

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA EN TECNOLOGÍA DE LA MADERA

CARACTERÍSTICAS ANATÓMICAS Y DE MAQUINADO, DE LA MADERA DE Mangifera indica L. (MANGO CRIOLLO)

TESIS

PARA OBTENER EL TÍTULO DE INGENIERO EN TECNOLOGÍA DE LA MADERA

PRESENTA:

MARIA ISABEL BAEZ TERESA

BAJO LA ASESORÍA DE:

ING. TERESA GARCÍA MORENO

MC. ROBERTO CALDERÓN MUÑOS

MORELIA MICH., DICIEMBRE 2006

CARACTERÍSTICAS ANATÓMICAS Y DE MAQUINADO, DE LA MADERA DE *Mangifera indica L.* (MANGO CRIOLLO)

INDICE

	PAGINAS
1. INTRODUCCIÓN	1
2. ANTECEDENTES	2
3. GENERALIDADES DE LA ESPECIE	4
 3.1 Descripción del área de colecta 3.2 Clasificación de la especie 3.3 Descripción del árbol 4. OBJETIVOS 	4 6 7 12
5. HIPÓTESIS	13
6. JUSTIFICACION	
7. METODOLOGÍA	
 7.1 Material de estudio 7.2 Preparación del material de estudios 7.3 Metodología para la elaboración del material para 	14 14
la descripción anatómica de la madera 7.3.1 Características a determinar en la rodaja 7.3.2 Características a determinar en la descripción	15 16
macroscópica y microscópica de la madera 7.3.3 Índices de calidad de pulpa para papel	16 20
7.4 Metodología para el maquinado de la madera 7.4.1 Cepillado	21 22
7.4.2 Lijado 7.4.3 Taladrado	23 24
7.4.4 Moldurado	24
7.4.5 Torneado 7.4.6 Equipo utilizado	25 26
8. RESULTADOS	
8.1 Descripción anatómica de la madera de Mangifera indica	
(Mango criollo)	31
8.1.1 Descripción de la rodaja8.1.2 Características organolépticas de la madera8.1.3 Descripción macroscópica y microscópica de	31 32
la madera	33

8.2	Descripción de albura de <i>Mangifera indica</i> L.	
	(Mango criollo)	41
	8.2.1 Características organolépticas de la madera	41
	8.2.2 Características macroscópicas y microscópicas	41
8.3	Descripción de la zona cercana a la medula de	
	Mangifera indica L. (mango criollo)	42
	8.3.1 Características organolépticas de la madera	42
	8.3.2 Características macroscópicas y microscópicas	43
8.4	Índices de calidad de pulpa para papel	45
8.5	· · · · · · · · · · · · · · · · · · ·	51
	8.5.1 Cepillado	51
	8.5.2 Lijado	55
	8.5.3 Taladrado	58
	8.5.4 Moldurado	62
	8.5.5 Torneado	66
9. DIS	CUSIÓN DE RESULTADOS	69
10. CO	NCLUSIONES	75
11. RE	COMENDACIONES	75
12. BIB	SLIOGRAFIA CITADA	78
13. AP	ÉNDICES	82
14. AN	EXOS	89

INDICE DE FIGURAS

		PAGINAS
Figura 1.	Ubicación del Municipio de Apatzingan	4
Figura 2.	Localidad donde se colecto el árbol de Mangifera indica L.	5
Figura 3.	Árbol de <i>Mangifera indica</i> L.	7
Figura 4.	Corteza de Mangifera indica L.	8
Figura 5.	Hojas de <i>Mangifera indica</i> L.	8
Figura 6.	Inflorescencia de <i>Mangifera indica</i> L.	9
Figura 7.	Flor de <i>Mangifera indica L.</i>	9
Figura 8.	Racimo de frutos de <i>Mangifera india</i> L.	10
Figura 9.	Semillas de <i>Mangifera indica</i> L.	11
Figura 10.	Almacenamiento y aserrado de la madera de <i>Mangifera indica</i> L	14
Figura 11.	Troceo del árbol estudiado	15
Figura 12.	Materiales utilizados en la proceso de la obtención de preparaciones fijas.	18
Figura 13.	Material y procedimiento a seguir en la obtención de material disociado y preparaciones fijas.	19
Figura 14.	Microscopio óptico	20
Figura 15.	Patrón de corte especificado por la norma para la obtención de las probetas	21
Figura 16	Equipo utilizado en la prueba de cepillado.	26
Figura 17.	Equipo utilizado en la prueba de lijado.	27
Figura 18.	Equipo utilizado en la prueba de taladrado.	28
Figura 19.	Equipo utilizado en la prueba de moldurado.	29
Figura 20.	Equipo utilizado para el ensayo de torneado.	30
Figura 21.	Rodaja de <i>Mangifera indica</i> L.	31
Figura 22.	Material utilizado para la descripción de las características organolépticas.	32
Figura 23.	Zonas de crecimiento y porosidad difusa.	33
Figura 24.	Tílides en los poros	33
Figura 25.	Arreglo de poros.	34
Figura 27.	Elementos de vaso y fibras en disociado	35

Figura 28.	Elementos de vaso con puntuaciones areoladas alternas en corte tg.	35
Figura 29.	Tipos de parénquima leñoso en corte transversal	36
Figura 30.	Tipo de radios en corte tangencial.	36
Figura 31.	Radios homogéneos y heterogéneos en corte radial	37
Figura 32.	Fibras en material disociado	37
Figura 33.	Cristales prismáticos en corte transversal y radial	38
Figura 34.	Posibles gomas o ceras	38
Figura 35.	Diferencia en la textura.	44
Figura 36.	Diferencia en diámetro de poros.	44
Figura 37.	Defectos presentados en el cepillado utilizando un ángulo de corte de 20º.	51
Figura 38.	Grados obtenidos en el cepillado con ángulo de corte de 20°.	52
Figura 39.	Defectos que se presentaron en el cepillado cuando se utilizó un ángulo de corte de 30º.	53
Figura 40.	Grados que se obtuvieron en el cepillado con un ángulo de corte de 30º.	54
Figura 41.	Defectos que se presentaron con la liga de grano 60	55
Figura 42.	Grados obtenidos en el lijado.	55
Figura 43.	Defectos que se presentaron con la liga de grano 80.	56
Figura 44.	Grados obtenidos en le lijado.	56
Figura 45.	Defectos que se presentaron con la liga de grano 100.	57
Figura 46.	Grados obtenidos en le lijado.	57
Figura 47.	Defectos de la prueba de taladrado con la broca para metal.	58
Figura 48.	Grados más frecuentes en el ensayo de taladrado con una broca para metal.	59
Figura 49.	Defectos presentes en la prueba de taladrado con broca da acero de alta velocidad.	e 60
Figura 50.	Grados obtenidos en la prueba de taladrado con la broca d acero de alta velocidad.	e 61
Figura 51.	Defectos presentes en el ensayo del moldurado con fresa de carburo de tungsteno.	62

Figura 52.	Grados obtenidos en la prueba de moldurado con fresa de carburo de tungsteno.	63
Figura 53.	Defectos presentados en la prueba de moldurado con fresa de acero de alta velocidad.	64
Figura 54.	Grados obtenidos en la prueba de moldurado con la fresa de acero de alta velocidad.	65
Figura 55.	Defectos presentados en los ensayos de torneado.	66
Figura 56.	Grados obtenidos en la prueba de torneado.	67
Figura 57.	Mueble elaborado de madera de mango criollo.	74
Figura 58.	Artesanías caladas y redondeadas tipo "intarsia"	79
	ÍNDICE DE CUADROS	
		PAGINA
Cuadro 1.	Resultado de las mediciones de los elementos de vaso en la madera intermedia	39
Cuadro 2.	Resultado de las mediciones de los radios en la madera intermedia	39
Cuadro 3.	Resultado de las mediciones de las fibras en material disociado de la madera intermedia	39
Cuadro 4.	Elementos constitutivos (%)	40
Cuadro 5	Índices de calidad de pulpa para papel en zona intermedia.	45
Cuadro 6	Índices de calidad de pulpa para papel en albura	45
Cuadro 7	Índices de calidad de pulpa para papel en zona cercana la médula	46
Cuadro 8	Índices de calidad de pulpa para papel promedio de las tres zonas	47
Cuadro 9.	Cuadro comparativo en tres diferentes zonas de muestreo en Mangifera indica L. (mango criollo).	48
Cuadro 10.	Cuadro comparativo de datos reportados por autores de diferentes nacionalidades, sobre <i>Mangifera indica</i> L. (mango criollo).	49
Cuadro 11.	Cuadro comparativo de datos reportados por diferentes autores sobre <i>Mangifera indica</i> L. (mango criollo).	50

Cuadro 12.	Evaluación según tablas de clasificación utilizado por Flores (1990); de acuerdo al porcentaje de piezas	
	excelentes (E) + buena (B), presente después de cada ensayo de maquinado	68
Cuadro 13.	Clasificación de las pruebas de maquinado de la	
	madera de <i>Mangifera indica</i> L.	68

APENDICES

		PAGINA
APÉNDICE I.	Estándares de iawa (1989)	82
APÉNDICE II.	Clasificación de elementos mensurables para latifoliadas de acuerdo a Tortorelli (1956)	84
APÉNDICE III.	Clasificación de densidad, reportadas por Lincoln (2006)	86
APÉNDICE IV	Índices de calidad de pulpa	86
	ANEXOS	
ANEXO 1	La norma menciona lo siguiente	89

1 INTRODUCCIÓN

Mangifera indica L. es una especie nativa del noroeste de la India, laderas del Himalaya y Sri Lanka, de donde se ha distribuido desde el sureste de Asia y el Archipiélago Malayo. En la actualidad se cultiva en todos los trópicos y subtrópicos del mundo.

A nivel mundial la atención se ha centrado únicamente en la producción de frutos, ante ésta situación después de varios años de producción del fruto de calidad los huertos son derribados, la madera es malbaratada y son cambiados por otros frutales (limón, toronja, etc.) o simplemente por pastizales para el ganado.

Por presentar gran parecido la madera de mango criollo con maderas de valor comercial como; el fresno, la primavera, nuez pecanera y ramin, se piensa que podría servir como sustituto de éstas, además por poseer una densidad y dureza media se considera que la madera de mango podría tener buenas propiedades de trabajabilidad. Esto aunado a los grandes volúmenes de madera que se pueden disponer por árbol, la convierte en una madera con un gran futuro.

El presente trabajo pretende contribuir al estudio integral de la madera de *Mangifera indica L.* (Mango criollo), aportando información sobre la anatomía y las pruebas de trabajabilidad de la especie, que permita darle un mejor aprovechamiento a ésta especie maderable. La cual, en la actualidad se encuentra subutilizada en Michoacán, donde es empleada en la fabricación de cajas para empaque, leña y a menor escala en algunas piezas de guitarra (tacones) de poca importancia económica. En Veracruz se emplea en la elaboración de mascaras y en ciertos casos se elaboran tarimas y duela para construcción. Recientemente se incorporan grandes volúmenes de brazuelo y troncos de mango para la producción de tableros aglomerados en la planta de REXCEL ubicada en Zitácuaro, Michoacán.

2 ANTECEDENTES

La información que existe sobre la madera de *Mangifera indica L.,* respecto a su descripción anatómica es escasa, y no se encontró información acerca del maquinado. Los trabajos donde se describe la anatomía macroscópica y microscópica de la madera de *Mangifera indica L.,* e información general de su comportamiento físico y mecánico así como sus usos, es la siguiente:

Benítez R. R. y Montesinos Lagos J. L. (1988). Realizaron la descripción del árbol y la caracterización anatómica macroscópica de la madera, además proporcionan las propiedades físicas y mecánicas de la madera, la durabilidad y el comportamiento que presenta ante el secado y preservado. También reportan en forma general el comportamiento de la especie ante el labrado (trabajabilidad). Además ofrece un listado de los usos que se le dan en Honduras.

Correa M. F. (2003) reporta la gravedad específica de 0.56gr/cm³, así como la información referente a las propiedades físico-mecánicas de la madera de *Mangifera indica* L. y sugiere usos tomando como base el comportamiento mecánico de la madera e interrelacionándolo con el trabajo de Echenique y Plumter (1994).

Fors J. A. (1965) Reporta información general referente a la descripción del árbol, descripción macroscópica y densidad, así como algunas características de trabajabilidad y usos de la especie.

León, W. J. (s/f) describe la anatomía macroscópica y microscópica de la madera de Mangifera indica L, proveniente de Venezuela, así como la anatomía de 16 maderas de la familia anacardiaceae.

Ortega (s/f) Describe la anatomía macroscópica y microscópica de la madera de *Mangifera indica* L. proveniente del estado de Veracruz, describiendo a la madera; con hilo recto, veteado liso, textura gruesa fibras extremadamente cortas, así como grosor de pared extremadamente grueso.

Se encontró información reportada por Richter y Dallwitz (2001). La cual es muy completa y abarca la descripción anatómica macroscópica y microscópica de la especie, además reporta aspectos generales inherentes al genero *Mangifera* como son la nomenclatura, distribución y peso específico del genero el cual lo reporta entre 0.52 – 0.70 gr. /cm³.

Porter Terry (2004) registra una gravedad especifica de 0.52 gr. /cm.³ para *Mangifera indica* L. y la clasifica como madera que se trabaja moderadamente bien.

Se cuenta con trabajos como el de Zavala (1976) y Trujillo (1998), en los cuales reportan, la metodología a seguir en trabajos sobre características del maquinado como; cepillado, torneado, moldurado, taladrado y lijado.

A pesar de que entre estas maderas no aparezca descrita la de Mangifera indica L. Se puede tomar información sobre la metodología a seguir, así como poner los datos que reportan por especies, como parámetros de comparación.

3 GENERALIDADES DE LA ESPECIE

3.1 Descripción del área de colecta.

La especie utilizada en el presente trabajo se colectó en el municipio de Apatzingan ubicado al occidente del país en la región de tierra caliente del estado de Michoacán. El municipio de Apatzingan limita el Norte con el municipio de Tancitaro; al Este con los municipios de Paracuaro y la Huacana; al Sur con Tumbiscatio y al Oeste con los municipios de Aguililla y Buenavista. Las coordenadas geográficas son 19° 06´00" de latitud Norte y 102° 30´00" de longitud Oeste, representa el 1.35% del total del estado y el 0.000041% de la superficie del país, y se encuentra a una altura de 250 metros sobre el nivel de mar. (Fig. 1-2)

Fig. 1. Ubicación del Municipio de Apatzingan

Fig. 2. Localidad donde se colecto el árbol de *Mangifera indica* L.

3.2 Clasificación de la especie

Nombre científico: Mangifera indica L.

Sinonimia: Mangifera foetida, Mangifera caloneura, Mangifera altissima,

Mangifera salomonensis, Mangifera mucronulata.

Nombres comunes: mango, mango criollo (nombre más usado en la zona de recolección en México); machang, sepam, tiger wood, figured asam, asam (Malacia); mangga, mango (India) (Richter H.G. y Dallwitz M.J. 2000); en lenguas indígenas náhuatl: moncocuabitl (Morelos) (citado por ortega *et al* s/f)

Taxonomía

Reino: Plantae

Subreino: Tracheobionta Superdivición: Spermatophyta Magnoliophyta División: Clase: Magnoliopsida Subclase: Rosidae Orden: Sapindales Familia: Anacardiácea Genero: Mangifera

Especie: Mangifera indica L.

Distribución

Nativo de los trópicos asiáticos, actualmente naturalizado en las regiones tropicales del mundo entero, desarrollándose mejor en altitudes que van de los 0 a 1200 msnm. Existen plantaciones comerciales por la importancia del fruto.

3.3 Descripción del árbol

3.3.1 Forma

Árbol hasta 20 m. de altura y de 70 cm. o más de 1m. de diámetro a la altura de pecho (dap); su fuste es recto y cilíndrico, su ramificación es ascendente formando una copa densa y redondeada. (Fig.3).

