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Abstract.

This work is focussed on the light-by-light scattering: in particular we study N-photon
amplitudes in the low energy limit at the tree-level and one-loop level. We explore
the advantages of helicity formulas involving field strength tensors to compute photon
amplitudes, at the tree level we present a new master formula to compute N-photon
amplitudes for arbitrary N and any helicity assignments. We compare our results
to a low energy expansion of the known amplitude for small values of N and find
complete agreement; nonetheless the new formula presented here offers significant
computational advantages at higher values of N.
Finally, we rederive an explicit formula for the one-loop on-shell N-photon amplitude
and we study a double summation that appears by the use of a Taylor expansion to
make progress towards simplifying its form.

Resumen:
Este trabajo se centra en la dispersin de luz por luz: en particular, estudiamos las
amplitudes de fotones N en el lmite de baja energa a nivel de rbol y nivel de un ciclo.
Exploramos las ventajas de las frmulas de helicidad que incluyen tensores de intensi-
dad de campo para computar las amplitudes de fotones, a nivel de rbol presentamos
una nueva frmula maestra para computar las amplitudes de fotn-N para N arbitraria y
cualquier asignacin de helicidad. Comparamos nuestros resultados con una expansin
de baja energa de la amplitud conocida para valores pequeos de N y encontramos
un acuerdo completo; sin embargo, la nueva frmula presentada aqu ofrece ventajas
computacionales significativas a valores ms altos de N. Finalmente, redirigimos una
frmula explcita para la amplitud de fotones N en la carcasa de un bucle y estudiamos
una suma doble que aparece mediante el uso de una expansin de Taylor para avanzar
hacia la simplificacin de su forma.
Palabras clave: Lagrangiano de Euler-Heisenberg, Electrodinámica cuántica, ĺımite
de bajas enerǵıas, nivel de un lazo, nivel árbol.
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Common symbols
ηµν = diag(−,+,+,+) space-time metric convention in Minkowski space
δµν , δij fully anti-symmetric
ε0123 = −ε0123 = 1 unit tensor
aµb

µ = −a0b0 + ab scalar product of two four-vectors
xµ = (t,x) four-position vector
dDx D-dimensional volume element
∂µ = ∂

∂xµ
differentiation operator

[A,B] = AB −BA commutator
{A,B} = AB +BA anticommutator
γµ Dirac gamma matrices
γ5 = −iγ0γ1γ2γ3 fifth gamma matrix
1 unit matrix

/p = γµpµ slash notation
δ(x) Dirac delta function
tr , det trace/ determinant of a matrix
F µν background field tensor
fµνi constant background field tensors
Aµ background four-potential
|p], |p > four-momenta bracket notation for positive and negative-helicity
[p|, < p|
χ+, χ− spinor helicity parameters
∆ij Worldline Green’s function on the open line
σ(τi − τj) Sign function

Tab. 0: Summary of commonly used mathematical symbols.



Introduction

Photonic amplitudes

It is said that Physics was born with Aristoteles and that it is the discipline whose
principal object of study is nature. This is the reason why the methods used by the
physicist are strongly related to the meaning of the word Nature [1]. However the
meanings of words depend enormously on time and culture, for example our concept
of the atom is very different from that of the Greek philosophers. Even so chemical
experiments can be described and classified by the atomic hypothesis of ancient times
that consider the atoms as the building blocks of matter. The modern attitude to
nature is directly influenced by modern science and technology, and nowadays the
phrase used by scientists “description of nature” became to mean the mathemati-
cal description of nature [2]. If we consider that Nature is constituted by matter, a
mathematical description of matter can be tested with experiments and observations,
however, these observations can leave us with new concepts, for instance, when we
look at the universe our mathematical description of the universe has to introduce
the concept of invisible dark matter in order to fits our observations, thus to answer
the question: What are the constituents of visible and invisible matter? is a very
difficult task that physicists have.
Today, theoretical physicists try to make a mathematical formulation to arrive at laws
that describe the structure of matter; on the other hand, experimentalist are devel-
oping clever and bigger accelerators to probe these laws, and they have found some
features: matter is formed by elementary particles∗. Some natural questions emerge:
Which is the particular force law that describes the interaction between elementary
particles? and How many fundamental forces in nature exist? Until now we know
that there are just four fundamental forces in nature: strong, electromagnetic, weak †,

∗The elementary particle concept is a little problematic since the arrival of new technology can
bring the experimental physicist to new ways of testing the structure of the particles, for example in
the late sixties experimental physicist found evidence that the charge of the proton is concentrated
in three lumps “quarks”.
†The theory of weak interactions treats weak and electromagnetic interactions as different man-

ifestations of a single electroweak force, in this sense the four fundamental forces can be reduced to
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and gravitational. Each force is mediated by the exchange of a particle therefore they
belong to different physical theory; for a complete introduction to particle physics see
[3].
This work is related with the electromagnetic force, this force has as a mediator the
photon, and is described by quantum electrodynamics (QED).
QED is one of the most successful of the dynamical theories since it is the best tested
theory we have‡. In this introduction we attempt to present how the light-by-light
scattering concept appears in QED, what has been done so far and how we are going
to study this problem.
When Dirac attempted to construct the relativistic quantum theory of an electron
moving in a given electromagnetic field, he found that the solutions of his wave equa-
tion admit an equal number of positive and negative energy solutions, thus some
fundamental alteration in the interpretation of negative eigenvalues had to be done.
The appearance of this new interpretation problem led Dirac to the prediction of the
positron in 1929 [4], and it was found experimentally in 1932 [5]. The study of the
Dirac’s theory of the positron led Euler and Heisenberg to define the term“critical
field” [6]. This term corresponds to the amplitude of a constant electric field which
spontaneously creates an electron-positron pair from vacuum§. Note that the critical
field is not an umbral, because the probability of pair creation still exists for small
amplitudes but this probability is exponentially suppressed. The study of the fact
that an electric field can create a real electron-positron pair was performed by Sauter
in 1931[7], and J. Schwinger in 1951[8] ¶.This phenomenon is related to the problem
of the scattering of light by light, and the differential cross section for this scattering
was first calculated by R. Karplus and M. Neuman in 1951 [9].
Contrary to classical theory in QED the vacuum has a certain rich structure where
particle/antiparticle pairs “live”. These pairs act as dipoles and thus the vacuum
becomes polarizable. Although the classical theory of electrodynamics is governed
by linear equations, when we consider these new quantum effects we can talk about
nonlinear effects in QED.
These nonlinear effects have several implications that have no classical counterparts.
For example, in atomic spectroscopy where one has the opportunity to verify any new
model or to test any new approach by the study of the “simplest” atoms, in 1947
Rabi and his colleagues discovered the anomalous magnetic moment of the electron
[10]. By measuring the hyperfine structure separation of the atomic hydrogen and
deuterium they found an important difference between theory and experiment .

three.
‡The consistency of measurements of the Electron anomalous magnetic moment and the value

predicted by QED theory is one of the reasons why QED is the most successful quantum field theory.
§The QED critical field strength Ecr = m2c3/|e|~ ≈ 1.3× 1016V/cm which corresponds to a laser

intensity of Icr = 4.6× 1029W/cm2 unfortunately this intensity is not yet attainable nowadays.
¶The production of a real electron-positron pair is known as Sauter-Schwinger pair production.
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Another non-classical effect is the so called Delbrück scattering; this effect refers to
the scattering of light by a static field generated by a nucleus. When a photon in-
teracts with a Coulomb field, this photon is converted into a pair of electron and
positron that then interact with the nucleus via virtual photons, and at the end, by
conservation of energy, this pair forms a final photon with the same energy as that
of the incident photon, see [11] for a experimental description of this effect.
Other nonlinear processes of QED include photon splitting, where again an initial
photon is converted into a virtual pair and then it transforms into two photons [12],
and nonlinear Compton scattering, see [13] for a modern study of this effect.
All these effects show us the importance of the study of light in our understanding
of the structure of matter. Among the different nonlinear QED effects, the emission
and absorption of photons by matter is always present; this converts the scattering
of light-by-light into one of the most interesting nonlinear QED effects.
The quantum corrections related to photon-photon scattering are encoded in the ef-
fective Lagrangian. It was in 1936 that Heisenberg and Euler obtained a closed-form
integral expression (see Section 2.2) for the nonlinear correction to the Maxwell La-
grangian at one loop order [14]. The expansion terms of this Lagrangian can be used
to describe the light-by-light scattering in the low energy limit. Even though light-by-
light scattering is one of the oldest predictions of QED, the experimental physicists
have found the first direct evidence of this process just a few years ago in the ATLAS
detector at the LHC[15].
Nowadays the scattering of light by light is an important phenomenon in many areas
of modern physics, and this converts the photon into the ideal spin-one particle to
study. Albeit QED is valid for arbitrary physical systems which underline the electro-
magnetic interaction, in the present thesis we will focus on the N-photon amplitudes
in the low energy limit at tree and one-loop level a study of two-loop N-photon am-
plitudes can be found in [24].
In chapter 1, since we are interested in exploring the advantages of the spinor helicity
technology, we begin with an introduction to this technology and present some useful
identities in order to manipulate the standard integral representation of the Euler-
Heisenberg Lagrangian to use it to compute photon amplitudes in the low energy
limit; we obtain a compact expression in terms of some coefficients that contain a
double summation, and we will try to find a way to simplify it. In the large N limit
we find substantial simplifications.
In chapter 2 we study the photon amplitudes in the low energy limit at tree-level.
We begin with a derivation of the scalar propagator in its integral representation and
then we expand this propagator and, analogous to the one-loop case presented in
the chapter 1, we use spinor helicity in order to construct a master formula to com-
pute N-photon amplitudes for all helicity assignments and arbitrary N, and finally
we present the conclusions of this work. This thesis also contains some appendices,
in appendix A we present our conventions, appendix B is dedicated to the spinor
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helicity computations, and in appendix C we present the methods used to study the
coefficients of the one-loop N-photon amplitudes.



Chapter 1

One-loop level photon amplitudes
in the low energy limit.

The understanding of the dynamics of elementary particles is based on the calcula-
tion of decay rates and scattering cross sections. The particle decay refers to the
process of one particle transforming into other particles, but this decay is restricted
by some conservation laws whereas when two particles interact an area transverse to
their relative motion within they are going to scatter from each other can be calcu-
lated and is called the scattering cross section. This work is dedicated to the study
of light-by-light scattering particularly to the study of photon amplitudes. To deter-
mine a scattering amplitude an evaluation of the relevant Feynman diagrams has to
be preformed; these diagrams are obtained from a perturbative expansion in terms
of one coupling constant as we are going to see in chapter 2. This chapter is related
to photon amplitudes at the one-loop level; in the computation of one-loop massive
amplitudes little is known beyond the four-point case, however in the limit of low
photon energy the N photon amplitude for arbitrary N can be obtained as we will
see.
One way to simplify calculations of amplitudes that include massless particles is the
use of spinor helicity so first we are going to introduce this technology provides very
useful identities, then we are going to extract information of the N-photon ampli-
tude from the Euler-Heisenberg Lagrangian since it is well-known that in the low
energy limit the QED effective Lagrangian for a background field with a constant
field strength tensor contained the information of the photon amplitudes and finally
we will try to derive simple closed-form expressions for these amplitudes.

