UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

FACULTAD DE INGENIERÍA ELÉCTRICA DIVISIÓN DE ESTUDIOS DE POSGRADO

Estimación de Estado Robusta en Sistemas Eléctricos de Potencia mediante el Método de Mínimos Valores Absolutos

TESIS

Que para obtener el grado de:

MAESTRO EN CIENCIAS EN INGENIERÍA ELÉCTRICA

Presenta:

Daniel Núñez Espinosa

Director de Tesis:

Doctor en Ingeniería Eléctrica Claudio Rubén Fuerte Esquivel

Morelia, Michoacán, México Agosto de 2023

ESTIMACIÓN DE ESTADO ROBUSTA EN SISTEMAS ELÉCTRICOS DE POTENCIA MEDIANTE EL MÉTODO DE MÍNIMOS VALORES ABSOLUTOS

Los Miembros del Jurado de Examen de Grado aprueban la Tesis de Maestría en Ciencias en Ingeniería Eléctrica de Daniel Núñez Espinosa.

Dr. Fernando Ornelas Téllez Presidente del Jurado

Dr. Claudio Rubén Fuerte Esquivel Director de Tesis

Dr. J. Aurelio Medina Rios Vocal

Dr. Jaime Cerda Jacobo Vocal

Dr. Boris Adrián Alcaide Moreno
Revisor Externo (Centro Nacional de Control de Energía)

Dr. J. Aurelio Medina Rios

Jefe de la División de Estudios de Posgrado
de la Facultad de Ingeniería Eléctrica. UMSNH
(Por reconocimiento de firmas)

Dedicatoria

 ${\bf A}$ todas las personas que han aportado alegría a mi
 vida, en especial a mi madre, a mi padre y a mi hermano.

Agradecimientos

Agradezco a mi asesor el Dr. Claudio Fuerte Esquivel, por su paciencia, conocimiento y su apoyo durante la realización de esta tesis.

A todos los profesores de la Facultad de Ingeniería Eléctrica de los que tuve la suerte de aprender.

Al Consejo Nacional de Humanidades, Ciencias y Tecnologías en virtud de la beca que me permitió realizar estos estudios.

Resumen

En esta tesis se presenta la implementación del método Least Absolute Value (LAV) para la solución del problema de estimación de estado, con la finalidad de obtener un método de estimación robusto, lo cual quiere decir que se tiene un rechazo de datos erróneos intrínseco al método, y analizar su desempeño comparado con el método Weighted Least Squares (WLS), el cual es el más utilizado en la actualidad.

Se busca que la implementación innovadora del algoritmo del método LAV aumente además la rapidez computacional, con el objetivo de que sea una herramienta util para la estimación de estado de sistemas eléctricos con el objetivo de lograr un monitoreo de la red eléctrica.

Para ello, se implementaron los métodos LAV y WLS en el programa MATLAB. Se realizaron diferentes casos de estudio para poner a prueba la eficiencia de ambos métodos, utilizando los sistemas de prueba del IEEE de 14, 57 y 118, nodos en los cuales se consideraron diferentes conjuntos de datos de mediciones, en los cuales se incluyeron mediciones erróneas. Los resultados de los estudios realizados demuestran la validez del algoritmo LAV implementado, ya que se obtuvieron tiempos de computación comparables al método WLS y con la ventaja del rechazo de mediciones erróneas, lo cual comprueba que el LAV es un método robusto capaz de ser utilizado para la solución del problema de estimación de estado en tiempo real, que en este contexto, significa que las mediciones se actualizan cada cuatro segundos y la estimación de estado se realiza una vez por minuto.

Palabras Clave: Estimación de Estado, Robusto, Gradiente, LAV, WLS, MATLAB.

Abstract

In this thesis, the implementation of the Least Absolute Value (LAV) method for the solution of the state estimation problem is presented, which means that it automatically rejects bad measurements, and analyzing its performance compared with the Weighted Least Squares (WLS) method, which currently is the most used.

The goal is to implement an innovative algorithm for the LAV method that also improves the computational speed of the method, with the goal of creating a useful tool for state estimation of electrical systems with the objective of monitoring the electrical network.

For this, the WLS and LAV methods were implemented in the program MATLAB. Putting both to test on several case studies, utilizing the IEEE systems of 14, 57 and 118 nodes in which different sets of data were analyzed which were corrupted with bad measurements. The results obtained prove the validity of the LAV algorithm, obtaining computational speeds equal or better to the WLS method while having the bad data rejection property of the LAV method, which confirms that the LAV algorithm is a good solution to robust state estimation problem that can be used in real time, which in this context means that the measurements are obtained every four seconds and the state estimation is done every minute.

Contenido

D	edica	toria		V
\mathbf{A}	\mathbf{grad}	ecimie	ntos	VII
\mathbf{R}	esum	ien		IX
\mathbf{A}	bstra	ıct		ΧI
$\mathbf{L}_{\mathbf{i}}$	ista d	le Figu	ıras	xv
$\mathbf{L}_{\mathbf{i}}$	ista d	le Tab	las	XVII
1	Intr	roducc	ión	1
	1.1	Introd	lucción	1
	1.2	Estad	o del Arte	2
	1.3	Objet	ivos	5
	1.4	Justifi	icación	5
	1.5	Metod	lología	6
	1.6	Conte	nido de la Tesis	6
2	For	mulaci	ón del problema de estimación de estado	9
	2.1	Introd	lucción	9
		2.1.1	Definición de tipo de mediciones y errores	9
		2.1.2	Formulación del problema de estimación de estado	11
	2.2	Formu	ulación del problema de Mínimos Cuadrados Ponderados (WLS) $$	12
		2.2.1	Método de Gauss-Newton para resolver el problema de WLS $\ . \ . \ .$	13
		2.2.2	Análisis de mediciones erróneas	16
			2.2.2.1 Prueba χ^2	16 17
	2.3	Formu	ılación del problema de Mínimo Valor Absoluto	19
		2 3 1	Estimación LAV como un problema LP	20

		0.0.0	2.3.1.1 Método Simplex	
		2.3.2	LAV por Métodos de Gradiente	25
		2.3.3	Impacto de datos erróneos en la formulación LAV	32
	2.4	Conclu	usión de Capítulo	34
3	Cas	os de l	Estudio	35
	3.1	Introd	lucción	35
	3.2	Sistem	na de 14 Nodos	37
		3.2.1	Sistema 14 nodos, Caso 1	37
		3.2.2	Sistema de 14 nodos, Caso 2	39
		3.2.3	Sistema 14 nodos, Caso 3	41
	3.3	Sistem	na de 57 Nodos	42
		3.3.1	Sistema de 57 nodos, Caso 1	42
		3.3.2	Sistema de 57 nodos, Caso 2	44
		3.3.3	Sistema de 57 nodos, Caso 3	46
	3.4	Sistem	na de 118 Nodos	48
		3.4.1	Sistema de 118 nodos, Caso 1	48
		3.4.2	Sistema de 118 nodos, Caso 2	50
		3.4.3	Sistema de 118 nodos, Caso 3	52
	3.5	Conclu	usión de Capítulo	53
4	Con	clusio	nes y Trabajos Futuros	55
	4.1	Conclu	usiones	55
	4.2	Traba	jos Futuros	56
$\mathbf{R}_{\mathbf{c}}$	efere	ncias		97

Lista de Figuras

2.1	Diagrama de Flujo Estimación de Estado WLS	15
2.2	Diagrama de Flujo Estimación de Estado WLS y Post-procesamiento. $$. $$.	18
2.3	Diagrama de Flujo Estimación de Estado LAV por Método de Gradiente. .	30
2.4	Región óptima para un sistema de múltiples soluciones	33
3.1	Sistema 14 Nodos IEEE	37
3.2	Sistema 14 Nodos Método LAV	38
3.3	Sistema 14 Nodos Método WLS	38
3.4	Sistema 14 Nodos 1 Error Método LAV	39
3.5	Sistema 14 Nodos 1 Error WLS Post-procesamiento	40
3.6	Sistema 14 Nodos 3 Errores Método LAV	41
3.7	Sistema 57 Nodos IEEE	42
3.8	Sistema 57 Nodos Método LAV	43
3.9	Sistema 57 Nodos Método WLS	43
3.10	Sistema 57 Nodos 1 Error Método LAV	44
3.11	Sistema 57 Nodos 1 Error Método WLS	45
3.12	Sistema 57 Nodos 1 Error Método WLS Post-procesamiento	45
3.13	Sistema 57 Nodos 5 Errores Método LAV	46
3.14	Sistema 57 Nodos 5 Errores Método WLS	47
3.15	Sistema 57 Nodos 5 Errores Método WLS Post-procesamiento	47
3.16	Sistema 118 Nodos IEEE	48
3.17	Sistema 118 Nodos Método LAV	49
3.18	Sistema 118 Nodos Método WLS	49
3.19	Sistema 118 Nodos 1 Error Método LAV	50
3.20	Sistema 118 Nodos 1 Error Método WLS	51
2 91	Sistema 118 Nodos 1 Error Mátado WIS Post programiento	51

3.22	Sistema 118 Nodos 5 Errores Método LAV	52
3.23	Sistema 118 Nodos 5 Errores Método WLS	53
3.24	Sistema 118 Nodos 5 Errores Método WLS Post-procesamiento	53

Lista de Tablas

1.1	Comparación de Formulaciones de Estimación de Estado	Э
2.1	Errores máximos admitidos en la norma IEC 61869-2 para Transformadores.	11
2.2	Valores de $\chi^2_{k,a}$	17
2.3	Valores de z_a	17
3.1	Tiempo y error para realizar estimación de estado sistema 14 nodos sin error	37
3.2	Tiempo para realizar estimación de estado 1 error sistema de 14 nodos	39
3.3	Tiempo para realizar estimación de estado sistema de 14 nodos 3 errores $$.	41
3.4	Tiempo para realizar estimación de estado sistema 57 nodos sin errores $$	43
3.5	Tiempo para realizar estimación de estado sistema 57 nodos 1 error $\ \ldots \ \ldots$	44
3.6	Tiempo para realizar estimación de estado sistema 57 nodos 5 errores $$	46
3.7	Tiempo para realizar estimación de estado sistema 118 nodos sin errores	48
3.8	Tiempo para realizar estimación de estado sistema 118 nodos 1 error	50
3.9	Tiempo para realizar estimación de estado sistema 118 nodos 5 errores	52
4.5	Tabla 5 errores sistema 118 nodos	95

Capítulo 1

Introducción

1.1. Introducción

La demanda por energía eléctrica aumenta mundialmente en un promedio de 2.1 % por año, y se espera que en el año 2040 se tenga una demanda mundial de energía eléctrica de 42000 TWh [Agency, 2019]. Debido a esto y a la integración de fuentes de energía alterna, los sistemas eléctricos de potencia están continuamente en expansión, lo cual aumenta su complejidad operativa.

En el año 2020 se perdió el 5 % del valor comercial de venta de energía debido a apagones eléctricos originados por la falta de suministro eléctrico en grandes áreas geográficas, dichas fallas, se deben a la falta de conocimiento de la situación del estado operativo del sistema [Mundial, 2020]. En este contexto, lograr que el sistema eléctrico permanezca en un estado operativo normal es un gran reto debido a la interconexión de las redes de transmisión en corriente alterna, el número creciente de consumidores de energía eléctrica, que con el paso del tiempo se están convirtiendo en prosumidores y la penetración de generadores renovables no convencionales basados en energías primarias de naturaleza aleatoria, es decir, aerogeneradores y plantas fotovoltaicas. Por lo cual, el concepto de seguridad operativa se ha vuelto de suma importancia para los ingenieros eléctricos encargados de la planeación, operación y control del sistema eléctrico.

Para garantizar la operación segura y eficiente del sistema eléctrico, es necesario conocer su estado operativo. Éste conocimiento de la situación operativa se logra a través de la recopilación de mediciones en las subestaciones que conforman la red de transmisión mediante la utilización de un Sistema de Control Supervisor y Adquisición de Datos (SCADA). Las mediciones pueden incluir magnitudes de voltaje en las barras de subestación, referidos en este trabajo como nodos o buses, flujos de potencia activa y reactiva a través de los elementos de transmisión e inyección de potencia activa y reactiva en los buses. A partir del procesamiento de las mediciones referidas mediante un algoritmo de estimación de estado, bajo la suposición que todas estas corresponden a un mismo instante de tiempo, es posible determinar el estado operativo del sistema.

Las mediciones obtenidas por el SCADA no son perfectas debido a ruido en los sistemas de comunicación, errores en los dispositivos de medición, etc. Por lo cual, es necesario contar con una metodología que permita la detección, identificación y la eliminación o corrección de mediciones erróneas. En el caso de que las mediciones se eliminen, es indispensable tener mediciones redundantes para no perder la característica de observabilidad en el conjunto resultante de mediciones. Por otro lado, el proceso de análisis de mediciones erróneas puede ser inherente o externo al algoritmo de estimación de estado. Este trabajo de tesis versa sobre el primer tipo de estimadores de estado, denominados estimadores robustos de estado.

1.2. Estado del Arte

En 1970, F.C. Schweppe definió la estimación de estado como "un algoritmo de procesamiento de datos que convierte las medidas redundantes y otra información disponible en un estimado del sistema eléctrico" [Schweppe y Wildes, 1970] [Schweppe y Rom, 1970].

Hoy en día, la estimación de estado es parte esencial de cualquier centro de control de energía debido a que muchas de las herramientas de control, como el análisis de seguridad, despacho económico, etc., utilizan los resultados proporcionados por el estimador de estado. Estos resultados se refieren a las magnitudes y ángulos de voltaje en cada nodo del sistema.

La estimación de estado se realiza bajo los siguientes supuestos [Zarco y Gomez, 1999]:

- Las mediciones son obtenidas en el mismo instante de tiempo.
- Los parámetros de la red son conocidos e invariantes con el tiempo
- Los estados de todos los interruptores obtenidos a través del SCADA son conocidos de manera precisa, por lo que la topología de la red también lo es.

En los trabajos realizados por F.C. Schweppe se describe como realizar la estimación de estado por el método de Mínimos Cuadrados, en el cual la función objetivo minimiza el cuadrado de la diferencia entre el valor medido y el valor estimado. Para que dicho método sea correcto se necesita que los errores de medición tengan las siguientes características:

1.2. Estado del Arte

- Los errores son variables aleatorias de media cero.
- Todos los errores tienen la misma varianza.
- Todos los errores son independientes entre sí, es decir, no están correlacionados.
- Los errores tienen una distribución de probabilidad normal, debido a que si no, se tendrá un sesgo.
- El error no depende de las variables de estado.

Tomando como base el método de Mínimos Cuadrados descrito por Schweppe, se publicaron numerosos artículos respecto al mismo y se propusieron diversas metodologías para resolver el problema de estimación de estado, e.g., [Gjelsvik *et al.*, 1985] [Gu *et al.*, 1983][Monticelli, 2001].

En la práctica real de la operación y control de los sistemas eléctricos de potencia, el algoritmo empleado en los centros de control está basado en el método de Mínimos Cuadrados Ponderados [Bretas et al., 2021]. La diferencia entre este algoritmo y el de mínimos cuadrados es que se le agrega una ponderación a cada una de las mediciones tomadas por el sistema SCADA, y el valor de ponderación depende del tipo de medición. El valor que se le asigna es la desviación estándar asociada a las mediciones físicas [Schweppe y Rom, 1970]. Se podría decir entonces que el método de mínimos cuadrados es un caso específico del método de mínimos cuadrados ponderación son unitarios.

Al realizar ésta adición al método de mínimos cuadrados, llegando así al método de Mínimos Cuadrados Ponderados, se obtienen los siguientes beneficios [Schweppe y Rom, 1970]:

- Se pueden utilizar mediciones con diferente varianza.
- Se puede utilizar en algoritmos de regresión lineal, lo cual no era posible previamente.

La desventaja de realizar este cambio es que el algoritmo se vuelve sensible a mediciones erróneas, sobretodo si la medición errónea tiene una ponderación alta [Aschmoneit *et al.*, 1977].

El método de mínimos cuadrados ponderados proveé una estimación de estado incorrecta si se tienen mediciones erróneas, debido a que de manera inherente no tiene capacidad de detectar, identificar y eliminar o corregir ese tipo de mediciones. De tal manera, y con la finalidad de evitar la implementación de algoritmos adicionales de análisis de mediciones o datos erróneos, se han propuesto en la literatura diversas metodologias para realizar una estimación robusta de estado, por ejemplo las reportadas en [Mili et al., 1994] [Caro et al., 2011]

La robustez, desde el punto de vista de datos erróneos, se entiende como la capacidad del algoritmo de estimación de estado de realizar un estimado correcto bajo la presencia de datos erróneos, sin tener que realizar un proceso secuencial de estimación mediante la utilización de un análisis externo de datos erróneos.

Ya que el algoritmo de mínimos cuadrados ponderados es susceptible a errores de medición, este es un algoritmo no robusto. Para solventar la falta de robustez y que el algoritmo pueda trabajar incluso en la presencia de datos erróneos se cuentan con diversos métodos de análisis de datos erróneos, donde la metodología más utilizada para la detección de datos erróneos es la prueba de χ^2 . Así mismo, la prueba del Máximo Residuo Normalizado (LNR) es la más aplicada para la identificación del dato erróneo.

La prueba de Chi-Cuadrada (χ^2) es una prueba estadística donde se compara la medición con su valor esperado para determinar si la diferencia entre ambos está dentro de la probabilidad estadística o es un error de medición. Esta prueba detecta solamente un dato erróneo por estimación, por lo tanto después de eliminar el primer dato erróneo se deberá realizar una nueva estimación de estado. Resultando en un proceso iterativo hasta que todos los errores de medición hayan sido encontrados y eliminados.

La prueba de LNR es una prueba estadística donde se compara los residuos normalizados con un parámetro preestablecido (usualmente 3 para un nivel de confianza de 99.7%). Si el valor de la prueba es positivo, el residuo normalizado con mayor magnitud es identificado como dato erróneo y es eliminado. A pesar de que la prueba puede identificar múltiples errores independientes entre sí cuando hay suficiente redundancia en las mediciones, solamente se elimina un dato por iteración, por lo tanto, se debe realizar un proceso iterativo hasta que el resultado de la prueba sea negativo.

Como se observa, ambas pruebas son de post procesamiento e iterativas, por lo cual, conllevan un costo computacional elevado.

En la teoría de estimación de estado existen errores de tipo iterativo y conformativo, denominados también como puntos de apalancamiento, dichos datos afectan a medidas correctas que estén relacionadas eléctricamente con mediciones erróneas.

Debido a la falta de robustez intrínseca del algoritmo de Mínimos Cuadrados Poderados se han buscado métodos alternativos para la solución del problema de estimación de estado. Un método alternativo del WLS donde se incrementa su robustez a través de un estimador de Máxima-Probabilidad Generalizada (GM) se describe en [Zhao et al., 2017]. Los métodos de Mínima Mediana de los Cuadrados (LMS) y de Mínimo Recorte de los Cuadrados (LTS) son estudiados en [Mili et al., 1994]. En [Göl y Abur, 2014] se estudia

1.3. Objetivos

el método de Mínimo Valor Absoluto (LAV), este método tiene la propiedad de rechazo automático de datos erróneos.