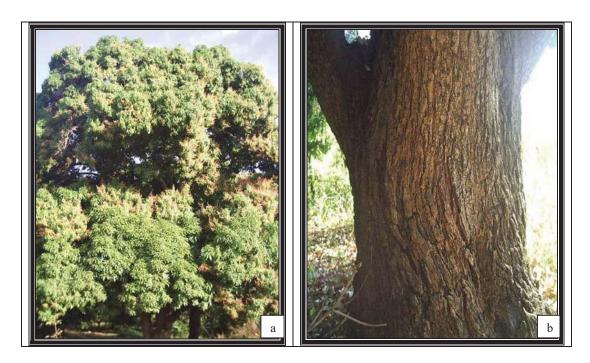


Fig. 3. Árbol de Mangifera indica: a) follaje; b) tronco

3.3.2 Corteza

La corteza es de color castaño grisáceo tiene grietas longitudinales o surcos reticulados poco profundos que a veces contienen gotitas de resina. (Fig.4).

3.3.3 Hoja

Las hojas son alternas, espaciadas irregularmente a lo largo de las ramitas, de pecíolo largo o corto, oblongo lanceoladas, coriáceas lisas en ambas superficies, de color verde oscuro brillante por el haz y verde – amarillento por el envés de 10-40 cm. de largo y de 2-10 cm. de ancho. (Fig.5)

Fig. 4. Corteza de Mangifera indica L.

Fig. 5. Hojas de Mangifera indica L.

3.3.4 Inflorescencias

Son piramidales terminales de 6 - 40 cm. de largo y de 3 - 25 cm. de diámetro; las raquias son de color rosado o morado, algunas veces verde – amarillento (Fig.6).

3.3.5 Flor

Es polígama de tamaño pequeño, de 2-4 mm. de largo y 5-7 mm. de diámetro cuando están extendidas, de color verde amarillento, se producen en la cima densa y en las últimas ramitas de las inflorescencias (Fig. 7).

Fig. 6. Inflorescencia de *Mangifera indica* L. *L.*

Fig. 7. Flor de Mangifera indica

3.3.6 Fruto

Es una gran drupa carnosa que puede contener uno o más embriones, es variable en dimensiones, generalmente es ovoide – oblonga, de 4-25 cm. De largo y 2-10 cm. de grueso, con un peso que varia de los 150 gr. a 1 Kg. De color verde, verde amarillento o naranja en la madures con algunas tonalidades rojas o violetas. La pulpa es de color amarillo o naranja, jugoso y fibroso (Fig. 8).

Fig. 8. Racimo de frutos de Mangifera india L.

3.3.7 Semilla

Es ovoide, oblonga, alargada, estando recubierta por un endocarpio grueso y leñoso con una capa fibrosa externa, que se puede extender dentro de la carne. (Fig. 9)

3.3.8 Madera

La diferencia entre albura y duramen no siempre es definida, el color varía entre amarillo dorado, castaño pálido a castaño rojizo, no presenta olor ni sabor característico, presenta textura media, brillo alto y veteado pronunciado.

Fig. 9. Semillas de Mangifera indica L.

Nota: la información referente a la descripción del árbol (hoja, flor, fruto y semilla) así como la descripción de la madera, fue tomada de Benítez y Montesinos 1998, fors 1965 y cultivo de mango 2000 e ilustrado con imágenes propias tomadas del árbol derribado.

2 OBJETIVOS

OBJETIVO GENERAL

Determinar la caracterización anatómica y el comportamiento al maquinado, así como los índices de calidad de pulpa de la madera de *Mangifera indica L.* (mango criollo).

OBJETIVOS PARTICULARES

- Determinar las características anatómicas de la madera de Mangifera indica L.
- Determinar y evaluar los índices de calidad de pulpa de la especie.
- Determinar las características de maquinado de la madera de Mangifera indica L.
- Proponer usos más adecuados para la madera de Mangifera indica L., basados en su estructura y el comportamiento al maquinado.

3 HIPÓTESIS

Dependiendo de las características anatómicas y de maquinado, así como a los índices de calidad de pulpa, la madera de *Mangifera indica* L., puede ser usada en muebles, artesanías y para fabricación de pulpa para papel.

4 JUSTIFICACION

A las maderas tropicales se les ha asignado, empíricamente uno o varios usos, que por no estar fincados en una base teórica, técnica o científica, seguramente no son los más adecuados. *Mangifera indica* L. no es la excepción, esta madera puede ser de gran importancia comercial debido a sus características estéticas, que de alguna forma ya es usada de manera empírica desde la antigüedad. Debido a la importancia de conocer las características tecnológicas de esta especie, se a considerado relevante contribuir al conocimiento científico de las propiedades, tanto anatómicas como al proceso de maquinado de un recurso de la región de la tierra caliente de Michoacán y otros estados.

5 METODOLOGÍA

7.1 Material de estudio

Para el presente trabajo de investigación se eligió un árbol sano de *Mangifera indica* L, de 10 m. de altura y de 75 de diámetro en promedio representativo de la especie en cuanto a su desarrollo y conformación del fuste comercial, el cual fue derribado en febrero de 2004.

7.2 Preparación del material de estudios

El corte para el derribo del árbol se realizó a 30 cm. de altura del nivel del suelo (tocón), se buscó la mejor dirección de la caída, evitando dañar a los árboles circunvecinos y lo cual facilitó así el troceo. Los extremos de las trozas obtenidas se sellaron con esmalte de caucho base agua (marca ACE Royal); y se trasportaron de Apatzingan al aserradero de la FITECMA. (Fig. 10)

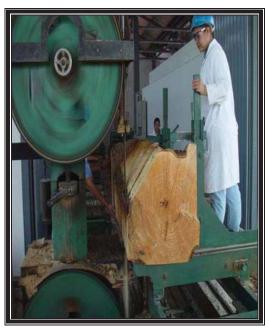


Fig. 10. Almacenamiento y aserrado de la madera de Mangifera indica L

7.3 Metodología para la elaboración del material para la descripción anatómica de la madera

A partir de la base de la troza "A" se cortó una troza de 100 cm. para la obtención de tablillas longitudinales de 2 x 7 x 15 cm, después 4 rodajas de 5, 5, 10 y 10 cm. de la primera rodaja se obtuvieron cubos de 2 cm. por lado para los cortes típicos y el material disociado usada en la caracterización anatómica microscópica de la madera. De la segunda rodaja se obtuvieron las tablillas trasversales de 2 x 7x 15 cm. Las tablillas longitudinales y transversales se utilizaron para describir las características organolépticas y macroscópicas de la madera. La tercera rodaja se empleo para la descripción de la troza y la ultima como refuerzo. A pesar de que los individuos de esta especie, se ramifican o bifurcan a poca altura del suelo, se pudo disponer de una troza de 1.50 m (troza A), y contar con material suficiente para el estudio anatómico (Fig.11).

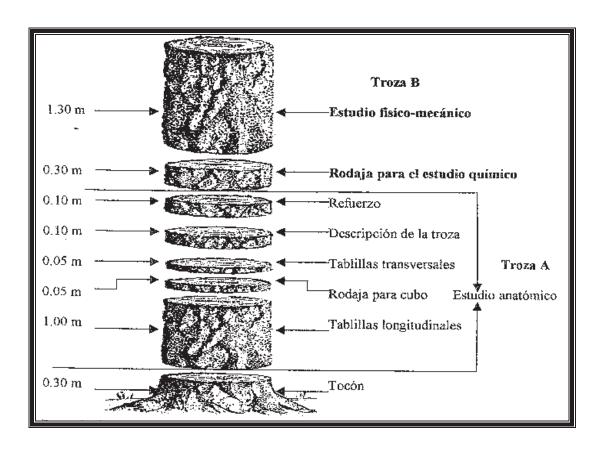


Fig. 11. Troceo del árbol estudiado (Basado en Revuelta y Zamora 1990)

7.3.1 Características a determinar en la rodaja

Se tomó en cuenta las siguientes características: forma, diferencia de color entre albura y duramen, proporción de la médula, color y grosor de la corteza interna y externa y algunas otras características peculiares de la troza.

7.3.2 Características a determinar en la descripción macroscópica y microscópica de la madera

Se determinaron las características organolépticas, así como las características macroscópicas y microscópicas para esto es utilizaron las tablillas transversales y longitudinales, así como la rodaja, se tomó en cuenta: diferencias de color entre albura y duramen, olor, sabor, hilo, veteado, diseño, textura y brillo, así como zonación, porosidad, arreglo de poros, parénquima leñoso, visibilidad de los rayos, todo esto observado a simple vista o con la ayuda de una lupa. Así mismo se elaboró una probeta (según lineamientos presentados por Panshin 1980) para la determinación del hilo.

Al observar la troza y las tablillas, se pudo apreciar que diferían considerablemente unas tablillas de otras en; veteado, textura y arreglo de poros y en base a estas diferencias, se considero pertinente el realizar el muestreo de tres zonas de la troza y no solo de la madera intermedia, como lo marca la metodología sugerida por Guridi y García (2000).

Realizándose preparaciones fijas y de material disociado, por separado de cada zona. Los datos encontrados en las tres zonas, albura, madera intermedia y madera cercana a la médula, son reportados en el cuadro No. 9. No obstante que se efectúa un estudio de variabilidad (en distintas zonas; a 1 cm. de la corteza interna, a la mitad entre la corteza interna y la medula, y a 4 cm. de la médula), los datos que se tomarán para comparar nuestros resultados con los de otros autores serán los datos promedio de las tres zonas muestreadas, (lo cual es para homogeneizar los datos), debido a que el muestreo sólo fue realizado para tratar de entender la variabilidad que presenta está especie.

Para realizar la descripción microscópica de la madera fue necesario elaborar preparaciones fijas a partir de cubos con las caras típicas (trasversal, tangencial y radial). Los cubos fueron sometidos a un proceso de

ablandamiento mediante cocción en una olla de presión con capacidad para 4 litros (Fig. 12 a), se utilizó agua destilada durante 24 horas y una presión de 1kg/cm². Los cortes típicos para las preparaciones fijas se obtuvieron en un micrótomo de deslizamiento marca Leitz (Fig. 12 b). Los cortes histológicos con un grosor entre 20 – 30 μm, la mitad se pasaron a una caja de petri, agregándoles una solución de hipoclorito de sodio y agua destilada en proporción 1:4, exponiéndolos al sol durante 5 minutos, se lavaron 3 veces con agua destilada y posteriormente los cortes blanqueados y los sin blanquear, se tiñeron con verde yodo o safranina durante 1 hora (Fig. 12c), decantando el exceso de colorante (algunos cortes se dejaron al natural). Los cortes fueron deshidratados en alcohol de concentración gradual, los tiempos fueron: 50% (80 min.), 60%(70 min.), 70% (60 min.), 80% (50 min.), 90% (40 min.), 96% (30 min.) y absoluto (100%) (10 min.) (Fig. 12 d), se aclararon con xileno marca Merck durante dos minutos, y posteriormente cada uno de los tres cortes típicos se montaron en un portaobjetos con resina sintética y se prensaron con un cubre objetos. (Fig.12 e).

Fig.12. Materiales utilizados en la proceso de la obtención de preparaciones fijas: a) Olla de presión; b) Micrótomo de deslizamiento; c) Entintado de los cortes típicos en caja de petri; d) Alcoholes para deshidratar; e) Material montado y etiquetado.

Para la obtención del material disociado se obtuvieron pequeñas virutas de la cara radial de uno de los cubos de cada zona (Fig. 13 a), colocándolas en un tubo de ensaye con disociador (Fig. 13 b y c) (mezcla de ácido acético glacial, ácido nítrico, ácido láctico y glicerina en partes iguales), los cuales fueron sometidos a baño Maria hasta que el material se disoció (Fig. 13 d). Después se eliminó el disociador con agua destilada, se escurrió; enseguida se tiño el material celulósico con pardo de bismarck por media hora (Fig. 13 e) y se procedió a esparcir el material sobre portaobjeto, con ayuda de un pincel (Fig. 13 f), se dejo deshidratar el material por 24 horas al medio ambiente, para posteriormente ser aclarado con xilol y montado con resina sintética (Fig. 13g), de acuerdo con la metodología descrita por Guridi y García (2000).

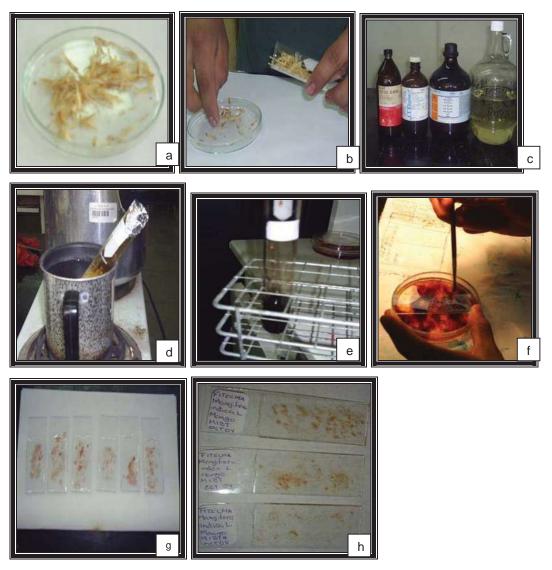


Fig. 13. Material y procedimiento a seguir en la obtención de material disociado y preparaciones fijas: a y b) Pequeñas virutas de madera; c) Reactivos utilizados; d) Baño Maria; e) Entintado del material disociado; f, g y h) Montaje y etiquetado.

Para medir y determinar la abundancia de los elementos estructurales se utilizó un microscopio óptico marca IROSCOPE con reglilla milimétrica incluida en el ocular, (previamente calibrado) (Fig.14). Con un tamaño de muestra de 50 mediciones para cada uno de los elementos mensurables: vasos (No. De poros / mm² en corte transversal objetivo 10x, diámetro tangencial de poros en corte transversal, longitud de elemento de vaso en material disociado).

Radios (números de radios /mm., altura de radios en μm en corte tangencial, No. de células de alto por radio , ancho de radio en μm en corte tangencial con objetivo 10x); fibras (longitud de fibra en μm en material disociado usando objetivo 10x, diámetro de fibra, grosor de pared y diámetro de lumen en μm en material disociado con objetivo 40x). Los datos que arrojaron dichas mediciones fueron utilizados para determinar los valores mínimo, máximo, media, moda y desviación estándar. Con base en el valor promedio se procedió a la clasificación de los elementos mensurables y también se consideró la moda como dato decisivo, se tomaron como referencia los parámetros de clasificación reportados por IAWA (1989) y Tortorelli (1956).

Fig.14. Microscopio óptico

7.3.1 Índices de calidad de pulpa para papel

Con los datos mensurables promedio obtenidos por; longitud de fibra, diámetro total de fibra, diámetro de lumen y espesor de la pared celular se determinaron los índices de calidad de pulpa para papel. La clasificación de los índices de calidad de pulpa de la madera estudiada se realizo de acuerdo a la clasificación de Runkel, presentada por Petroff y Nordmand (1968) y por Porres y Valladares (1979), citadas por Fuentes (1987).

7.4 Metodología para el maquinado de la madera

Para la realización del presente trabajo se tomó como base las normas ASTM D1666-87 (reaprobada 1999), por lo que las pruebas fueron hechas apegándose a ella (Fig. 15), se hicieron algunas modificaciones a la misma con el fin de poder adecuar los ensayos tanto al material como al equipo que se utilzó. Se debe mencionar la modificación que haya sido necesaria. La misma norma establece que se pueden hacer las modificaciones pertinentes y que en caso de haberlas deberán ser mencionadas.

La norma indica que deberán ser utilizadas 50 probetas por especie y para cada prueba, libre de defectos y con un contenido de humedad del 6% o algún otro valor que deberá ser especificado.

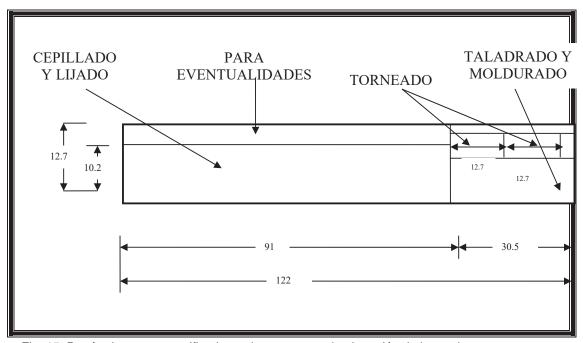


Fig. 15. Patrón de corte especificado por la norma para la obtención de las probetas.