5
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1.1 Spinor helicity technology

All out conventions and definitions used to present this technology are extracted
from [16]. The starting point is the definition of helicity: the helicity of a particle is
defined as the component of the particle’s spin measured along the axis specified by
its three-momentum. For any massless four-momentum p we can write:

−/p = |p〉 [p|+ |p] 〈p| . (1.1)

We introduce a bracket notation where the square-bracket |p],[p| and the angle-bracket
|p〉 , 〈p| represent positive-helicity and negative helicity respectively. The angle and
square spinors are the core of what is known as the spinor helicity technology. These
bra-kets are nothing to be scared of: they are simply 2-component commuting spinors
that solve the massless Weyl equation[17]. With this spinor helicity technology we
can express the photon polarization vectors in terms of the bracket notation:

εµ+(k, q) = −〈q| γ
µ|k]√

2 〈qk〉
, (1.2)

εµ−(k, q) = − [q|γµ|k〉√
2 [qk]

, (1.3)

where q is an arbitrary reference momentum. When we want to compute photon
amplitudes using spinor helicity we have to assign to each photon a field strength
tensor given by:

f±µν ≡ kµε
±
ν − ε±µ kν . (1.4)

Using spinor helicity we find some useful identities for the anti-commutators (see
Appendix B for the complete derivation):

{f+
i , f

+
j } = −1

2
[kikj]

2η, (1.5)

{f−i , f−j } = −1

2
〈kikj〉2 η, (1.6)
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Where η is the metric‡‡.
In the following, we are going to apply the spinor helicity notation to make the
amplitude computations easier and more compact.

1.2 The Euler Heisenberg Effective Lagrangian

As was mentioned in the introduction the fact that an electromagnetic field can
create virtual pairs of particles leads to a change of the Maxwell equations in the
vacuum. If we want to study these quantum fluctuations we can use as a starting point
the effective Euler-Heisenberg Lagrangian (EHL) because it takes into account the
interaction of the electromagnetic field with these vacuum fluctuations. For instance
the EHL encodes quantum corrections, these corrections are assumed to be local,
at least for slowly varying field indeed we can used the EHL to compute photon
amplitudes in the limit of vanishing photon energy involving constant external fields.
Around the 30’s Heisenberg began investigating the consequences of the positron
theory and in 1936 Heisenberg and Euler published the famous paper Consequences
of Dirac’s Theory of the Positron where they give an analytic expression of the one-
loop Effective Lagrangian written as a function of the invariants E2−B2 and (E ·B)2

[14]. In QED the constant electromagnetic field is one of our favorite objects by being
one field configuration for which the Dirac equation can be solved exactly. We are
looking for information about the low energy limit of the one-loop photon S-matrix
so we will need to study this Lagrangian. It was by Heisenberg and Euler efforts that
we have the following expression for spinor QED in the low energy [18]:

LEHspin = − 1

8π2

∫ ∞
0

dT

T
e−m

2T

(
e2ab

tanh (eaT ) tan(ebT )
− e2

3
(a2 − b2)− 1

T 2

)
. (1.7)

Naturally, we have an analogous expression for scalar QED that was computed by
Weisskopf and it is expressed as [18]:

LEHscalar =
1

16π2

∫ ∞
0

dT

T
e−m

2T

(
e2abT

sinh(eaT ) sin(ebT )
+
e2

6
(a2 − b2)− 1

T 2

)
. (1.8)

Where a and b are related to the two invariants of the Maxwell field by:

a2 − b2 = ~E2 − ~B2, (1.9)

‡‡See appendix A where the conventions are given.
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Figure 1.1: Perturbative expansion of the one-loop effective action. The number of
external photons lines is even due to Furrys theorem

ab = ~E · ~B. (1.10)

In the previous expressions, ~E and ~B denote the electric and the magnetic field
respectively, Fµν the electromagnetic field strength and F̃ is the dual field strength
tensor defined by:

F̃µν =
1

2
εµναβF

αβ. (1.11)

The importance of the EHL lies in the fact that it contains the information on non-
linear QED effects such as photon-photon scattering, photon dispersion, and photon
splitting, thus it can be used to compute on-shell one-loop N-photon amplitudes. The
last two Lagrangians involve a summation of all one-loop diagrams therefore the one-
loop effective action has a natural perturbative expansion in powers of the external
photon field Aµ as illustrated the Feynman diagrams of Fig 1.1.
The real part of the effective Lagrangian describes dispersive effects and its imaginary
part the absorptive ones, we are going to study how photon amplitudes are directly
related to the EHL. In order to obtain the amplitude with photon momenta k1, ..., kN
and polarisation vectors ε1, ..., εN we will use the field strength tensor definition (1.4)
to introduce the total field strength tensor as:

F ≡
N∑
i=1

fi. (1.12)

The corresponding photon-amplitudes can be obtained by inserting F into the ef-
fective Lagrangian and extracting the terms involving each f1, ..., fN precisely once
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[18]:

Γ(EH)[k1, ε1; ...; kN , εN ] = L(iF )|f1...fN . (1.13)

In order to employ this effective action to compute photon amplitudes in a constant
electromagnetic background field for both scalar and spinor QED by using spinor
helicity, we are going to use the results of the last section.

1.3 From the Effective Lagrangian to Photon Am-

plitudes

In this part the EH Lagrangian is particularly studied to find an explicit formula for
the one-loop N-photon amplitude in the low energy limit. It was shown in [18] that
after some manipulations, the formal expression ( Eq. 1.7) can be used to compute
the N-photon amplitude for arbitrary N. There is found a compact expression for
(Eq. 1.7) expressed in terms of some coefficients that contain the Bernoulli numbers,
following this derivation we are going to try to simplify a double summation that
appears in these coefficients. The standard integral representation of the EHL is our
most important tool:

LEHSpin = − 1

8π2

∫ ∞
0

dT

T 3
e−m

2T

(
e2abT 2

tanh(eaT ) tan(ebT )
− e2

3
(a2 − b2)− 1

T 2

)
. (1.14)

Here m and T denote the mass and the proper time of the fermion loop respectively.
To use this Lagrangian density to compute scattering amplitudes the terms of zeroth
and second order in a and b have to be subtracted because the former corresponds to
vacuum polarisation and the later does not contribute. As was mentioned in section
1.2 spinor helicity technology can be used to compute the low energy limit of the
on-shell N-photon amplitude. In this limit the background field has a constant field
strength tensor fµν . Looking for an amplitude for a fixed and arbitrary N number of
photons we write the total constant field strength as:

F =
K∑
i=1

f+
i +

K+L∑
j=K+1

f−j = f+ + f−. (1.15)

In the previous expression we have assigned helicity ′+′ to legs 1, ...., K and the re-
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maining ones helicity ′−′∗.
The two invariants of the Maxwell field can be expressed in a simple way by intro-
ducing some notation, first note that using (Eq. 1.16):

FµνF
µν = −tr(F 2) = −tr[(f+)2]− tr[(f−)2]− tr[(f+)(f−)]− tr[(f−)(f+)]. (1.16)

With spinor helicity it is easy to check that the last two terms are zero, the terms
that do not vanish are:

tr[(f+)2] =
∑
i,j

tr[(f+
i f

+
j )] =

1

2

∑
i,j

tr[{f+
i , f

+
j }]. (1.17)

Using (Eq. 1.5)

tr[(f+)2] = −1

2

∑
i,j

[kikj]
2tr[η] = −2

∑
i,j

[kikj]
2. (1.18)

Analogously

tr[(f−)2] = −1

2

∑
i,j

〈kikj〉2 tr[η] = −2
∑
i,j

〈kikj〉2 . (1.19)

So:

FµνF
µν

4
=

1

2

∑
i,j

[kikj]
2 +

1

2

∑
i,j

〈kikj〉2 . (1.20)

Now it is convenient to introduce a new notation:

χ+ ≡
1

2

∑
1≤i<j≤N

[kikj]
2, χ− ≡

1

2

∑
1≤i<j≤N

〈kikj〉2 . (1.21)

Using this new notation:

∗Note that photon labels are completely arbitrary
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1

4
FµνF

µν = χ+ + χ−, (1.22)

1

4
FµνF̃

µν = −i(χ+ − χ−). (1.23)

The Maxwell field invariants are related to the field strength tensors and its dual by:

a2 =
1

4

√
(FµνF µν)2 + (FµνF̃ µν)2 +

1

4
FµνF

µν , (1.24)

b2 =
1

4

√
(FµνF µν)2 + (FµνF̃ µν)2 − 1

4
FµνF

µν . (1.25)

Using (Eq. 1.23) and (Eq. 1.24):

a =
√
χ+ +

√
χ−, b = −i(√χ+ −

√
χ−). (1.26)

Note that these Maxwell invariants appear squared in the EHL, thus the choice of
their sign does not matter.
In terms of χ+ and χ− the Lagrangian density at one-loop level for the spinor QED
case is expressed by :

L(1)
spin(iFtot) = − 1

8π2

∫ ∞
0

dT

T
e−m

2T (
√
χ+ +

√
χ−)(
√
χ+ −

√
χ−)

tan((
√
χ+ +

√
χ−)T ) tan((

√
χ+ −

√
χ−)T )

.(1.27)

To obtain the N-photon amplitude one must expand this expression in powers of χ+

and χ−. The expansion is carried out through the use of the following Taylor series:

x

tanx
=
∞∑
n=0

(−1)n
22nB2n

(2n)!
x2n, (1.28)

where B2n are the Bernoulli numbers. Then keeping only the part of order FN and
extracting those terms involving each individual fi just once:
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L(1)
spin(iFtot) = −m

4

8π2

∞∑
N=4

(
2e

m2

)N N∑
K=0

c
(1)
spin

(
K

2
,
N −K

2

)
χ
K
2

+ χ
N−K

2
− , (1.29)

where

c
(1)
spin

(K
2
,
N −K

2

)
= (−1)

N
2 (N − 3)!

K∑
k=0

N−K∑
l=0

(−1)N−K−l
Bk+lBN−k−l

k!l!(K − k)!(N −K − l)!
.

(1.30)

Picking out the terms multilinear in the f ′is implies that all amplitudes with an odd
number of ’+’ helicities vanish in the low energy limit because such terms exist only
if K is an even number. The final result for the amplitude in the spinor case can be
written as:

Γ
(1)(EH)
spin [ε+

1 ; ...; ε+
K ; ε−K+1; ...; ε−N ] = −m

4

8π2

(
2e

m2

)N
c

(1)
spin

(K
2
,
N −K

2

)
χ+
Kχ
−
N−K , (1.31)

where:

χ+
K ≡ (χ+)

K
2

∣∣
all different

=

(
K
2

)
!