En [Dehghanpour et al., 2019a] se comparan diferentes métodos para solucionar el problema de estimación de estado, lo cual se resume en la Tabla 1.1:

Método	Función Objetivo	Pros y Contras			
WLS	r^TWr	(+) Rápido, simple. (-) Sensible a Datos Erróneos.			
LMS	$med\{r_1^2,, r_m^2\}$	(+) Robusto contra datos erróneos y puntos de palanca. (-) Alto costo computacional y requiere un alto núme- ro de redundancia.			
LTS	$\sum_{i=1}^{h} r_{(i)}^2$	 (+) Robusto contra datos erróneos. (-) Alto costo computacional y requerimientos de memoria altos. 			
LAV	$\sum_{i=1}^{m} r_i $	(+) Robusto contra datos erróneos, ba- ja sensibilidad ante la incertidumbre de la impedancia de línea. (-) Altos costos computacionales, sensibilidad a puntos de palanca.			
GM	$\sum_{i=1}^{m} \sigma_i^{-2} \rho(r n_i)$	(+) Robusto contra datos erróneos.(-) Sensibilidad a selección de parámetros			

Tabla 1.1: Comparación de Formulaciones de Estimación de Estado.

1.3. Objetivos

El objetivo general de esta tesis es desarrollar una herramienta computacional que permita resolver el problema de estimación de estado de manera robusta, de tal forma que la estimación de estado en presencia de errores de medición se lleve a cabo de una forma precisa y más rápida que los métodos WLS.

En específico, se busca realizar la implementación del algoritmo de Mínimo Valor Absoluto para resolver el problema de estimación de estado en sistemas eléctricos de potencia de manera robusta, permitiendo así tener una estimación precisa, aún en presencia de datos incorrectos, y consecuentemente evitar errores en la toma de decisiones operativas debido a estimaciones erróneas del estado operativo del sistema.

1.4. Justificación

Desde el punto de vista técnico, el control operativo en tiempo real de un sistema eléctrico de potencia requiere del conocimiento preciso del estado del sistema. Por lo tan-

to, la estimación de estado es una herramienta esencial en todos los centros de control de energía para poder mantener la relación generación-demanda, así como, en caso de disturbios en la red, darse cuenta del mismo en un tiempo adecuado y poder realizar las medidas de control pertinentes.

Conforme aumentan la penetración de fuentes de energía alternativas y la demanda, surgen retos para que el proceso de monitoreo se lleve a cabo adecuadamente, debido a la naturaleza aleatoria de las fuentes renovables. Así mismo, con el aumento del tamaño de la red de transmisión, que conlleva una instalación creciente de instrumentos de medición, los errores de medición se incrementan y si no son identificados y corregidos de manera correcta pueden dar lugar a una estimación de estado imprecisa y como consecuencia a una toma de decisiones inadecuadas en la operación del sistema, cuyos efectos pueden llegar a ser catastróficos. [Force, 2004]

Por esta razón, es necesario investigar y desarrollar herramientas que permitan la estimación de estado de manera rápida y eficiente, en particular algoritmos que resuelvan el problema de estimación de estado de forma robusta para mitigar los efectos de los errores de medición en la red.

1.5. Metodología

La metodología para cumplir con los objetivos planteados en esta tesis se detalla a continuación:

- Hacer una revisión de literatura referente a la estimación de estado, con enfoque en particular en los algoritmos que permiten una estimación de estado robusta.
- En esta tesis se seleccionó el algoritmo de Mínimo Valor Absoluto, ya que su formulación permite realizar una estimación de estado robusta. Una vez seleccionado el algoritmo, se procede a su implementación en una plataforma computacional para realizar simulaciones. Para resolver dicho algoritmo se requiere implementar el método numérico de Newton-Raphson.
- Finalmente, se llevan a cabo casos de estudio para analizar la precisión, velocidad y robustez del algoritmo implementado.

1.6. Contenido de la Tesis

El resto de esta tesis se organiza como se describe a continuación:

En el Capítulo 2 se presenta la formulación del problema de estimación de estado. Se definen los diferentes tipos de mediciones y errores en los sistemas de potencia. Se hace la formulación matemática del algoritmo de mínimos cuadrados ponderados y se estudia el impacto de los datos erróneos en esta formulación, así como los métodos realizar el análisis de datos erróneos. Se describe la formulación matemática del algoritmo de mínimo valor absoluto, ejemplificándose el impacto de los datos erróneos en esta formulación y como es que hace una discriminación automática de los mismos.

En el Capítulo 3 se presentan casos de estudio comparando el método WLS y el método LAV. Se estudia la respuesta de los métodos a errores únicos, errores múltiples y errores en puntos de palanca. Se estudia el comportamiento numérico de los métodos mediante el análisis de sistemas de diferente tamaño, lo cual incluye el tiempo computacional requerido por los métodos para resolver los casos de estudio planteados.

Finalmente, en el Capítulo 4 se describen las conclusiones generales obtenidas del trabajo desarollado. Además, se sugieren posibilidades para trabajos futuros y temas de estudio, que expandan la línea de investigación presentada o mejoren algún aspecto de la misma.

Capítulo 2

Formulación del problema de estimación de estado

En este capítulo se presentan los diferentes tipos de mediciones utilizadas para el monitoreo de los sistemas eléctricos de potencia, así como los errores asociados a estas mediciones. También se describen de manera detallada el método de Mínimos Cuadrados Ponderados y el método de Mínimo Valor Absoluto para la solución del problema de estimación de estado, así como sus respectivas ventajas y desventajas para realizar el proceso de estimación de una manera confiable y eficiente.

Existen diferentes métodos que utilizan la matriz de covarianza de mediciones para obtener la estimación de estado, entre ellos el Método de Mínimos Cuadrados y el Filtro de Kalman Iterativo, se decidió por el WLS debido a que es donde más progreso se ha realizado en tema de estimación de estado robusta [Sarri et al., 2012].

2.1. Introducción

2.1.1. Definición de tipo de mediciones y errores

En los sistemas eléctricos de potencia existen tres tipos de mediciones [Gomez, 1986]:

■ Telemediciones: Son mediciones que se obtienen en tiempo real de una manera remota en subestaciones a través del SCADA. Las mediciones típicas que se incluyen son:

- Magnitudes de voltaje e inyecciones de potencia activa y reactiva en los nodos.
- Los flujos de potencia activa y reactiva en terminales de elementos de transmisión.
- Pseudomediciones: Son mediciones cuyos valores son obtenidos con base en datos históricos existentes, por lo cual son menos precisos que si fuesen medidos; por ejemplo, la potencia generada en las centrales o la demanda de las subestaciones. Para la selección de pseudomediciones existen métodos estadísticos y actualmente incluso se aplican técnicas de inteligencia artificial con machine learning [Dehghanpour et al., 2019b].
- Mediciones virtuales: Son mediciones que no requieren ser capturadas ya que su valor se considera de acuerdo a las características del sistema, como por ejemplo la inyección cero en las subestaciones de paso (nodos de tránsito).

Los datos telemedidos no son precisos, i.e., contienen errores. Algunas de las causas de estas mediciones erróneas se asocian a la inexactitud de la calibración de los transductores, el efecto de la conversión analógica-digital, el ruido en los canales de comunicación, el desbalance entre fases, entre otros. Con base a los resultados asociados a la estimación de estado es posible detectar e identificar mediciones erróneas ya que los valores medidos y estimados están relacionados entre sí a través de las leyes que gobiernan el comportamiento de los sistemas eléctricos. En este contexto, debe haber redundancia en el conjunto de mediciones para que se pueda realizar un proceso sistemático de detección, identificación y eliminación o correción de mediciones o datos erróneos.

Cabe mencionar que una sola medición puede tener errores por varias causas, por lo que se tendrá como valor del error al resultado de la suma acumulativa de los errores en los dispositivos que intervienen en la medición.

Los parámetros que definen la precisión de la medición son [Gomez, 1986]:

- Clase: Es el error máximo que el dispositivo de medición puede tener, tomado en tanto por cierto, con respecto al valor nominal de la señal de salida, en unas condiciones definidas por normas nacionales o internacionales.
- Linealidad: Es el error relativo en tanto por ciento, con respecto al valor nominal, que existe entre el valor verdadero y el valor obtenido con el dispositivo de medición calibrado perfectamente para que al valor nominal de entrada le corresponda el valor nominal de salida.
- **Histéresis**: Es el error que se puede dar en los dispositivos en el que la respuesta del instrumento en puntos o valores determinados es diferente al incrementar la señal de entrada que al decrementar la señal de entrada.

2.1. Introducción

Deriva térmica: Es el error que se puede dar al variar la temperatura del medio ambiente en el que se encuentra el dispositivo de medición con respecto a la medida que tiene a una temperatura de referencia.

• Otras magnitudes: Puede llegar a ser que alguna magnitud del sistema como la frecuencia de la red, el voltaje de alimentación, la impedancia de carga, etc. pudieran tener algún pequeño efecto sobre el dispositivo de medición y su precisión.

El parámetro que más influye en la precisión de la medición es la clase y por lo tanto será el único que se tomará en cuenta al realizar la estimación de estado. En la Tabla 2.1 se muestran los errores máximos admitidos en la norma IEC 61869-2 para transformadores.

Clase de Pre- cisión	Error $(\pm\%)$ A corriente (% de la nominal)				$\begin{array}{l} {\rm Des fase} \ (\pm \ {\rm Minutos}) \\ {\rm A} \ {\rm corriente} \ (\% \ {\rm de} \ {\rm la} \\ {\rm nominal}) \end{array}$				
	5 %	20 %	100 %	120 %	5 %	20 %	100 %	120 %	
0.1	0.4	0.2	0.1	0.1	15	8	5	5	
0.2	0.75	0.35	0.2	0.2	30	15	10	10	
0.5	1.5	0.75	0.5	0.5	90	45	30	30	
1	3.0	1.5	0.1	1.0	180	90	60	60	

Tabla 2.1: Errores máximos admitidos en la norma IEC 61869-2 para Transformadores.

2.1.2. Formulación del problema de estimación de estado

La formulación del problema de estimación de estado parte de que se tiene un sistema de potencia con n buses y m mediciones, las cuales tienen un error con distribución gaussiana. El vector de funciones no lineales, llamado vector de mediciones estimadas, $\mathbf{h}(\cdot)$, relaciona el vector de estado \mathbf{x} con el vector de mediciones físicas \mathbf{z} . El vector de errores de medición se representa como \mathbf{e} . Cabe mencionar que el valor esperado del ruido de medición se asume como nulo y completamente independiente. Con base en lo anterior, la representación matemática de las mediciones físicas es dada por

$$\mathbf{z} = \mathbf{h}(\mathbf{x}) + \mathbf{e} \quad , \tag{2.1}$$

donde,

z: vector del conjunto de mediciones físicas de dimensión Nm.

 \mathbf{x} : vector de las variables de estado de dimensión Ns.

h: relación matemática entre las mediciones y variables de estado (o vector funciones no

lineales) de dimensión Nm.

e: vector de errores acumulados a las mediciones físicas de dimensión Nm.

El problema de estimación de estado consiste en minimizar el error existente entre el conjunto de mediciones físicas y estimadas, por lo que puede plantearse por el siguiente problema de optimización:

$$\begin{array}{cc}
\min_{\mathbf{x}} & \mathbf{J}(\mathbf{z} - \mathbf{h}(\mathbf{x}))
\end{array}$$
(2.2)

$$s.a. \mathbf{q}(\mathbf{x}) = 0 (2.3)$$

$$\mathbf{c}(\mathbf{x}) \le 0,\tag{2.4}$$

donde,

 $\mathbf{q}(\cdot)$: vector de restricciones asociadas a mediciones virtuales.

 $\mathbf{c}(\cdot)$: vector de restricciones operativas.

 $J(\cdot)$: es la función objetivo que depende del tipo de algoritmo seleccionado para resolver el problema de estimación de estado. [Martínez-Parrales y Fuerte-Esquivel, 2021]

La diferencia entre los algoritmos de WLS y LAV es la elección de la función objetivo $\mathbf{J}(\cdot)$. Los algoritmos basados en WLS típicamente usan una función cuadrática como función objetivo, [Monticelli, 2001] mientras que, los algoritmos basados en LAV usan una función con norma L_1 como función objetivo [Dehghanpour et al., 2019a].

2.2. Formulación del problema de Mínimos Cuadrados Ponderados (WLS)

Con la finalidad de derivar el modelo matemático asociado al problema de estimación de estado utilizando el método de minímos cuadrados, primeramente se reordena (2.1):

$$\mathbf{e} = \mathbf{z} - \mathbf{h}(\mathbf{x}),\tag{2.5}$$

El estado verdadero de \mathbf{x} no se conoce, por lo tanto se utiliza el estimado $\hat{\mathbf{x}}$ para evaluar la función objetivo, es decir $\mathbf{x} = \hat{\mathbf{x}}$.

El problema de WLS puede ser formulado como el siguiente problema de optimización [Schweppe y Rom, 1970]:

$$\mathbf{min}_{\mathbf{x}} \quad \mathbf{J}(\mathbf{x}) = (\mathbf{z} - \mathbf{h}(\mathbf{x}))^{T} \quad \mathbf{W} \quad (\mathbf{z} - \mathbf{h}(\mathbf{x})), \tag{2.6}$$

donde, \mathbf{W} es la matriz de ponderaciones. Es común usar \mathbf{R}^{-1} como la matriz de ponderaciones. En este caso \mathbf{R} es la matriz de covarianza de errores de las mediciones donde los valores de σ se encuentran asociados con la precisión de los dispositivos de medición. Por último, los elementos de \mathbf{R}^{-1} son los inversos de las varianzas de error de las mediciones correspondientes σ_j^2 , tal que la relación entre las matrices \mathbf{W} y \mathbf{R}^{-1} es dada por

$$\mathbf{W} = \mathbf{R}^{-1} = \begin{bmatrix} \frac{1}{\sigma_1^2} & \cdot & \cdot & \cdot \\ \cdot & \frac{1}{\sigma_2^2} & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \frac{1}{\sigma_m^2} \end{bmatrix},$$
(2.7)

Para obtener la solución de (2.6), se debe satisfacer condición de optimalidad de primer orden [Gomez, 1986], asumiendo que es un mínimo:

$$\frac{\partial \mathbf{J}(\mathbf{x})}{\partial \mathbf{x}} = -\mathbf{H}(\mathbf{x})^T \quad \mathbf{W} \quad (\mathbf{z} - \mathbf{h}(\mathbf{x})) = 0, \tag{2.8}$$

donde $\mathbf{J}(\mathbf{x}) = (\mathbf{z} - \mathbf{h}(\mathbf{x}))^T \mathbf{W} (\mathbf{z} - \mathbf{h}(\mathbf{x})) \mathbf{y} \mathbf{H}(\mathbf{x}) = \frac{\partial \mathbf{h}(\mathbf{x})}{\partial \mathbf{x}}$ es el Jacobiano asociado a las derivadas parciales de las mediciones estimadas $\mathbf{h}(\mathbf{x})$ con respecto a las variables de estado.

Para resolver el conjunto de ecuaciones nolineales (2.8) se realiza un proceso iterativo basado en el método de Gauss-Newton [Monticelli y Garcia, 1983].

2.2.1. Método de Gauss-Newton para resolver el problema de WLS

La matriz Jacobiana en (2.8) es dada por

$$\mathbf{H} = \frac{\partial \mathbf{h}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{h}_{1}(\cdot)}{\partial \mathbf{x}_{1}} & \frac{\partial \mathbf{h}_{1}(\cdot)}{\partial \mathbf{x}_{2}} & \cdots \\ \frac{\partial \mathbf{h}_{2}(\cdot)}{\partial \mathbf{x}_{1}} & \frac{\partial \mathbf{h}_{2}(\cdot)}{\partial \mathbf{x}_{2}} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}, \tag{2.9}$$

Aplicando series de Taylor para linearizar (2.8), se obtiene una aproximación de primer orden

$$\mathbf{h}(\mathbf{x}) = \mathbf{h}(\mathbf{x}^{(0)}) + \Delta \mathbf{x}^{(0)} \frac{\partial \mathbf{h}}{\partial \mathbf{x}} \bigg|^{(0)}, \tag{2.10}$$

donde $\Delta \mathbf{x}^{(0)} = \mathbf{x}^{(1)} - \mathbf{x}^{(0)}$ es la correción del vector de estados, siendo $\mathbf{x}^{(1)}$ el nuevo valor de estado calculado y $\mathbf{x}^{(0)}$ el valor calculado en la iteración previa.

Substituyendo (2.9) en (2.10) y después substituyendo en (2.8) se obtiene:

$$\left[\mathbf{H}^{T}\mathbf{R}^{-1}\mathbf{H}\right]\Delta\mathbf{x} = \mathbf{H}^{T}\mathbf{R}^{-1}(\mathbf{z} - \mathbf{h}(\mathbf{x})), \tag{2.11}$$

En un sistema de potencia de corriente alterna, $\mathbf{h}(\mathbf{x})$ es un vector de ecuaciones no lineales, por lo tanto (2.11) se resuelve iterativamente para encontrar $\Delta \mathbf{x}$. Después de cada iteración, la solución se actualiza de la siguiente forma:

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \Delta \mathbf{x}^k,\tag{2.12}$$

El proceso de solución iterativa se lleva a cabo hasta que el incremento máximo de todas las variables de estado sea menor a una tolerancia pre establecida, es decir,

$$MAX\left(|\Delta\mathbf{x}_i|\right) \le \xi,$$
 (2.13)

Para las condiciones iniciales de las variables de estado generalmente se utiliza el perfil de voltaje plano, donde los ángulos de voltaje son cero y las magnitudes de voltaje son uno.

Finalmente, en la Figura 2.1 se muestra el diagrama de flujo de el algoritmo de WLS para la solución del problema de estimación de estado en un sistema de potencia de corriente alterna [Zamora, 2004].

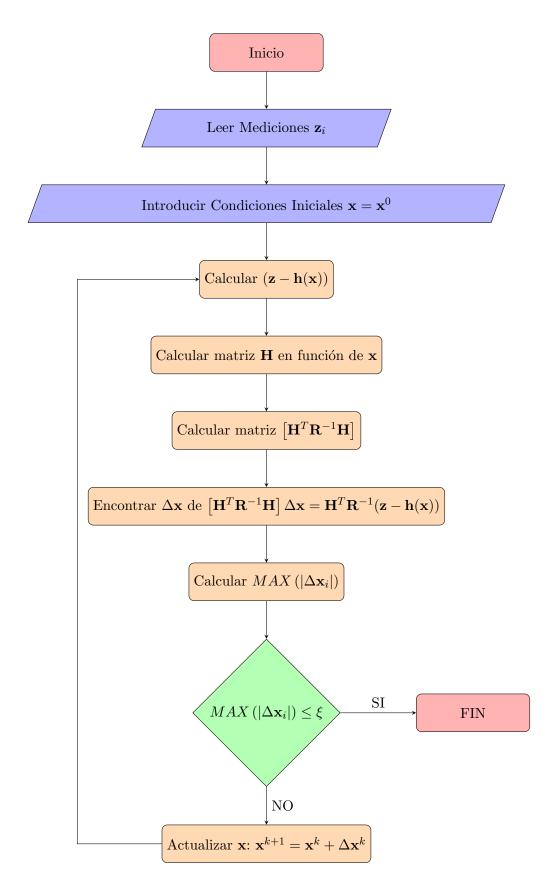


Figura 2.1: Diagrama de Flujo Estimación de Estado WLS

Por último, la principal desventaja del método WLS es el hecho que no es robusto a datos erróneos. Si las mediciones obtenidas del SCADA contienen errores gruesos, de acuerdo a la prueba de χ^2 , los resultados obtenidos por WLS se verán afectados gravemente. Para solucionar este problema, técnicas de post-procesamiento deben ser aplicadas para detectar e identificar los datos erróneos.