Para llevar acabo la obtención de las probetas se aserraron doce trozas de 30 cm. – 75 cm. de diámetro y de 120 cm. – 150cm. de largo, se obtuvo de ella la madera con la que se preparó las probetas utilizadas en este trabajo. Se dejaron secar al aire libre y se acondiciono en estufa de secado hasta un contenido de humedad de 8 y 12%. Después se procedió a la obtención de las probetas. La primera modificación se realizó en cuanto a la forma de obtener las probetas, ya que en la preparación y la obtención de las mismas no fue posible seguir un patrón, esto debido a que el material con que se contaba no lo permitía, por la cantidad de defectos propios de la madera, no permitió trabajar bajo el patrón indicado por la norma. Por lo tanto las probetas se obtuvieron de diferentes piezas de la madera, se seleccionaron las que cumplieron con las dimensiones y que presentaron el menor número de defectos.

7.4.1 Cepillado

Para la prueba de cepillado se elaboraron 50 probetas con las medidas requeridas en la norma (91 cm. de largo, 10.2 cm. de ancho y 2 cm. de grueso). Se hizo una pequeña modificación a la norma en cuanto al contenido de humedad 25 de las probetas a un 8 % de contenido de humedad y la otras 25 presentaron un contenido de humedad de 12 %. Para esta prueba se emplearon dos juegos de cuchillas de acero a alta velocidad con ángulos de cortes de 20° y 30° respectivamente. Las probetas fueron dimensionadas previamente en espesor ya que al momento de aserrar no se obtuvieron todas de la misma medida, por ello fue necesario igualarlas.

Cuando se tuvieron las mismas dimensiones en todas las probetas se procedió a su ensayo, para lo cual fueron pasadas una vez por cada una de las caras, se cepillaron en dirección del hilo y en contra de la dirección del hilo, según especifica la norma.

Para llevar acabo el ensayo las probetas fueron cepillados primero con el ángulo de corte de 20° y fueron pasadas tres veces a través del cepillo, las probetas se pasaron en sentido y en contra del hilo, cada corte fue de una profundidad de 2 mm, para poder darle al cepillo la altura entre la mesa y las cuchillas la cual resultó en la profundidad deseada, se adaptó un pedazo de cinta métrica en el indicador de la altura de la mesa del cepillo. Después de terminar de cepillar todas las probetas, se procedió a la evaluación de las piezas, esto se hizo por apreciación visual exponiendo las probetas a la luz natural, determinando así el tipo de defectos y la severidad del mismo. Una vez terminados los ensayos con el ángulo de corte de 20°, las probetas se cepillaran con el ángulo de corte de 30° siguiendo el mismo procedimiento.

7.4.2 Lijado

Para esta prueba se utilizó una lijadora de banda, y se usaron las mismas probetas que se ensayaron en el cepillado, esto quiere decir que se utilizaron 50 probetas de las dimensiones y contenido de humedad ya citadas en dicho ensayo. Se lijaron las probetas con los tres diferentes granos de lija 1/2 (60), 1/0 (80) y 2/0 (100).

El procedimiento que se siguió a la hora de lijar la madera fue el siguiente, primeramente se lijaron las 50 probetas con la lija de grano 60 por ambas caras, la probeta se mantuvo fija mientras que la zapata con la que se presionaba la banda lijadora se deslizó en forma manual a través de la probeta tratando de mantener una velocidad de deslizamiento y una presión constante sobre la probeta, se repitió una vez mas el mismo procedimiento y enseguida se hizo la evaluación para esto se expuso a la luz natural y se observaron los defectos que resultaron de este ensayo, calificándolos de acuerdo a su magnitud y extensión y agrupando la probetas en los diferentes grados que se especifica en la norma.

7.4.3 Taladrado

Para la prueba de barrenado se habilitaron 62 probetas con las siguientes dimensiones 30.5 cm. de largo, 10.2 cm. de ancho y 2 cm. de grueso como lo indica la norma, los ensayo se hicieron en un taladro de banco con velocidad variable de giro, se utilizaron dos brocas de 1 pulga de diámetro, una de ellas es como las que se usan para perforar metal, ya que no se encontró en el mercado una que cumpliera las características especificadas en la norma. Se decidió usar este tipo de broca debido a que son más fáciles de conseguir en el mercado y por lo tanto más usadas en la industria nacional. La otra era una broca de acero a alta velocidad. Se hicieron dos perforaciones en cada probeta, los cuales se situaron de tal forma que sirvieran para anclar las probetas en una plantilla, cuando se hiciera la prueba de moldurado. Para lograr que las perforaciones fueran hechas en la misma posición en todas las probetas se empleo una plantilla diseñada con este fin y que además sirvió para sujetar las probetas y evitar el movimiento al momento de hacer la perforación. Las perforaciones se hicieron a una velocidad de giro de 3600rpm. Para la evaluación se expusieron las probetas a la luz natural y por apreciación visual se clasificaron de acuerdo al grado que se asigno a cada una, esto después de haber observado las perforaciones en su interior, en las partes de entrada y de salida para poder así determinar el tipo de defecto o defectos y la severidad del o de los mismos.

7.4.4 Moldurado

En las pruebas de moldurado se utilizaron las 62 probetas que fueron empleadas en los ensayos del taladrado, estas probetas se dividieron en dos grupos de 31 probetas cada uno, uno de los cuales se molduró con una fresa de acero de alta velocidad, y el otro grupo con la cuchilla equipada con pastillas de carburo de tungsteno, la forma de la moldura fue la indicada por la norma.

En un extremo de la probeta se hizo un corte en diagonal para poder evaluar el moldurado en una zona curva, este corte es perpendicular a la fibra semicircular propuesto por Cantin en 1965 (tomado de Zavala 1976). Para la realización de los ensayos se usó un trompo de un mandril y dos fresas con cuatro cuchillas cada una, así como una plantilla diseñada para que sujetara las probetas y a la vez sirviera como guía de la misma al momento de realizar el corte. Una de las fresas utilizadas está equipada con filos de pastilla de carburo de tungsteno y la otra con filos de acero de alta velocidad. La mitad de las probetas ensayadas fueron maquinadas con cada tipo de fresa. Una vez realizados los cortes se procedió a la evaluación del ensayo. Para lo cual las probetas de cada grupo se expusieron a la luz natural y se observaron para determinar que tipo de defectos se presentaban y en que magnitud.

7.4.5 Torneado

Para la realización de esta prueba se usaron 100 probetas de 12.7 cm. de largo por 2 cm. de ancho por 2 cm. de grueso, libre de defectos, a dos contenidos de humedad diferentes como son 8 y 12%. El ensayo de las probetas se hizo en un torno de bancada abierta, al cual se le adaptaron dos centros cuadrados, que sirvieron para fijar las probetas y evitar el movimiento de las mismas al ser torneadas y evitar algún accidente.

La cuchilla se sujeto al porta buril del torno, de tal forma que las dos partes estuvieran en contacto la mayor superficie posible para la reducción de fricción al momento de iniciar el corte en la madera. El avance de la cuchilla se hizo lo más rápido posible para evitar fricciones entre la cuchilla y la probeta, tratando de disminuir o evitar las quemaduras en las probetas.

Las probetas se marcaron y se intercalaron los dos diferentes contenidos de humedad para evitar el desgaste del filo de la cuchilla.

7.4.6 Equipo utilizado

Las maquinas y herramientas que se usaron para las diferentes prueba de cepillado, lijado, taladrado, moldurado y torneado. Fueron las que se encontraban en el laboratorio de procesamiento mecánico de la facultad de Ingeniería en Tecnología de la Madera y cuya descripción se desglosa a continuación

1. Equipo para realizar el ensayo de cepillado

- Un cepillo sin marca, sin modelo con un motor de 5 Hp, y de 1730 r.p.m (figura 16)
- Cabezal porta cuchillas para tres cuchillas de acero rápido con ángulos de 20º y 30º y de 4920 r.p.m.

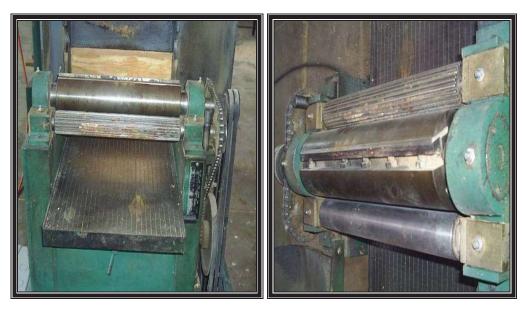


Fig.16 Equipo utilizado; a) Cepillo utilizado en la prueba; b) Rodillo porta cuchillas.

2. Equipo para realizar el ensayo de lijado

- Lijadora de banda marca Invicta-Delta con motor de la banda lijadora de 5 Hp y 1710 r.p.m, motor de la mesa de trabajo de 0.5 Hp y 1710 r.p.m, (figura 17)
- Mesa de trabajo de 2600 x 800mm con elevación, zapata de 138 x 220mm, rodillo de 160mm de ancho y 248mm de diámetro, velocidad 20.24m/s, banda lijadora7200 x152mm.
- 1 banda lijadora de grano No. 60
 1 banda lijadora de grano No. 80
 1 banda lijadora de grano No. 100

Fig. 17. Equipo utilizado en la prueba de lijado a) Lijadora de banda; b) Lija de banda utilizada; c) Zapata empleada

1. Equipo para realizar el ensayo de taladrado

- ➤ Taladro vertical marca Emerson de 17" con un motor de ¾ y de 1725 r.p.m, equipado con un juega de poleas para dar 16 velocidades de giro. (figura 18)
- > Con un tornillo para fijar los materiales a perforar
- > Broca de acero para alta velocidad

Fig. 18. Equipo utilizado en la prueba de cepillado a) taladro utilizado; b) Plantilla y broca utilizada

2. Equipo para realizar el ensayo de moldurado

- Trompo de piso, hecho en Herrajes Bulnes de Guadalajara Jalisco México, con un motor de 3 Hp y de 2880 r.p.m (Figura 19)
- ➤ Mesa de 62cm x 62cm
- Fresa de tres cuchillas de corte de forma y dimensiones especificadas en las normas utilizadas, de carburo de tungsteno (figura 19 c) y acero de alta velocidad(figura 19 d)
- Plantilla utilizada para las pruebas de moldurado

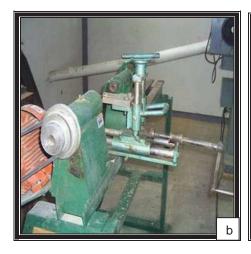


Fig. 19. Equipo utilizado en la prueba de moldurado; a) Trompo utilizado en la prueba; b) Plantilla usada; c) Frese de carburo de tungsteno; d). Fresa de acero a alta velocidad.

3. Equipo para realizar el ensayo de torneado

- ➤ Torno manual de bancada abierta de 1m entre contra punta sin marca, de tres velocidades, con motor de 3 Hp y de 1730 r.p.m (figura 20).
- Una cuchilla de acero reforzado de forma y dimensiones especificadas por las normas utilizadas

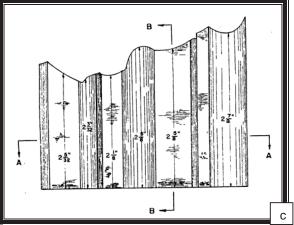


Fig. 20. Equipo utilizado para el ensayo de tornedo a) torno de bancada abierta; b) Porta cuchilla; c) Cuchilla empleada

8 RESULTADOS

8.1 Descripción anatómica de la madera de *Mangifera indica* L. (Mango criollo)

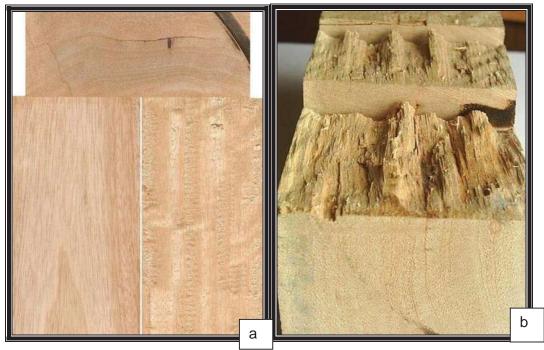
8.1.1 Descripción de la rodaja.

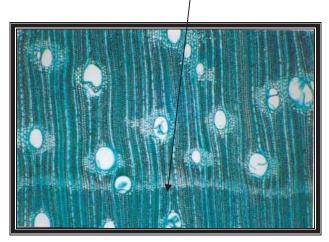
Tiene forma irregular con tendencia a triangular, con un diámetro de 75 cm. en promedio, con zonas de crecimiento no definida y la posición de la médula es céntrica. No hay diferencia de color entre albura y duramen, la madera es de color crema rosada a blanco. La corteza externa es; fibrosa, fisurada, de color castaño grisáceo y tiene de 0.4 – 0.8 cm. de grosor, la corteza interna tiene; un color castaño rojizo, es fibrosa y mide de 0.8 a 1.1 cm. de grosor. (Fig. 21)

Fig. 21. Rodaja de Mangifera indica L.

8.1.2 Características organolépticas de la madera

La madera no presenta diferencia de color entre albura y duramen. El color va de blanco a rosado HUE 7.5YR 8/4 (Munsell 1964), no presenta olor, sabor ligeramente amargo (se aprecia esta característica cuando la madera se cepilla o lija), hilo marcadamente entrecruzado (de bandas anchas) y ligeramente ondulado, brillo alto en la cara radial y medio en la cara tangencial. El veteado es suave con diseño ondulado (cara tangencial) y en franjas en cara radial (determinado por los vasos y el hilo), y la textura es de media a gruesa. De peso medio a ligeramente pesada y con dureza media a ligeramente dura (Fig. 22).




Fig.22. Material utilizado para la descripción de las características organolépticas. a) Tablillas en corte; transversal, tangencial y radial, b) Probeta donde se muestran los tipos de hilo (cara radial).

8.1.3 Descripción macroscópica y microscópica de la madera.

Las zonas de crecimiento son poco notorias (se aprecia debido a la presencia a bandas de parénquima marginal de 2 a 4 células de ancho). La porosidad es difusa heterogénea. (Fig. 23)

Los poros son visibles a simple vista, tienen una forma de circular a ovalada y en las cuales se encuentran algunas tílides (Fig.24), son de tamaño medio con un promedio de 107.3 μm de diámetro tangencial (min. 51 – máx. 183.6μm) y son moderadamente pocos con 8 poros por mm² (3 –14), la madera presenta un arreglo de poros; solitarios, múltiples radiales, predominan los de 2 - 4 y algunos de 5 - 7, múltiples tangenciales de 2 – 3 así como agrupados de 3 – 11 (Fig. 25), la placa perforada es simple de forma circular a elíptica con platina inclinada y presenta lígulas pequeñas; los elementos de vaso presentan puntuaciones areoladas alternas, areoladas opuestas, y tendiendo a escaleriformes, con contornos irregulares y aberturas elípticas, los elementos de vaso son moderadamente cortos con 298.9 μm de longitud (183.6 – 489.6

μm). (Fig Parénquima. marginal

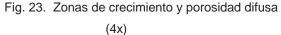


Fig. 24 Tílides en los poros (10x)

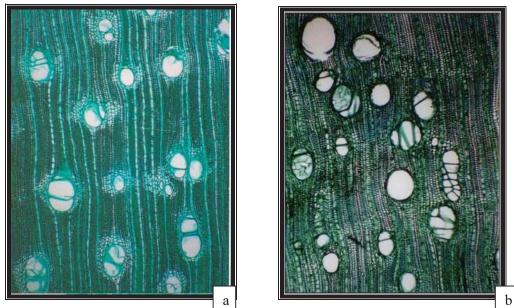


Fig. 25. Arreglo de poros; a) solitarios, múltiples radiales; b) múltiples Tangenciales y agrupados (4x)

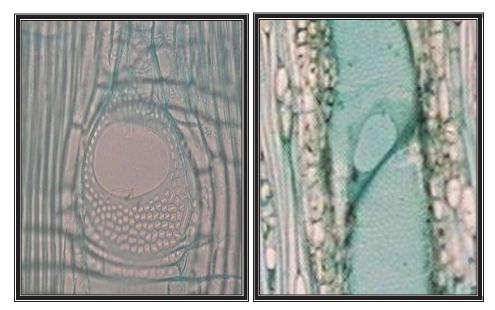


Fig. 26. Platina de los elementos de vaso con perforación simple (10x)

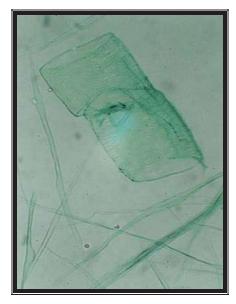


Fig. 27 Elementos de vaso y fibras en disociado (10x)

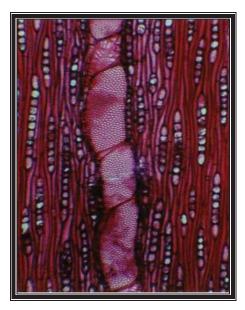


Fig. 28 Elementos de vaso con puntuaciones areoladas alternas en corte tg.

