Please use this identifier to cite or link to this item: http://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/16781
Title: Física y finanzas
Authors: Servín Tomas, Carlos Javier
Adviser: Raya Montaño, Alfredo
López Chacón, Jennifer
Keywords: info:eu-repo/classification/cti/1
IFM-M-2023-1606
Mercado financiero
Simetría de Gauge
Ecuación de difusión
Issue Date: Dec-2023
Publisher: Universidad Michoacana de San Nicolás de Hidalgo
Abstract: In this thesis we study a very simple model of the financial market, whose constructions arose from first principles from the Gauge theory of currency arbitrage. This theory is based on the fact that the underlying symmetry of financial markets and fundamental theories of physics, called Gauge symmetry, is the same. Gauge symmetry in the financial market arises from the arbitrariness in the choice of a currency denomination, which, when treated as an internal degree of freedom of the system, naturally leads to the description in fibre bundles. In this context, we treat net present values and the purchase and sale of assets as a parallel transport of money in a curved space, where the appropriate connecting components are given by means of interest rates, exchange rates and asset prices. From our toy model we obtain a Gauge invariant equation that gives us the dynamics of traders in the financial market when arbitrage opportunities arise. As an application we solve this equation numerically by proposing profiles for arbitrage opportunities. First in the one-dimensional case and then we present a sketch of the two-dimensional case.
En esta tesis estudiamos un modelo muy simple del mercado financiero, cuya construcción surge de primeros principios desde la teoría Gauge del arbitraje de divisas. Esta teoría tiene como base que la simetría subyacente de los mercados financieros y las teorías fundamentales de la física, llamada simetría de Gauge, es la misma. La simetría de Gauge en el mercado financiero surge de la arbitrariedad en la elección de la denominación de una divisa, que al tratarse como un grado de libertad interno del sistema, conduce de manera natural a la descripción en haces fibrados. En este contexto, tratamos a los valores presentes netos y a la compra-venta de activos como un transporte paralelo de dinero en un espacio curvo, donde los componentes de conexión adecuados son dados por medio de las tasas de interés, los tipos de cambio y los precios de los activos. De nuestro modelo de juguete obtenemos una ecuación invariante de Gauge que nos da la dinámica de los comerciantes en el mercado financiero cuando se presentan oportunidades de arbitraje. Como aplicación resolvemos esta ecuación de manera numérica proponiendo perfiles para las oportunidades de arbitraje. Primero tratamos el caso unidimensional y después presentamos un bosquejo del caso bidimensional.
Description: Instituto de Física y Matemáticas. Maestría en Ciencias en el Área de Física
URI: http://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/16781
Appears in Collections:Maestría

Files in This Item:
File Description SizeFormat 
IFM-M-2023-1606.pdf7.91 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.