2.2.2. Análisis de mediciones erróneas

Para solucionar el problema de procesamiento de datos erróneos en las metodologías basadas en WLS se han propuesto varias técnicas [Handschin et al., 1975]. La idea principal es utilizar la redundancia presente en el sistema para producir un estimado correcto independientemente de los errores de medición. El método más utilizado para realizar la detección e identificación de mediciones erróneas está basado en la prueba estadística Chi-Cuadrada (χ^2) y la prueba de Máximo Residuo Normalizado (r^N), respectivamente.

2.2.2.1. Prueba χ^2

La prueba de χ^2 sirve para detectar si existe un error grueso, en los datos de medición bajo la consideración de que si una variable $(\hat{\mathbf{e}}_i)$ tiene una distribución normal, entonces su cuadrado $(\hat{\mathbf{e}}_i^2)$ tiene una distribución Chi-Cuadrada [Spiegel et al., 2000]. La función objetivo $\mathbf{J}(\mathbf{x})$ se puede aproximar a una distribución χ^2 con un grado de libertad k=m-ns, donde m es el número de mediciones y ns es el número de estados del sistema. Con base a un intervalo de precisión y el número de grados de libertad se determina el valor de χ^2 y se compara con el valor de $\mathbf{J}(\mathbf{x})$. Si el valor de la función objetivo es mayor significa que hay un error en el vector de mediciones.

Dependiendo del valor de k, el valor de χ^2 se determina de diferentes maneras:

- $k \leq 30$ los valores se determinan de acuerdo a la Tabla 2.2 [Papoulis, 1989].
- $\bullet \ k \geq 30$ los valores se determinan de acuerdo a la fórmula

$$\chi_{k,a}^2 \approx \frac{1}{2} (z_a + \sqrt{2k-1})^2$$
 (2.14)

donde z_a es una constante cuyo valor se determina dependiendo del valor de precisión deseado. Los valores de z_a se encuentran en la Tabla 2.3.

Este método tiene un costo computacional muy bajo, pero puede identificar de manera incorrecta la medición errónea debido al efecto de embarrado o difuminado (smearing effect) [Martínez-Parrales y Fuerte-Esquivel, 2021].

k		$(1-\alpha)$								
κ	0.005	0.01	0.025	0.05	0.1	0.9	0.95	0.975	0.99	0.995
1	0.0	0.0	0.0	0.0	0.2	2.71	3.0	5.02	6.63	7.88
2	0.01	0.02	0.05	0.1	0.21	4.61	5.99	7.38	9.21	10.60
3	0.07	0.11	0.22	0.35	0.58	6.25	7.81	9.35	11.34	12.84
4	0.21	0.3	0.48	0.71	1.06	7.78	9.49	11.14	13.28	14.86
5	0.41	0.55	0.83	1.15	1.61	9.24	11.07	12.83	15.09	16.75
6	0.68	0.87	1.24	1.64	2.20	10.64	12.59	14.45	16.81	18.55
7	0.99	1.24	1.69	2.17	2.83	12.02	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	3.49	13.36	15.51	17.53	20.09	21.96
9	1.73	2.09	2.70	3.33	4.17	14.68	16.92	19.02	21.67	23.59
10	2.16	2.56	3.25	3.94	4.87	15.99	18.31	20.48	23.21	25.19
12	3.07	3.57	4.40	5.23	6.30	18.55	21.03	23.34	26.22	28.30
14	4.07	4.66	5.63	6.57	7.79	21.06	23.68	26.12	29.14	31.32
16	5.14	5.81	6.91	7.96	9.31	23.54	26.30	28.85	32.00	34.27
18	6.26	7.01	8.23	9.39	10.86	25.99	28.87	31.53	34.81	37.16
20	7.43	8.26	9.59	10.85	12.44	28.41	31.41	34.17	37.57	40.00
22	8.60	9.50	11.0	12.3	14.0	30.8	33.9	36.8	40.3	42.8
24	9.90	10.9	12.4	13.8	15.7	33.2	36.4	39.4	43.0	45.6
26	11.2	12.2	13.8	15.4	17.3	35.6	38.9	41.9	45.6	48.3
28	12.5	13.6	15.3	16.9	18.9	37.9	41.3	44.5	48.3	51.0
30	13.8	15.0	16.8	18.5	20.6	40.3	43.8	47.0	50.9	53.7

Tabla 2.2: Valores de $\chi^2_{k,a}$.

Tabla 2.3: Valores de z_a .

1 - α	0.90	0.925	0.95	0.975	0.99	0.995	0.999	0.9995
z_a	1.282	1.44	1.645	1.967	2.326	2.576	3.09	3.291

2.2.2.2. Prueba Máximo Residuo Normalizado

Una vez detectada la existencia de un dato erróneo mediante la prueba χ^2 , la medición errónea es identificada mediante la prueba del Máximo Residuo Normalizado (r^N) [Monticelli y Garcia, 1983]. Esta prueba consiste en normalizar los residuos estimados de las mediciones, los cuales corresponden a la diferencia entre mediciones físicas y estimadas. La medición asociada con el mayor residuo normalizado será identificada como la medición errónea y será eliminada de la base de datos de mediciones para proceder a la realización de otra estimación de estado considerando el conjunto de mediciones resultante.

El residuo normalizado asociado a la i-ésima medición es calculado por

$$r_i^N = \frac{|r_i|}{\sqrt{\Omega_i}} = \frac{|r_i|}{\sqrt{R_{ii}S_{ii}}},\tag{2.15}$$

donde,

 r_i^N es el residuo normalizado.

 r_i es el residuo de la medición.

 $\Omega=SR$ es la matriz de covarianza residual, Res la matriz de covarianza de errores de medición.

S es la matriz de sensibilidad residual dada por [Monticelli y Garcia, 1983]

$$\mathbf{S} = \mathbf{I} - \mathbf{K} = \mathbf{I} - \mathbf{H}\mathbf{G}^{-1}\mathbf{H}^T\mathbf{W},\tag{2.16}$$

donde, $\mathbf{K} = \mathbf{H} \mathbf{G}^{-1} \mathbf{H}^T \mathbf{W}$ es conocida normalmente como la matriz "hat".

La prueba falla en ciertos casos dependiendo del elemento de la matriz de medición que contiene el error [Abur y Gomez-Exposito, 2004]. Por cada dato erróneo presente, la matriz de covarianza residual (Ω) necesita ser calculada, lo que implica un costo computacional alto.

Por último, la Figura 2.2 muestra el diagrama de flujo para una estimación de estado con el método WLS y técnicas de post-procesamiento.

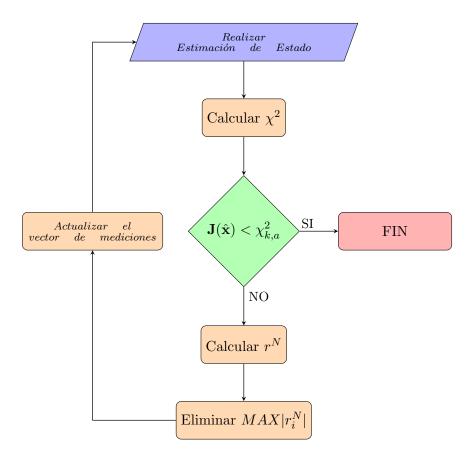


Figura 2.2: Diagrama de Flujo Estimación de Estado WLS y Post-procesamiento.

2.3. Formulación del problema de Mínimo Valor Absoluto

El método del mínimo valor absoluto para resolver el problema de estimación de estado de una manera robusta se presenta en esta sección. El método LAV intenta resolver el problema de estimación de estado minimizando la suma de los valores absolutos de los residuos de mediciones.

La i-ésima medición z_i es representada por la relación lineal

$$z_i = h_i(\mathbf{x}) + e_i, \tag{2.17}$$

tal que para todo el conjunto de mediciones se tiene

$$\mathbf{z} = \mathbf{h}(\mathbf{x}) + \mathbf{e},\tag{2.18}$$

donde la i-ésima medición \mathbf{z}_i es representada por la relación lineal dada por el producto de una matriz de vectores $\mathbf{h}_i \in \mathbf{R}^n$, y el vector de estados \mathbf{x} , al cual se le suma el correspondiente error aleatorio \mathbf{e}_i .

El estimado LAV $\hat{\mathbf{x}}$ para \mathbf{x} será dado por la solución al problema de optimización

$$s.a. \quad \mathbf{z} - \mathbf{h}\mathbf{x} = \mathbf{r} \tag{2.20}$$

donde,

h es la relación matemática entre las mediciones y variables de estado de dimensión Nm.

- $\mathbf{o} \in \mathbb{R}^m$ es un vector unitario.
- $\mathbf{r} \in \mathbb{R}^m$ es un vector de residuos de medición.

Por último, la función objetivo es igual a la suma del valor absoluto de los residuos de mediciones.

La principal fuente de robustez del método LAV es la propiedad de interpolación, que implica que seleccionará las mejores n medidas, seleccionando las mediciones con menor residuo de las m disponibles para obtener el estimado que satisfacerá las n ecuaciones de mediciones. De esta forma, las mediciones erróneas son filtradas de manera automática. Es también importante hacer notar que al minimizar el valor absoluto de los residuos, y no sus cuadrados, los datos erróneos tendrán un impacto menor en la desviación de la estimación.

En el método WLS es posible llegar a una solución numérica al minimizar la función objetivo $\mathbf{J}(\mathbf{x})$ resolviendo el conjunto de ecuaciones algebraicas no lineales asociadas con la primera condición de optimalidad. Analizando (2.19) se puede observar que la función objetivo no es diferenciable en 0, por lo tanto, no es posible encontrar el mínimo al seleccionar el gradiente de la función objetivo igual a 0. Esto requiere técnicas de solución especiales que son computacionalmente costosas con respecto al WLS [Venkatraman et al., 2019]. Otra desventaja es el hecho de que el método es susceptible cuando hay datos erróneos en mediciones de apalancamiento, es decir, en mediciones relacionadas eléctricamente con mediciones erróneas.

2.3.1. Estimación LAV como un problema LP

Se puede demostrar que el problema definido en (2.19) puede ser formulado como un problema de Programación Lineal (LP), y por lo tanto resuelto por los métodos de LP [Wagner, 1959] [Bartels *et al.*, 1978].

Con la finalidad de derivar el problema de estimación de estado como un problema de programación lineal, se plantean restricciones de desigualdad en función de una variable auxiliar ζ_i

$$|r_i| \leq \zeta_i, \qquad 1 \leq i \leq m.$$
 (2.21)

Al introducir dos variables slack no-negativas, i.e., l_i y k_i las restricciones de desigualdad son reemplazadas por:

$$r_i - l_i = -\zeta_i \tag{2.22}$$

$$r_i + k_i = \zeta_i. (2.23)$$

De manera similar, se definen cuatro nuevas variables no-negativas, i.e., x_i^u , x_i^v , u_i y v_i de forma que:

$$x_i = x_i^u - x_i^v \tag{2.24}$$

$$r_i = u_i - v_i \tag{2.25}$$

$$u_i = \frac{1}{2}l_i \tag{2.26}$$

$$v_i = \frac{1}{2}k_i. {(2.27)}$$

Reemplazando $\zeta_i = u_i + v_i$ en la función objetivo (2.19) con base a la restricción de desigualdad (2.21), se obtendrá una solución para el estimado LAV al solucionar el siguiente problema de programación lineal:

$$\begin{array}{ccc}
Min & \sum_{i=1}^{m} & [u_i + v_i]
\end{array}$$
(2.28)

$$s.a \quad \sum_{i=1}^{n} \quad h_{ij}(x_j^u - x_j^v) = -u_i + v_i + z_i, \qquad 1 \leq i \leq m$$
 (2.29)

$$x_j^u, x_j^v \ge 0, \quad 1 \le j \le n$$
 (2.30)
 $u_i, v_i \ge 0, \quad 1 \le i \le m.$ (2.31)

$$u_i, v_i \geq 0, \quad 1 \leq i \leq m.$$
 (2.31)

El método Simplex para solucionar el problema de programación lineal descrito por (2.28) - (2.31) es presentado a continuación.

Método Simplex 2.3.1.1.

El problema descrito por (2.28) - (2.31) se lineariza de la siguiente manera:

$$z = h(x) + e (2.32)$$

$$\mathbf{z} + \Delta \mathbf{z} = \mathbf{z} + \frac{\delta \mathbf{z}}{\delta \mathbf{x}} \delta \mathbf{x} \tag{2.33}$$

$$\mathbf{z} + \Delta \mathbf{z} = \mathbf{z} + \frac{\delta(\mathbf{h}(\mathbf{x}) + \mathbf{e})}{\delta \mathbf{x}} \delta \mathbf{x}$$
 (2.34)

$$z + \frac{\delta h(x)}{\delta x} \Delta x + \frac{\delta e}{\delta x} \Delta x = z + H \Delta x + e$$
 (2.35)

$$\mathbf{z} + \frac{\delta \mathbf{h}(\mathbf{x})}{\delta \mathbf{x}} \Delta \mathbf{x} + \frac{\delta \mathbf{e}}{\delta \mathbf{x}} \Delta \mathbf{x} = \mathbf{z} + \mathbf{H} \Delta \mathbf{x} + \mathbf{e}_n$$
 (2.36)

$$\therefore \Delta \mathbf{z} = \mathbf{H} \Delta \mathbf{x} + \mathbf{e}_n = \mathbf{H} \Delta \mathbf{x} + \mathbf{e} = \mathbf{H} [\Delta \mathbf{x}_u - \Delta \mathbf{x}_v] + \mathbf{e}$$
 (2.37)

El problema descrito por (2.32) - (2.37) se puede formular en forma de un problema de LP compacta como:

$$\begin{array}{ccc}
\min_{\mathbf{X}} & \mathbf{p}^T & \mathbf{Y}
\end{array} \tag{2.38}$$

$$s.a. \qquad \mathbf{A} \quad \mathbf{Y} \quad = \quad \mathbf{b} \tag{2.39}$$

$$\mathbf{Y} \geq 0, \tag{2.40}$$

donde:

 $\mathbf{p}^T = [0_n, 0_n, 1_m, 1_m]$

 $0_n = [0, ..., 0]$, un vector cero de orden n,

 $1_m = [1, ..., 1]$, un vector de orden m, donde todos los elementos son 1,

 $\mathbf{b} = \Delta \mathbf{z},$

 $\mathbf{Y}^T = [\Delta x_u^T \quad \Delta x_v^T, \quad \Delta u^T, \quad \Delta v^T],$

 $\mathbf{A} = \begin{bmatrix} H & -H & I_m & -I_m \end{bmatrix}$

 $\mathbf{I}_m = \text{matriz identidad de orden m.}$

El problema de programación lineal (2.19) puede resolverse por el método simplex.

Como se mencionó anteriormente la propiedad de interpolación de la formulación LAV implica que se seleccionarán n mediciones de las m disponibles, y obtendrá un estimado que satisfaga las n ecuaciones de medición con residuo cero [David G. Luenberger, 2008]. En este contexto, las mediciones se dividen en dos conjuntos en cada iteración de la estimación de estado:

- Conjunto N: Mediciones esenciales con residuo cero.
- Conjunto B: Mediciones sobrantes con residuo no-cero.

La matriz de mediciones y su Jacobiano pueden ser divididas conforme los conjuntos de mediciones \mathbf{N} y \mathbf{B} , cuyas letras significan medición no-básica y básica, respectivamente. Con base a lo anterior, se hacen las siguientes definiciones:

$$\mathbf{H} = \begin{bmatrix} \mathbf{H}_n \\ \mathbf{H}_b \end{bmatrix}, \qquad \Delta \mathbf{z} = \begin{bmatrix} \Delta \mathbf{z}_n \\ \Delta \mathbf{z}_b \end{bmatrix}, \tag{2.41}$$

donde,

 \mathbf{H}_n es la matriz Jacobiana asociada a las mediciones en el conjunto \mathbf{N} .

 \mathbf{H}_b es la matriz Jacobiana asociada a las mediciones en el conjunto \mathbf{B} .

 $\Delta \mathbf{z}_n$: Vector de residuos de mediciones no-básicas pertenecientes al conjunto \mathbf{N} .

 $\Delta \mathbf{z}_b$: Vector de residuos de mediciones básicas pertenecientes al conjunto \mathbf{B} .

La aplicación del método simplex tiene las siguientes dos etapas:

1. Iniciación:

Dada la matriz \mathbf{A} ($m \ x \ (2m + 2n)$), elegir una base \mathbf{B} ($m \ x \ m$), la cual es una sub-matriz no singular formada por m columnas independientes de \mathbf{A} . Entonces, se particionan \mathbf{A} y \mathbf{Y} de la siguiente forma:

$$\mathbf{A} = [\mathbf{B} \quad \mathbf{D}],\tag{2.42}$$

$$\mathbf{Y}^T = [\mathbf{Y}_{\mathbf{B}}^T \quad Y_{\mathbf{D}}^T]. \tag{2.43}$$

La base inicial tendrá que contener una matriz diagonal con elementos ± 1 , donde a los elementos diagonales se les asignará el mismo signo que tiene el elemento correspondiente del lado derecho \mathbf{b}_i . Esto asegura la factibilidad de la solución inicial que está dada por:

$$\mathbf{Y_B} = \mathbf{B}^{-1}\mathbf{b} = |\mathbf{b}| \ge 0,\tag{2.44}$$

$$\mathbf{Y_D} = 0. \tag{2.45}$$

2. Optimización Iterativa:

La solución del método simplex prosigue aplicando las reglas simplex [David G. Luenberger, 2008] que consiste en el intercambio de las columnas de ${\bf B}$ y ${\bf D}$ hasta que no sea posible reducir el valor de la función objetivo.

Durante las primeras n iteraciones, la elección de las columnas para ingresar a la base debe ser restringida a las columnas correspondientes a las variables de estado $\Delta \mathbf{x}_u$ y $\Delta \mathbf{x}_v$ [David G. Luenberger, 2008]. Si no se encuentra ninguna columna que pueda entrar a la base durante las primeras n iteraciones, esto indica que el vector desconocido $\Delta \mathbf{x}$ no puede ser estimado con el conjunto de mediciones, lo cual significa que el sistema no es observable [David G. Luenberger, 2008].

Después de las primeras n iteraciones, la estrategia para elegir el pivote será modificada, i.e., a las columnas asociadas con las variables básicas $\Delta \mathbf{x}_u$ y $\Delta \mathbf{x}_v$ no se les permitirá dejar la base. Por lo tanto, los intercambios de columnas siguientes sólo serán realizados entre aquellas asociadas con las variables \mathbf{u}_i y \mathbf{v}_i .

Considerando que un conjunto de mediciones esenciales se ha elegido con el método descrito, la restricción en (2.29 - 2.31) se puede re-escribir como:

$$\underbrace{\begin{bmatrix} \mathbf{H}_n & 0 \\ \mathbf{H}_b & \mathbf{I}_{(m-n)} \end{bmatrix}}_{\mathbf{B}} \begin{bmatrix} \Delta \mathbf{x} \\ \mathbf{s}_b \end{bmatrix} + \underbrace{\begin{bmatrix} \mathbf{I}_n \\ 0 \end{bmatrix}}_{\mathbf{D}} [\mathbf{s}_n] = \begin{bmatrix} \Delta \mathbf{z}_n \\ \Delta \mathbf{z}_b \end{bmatrix}, \tag{2.46}$$

donde.

 $\mathbf{s}_n = \mathbf{u}_n - \mathbf{v}_n = 0$, que implica $\mathbf{u}_n = \mathbf{v}_n = 0$,

 $\mathbf{s}_b = \mathbf{u}_b - \mathbf{v}_b,$

 \mathbf{I}_{m-n} e **I** son matrices identidad.