El parénquima leñoso: se observa con lupa, es de tipo paratraqueal vasicentrico, P. aliforme, P. aliforme confluente, P. escaso (solo visible al microscopio) y marginal (Fig.29).

Los radios: Se observan con dificultad aún con la ayuda de la lupa, al microscopio se aprecia que son numerosos con 10.2 por mm. (6 min.– 15max.), y son de constitución heterogéneos y homogéneos, de tipo uniseriado, parcialmente biseriado y biseriados. Son extremadamente bajos con 231.3 μ m en promedio (51 – 642.6 μ m), presentan de 2 a 18 células de alto, predominando de 8 a 9 células, y son muy angostos (según Tortorelli 1956) con 23 μ m en promedio (12.5 min. – 37.5 μ m máx.). (Fig.30 y 31)

Fig. 29. Tipos de parénquima leñoso en corte transversal. (4x)

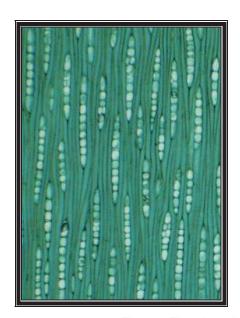


Fig. 30. Tipo de radios en corte tangencial. (10x y 4 x)

Fig. 31. Radios homogéneos y heterogéneos en corte radial (10x)

Fig. 32 Fibras en material disociado (10x)

Las fibras son libriformes con puntuaciones de rebordes muy delgadas, son moderadamente cortas con 846.6 μ m de longitud (632.4 min. - 1122 μ m máx.), presentan diámetro fino con 13.5 μ m (5 -22.5 μ m), son de paredes delgadas a medianas con 2.58 μ m (1.25 – 3.75 μ m) y una amplitud de lumen de 8.3 μ m (2.5 – 17.5 μ m) (Fig.32). También se observaron fibras de pared gelatinosa (presentes en madera de tensión)

Las inclusiones que presenta esta madera son cristales de forma romboidal, rectangular y amorfa presentes en las células de los radios de 1 a 18 cristales por mm². Probablemente existan gomas o ceras (se cree por la dificultad que hubo para coser los cubos, teñir y deshidratar los cortes típicos, así como en el material disociado). (Fig. 33 y 34)

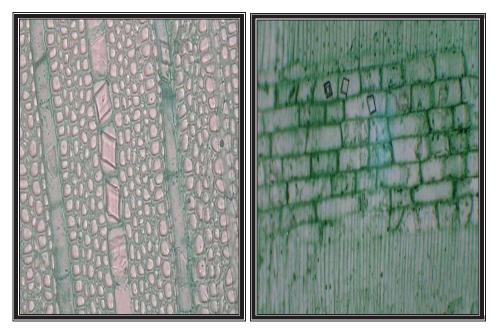


Fig. 33. Cristales prismáticos en corte transversal y radial (10x)

Fig. 34. Posibles gomas o ceras (correspondientes a las zonas más obscuras)

Cuadro 1. Resultado de las mediciones de los elementos de vaso en la madera intermedia

Valor	No./mm²	Diámetro Tangencial (μm)	Longitud (μm)
Mínimo	3	51	183.6
Máximo	14	183.6	489.6
Promedio	8.18	107.3	298.9
Moda	8	102	204
D.S	2.685	3.394	8.127

D.S = Desviación estándar

Cuadro 2. Resultado de las mediciones de los radios en la madera intermedia

Valor	No. /mm.	Altura de radio (μm)	No. de células de alto	Ancho de radios (μm)
Mínimo	6	51	2	12.5
Máximo	15	642.6	21	37.5
Promedio	10.22	231.5	8.38	23
Moda	10	204	9	15
D.S	1.669	11.695	4.208	2.777

D.S = Desviación estándar

Cuadro 3. Resultado de las mediciones de las fibras en material disociado de la madera intermedia

Valor	Longitud (μm)	Diámetro de fibra (μm)	Grosor de pared (μm)	Diámetro del lumen (μm)
Mínimo	632.4	5	1.25	2.5
Máximo	1122	22.5	3.75	17.5
Promedio	846.6	13.5	2.58	8.3
Moda	836.4	12.5	2.5	7.5
D.S	10.919	1.371	0.16	1.268

D.S = Desviación estándar

En el cuadro No. 4 se presenta la cantidad porcentual de los elementos constitutivos de la madera de *Mangifera indica* L. (en madera intermedia)

Cuadro 4. Elementos constitutivos (%)

Elementos constitutivos	(%)
Poros	20
Parénquima leñoso	16
Parénquima radial	14
Fibras	5

8.2 Descripción de albura de *Mangifera indica* L. (mango criollo)

8.2.1 Características organolépticas de la madera

La madera presenta un color de blanco a crema rosado (HUE 5YR 8/2), el olor no se aprecia y el sabor es ligeramente amargo. Presenta un veteado de suave a pronunciado (determinado por los vasos); textura de gruesa a media, hilo ondulado y entrecruzado, es de brillo alto en la cara radial y medio en la cara tangencial. En algunas tablillas presentaron manchas de coloración gris azuloso, lo cual denota que esta especie es susceptible al ataque de hongos cromógenos (cuando esta húmeda), también se observo, un regular ataque de *Lyctus* sp. (Fig. 35)

8.2.2 Características macroscópicas y microscópicas

Las zonas de crecimiento son poco notorias (se aprecian debido a una banda de fibras con pared más gruesa y una banda de parénquima marginal de 2 a 4 células de ancho). La porosidad es difusa con tendencia a semicircular.

Los poros son visibles a simple vista, tienen forma circular, presentas tílides y son moderadamente grandes con 257 μ m de diámetro (173 min.- 326 μ m máx.) y se clasifica de pocos a moderadamente pocos con 5 poros/mm² (2-19). Los poros presentan un arreglo; solitarios, múltiples radiales de 2 – 7, agrupados de 3 a 11 y múltiples tangencial de 2 – 3. Los elementos de vasos presentan una platina con perforación simple; las puntuaciones son areoladas alternas, los contornos van de hexagonales a elípticos con aberturas elípticas, areoladas opuestas y también presentan puntaciones areoladas en forma alargada con tendencia a escaleriforme, los elementos de vaso son de longitud media con 394 μ m de longitud (132-632 μ m) (Fig. 36).

El parénquima leñoso se aprecia con lupa, y es de tipo paratraqueal vasicentrico, P. aliforme, P. aliforme confluente, P. escaso y marginal.

Los rayos se distinguen con dificultad aun con lupa, son numerosos con 8.3 radios por mm. (5 -10) hay homogéneos y heterogéneos predominando estos últimos, se presentan uniseriados, parcialmente biseriados (muy pocos) y biseriados (escasos), son extremadamente bajos (según Tortorelli 1956) con 230 μ m (61 min. – 428 μ m máx.) y moderadamente angostos con 31.8 μ m de ancho (12.5 – 50 μ m).

Las fibras son libriformes, son de longitud media con 1063 μ m de longitud (816-1244 μ m), presentan diámetro fino con 14 μ m (10 – 27 μ m) y paredes delgadas de 2.5 μ m (1.25 – 3.75 μ m) y una amplitud de lumen de 9.8 μ m (2.5 – 22.5 μ m).

Inclusiones: presentan cristales en forma romboidal, rectangular y amorfa presentes en las células de los radios y en los poros presentan tilosis (se cree que tienen gomas o ceras por la dificultad que se tuvo al coser los cubos, teñir y deshidratar los cortes y el material disociado).

8.3 Descripción de la zona cercana a la médula de *Mangifera indica* L. (mango criollo)

8.3.1 Características organolépticas de la madera

La madera presenta un color rosado HUE 7.5YR 8/4(Munsell 1964), el olor no se perciben y el sabor es ligeramente amargo. Presenta un veteado suave, textura fina, hilo ligeramente ondulado y entrecruzado, es de brillo alto a medio (alto en la cara radial y medio en la cara tangencial) (Fig. 35).

8.3.2 Características macroscópicas y microscópicas

Zonas de crecimiento aprecian muy poco, la porosidad es difusa heterogénea.

Los poros son visibles a simple vista de forma circular a ovalados, son medianos 102 μ m de diámetro (20.4 min. – 153 μ m máx.) y moderadamente pocos con 8 poros/mm² (4 - 17), presenta un arreglo de poros; solitarios, múltiples radiales de 2 – 5, agrupados de 3 a 7 y múltiples tangencial de 2 – 3.

Los elementos de vasos presentan una placa con perforación simple de forma elíptica; las puntuaciones de las paredes de los elementos de vaso son areoladas alternas, areoladas opuestas y tendiendo a escaleriforme con contornos irregulares y aberturas elípticas. Son moderadamente cortos con 325 μ m de longitud (92 - 734.4 μ m) (Fig. 36).

El parénquima se aprecia con lupa, presenta paratraqueal vasicentrico, P. aliforme y P. aliforme confluente (de bandas cortas) y P. escaso y marginal(solo en microscopio).

Los rayos se distinguen con mucha dificultad con lupa, son numerosos con 10 radios por mm. (5 -10) hay heterogéneos y homogéneos son uniseriados (abundantes), parcialmente biseriados (muy pocos) y biseriados (escasos). Son extremadamente bajos 246 μ m (51 – 571.2 μ m) y muy angostos con 20.6 μ m de ancho (10 – 32.5 μ m).

Las fibras son libriformes y moderadamente cortas con $861\mu m$ de longitud (663 - $1173~\mu m$), de diámetro fino con $11.5~\mu m$ ($5-17.5~\mu m$), paredes delgadas de $2.5\mu m$ ($1.25-5\mu m$) y con una amplitud de lumen de $6.4~\mu m$ ($1.25-12.5\mu m$)

Inclusiones presentan cristales en forma romboidal y amorfa en las células de los radios y en los poros se presentan tilosis (se cree que tienen gomas o ceras por la dificultad que se tuvo al coser, teñir y deshidratar los cortes típicos y el material disociado).

Fig. 35. Diferencias en la textura; a) albura; b) cercana a la medula

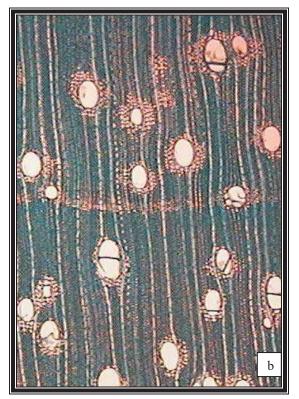


Fig. 36 diferencia en diámetro de poros; a) albura; b) cercana a la médula

8.4 Índices de calidad de pulpa para papel.

De acuerdo con los datos mensurables de las fibras de madera de *M. indica* L, los índices de calidad de pulpa que se calcularon son los siguientes:

Cuadro 5 Índices de calidad de pulpa para papel en zona intermedia.

COEFICIENTES	RESULTADOS DEL PROMEDIO	RESULTADOS DE LA MODA	CLASIFICACIÓN
Relación Runkel	0.6242	0.6666	Buena para papel
Coeficiente de rigidez	0.3800	0.4000	mediana
Coeficiente de flexibilidad	0.6088	0.6000	mediana
Índice de esbeltez	62.479	66.912	

Cuadro 6 Índices de calidad de pulpa para papel en albura.

COEFICIENTES	RESULTADOS DEL PROMEDIO	RESULTADOS DE LA MODA	CLASIFICACIÓN
Relación Runkel	0.5051	1.0000	Buena para papel
Coeficiente de rigidez	0.3355	0.5000	mediana
Coeficiente de flexibilidad	0.6644	0.5000	mediana
Índice de esbeltez	70.383	111.18	

Cuadro 7 Índices de calidad de pulpa para papel, en zona cercana la medula.

Coeficientes	Resultados del promedio	Resultados de la moda	Clasificación
Relación Runkel	0.7898	1.0000	Buena para papel
Coeficiente de rigidez	0.4413	0.4000	mediana
Coeficiente de flexibilidad	0.5586	0.4000	mediana
Índice de esbeltez	74.770	65.280	

Cuadro 8 Índices de calidad de pulpa para papel, promedio de las tres zonas.

COEFICIENTES	RESULTADOS DEL PROMEDIO	RESULTADOS DE LA MODA	CLASIFICACIÓN
Relación Runkel	0.6200	1.0000	Buena para papel
Coeficiente de rigidez	0.3812	0.4000	mediana
Coeficiente de flexibilidad	0.6149	0.4000	mediana
Índice de esbeltez	68.9602	65.280	

Cuadro 9. Cuadro comparativo en tres diferentes zonas de muestreo en Mangifera indica L. (mango criollo).

(ma	ingo criollo).		
Zona	Albura	intermedia	Cercano a la medula
Color	Crema rosado	Rosado	Rosado
	HUE 5YR 8/2	HUE 7.5 RY 8/4	HUE 7.5 RY 8/4
Olor	Ausente	Ausente	Ausente
Sabor	Ligeramente amargo	Ligeramente amargo	Ligeramente amargo
Veteado	Suave a pronunciado	Suave	Suave
Textura	Gruesa	Fina a media	Fina a media
Hilo	Ondulado y entrecruzado	Ondulado y entrecruzado	Ondulado y entrecruzado
Brillo	Media a alto	Medio a alto	Medio a alto
Zonación	Poco notoria	Poco notoria	Poco notoria
Porosidad	Difusa heterogénea	Difusa heterogénea	Difusa heterogénea
Arreglo de	Solitarios, múltiples	Solitarios, múltiples	Solitarios, múltiples
poros	radiales de 2 – 7,	radiales de 2 – 7,	radiales de 2 – 5,
•	múltiples tangenciales de	múltiples tangenciales de	múltiples tangenciales de
	2 -3 y agrupados de 3- 11	2 -3 y agrupados de 3- 11	2 - 3 y agrupados de 3 - 7
Diámetro de	Moderadamente grandes	Medianos	Medianos
poros	257μm	107.3 μm	102 μm
Poros por	Moderadamente pocos	Moderadamente pocos	Moderadamente pocos
mm ²	5	8	8
Longitud de	Medianos	Moderadamente cortos	Moderadamente cortos
elemento de	394 μm	298.9 μm	325 μm
vaso	00 · p		0_0 р
Tílides	Presentes (regularmente)	Presente (escasas)	Presentes (escasas)
Parénquima	Paratraqueal escaso,	Paratraqueal escaso,	Paratraqueal escaso,
leñoso	P. vasicentrico,	P. vasicentrico,	P. vasicentrico,
	P. aliforme, P. aliforme	P. aliforme, P. aliforme	P. aliforme, P. aliforme
	confluente (bandas	confluente (bandas	confluente (bandas
	cortas) y marginal	cortas) y marginal	cortas) y marginal
Rayos por	Numerosos	Numerosos	Numerosos
mm	8	10.2	10
Altura de	Bajos	Bajos	Bajos
rayo	230 μm	231.3 μm	246 μm
Ancho de	Moderadamente	Muy angostos	Muy angosto
rayo	angostos	23 μm	20.6 μm
luyo	32 μm	20 μπ	20.0 μπ
Tipo de rayo	Uniseriados(abundantes),	Uniseriados(abundantes),	Uniseriados(abundantes),
ripo do rayo	parcialmente biseriados	parcialmente biseriados	parcialmente biseriados
	(pocos) y biseriados (muy	(pocos) y biseriados (muy	(muy pocos) y biseriados
	pocos)	pocos)	(escasos)
Longitud de	Medianas	Moderadamente cortas	Moderadamente cortas
fibra	1063 μm	846.6 μm	861. μm
Diámetro de	Fino	Fino	Fino
fibra		13.5 μm	11.5 μm
	14 μm	·	Paredes medianas a
Grosor de	Paredes delgadas	Paredes delgadas a medianas	delgadas
pared	2.5 μm		_
Amplitud do	0.0	2.58 μm	2.5 μm
Amplitud de lumen	9.8 μm	8.3 μm	6.4 μm
	crietalos rembaidalas v	Cristalos rembaidales :	Cristalas rembaidalas v
inclusiones	cristales romboidales y	Cristales romboidales y	Cristales romboidales y
	amorfos 0 -12 por mm²	amorfos 1-18 por mm²	amorfos 2-25 por mm²

Cuadro 10. Cuadro comparativo de datos reportados por autores de diferentes nacionalidades, sobre *Mangifera indica* L. (mango criollo).