2K/2
{

[k1k2]2[k3k4]2 · · · [kK−1kK ]2 + all permutations
}
, (1.32)

χ−N−K ≡ (χ−)
N−K

2

∣∣
all different

. (1.33)

Now we consider the scalar case which is completely analogous to the spinor case.
The EHL integral representation for scalar QED was given in (Eq. 1.8):

L(1)
scalar =

1

16π2

∫ ∞
0

dT

T
e−m

2T

(
e2ab

sinh(eaT ) sin(ebT )
+
e2

6
(a2 − b2)− 1

T 2

)
. (1.34)

In this case we need the Taylor expansion:

x

sinx
= −

∞∑
n=0

(−1)n
(22n − 2)B2n

(2n)!
x2n. (1.35)
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Following the same procedure as in the spinor QED case:

Γ
(1)(EH)
scalar [ε+

1 ; ...; ε+
K ; ε−K+1; ...; ε−N ] =

m4

16π2

(
2e

m2

)N
c

(1)
scal

(K
2
,
N −K

2

)
χ+
Kχ
−
N−K . (1.36)

Now, we define:

c
(1)
scal

(K
2
,
N −K

2

)
= (−1)

N
2 (N − 3)!

K∑
k=0

N−K∑
l=0

(−1)N−K−l

×(1− 21−k−l)(1− 21−N+k+l)Bk+lBN−k−l
k!l!(K − k)!(N −K − l)!

.

(1.37)

Once we have a simple expression for the one-loop N-photon amplitude in the low
energy limit, we proceed to explore the double summation that appears in the coef-
ficients of the (Eq. 1.31) with the purpose of simplifying this double summation:

S[K,L] =
K∑
k=0

L∑
l=0

(−)lBk+lBN−k−l
k!l!(K − k)!(L− l)!

. (1.38)

Preforming a change of variables L = K − m and k + l = x allow us to study the
summation over k:

S[K,m] =
N∑
x=0

BxBN−x
∑

max(0,x−L)<k<min(K,x)

(−)x−k

k!(x− k)!(K − k)!(K + k −m− x)!
.

(1.39)

Remember that K represents the photons with helicity ’+’ while L represents the ones
that have helicity ’-’. We start by exploring the case where K = L. Furthermore in
[18] it is shown that all the amplitudes with an odd number of ’+’ helicities vanish
in the low energy limit, this implies that in (Eq. 1.40) x and m must be even to
have values different from zero, so after some manipulations using Mathematica (see
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Appendix C) we find that the summation over k has a global factor:

(−1)x/2

(x/2)!Γ[2K + 1]Γ[2K −
(
x−2

2
+m

)
]
. (1.40)

However this global factor comes with different polynomials every time you change
the value of m so by denoting these polynomials Pm(K, x) the summation results to be:

S[K,m] =
N∑
x=0

BxBN−x
(−1)x/2Pm(K, x)

(x/2)!Γ[2K + 1]Γ[2K −
(
x
2

+m
)
]
. (1.41)

Based in these polynomials it was found †† that:

Pm(K, x) :=
m∑
n=0

(−1)m−n
(

2m

2n

)
(K −m− x/2− n+ 1)n(x/2−m+ n+ 1)m−n,

(1.42)

where (X)n is the rising factorial function:

(X)n := X ∗ (X + 1) ∗ .... ∗ (X + n− 1). (1.43)

After our manipulations we found another way to express Eq. (1.38). In the next
section we presented a limit case where the double summation of Eq. (1.42) is solve.

1.4 Asymptotic limit

The high-order asymptotic behavior of the QED effective action is something that
so far has not been widely explored, thus in this part we consider the limit were the
number of photons is big to see if in the next summation can be simplify.

S[K,L] =
K∑
k=0

L∑
l=0

(−1)lBk+lBN−k−l
k!l!(K − k)!(L− l)!

. (1.44)

††The paper with the proof is in preparation we just corroborate that the formula works.
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We are going to consider the Bernoulli numbers approximation :

B2n ∝
(−1)n+12(2n)!

(2π)2n
. (1.45)

In appendix C we present for which values of 2n this is a good approximation.
So:

Bk+lBN−k−l = Bk+lBK+L−k−l ∝
(−1)(K+L)/24(k + l)!(K + L− k − l)!

(2π)K+L
. (1.46)

Now we can replace the last expression in Eq. (1.45):

Sasymp
spin [K,L] =

K∑
k=0

L∑
l=0

4(−1)l+(K+L)/2(k + l)!(K + L− k − l)!
(2π)K+Lk!l!(K − k)!(L− l)!

. (1.47)

We have to exclude the case where k + l takes odd values:

Sasymp
spin =

K∑
k=0

L∑
l=0

(
(−1)l + (−1)k

2

)
4(−1)(K+L)/2(k + l)!(K + L− k − l)!

(2π)K+Lk!l!(K − k)!(L− l)!

=
(−1)

K+L
2 (K + L+ 2)!

2K+1(L+ 1)!(1)K/2(3/2)K/2
= (−1)N/2

2

(2π)N

(
N + 2

K + 1

)
. (1.48)

Before starting on the asymptotic analysis, let us return to Eq. (1.31):

c
(1)
spin

(K
2
,
L

2

)
= (−1)N/2(N − 3)!S[K,L], (1.49)

thus, we define:

casympspin

(K
2
,
L

2

)
= (−1)N/2(N − 3)!Sasymp

spin [K,L]

=
2

(2π)N
(N − 3)!

(
N + 2

K + 1

)
. (1.50)

Dividing this through the exact formula for the coefficients one expects the ratio to
converge to unity if one fixes K or L and takes the other variable large. However,
this is very difficult to see numerically, at least with MATHEMATICA. A detailed
analysis shows that the main reason for this slow convergence are the terms involving
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the product B0BN , since our strategy of replacing ζ(2n) by unity in the formula:

B2n =
(−1)n+12(2n)!

(2π)2n
ζ(2n), (1.51)

leads to the replacement of B0 = 1 by −2. We can correct this part of the error by
adding a term 6 BN

K!L!
to S[K,L], that is replacing casympspin by:

c̃asymp
spin ≡ casympspin + 6(−1)N/2(N − 3)!

BN
K!L!

. (1.52)

After this modification the convergence of the ratio to unity for K or L to infinity
is already clearly visible in the numerics. However, this does not mean that the
original formula did not already possess this property. Applying our asymptotic
approximation to the BN in Eq. (1.52) we can rewrite it for large N as:

c̃asymp
spin ∼ 2

(2π)N
(N − 3)!N !

K!L!

[
(N + 2)(N − 1)

(K + 1)(L+ 1)
− 6

]
. (1.53)

This shows that the correction term is actually subleading in the large L limit. Thus
its addition served only to accelerate the convergence of the ratio, it is not really
necessary for convergence. Therefore for determining the limit itself we can return to
Eq. (1.51). Using the asymptotic formula when L→∞:

(L+ x)! ∼ LxL!, (1.54)

we find:

casympspin

(K
2
,
L

2

)
=

2

(2π)N
(L+ 2K − 2)!

(K + 1)!
. (1.55)

This agrees with the known result for the K = 0 case. For K > 0 it is a new result.



Chapter 2

Tree-level photon amplitudes in
the low energy limit.

In the standard formalism of quantum field theory (QFT) perturbative calculations
are usually performed using second quantisation and Feynman diagrams but there
also exist first quantised alternatives namely the Worldline formalism‖, this formalism
have been shown to be extremely useful particularly in QED.
Compact master formulas for the one-loop N-photon amplitudes have been derived
from the Worldline formalism and for scalar QED a master formula for the propagator
dressed with N-photons in a constant field was obtained in [19].
Based on the results at the one-loop level, it is desirable to explore the N-photon
amplitudes at tree-level in terms of the variables χ+ and χ− obtained in chapter 1
using spinor-helicity technology, so in this part of the thesis we manipulate the scalar
propagator in a constant electromagnetic field to obtain photon amplitudes.
In QED the constant electromagnetic field is one of our favourite objects by being
one field configuration for which the Dirac equation can be solved exactly. We are
going to compute a proper time representation for the propagator of a scalar particle
which moves from x to x′ in such a constant background field.

2.1 Scalar propagator

Our starting point to compute the proper time representation of a scalar propagator
is:

Dxx′(A) := 〈x′| 1

m2 + Π2
|x〉 , (2.1)

‖In the literature this formalism is also known as string inspired formalism since the methods
used have analogies to computations in string perturbation theory. Nervertheless the knowledge of
string theory is not necessary for the application of the Worldline formalism.

17
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where:
Πµ = pµ + eAµ = −i∂µ + eAµ. (2.2)

We write (2.1) in the proper time Fock-Schwinger representation:

Dxx′(A) = 〈x′|
∫ ∞

0

dTe−T (m2+Π2) |x〉 =

∫ ∞
0

dTe−Tm
2 〈x′| e−TΠ2 |x〉 . (2.3)

The last expression contains the Kernel which is defined as:

Kxx′

scal(T ;A) := 〈x′| e−TΠ2 |x〉 . (2.4)

This kernel has the path integral representation:

Kxx′

scal =

∫ x(T )=x′

x(0)=x

Dx(τ)e−S[x(τ)], (2.5)

where

S =

∫ T

0

dτ

[
ẋµẋ

µ

4
+ ieẋµAµ

(
x(τ)

)]
. (2.6)

In the Fock-Schwinger gauge ∗ , a unique relationship between the gauge potential
Aµ(x) and the field strength Fµν exists and this relation allows us to write the prop-
agator in terms of the field strength instead of the gauge potential. Thus, in the
Fock-Schwinger gauge the background is given by:

Aµ
(
x(τ)

)
= −1

2
F µν

(
x(τ)− x

)
ν
. (2.7)

Putting this into (Eq. 2.6):

S =

∫ T

0

dτ

[
ẋ2

4
− ie

2
ẋµFµν(x(τ)− x)ν

]
. (2.8)

Now, its convenient to introduce a change variables:

x(τ) = x+
τ

T
x− + q(τ), x− := x′ − x, q(T ) = q(0) = 0. (2.9)

∗The Fock-Schwinger gauge is used to achieve manifest covariance in the calculation of the effec-
tive action.
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So
ẋ(τ) =

x−
T

+ q̇(τ), (2.10)

and

S =

∫ T

0

dτ

[
1

4

(x−
T

+ q̇
)2

− ie

2

(x−
T

+ q̇
)
F
( τ
T
x− + q

)]
. (2.11)

After some algebraic manipulations and an integration by parts (IBP):

S =

∫ T

0

dτ

[
x2
−

4T 2
+
q̇2

4
− ie

T
xµ−Fµνq

ν +
ie

2
qµFµν q̇

ν

]
. (2.12)

In terms of this change of variables the kernel can be expressed as:

Kxx′

scal = e−
x2−
4T

∫
Dq(τ)e

−
∫ T
0 dτ

[
q̇2

4
+ ie

2
qF q̇− ie

T
x−Fq

]
, (2.13)

or

Kxx′

scal = e−
x2−
4T

∫
Dq(τ)e

−
∫ T
0 dτ

[
1
4
q
(
− d2

dτ2
+2ieF d

dτ

)
q− ie

T
x−Fq

]
. (2.14)

This integral is in the Gaussian form and can be preformed by the use of a Green
function using string-inspired techniques and the result is:

Kxx′

scal = e−
x2−
4T (4πT )−D/2

[
det

(
eFT

sin(eFT )

)]1/2

e−
e2

T2

∫ T
0 dτ

∫ T
0 dτ ′x−F∆(τ,τ ′)Fx− , (2.15)

we have introduced the Green function:

∆(τ, τ ′) = 〈τ |
(
d2

dτ 2
− 2ieF

d

dτ

)−1

|τ ′〉 . (2.16)

This Green function satisfies the following identity:

∆(τ, τ ′) =
1

2
[GB(τ, τ ′)− GB(τ, 0)− GB(0, τ ′) + GB(0, 0)] , (2.17)

where GB is the bosonic Green function† in presence of an external field:

GB(τ, τ ′) =
T

2Z2

(
Z

sinZ
e−iZĠB(τ,τ ′) + iZĠB(τ, τ ′)− 1

)
. (2.18)

†The reader that is not familiar to this Green function is invited to read the section 5 of [20].
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with Z = eFT . Because of the “string inspired” boundary conditions:∫ T

0

dτ GB(τ, τ ′) =

∫ T

0

dτ ′ GB(τ, τ ′) = 0, (2.19)

Eq. (2.15) turns out to be:

Kxx′

scal = e−
x2−
4T (4πT )−D/2

[
det

(
eFT

sin(eFT )

)]1/2

e−
e2

2T2

∫ T
0 dτ

∫ T
0 dτ ′x−FGB(0,0)Fx− . (2.20)

Performing the integrals over τ and τ ′:

Kxx′

scal = e−
x2−
4T (4πT )−D/2

[
det

(
eFT

sin(eFT )

)]1/2

e−
e2

4
Tx−F( cotZ

Z − 1
Z2 )Fx− . (2.21)

Writing the previous expression in terms of Z

Kxx′

scal = (4πT )−D/2
[
det

(
Z

sinZ

)]1/2

e−
1
4T
x−Z cotZx− . (2.22)

Putting this in the propagator and Fourier transforming to momentum space :

Dpp′(A) =

∫ ∞
0

dTe−Tm
2

(2π)4δ(p+ p′)

[
det

(
1

cosZ

)]1/2

e−Tp(
tan(Z)
Z )p. (2.23)

2.2 Master formula

We want to use Eq. (2.23) to obtain a new master formula to compute N-photon
amplitudes for arbitrary N and any helicity assignment. The first step is to expand
the exponential and the determinant term.
We are going to use spinor helicity technology as in the one-loop case where we define:

F =
K∑
i=1

f+
i +

K+L∑
j=K+1

f−j = f+ + f−. (2.24)

Note that the expansion of tan(Z)/Z contains just powers of F 2n. The case n = 1
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give us:

(F 2) = (f+ + f−)(f+ + f−) = (f+)2 + (f−)2 + (f+f−) + (f−f+) (2.25)

=
∑
i,k

(f+
i f

+
k ) +

∑
j,l

(f−j f
−
l ) + (f+f−) + (f−f+) (2.26)

= −χ+η − χ−η + 2(f+f−). (2.27)

To get the last line we use:∑
i,k

(f+
i f

+
k )νµ =

∑
i>k

{f+
i , f

+
k }

νµ = −1

2

∑
i>k

[kikk]
2 ηµν = −χ+ η, (2.28)

∑
j,l

(f−j f
−
l )νµ =

∑
j>l

{f−j , f−l }
νµ = −1

2

∑
j,l

〈kjkl〉2 ηµν = −χ− η. (2.29)

Where η is the metric (see Appendix A for conventions).
For n = 2:

F 4 = (f+f+ + f−f− + 2f+f−)2 = χ2
+η + χ2

−η + 6χ+χ−η − 4χ+f
+f− − 4χ−f

+f−.

(2.30)

With the previous calculation we can infer that this powers depends only on the
scalars χ+ and χ− and the matrices η and f+f−. We can derive a way to write F 2n

for any value of n(see Appendix B):

F 2n = (f+ + f−)2n

=
(−1)n

2

([
(
√
χ+ +

√
χ−)2n + (

√
χ+ −

√
χ−)2n

]
ηµν

+
(f+f−)µν
√
χ+χ−

[
(
√
χ+ −

√
χ−)2n − (

√
χ+ +

√
χ−)2n

])
.

(2.31)



22 Chapter 2. Tree-level photon amplitudes in the low energy limit.

The previous result can be used in:

tan(Z)

Z
=

∞∑
n=0

cnZ2n =
∞∑
n=0

cn(eT )2nF 2n

=
∞∑
n=0

(−1)ncn(eT )2n

2

([
(
√
χ+ +

√
χ−)2n + (

√
χ+ −

√
χ−)2n

]
ηµν +

(f+f−)µν
√
χ+χ−

[
(
√
χ+ −

√
χ−)2n − (

√
χ+ +

√
χ−)2n

])
=

1

2

(
tanh(eT (

√
χ+ +

√
χ−))

eT (
√
χ+ +

√
χ−)

[
1− (f+f−)µν

√
χ+χ−

]
+

tanh(eT (
√
χ+ −

√
χ−))

eT (
√
χ+ −

√
χ−)

[
1 +

(f+f−)µν
√
χ+χ−

])
.

(2.32)

In Eq. (2.23) appears e−Tp
tan(Z)
Z p:

e−Tp
tan(Z)
Z p = e

−T
2
p2
[
tanh(eT (

√
χ++

√
χ−))

eT (
√
χ++

√
χ−)

+
tanh(eT (

√
χ+−

√
χ−))

eT (
√
χ+−

√
χ−)

]
×e

−Tp(f+f−)p

2
√
χ+χ−

[
tanh(eT (

√
χ+−

√
χ−))

eT (
√
χ+−

√
χ−)

− tanh(eT (
√
χ++

√
χ−))

eT (
√
χ++

√
χ−)

]
.

(2.33)

On the other hand the expansion of the determinant is:

Det

(
1

cos(Z)

)1/2

= Det (sec(Z))1/2 = elog[Det(sec(Z))1/2] = etr[log(sec(Z))1/2]

= e
tr
2

[log(sec(Z))], (2.34)

where:

tr

2
[log (sec(Z))] =

tr

2

[∑
bnZ2n

]
=

tr

2

[∑
bn(eT )2nF 2n

]
=

tr

2

[∑
bn(eT )2n

(
(−1)n

2

[
(
√
χ+ +

√
χ−)2n + (

√
χ+ −

√
χ−)2n

]
η

)]
=

1

4

∑
(−1)nbn(eT )2n(

√
χ+ +

√
χ−)2ntr[η]

+
1

4

∑
(−1)nbn(eT )2n(

√
χ+ −

√
χ−)2ntr[η]

= log(sech(eT (
√
χ+ +

√
χ−))) + log(sech(eT (

√
χ+ −

√
χ−)))

= log(sech(eT (
√
χ+ +

√
χ−))sech(eT (

√
χ+ −

√
χ−))). (2.35)
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With the previous expansions, we can express the propagator (Eq. 2.23) as:

Dpp′(A) =

∫ ∞
0

dT

{
e−T (m2+p2)sech(eT (

√
χ+ +

√
χ−))sech(eT (

√
χ+ −

√
χ−))

e
−T p

2

2

[
tanh(eT(√χ++

√
χ−))

eT(√χ++
√
χ−)

+
tanh(eT(√χ+−

√
χ−))

eT(√χ+−
√
χ−)

−2

]

e
−T p(f+f−)p

2
√
χ+χ−

[
tanh(eT(√χ+−

√
χ−))

eT(√χ+−
√
χ−)

− tanh(eT(√χ++
√
χ−))

eT(√χ++
√
χ−)

]}
=

∫ ∞
0

dTe−T (m2+p2)F [K,L], (2.36)

where F [K,L] is a function of the number of photons with positive and negative
helicity denoted by K and L respectively. To obtain photon amplitudes from (Eq.
2.36) we expand F [K,L] using Mathematica (see the Appendix B to find the details
of this computation), in the following we just present the computations for small
values of N, namely the 2- and 4-photon amplitude.
The first example that we are going to compute is the two legs case where we have
to consider just two configurations A(++) and A(+ -).
A(++):∫ ∞

0

dTe−T (m2+p2)F [2, 0] =
e2p2χ+

3

∫ ∞
0

dTe−T (m2+p2)T 3 − e2χ+

∫ ∞
0

dTe−T (m2+p2)T 2

= − 2e2m2χ+

(m2 + p2)4
(2.37)

A(- -):∫ ∞
0

dTe−T (m2+p2)F [0, 2] =
e2p2χ−

3

∫ ∞
0

dTe−T (m2+p2)T 3 − e2χ−

∫ ∞
0

dTe−T (m2+p2)T 2

= − 2e2m2χ−
(m2 + p2)4

. (2.38)

A(+-): ∫ ∞
0

dTe−T (m2+p2)F [1, 1] = −2e2p · f+
1 f
−
2 · p

3

∫ ∞
0

dTe−T (m2+p2)T 3

= −4e2p · f+
1 f
−
2 · p

(m2 + p2)4
. (2.39)
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If we want to use the last results to obtain the two-photon scattering amplitude
we will need to amputate the external scalar legs by LSZ and add the two possible
configurations:

iD̂pp′ = (p2 +m2)2

(
− 2e2m2χp

(m2 + p2)4
− 4e2p · f+

1 f
−
2 · p

(m2 + p2)4

)
(2.40)

= −e2

(
2m2(χ+ + χ−)

(m2 + p2)2
+

4p · f+
1 f
−
2 · p

(m2 + p2)2

)
. (2.41)

Before proceed with the computation of more examples let us verify if the result
obtained can be extracted from the worldline representation of the propagator of a
scalar field coupled to an Abelian gauge field with gauge potential Aµ consisting of
plane wave, in the low energy limit. In terms of the worldline Green function for
Dirichlet boundary conditions as:

Dxx′ [k1.ε1; ...; kN , εN ] = (−ie)N
∫ ∞

0

dT (4πT )−D/2e−m
2T e−

(x−x′)2
4T

N∏
i=1

∫ T

0

dτie
∑N
i=1(iki·(x′+(x−x′) τi

T
)+

εi
T
·(x−x′))

×e
∑N
i,j=1(∆ijki·kj−2i•∆ijki·kj−•∆•ijεi·εj)

∣∣
linε1...εN

,

(2.42)

where, the Green function, its first and second derivative are:

∆ij :=
1

2
|τi − τj| −

1

2
(τi + τj) + τiτj, (2.43)

•∆ij =
τj
T

+
1

2
σ(τi − τj)−

1

2
, (2.44)

•∆•ij = −δ(τi − τj) +
1

T
. (2.45)
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Now if we fixed N = 2 and applied a change of variables x− = x− x′ we obtained:

Dxx′ [k1.ε1; k2, ε2] = −e2

∫ ∞
0

dT (4πT )−D/2e−m
2T e−

x2−
4T eik1·x

′
eik2·x

′
∫ T

0

dτ1dτ2

exp
{
ε1 ·

x−
T
ε2 ·

x−
T
− 2iε1 ·

x−
T

(ε2 · k1
•∆12 + ε2 · k2

•∆22)

−2iε2 ·
x−
T

(ε1 · k1
•∆11 + ε1 · k2

•∆12)− 2ε1 · ε2
•∆•12

}
exp
{
− 4ε1 · k1ε2 · k1

•∆11
•∆21 − 4ε1 · k1ε2 · k2

•∆11
•∆22

−4ε1 · k2ε2 · k1
•∆12

•∆21 − 4ε1 · k2ε2 · k2
•∆12

•∆22

}
.