Se observa que la ecuación (2.46) es idéntica a (2.38), lo cual significa que se ha llevado a cabo la partición en los conjuntos \mathbf{N} y \mathbf{B} de forma correcta.

El vector de costos $\mathbf{c_B}$ asociado con el vector de solución básico $[\Delta \mathbf{x}; \mathbf{s}_b]$ y el vector de costos $\mathbf{c_D}$ asociado con las variables slack no-básicas \mathbf{s}_n , será [David G. Luenberger, 2008]:

$$\mathbf{c}_{\mathbf{B}} = \begin{bmatrix} 0 \\ \mathbf{c}_b \end{bmatrix}, \qquad \mathbf{c}_{\mathbf{D}} = [\mathbf{s}_n] \tag{2.47}$$

Y el costo relativo $\mathbf{r_c}$ de rechazar una de las mediciones previamente seleccionadas se obtiene de [David G. Luenberger, 2008]

$$\mathbf{r}_c^T = \mathbf{c}_n^T - \mathbf{c}_\mathbf{B}^T \cdot \mathbf{B}^{-1} \cdot \mathbf{D} \tag{2.48}$$

$$= \mathbf{c}_n^T - \lambda^T \cdot \mathbf{D}. \tag{2.49}$$

Debido a la estructura de la matriz \mathbf{D} , solamente las primeras n entradas de λ ($\lambda^T = [\lambda_n^T, \lambda_b^T]$) deben ser calculadas:

$$\lambda_n = (\mathbf{H}_n^T)^{-1} \cdot [-\mathbf{H}_b^T \cdot \mathbf{c}_b] \tag{2.50}$$

$$\mathbf{r}_c = \mathbf{c}_n - \lambda_n. \tag{2.51}$$

La medición que se rechazará será la asociada al \mathbf{r}_c más negativo. Después, se elige la medición que reemplazará a la rechazada. La proporción mínima dada por

indicará el número de mediciones a seleccionarse entre las mediciones rechazadas (m - n). Se observa que:

$$\mathbf{y}_b = -\mathbf{H}_b \cdot \mathbf{y}_n, \tag{2.53}$$

$$\mathbf{y}_n = \mathbf{H}_n^{-1} \cdot \mathbf{e}_j, \tag{2.54}$$

donde \mathbf{e}_j es un n-vector que contiene un 1 en su j_{esimo} elemento, siendo j el índice de la medición con el costo relativo negativo más grande, por lo que será el que dejará el conjunto \mathbf{N} .

Entonces, el algoritmo del método Simplex para el problema de estimación LAV será:

- 1. Resolver: $\mathbf{H}_n \cdot \Delta \mathbf{x} = \Delta \mathbf{z}_n$ Calcular: $\mathbf{s}_b = \Delta \mathbf{z}_b - \mathbf{H}_b \cdot \Delta \mathbf{x}$
- 2. Resolver: $\mathbf{H}_n^T \cdot \lambda_n = -\mathbf{H}_b^T \cdot \mathbf{c}_b$ Calcular $\mathbf{r}_c = \mathbf{c}_n - \lambda_n$ Elegir $\substack{min \ j}$ $\mathbf{r}_c(j) < 0$
- 3. Si se cumple que todo $\mathbf{r}_c(j) \geq 0$; se ha llegado a la solución óptima, si no, proseguir al paso 4.
- 4. Solucionar: $\mathbf{H}_n \cdot \mathbf{y}_n = \mathbf{e}_j$ Calcular $\mathbf{y}_b = -\mathbf{H}_b \cdot \mathbf{y}_n$ Calcular $\min_k \left(\frac{\mathbf{s}_b(k)}{\mathbf{y}_b(k)}\right) > 0$
- 5. Actualizar \mathbf{H}_n^T ; Reemplazando la columna j_{esima} de \mathbf{H}_n^T con la k_{esima} fila de \mathbf{H}_b . Si se cumple el límite de iteraciones; terminar. Si no, ir al paso 1.

Por lo tanto, en ausencia de puntos de palanca, el método simplex obtendrá un estimado donde se rechazan los datos erróneos. La principal desventaja de este método es la escalabilidad, ya que en sistemas grandes el costo computacional es muy alto, y por lo tanto no es viable para una estimación de estado en tiempo real.

2.3.2. LAV por Métodos de Gradiente

En [Venkatraman et al., 2019] se propone un nuevo algoritmo en el cual el problema de LAV se formula como un problema no lineal continuo que puede ser resuelto utilizando métodos existentes basados en gradientes. De tal forma se busca combinar las propiedades de convergencia del WLS y la propiedad de eliminación de datos erróneos del LAV.

En vez de formular el problema LAV como en (2.19 - 2.20), se propone una formulación alternativa:

$$\min_{\mathbf{x}} \quad \sum_{i=1}^{m} \sqrt{(\mathbf{z}_i - \mathbf{h}_i(\mathbf{x}))^2 + \epsilon}, \tag{2.55}$$

donde ϵ se hace progresivamente más pequeña y es cercana a cero en la solución.

Puesto que la función objetivo J(x) se hace diferenciable en cero, una solución numérica para minimizar $\mathbf{J}(\mathbf{x})$ puede ser obtenida resolviendo $\frac{\partial \mathbf{J}(\mathbf{x})}{\partial \mathbf{x}} = 0$. La primer condición de optimalidad se satisface por

$$\mathbf{g}(\mathbf{x}) = \frac{\partial \mathbf{J}(\mathbf{x})}{\partial \mathbf{x}} = \frac{\partial \left(\sum_{i=1}^{m} \sqrt{(\mathbf{z}_i - \mathbf{h}_i(\mathbf{x}))^2 + \epsilon} \right)}{\partial \mathbf{x}} = 0, \tag{2.56}$$

donde, $\mathbf{g} \in \mathbb{R}^{2n-1}$

El elemento $j_{\acute{e}simo}$ del vector ${\bf g}$ es dado por [Venkatraman et al., 2019]

$$\mathbf{g}_{j}(\mathbf{x}) = \frac{\partial \mathbf{J}(\mathbf{x})}{\partial \mathbf{x}_{j}} \tag{2.57}$$

$$= \sum_{i=1}^{m} \frac{1}{2\sqrt{(\mathbf{z}_i - \mathbf{h}_i(\mathbf{x}))^2 + \epsilon}} \cdot \left(-\frac{\partial \mathbf{h}_i(\mathbf{x})}{\partial \mathbf{x}_j}\right)$$
(2.58)

$$= -\left(\frac{\partial \mathbf{h}_{1}(\mathbf{x})}{\partial \mathbf{x}_{j}} \cdots \frac{\partial \mathbf{h}_{m}(\mathbf{x})}{\partial \mathbf{x}_{j}}\right) \cdot \begin{pmatrix} \frac{\mathbf{z}_{1} - \mathbf{h}_{1}(\mathbf{x})}{\sqrt{(\mathbf{z}_{1} - \mathbf{h}_{1}(\mathbf{x}))^{2} + \epsilon}} \\ \vdots \\ \frac{\mathbf{z}_{m} - \mathbf{h}_{m}(\mathbf{x})}{\sqrt{(\mathbf{z}_{m} - \mathbf{h}_{m}(\mathbf{x}))^{2} + \epsilon}} \end{pmatrix}, \tag{2.59}$$

por lo tanto [Venkatraman et al., 2019]

$$\mathbf{g}(\mathbf{x}) = \frac{\partial \mathbf{J}(\mathbf{x})}{\partial \mathbf{x}} \tag{2.60}$$

$$\mathbf{g}(\mathbf{x}) = \frac{\partial \mathbf{J}(\mathbf{x})}{\partial \mathbf{x}}$$

$$= \begin{pmatrix} \frac{\partial \mathbf{J}(\mathbf{x})}{\partial \mathbf{x}_{1}} \\ \vdots \\ \frac{\partial \mathbf{J}(\mathbf{x})}{\partial \mathbf{x}_{2n-1}} \end{pmatrix}$$

$$(2.60)$$

$$= -\begin{pmatrix} \frac{\partial \mathbf{h}_{1}(\mathbf{x})}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial \mathbf{h}_{m}(\mathbf{x})}{\partial \mathbf{x}_{1}} \\ \vdots & \cdots & \vdots \\ \frac{\partial \mathbf{h}_{1}(\mathbf{x})}{\partial \mathbf{x}_{2n-1}} & \cdots & \frac{\partial \mathbf{h}_{m}(\mathbf{x})}{\partial \mathbf{x}_{2n-1}} \end{pmatrix} \cdot \begin{pmatrix} \frac{\mathbf{z}_{1} - \mathbf{h}_{1}(\mathbf{x})}{\sqrt{(\mathbf{z}_{1} - \mathbf{h}_{1}(\mathbf{x}))^{2} + \epsilon}} \\ \vdots \\ \frac{\mathbf{z}_{m} - \mathbf{h}_{m}(\mathbf{x})}{\sqrt{(\mathbf{z}_{m} - \mathbf{h}_{m}(\mathbf{x}))^{2} + \epsilon}} \end{pmatrix}$$
(2.62)

$$= -\mathbf{H}(\mathbf{x})^T \bar{\mathbf{h}}(\mathbf{x}), \tag{2.63}$$

donde $\mathbf{H}^T \in \mathbb{R}^{2n-1 \cdot m}$ es la transpuesta de la matriz Jacobiana de las mediciones estimadas.

La condición de optimalidad de primer orden descrita en (2.56) puede ser escrita como

$$\mathbf{g}(\mathbf{x}) = -\mathbf{H}^{T}(\mathbf{x}) \cdot \bar{\mathbf{h}}(\mathbf{x}) = 0. \tag{2.64}$$

El sistema de ecuaciones descrito por (2.64) puede ser resuelto utilizando el método de Newton utilizando la serie de Taylor alrededor de un punto \mathbf{x}_i y despreciando los términos de orden mayor que uno:

$$\mathbf{g}(\mathbf{x}) = \mathbf{g}(\mathbf{x}_i) + \frac{\partial \mathbf{g}(\mathbf{x}_i)}{\partial \mathbf{x}} (\mathbf{x} - \mathbf{x}_i) = 0$$
 (2.65)

La ecuación (2.65) puede ser resuelta de forma iterativa calculando \mathbf{x} - \mathbf{x}_i hasta que un punto que satisfaga (2.64) sea alcanzado:

$$\mathbf{G}(\mathbf{x}_i) \cdot (\mathbf{x}_{i+1} - \mathbf{x}_i) = \mathbf{H}^T(\mathbf{x}) \cdot \bar{\mathbf{h}}(\mathbf{x}), \tag{2.66}$$

donde $G(x) = \frac{\partial g(x)}{\partial x}$ es la matriz de ganancia [Venkatraman *et al.*, 2019]:

$$\mathbf{G}(\mathbf{x}) = \frac{\partial \mathbf{g}(\mathbf{x})}{\partial \mathbf{x}} \tag{2.67}$$

$$= -\frac{\partial \mathbf{H}^{T}(\mathbf{x}) \cdot \bar{\mathbf{h}}(\mathbf{x})}{\partial \mathbf{x}}$$
 (2.68)

$$= -\mathbf{H}^{T}(\mathbf{x}) \cdot \frac{\partial \bar{\mathbf{h}} \mathbf{x}}{\partial \mathbf{x}} - \frac{\partial \mathbf{H}^{T}(\mathbf{x})}{\partial \mathbf{x}} \cdot \bar{\mathbf{h}}(\mathbf{x}). \tag{2.69}$$

El segúndo término en (2.69) puede despreciarse dado que $\frac{\partial \mathbf{H}^T(\mathbf{x})}{\partial \mathbf{x}}$ es muy pequeño, por lo tanto:

$$\mathbf{G}(\mathbf{x}) \approx -\mathbf{H}^T(\mathbf{x}) \cdot \frac{\partial \bar{\mathbf{h}}(\mathbf{x})}{\partial \mathbf{x}},$$
 (2.70)

donde \mathbf{H}^T tiene dimensiones de (2n-1) x m y $\frac{\partial \bar{\mathbf{h}}(\mathbf{x})}{\partial \mathbf{x}}$ es una matriz de dimensiones m x (2n-1). Entonces, la matriz de ganancia \mathbf{G} tiene dimensiones de (2n-1) x (2n-1).

El término $\frac{\partial \bar{\mathbf{h}}_i(\mathbf{x})}{\partial \mathbf{x}_i}$ es dado por [Venkatraman et al., 2019]

$$\frac{\partial \bar{\mathbf{h}}_{i}(\mathbf{x})}{\partial \mathbf{x}_{j}} = \frac{1}{(\mathbf{z}_{i} - \mathbf{h}_{i}(\mathbf{x}))^{2} + \epsilon} \cdot \left(\sqrt{(\mathbf{z}_{i} - \mathbf{h}_{i}(\mathbf{x}))^{2} + \epsilon} \cdot \left(-\frac{\partial \mathbf{h}_{i}(\mathbf{x})}{\partial \mathbf{x}_{j}}\right)\right) \qquad (2.71)$$

$$- \frac{1}{(\mathbf{z}_{i} - \mathbf{h}_{i}(\mathbf{x}))^{2} + \epsilon} \cdot \left((\mathbf{z}_{i} - \mathbf{h}_{i}(\mathbf{x})) \cdot \frac{2(\mathbf{z}_{i} - \mathbf{h}_{i}(\mathbf{x}))}{2\sqrt{(\mathbf{z}_{i} - \mathbf{h}_{i}(\mathbf{x}))^{2} + \epsilon}} \cdot \left(-\frac{\partial \mathbf{h}_{i}(\mathbf{x})}{\partial \mathbf{x}_{j}}\right)\right) \qquad (2.72)$$

$$= \frac{1}{(\mathbf{z}_{i} - \mathbf{h}_{i}(\mathbf{x}))^{2} + \epsilon} \cdot \left(\sqrt{(\mathbf{z}_{i} - \mathbf{h}_{i}(\mathbf{x}))^{2} + \epsilon} - \frac{(\mathbf{z}_{i} - \mathbf{h}_{i}(\mathbf{x}))^{2}}{\sqrt{(\mathbf{z}_{i} - \mathbf{h}_{i}(\mathbf{x}))^{2} + \epsilon}}\right) \cdot -\frac{\partial \mathbf{h}_{i}(\mathbf{x})}{\partial \mathbf{x}_{j}} \qquad (2.74)$$

$$= \frac{\epsilon}{((\mathbf{z}_{i} - \mathbf{h}_{i}(\mathbf{x}))^{2} + \epsilon)^{3/2}} \cdot -\frac{\partial \mathbf{h}_{i}(\mathbf{x})}{\partial \mathbf{x}_{j}} \qquad (2.74)$$

Por lo tanto, $\frac{\partial \bar{\mathbf{h}}(\mathbf{x})}{\partial \mathbf{x}}$ puede escribirse como [Venkatraman et~al.,~2019]

$$\frac{\partial \bar{\mathbf{h}}(\mathbf{x})}{\partial \mathbf{x}} = - \begin{pmatrix} \frac{\epsilon}{((\mathbf{z}_{i} - \mathbf{h}_{i}(\mathbf{x}))^{2} + \epsilon)^{3/2}} \cdot \frac{\partial \mathbf{h}_{1}(\mathbf{x})}{\partial \mathbf{x}_{1}} & \cdots & \frac{\epsilon}{((\mathbf{z}_{i} - \mathbf{h}_{i}(\mathbf{x}))^{2} + \epsilon)^{3/2}} \cdot \frac{\partial \mathbf{h}_{1}(\mathbf{x})}{\partial \mathbf{x}_{2n-1}} \\ \vdots & & \vdots & \vdots \\ \frac{\epsilon}{((\mathbf{z}_{i} - \mathbf{h}_{i}(\mathbf{x}))^{2} + \epsilon)^{3/2}} \cdot \frac{\partial \mathbf{h}_{m}(\mathbf{x})}{\partial \mathbf{x}_{1}} & \cdots & \frac{\epsilon}{((\mathbf{z}_{i} - \mathbf{h}_{i}(\mathbf{x}))^{2} + \epsilon)^{3/2}} \cdot \frac{\partial \mathbf{h}_{m}(\mathbf{x})}{\partial \mathbf{x}_{2n-1}} \end{pmatrix} (2.75)$$

$$= -\bar{\mathbf{g}}(\mathbf{x}) \cdot \mathbf{H}(\mathbf{x}) \tag{2.76}$$

donde $\bar{\mathbf{g}}(\mathbf{x})$ es una matriz diagonal definida como

$$\bar{\mathbf{g}}(\mathbf{x}) = \begin{pmatrix} \frac{\epsilon}{((\mathbf{z}_i - \mathbf{h}_i(\mathbf{x}))^2 + \epsilon)^{3/2}} & & \\ & \ddots & \\ & & \frac{\epsilon}{((\mathbf{z}_m - \mathbf{h}_m(\mathbf{x}))^2 + \epsilon)^{3/2}} \end{pmatrix}.$$
 (2.77)

Finalmente, la matriz de ganancias **G** puede formularse como:

$$\mathbf{G}(\mathbf{x}) = \mathbf{H}^{T}(\mathbf{x}) \cdot \bar{\mathbf{g}}(\mathbf{x}) \cdot \mathbf{H}(\mathbf{x})$$
(2.78)

La ecuación (2.66) se puede resolver mediante la descomposición de G en matrices triangulares usando decomposición Cholesky o LU y obteniendo las actualizaciones mediante substitución atrás/adelante.

En (2.55) se menciona que el valor de ϵ se hace progresivamente menor de forma que es casi cero en la solución. El valor inicial de ϵ es crucial para el patrón de convergencia. Si el valor es demasiado pequeño, el tiempo de convergencia puede ser muy grande y en ciertos casos llevar a la divergencia.

El patrón de convergencia también es afectado por la forma en que se actualiza ϵ , esto es debido a que el problema de optimización que se está resolviendo cambia conforme se cambia ϵ . Una estrategia es actualizar el valor de ϵ al final de cada iteración del proceso de solución, hasta que el valor de ϵ es menor que un valor predeterminado.

Otra estrategia consiste en reducir el valor de ϵ cuando el valor del gradiente de la función objetivo se haya reducido lo suficiente.

En ambos casos, la reducción de ϵ se define como [Venkatraman et al., 2019]

$$\epsilon_{i+1} = \frac{\epsilon_i}{10}.\tag{2.79}$$

En este trabajo se utilizó la primer estrategia, el diagrama de flujo del método LAV por gradiente se reporta en la Figura 2.3, y el algoritmo del método de Gradiente para el problema de estimación LAV será:

- 1. Iniciar el contador de iteración en 0.
- 2. Iniciar ϵ en 100 y el vector de estado \mathbf{x}_0 .
- 3. Calcular la función de medición $\mathbf{h}(\mathbf{x}_i)$ y el Jacobiano de medición $\mathbf{H}(\mathbf{x}_i)$.
- 4. Calcular la gradiente $\mathbf{g}(\mathbf{x}_i)$ usando (2.64) y la matriz de ganancia $\mathbf{G}(\mathbf{x}_i)$ usando (2.78).
- 5. Calcular las actualizaciones resolviendo (2.66).
- 6. Actualizar los estados y reducir el valor de ϵ utilizando (2.79).
- 7. Revisar si $(\mathbf{x}_{i+1} \mathbf{x}_i)$ es menor que el límite de tolerancia. Revisar si ϵ es menor que el valor predeterminado. Si ambas condiciones se cumplen, salir. Si no, actualizar el contador de iteraciones e ir al paso 3.