	Madera estudiada	Richter H. G. y Dallwitz M. J (2000)	Leon H., William J.
Color	Crema a rosado HUE 7.5 RY 8/4	Café a blanco	(S/F) Amarillo pálido HUE 2.5RY 8/4
Olor	Ausente	Ausente	Ausente
Sabor	Ligeramente amargo		Ausente
Veteado	Suave	Pronunciado	
Textura	mediana		Mediana Recto a entrecruzado
Hilo Brillo	Ondulado y entrecruzado Medio a alto		Bajo a medio
Peso y dureza	Medio	De liviana a	De liviana a
. 000 y aa.02a	Widalo	moderadamente pesada y	moderadamente pesada y
		de blanda a	de blanda a
		moderadamente dura	moderadamente dura
Zonación	Poco notoria (por	No se percibe	Poco notoria (por
B	parénquima marginal)	D:/	parénquima marginal)
Porosidad Arreglo de	Difusa Solitarios, múltiples	Difusa Múltiples radiales de 2-3	Difusa Solitario, múltiples radiales
poros	radiales de 2 – 7, múltiples	wulliples radiales de 2-3	de 2-5 y agrupados 3-5
poros	tangenciales de 2 -3 y		de 2-0 y agrapados 0-0
	agrupados de 3- 11		
Diámetro de	Mediano a	Moderadamente grandes	De medianos a
poros	moderadamente grandes	160-280 μm	moderadamente grandes
_ 2	102 - 257 μm		155-213 μm
Poros por mm ²	Moderadamente pocos	Pocos a moderadamente	Pocos
Longitud de	7 Moderadamente cortos a	pocos 3-6	2-5
elemento de	medianos		
vaso	275.5 μm		
Tilosis	Presente	Presente	Presente
Parénquima	Paratraqueal escaso,	Paratraqueal aliforme, P.	Paratraqueal vasicentrico,
leñoso	P. vasicentrico,	aliforme confluente y	P. aliforme, P. aliforme
	P. aliforme, P. aliforme	marginal	confluente
	confluente (bandas cortas)		
Rayos por mm	y marginal Numerosos	Numerosos a muy	Moderadamente
rayos por min	8 - 10	numerosos 8-12	numerosos a numerosos
			5-9
Altura de rayo	Bajos	Bajos	Bajos
	236.3 μm		277 μm
Ancho de rayo	Muy angostos		
Time de	25 μm		
Tipo de rayo	Uniseriados (abundantes), parcialmente biseriados	Uniseriados, biseriados y triseriados, composición	Uniseriados, biseriados y triseriado.). Composición
	(pocos) y biseriados (muy	heterogénea	heterogénea y homogénea
	pocos). Composición		
	heterogénea y homogénea		
Longitud de	Medianas		De moderadamente cortas
fibra	846 – 1063 μm		a medianas 739-956 μm
Diámetro de	Fino (delgadas)		Delgadas
fibra	13.2 µm	David do series en entre	Daradaa dalaadaa -
Grosor de pared	Paredes delgadas a medianas 2.52 μm	Pared de espesor medio	Paredes delgadas a mediana
Amplitud de	medianas 2.52 μm 8.15 μm		
lumen	5.10 μπ		
inclusiones	Cristales romboidales y	Cristales prismáticos	Cristales prismáticos
	amorfos 1-18 por mm²	•	0.38-14mm ²
	•	reportados por diferentes a	utores sobre <i>Mangifera indica</i>
L. (mango criollo	,		
	Tesis	Ortega (S/F)	Metcalfe (1972)
Color	De crema a rosado	Parda muy pálida	

	HUE 7.5 YR 8/4	HUE 10 YR 8/3	
Olor	Ausente	Ausente	
Sabor	Ligeramente amargo	Ausente	
Veteado	Suave	Liso	
Textura	Medianas	Gruesa	
Hilo	Ondulado y entrecruzado	Recto	
Brillo	Medio a alto	Bajo	
Peso y	Media		
dureza	Decree material (man	Madada	
Zonación	Poco notoria (por	Notoria	
Porosidad	parénquima marginal) Difusa	Difusa	
			Solitorios múltiplos
Arreglo de	Solitarios, múltiples radiales de 2 – 7,	Solitarios, múltiples radiales de 2 – 3,	Solitarios, múltiples radiales,
poros	múltiples tangenciales de	múltiples tangenciales	radiales,
	2 -3 y agrupados de 3- 11	de 2 y agrupados de 3-6	
Diámetro de	Mediano a moderadamente	Medianos	De pequeños a
poros	grandes	128 μm	medianos 50 – 200 μm
poloo	102 - 257 μm	120 μπ	medianes 50° 200 μm
Poros por	Moderadamente pocos	Muy pocos	De pocos a
mm ²	7	4	moderadamente pocos5
Longitud de	Moderadamente cortos a	Medianos	De moderadamente
elemento de	medianos	501 μm	cortos a medianos
vaso	275.5 μm		Mas de 200 μm
Tilosis	Presente		Presente
Parénquima	Paratraqueal escaso,	Paratraqueal aliforme,	Paratraqueal escaso, P.
leñoso	P. vasicentrico,	P. aliforme confluente	vasicentrico, P.
	P. aliforme, P. aliforme	(en bandas cortas) y	aliforme, P. aliforme
	confluente (bandas	marginal	confluente y marginal.
Payes per	cortas) y marginal Numerosos	Numeroses	Numeroos
Rayos por mm	8 – 10	Numerosos 8	Numerosos 5 – 10
Altura de	Bajos	o Muy bajos	5 – 10
rayo	236.3 μm	Muy bajos 145μm	
Ancho de	Muy angostos	Medianos	
rayo	23 μm	51μm	
Tipo de rayo	Uniseriados(abundantes),	Uniseriados (pocos),	Uniseriados,
ripo de rayo	parcialmente biseriados	Biseriados (abundantes)	biseriados, triseriados
	(pocos) y biseriados (muy	y triseriados (muy	heterogéneos
	pocos) heterogéneos	pocos) heterogéneos	neterogeneos
Longitud de	Libriformes Medianas	Moderadamente cortas	Libriformes y pocas
fibra	914 μm	854 μm	septadas
Diámetro de	Fino (delgadas)	Fino	
fibra	13.2 μm	22 μm	
Grosor de	Paredes delgadas	Muy gruesa	Delgadas a medianas
pared	2.52 μm	9 μm	9
Amplitud de	8.15 μm		
lumen	•		
inclusiones	Cristales romboidales y	Escasas gomas y	Cristales
	amorfos 1-18 por mm²	cristales poligonales	

8.5 Usos sugeridos en la bibliografía

En Michoacán: Cajas de embalaje, tarimas, leña, tacones (para guitarra), tableros aglomerados, medallones y prendedores decorados.

En Veracruz: Mascaras. (Ortega s/f).

En México: Muebles, triplay (centros de triplay), pisos, cajas para té, artículos torneados, culatas para armas, decoración para interiores, carrocerías y construcciones rurales. (Niembro 1990).

Extranjero: Con un adecuado tratamiento de preservación puede usarse en; marcos de puertas y ventanas, muebles de calidad (con la unión de varias pieza ya saneadas de defectos). Pilotes, botes, implementos

Correa 2003).

Carpintería local, pisos, componentes de muebles, ebanistería, construcciones rurales, cajones, carrocerías, artesanías, figuras talladas, troncones para cortar carne (carnicerías) y en algunos casos se usa para carbón. (Benítez 1989)

agrícolas, tacones para zapatos. (Morton 1987)(mencionado por

8.5 RESULTADOS DE LOS ENSAYOS DE MAQUINADO

8.5.1 Cepillado

Al realizar el ensayo de cepillado en sentido del hilo y en contra del sentido del hilo utilizando un ángulo de corte de 20°, el defecto mas frecuente fue el grano arrancado, el cual se presento en 20 probetas, seguido por grano levantado el cual se presentó en 19 probetas y el grano velloso apareció en 17 de las probetas (Fig. 37).

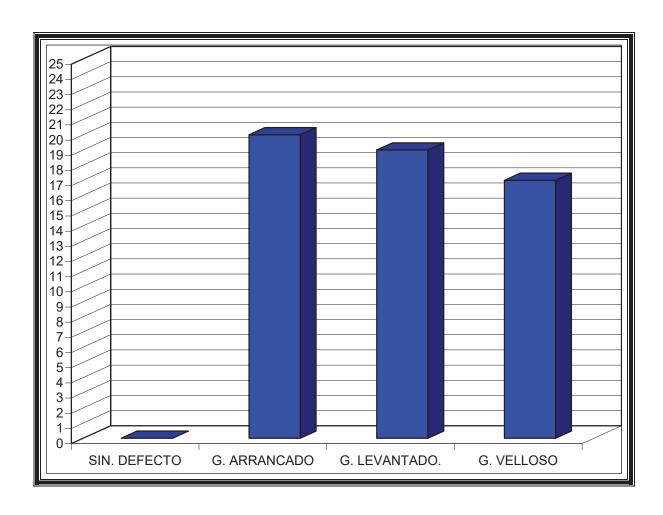


Fig.37. Defectos presentados en el cepillado utilizando un ángulo de corte de 20º

Con grado 1 no se obtuvo ninguna probeta, el 42% de las piezas ensayadas resultaron en grado 2 (bueno) y en grado 3 se tienes 46 % (regular), el 12% se ubica en el grado 4 (pobre), el grado 5 no se presenta en ninguna probeta. (Fig. 38)

Debido a la extensión de los defectos que se presentaron en esta prueba y a la severidad de los mismos, el cepillado con el Angulo 20° se clasifica como **pobre** de acuerdo con flores (1990).

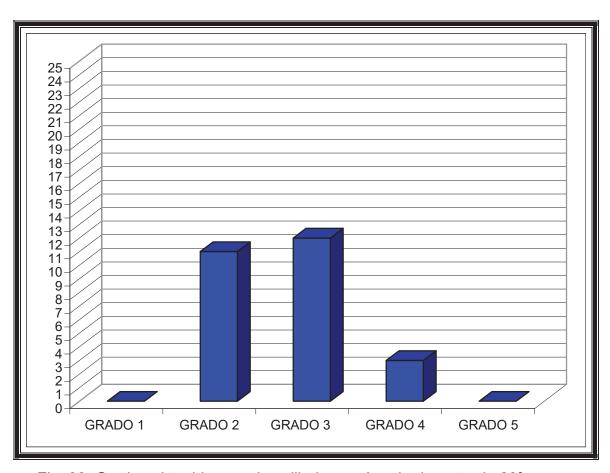


Fig. 38. Grados obtenidos en el cepillado con ángulo de corte de 20°

Al llevar acabo el cepillado con un ángulo de corte de 30°, se presento con mayor frecuencia el defecto de grano levantado, en 20 probetas, otro defecto presente con una frecuencia considerable fue el grano velloso con 19 probetas y por ultimo el grano arrancado se presento en 15 de las probetas (Fig. 39).

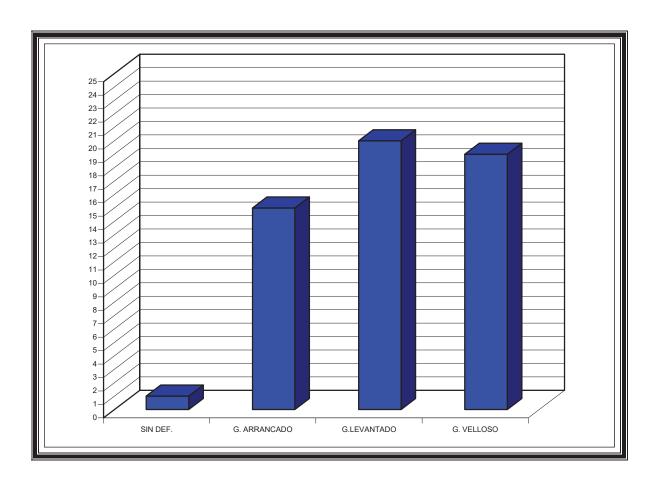


Fig. 39. Defectos que se presentaron en el cepillado cuando se utilizó un ángulo de corte de 30°.

En la evaluación de la prueba de cepillado con un ángulo de 30°; se encontró que el 8% de las piezas se resultaron de grado 4 (pobre), el 50 % fueron de grado 3 (regular), el 38% se califico como de grado 2 (buena) y solo el 4 % obtuvieron el grado 1 (excelente), como se puede observar en la figura 40. En base a estos resultados la prueba se calificó como **pobre**

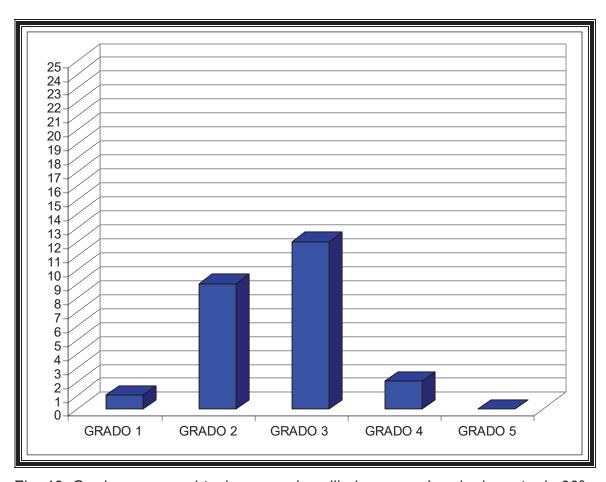


Fig. 40. Grados que se obtuvieron en el cepillado con un ángulo de corte de 30°.

8.5.2 **Lijado**

Los defectos que se presentaron en el lijado, como rayones, grano levantado y grano velloso, no fueron severos por lo que se puede decir que la prueba de lijado fue **excelente**, en las graficas se puede apreciar los resultados. (Fig. 41 – 46) Cada una de las evaluaciones se hicieron después de cada lijada con cada uno de los granos.

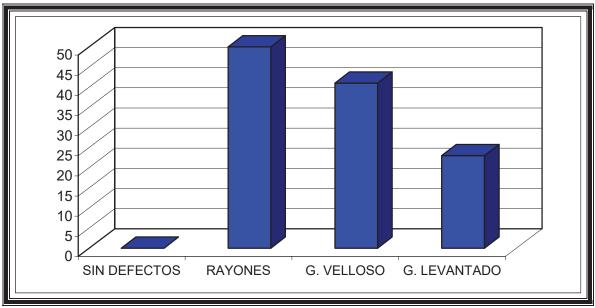


Fig.41 Defectos que se presentaron con la lija de grano 60

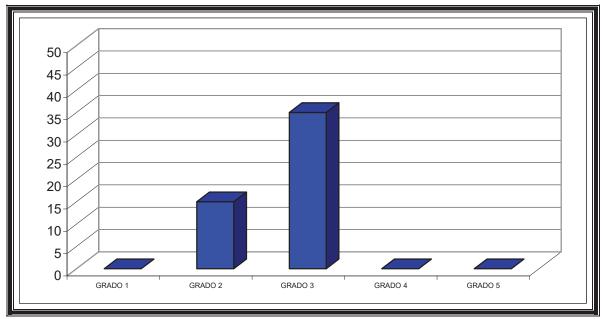


Fig.42. Grados obtenidos en el lijado.

Lijado grano 80

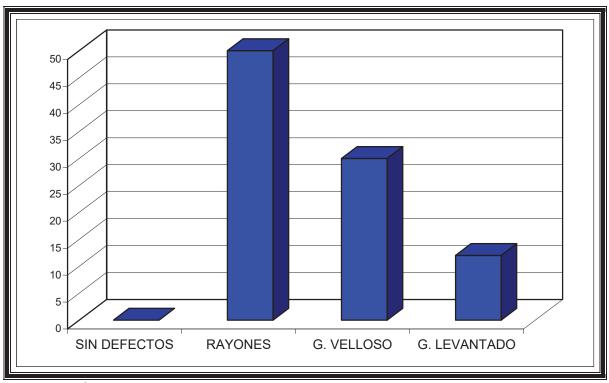


Fig.43. Defectos que se presentaron con la lija de grano 80.