(2.46)

It is more convenient to work in momentum space, so we transform the last expression:

Dpp′ =

∫
dDxdDx′Dxx′ei(px+p′x′). (2.47)

After some algebraic manipulations and fixing τ1 > τ2:

Dpp′ = −e2(2π)DδD(p+ p′)

∫ ∞
0

dTe−m
2T e−

T (p−p′−k1−k2)
2

4∫ T

0

dτ1

∫ τ1

0

dτ2e
−(p−p′)(τ1k1+τ2k2)+|τ1−τ2|k1·k2

{
2δ12ε1 · ε2

−ε1 · ((p− p′)− k2)((p− p′) + k1) · ε2

}
. (2.48)

These integrals can be computed:

Dpp′ = −e2

{
32ε1 · ε2

f1f2

− 64ε1 · (∆p− k2)(∆p+ k1) · ε2

a1a2a3

}
,

(2.49)

where:

∆p = p− p′, (2.50)

a1 = (∆p− k1 − k2)2 + 4m2, (2.51)

a2 = (∆p− k1 − k2)2 + 4(m2 + ∆p(k1 + k2)), (2.52)

a3 = (∆p− k1 − k2)2 + 4(m2 + (k1(∆p− k2)). (2.53)
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To extract the 2-photon amplitude in the low energy limit from Eq. 2.46 we must ex-
pand (f1)−1, (f2)−1 and (f3)−1, then we must consider the terms that contain linearly
k1 and k2. In this limit ∆p = 2p, with these considerations we finally found that:

Dpp′ = −2e2 ε1 · k2ε2k1 − 2ε1 · ε2k1 · k2

(p2 +m2)3

−4e2 ε1 · pε2 · k1p · k2 + ε1 · k2ε2 · pp · k1 − ε1 · ε2p · k1p · k2 − ε1 · pε2 · pk1 · k2

(p2 +m2)4
.

(2.54)

In terms of the field strength tensor:

Dpp′ =
e2tr(f1 · f2)

(p2 +m2)3
− 4e2p · f1 · f2 · p

(p2 +m2)4
. (2.55)

To compare the last equation with Eq. 2.40 we need to use spinor helicity, use the
LSZ theorem and we found:

iD̂pp′ = −e2

(
2m2(χ+ + χ−)

(m2 + p2)2
+

4p · f+
1 f
−
2 · p

(m2 + p2)2

)
. (2.56)

With the previous calculations became clear that our master formula (Eq. 2.36) is
more efficient than the master formula expressed in terms of the Green functions. In
the following we are going to compute more cases.
In the four legs case we have to consider three configurations A(+ + ++),A(+ + +
-),A(+ + - -) because the other configurations are related to these.
A(+ + + +):∫ ∞

0

dTe−T (m2+p2)F [4, 0] =
2e4χ2

+

3

∫ ∞
0

dTe−T (m2+p2)T 4

−
7e4p2χ2

+

15

∫ ∞
0

dTe−T (m2+p2)T 5

+
e4p4χ2

+

18

∫ ∞
0

dTe−T (m2+p2)T 6

=
8e4(2m4 − 3m2p2)χ2

+

(m2 + p2)7
.

(2.57)
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A(+ + + -):∫ ∞
0

dTe−T (m2+p2)F [3, 1] =
6e4χ+p · (f+f−) · p

5

∫ ∞
0

dTe−T (m2+p2)T 5

−2e4p2χ+p · (f+f−) · p
9

∫ ∞
0

dTe−T (m2+p2)T 6

= −16e4(p2 − 9m2)χ+p · (f+f−) · p
(m2 + p2)7

(2.58)

A(+ + - -):∫ ∞
0

dTe−T (m2+p2)F [2, 2] = 2e4χ+χ−

∫ ∞
0

dTe−T (m2+p2)T 4

−22e4p2χ+χ−
15

∫ ∞
0

dTe−T (m2+p2)T 5

+
e4p4χ+χ−

9

∫ ∞
0

dTe−T (m2+p2)T 6

+
2e4p2(p · (f+f−) · p)2

9

∫ ∞
0

dTe−T (m2+p2)T 6

=
16e4((3m4 − 5m2p2 − 3p4)χ+χ− + 10(p · (f+f−) · p)2)

(m2 + p2)7
.

(2.59)

The last example presented in this work is the 6 point case.
A(++++++), A(+++++-),A(++++- -),A(+++- - -).
We start with A(++++++):∫ ∞

0

dTe−T (m2+p2)F [6, 0] = − 16e6

(m2 + p2)10
(17m6 − 78m4p2 + 45m2p4)χ3

+.

(2.60)

A(+++++-):∫ ∞
0

dTe−T (m2+p2)F [5, 1] = − 32e6

(m2 + p2)10
(205m4 − 206m2p2 + 9p4)χ2

+p · (f+f−) · p.

(2.61)
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A(++++- -):∫ ∞
0

dTe−T (m2+p2)F [4, 2] =
16e6χ+

(m2 + p2)10(
(−105m6 + 514m4p2 + 139m2p4 − 60p6)χ+χ−

+112(2p2 − 13m2)(p · (f+f−) · p)2

)
. (2.62)

Finally A(+++- - -):∫ ∞
0

dTe−T (m2+p2)F [3, 3] = −128e6(p · (f+f−) · p)
(m2 + p2)10(

(137m4 − 146m2p2 − 73p4)χ+χ− + 140(p · (f+f−) · p)2

)
.

(2.63)

With these examples it became clear that the master formula expressed in terms of
the invariants χ+, χ− and f+f− is an efficient way to compute multi-photon ampli-
tudes. Note that the spinor helicity technology help us with the treatment of photons
(massless particles), but we did not use it for the massive scalar particle because the
spinor helicity technology is often believed to be specific to the massless case. How-
ever it turns out that a massive momentum pµ can be express in term of 2 massless
momenta [21]. In the appendix B we explore this fact in order to find simplifications.



Conclusions and Outlook

In this work, by exploring the coefficients obtained in [18] for the spinor QED case, we
rewrite them in terms of a relation of factorials, that seems to be unknown. Moreover,
in the asymptotic limit of the Bernoulli numbers these coefficients can be simplify
in a significant way, this is significant because it is quite rare that it is possible to
study amplitudes in the limit of a large number of external legs, so we will explore
the coefficients of the scalar QED case in the future.
We also studied the tree-level photon amplitudes and we derived a new master for-
mula that can be used to compute N-photon amplitudes for arbitrary N and any
choice of helicity. Our master formula shows significant computational advantage at
higher values of N, and to small values of N we compare our results with the ones
obtained with the Worldline master formula[23]. We would like to derive a similar
master formula in terms of spinor helicity notation for the spinor case. With the help
of spinor helicity, we present a compendium of formulas for the strength field tensor.
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Appendix A

Conventions

In this thesis the notation employed agrees with Mark Srednicki [16]. We use natural
units ~ = c = 1 and the four-dimensional space-time indices are denoted by lowercase
Greek letters (α, β, ...). The metric for Minkowski space is ηµν = diag(−,+,+,+).The
Einstein summation convention is always implicitly assumed and the metric is used
to raise and lower Lorentz indices xµ = ηµνx

ν and the totally anti-symmetric tensor
is denoted εµναβ (ε0123 = −ε0123 = 1). Scalar product of two four-vectors is denoted
by x · y = xµyµ = xµηµνy

ν .
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Appendix B

Spinor Helicity identities

The spinor helicity technology can be seen as a special notation for spinors and
polarisation vectors of definite helicity for massless electrons and positrons and it can
be used to simplify calculations in this way is important to have some identities at
hand.
We define:

|p] ≡ u−(p) = v+(p), (B.1)

|p〉 ≡ u+(p) = v−(p), (B.2)[
p| ≡ ū+(p) = v̄−(p), (B.3)

〈p| ≡ ū−(p) = v̄+(p). (B.4)

We then have a product:

[k||p] = [kp], (B.5)

〈k||p〉 = 〈kp〉 , (B.6)

[k||p〉 = 0, (B.7)

〈k||p] = 0. (B.8)

This product is antisymmetric:

[kp] = −[pk], (B.9)

〈kp〉 = −〈pk〉 . (B.10)
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For any massless four-momentum p we can write:

−/p = |p〉 [p|+ |p] 〈p| . (B.11)

In spinor helicity, the photon polarization vectors in terms of bracket notation:

εµ+(k, q) = −〈q| γ
µ|k]√

2 〈qk〉
, (B.12)

εµ−(k, q) = − [q|γµ |k〉√
2[qk]

, (B.13)

where q is an arbitrary reference momentum. It is easy to see that:

ε+(k; q) · ε+(k′; q′) =
〈qq′〉 [kk′]
〈qk〉 〈q′k′〉

, (B.14)

ε−(k; q) · ε−(k′; q′) =
[qq′] 〈kk′〉
[qk][q′k′]

, (B.15)

ε+(k; q) · ε−(k′; q′) =
〈qk′〉 [kq′]
〈qk〉 [q′k′]

. (B.16)

Another useful relation in spinor helicity is:

−k · p =
1

2
〈kp〉 [pk]. (B.17)

We are going to derive the identities of the anti-commutator Eq. (1.5) and Eq. (1.6).
For the derivation of these identities we will need to use:

(f+
1 f

+
2 )µν = − [k1k2]

4 〈k1k2〉
tr(P−/k1/k2γ

νγµ), (B.18)

(f−1 f
−
2 )µν = − 〈k1k2〉

4[k1k2]
tr(P+/k1/k2γ

νγµ), (B.19)

where:

P± =
1

2
(1± γ5). (B.20)
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We are just going to show (B.18), and to simplify the notation we use [kikj] = [ij]
and 〈kikj〉 = 〈ij〉. First lets compute the right side:

− [12]

4 〈12〉
tr(P−/k1/k2γ

νγµ) = − [12]

4 〈12〉
tr

([
1

2
− γ5

2

]
/k1/k2γ

νγµ
)

= − [12]

〈12〉
k1αk2β

8

(
4(ηαβηνµ − ηανηβµ + ηαµηβν) + 4iεαβνµ

)
= − [12]

2 〈12〉

(
k1 · k2η

νµ − kν1k
µ
2 + kµ1k

ν
2 + ik1αk2βε

αβνµ

)
.