Debido a la formulación del problema, es posible que las actualizaciones obtenidas de (2.66) sean demasiado grandes y lleven a la divergencia en algunos sistemas. Si así fuera, el caso se puede resolver ajustando las actualizaciones con la fórmula:

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \alpha_i \mathbf{d}_i \tag{2.80}$$

donde \mathbf{d}_i es la actualización obtenida de (2.66) y α_i es el largo del paso.

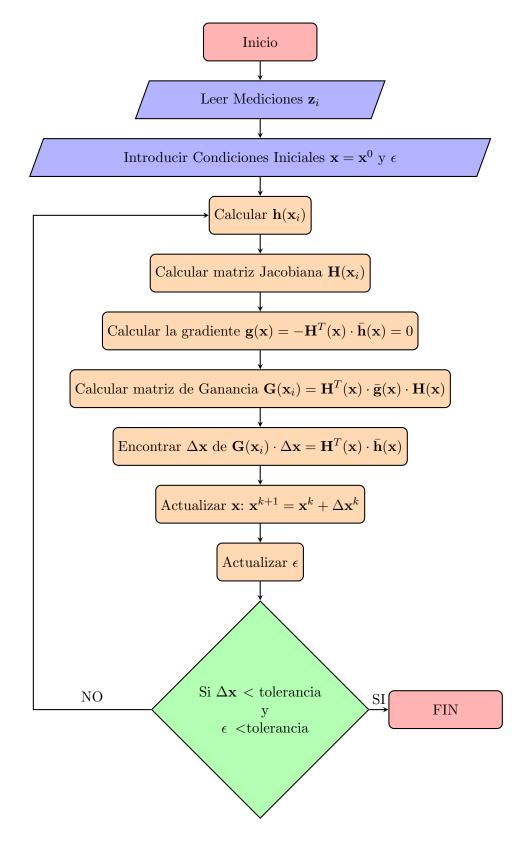


Figura 2.3: Diagrama de Flujo Estimación de Estado LAV por Método de Gradiente.

Para calcular α existen varios métodos, el algoritmo de búsqueda de línea es uno de ellos, con el cual se asegura que el largo de paso es suficientemente grande para obtener un decremento suficiente en la función objetivo. Lo anterior se formula de la siguiente forma:

$$\min_{\alpha} \quad f(\mathbf{x}_i + \alpha_i \mathbf{d}_i) \tag{2.81}$$

donde $f(\cdot)$ es la función objetivo, \mathbf{x}_i es la solución actual, \mathbf{d}_i es la dirección de búsqueda y α_i es el largo del paso.

Resolver el problema de búsqueda de línea de forma precisa es costoso computacionalmente, por lo tanto, se puede realizar una búsqueda de línea inexacta, donde, la función objetivo se reduce suficientemente. Uno de los métodos de búsqueda de línea inexactos es el método de búsqueda de línea de vuelta atrás, el cual se basa en la condición Armijo-Goldstein [Armijo, 1966] y es dada por

$$f(\mathbf{x}_i + \alpha_i \mathbf{d}_i) \le f(\mathbf{x}_i) + c_1 \alpha_i \mathbf{d}_i^T \Delta f(\mathbf{x}_i)$$
(2.82)

donde $\Delta f(\mathbf{x}_i)$ es la gradiente de la función objetivo en la solución actual y c_1 se define de forma que $0 < c_1 < 1$. Un valor inicial de α es elegido y es reducido iterativamente hasta que la condición sea satisfecha. Esta condición garantiza que habrá un decremento suficiente en la función objetivo.

De ser requerida la búsqueda de línea se insertará un paso más en el algoritmo, el cual queda definido de la siguiente manera,

- 1. Iniciar el contador de iteración en 0.
- 2. Inicializar el valor de ϵ en 100 y el vector de estado \mathbf{x}_0 .
- 3. Calcular las mediciones estimadas $\mathbf{h}(\mathbf{x}_i)$ y el Jacobiano de estas mediciones $\mathbf{H}(\mathbf{x}_i)$.
- 4. Calcular el gradiente $\mathbf{g}(\mathbf{x}_i)$ usando (2.64) y la matriz de ganancia $\mathbf{G}(\mathbf{x}_i)$ usando (2.78).
- 5. Calcular las actualizaciones resolviendo (2.66).
- 6. Realizar la búsqueda de línea reduciendo α de forma iterativa hasta que se cumpla la desigualdad en (2.82).
- 7. Actualizar los estados con la fórmula (2.80) y reducir el valor de ϵ conforme la fórmula (2.79).
- 8. Revisar si $(\mathbf{x}_{i+1} \mathbf{x}_i)$ es menor que el límite de tolerancia. Revisar si ϵ es menor que el valor predeterminado. Si ambas condiciones son cumplidas, salir. Si no, actualizar el contador de iteraciones e ir al paso 3.

Se observa que cuando el valor de ϵ es pequeño, la ecuación (2.55) puede ser escrita como

$$\lim_{\epsilon \to 0} \left(\min_{\mathbf{x}} \sum_{i=1}^{m} \sqrt{(\mathbf{z}_i - \mathbf{h}_i(\mathbf{x}))^2 + \epsilon} \right)$$
 (2.83)

$$= \min_{\mathbf{x}} \sum_{i=1}^{m} |\mathbf{z}_i - \mathbf{h}_i(\mathbf{x})| \tag{2.84}$$

$$= \min_{x} \quad \mathbf{c}^{T} \left| \mathbf{z} - \mathbf{h}(\mathbf{x}) \right|, \tag{2.85}$$

donde $\mathbf{c} \in \mathbb{R}^m$ es un vector con elementos unitarios.

Se observa que la ecuación(2.83) es equivalente a (2.19). Por lo tanto, el algoritmo tendrá la propiedad inherente de rechazo de datos erróneos del método LAV. La principal ventaja de resolver la formulación dada por (2.55) en vez de la formulación tradicional LAV es la eficiencia computacional. Debido a que la nueva formulación puede ser resuelta por métodos basados en gradiente, como el método de Gauss-Newton, su solución será más rápida que los métodos de programación lineal, como el Simplex, especialmente en la estimación de sistemas eléctricos de gran escala.

2.3.3. Impacto de datos erróneos en la formulación LAV

El método LAV tiene robustez intrínseca de eliminación de mediciones erróneas debido a que es un método basado en la minimización de la norma L_1 . En [Barrodale y Roberts, 1970] se demuestra esta característica a través del siguiente Teorema,

Teorema.- Si el rango de columna de \mathbf{h} en (2.18) es L, (L $\leq m$), entonces existe una estimación por el método LAV que satisface al menos L de las observaciones exactamente, con residuales nulos.

Esto implica que al utilizar únicamente las n mediciones necesarias en el estimado se descartarán automáticamente las mediciones erróneas.

Esta propiedad también implica que para un conjunto de datos (x, y), la línea de solución del método LAV siempre pasará a través de por lo menos dos puntos de datos. Si existen múltiples soluciones, la región de soluciones óptimas estará delimitada por dos líneas, las cuales deben pasar por al menos dos puntos de datos [Branham, 1982].

En la Figura 2.4 se observa la región óptima para un sistema con múltiples soluciones, delimitada en verde. Como la línea de solución siempre pasa por al menos dos mediciones, si existe una medición errónea, las líneas que utilicen este punto no estarán dentro de la región de solución.

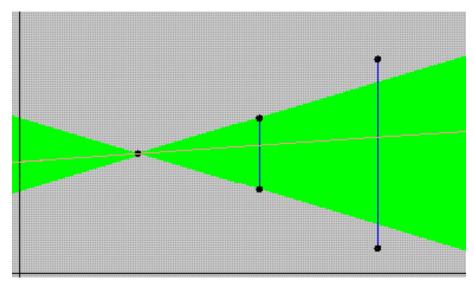


Figura 2.4: Región óptima para un sistema de múltiples soluciones

Sin embargo, al igual que el método WLS, el método LAV puede llegar a ser vulnerable a errores gruesos en mediciones de apalancamiento. Por lo tanto se analizarán las características de dichas mediciones de apalancamiento.

La matriz sombrero \mathbf{K} definida como $\mathbf{H}\mathbf{G}^{-1}\mathbf{H}^T\mathbf{W}$ relaciona la medida real \mathbf{z} y la medida estimada $\hat{\mathbf{z}}$ a través de:

$$\hat{\mathbf{z}} = \mathbf{K} \cdot \mathbf{z} \tag{2.86}$$

Por lo tanto, la influencia de la medición i en el estimado depende del término diagonal \mathbf{K}_{ii} dado por [Milan y Militky, 2011]

$$\mathbf{K}_{ii} = \mathbf{H}_i \mathbf{G}^{-1} \mathbf{H}_i^T \mathbf{W} \tag{2.87}$$

La influencia de la medida i en el estimado depende de \mathbf{H}_i que es la i-ésima fila de \mathbf{H} . Por lo cual, en general, las mediciones de apalancamiento serán las mediciones que corresponden a las filas de la matriz \mathbf{H} que tienen valores significantemente altos comparados con las demás filas. Cuando haya un error presente en estas mediciones el método LAV intentará incluir este punto en la solución y por lo tanto dará un estimado erróneo.

Otra manera de explicar este fenómeno es la siguiente; el residual ${\bf r}$ está relacionado con el error ${\bf e}$ a través de:

$$\mathbf{r} = \mathbf{S} \cdot \mathbf{e} = (\mathbf{I} - \mathbf{K})\mathbf{e} \tag{2.88}$$

Si el valor de \mathbf{K}_{ii} correspondiente a la medida i es grande, el valor residual será pequeño aún cuando haya un error grande presente.

En [Mili et al., 1991] se observa que típicamente los puntos de apalancamiento son las mediciones con las siguientes propiedades,

- Flujos e inyecciones asociadas a líneas cortas.
- Inyecciones en buses que tienen un número grande de ramas incidentes.

Como se mencionó, la capacidad intrínseca de rechazo de datos erróneos del método LAV falla en casos donde hay errores en las mediciones de apalancamiento. Sin embargo, ha habido estudios en el área de la identificación y eliminación de puntos de apalancamiento. Algunos de los métodos disponibles son:

- Un método simple para identificar mediciones de apalancamiento es comparar su término diagonal correspondiente en \mathbf{K} con un límite pre-establecido, usualmente $\frac{2(2n-1)}{m}$, clasificando a todas las medidas con un valor \mathbf{K}_{ii} mayor al límite como mediciones pivote. Sin embargo, este método puede fallar si hay un grupo de mediciones de apalancamiento presente.
- En [Mili et al., 1996] se presenta un método más robusto basado en estadística de proyecciones para identificar y eliminar las mediciones de apalancamiento.
- En [Mili et al., 1991] se presenta un método conocido como el estimador de mínimos cuadrados de la mediana, el cual es insensible a mediciones de apalancamiento.
- En [Celik y Abur, 1992] se utiliza escalamiento y transformaciones lineales para asegurarse que no hay valores atípicos en la matriz **H**.
- En [Göl y Abur, 2014] se demuestra que si todas las mediciones son realizadas con PMUs, la eliminación de las mediciones de apalancamiento puede ser realizada simplemente a través del escalamiento de la matriz **H**.

2.4. Conclusión de Capítulo

En este capítulo se hace una introducción a los errores en las mediciones en los sistemas de potencia y se presentó la formulación del problema de estimación de estado así como la formulación matemática de los métodos WLS y LAV, describiendo el impacto que tienen los datos erróneos en las mediciones en los resultados de los mismos.

Capítulo 3

Casos de Estudio

3.1. Introducción

En este capítulo se presentan los resultados obtenidos a través de la implementación de los métodos de WLS y LAV para la resolución del problema de estimación de estado en los sistemas de prueba del IEEE de 14, 57 y 118 nodos. Ambos métodos fueron implementados en MATLAB y se utilizó la plataforma desarrollada en [Alcaide, 2016].

Los datos de estos sistemas se muestran en el Apéndice A. Con base a estas soluciones se forma el conjunto de mediciones consideradas por los estimadores de estado las cuales también son reportados en el Apéndice A. La desviación estandar de las mediciones físicas fueron las siguientes:

- $\sigma_1 = 0.7584$ para inyecciones de potencia.
- $\sigma_2 = 0.1749$ para flujos de potencia.
- $\sigma_3 = 0$ para magnitudes de voltaje.

El nivel de significancia para la prueba χ^2 fue de 0.99 y la tolerancia de convergencia es 0.001.

En el caso del estimador LAV, la variable ϵ es inicializada en 100. Se utiliza la búsqueda de línea con base a la condición de Armijo-Goldstein, donde la c_1 se inicializa en 0.5 y α_1 en 1. Por último, al final de cada iteración del proceso de solución ϵ se actualiza con base a la ecuación (2.79).

Se realizaron 3 casos de estudio diferentes para cada sistema eléctrico:

- Caso 1: Mediciones sin errores.
- Caso 2: Una medición errónea, la cual se genera sumando o restando a la magnitud de la medición correcta 10 veces el tamaño de la desviación estandar.
- Caso 3: Múltiples mediciones erróneas, donde en el sistema de 14 nodos se usaron 3 errores, debido a que es el máximo número de mediciones erróneas donde el algoritmo LAV converge, y en el sistema de 57 nodos y de 118 nodos se utilizaron 5 errores. Las mediciones erróneas fueron generadas como se explica en el caso 2.

A continuación se analizan los resultados para los diferentes sistemas.

3.2. Sistema de 14 Nodos

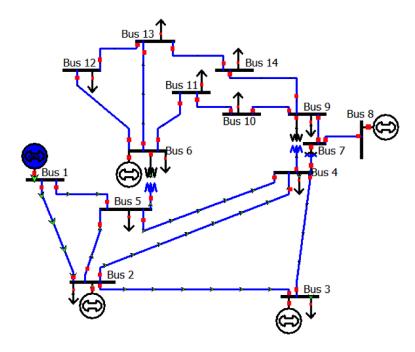


Figura 3.1: Sistema 14 Nodos IEEE

El sistema de prueba de 14 nodos del IEEE se muestra en la Figura 3.1, el cual cuenta con las 41 mediciones reportadas en la Tabla 4.2. De esta información se desprende que existen 20 mediciones de Flujo de Potencia Activa, 20 mediciones de Flujo de Potencia Reactiva y 1 medición de Voltaje.

Los resultados obtenidos por los estimadores LAV y WLS se reportan en el Apéndice A, con base a los cuales se muestran los errores residuales para cada caso de estudio.

3.2.1. Sistema 14 nodos, Caso 1

En la Figuras 3.2 y 3.3 se muestran los errores residuales obtenidos con el método LAV y WLS, respectivamente. Se aprecia que los resultados obtenidos por ambos métodos son iguales, es decir, el valor de los residuos de medición es el mismo. En la Tabla 3.1 se presentan los tiempos de cómputo requeridos en este caso, por cada uno de los métodos. Se puede observar que el método LAV llega a la solución en un tiempo de 0.067262 s lo cual es 7% más rápido que el tiempo requerido por el método WLS.

Tabla 3.1: Tiempo y error para realizar estimación de estado sistema 14 nodos sin error

Sistema (Errores)	Tien	npo (s)	Error (Max Δ x)		
Distellia (Effores)	WLS	LAV	WLS	LAV	
14_0	0.07268	0.0672622	5.953555^{-7}	5.953555^{-7}	

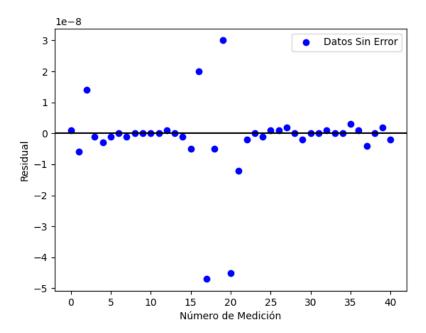


Figura 3.2: Sistema 14 Nodos Método LAV

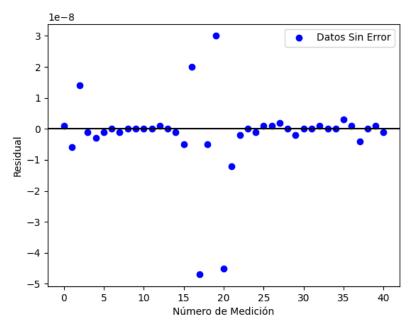


Figura 3.3: Sistema 14 Nodos Método WLS

3.2.2. Sistema de 14 nodos, Caso 2

Para el mismo sistema de 14 nodos en este caso se utilizan mediciones en las cuales se insertó un error de 10 veces el tamaño de la desviación standard del conjunto de mediciones. En la Figura 3.4 y Figura 3.5 se muestran los errores residuales obtenidos por el método LAV y WLS con técnicas de post-procesamiento, respectivamente. En la Figura 3.4 se observa que la medición que contiene el error es la que tiene el residual más alto. En la Figura 3.5 se puede observar el conjunto de residuales después de las técnicas de post-procesamiento, donde se elimina el dato erróneo.

En la Tabla 3.2 se presentan los tiempos para llegar a la solución de la estimación de estado por cada uno de los métodos. El método LAV obtiene la solución en 0.07637 s, mientras que el WLS requiere de 0.08942 s, esto indica que el método LAV es $14\,\%$ más rápido en este caso.

Tabla 3.2: Tiempo para realizar estimación de estado 1 error sistema de 14 nodos

Sistema (Errores)	Tiem	po (s)	Error (Max Δ x)	
Distellia (Effores)	WLS	LAV	WLS	LAV
141	0.08942	0.07637	4.487893^{-6}	8.523858^{-5}

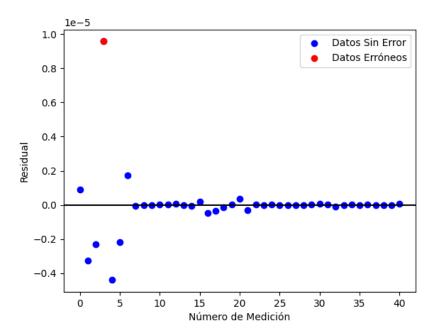


Figura 3.4: Sistema 14 Nodos 1 Error Método LAV

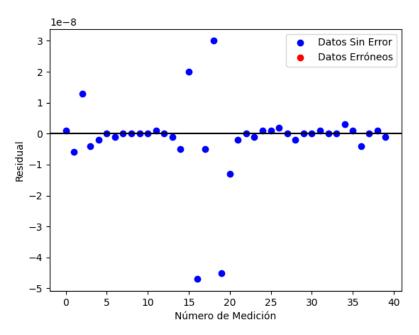


Figura 3.5: Sistema 14 Nodos 1 Error WLS Post-procesamiento

3.2.3. Sistema 14 nodos, Caso 3

En el caso 3 se utiliza un conjunto de mediciones al cual se le insertaron 3 errores de 10 veces el tamaño de la desviación standard del conjunto de mediciones. Se utilizó este número de mediciones erróneas debido a que con un número mayor no se logra la convergencia en ninguno de los algoritmos. En la Figura 3.6 se muestran los errores residuales obtenidos por el método LAV, se observa que las mediciones que contienen los errores son las que tienen el residual más alto. En este caso solamente se presenta el método LAV debido a que el método WLS no es capaz de llegar a la solución de la estimación de estado incluso después de aplicar técnicas de post-procesamiento.

En la Tabla 3.3 se presentan los tiempos para llegar a la solución de la estimación de estado por el método LAV, el cual obtiene la solución en 0.09954 s. Se observa que el tiempo de cómputo sigue siendo bajo incluso con múltiples errores en el conjunto de mediciones.