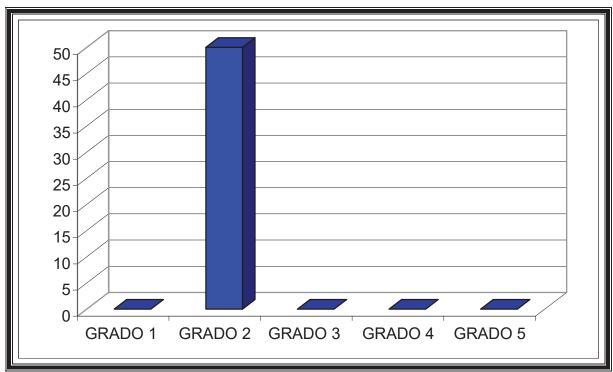


Fig. 44. Grados obtenidos en el lijado.

Lijado con grano100

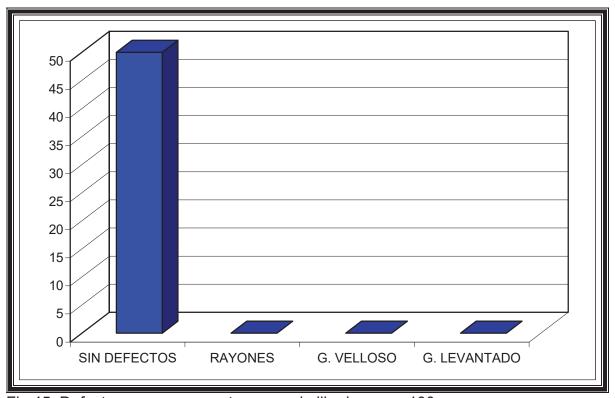


Fig.45. Defectos que se presentaron con la lija de grano 100.

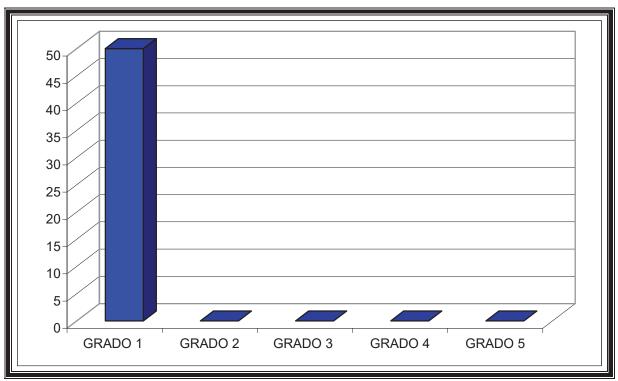


Fig.46. Grados obtenidos en el lijado.

8.5.3 Taladrado

Al realizar el ensayo de taladrado con una broca para metal, el defecto que se presentó con mayor frecuencia fue el grano velloso y el grano aplastado, los cuales se presentaron en las 31 piezas ensayadas. Por último en una proporción menor se presentó el defecto de grano arrancado, como se observa en la figura 47. Cabe mencionar que en su mayoría los defectos afectaron la parte interna de las perforaciones, por lo que no afectan en gran medida el acabado superficial de las perforaciones y a su vez tampoco el de las probetas.

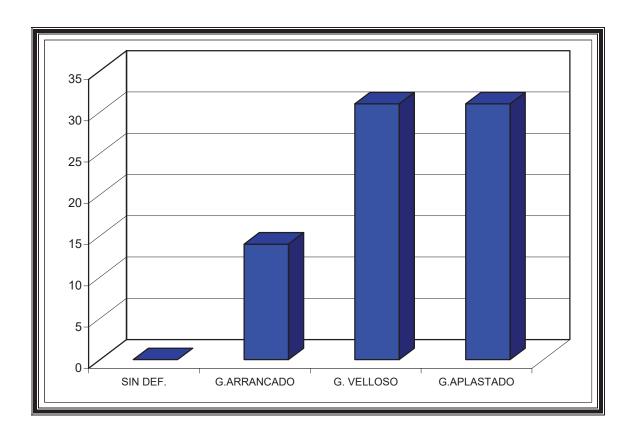


Fig.47. Defectos de la prueba de taladrado con la broca para metal.

Para este ensayo la mayoría de las probetas obtuvieron un grado 3 (regular), el porcentaje de las probetas que obtuvieron este grado alcanza el 68%, después en una menor proporción se obtuvo un 32 % de las probetas con grado 2 (buena), figura 48. En base a los resultados la prueba se puede clasificar como **muy pobre**.

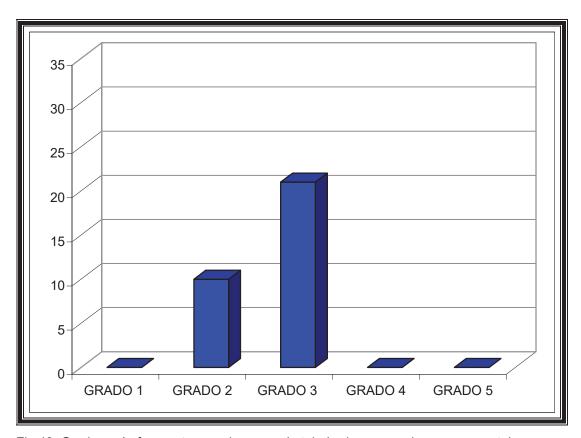


Fig.48. Grados más frecuentes en el ensayo de taladrado con una broca para metal.

Al realizar el ensayo de taladrado con una broca de acero de alta velocidad el defecto que se presentó con mayor frecuencia fue el grano velloso y el grano aplastado, los cuales se presentaron en las 31 piezas ensayadas. Por último en una proporción menor se presentó el defecto de grano arrancado, como se observa en la figura 49. Cabe mencionar que en su mayoría los defectos afectaron la parte interna de las perforaciones, por lo que no afectan en gran medida el

acabado superficial de las perforaciones y a su vez tampoco el de las probetas. (pero si podría afectar la resistencia de la unión tratándose de un ensamble con pernos).

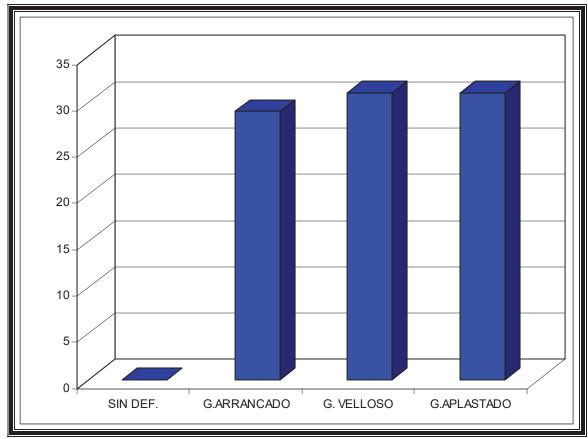


Fig. 49. Defectos presentes en la prueba de taladrado con broca de acero de alta velocidad.

Para este ensayo la mayoría de las probetas obtuvieron un grado 3 (regular), el porcentaje de las probetas que obtuvieron este grado alcanza el 90%, después en una menor proporción se obtuvo un 10 % de la probetas con grado 2 (buena), figura 50. En base a los resultados la prueba se puede clasificar como **muy pobre**

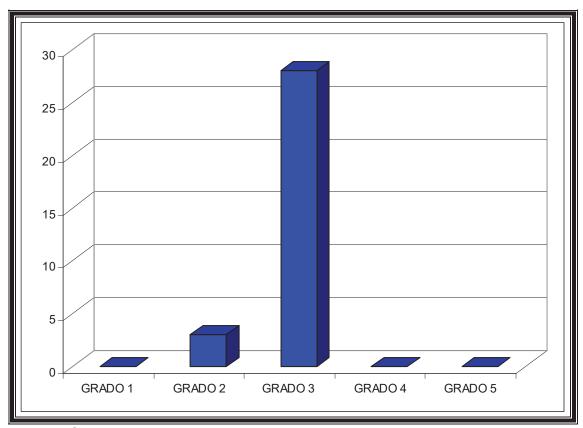


Fig. 50. Grados obtenidos en la prueba de taladrado con la broca de acero de alta velocidad.

8.5.4 Moldurado

El moldurado presentó con mayor incidencia los granos arrancado y velloso como se puede observar en la figura 51. Estos defectos se presentaron cuando el corte fue realizado en la sección transversal de la pieza maquinada. A este defecto le

sigue con frecuencia el grano astillado y en menor frecuencia fue el grano levantado tal como se muestra en la grafica.

Fig.51 Defectos presentes en el ensayo de moldurado con fresa de carburo de tungsteno.

Como se puede ver en la figura 52, los grados con mayor frecuencia en esta prueba, fueron el grado 2, seguido del grado 3, los cuales representan el 45% y el 52% respectivamente. En una proporción menor se clasifico el grado 4 con un 3%. En base a los resultados la prueba se puede clasificar como **pobre**.

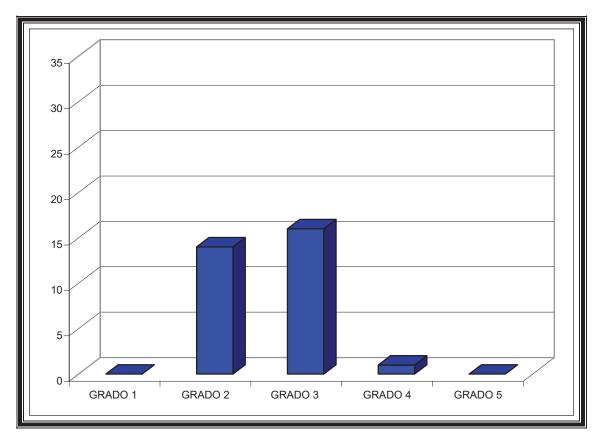


Fig.52. Grados obtenidos en la prueba de moldurado con fresa de carburo de tungsteno.

El moldurado con una fresa de acero de alta velocidad presentó mayor incidencia los granos arrancado y velloso como se puede observar en la figura 53. Estos defectos se presentaron cuando el corte fue realizado en la sección transversal de la pieza maquinada. A este defecto le sigue con frecuencia el grano astillado y no presentó grano levantado tal como se muestra en la gráfica.

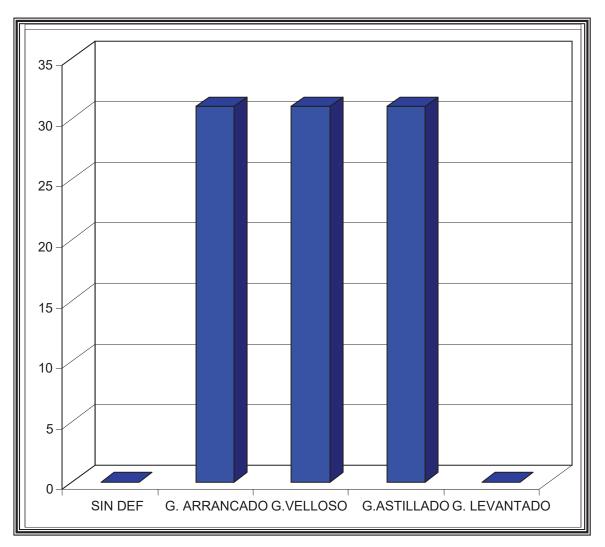


Fig. 53. Defectos presentados en la prueba de moldurado con fresa de acero de alta velocidad.

Como se puede ver en la figura 54, los grados de moldurado con mayor frecuencia en esta prueba, fueron el grado 2, seguido del grado 3, los cuales representan el 23% y el 48% respectivamente. En una proporción menor se clasificó el grado 4 con un 29%. En base a los resultados la prueba se puede clasificar como **muy pobre.**

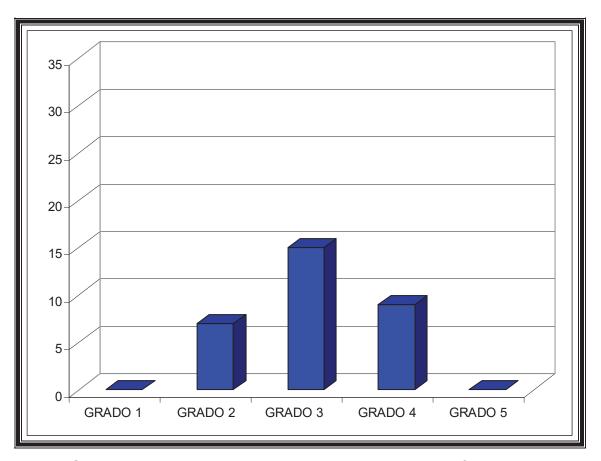


Fig.54. Grados obtenidos en la prueba de moldurado con la fresa de acero de alta velocidad.

8.5.5 Torneado

En el torneados los defectos con más frecuencia; grano levantado, grano velloso y aspereza los cuales se presentaron en todas la probetas en grados diferentes (Fig. 55)

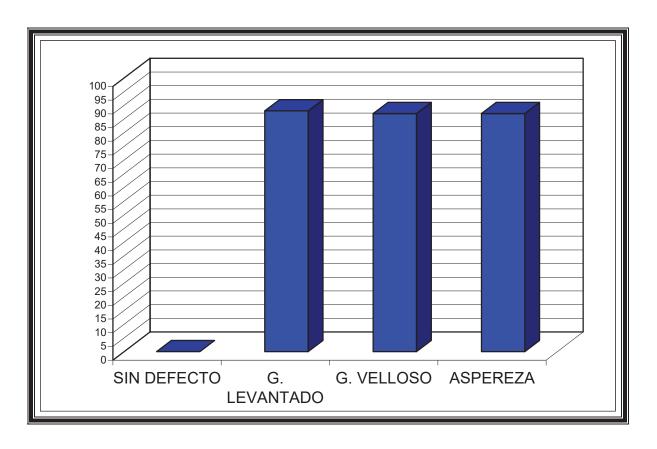


Fig.55 Defectos presentados en los ensayos de torneado.

Al determinar los grados correspondientes al ensayo de torneado, de las cuales el 14% corresponde a grado 5, el 42% a grado 4, el 39% en el grado 3 y con el grado 2 solo se obtuvo el 5 %, lo cual hace que esta prueba se clasifique como **muy pobre** (Fig. 56)

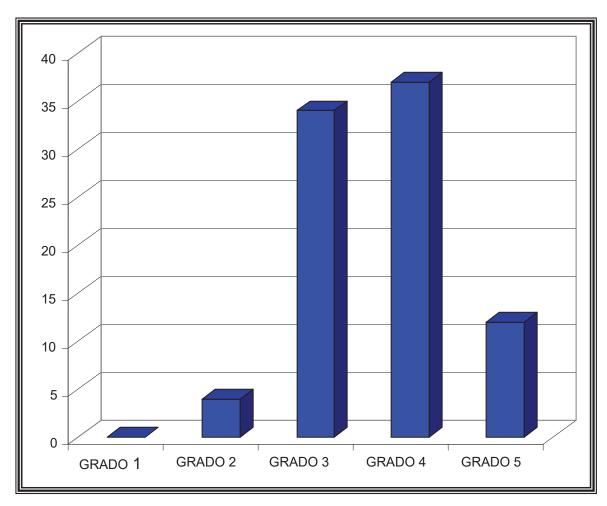


Fig. 56. Grados obtenidos en la prueba de torneado.

Cuadro No12. Evaluación según tablas de clasificación utilizado por Flores (1990); de acuerdo al porcentaje de piezas excelentes (E) + buena (B), presente después de cada ensayo de maquinado.

% E + B	Clasificación
90 – 100	Excelente
80 – 89	Buena
60 – 79	Regular
40 – 59	Pobre
0 - 39	Muy pobre

Cuadro No13. Clasificación de las pruebas de maquinado de la madera de *Mangifera indica* L.