(B.21)

Now we are going to compute the left side of (B.18):

(f+
1 f

+
2 )µν = (f+

1 )µλ(f+
2 ) ν

λ = (kµ1 ε
+λ
1 − ε

+µ
1 kλ1 )(k2λε

+ν
2 − ε+

2λk
ν
2). (B.22)

Since the polarization vectors depend on arbitrary massless reference momentum q,
we can simplify the last expression if we fix :

q1 = k2, q2 = k1 (B.23)

With this election (B.22) is reduced to:

(f+
1 f

+
2 )µν = −kµ1kν2ε+

1 · ε+
2 − k1 · k2ε

+µ
1 ε+ν

2 . (B.24)

Using (B.12) and (B.14):

(f+
1 f

+
2 )µν = − [12]

〈12〉
kµ1k

ν
2 +

k1 · k2

2 〈12〉2
〈k2| γµ|k1] 〈k1| γν |k2]. (B.25)

Now, we can use (B.11) to substitute |k1] 〈k1|:

(f+
1 f

+
2 )µν = − [12]

〈12〉
kµ1k

ν
2 −

k1 · k2

2 〈12〉2
〈k2| γµ/k1γ

ν |k2] (B.26)

= − [12]

〈12〉
kµ1k

ν
2 +

k1 · k2

2 〈12〉2
tr(P−/k2γ

µ/k1γ
ν), (B.27)
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to get (B.28) we used the identity:

〈k2| γµ/k1γ
ν |k2] = −tr(P−/k2γ

µ/k1γ
ν). (B.28)

Let’s compute separately the trace term:

k1 · k2

2 〈12〉2
tr(P−/k2γ

µ/k1γ
ν) =

k1 · k2

2 〈12〉2
k2αk1β

2

(
tr(γαγµγβγν)− tr(γ5γαγµγβγν)

)
,

=
k1 · k2

〈12〉2

(
kµ2k

ν
1 − k2 · k1η

µν + kν2k1µ+ ik2αk1βε
αµβν

)
.

(B.29)

Using (B.17) we can simplify:

k1 · k2

2 〈12〉2
tr(P−/k2γ

µ/k1γ
ν) =

[12]kν1k
µ
2

2 〈12〉
kν1k

µ
2 −

[12]

2 〈12〉
k1 · k2η

µν +
[12]

2 〈12〉
kµ1k

ν
2 + i

[12]

2 〈12〉
k1βk2αε

αµβν .

(B.30)

Putting (B.31) in (B.28):

(f+
1 f

+
2 )µν = − [12]

2 〈12〉

(
k1 · k2η

νµ − kν1k
µ
2 + kµ1k

ν
2 − ik1βk2αε

αµβν

)
. (B.31)

To show that (B.18) is valid, we need to compare (B.32) and (B.21) and is trivial to
see that:

−ik1βk2αε
αµβν = ik1αk2βε

αβνµ. (B.32)

The procedure to show (B.19) is completely analogous and can be verified by the
interested reader. So let’s show the anti-commutator relation:

{f+
i , f

+
j } = −1

2
[ij]η. (B.33)
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We will use the following identity:

{/k1, /k2} = k1αk2β{γα, γβ} = −2k1αk2βη
αβ. (B.34)

The anti-commutator is:

{f+
1 , f

+
2 } = (f+

1 f
+
2 )µν + (f+

2 f
+
1 )µν = − [12]

4 〈12〉
tr(P−/k1/k2γ

νγµ)− [21]

4 〈21〉
tr(P−/k2/k1γ

νγµ)

= − [12]

4 〈12〉

(
tr(P−/k1/k2γ

νγµ) + tr(P−/k2/k1γ
νγµ)

)
= − [12]

4 〈12〉
tr(P−{/k1/k2}γνγµ)

= − [12]

4 〈12〉
(−2k1 · k2)tr(P−γ

νγµ)

=
[12]

2 〈12〉
k1 · k2

(
1

2
tr(γνγµ)− 1

2
tr(γ5γνγµ)

)
=

[12]

4 〈12〉
k1 · k2tr(γ

νγµ) (B.35)

=
[12]

4 〈12〉
k1 · k2(−4ηνµ) = − [12]

〈12〉
k1 · k2η

νµ =
1

2

[12]

〈12〉
〈12〉 [21]ηνµ (B.36)

= −1

2
[12]2ηνµ (B.37)

In an analogous way, it is easy to show that

{f−1 , f−2 } = −1

2
〈12〉2 ηνµ. (B.38)

The freedom to choose the reference momentum of the polarization vectors led us
with some interesting results. Note that in spinor helicity the product of momentum
and polarization vectors looks like:

p · ε+(k; q) = p

(
−〈q| γ

µ|k]√
2 〈qk〉

)
=
〈q| − /p|k]
√

2 〈qk〉
=
〈q| (|p〉 [p|+ |p] 〈p|)|k]√

2 〈qk〉
(B.39)

=
〈q| |p〉 [p||k]√

2 〈qk〉
+
〈q| |p] 〈p| |k]√

2 〈qk〉
(B.40)

=
〈qp〉 [pk]√

2 〈qk〉
. (B.41)

To get (B.42) we used (B.8).
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If the polarization has negative helicity:

p · ε−(k; q) = p

(
− [q|γµ |k〉√

2[qk]

)
=

[q| − /p |k〉√
2[qk]

=
[q|(|p〉 [p|+ |p] 〈p|) |k〉√

2[qk]
(B.42)

=
[q| |p〉 [p| |k〉√

2[qk]
+

[q||p] 〈p| |k〉√
2[qk]

(B.43)

=
[qp] 〈pk〉√

2[qk]
. (B.44)

By the antisymmetric property of the products (B.9) and (B.10) we will have:

k · ε±(k; q) = 0, (B.45)

q · ε±(k; q) = 0. (B.46)

The same argument can be used to note that the right-hand sides of (B.14) and (B.15)
vanish if q′ = q, and that the right-hand side of (B.16) vanish if q = k′ or q′ = k.
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B.1 Multi-photon amplitudes with spinor helicity

technology.

In Chapter 2, we write the even powers of the total field strength tensor in terms of
χ+, χ− and f+f− (Eq. 2.31). Here we present this derivation:

F 2n = (f+ + f−)2n =
∑
k even

(
2n

k

)
(f+)k(f−)2n−k +

∑
k odd

(
2n

k

)
(f+)k(f−)2n−k

=
∑
k even

(
2n

k

)
(f+2)k/2(f−2)(2n−k)/2 +

∑
k odd

(
2n

k

)
(f+2)(k−1)/2(f−2)(2n−k−1)/2f+f−

=
∑
k even

(
2n

k

)
(χ+)k/2(χ−)(2n−k)/2 +

∑
k odd

(
2n

k

)
(χ+)(k−1)/2(χ−)(2n−k−1)/2f+f−

=
∑
k even

(
2n

k

)
√
χ+

k√χ−2n−k +
f+f−
√
χ+χ−

∑
k odd

(
2n

k

)
√
χ+

k√χ−2n−k

=
(−1)n

2

([
(
√
χ+ +

√
χ−)2n + (

√
χ+ −

√
χ−)2n

]
ηµν

+
(f+f−)µν
√
χ+χ−

[
(
√
χ+ −

√
χ−)2n − (

√
χ+ +

√
χ−)2n

])
.

(B.47)

As we studied in Chapter 2, the scalar propagator contains the information of the
N-photon amplitudes in the low energy limit and to obtain this information, we have
to expand the propagator, once we write the propagator in terms of χ+, χ− and f+f−
(Eq. 2.36). The expansion can be preformed by the use of Mathematica. The follow-
ing lines are dedicated to the Mathematica code of Eq. 2.36:

Mathematica code:

f [λp , λm ]:=Sech[e ∗ T (λp ∗ Sqrt[χ+] + λm ∗ Sqrt[χ−])]f [λp , λm ]:=Sech[e ∗ T (λp ∗ Sqrt[χ+] + λm ∗ Sqrt[χ−])]f [λp , λm ]:=Sech[e ∗ T (λp ∗ Sqrt[χ+] + λm ∗ Sqrt[χ−])]

Sech[e ∗ T (λp ∗ Sqrt[χ+]− λm ∗ Sqrt[χ−])]Sech[e ∗ T (λp ∗ Sqrt[χ+]− λm ∗ Sqrt[χ−])]Sech[e ∗ T (λp ∗ Sqrt[χ+]− λm ∗ Sqrt[χ−])]

Exp[Exp[Exp[

−T ∗ p∧2/2−T ∗ p∧2/2−T ∗ p∧2/2

(Tanh[e ∗ T (λp ∗ Sqrt[χ+] + λm ∗ Sqrt[χ−])]/(Tanh[e ∗ T (λp ∗ Sqrt[χ+] + λm ∗ Sqrt[χ−])]/(Tanh[e ∗ T (λp ∗ Sqrt[χ+] + λm ∗ Sqrt[χ−])]/

(e ∗ T (λp ∗ Sqrt[χ+] + λm ∗ Sqrt[χ−]))+(e ∗ T (λp ∗ Sqrt[χ+] + λm ∗ Sqrt[χ−]))+(e ∗ T (λp ∗ Sqrt[χ+] + λm ∗ Sqrt[χ−]))+
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Tanh[e ∗ T (λp ∗ Sqrt[χ+]− λm ∗ Sqrt[χ−])]/Tanh[e ∗ T (λp ∗ Sqrt[χ+]− λm ∗ Sqrt[χ−])]/Tanh[e ∗ T (λp ∗ Sqrt[χ+]− λm ∗ Sqrt[χ−])]/

(e ∗ T (λp ∗ Sqrt[χ+]− λm ∗ Sqrt[χ−]))− 2)−(e ∗ T (λp ∗ Sqrt[χ+]− λm ∗ Sqrt[χ−]))− 2)−(e ∗ T (λp ∗ Sqrt[χ+]− λm ∗ Sqrt[χ−]))− 2)−

T ∗ λp ∗ λm ∗ p.(f+f−).p/(2 ∗ λp ∗ λm ∗ Sqrt[χ+]Sqrt[χ−])T ∗ λp ∗ λm ∗ p.(f+f−).p/(2 ∗ λp ∗ λm ∗ Sqrt[χ+]Sqrt[χ−])T ∗ λp ∗ λm ∗ p.(f+f−).p/(2 ∗ λp ∗ λm ∗ Sqrt[χ+]Sqrt[χ−])