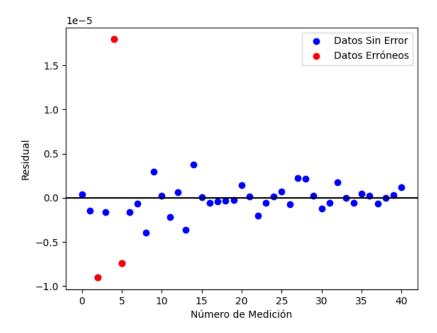


Figura 3.6: Sistema 14 Nodos 3 Errores Método LAV

Tabla 3.3: Tiempo para realizar estimación de estado sistema de 14 nodos 3 errores

Sistema (Errores)	Tien	npo (s)	Error (Max Δ x)		
Distellia (Ellores)	WLS	LAV	WLS	LAV	
143	-	0.09954	-	1.777026^{-5}	

3.3. Sistema de 57 Nodos

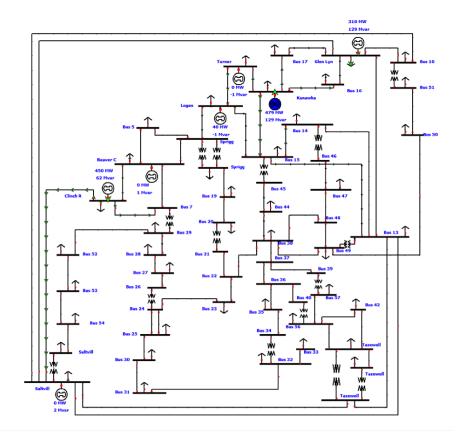


Figura 3.7: Sistema 57 Nodos IEEE

En la Figura 3.7 se observa la red de 57 nodos IEEE-57, que cuenta con 57 buses y 321 mediciones, categorizadas en 160 mediciones de Flujo de Potencia Activa, 160 mediciones de Flujo de Potencia Reactiva y 1 medición de magnitud de Voltaje. Las mediciones se realizan en los nodos de los componentes de la red indicados en la Tabla 4.2 del apéndice.

3.3.1. Sistema de 57 nodos, Caso 1

En este caso se utilizan mediciones que no contienen errores. En la Figura 3.8 se muestran los errores residuales obtenidos con el método LAV. En la Figura 3.9 se muestran los errores residuales obtenidos con el método WLS. Se aprecia que los resultados obtenidos por ambos métodos son similares, ambos obtienen residuales de medición muy cercanos a cero, debido a que no hay mediciones erróneas.

En la Tabla 3.4 se presentan el tiempo utilizado para llegar a la solución por cada método. El método LAV obtiene la solución en $0.17417~\rm s~y$ el WLS en $0.18102~\rm s$, siendo así el método LAV 3~% más rápido.

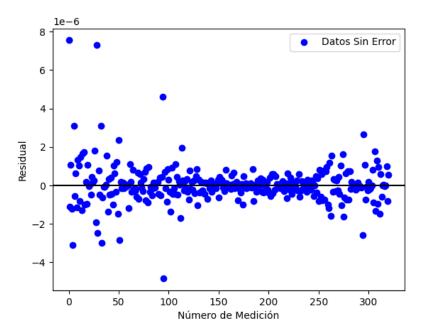


Figura 3.8: Sistema 57 Nodos Método LAV

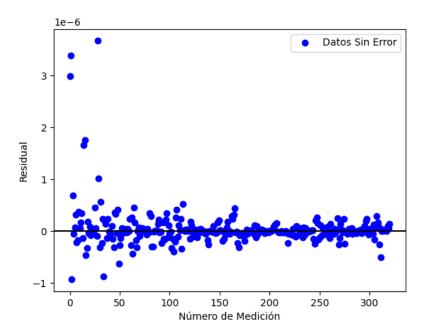


Figura 3.9: Sistema 57 Nodos Método WLS

Tabla 3.4: Tiempo para realizar estimación de estado sistema 57 nodos sin errores

Sistema (Errores)	Tiem	po (s)	Error (Max Δ x)		
Distellia (Ellores)	WLS	LAV	WLS	LAV	
570	0.18102	0.17417	6.507306^{-8}	1.667123^{-6}	

3.3.2. Sistema de 57 nodos, Caso 2

En este caso se corrompe la medición 21 al cambiar su valor de 0.25 a un valor de 2.025. En la Figura 3.10, Figura 3.11 y Figura 3.12 se muestran los errores residuales obtenidos por el método LAV, WLS y WLS con análisis de datos erróneos, respectivamente. En la Figura 3.10 se observa que la medición que contiene el error es la que tiene el residual con mayor diferencia a cero. En la Figura 3.11 se observa que las mediciones correctas cercanas a la errónea tienen un residual ligeramente más alto, esto es debido a que el error afecta a las mediciones cercanas. En la Figura 3.12 se puede observar el conjunto de residuales después de la aplicación del análisis de datos erróneos, obteniendo residuales muy cercanos a cero en todas las mediciones.

En la Tabla 3.5 se presentan los tiempos en los cuales cada método llega a la solución, respectivamente. Siendo el método LAV ligeramente más rápido por 3 %, llegando a la solución en 0.26925 s mientras que el WLS obtiene el resultado en 0.27912 s.

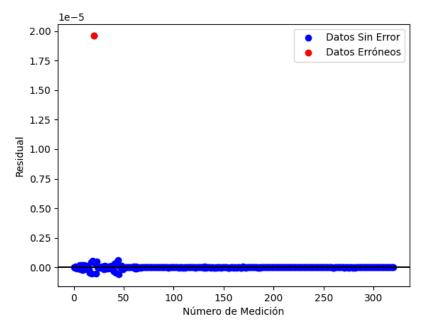


Figura 3.10: Sistema 57 Nodos 1 Error Método LAV

Tabla 3.5: Tiempo para realizar estimación de estado sistema 57 nodos 1 error

Sistema (Errores)	Tiem	po (s)	Error $(\text{Max } \Delta x)$		
Distellia (Ellores)	WLS	LAV	WLS	LAV	
571	0.27912	0.26925	1.993882^{-8}	1.041860^{-6}	

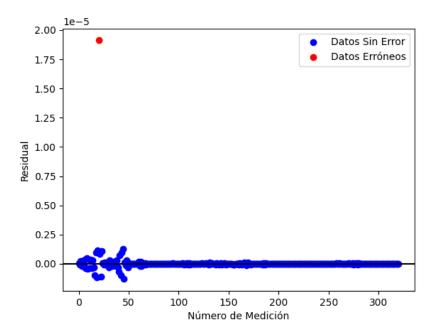


Figura 3.11: Sistema 57 Nodos 1 Error Método WLS

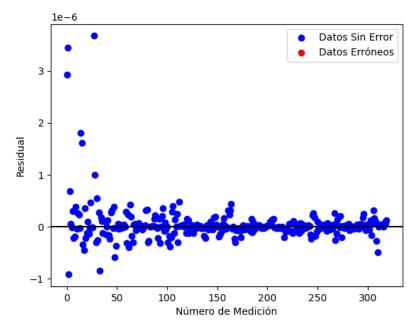


Figura 3.12: Sistema 57 Nodos 1 Error Método WLS Post-procesamiento

3.3.3. Sistema de 57 nodos, Caso 3

El conjunto de mediciones al cual se le insertaron 5 errores de 10 veces el tamaño de la desviación standard del conjunto de mediciones es dado en la Tabla 4.2. En la Figura 3.13 se muestran los errores residuales obtenidos por el método LAV, en la Figura 3.14 se muestran los errores residuales obtenidos por el método WLS y en la Figura 3.15 se observan los errores residuales obtenidos por el método WLS despúes de las técnicas de post-procesamiento. En la Figura 3.13 se observa como las mediciones que tienen un residual diferente de cero son las erróneas, mientras que en la Figura 3.14 se puede apreciar que las mediciones erróneas no son las únicas que tienen residual diferente de cero e incluso algunas de las mediciones correctas tienen un residual mayor al de las erróneas. Esto es debido a que en el método WLS las mediciones erróneas influyen en los estimados de las mediciones cercanas. En la Figura 3.15 se observa que las mediciones erróneas han sido eliminadas por las técnincas de post-procesamiento y que todas las mediciones tienen un residual cercano a cero.

El tiempo para realizar la estimación de estado se observa en la Tabla 3.6. Se observa que cuando hay 5 mediciones erróneas el método LAV es más eficiente debido a que no requiere análisis de post-procesamiento, recordando que, el método WLS deberá realizar una estimación completa por cada error en las mediciones. Por lo anterior, el método LAV es 38 % más rápido para este caso.

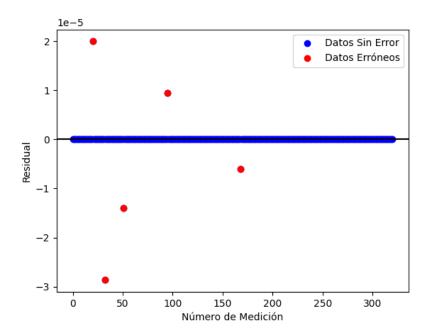


Figura 3.13: Sistema 57 Nodos 5 Errores Método LAV

Tabla 3.6: Tiempo para realizar estimación de estado sistema 57 nodos 5 errores

Sistema (Errores)	Tiem	po (s)	Error (N	$fax \Delta x$
Distellia (Errores)	WLS	LAV	WLS	LAV
57_{5}	0.54570	0.33702	3.583748^{-9}	1.700078^{-4}

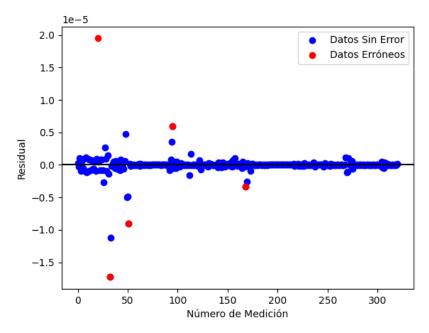


Figura 3.14: Sistema 57 Nodos 5 Errores Método WLS

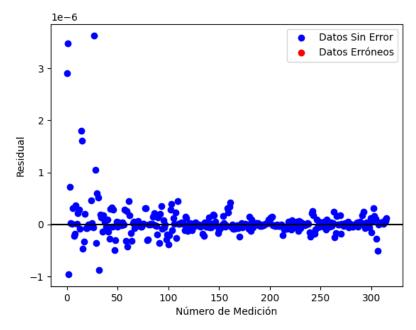


Figura 3.15: Sistema 57 Nodos 5 Errores Método WLS Post-procesamiento

3.4. Sistema de 118 Nodos

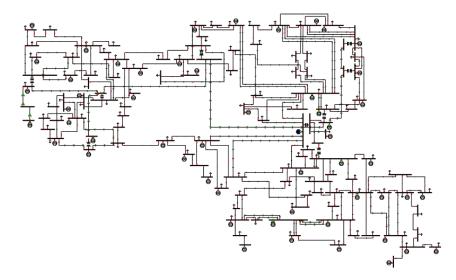


Figura 3.16: Sistema 118 Nodos IEEE

La red IEEE-118, mostrada en la Figura 3.16. Cuenta con 745 mediciones, divididas en 372 mediciones de Flujo de Potencia Activa, 372 mediciones de Flujo de Potencia Reactiva y 1 medición de magnitud de Voltaje. Las mediciones se realizan en los nodos de los componentes de la red indicados en la Tabla 4.2 del apéndice.

3.4.1. Sistema de 118 nodos, Caso 1

En la Figura 3.17 y en la Figura 3.18 se muestran los errores residuales obtenidos con el método LAV y WLS, respectivamente. Se observa que los residuales obtenidos por ambos métodos son muy cercanos a cero, debido a que no hay mediciones erróneas.

El tiempo para realizar la estimación de estado se observa en la Tabla 3.7, donde el método LAV es $23\,\%$ más rápido en este caso.

Tabla 3.7: Tiempo para realizar estimación de estado sistema 118 nodos sin errores

Sistema (Errores)	Tiempo (s) Error (Max		Error (Max Δ x)		
Distellia (Elifores)	WLS	LAV	WLS	LAV	
1180	0.24462	0.18748	5.751491^{-9}	5.527781^{-7}	

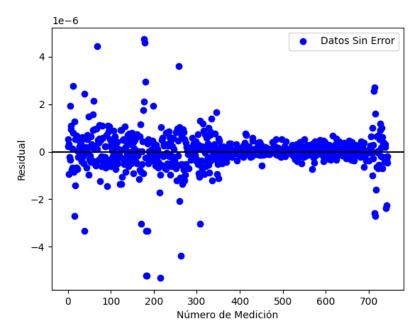


Figura 3.17: Sistema 118 Nodos Método LAV

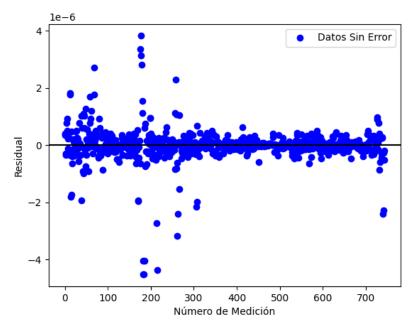


Figura 3.18: Sistema 118 Nodos Método WLS

3.4.2. Sistema de 118 nodos, Caso 2

En este caso la medición errónea es la 273 con un valor de 2.44. En la Figura 3.19 se muestran los errores residuales obtenidos por el método LAV, en la Figura 3.20 se muestran los errores residuales obtenidos por el método WLS y en la Figura 3.21 se muestran los errores residuales obtenidos por el método WLS con análisis de datos erróneos. En la Figura 3.19 se aprecia que el residual más, con un valor cercano a 1×10^{-5} , alto es el que corresponde a la medición errónea. En la Figura 3.20 se observa que la medición errónea es la que tiene el residual más alto y mediciones cercanas también tienen un residual alejado de 0. Después de aplicar análisis de datos erróneos al método WLS se obtiene la Figura 3.21 en la cual se aprecia que todos los residuales son cercanos a cero y por lo tanto se ha eliminado el dato erróneo.

En la Tabla 3.8 se presentan los tiempos necesarios para obtener la solución a la estimación de estado para cada método. Este caso es el único en el cual se encontró que el método WLS es más rápido que el método LAV, tomando 0.37826 s y 0.3862 s, respectivamente, esta diferencia es muy pequeña e implica que el método WLS fue $2\,\%$ más rápido.

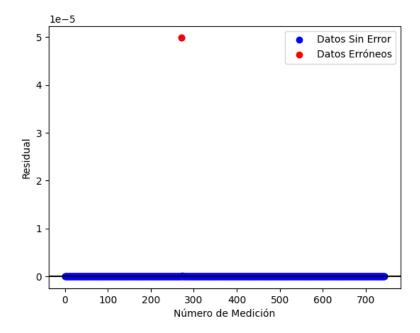


Figura 3.19: Sistema 118 Nodos 1 Error Método LAV

Tabla 3.8: Tiempo para realizar estimación de estado sistema 118 nodos 1 error

Sistema (Errores)	Tiem	po (s)	Error (Max Δ x)		
Sistema (Effores)	WLS	LAV	WLS	LAV	
1181	0.37826	0.38620	5.016564^{-5}	7.895572^{-5}	

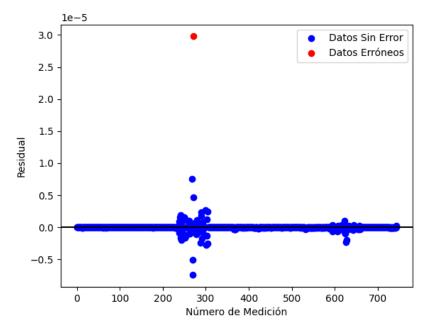


Figura 3.20: Sistema 118 Nodos 1 Error Método WLS

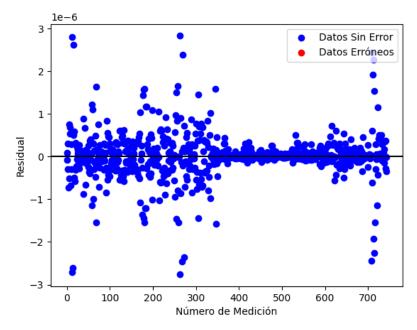


Figura 3.21: Sistema 118 Nodos 1 Error Método WLS Post-procesamiento

3.4.3. Sistema de 118 nodos, Caso 3

El conjunto de mediciones al cual se le insertaron 5 errores de 10 veces el tamaño de la desviación standard del conjunto de mediciones dado en la Tabla 4.5. En la Figura 3.22, Figura 3.23 y Figura 3.24 se observan los errores residuales obtenidos por el método LAV, WLS y WLS despúes de las técnicas de post-procesamiento, respectivamente. En la Figura 3.22 se observa como las mediciones con los mayores residuales son las erróneas, mientras que en la Figura 3.23 se puede apreciar que las mediciones erróneas no necesariamente son las que tienen un residual más alto. En la Figura 3.24 se observan los residuales después de aplicar el análisis de datos erróneos, llegando a residuales muy cercanos a cero.

En la Tabla 3.9 se observa el tiempo de cómputo para cada método. Este caso es donde hay más diferencia entre métodos, siendo el método LAV $53\,\%$ más rápido que el WLS, al llegar a la solución en 0.3908 s mientras que al método WLS le toma 0.8397 s.

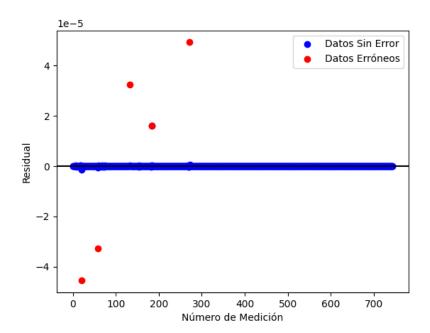


Figura 3.22: Sistema 118 Nodos 5 Errores Método LAV

Tabla 3.9: Tiempo para realizar estimación de estado sistema 118 nodos 5 errores

Sistema (Errores)	Tiem	po(s)	Error (Max Δ x)		
Distellia (Ellores)	WLS	LAV	WLS	LAV	
1185	0.83970	0.39080	1.371958^{-4}	7.045196^{-5}	

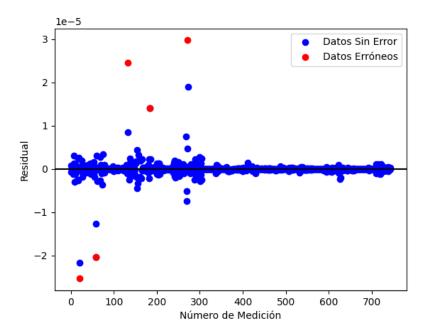


Figura 3.23: Sistema 118 Nodos 5 Errores Método WLS

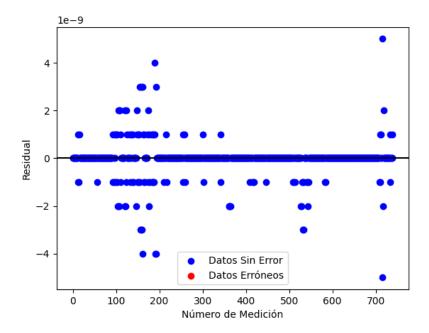


Figura 3.24: Sistema 118 Nodos 5 Errores Método WLS Post-procesamiento

3.5. Conclusión de Capítulo

En este capítulo se presentan los casos de estudio y sus resultados de estimaciones de estado por los métodos LAV y WLS, respectivamente, obteniendo resultados satisfactorios y acorde a la teoría. Se estudiaron tres sistemas de 14, 57 y 118 nodos así como 3 diferentes casos en los datos de medición, para cada uno de los sistemas eléctricos.

De estos resultados es claro que el método LAV será más rápido que el WLS entre más

errores haya en las mediciones, en cuanto a la precisión ambos algoritmos tienen un desempeño similar, probando así que el método LAV es un método adecuado para realizar una estimación de estado robusta de forma rápida y precisa.