Clasificación de las pruebas de maquinado

% E+B	prueba	Clasificación
42	Cepillado a 20º	Pobre
42	Cepillado a 30º	Pobre
100	Lijado	Excelente
32	Taladrado con broca	Muy pobre
	para metal	
10	Taladrado con broca de	Muy pobre
	acero de alta velocidad	
45	Moldurado con fresa de	pobre
	carburo de tungsteno	
23	Moldurado con fresa de	Muy pobre
	acero de alta velocidad	
5	Torneado	Muy pobre

9 DISCUSIÓN DE RESULTADOS

Sobre anatomía

Debido a que al iniciarse el trabajo de revisión de información bibliografica sobre la especie, se encontraron diferencias considerables sobre la textura y tipo de hilo reportado por otros autores, respecto a lo observado durante el transcurso de la elaboración de las tablillas de la especie estudiada en este trabajo, se sospechó que se podía tratar de una especie con variabilidad muy marcada, los cual se corroboró al observar detenidamente la rodaja para su descripción, además se detecto que los poros de la albura eran mas grandes que los que se ubicaban en el duramen. Por lo cual se modificó la metodología a seguir, en lugar de hacerse un muestreo al azar de cubos ubicados en una zona intermedia, se realizaron tres muestreos; uno en albura, otro en una zona intermedia y otro cercano a la médula (como se señala en la metodología). Los datos obtenidos en los tres muestreos se reportan y además se concentraron en un cuadro (cuadro No. 9.).

Al analizar la información del cuadro No. 9. Se puede apreciar una ligera diferencia en el color (el cual inicialmente se pensaba que era igual en toda la troza); siendo en la albura de color crema rosado y en el duramen de color rosado. Respecto a la textura se puede observar que es gruesa en el albura (con diámetro de poros promedios de 257 μ m) y de fina a media en las otras dos zonas (con un diámetro de poros de 107 – 102 μ m). La longitud de los elementos de vaso también presentan cambios, siendo estos de tamaño mediano en el albura con (394 μ m) y moderadamente cortos en las otras dos zonas (con longitud promedio de 299 y 325 μ m). Las tílides se presentan con mayor frecuencia en el albura que en las otras zonas.

Los rayos fueron otros de los elementos estructurales que presentaron variación; siendo moderadamente angosto con 32 µm en promedio en albura y resultaron muy angostos en las otras dos zonas. Pero quizá otra de las diferencias mas significativas después de la diferencia de textura, lo sea la diferencia encontrada en las fibras (tanto en longitud como en grosor de pared), en albura, las fibras son

de longitud media, y en las otras zonas son de longitud moderadamente cortas. Respecto al grosor de pared, las fibras de albura fueron de paredes delgadas, la zona intermedia resultó de delgadas a medias y en la zona cercana a la médula son de pared media a delgada.

La estructura anatómica microscópica presentada por la especie coincide, con lo reportado por Metcalfe y Chalk, respecto al género *Mangifera* e inclusive es con el autor que más se coincide. Dado que Metcalfe y Chalk reportan rayos uniseriados y biseriados (y en la tesis se reportan rayos uniseriados, parcialmente biseriados y biseriados), en tanto que otros autores como Richter, León y Ortega reportan haber encontrado triseriados. Así mismo Metcalfe reporta de 5 a 10 rayos por mm. en corte tangencial para el genero *Mangifera*, y en la tesis se reportan 9 por mm. Respecto al parénquima leñoso reportado en la tesis coincide con lo reportado por Metcalfe.

Resumen de la descripción de la especie (con datos promedio de las tres zonas muestreadas).

La madera presenta una ligera variación de color entre albura y duramen, siendo de color crema a rosado, sin olor y de sabor ligeramente amargo(detalle solo mencionados en este trabajo), presenta hilo entrecruzado de bandas anchas (las cuales corresponde a zonas de crecimiento rápido) y ligeramente ondulado (de ondas poco abiertas), de brillo medio a alto (medio en cara radial y alto en cara tangencial), el veteado es suave con diseño ondulado (en cara tangencial) y en franjas (en cara radial), la textura es media

Es una madera que puede ser atacada por; hongos cromógenos e insectos xilófagos como *Lyctus* sp. e *incisitermis* sp. (sobre toda en la albura).

Las zonas de crecimiento son poco notorias (se aprecian solo gracias al parénquima marginal), presenta ésta especie porosidad difusa y arreglo de poros; solitarios, múltiples radiales de 2-7 (predominando los de 2-4), múltiples tangenciales de 2-3 y agrupados de 3-11. Los poros son visibles a simple vista son de forma circular a ovalada y algunos presentan tílides, son de tamaño medio

a moderadamente grandes (102–257 μm) y en abundancia son moderadamente pocos (6 por mm²) y de longitud moderadamente corta a mediana con (298–394 μm). El parénquima leñoso se observa con lupa y es de tipo paratraqueal vasicentrico, P. aliforme, P. aliforme confluente, P. escaso y marginal. Los radios solo se aprecian con lupa, al microscopio se ve que son de una y dos células de ancho y de tipo heterogéneos y homogéneos, son numerosos (8 - 10 por mm), extremadamente bajos (230-246 µm) y son en su mayoría de 8-9 células de alto, son de muy angostos a moderadamente angostos con (21-32 μm). Las fibras son libriformes y algunas presentan paredes gelatinosas (corresponden a madera de tensión), son de longitud media a moderadamente cortas (846-1063 μm), con diámetro fino (11.5 - 14 µm), y grosor de pared de delgada a mediana (2.5-2.58 μm). Presenta cristales romboidales, rectangulares y amorfos dentro de los radios. Presenta una gravedad especifica de 0.52 gr. /cm³ (reportada por Porter 2004), y de 0.56 gr. /cm³ (reportado por Correa 2003), y tomando como referencia la clasificación reportada por Lincoln, (apéndice III), queda ubicada en la clasificación de densidad media, y se le asigno una dureza media tendiendo a ligeramente dura.

Analizando el cuadro No.10 en donde aparecen concentrados los datos anatómicos macro y microscópicos reportados en; la tesis, así como en el libro (comercial timbers) de Richter H. G. and Dallwitz, M. J. 2000 y los reportados por de William J. León, se encontró lo siguiente:

En la descripción microscópica de *Mangifera indica* L. se encontró que los autores difieren sobre el color; siendo reportado en la tesis, de color crema a rosado, Richter lo anota como café a blanco y León lo describe como amarillo pálido (siendo las diferencias poco significativas). Se coincide en que no presenta olor y se difiere con respecto al sabor, dado que los 2 autores lo reportan como sin sabor y en la tesis se anota como ligeramente amargo. Se coincide con William J. León; en que presenta una textura media, se difiere ligeramente respecto al hilo, dado que en el presente trabajo se reporta como ondulado y entrecruzado y León lo anota como de recto a entrecruzado, se coincide en que; es una madera ubicada en el rango de densidad media y dureza media tendiendo a alta, son poco

notorias las zonas de crecimiento y en que la porosidad es difusa, e inclusive en el tipo de arreglo de poros, los poros son de tamaño medio a moderadamente grandes, así que solo se difiere en el número de poros presentados en cada arreglo, (la tesis reporta un mayor numero de poros tanto en múltiples radiales como en agrupados), el número de poros por mm² (también difieren dado que en la tesis se reportan 7 y León 2 - 5). Comparando la descripción de Mangifera indica L. reportada en la tesis, respecto a los datos que proporciona Richter, H. G. and Dallwitz, M. J. se encontró lo siguiente; ambos trabajos coincide en; olor, peso, dureza, porosidad, diámetro de poros, tipo de parénquima leñoso, altura de rayos, presencia de cristales, grosor de de la pared en las fibras. Pero difieren en el veteado (en el presente trabajos se considera como suave y Richter lo describe como pronunciado), la zonación se describe como poco notoria y Richter considera que no es notoria. También se difiere en poros por mm² y rayos por mm. Existen diferencian poco significativas en; numero de poros por mm², altura de radios, radios por mm., diámetro de fibras, grosor de pared, longitud de fibras y tipo de parénquima. Los dos autores reportan; presencia de tílides y cristales. Solo se difiere significativamente en que no se localizaron radios triseriados como lo hicieron los otros dos autores.

Respecto a la descripción realizada por Ortega y comparada con el presente trabajo (ver cuadro 11); se encontraron diferencias muy significativas en; veteado, textura, hilo, brillo, visibilidad de la zonación, arreglo de poros, altura de radios, ancho de radios, No. de series presentes en los radios, longitud de fibra y grosor de pared, encontrando que; en la tesis se considera la textura media y Ortega la reporta gruesa, se reporta el hilo entrecruzado y ondulado, Ortega lo reporta recto, los radios se reportan como muy angostos y él los reporta como medianos, las fibras son de longitud media y de paredes delgadas a medianas y para Ortega son cortas de longitud y muy gruesas. Solo se coincide en el olor ausente, porosidad difusa y el tipo de parénquima leñoso, y en el No. de rayos por mm. Lo cual hace suponer que tales diferencias se deben a que Ortega describió madera de tensión, o que quizá no esta utilizando los mismos parámetros y criterios de comparación (reportados por IAWA).

Sobre trabajabilidad

Las pruebas de maquinado realizadas a la especie de *Mangifera indica* L. (mango criollo). Reportaron datos que ubican la madera con un comportamiento de **pobre** a **muy pobre** en su trabajabilidad (exceptuando el lijado el cual resulto excelente). La clasificación de las pruebas de maquinado efectuadas, es las siguientes:

prueba	Clasificación
Cepillado a 20°	Pobre
Cepillado a 30°	Pobre
Lijado	Excelente
Taladrado con broca para metal	Muy pobre
Taladrado con broca de acero de alta velocidad	Muy pobre
Moldurado con fresa de carburo de tungsteno	pobre
Moldurado con fresa de acero de alta velocidad	Muy pobre
Torneado	Muy pobre

Dichos resultados suelen aproximarse a lo reportado por:

Porte 2000. Quien la define como madera que se trabaja moderadamente bien (entendiendo esta clasificación como regular tendiendo a mala).

Benítez 1988. La define como madera que generalmente es fácil de trabajar. Es necesario analizar la información completa, la cual textualmente dice "respecto a la trabajabilidad esta especie es generalmente fácil de trabajar, el cepillado, moldurado y torneado son regulares. Algunas veces la cara radial presenta problemas para el cepillado, dado a lo irregular del hilo, el acabado y el pulido son aceptables, el taladrado, el lijado, escopleado y la resistencia a las rajaduras por tornillos son satisfactorias".

Analizando este pequeño texto encontramos que, al mencionar lo irregular del hilo en la cara radial, se refiere a que en la cara radial es donde se aprecia a plenitud el comportamiento y apariencia del hilo entrecruzado, el cual esta manifiesto en la

especie en estudio, pero además de presentar hilo entrecruzado (de bandas anchas) presenta hilo ondulado. Y teniendo en cuenta que el hilo entrecruzado (de bandas anchas) mezclado con hilo ondulado proporciona mala trabajabilidad en cara radial de la madera (exceptuando el lijado, al cual no es desfavorable este tipo de hilo). Se puede comprender que la palabra "generalmente", se refiere a cuando la madera es trabajada en cara tangencial. Y partiendo del hecho que al realizar las pruebas de trabajabilidad no se clasificaron la probetas de acuerdo a la cara representativa que presentaran (radial, tangencial o bastarda tendiendo a radial o bastarda con tendencia a tangencial), es probable que hayan predominado las cara radiales y bastardas, de ahí se desprenden los resultados obtenidos, esto aunado a alguna equivocación en la calificación de las probetas (la cual se hace en forma muy subjetiva, a criterio de quien la realiza).

Dejando a un lado los resultados obtenidos en la prueba de trabajabilidad y tomando en cuenta que ya se han elaborado algunos trabajos de tipo artesanal y de carpintería con la madera de mango con caras tangenciales y bastardas tendiendo a tangenciales, se sugiere se trabaje esta madera preferentemente con piezas de cara tangencial o parecidas, y con herramientas de buena calida de filo. (Figura 57 y 58). Y de contar con madera de cara radial, se debe de lijar en lugar de cepillar.

Fig. 57. Mueble elaborado con madera de mango criollo.

10 CONCLUSIONES

Sobre anatomía

- La estructura anatómica microscópica reportada por Metcalfe and charlK respecto al genero *Mangifera* coincide con la descripción reportada en este trabajo e inclusive, es con el autor que mas se coincide.
- ➤ A pesar de que *Mangifera indica* L. (mango criollo) es una especie que presenta variabilidad en la estructura anatómica de sus tres zonas (albura, madera intermedia y madera cercana a la médula), aún así los resultados promedios obtenidos coinciden en lo general con la información a nivel de especie reportada por Richter, H. G. and Dalwitz, M. J., 2000. y León, William J.
- Del análisis de la descripción anatómica presentada en esta tesis y comparada con la información reportada por Richter, H. G. and Dalwitz, M. J., 2000. y León, W. J. podemos concluir que en general son similares las maderas descritas por los tres autores (Báez, Richter y León), la diferencia mas significativa es respecto al No. de series en los radios reportados, dado que en la tesis se reportan rayos de una y dos series y los otros autores mencionan haber encontrado de dos a tres series diferencia que considero que no se refleja en la apariencia, ni en el comportamiento físico y trabajabilidad de la madera
- ➤ La descripción aquí presente difiere considerablemente, con la realizada por Ortega para la misma especie, solo se coincidió en ; el olor(ausente)., en la porosidad difusa y en el tipo de parénquima leñoso, así como es numero de rayos por mm. Tal discrepancia tal ves se debe a que la madera de Ortega describió madera de tensión (esto se deduce cuando menciona que las fibras son de paredes muy gruesa y las reporta de paredes delgadas a medianas con el resto de los autores y probable mente también midió la capa gelatinosa. Además no se puede coincidir debido criterios de clasificación muy distinto a los que en la tesis se emplearon,

Sobre maquinado

- La madera de *Mangifera indica* L. (mango criollo) presenta un tipo de hilo muy peculiar "entrecruzado y ondulado". Y en algunas piezas se presenta un poco mas acentuado el ondulado que en otras.
- ➤ La madera de Mango criollo presenta un comportamiento de pobre a muy pobre en la pruebas de cepillado, taladrado, moldurado y torneado. Y se comporta excelente ante el lijado.
- ➤ A pesar de la clasificación anterior dada a esta madera ante la trabajabilidad, se sospecha que por su hilo entrecruzado, el cual solo se aprecia y manifiesta a plenitud en la cara radial, podrían mejorarse consideradamente el comportamiento ante el maquinado si se procura que las tablas presenten una cara tangencial.
- Por presentar abundantes cristales en el interior de los rayos se deduce que esta madera puede propinar que las herramientas pierdan el filo mas rápido.
- ➤ Para contrarrestar los defectos que presenta las caras radiales al cepillarse, se recomienda, lijar en lugar de cepillar para obtener una superficie lisa.

11 RECOMENDACIONES

- Se recomienda continuar con la realización del estudio tecnológico de la madera: como lo es la caracterización química, pruebas de secado, pruebas para la fabricación de tableros aglomerados, pruebas para la fabricación de triplay, pruebas de adhesivos y recubrimientos. Así como los diferentes procesos de pulpeo para la obtención de papel.
- Realizar un estudio encaminado a explicar el comportamiento fluorescente que presenta la madera de mango ante el efecto de la luz ultravioleta. La madera cambia de color crema rosado a color naranja pálido. (comportamiento mencionado por R. Bruce 2000)
- Realizar un estudio de la variabilidad a distintas alturas del suelo, así como en distintas posiciones de las ramas (zona cercana de la bifurcación, a la mitad y en la punta)
- Al aserrar la madera tratar de obtener el mayor número de tablas con una cara tangencial y bastardas tendiendo a tangencial (para lograr una mejor trabajabilidad de la madera). Además separa las tablas de albura para su posterior preservación.
- Dar a conocer al productor o asociaciones de productores de mango, los beneficios que peden obtener al darle un mejor aprovechamiento a la madera, después de que el árbol decaiga en la producción del fruto.
- Que las huertas de mango que son taladas sean reemplazadas por plantaciones de maderas comerciales como; rosa morada (roble), primavera, lluvia de oro y cóbano. Las tres primeras, son de crecimiento rápido, y la cuarta aunque no es tan rápido su crecimiento, se compensa por considerarse su madera como preciosa. Para hacer más atractiva la alternativa de cultivo de árboles maderables, se puede combinar con árboles frutales tal como; mango criollo mejorado, carambolo y mamey injertado, los cuales en tres años podrían dar frutos.