(Tanh[e ∗ T (λp ∗ Sqrt[χ+]− λm ∗ Sqrt[χ−])]/(Tanh[e ∗ T (λp ∗ Sqrt[χ+]− λm ∗ Sqrt[χ−])]/(Tanh[e ∗ T (λp ∗ Sqrt[χ+]− λm ∗ Sqrt[χ−])]/

(e ∗ T (λp ∗ Sqrt[χ+]− λm ∗ Sqrt[χ−]))−(e ∗ T (λp ∗ Sqrt[χ+]− λm ∗ Sqrt[χ−]))−(e ∗ T (λp ∗ Sqrt[χ+]− λm ∗ Sqrt[χ−]))−

Tanh[e ∗ T (λp ∗ Sqrt[χ+] + λm ∗ Sqrt[χ−])]/Tanh[e ∗ T (λp ∗ Sqrt[χ+] + λm ∗ Sqrt[χ−])]/Tanh[e ∗ T (λp ∗ Sqrt[χ+] + λm ∗ Sqrt[χ−])]/

(e ∗ T (λp ∗ Sqrt[χ+] + λm ∗ Sqrt[χ−])))](e ∗ T (λp ∗ Sqrt[χ+] + λm ∗ Sqrt[χ−])))](e ∗ T (λp ∗ Sqrt[χ+] + λm ∗ Sqrt[χ−])))]

A[K ,L ]:=SeriesCoefficient[f [λp, λm], {λp, 0, K}, {λm, 0, L}]A[K ,L ]:=SeriesCoefficient[f [λp, λm], {λp, 0, K}, {λm, 0, L}]A[K ,L ]:=SeriesCoefficient[f [λp, λm], {λp, 0, K}, {λm, 0, L}]

(*Two legs*)(*Two legs*)(*Two legs*)

(*++ *)(*++ *)(*++ *)

A[2, 0]A[2, 0]A[2, 0]

−e2T 2χ+ + 1
3
e2p2T 3χ+p

Integrate[A[2, 0]Exp[−T (m∧2 + p∧2)], {T, 0, Infinity},Integrate[A[2, 0]Exp[−T (m∧2 + p∧2)], {T, 0, Infinity},Integrate[A[2, 0]Exp[−T (m∧2 + p∧2)], {T, 0, Infinity},

Assumptions→ m > 0&&p > 0]Assumptions→ m > 0&&p > 0]Assumptions→ m > 0&&p > 0]

− 2e2m2χ+

(m2+p2)4

(*- - *)(*- - *)(*- - *)

A[0, 2]A[0, 2]A[0, 2]

−e2T 2χ− + 1
3
e2p2T 3χ−

Integrate[A[0, 2]Exp[−T (m∧2 + p∧2)], {T, 0, Infinity},Integrate[A[0, 2]Exp[−T (m∧2 + p∧2)], {T, 0, Infinity},Integrate[A[0, 2]Exp[−T (m∧2 + p∧2)], {T, 0, Infinity},

Assumptions→ m > 0&&p > 0]Assumptions→ m > 0&&p > 0]Assumptions→ m > 0&&p > 0]
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− 2e2m2χ−
(m2+p2)4

(* +- *)(* +- *)(* +- *)

A[1, 1]A[1, 1]A[1, 1]

−2
3
e2T 3p.(f+f−).p

Integrate[A[1, 1]Exp[−T (m∧2 + p∧2)], {T, 0, Infinity},Integrate[A[1, 1]Exp[−T (m∧2 + p∧2)], {T, 0, Infinity},Integrate[A[1, 1]Exp[−T (m∧2 + p∧2)], {T, 0, Infinity},

Assumptions→ m > 0&&p > 0]Assumptions→ m > 0&&p > 0]Assumptions→ m > 0&&p > 0]

−4e2p.(f+f−).p

(m2+p2)4

(* Four legs *)(* Four legs *)(* Four legs *)

(* ++++ *)(* ++++ *)(* ++++ *)

A[4, 0]A[4, 0]A[4, 0]

1
90

(60e4T 4χ+
2 − 42e4p2T 5χ+

2 + 5e4p4T 6χ+
2)

Integrate[A[4, 0]Exp[−T (m∧2 + p∧2)], {T, 0, Infinity},Integrate[A[4, 0]Exp[−T (m∧2 + p∧2)], {T, 0, Infinity},Integrate[A[4, 0]Exp[−T (m∧2 + p∧2)], {T, 0, Infinity},

Assumptions→ m > 0&&p > 0]Assumptions→ m > 0&&p > 0]Assumptions→ m > 0&&p > 0]

8e4(2m4−3m2p2)χ+
2

(m2+p2)7

(*++ +−*)(*++ +−*)(*++ +−*)

A[3, 1]A[3, 1]A[3, 1]

6
5
e4T 5χ+p.(f

+f−).p− 2
9
e4p2T 6χ+p.(f

+f−).p

Integrate[A[3, 1]Exp[−T (m∧2 + p∧2)], {T, 0, Infinity},Integrate[A[3, 1]Exp[−T (m∧2 + p∧2)], {T, 0, Infinity},Integrate[A[3, 1]Exp[−T (m∧2 + p∧2)], {T, 0, Infinity},

Assumptions→ m > 0&&p > 0]Assumptions→ m > 0&&p > 0]Assumptions→ m > 0&&p > 0]
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−16e4(−9m2+p2)χ+p.(f+f−).p

(m2+p2)7

(* ++- - *)(* ++- - *)(* ++- - *)

A[2, 2]A[2, 2]A[2, 2]

1
45
e4 (90T 4χ−χ+ − 66p2T 5χ−χ+ + 5p4T 6χ−χ+ + 10T 6(p.(f+f−).p)2)

Integrate[A[2, 2]Exp[−T (m∧2 + p∧2)], {T, 0, Infinity},Integrate[A[2, 2]Exp[−T (m∧2 + p∧2)], {T, 0, Infinity},Integrate[A[2, 2]Exp[−T (m∧2 + p∧2)], {T, 0, Infinity},

Assumptions→ m > 0&&p > 0]Assumptions→ m > 0&&p > 0]Assumptions→ m > 0&&p > 0]

16e4((3m4−5m2p2−3p4)χ−χ++10(p.(f+f−).p)2)
(m2+p2)7

As we have learned throughout this work, multi-photon amplitudes can be ex-
pressed in terms of χ+, χ− and p · (f+f−) · p. In the following we will present the
possibility of writing p · (f+f−) · p in terms of brakets. First note that:

p · (f+f−) · p = pµ(f+f−)µνpν (B.48)

Now we can use Eq. (1.4):

(f+
i f

+
j )µν = (f+

i )µλ(f+
j ) ν

λ = (kµi ε
+λ
i − ε

+µ
i kλi )(kjλε

+ν
j − ε+

jλk
ν
j ) (B.49)

= −ki · kjε+µ
i ε−νj (B.50)

With the use of Eqs. (B.12), (B.13) and (B.17):

(f+
i f

+
j )µν =

1

4
[ki|γµ |kj〉 [ki|γν |kj〉 (B.51)

On the other hand, a massive momentum can be expressed in terms of 2 massless
momenta as:

pµ = p̂µ +
m2qµ

2p̂ · q
= p̂µ + λqµ (B.52)
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We will use the last ingredients to express Eq. (2.39) in a braket notation:

p · (f+
1 f
−
2 ) · p = (p̂+ λq) · (f+

1 f
−
2 ) · (p̂+ λq)

= p̂ · (f+
1 f
−
2 ) · p̂+ 2λq · (f+

1 f
−
2 ) · p̂+ λ2q · (f+

1 f
−
2 ) · q

=
1

4
[k1|/̂p |k2〉 [k1|/̂p |k2〉+

λ

2
[k1|/q |k2〉 [k1|/̂p |k2〉+

λ2

4
[k1|/q |k2〉 [k1|/q |k2〉

=
1

4
[k1p̂]

2 〈p̂k2〉2 +
λ

2
[k1q] 〈qk2〉 [k1p̂] 〈p̂k2〉+

λ2

4
[k1q]

2 〈qk2〉2

(B.53)

To get the last line we used Eq. (B.11). One of the advantages of spinor helicity is
that q is an arbitrary massless reference momentum and to simplify Eq. (B.54) we
choose q = k1:

p · (f+
1 f
−
2 ) · p =

1

4
[k1p̂]

2 〈p̂k2〉2 (B.54)

The previous calculation is just an example of how we can use spinor helicity to
express p · (f+f−) · p in the bracket notation.





Appendix C

S[K,L] summation.

The principal object of study is:

S[K,L] =
K∑
k=0

L∑
l=0

(−)lBk+lBN−k−l
k!l!(K − k)!(L− l)!

. (C.1)

Preforming a change of variables L = K − n and k + l = x this double summation
can be reduced to:

S[K,m] =
N∑
x=0

BxBN−x
K∑
k=0

(−)x−k

k!(x− k)!(K − k)!(K + k −m− x)
. (C.2)

Since K and L are even numbers, this means that n muss be even too n = 2m:

S[K,m] =
N∑
x=0

BxBN−x
K∑
k=0

(−)x−k

k!(x− k)!(K − k)!(K + k − 2m− x)
. (C.3)

We used Mathematica to fix the value of m and see how this changed with the in-

crease of x.

For m = 0:

S[m , x ,K ]:=Sum[(−1)∧(x− k)/(k! ∗ (x− k)! ∗ (K − k)! ∗ (K + k − (2m+ x))!), {k, 0, K}];S[m , x ,K ]:=Sum[(−1)∧(x− k)/(k! ∗ (x− k)! ∗ (K − k)! ∗ (K + k − (2m+ x))!), {k, 0, K}];S[m , x ,K ]:=Sum[(−1)∧(x− k)/(k! ∗ (x− k)! ∗ (K − k)! ∗ (K + k − (2m+ x))!), {k, 0, K}];

TabX0mCero = Table[S[0, 0, 2K], {K, 1, 10}];TabX0mCero = Table[S[0, 0, 2K], {K, 1, 10}];TabX0mCero = Table[S[0, 0, 2K], {K, 1, 10}];

FullSimplify[FindSequenceFunction[TabX0mCero, n]]FullSimplify[FindSequenceFunction[TabX0mCero, n]]FullSimplify[FindSequenceFunction[TabX0mCero, n]]

45
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1
Gamma[1+2n]2

TabX2mCero = Table[S[0, 2, 2K], {K, 1, 16}];TabX2mCero = Table[S[0, 2, 2K], {K, 1, 16}];TabX2mCero = Table[S[0, 2, 2K], {K, 1, 16}];

FullSimplify[FindSequenceFunction[TabX2mCero, K]]FullSimplify[FindSequenceFunction[TabX2mCero, K]]FullSimplify[FindSequenceFunction[TabX2mCero, K]]

− 1
Gamma[2K]Gamma[1+2K]

TabX4mCero = Table[S[0, 4, 2K], {K, 1, 16}];TabX4mCero = Table[S[0, 4, 2K], {K, 1, 16}];TabX4mCero = Table[S[0, 4, 2K], {K, 1, 16}];

