Por favor, use este identificador para citar o enlazar este ítem:
http://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/1216
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.contributor.advisor | García Ferreira, Salvador | |
dc.contributor.author | Trejo Espinosa, Osar | |
dc.date.accessioned | 2019-11-13T15:35:43Z | |
dc.date.available | 2019-11-13T15:35:43Z | |
dc.date.issued | 2015-07 | |
dc.identifier.uri | http://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/1216 | |
dc.description | Instituto de Física y Matemáticas. Facultad de Ciencias Físico Matemáticas. Unidad Morelia del Instituto de Matemáticas de la UNAM. Programa Conjunto de Maestría en Matemáticas | es_MX |
dc.description.abstract | In this paper we study the following question: Given a sequence (an) n2N in a topological abelian group, is there any topology _ such that (an) n2N converges to the neutral element of (G; _)? For the group of integer numbers, this problem has been studied by D. Dikranjan in [1] and [2]. We also present the basic notions of topological groups, and theorems that we will need in this work such as parameterization theorem for topological groups given by G. Birkho_-S. kakutani and Duality Theorem given by L. Pontrjagin. Given a sequence (an) n2N _ Z, we characterize the finest topology for which (an) n2N converges to 0, by the behavior of the radios an+1=an. If (an+1=an) n2N is a bounded sequence, hence the finest topology for which (an) n2N converges to 0 must be metrizable. Secondly if (an+1=an) n2N! 1, hence the finest topology for which (an) n2N converges must have weight c. LikebZ = T, we will see that the finest topology for which a sequence converges will match whit the topology induced by some subgroup of the torus T. | en |
dc.description.abstract | En este trabajo estudiaremos la siguiente pregunta: Dada una sucesión (an) n2N en un grupo abeliano, ¿existe alguna topología _ tal que (an) n2N converge al neutro de (G; _)? Para el grupo de los números enteros este problema se ha estudiado por D. Dikranjan en [1] y [2]. También presentamos las nociones básicas de grupos topológicos, así como los teoremas que vamos a necesitar dentro de este trabajo como son el Teorema de Metrización para grupos topológicos de G. Birkho_- S. Kakutani y el Teorema de Dualidad de L. Pontrjagin. Dada una sucesión (an) n2N _ Z, caracterizaremos la topología más fina para la cual (an) n2N converge a 0, mediante el comportamiento de las radios an+1=an. Si (an+1=an) n2N es una sucesión acotada, entonces la topología más fina para la cual (an) n2N converge a 0 debe ser metrizable. Por otro lado si (an+1=an) n2N! 1, entonces la topología más fina para la cual (an) n2N converge, tiene peso c. ComobZ = T, veremos que la topología más fina donde una sucesión converge, coincide con la topología inducida por algún subgrupo del toro T. | es_MX |
dc.language.iso | spa | spa_MX |
dc.publisher | Universidad Michoacana de San Nicolás de Hidalgo. Universidad Nacional Autónoma de México | es_MX |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | info:eu-repo/classification/cti/1 | |
dc.subject | IFM-M-2015-1283 | es_MX |
dc.subject | Convergencia | es_MX |
dc.subject | Topología | es_MX |
dc.subject | Abeliano | es_MX |
dc.title | Sucesiones convergentes en grupos topológicos | es_MX |
dc.type | info:eu-repo/semantics/masterThesis | es_MX |
dc.creator.id | TEEO900114HMNRSS09 | |
dc.advisor.id | GAFS590626HDFRRL08 | |
dc.advisor.role | asesorTesis | |
Aparece en las colecciones: | Maestría |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
IFM-M-2015-1283.pdf | 205.24 kB | Adobe PDF | ![]() Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.