Capítulo 4

Conclusiones y Trabajos Futuros

4.1. Conclusiones

Se llevó a cabo la implementación del método de Mínimo Valor Absoluto para la resolución del problema de estimación de estado de sistemas eléctricos de potencia a través de MATLAB.

Se comprobó la cualidad de rechazo automático de errores del método LAV en los dos algoritmos, en el método Simplex ocurre al obtener (2.46) y en el método por gradiente se realiza al obtener la matriz de ganancia descrita en (2.78).

Para la búsqueda de línea descrita en (2.82) los valores iniciales son suficientes para lograr la convergencia, por lo cual no se necesitan iteraciones adicionales para resolver los casos.

En el caso del valor inicial de ϵ el valor mínimo varía dependiendo de la topología de la red, el valor utilizado fue 100 debido a que es el valor mínimo en el cual todos los casos convergen.

Se aplicó la metodología a tres sistemas eléctricos de prueba del IEEE de 14, 57 y 118 nodos considerando diferentes datos de mediciones y errores. Al comparar el método con los métodos del estado de arte en base a WLS se concluye que para sistemas sin errores el método es similar en rapidez y que conforme se consideran sistemas con mayor número de nodos y se van agregando errores en mediciones, el método LAV es proporcionalmente más rápido y preciso. Identificando así un método favorable para realizar la estimación de sistemas eléctricos de potencia, así como, en presencia de disturbios en la red darse cuenta de él en un tiempo adecuado y en caso de necesitarse realizar las medidas de control

adecuadas.

4.2. Trabajos Futuros

Como se mencionó, tanto el método WLS y el método LAV obtienen estimaciones de estado erróneas en caso de que haya datos erróneos en mediciones pivote. Por lo cual sería de interés aplicar un método para la detección de mediciones pivote en el método LAV y la eliminación de las mismas.

Encontrar un método para obtener un valor inicial de ϵ óptimo. Con el cual se tome el menor número de iteraciones posibles en llegar a la solución.

En el análisis de grandes sistemas realizar un estudio de como se aplicaría el método LAV de manera descentralizada.

Se podría realizar un método basado en LAV para la realización de estimación de parámetros robusta en sistemas de potencia.

Debido a la naturaleza robusta del método LAV sería un buen método para aplicarse a otros problemas de estimación de estado diferentes a los sistemas eléctricos de potencia, tales como, sistemas termodinámicos, sistemas energéticos, etc.

Apéndice

Sistema 14 nodos

A continuación se muestran los datos utilizados para obtener las soluciones que se utilizaron para formar el conjunto de mediciones considerados.

Nodo Envío	Nodo Recepción	R	X	В	tap
1	2	0.01938	0.05917	0.0528	-
1	5	0.05403	0.22304	0.0492	-
2	3	0.04699	0.19797	0.0438	-
2	4	0.05811	0.17632	0.0340	-
2	5	0.05695	0.17388	0.0346	-
3	4	0.06701	0.17103	0.0128	-
4	5	0.01335	0.04211	0.0000	-
6	11	0.09498	0.19890	0.0000	-
6	12	0.12291	0.25581	0.0000	-
6	13	0.06615	0.13027	0.0000	-
9	10	0.03181	0.08450	0.0000	-
9	14	0.12711	0.27038	0.0000	-
10	11	0.08205	0.19207	0.0000	-
12	13	0.22092	0.19988	0.0000	-
13	14	0.17093	0.34802	0.0000	-
4	7	0.00	0.20912	0.0	0.978
4	9	0.00	0.55618	0.0	0.969
5	6	0.00	0.25202	0.0	0.932
7	8	0.00	0.17615	0.0	1.000
7	9	0.00	0.11001	0.0	1.000

Obteniendo,

Número	Tipo	Dispositivo	Nodo Envío	Nodo Recepción	Magnitud
				2	1.568330
1	1	1 1	1		0.755526
2	1		1		
3	1	1	2	3	0.731881
4	1	1	2	4	0.561381
5	1	1	2	5	0.415122
6	1	1	3	4	-0.233321
7	1	1	4	5	-0.612192
8	1	1	6	11	0.073412
9	1	1	6	12	0.0778191
10	1	1	6	13	0.1774
11	1	1	9	10	0.0523893
12	1	1	9	14	0.0943791
13	1	1	10	11	-0.0377418
14	1	1	12	13	0.0161023
15	1	1	13	14	0.0563244
16	2	1	1	2	-0.203927
17	2	1	1	5	0.0350381
18	2	1	2	3	0.0356507
19	2	1	2	4	-0.0228759
20	2	1	2	5	0.00762726
21	2	1	3	4	0.0280923
22	2	1	4	5	0.156695
23	2	1	6	11	0.0347222
24	2	1	6	12	0.0249223
25	2	1	6	13	0.071709
26	2	1	9	10	0.04306
27	2	1	9	14	0.0366577
28	2	1	10	11	-0.0152883
29	2	1	12	13	0.00743041
30	2	1	13	14	0.016917
31	1	2	4	7	0.28087
32	1	2	4	9	0.160899
33	1	2	5	6	0.440631
34	1	2	7	8	0.00000
35	1	2	7	9	0.28087
36	2	2	4	7	-0.0942083
37	2	2	4	9	-0.00321168
38	2	2	5	6	0.128239
39	2	2	7	8	-0.1691
40	2	2	7	9	0.057973
41	5	0	1	1	1.06
	9	<u> </u>	1	1	1.00

Y con estos datos, el estimador obtiene,

Bus	Voltaje	Ángulo
1	1.06023	0.00000
2	1.04520	-4.97816
3	1.00932	-12.69195
4	1.01905	-10.32360
5	1.02091	-8.78754
6	1.07061	-14.22007
7	1.06244	-13.36549
8	1.09047	-13.36549
9	1.05685	-14.94249
10	1.05184	-15.10012
11	1.05764	-14.79168
12	1.05583	-15.07384
13	1.05105	-15.15524
14	1.03635	-16.03392

En los casos con datos erróneos se reemplazaron de la siguiente manera:

Caso con 1 error:

Número	Tipo	Dispositivo	Nodo Envío	Nodo Recepción	Magnitud
4	1	1	2	4	0.561381
4	1	1	2	4	2.000001

Caso con 3 errores:

Número	Tipo	Dispositivo	Nodo Envío	Nodo Recepción	Magnitud
5	1	1	2	5	0.415122
5	1	1	2	5	2.415122
10	1	1	6	13	0.1774
10	1	1	6	13	2.1774
26	2	1	9	10	0.04306
26	2	1	9	10	2.04306

Sistema 57 nodos

A continuación se muestran los datos utilizados para obtener las soluciones que se utilizaron para formar el conjunto de mediciones considerados.

Nodo Envío	Nodo Recepción	R	X	В	tap
1	2	0.0083	0.028	0.1290	-
2	3	0.0298	0.085	0.0818	-
3	4	0.0112	0.0366	0.038	-
4	5	0.0625	0.132	0.0258	-

4	6	0.043	0.148	0.0348	-
6	7	0.02	0.102	0.0276	-
6	8	0.0339	0.173	0.047	-
8	9	0.0099	0.0505	0.0548	-
9	10	0.0369	0.1679	0.044	-
9	11	0.0258	0.0848	0.0218	-
9	12	0.0648	0.295	0.0772	-
9	13	0.0481	0.158	0.0406	-
13	14	0.0132	0.0434	0.011	-
13	15	0.0269	0.0869	0.023	-
1	15	0.0178	0.091	0.0988	-
1	16	0.0454	0.206	0.0546	-
1	17	0.0238	0.108	0.0286	-
3	15	0.0162	0.053	0.0544	-
5	6	0.0302	0.0641	0.0124	-
7	8	0.0139	0.0712	0.0194	-
10	12	0.0277	0.1262	0.0328	-
11	13	0.0223	0.0732	0.0188	-
12	13	0.0178	0.058	0.0604	-
12	16	0.018	0.0813	0.0216	-
12	17	0.0397	0.179	0.0476	-
14	15	0.0171	0.0547	0.0148	-
18	19	0.461	0.685	0	-
19	20	0.283	0.434	0	-
21	22	0.0736	0.117	0	-
22	23	0.0099	0.0152	0	-
23	24	0.166	0.256	0.0084	-
26	27	0.165	0.254	0	-
27	28	0.0618	0.0954	0	-
28	29	0.0418	0.0587	0	-
25	30	0.135	0.202	0	-
30	31	0.326	0.497	0	-
31	32	0.507	0.755	0	-
32	33	0.0392	0.036	0	-
34	35	0.052	0.078	0.0032	-
35	36	0.043	0.0537	0.0016	-
36	37	0.029	0.0366	0	-
37	38	0.0651	0.1009	0.002	-
37	39	0.0239	0.0379	0	-
36	40	0.03	0.0466	0	-

22	38	0.0192	0.0295	0	_
41	42	0.207	0.352	0	_
38	44	0.0289	0.0585	0.002	_
46	47	0.023	0.068	0.0032	_
47	48	0.0182	0.0233	0	_
48	49	0.0834	0.129	0.0048	_
49	50	0.0801	0.128	0	_
50	51	0.1386	0.22	0	_
29	52	0.1442	0.187	0	_
52	53	0.0762	0.0984	0	_
53	54	0.1878	0.232	0	_
54	55	0.1732	0.2265	0	_
44	45	0.0624	0.1242	0.004	_
56	41	0.553	0.549	0	_
56	42	0.2125	0.354	0	_
57	56	0.174	0.26	0	_
38	49	0.115	0.177	0.006	_
38	48	0.0312	0.0482	0	_
4	18	0	0.555	0	0.970
4	18	0	0.43	0	0.978
21	20	0	0.7767	0	1.043
24	25	0	1.182	0	1
24	25	0	1.23	0	1
24	26	0	0.0473	0	1.043
7	29	0	0.0648	0	0.967
34	32	0	0.953	0	0.975
11	41	0	0.749	0	0.955
41	43	0	0.412	0	1
15	45	0	0.1042	0	0.955
14	46	0	0.0735	0	0.9
10	51	0	0.0712	0	0.930
13	49	0	0.191	0	0.895
11	43	0	0.153	0	0.958
40	56	0	1.195	0	0.958
39	57	0	1.355	0	0.98
9	55	0	0.1205	0	0.94
-					

Obteniendo,

1 1 1 1 2 1.02084 2 1 1 2 1 -1.00768 3 1 1 2 3 0.977684 4 1 1 2 3 0.977684 4 1 1 3 2 -0.94976 5 1 1 3 4 0.602076 6 1 1 4 3 -0.597845 7 1 1 4 5 0.137971 8 1 1 5 4 -0.136668 9 1 1 4 6 0.141545 10 1 1 6 4 -0.136668 9 1 1 4 6 0.141545 10 1 1 6 4 -0.136668 9 1 1 4 6 0.141545 10 1 1	Número	Tipo	Dispositivo	Nodo Envío	Nodo Recepción	Magnitud
2 1 1 2 3 0.977684 3 1 1 2 3 0.977684 4 1 1 3 2 -0.94976 5 1 1 3 4 0.602076 6 1 1 4 3 -0.597845 7 1 1 4 5 0.137971 8 1 1 5 4 -0.136668 9 1 1 4 6 0.141545 10 1 1 6 4 -0.140597 11 1 1 6 7 -0.177816 12 1 1 7 6 0.178475 13 1 1 6 8 -0.425021 14 1 1 8 6 0.431463 15 1 1 8 9 1.7803 16 1 1	1			1		
4 1 1 3 2 -0.94976 5 1 1 3 4 0.602076 6 1 1 4 3 -0.597845 7 1 1 4 5 0.137971 8 1 1 5 4 -0.136668 9 1 1 4 6 0.141545 10 1 1 6 4 -0.140597 11 1 1 6 4 -0.140597 11 1 1 6 7 -0.17816 12 1 1 7 6 0.178475 13 1 1 6 8 -0.425021 14 1 1 8 6 0.431463 15 1 1 8 9 1.7803 16 1 1 9 8 -1.74873 17 1 1	2	1	1	2	1	-1.00768
5 1 1 3 4 0.602076 6 1 1 4 3 -0.597845 7 1 1 4 5 0.137971 8 1 1 5 4 -0.136668 9 1 1 4 6 0.141545 10 1 1 6 4 -0.140597 11 1 1 6 4 -0.140597 11 1 1 6 7 -0.17816 12 1 1 7 6 0.178475 13 1 1 6 8 -0.425021 14 1 1 8 6 0.431463 15 1 1 8 9 1.7803 16 1 1 9 8 -1.74873 17 1 1 9 10 0.171674 18 1 1	3	1	1	2	3	0.977684
6 1 1 4 3 -0.597845 7 1 1 4 5 0.137971 8 1 1 5 4 -0.136668 9 1 1 4 6 0.141545 10 1 1 6 4 -0.140597 11 1 1 6 7 -0.177816 12 1 1 7 6 0.178475 13 1 1 6 8 -0.425021 14 1 1 8 6 0.431463 15 1 1 8 9 1.7803 16 1 1 9 8 -1.74873 17 1 1 9 10 0.171674 18 1 1 10 9 -0.170347 19 1 1 9 11 0.12858 21 1 1	4	1	1	3	2	-0.94976
7 1 1 4 5 0.137971 8 1 1 5 4 -0.136668 9 1 1 4 6 0.141545 10 1 1 6 4 -0.140597 11 1 1 6 7 -0.177816 12 1 1 7 6 0.178475 13 1 1 6 8 -0.425021 14 1 1 8 6 0.431463 15 1 1 8 9 1.7803 16 1 1 9 8 -1.74873 17 1 1 9 8 -1.74873 17 1 1 9 10 0.171674 18 1 1 10 9 -0.170347 19 1 1 9 11 0.12805 20 1 1	5	1	1	3	4	0.602076
8 1 1 5 4 -0.136668 9 1 1 4 6 0.141545 10 1 1 6 4 -0.140597 11 1 1 6 7 -0.177816 12 1 1 7 6 0.178475 13 1 1 6 8 -0.425021 14 1 1 8 6 0.431463 15 1 1 8 9 1.7803 16 1 1 9 8 -1.74873 17 1 1 9 10 0.171674 18 1 1 10 9 -0.170347 19 1 1 9 11 0.129053 20 1 1 11 9 -0.170347 19 1 1 9 11 0.129053 20 1 1 </td <td>6</td> <td>1</td> <td>1</td> <td>4</td> <td>3</td> <td>-0.597845</td>	6	1	1	4	3	-0.597845
9 1 1 4 6 0.141545 10 1 1 6 4 -0.140597 11 1 1 6 7 -0.177816 12 1 1 7 6 0.178475 13 1 1 6 8 -0.425021 14 1 1 8 6 0.431463 15 1 1 8 9 1.7803 16 1 1 9 8 -1.74873 17 1 1 9 10 0.171674 18 1 1 10 9 -0.170347 19 1 1 9 11 0.129053 20 1 1 11 9 -0.170347 19 1 1 9 -0.170347 19 1 1 9 -0.170347 19 1 1 9 -0	7	1	1	4	5	0.137971
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	1	1	5	4	-0.136668
11 1 1 1 7 -0.177816 12 1 1 7 6 0.178475 13 1 1 6 8 -0.425021 14 1 1 8 6 0.431463 15 1 1 8 9 1.7803 16 1 1 9 8 -1.74873 17 1 1 9 10 0.171674 18 1 1 10 9 -0.170347 19 1 1 0 9 -0.170347 19 1 1 0 9 -0.170347 19 1 1 0 9 -0.170347 19 1 1 0 0.171674 18 1 1 0 9 1.170347 19 1 1 0.12953 1 0 0.171674 18 1 <t< td=""><td>9</td><td>1</td><td>1</td><td>4</td><td>6</td><td>0.141545</td></t<>	9	1	1	4	6	0.141545
12 1 1 7 6 0.178475 13 1 1 6 8 -0.425021 14 1 1 8 6 0.431463 15 1 1 8 9 1.7803 16 1 1 9 8 -1.74873 17 1 1 9 10 0.171674 18 1 1 10 9 -0.170347 19 1 1 9 11 0.129053 20 1 1 11 9 -0.170347 19 1 1 9 11 0.129053 20 1 1 11 9 -0.12858 21 1 1 9 -0.0254997 22 1 1 12 9 -0.0244603 23 1 1 9 13 0.0231921 24 1 1	10	1	1	6	4	-0.140597
13 1 1 6 8 -0.425021 14 1 1 8 6 0.431463 15 1 1 8 9 1.7803 16 1 1 9 8 -1.74873 17 1 1 9 10 0.171674 18 1 1 10 9 -0.170347 19 1 1 9 11 0.129053 20 1 1 11 9 -0.12858 21 1 1 9 12 0.0254997 22 1 1 12 9 -0.0244603 23 1 1 9 13 0.0231921 24 1 1 13 14 -0.10361 26 1 1 14 13 0.104476 27 1 1 13 15 -0.488956 28 1	11	1	1	6	7	-0.177816
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	1	1	7	6	0.178475
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	1	1	6	8	-0.425021
16 1 1 9 8 -1.74873 17 1 1 9 10 0.171674 18 1 1 10 9 -0.170347 19 1 1 9 11 0.129053 20 1 1 11 9 -0.12858 21 1 1 9 12 0.0254997 22 1 1 12 9 -0.0244603 23 1 1 9 13 0.0231921 24 1 1 13 9 -0.0244603 23 1 1 9 13 0.0231921 24 1 1 13 9 -0.0244603 23 1 1 13 14 -0.10361 26 1 1 13 14 -0.10361 26 1 1 13 15 -0.488956 28 1<	14	1	1	8	6	0.431463
17 1 1 9 10 0.171674 18 1 1 10 9 -0.170347 19 1 1 9 11 0.129053 20 1 1 11 9 -0.12858 21 1 1 9 12 0.0254997 22 1 1 12 9 -0.0244603 23 1 1 9 13 0.0231921 24 1 1 13 9 -0.0231652 25 1 1 13 14 -0.10361 26 1 1 14 13 0.104476 27 1 1 13 15 -0.488956 28 1 1 15 13 0.495768 29 1 1 1 15 1.4899 30 1 1 15 1 -1.45085 31 1 <td>15</td> <td>1</td> <td>1</td> <td>8</td> <td>9</td> <td>1.7803</td>	15	1	1	8	9	1.7803
18 1 1 10 9 -0.170347 19 1 1 9 11 0.129053 20 1 1 11 9 -0.12858 21 1 1 9 12 0.0254997 22 1 1 12 9 -0.0244603 23 1 1 9 13 0.0231921 24 1 1 13 9 -0.0231652 25 1 1 13 14 -0.10361 26 1 1 14 13 0.104476 27 1 1 13 15 -0.488956 28 1 1 15 13 0.495768 29 1 1 1 15 1.4899 30 1 1 15 1 -1.45085 31 1 1 16 1 -0.766062 33 1 <td>16</td> <td>1</td> <td>1</td> <td>9</td> <td>8</td> <td>-1.74873</td>	16	1	1	9	8	-1.74873
19 1 1 9 11 0.129053 20 1 1 11 9 -0.12858 21 1 1 9 12 0.0254997 22 1 1 12 9 -0.0244603 23 1 1 9 13 0.0231921 24 1 1 13 9 -0.0231652 25 1 1 13 14 -0.10361 26 1 1 14 13 0.104476 27 1 1 13 15 -0.488956 28 1 1 15 13 0.495768 29 1 1 1 15 1.4899 30 1 1 15 1 -1.45085 31 1 1 16 0.792439 32 1 1 16 1 -0.766062 33 1 1 <td>17</td> <td>1</td> <td>1</td> <td>9</td> <td>10</td> <td>0.171674</td>	17	1	1	9	10	0.171674
20 1 1 11 9 -0.12858 21 1 1 9 12 0.0254997 22 1 1 12 9 -0.0244603 23 1 1 9 13 0.0231921 24 1 1 13 9 -0.0231652 25 1 1 13 14 -0.10361 26 1 1 14 13 0.104476 27 1 1 13 15 -0.488956 28 1 1 15 13 0.495768 29 1 1 1 15 1.4899 30 1 1 15 1 -1.45085 31 1 1 16 0.792439 32 1 1 16 1 -0.766062 33 1 1 17 1 -0.914158 35 1 1 <td>18</td> <td>1</td> <td>1</td> <td>10</td> <td>9</td> <td>-0.170347</td>	18	1	1	10	9	-0.170347
21 1 1 9 12 0.0254997 22 1 1 12 9 -0.0244603 23 1 1 9 13 0.0231921 24 1 1 13 9 -0.0231652 25 1 1 13 14 -0.10361 26 1 1 14 13 0.104476 27 1 1 13 15 -0.488956 28 1 1 15 13 0.495768 29 1 1 1 15 1.4899 30 1 1 15 1 -1.45085 31 1 1 16 0.792439 32 1 1 16 1 -0.766062 33 1 1 17 0.933395 34 1 1 17 1 -0.914158 35 1 1 3 <td>19</td> <td>1</td> <td>1</td> <td>9</td> <td>11</td> <td>0.129053</td>	19	1	1	9	11	0.129053
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	1	1	11	9	-0.12858
23 1 1 9 13 0.0231921 24 1 1 13 9 -0.0231652 25 1 1 13 14 -0.10361 26 1 1 14 13 0.104476 27 1 1 13 15 -0.488956 28 1 1 15 13 0.495768 29 1 1 1 15 1.4899 30 1 1 15 1 -1.45085 31 1 1 1 16 0.792439 32 1 1 16 1 -0.766062 33 1 1 17 0.933395 34 1 1 17 1 -0.914158 35 1 1 3 15 0.337683 36 1 1 15 3 -0.335372 37 1 1	21	1	1	9	12	0.0254997
24 1 1 13 9 -0.0231652 25 1 1 13 14 -0.10361 26 1 1 14 13 0.104476 27 1 1 13 15 -0.488956 28 1 1 15 13 0.495768 29 1 1 1 15 1.4899 30 1 1 15 1 -1.45085 31 1 1 1 16 0.792439 32 1 1 16 1 -0.766062 33 1 1 17 0.933395 34 1 1 17 1 -0.914158 35 1 1 3 15 0.337683 36 1 1 15 3 -0.335372 37 1 1 5 6 0.00666784 38 1 1 6 5 -0.00656558	22	1	1	12	9	-0.0244603
25 1 1 13 14 -0.10361 26 1 1 14 13 0.104476 27 1 1 13 15 -0.488956 28 1 1 15 13 0.495768 29 1 1 1 15 1.4899 30 1 1 15 1 -1.45085 31 1 1 16 0.792439 32 1 1 16 1 -0.766062 33 1 1 1 17 0.933395 34 1 1 17 1 -0.914158 35 1 1 3 15 0.337683 36 1 1 15 3 -0.335372 37 1 1 5 6 0.00656558	23	1	1	9	13	0.0231921
26 1 1 14 13 0.104476 27 1 1 13 15 -0.488956 28 1 1 15 13 0.495768 29 1 1 1 15 1.4899 30 1 1 15 1 -1.45085 31 1 1 1 16 0.792439 32 1 1 16 1 -0.766062 33 1 1 1 17 0.933395 34 1 1 17 1 -0.914158 35 1 1 3 15 0.337683 36 1 1 1 5 6 0.00666784 38 1 1 6 5 -0.00656558	24	1	1	13	9	-0.0231652
27 1 1 13 15 -0.488956 28 1 1 15 13 0.495768 29 1 1 1 15 1.4899 30 1 1 15 1 -1.45085 31 1 1 1 16 0.792439 32 1 1 16 1 -0.766062 33 1 1 1 17 0.933395 34 1 1 17 1 -0.914158 35 1 1 3 15 0.337683 36 1 1 15 3 -0.335372 37 1 1 5 6 0.00666784 38 1 1 6 5 -0.00656558	25	1	1	13	14	-0.10361
28 1 1 15 13 0.495768 29 1 1 1 15 1.4899 30 1 1 15 1 -1.45085 31 1 1 16 0.792439 32 1 1 16 1 -0.766062 33 1 1 1 17 0.933395 34 1 1 17 1 -0.914158 35 1 1 3 15 0.337683 36 1 1 15 3 -0.335372 37 1 1 5 6 0.00666784 38 1 1 6 5 -0.00656558	26	1	1	14	13	0.104476
29 1 1 1 15 1.4899 30 1 1 15 1 -1.45085 31 1 1 16 0.792439 32 1 1 16 1 -0.766062 33 1 1 17 0.933395 34 1 1 17 1 -0.914158 35 1 1 3 15 0.337683 36 1 1 15 3 -0.335372 37 1 1 5 6 0.00666784 38 1 1 6 5 -0.00656558	27	1	1	13	15	-0.488956
30 1 1 15 1 -1.45085 31 1 1 1 16 0.792439 32 1 1 16 1 -0.766062 33 1 1 1 17 0.933395 34 1 1 17 1 -0.914158 35 1 1 3 15 0.337683 36 1 1 15 3 -0.335372 37 1 1 5 6 0.00666784 38 1 1 6 5 -0.00656558	28	1	1	15	13	0.495768
31 1 1 1 16 0.792439 32 1 1 16 1 -0.766062 33 1 1 1 17 0.933395 34 1 1 17 1 -0.914158 35 1 1 3 15 0.337683 36 1 1 15 3 -0.335372 37 1 1 5 6 0.00666784 38 1 1 6 5 -0.00656558	29	1	1	1	15	1.4899
32 1 1 16 1 -0.766062 33 1 1 1 17 0.933395 34 1 1 17 1 -0.914158 35 1 1 3 15 0.337683 36 1 1 15 3 -0.335372 37 1 1 5 6 0.00666784 38 1 1 6 5 -0.00656558	30	1	1	15	1	-1.45085
33 1 1 1 17 0.933395 34 1 1 17 1 -0.914158 35 1 1 3 15 0.337683 36 1 1 15 3 -0.335372 37 1 1 5 6 0.00666784 38 1 1 6 5 -0.00656558	31	1	1	1	16	0.792439
34 1 1 17 1 -0.914158 35 1 1 3 15 0.337683 36 1 1 15 3 -0.335372 37 1 1 5 6 0.00666784 38 1 1 6 5 -0.00656558	32	1	1	16	1	-0.766062
35 1 1 3 15 0.337683 36 1 1 15 3 -0.335372 37 1 1 5 6 0.00666784 38 1 1 6 5 -0.00656558	33	1	1	1	17	0.933395
36 1 1 15 3 -0.335372 37 1 1 5 6 0.00666784 38 1 1 6 5 -0.00656558	34	1	1	17	1	-0.914158
37 1 1 5 6 0.00666784 38 1 1 6 5 -0.00656558	35	1	1	3	15	0.337683
38 1 1 6 5 -0.00656558	36	1	1	15	3	-0.335372
	37	1	1	5	6	0.00666784
$\phantom{00000000000000000000000000000000000$	38	1	1	6	5	-0.00656558
	39	1	1	7	8	-0.779337