FullSimplify[FindSequenceFunction[TabX4mCero, K]]FullSimplify[FindSequenceFunction[TabX4mCero, K]]FullSimplify[FindSequenceFunction[TabX4mCero, K]]

1
2Gamma[−1+2K]Gamma[1+2K]

TabX6mCero = Table[S[0, 6, 2K], {K, 2, 16}];TabX6mCero = Table[S[0, 6, 2K], {K, 2, 16}];TabX6mCero = Table[S[0, 6, 2K], {K, 2, 16}];

FullSimplify[FindSequenceFunction[TabX6mCero, K − 1]]FullSimplify[FindSequenceFunction[TabX6mCero, K − 1]]FullSimplify[FindSequenceFunction[TabX6mCero, K − 1]]

− 1
6Gamma[−2+2K]Gamma[1+2K]

TabX8mCero = Table[S[0, 8, 2K], {K, 2, 16}];TabX8mCero = Table[S[0, 8, 2K], {K, 2, 16}];TabX8mCero = Table[S[0, 8, 2K], {K, 2, 16}];

FullSimplify[FindSequenceFunction[TabX8mCero, K − 1]]FullSimplify[FindSequenceFunction[TabX8mCero, K − 1]]FullSimplify[FindSequenceFunction[TabX8mCero, K − 1]]

1
24Gamma[−3+2K]Gamma[1+2K]

We can see a global factor:

1

Γ[2K + 1]
. (C.4)

The other factors are very easy to deduce and we conclude that for m = 0:

(−1)x/2

(x/2)!Γ[2K + 1]Γ[2K − x−2
2

]
. (C.5)

Now consider the case m = 1:

TabX0mUno = Table[S[1, 0, 2K], {K, 1, 16}];TabX0mUno = Table[S[1, 0, 2K], {K, 1, 16}];TabX0mUno = Table[S[1, 0, 2K], {K, 1, 16}];
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FullSimplify[FindSequenceFunction[TabX0mUno, K]]FullSimplify[FindSequenceFunction[TabX0mUno, K]]FullSimplify[FindSequenceFunction[TabX0mUno, K]]

1
Gamma[−1+2K]Gamma[1+2K]

TabX2mUno = Table[S[1, 2, 2K], {K, 1, 15}];TabX2mUno = Table[S[1, 2, 2K], {K, 1, 15}];TabX2mUno = Table[S[1, 2, 2K], {K, 1, 15}];

FullSimplify[FindSequenceFunction[TabX2mUno, K]]FullSimplify[FindSequenceFunction[TabX2mUno, K]]FullSimplify[FindSequenceFunction[TabX2mUno, K]]

− 1
2(−1+K)Gamma[−3+2K]Gamma[1+2K]

TabX4mUno = Table[S[1, 4, 2K], {K, 2, 16}];TabX4mUno = Table[S[1, 4, 2K], {K, 2, 16}];TabX4mUno = Table[S[1, 4, 2K], {K, 2, 16}];

FullSimplify[FindSequenceFunction[TabX4mUno, K − 1]]FullSimplify[FindSequenceFunction[TabX4mUno, K − 1]]FullSimplify[FindSequenceFunction[TabX4mUno, K − 1]]

−5+2K
2Gamma[−2+2K]Gamma[1+2K]

TabX6mUno = Table[S[1, 6, 2K], {K, 2, 15}];TabX6mUno = Table[S[1, 6, 2K], {K, 2, 15}];TabX6mUno = Table[S[1, 6, 2K], {K, 2, 15}];

FullSimplify[FindSequenceFunction[TabX6mUno, K − 1]]FullSimplify[FindSequenceFunction[TabX6mUno, K − 1]]FullSimplify[FindSequenceFunction[TabX6mUno, K − 1]]

7−2K
6Gamma[−3+2K]Gamma[1+2K]

TabX8mUno = Table[S[1, 8, 2K], {K, 2, 20}];TabX8mUno = Table[S[1, 8, 2K], {K, 2, 20}];TabX8mUno = Table[S[1, 8, 2K], {K, 2, 20}];

FullSimplify[FindSequenceFunction[TabX8mUno, K − 1]]FullSimplify[FindSequenceFunction[TabX8mUno, K − 1]]FullSimplify[FindSequenceFunction[TabX8mUno, K − 1]]

−9+2K
24Gamma[−4+2K]Gamma[1+2K]

Again we always get a global factor (C.4), with this observation we can infer that
perhaps (C.5) is present for any value. After some manipulations for m = 1 we find
that:

(−1)x/2(2K − (x+ 1))

(x/2)!Γ[2K + 1]Γ[2K − (x−2
2

+ 1)]
(C.6)

We can proceed in this way to find expressions for different values. We present m = 2

and after that we write just the results for other values.
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TabX0mDos = Table[S[2, 0, 2K], {K, 2, 10}];TabX0mDos = Table[S[2, 0, 2K], {K, 2, 10}];TabX0mDos = Table[S[2, 0, 2K], {K, 2, 10}];

FullSimplify[FindSequenceFunction[TabX0mDos, K − 1]]FullSimplify[FindSequenceFunction[TabX0mDos, K − 1]]FullSimplify[FindSequenceFunction[TabX0mDos, K − 1]]

1
Gamma[−3+2K]Gamma[1+2K]

TabX2mDos = Table[S[2, 2, 2K], {K, 2, 24}];TabX2mDos = Table[S[2, 2, 2K], {K, 2, 24}];TabX2mDos = Table[S[2, 2, 2K], {K, 2, 24}];

FullSimplify[FindSequenceFunction[TabX2mDos, K − 1]]FullSimplify[FindSequenceFunction[TabX2mDos, K − 1]]FullSimplify[FindSequenceFunction[TabX2mDos, K − 1]]

− 2(−5+K)
Gamma[−3+2K]Gamma[1+2K]

TabX2mDos = Table[S[2, 2, 2K], {K, 2, 24}];TabX2mDos = Table[S[2, 2, 2K], {K, 2, 24}];TabX2mDos = Table[S[2, 2, 2K], {K, 2, 24}];

FullSimplify[FindSequenceFunction[TabX2mDos, K − 2]]FullSimplify[FindSequenceFunction[TabX2mDos, K − 2]]FullSimplify[FindSequenceFunction[TabX2mDos, K − 2]]

− 2(−6+K)
Gamma[−5+2K]Gamma[−1+2K]

TabX4mDos = Table[S[2, 4, 2K], {K, 2, 26}];TabX4mDos = Table[S[2, 4, 2K], {K, 2, 26}];TabX4mDos = Table[S[2, 4, 2K], {K, 2, 26}];

FullSimplify[FindSequenceFunction[TabX4mDos, K − 1]]FullSimplify[FindSequenceFunction[TabX4mDos, K − 1]]FullSimplify[FindSequenceFunction[TabX4mDos, K − 1]]

35+K(−21+2K)
Gamma[−3+2K]Gamma[1+2K]

TabX6mDos = Table[S[2, 6, 2K], {K, 3, 26}];TabX6mDos = Table[S[2, 6, 2K], {K, 3, 26}];TabX6mDos = Table[S[2, 6, 2K], {K, 3, 26}];

FullSimplify[FindSequenceFunction[TabX6mDos, K − 2]]FullSimplify[FindSequenceFunction[TabX6mDos, K − 2]]FullSimplify[FindSequenceFunction[TabX6mDos, K − 2]]

−63+(29−2K)K
3Gamma[−4+2K]Gamma[1+2K]

TabX8mDos = Table[S[2, 8, 2K], {K, 3, 26}];TabX8mDos = Table[S[2, 8, 2K], {K, 3, 26}];TabX8mDos = Table[S[2, 8, 2K], {K, 3, 26}];

FullSimplify[FindSequenceFunction[TabX8mDos, K − 2]]FullSimplify[FindSequenceFunction[TabX8mDos, K − 2]]FullSimplify[FindSequenceFunction[TabX8mDos, K − 2]]

99+K(−37+2K)
12Gamma[−5+2K]Gamma[1+2K]

We found that for m = 2:

(−1)x/2(4K2 − 2K(4(x+ 1) + 1) + 2(x+ 1)(x+ 3)

(x/2)!Γ[2K + 1]Γ[2K − (x−2
2

+ 2)]
. (C.7)
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With this three cases we concluded that the summation has the structure:

(−1)x/2Pm(K, x)

(x/2)!Γ[2K + 1]Γ[2K −
(
x−2

2
+m

)
]
, (C.8)

where:

P0(K, x) = 1 (C.9)

P1(K, x) = 2K − (x+ 1) (C.10)

P2(K, x) = 4K2 − 2K(4(x+ 1) + 1) + 2(x+ 1)(x+ 3) (C.11)

P3(K, x) = 8K3 − 4K2(9(x+ 1) + 3) + 2K(12(x+ 1)2

+33(x+ 1) + 2)− 4(x+ 1)(x+ 3)(x+ 5) (C.12)

P4(K, x) = 16K4 − 8K3(16(x+ 1) + 6) + 4K2(40(x+ 1)2 + 128(x+ 1) + 11)

−2K(32(x+ 1)3 + 232(x+ 1)2 + 368(x+ 1) + 6) + 8(x+ 1)(x+ 3)(x+ 5)(x+ 7)

(C.13)

P6(K, x) = 32K5 − 16K4(25(x+ 1) + 10) + 8K3(100(x+ 1)2 + 350(x+ 1) + 35)

−4K2(140(x+ 1)3 + 1140(x+ 1)2 + 1995(x+ 1) + 50) + 2K(80(x+ 1)4 + 1100(x+ 1)3

+4560(x+ 1)2 + 5510(x+ 1) + 24)− 16(x+ 1)(x+ 3)(x+ 5)(x+ 7)(x+ 9) (C.14)

In [22] they show that even though these polynomials looks very difficult they are
represented by the next expression:

Pm(K, x) :=
m∑
n=0

(−1)m−n
(

2m

2n

)
(K −m− x/2− n+ 1)n(x/2−m+ n+ 1)m−n,

(C.15)

.
where (X)n is the rising factorial function:

(X)n := X ∗ (X + 1) ∗ .... ∗ (X + n− 1). (C.16)
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With this results we can express (C.2) as:

S[K,m] =
N∑
x=0

BxBN−x

m∑
n=0

(−1)x/2+m−n

(x/2)!Γ[K + 1]Γ[K −
(
x−2

2
+m

)
]

(
2m

2n

)
(K −m− x/2− n+ 1)n(x/2−m+ n+ 1)m−n

(C.17)

C.1 Asymptotic limit

If we approximate the Bernoulli numbers as in Eq. (1.46) the double summation that
appears in Eq. (1.39) can be solve analytically. The next two plots are related to the
approximation of the Bernoulli numbers:

Figure C.1: Approximation for small values of n.

Figure C.2: As n increase the approximation is better.

Figure C.1 show us how this approximation is good for n > 4.
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