90.53	50	0.07	0.04	0.05	0.037
LIN102	60.97	62.5	-0.76	0.25	1.42	0.028
LIN103	46.34	50	0.04	0.02	0.02	0.07
LIN104	106.01	100	4.05	0.52	2.86	0.021
LIN105	45.51	100	3.76	0.48	2.50	0.021
LIN106	356.45	100	3.38	0.43	2.07	0.022
LIN107	112.59	50	0.09	0.04	0.06	0.03
LIN108	97.45	50	0.08	0.04	0.05	0.034
LIN109	119.67	75	2.43	0.55	4.56	0.022
LIN110	89.59	62.5	2.92	0.95	15.32	0.021
LIN111	7.00	62.5	2.73	0.89	13.49	0.021
LIN112	48.42	50	0.09	0.04	0.06	0.029
LIN113	66.77	50	0.05	0.03	0.03	0.05
LIN114	84.60	50	0.07	0.03	0.04	0.039
LIN115	47.47	50	0.04	0.02	0.03	0.073
LIN116	116.17	62.5	2.56	0.83	12.04	0.021

Tabla 11. Resultados de las tuberías de la red de agua potable de Jesús del Monte

Tubería	Longitud	Diámetro	Caudal	Velocidad	Pérdida	Factor de
	(m)	(mm)	(L/s)	(m/s)	(m/km)	fricción
LIN117	86.06	62.5	-0.95	0.31	2.07	0.027
LIN118	16.45	62.5	1.21	0.39	3.15	0.025
LIN119	174.73	50	0.06	0.03	0.04	0.041
LIN122	54.68	50	0.04	0.02	0.03	0.061
LIN123	83.28	50	0.67	0.34	3.26	0.027
LIN124	42.68	50	0.03	0.02	0.02	0.079
LIN127	68.75	50	0.05	0.03	0.04	0.048
LIN128	39.22	50	-0.31	0.16	0.87	0.033
LIN129	78.45	50	1.98	1.01	22.30	0.022
LIN130	226.73	50	1.01	0.52	6.73	0.025
LIN132	78.71	50	-0.62	0.32	2.83	0.028
LIN133	69.87	50	-0.05	0.03	0.04	0.048
LIN134	77.36	50	2.71	1.38	39.21	0.02
LIN135	183.19	50	0.14	0.07	0.20	0.039
LIN136	86.013	50	2.30	1.17	29.22	0.021
LIN137	90.87	50	0.74	0.38	3.90	0.027
LIN138	81.05	50	1.36	0.69	11.37	0.023
LIN139	313.42	50	-0.19	0.1	0.36	0.039
LIN140	125.49	100	6.37	0.81	6.45	0.019
LIN141	136.38	100	5.74	0.73	5.35	0.02
LIN142	134.56	50	1.10	0.56	7.75	0.024
LIN26	126.45	62.5	-0.48	0.16	0.64	0.032
LIN27	213.58	62.5	0.94	0.31	2.04	0.027
LIN28	353.31	50	0.27	0.14	0.68	0.035
LIN44	161.13	50	0.79	0.4	4.31	0.026
LIN-A	191.84	50	1.06	0.54	7.30	0.025
LIN1	46.67	150	-20.29	1.15	7.41	0.017
LIN-0	3.00	150	21.39	1.21	8.14	0.016

CAPÍTULO 5

CONCLUSIONES Y RECOMENDACIONES

El análisis del estado actual de la red de abastecimiento de Jesús del Monte nos indica claramente que el gasto necesario para la población no es suficiente al día de hoy dado que se necesita un gasto de 10.47 L/s y el pozo que actualmente abastece la población apenas genera un gasto de 8 L/s quedando un déficit actual de 2.47 L/s. Pero no se bombea el agua las 24 horas del día, por lo que la población sólo cuenta con el servicio unas pocas horas.

De acuerdo al análisis realizado de crecimiento a futuro los datos obtenidos nos indican que el gasto necesario para la población a futuro en 20 años se necesitaría un gasto medio diario de 14.66 L/s con lo cual de acuerdo a la primera conclusión será necesario cubrir un déficit actual de 6.66 L/s.

El análisis físico de la red nos indica que es necesario hacer cambios en la red de agua potable en algunas tuberías de servicio previendo el crecimiento a futuro.

La forma de auto administración por usos y costumbres de un comité del agua potable de la localidad de Jesús del Monte amerita una urgente capacitación en materia administrativa y técnica.

Considerando todo lo anterior, se recomienda la gestión de una nueva fuente de abastecimiento ante la Comisión Nacional del Agua, en este caso un nuevo pozo profundo cuyo rendimiento sea de un rendimiento mínimo de 6.66 L/s para sumado con el rendimiento actual de 8 L/s nos de la cantidad necesaria. Pero con este rendimiento de las fuentes de abastecimiento se tendría que bombear las 24 horas del día, teniéndose un costo excesivo en el consumo de energía eléctrica. Por lo que es recomendable tener una fuente de abastecimiento con un rendimiento mayor al gasto medio diario.

Se recomienda el diseño de una nueva red a futuro que cumpla con las exigencias del crecimiento de la población en los próximos 20 años.

Se recomienda la construcción de un nuevo tanque de una capacidad de 150 m³ para garantizar el funcionamiento óptimo del sistema.

Se recomienda que el comité del agua potable de la localidad de Jesús del Monte evolucione a un organismo operador más eficiente capaz de enfrentar la problemática actual y futura de abastecimiento del agua potable de la población.

BIBLIOGRAFÍA

Breve historia/tomo 9: Jesús del Monte/[Archivo Histórico de Morelia], 2015.

El gran libro de AutoCAD 2010 / [Editorial Alfa omega]/ [Felicidad Márquez]/ Edición 2010 / [Impreso en México.]

Epanet 2.0, manual de usuario [United States Environmental Protección Agency / [Lewis A. Rossman, Watter supply and Wáter Resourses División, National Risk Management Research Laboratory, Office of Research and development, U.S. Environmental Protección Agency [Traducción al Español Grupo Interdisciplinar de Modelación de Fluidos Universidad Politécnica de Valencia España]/[www.epanet.upv.es]

Excel 2010 en profundidad / [Marcombo Ediciones Técnicas, Editorial Alfa Omega] /Edición 2010 / [Impreso en México.]

Historia de los matlatzincas: https://storify.com/valescamilla/rescate-de-la-gastronomia-indigena-matlatzinca

Hidráulica general, volumen 1, fundamentos / [Sotelo] / Edición 2003 / [Impreso en México].

Manual de agua potable alcantarillado y saneamiento [Comisión Nacional del Agua]: Edición 2007/ (ISBN: 978-968-817-880-5)/ [www.cna.gob.mx] /Impreso en México.

Mapa digital de México: http://www.inegi.org.mx/default.aspx.

Pueblos indígenas: www.cambiodemichoacan.com.mx/nota-261308.