Por favor, use este identificador para citar o enlazar este ítem:
http://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/2239
Título : | P-points, MAD families and cardinal invariants |
Autor : | Guzmán González, Osvaldo |
Asesor: | Hrusak, Michael |
Palabras clave : | info:eu-repo/classification/cti/1 IFM-D-2017-1206 Ideales Shelah-Steprāns P-puntos Principio de Sierpiński |
Fecha de publicación : | ago-2017 |
Editorial : | Universidad Michoacana de San Nicolás de Hidalgo |
Resumen : | The main topics of this thesis are cardinal invariants, P-points and MAD families. We answer several open questions found in the literature. The main original results on this thesis are the following: 1. there is a +-Ramsey MAD family. This answers an old question of Michael Hrušák. 2. There are no P-points in the Silver model, answering a question of Michael Hrušák (this is joint work with David Chodounský). 3. the statement \There are no P-points" is consistent with the continuum being arbitrarily large, this answers an open question regarding P-points (see [68], this is joint work with David Chodounský). 4. A Borel ideal is Shelah-Steprāns if and only if it is Katětov above FINxFIN: This entails that Shelah-Steprāns MAD families have very strong indestructibility properties (This is part of a joint work with Michael Hrušák, Dilip Raghavan and Joerg Brendle). 5. Cohen indestructible MAD families exist generically if and only if b = c (This is part of a joint work with Michael Hrušák, Ariet Ramos and Carlos Martínez). 6. non(M) = !1 implies the (*) principle of Sierpiński. This answers a question of Arnie Miller. Los principales temas de esta tesis son invariantes cardinales, P-puntos y familias MAD. Respondemos a varias preguntas abiertas encontradas en la literatura. Los principales resultados originales de esta tesis son los siguientes: 1. Hay una familia MAD que es +-Ramsey. Esto responde a una vieja pregunta de Michael Hrušák. 2. No hay P-puntos en el modelo de Silver, respondiendo a una pregunta de Michael Michael Hrušák (esto es trabajo conjunto con David Chodounský). 3. La afirmación "No hay P-puntos" es consistente con que el continuo sea arbitrariamente grande, esto responde a una pregunta abierta con respecto a P-puntos, esto es trabajo conjunto con David Chodounský. 4. Un ideal Boreliano es Shelah-Steprāns si y sólo si esta Katětov arriba de FINxFIN. Esto implica que las familias Shelah-Steprāns MAD tienen propiedades de indestructibilidad muy fuertes (Esto es parte de un trabajo conjunto con Michael Hrušák, Dilip Raghavan y Joerg Brendle). 5. Familias MAD Cohen indestructible existen genéricamente si y sólo si b = c (Esto es parte de un trabajo conjunto con Michael Hrušák, Ariet Ramos y Carlos Martínez). 6. non(M) = !1 implica el principio (*) de Sierpiński. Esto responde a una pregunta de Arnie Miller. |
Descripción : | Instituto de Física y Matemáticas. Facultad de Ciencias Físico Matemáticas. Unidad Morelia del Instituto de Matemáticas de la UNAM. Posgrado Conjunto de Doctorado en Ciencias Matemáticas |
URI : | http://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/2239 |
Aparece en las colecciones: | Doctorado |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
IFM-D-2017-1206.pdf | 845.18 kB | Adobe PDF | ![]() Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.