USOS RECOMENDADOS

- Por ser una madera que presenta un índice de calidad de pulpa que la clasifica de acuerdo a la relación runkel como buena para papel, aunado a los requerimientos bajos de sustancias blanqueadoras por ser de color claro, la convierte en una madera buena para obtención de pulpa para papel.
- Por conseguirse en grandes volúmenes y a precios bajos, además de no ser muy dura, ni rica en aceite o resinas y debido a que es fácil convertirla a pequeñas piezas (astillas) es recomendada para la elaboración de tableros.
- Se recomienda para la elaboración de pisos en color natural o entintados, con unión a tope (tipo parquet), y no machihembrado como en la duela (debido a que el ensamblado de la duela se puede comportar semejante al moldurado y producir algunos defectos de maquinado).
- Obtención de artesanías caladas y ligeramente talladas (redondeadas y moldeadas con herramientas de lijado como el multi-pro o lijadora de banda), tipo INTARSIA (figura 58).
- Por ser una madera de color claro, densidad media y estructura homogénea es recomendable para piezas pequeñas que sean grabadas en láser o con pirógrafo. aunque quizá las ceras que se cree que contiene, dificulten y disminuyan la efectividad de la madera a ser grabado,
- Elaborar muebles de calidad a partir de piezas saneadas procedentes del duramen, que presenten cara tangencial.

- Por no presentar olor y ser de sabor tenue y densidad media tendiendo a alta, se sugiere ser utilizada para la elaboración de utensilios de cocina tal como; tablas para picar verdura, palas o cucharas para cocinar.
- Por ser una madera con buena acústica y estabilidad adimensional, así como regular trabajabilidad, se recomienda usarse en la elaboración de fondos, costillas y diapasones para guitarra. Inclusive ya ha sido probada la madera de mango criollo para caja de guitarras (exceptuando la tapa), con buenos resultados en la fabrica de guitarras "la española" ubicada en Paracho Mich., en la misma fabrica se utiliza ampliamente la madera de mango en; diapasones, tacones y almas (estas piezas forman parte del brazo de las guitarras económicas), el diapasón es entintado de color negro para imitar ébano (información verbal proporcionada por la ing. Teresa García Moreno)

Figura 58. Artesanías caladas y redondeadas tipo "intarsia"

12 BIBLIOGRAFIA CITADA

- American Society for Testing and Materials, 2000. Standard methods of Conducting Machining Test of Wood and Wood-Base Materials. Designation D1666-87. (Reap proved 1999). P.238256. en: Annual. Book of ASTM standards, Section 4, Construction Volume 04 09 wood Easton, MD. U. S.A.
- Benítez R. R y J. L. Montesinos Lagos. 1988. Catalogo de Cien Especies Forestales de Honduras: Distribución, Propiedades y Usos. Escuela Nacional de Ciencias Forestales (ESNACIFOR) Siguatepeque, Honduras. 216 pp.
- Correa Méndez F. (2003). Determinación de las características físicas y mecánicas de la madera de *Mangifera indica* L. mango. Tesis de Licenciatura de la Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de san Nicolás de Hidalgo. Morelia, Michoacán. 61 pp.

Cultivo de mango disponible en:

http://www.infoagro.com/frutas/frutas_tropicales/mango.htm consultada diciembre 2005.

- Flores V., R (1990) Características de maquinado de 4 especies maderable de encino del estado de puebla. Tesis profesional. División de ciencias forestales, Universidad Autónoma de Chapingo.
- Fors, J. A. 1965. Maderas Cubanas. Tercera edición. INRA. La Habana, Cuba. 163pp.
- Fuentes Salinas M (1987 efectos de la digestión en los índices de calidad de pulpa para la madera de *pinus montezumae* Lamb. Tesis de licenciatura. Facultad

- de Ingeniería en Tecnología de la Madera. Universidad Michoacana de san Nicolás de Hidalgo. Morelia michoacana.
- Guridi Gómez LI y García Moreno T. (2000). Estudio anatómico de la madera del aguacate (*Persea americana* Mill). Ciencia y Tecnología de la Madera. Época 2, 5: 2-20.
- IAWA (1989) Listo Microscopio Features for Hardwood Identification. E. A. Wheeler, P. Baas and P. E. Gasson Rijksherbarium, Leiden, The Netherlands. Bulletin 10 (3):219-332.
- León, H. W. s/f. Estudio anatómico del xilema secundario de 17 especies de la familia Anacardiaceae en Venezuela. Universidad de Los Andes. Facultad de Ciencias Forestales y Ambientales. Escuela de Ingeniería Forestal. Departamento de Botánica. Laboratorio de Anatomía de Maderas. Mérida, Venezuela. http://scholar.google.com/scholar?hl=es&lr=&q=cache:MnsImpSAaC4
 https://scholar.google.com/scholar?hl=es&lr=&q=cache:MnsImpSAaC4
 <a href="https://sch
- Lincoln, William (2006). World Woods in Color. Linden publishing co. Inc. Fresno California 320 pp.
- Metcalfe, C. R. y L. Chalk. 1972. Anatomy of the Dicotyledons. Vol. 1. Oxford university press. London 724 pp.
- Munsell Color Company, 1964. Munsell soil color chart. Munsell color company.

 Marryland. 17pp.
- Niembro Rocas A. 1990. Árboles y arbustos útiles de México naturales e introducidos. Limusa. México. 206pp.

- Ortega Escalona, F., Guerrero F., Carmona T. y Córdoba C. (s/f). Anatomía de la madera de veintiocho especies de Cosautlán de Carvajal, Veracruz. La madera y sus usos. Angiospermas arbóreas de México. Instituto sobre los Recursos Bióticos LACITEMA. Universidad Nacional Autónoma Metropolitana (Unidad Azcapotzalco). Departamento de materiales. México. 206pp.
- Panshin and zeeuw. (1980). Textbook of wood technology. McGraw Hill. series in forest resource. Foerth edition U.S.A.
- Petroff G, Normand D (1968) The Correlation Between Physical and Mechanical Properties of Paper, and dimensional characteristics of paper, from tropical hardwood. Pulp and development in Africa and Near East. FAO 1:269-287. (Citado por Fuentes Salinas M (1987)).
- Porres C, Valladares J. (1979). Producción de Pulpa y Papel con Materia Prima autóctonas centroamericanas. Instituto Centroamericano de Investigación y Tecnología Industrial. Guatemala. 72 pp. (Citado por Fuentes Salinas M (1987)).
- Porter, Terry. 2004. Wood identification & use. Guiad of master craftsman publications. 256 pp
- R. Bruce Hoadley. (2000). Understanding wood a craftsman's guide to wood technology. The Taunton press. Printed in the United States of America, 280pp.
- Revuelta-Arreola M, y Zamora J. (1990). Anatomía de la madera de seis especies de encinos (*Quercus* app.) del municipio de Morelia, Mich. Tesis de

- Licenciatura. Facultad de biología. Universidad Michoacana de san Nicolas de hidalgo
- Richter, H. G. and M. J. Dallwitz (2000 onwards) Commercial timbers: descriptions, illustrations, identification, and information retrieval. In English, French, German, and Spanish

http://www.biologie.uni-hamburg.de/b-online/wood/spanish/anamaind.htm

http://www.biodiversity.uno.edu/delta/wood/spanish /index.htm .

(Consultada Diciembre 2005)

- Tortorelli L. A. (1956). Maderas y Bosques Argentinos. Acmé. ASCII. Buenos Aires. 910pp.
- Trujillo Jiménez U (2003). Características de maquinado de la Madera de *Pithecellobium ébano* (Benth) Berlan. Tesis de licenciatura. Facultad de ingeniería en tecnología de la madera. Universidad Michoacana san Nicolás de Hidalgo. Morelia Michoacán. 73 pp.
- Zavala Zavala D. (1976). Características de Maquinado de Seis Especies Maderables. Tesis de licenciatura. Escuela nacional de agricultura, Unidad de Enseñaza e Investigación y Servicio de Bosques, Universidad Autónoma Chapingo. Chapingo México. 68 pp.

12 APÉNDICES

APÉNDICE I

ESTÁNDARES DE IAWA (1989)

Longitud de elementos de vasos y fibras			
Clase	Subclase	Elementos de vasos	Fibras
Cortos	Extremadamente cortos	Menos de 175	Menos de 500
	Muy cortos	175 – 250	500 – 700
	Moderadamente cortos	250 – 350	700 – 900
Medianos		350 – 800	900 – 1600
largos	Moderadamente largos	800 – 1100	1600 – 2200
	Muy largos	1100 – 1900	2200 – 3000
	Extremadamente largos	mas de 1900	mas de 3000

Grosor de pared de fibras		
Clase	Definición	
Muy delgada	Lumen mucho mas grande que el grosor de la pared	
Delgada	Lumen mas grande que el grosor de la pared	
Gruesa	Lumen menor que el grosor de la pared	
Muy gruesa	Lumen casi completamente cerrado	

Abundancia de poros		
No. / mm ²	Clase	
Menos de 2	Muy pocos	
2 – 5	Pocos	
5 – 10	Moderadamente pocos	
10 – 20	Moderadamente númerosos	
20 – 40	Númerosos	
Mas de 40	Muy númerosos	

Diámetro de vasos		
Rango	Clase	
Menos de 25	Extremadamente pequeños	
25 – 50	Muy pequeños	
50 – 100	Pequeños	
100 – 200	Medianos	
200 – 300	Moderadamente grandes	
300 – 400	Grandes	
Mas de 400	Muy grandes	

Abundancia de radios		
No./mm	Clase	
Menos de 2	Muy pocos	
3 – 4	Pocos	
5 – 7	Moderadamente	
	Numerosos	
8 – 10	Numerosos	
Mas de 10	Muy numerosos	

Altura de radio		
Rango mm	Clase	
Menos de 0.5	Extremadamente bajos	
0.5 – 1	Muy bajos	
1 – 2	Bajos	
2 – 5	Ligeramente bajos	
5 – 10	Ligeramente altos	
10 – 20	Altos	
20 – 50	Muy altos	
Mas de 50	Extremadamente altos	

APÉNDICE II. CLASIFICACIÓN DE ELEMENTOS MENSURABLES PARA LATIFOLIADAS DE ACUERDO A TORTORELLI (1956)

VASOS

 A) Abundancia de elementos de vaso (número de poros/ mm²) 	
2 – 10	Poco númerosos
10 – 20	Númerosos
20 – 40	Muy númerosos
Mas de 40	Extremadamente númerosos

B) Diámetro tangencial de		
poros		
25 – 100 μm	Pequeños	
100 - 200 μm	Mediano	
200 – 300 μm	Grandes	
Mas de 300 μm	Muy grandes	

C) Longitud de los elementos de vaso		
Menos de 350 μm	Cortos	
350 – 800 μm	Medianos	
Mas de 800 μm	Largos	

FIBRAS

A) Longitud de fibras	
400 – 900 μm	Cortas
900 – 1600 μm	Mediana
Mas de 1600 μm	largas

B) Diámetro de fibra	
Menos de 25 μm	Finas
25 – 40 μm	Medianas
Mas de 40 μm	Anchas

C) Grosor de pared		
Muy delgadas	Muy delgadas Cuando el lumen ocupa ¾ o mas	
Delgadas	Cuando el lumen ocupa de ¾ a ½	
Gruesas	Cuando el lumen ocupa de ½ a 1/3	
Muy gruesas	Cuando el lumen es menor a 1/3	
	del diámetro	

RADIOS

A) abundancia de radios /mm		
Muy pocos	Hasta 2	
Pocos	2 – 4	
Poco numerosos	4 – 7	
Numerosos	7 – 10	
Muy numerosos	10 – 15	
Extremadamente numerosos	Mas de 15	

B) altura de los radios		
Muy bajos	Hasta 200 μm	
Bajos	200 – 500 μm	
Medianos	500 – 800 μm	
Altos	800 – 2 mm	
Muy altos	Mas de 2 mm	

C) Ancho de los radios	
Muy angostos	Hasta 25 μm
Moderadamente angostos	25 – 50 μm
Medianos	50 – 100 μm
Moderadamente anchos	100 – 200 μm
Muy anchos	Mas de 200 μm

PARAMETROS PARA DETERMINAR LA TEXTURA

Parámetros para determinar la textura (basados el en diámetro tangencial de los poros)		
Textura gruesa	La presentan aquellas maderas con un diámetro tangencial de poros de mayor de 250 μm	
Textura media	La presentan aquellas maderas con un diámetro tangencial de poros entre 150 y 250 μm	
Textura fina	La presentan aquellas maderas con un diámetro tangencial de poros menor de 150 μm	

APÉNDICE III CLASIFICACIÓN DE DENSIDAD, TOMADAS DE LINCOLN (2006)

Densidad	Densidad Pesos en Kg/m³ Gra	
	A un 12% de contenido	A un 12% de contenido
	de humedad	de humedad
Extremadamente ligera	Menos de 300	Menos de 0.30
Ligera	300 – 450	0.30 - 0.45
mediana	450 – 650	0.45 - 0.60
Pesado	650 – 800	0.60 - 0.80
Muy pesado	800 – 1000	0.80 - 1.0
Extremadamente	1,000 o más	1.00 o más
pesado		

APÉNDICE IV Índices de calidad de pulpa

Fórmulas

RANGO	GROSOR DE LA PARED
Mayores de 0.70	Muy gruesa
De 0.70 a 0.50	Gruesa
De 0.50 a 0.35	Media
De 0.35 a 0.20	Delgada
Menor de 0.20	Muy delgada

^{*}Petroff, G. y D. Normand

CLASIFICACIÓN DE LA RELACION DE RUNKEL ** (2P/L)

GRADO	RANGO	CLASIFICACIÓN
I	Menor de 0.25	Excelente para papel
II	De o.25 a 0.50	Muy buena para el papel
III	De 0.50 a 1.00	Buena para papel
IV	De 1.00 a 2.00	Regular para papel
V	Mayor de 2.00	Mala para el papel

^{**} Porres C. y J. Valladares

CLASIFICACIÓN DEL COEFICIENTE DE FLEXIBILIDAD (L/D)

Rango	Grosor de pared*	Características **
Menos de 0.30	Muy gruesa	Las fibras no se colapsan. Muy poca
		superficie de contacto. Pobre unión fibra
		- fibra
De 0.30 a 0.50	Gruesa	Las fibras se colapsan muy poco. Poca
		superficie de contacto. Poca unión fibra -
		fibra
De 0.50 a 0.65	Media	Fibras parcialmente colapsadas, con una
		sección transversal elíptica. Buena
		superficie de contacto. Buena unión fibra
		– fibra.
De 0.65 a 0.80	Delgada	Fibras parcialmente colapsadas, con una
		sección transversal elíptica. Buena
		superficie de contacto. Buena unión fibra
		- fibra.
Mayor de 0.80	Muy delgada	Las fibras se colapsan. Buena superficie
		de contacto. Buena unión fibra – fibra.

^{*}Petroff G. y D. Normand

^{**} Porres C. y J. Valladares

13 ANEXOS

ANEXO 1 LA NORMA MENCIONA LO SIGUIENTE

Para el cepillado

- ➤ La profundidad del corte por cepillada deberá de ser de 1/16 de pulgada (2mm).
- La mitad de las probetas deberán ser maquinadas en sentido del hilo y la otra mitad en sentido opuesto al mismo.
- ➤ Se utilizaran las cuchillas con ángulos de corte de 15°, 20°, 25°, y 30° ajustándose para que se den 20 marcas de cuchillas por pulgada.

Para el lijado

- Se deberán utilizar lijas de grano 1/2(60), 1/0 (80), y 2/0 (100).
- > Se deberá emplear una velocidad de alimentación de 12 ft (360m/min.).

Para el taladrado

- La velocidad del mandril será de 3600 r.p.m.
- Se utilizara una broca de 1 pulgada de diámetro de torsión simple, de centro sólido y con puntilla.
- Se harán dos agujeros por probeta

Para el moldurado

➤ La velocidad deberá de ser no menor a las 10,000 r.p.m si es usado un trompo de Mandril y si se usa un trompo de dos mandriles no será menor a 7,000 r.p.m.

Para el torneado

- Deberán realizarse ensayos con probetas a un contenido de humedad de 6 % y de 12 %.
- ➤ La velocidad empleada no debe ser menor a 3200 r.p.m.