40	1	1	8	7	0.788241
41	1	1	10	12	-0.17597
42	1	1	12	10	0.177823
43	1	1	11	13	-0.0992144
44	1	1	13	11	0.0994749
45	1	1	12	13	-0.00483198
46	1	1	13	12	0.0117726
47	1	1	12	16	-0.333941
48	1	1	16	12	0.336062
49	1	1	12	17	-0.484589
50	1	1	17	12	0.494158
51	1	1	14	15	-0.688381
52	1	1	15	14	0.697131
53	1	1	18	19	0.0463294
54	1	1	19	18	-0.045254
55	1	1	19	20	0.012254
56	1	1	20	19	-0.0121974
57	1	1	21	22	-0.0108026
58	1	1	22	21	0.0108122
59	1	1	22	23	0.0965913
60	1	1	23	22	-0.0964912
61	1	1	23	24	0.0334912
62	1	1	24	23	-0.0332743
63	1	1	26	27	-0.105311
64	1	1	27	26	0.107346
65	1	1	27	28	-0.200346
66	1	1	28	27	0.202958
67	1	1	28	29	-0.248958
68	1	1	29	28	0.251675
69	1	1	25	30	0.0755856
70	1	1	30	25	-0.0744875
71	1	1	30	31	0.0384875
72	1	1	31	30	-0.0377173
73	1	1	31	32	-0.0202827
74	1	1	32	31	0.020528
75	1	1	32	33	0.0380788
76	1	1	33	32	-0.038
77	1	1	34	35	-0.0746068
78	1	1	35	34	0.074996
79	1	1	35	36	-0.134996

80	1	1	36	35	0.136028
81	1	1	36	37	-0.170681
82	1	1	37	36	0.171912
83	1	1	37	38	-0.210505
84	1	1	38	37	0.214721
85	1	1	37	39	0.0385933
86	1	1	39	37	-0.0385354
87	1	1	36	40	0.0346532
88	1	1	40	36	-0.0345625
89	1	1	22	38	-0.107403
90	1	1	38	22	0.107644
91	1	1	41	42	0.0887522
92	1	1	42	41	-0.0868872
93	1	1	38	44	-0.243449
94	1	1	44	38	0.2452
95	1	1	46	47	0.478905
96	1	1	47	46	-0.472871
97	1	1	47	48	0.175871
98	1	1	48	47	-0.175083
99	1	1	48	49	0.000761149
100	1	1	49	48	-0.000357666
101	1	1	49	50	0.0967555
102	1	1	50	49	-0.0959083
103	1	1	50	51	-0.114092
104	1	1	51	50	0.116316
105	1	1	29	52	0.179187
106	1	1	52	29	-0.174559
107	1	1	52	53	0.125559
108	1	1	53	52	-0.124308
109	1	1	53	54	-0.0756918
110	1	1	54	53	0.0772311
111	1	1	54	55	-0.118231
112	1	1	55	54	0.121311
113	1	1	44	45	-0.3652
114	1	1	45	44	0.373323
115	1	1	56	41	-0.0542787
116	1	1	41	56	0.0560421
117	1	1	56	42	-0.0157818
118	1	1	42	56	0.0158872
-				· · · · · · · · · · · · · · · · · · ·	

120	1	1	56	57	0.028623
121	1	1	38	49	-0.0466344
122	1	1	49	38	0.0480859
123	1	1	38	48	-0.172282
124	1	1	48	38	0.174322
125	2	1	1	2	0.749982
126	2	1	2	1	-0.841168
127	2	1	2	3	-0.0463845
128	2	1	3	2	0.0446298
129	2	1	3	4	-0.0818478
130	2	1	4	3	0.058963
131	2	1	4	5	-0.0443002
132	2	1	5	4	0.0223422
133	2	1	4	6	-0.0509118
134	2	1	6	4	0.0207254
135	2	1	6	7	-0.0172
136	2	1	7	6	-0.0060615
137	2	1	6	8	-0.0656416
138	2	1	8	6	0.0522106
139	2	1	8	9	0.198258
140	2	1	9	8	-0.0912266
141	2	1	9	10	-0.0924474
142	2	1	10	9	0.0559599
143	2	1	9	11	0.0203128
144	2	1	11	9	-0.0395674
145	2	1	9	12	-0.15854
146	2	1	12	9	0.0864338
147	2	1	9	13	-0.0199047
148	2	1	13	9	-0.0189567
149	2	1	13	14	0.222994
150	2	1	14	13	-0.230596
151	2	1	13	15	0.0489847
152	2	1	15	13	-0.0492264
153	2	1	1	15	0.337414
154	2	1	15	1	-0.23946
155	2	1	1	16	-0.0086975
156	2	1	16	1	0.0708179
157	2	1	1	17	0.039357
158	2	1	17	1	0.0176665
159	2	1	3	15	-0.182649

160	2	1	15	3	0.137267
161	2	1	5	6	-0.0623422
162	2	1	6	5	0.0506927
163	2	1	7	8	-0.123966
164	2	1	8	7	0.150381
165	2	1	10	12	-0.200647
166	2	1	12	10	0.176242
167	2	1	11	13	-0.0441329
168	2	1	13	11	0.0270625
169	2	1	12	13	0.602671
170	2	1	13	12	-0.64011
171	2	1	12	16	0.0881793
172	2	1	16	12	-0.100818
173	2	1	12	17	0.0916548
174	2	1	17	12	-0.0976665
175	2	1	14	15	-0.0955609
176	2	1	15	14	0.109361
177	2	1	18	19	0.0137657
178	2	1	19	18	-0.0121678
179	2	1	19	20	0.0061678
180	2	1	20	19	-0.0060811
181	2	1	21	22	-0.0040293
182	2	1	22	21	0.0040446
183	2	1	22	23	0.0312897
184	2	1	23	22	-0.0311361
185	2	1	23	24	0.0101361
186	2	1	24	23	-0.0182685
187	2	1	26	27	-0.0158838
188	2	1	27	26	0.0190167
189	2	1	27	28	-0.0240167
190	2	1	28	27	0.0280478
191	2	1	28	29	-0.0510478
192	2	1	29	28	0.054864
193	2	1	25	30	0.0462756
194	2	1	30	25	-0.0446326
195	2	1	30	31	0.0266326
196	2	1	31	30	-0.0254583
197	2	1	31	32	-0.0035417
198	2	1	32	31	0.0039069
199	2	1	32	33	0.0190723

200	2	1	33	32	-0.019
201	2	1	34	35	-0.0378689
202	2	1	35	34	0.0354857
203	2	1	35	36	-0.0654857
204	2	1	36	35	0.0652652
205	2	1	36	37	-0.106234
206	2	1	37	36	0.107787
207	2	1	37	38	-0.137144
208	2	1	38	37	0.141683
209	2	1	37	39	0.0293571
210	2	1	39	37	-0.0292653
211	2	1	36	40	0.0409689
212	2	1	40	36	-0.0408281
213	2	1	22	38	-0.0353343
214	2	1	38	22	0.035704
215	2	1	41	42	0.0326531
216	2	1	42	41	-0.0294817
217	2	1	38	44	0.0529504
218	2	1	44	38	-0.0514664
219	2	1	46	47	0.253933
220	2	1	47	46	-0.239599
221	2	1	47	48	0.123599
222	2	1	48	47	-0.122591
223	2	1	48	49	-0.0740016
224	2	1	49	48	0.0695133
225	2	1	49	50	0.04474
226	2	1	50	49	-0.0433861
227	2	1	50	51	-0.0616139
228	2	1	51	50	0.0651448
229	2	1	29	52	0.0255223
230	2	1	52	29	-0.0195199
231	2	1	52	53	-0.0024801
232	2	1	53	52	0.0040947
233	2	1	53	54	-0.0447002
234	2	1	54	53	0.0466017
235	2	1	54	55	-0.0606017
236	2	1	55	54	0.0646292
237	2	1	44	45	0.0334664
238	2	1	45	44	-0.0215144
239	2	1	56	41	0.006695

241 2 1 56 42 0.0146938 242 2 1 42 56 -0.014518; 243 2 1 57 56 0.0061122 244 2 1 56 57 -0.005875; 245 2 1 38 49 -0.106896 246 2 1 49 38 0.102828 247 2 1 38 48 -0.193441 248 2 1 48 38 0.196593 249 1 2 4 18 0.13961 250 1 2 18 4 -0.13961 250 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.13961 253 1 2 21 20 0.0108026 254 </th <th>241 2 1 56 42 0.0146938 242 2 1 42 56 -0.0145183 243 2 1 57 56 0.0061122 244 2 1 56 57 -0.0058755 245 2 1 38 49 -0.106896 246 2 1 49 38 0.102828 247 2 1 38 48 -0.193441 248 2 1 48 38 0.196593 249 1 2 4 18 0.13961 250 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.13961 251 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254<!--</th--><th></th><th></th><th></th><th></th><th></th><th></th></th>	241 2 1 56 42 0.0146938 242 2 1 42 56 -0.0145183 243 2 1 57 56 0.0061122 244 2 1 56 57 -0.0058755 245 2 1 38 49 -0.106896 246 2 1 49 38 0.102828 247 2 1 38 48 -0.193441 248 2 1 48 38 0.196593 249 1 2 4 18 0.13961 250 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.13961 251 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
242 2 1 42 56 -0.0145188 243 2 1 57 56 0.0061122 244 2 1 56 57 -0.0058758 245 2 1 38 49 -0.106896 246 2 1 49 38 0.102828 247 2 1 38 48 -0.193441 248 2 1 48 38 0.196593 249 1 2 4 18 0.13961 250 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254	242 2 1 42 56 -0.0145183 243 2 1 57 56 0.0061122 244 2 1 56 57 -0.0058755 245 2 1 38 49 -0.106896 246 2 1 49 38 0.102828 247 2 1 38 48 -0.193441 248 2 1 48 38 0.196593 249 1 2 4 18 0.13961 250 1 2 18 4 -0.13961 250 1 2 18 4 -0.17872 252 1 2 18 4 -0.17872 253 1 2 11 4 18 0.17872 253 1 2 21 20 0.0108026 2 254 1 2 20 21 -0.0108026 </td <td>240</td> <td>2</td> <td>1</td> <td>41</td> <td>56</td> <td>-0.0049444</td>	240	2	1	41	56	-0.0049444
243 2 1 57 56 0.0061122 244 2 1 56 57 -0.0058755 245 2 1 38 49 -0.106896 246 2 1 49 38 0.102828 247 2 1 38 48 -0.193441 248 2 1 48 38 0.196593 249 1 2 4 18 0.13961 250 1 2 18 4 -0.13961 250 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.13961 251 1 2 18 4 -0.17872 252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254	243 2 1 57 56 0.0061122 244 2 1 56 57 -0.0058755 245 2 1 38 49 -0.106896 246 2 1 49 38 0.102828 247 2 1 38 48 -0.193441 248 2 1 48 38 0.196593 249 1 2 4 18 0.13961 250 1 2 18 4 -0.13961 250 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.13961 251 1 2 18 4 -0.17872 252 1 2 18 4 -0.17872 253 1 2 20 21 -0.0108026 254	241	2	1	56	42	0.0146938
244 2 1 56 57 -0.0058755 245 2 1 38 49 -0.106896 246 2 1 49 38 0.102828 247 2 1 38 48 -0.193441 248 2 1 48 38 0.196593 249 1 2 4 18 0.13961 250 1 2 18 4 -0.13961 251 1 2 18 4 -0.13961 251 1 2 18 4 -0.13961 251 1 2 18 4 -0.13961 251 1 2 18 4 -0.17872 252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255	244 2 1 56 57 -0.0058755 245 2 1 38 49 -0.106896 246 2 1 49 38 0.102828 247 2 1 38 48 -0.193441 248 2 1 48 38 0.196593 249 1 2 4 18 0.13961 250 1 2 18 4 -0.13961 250 1 2 18 4 -0.13961 251 1 2 18 4 -0.13961 251 1 2 18 4 -0.13961 251 1 2 18 4 -0.17872 252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255	242	2	1	42	56	-0.0145183
245 2 1 38 49 -0.106896 246 2 1 49 38 0.102828 247 2 1 38 48 -0.193441 248 2 1 48 38 0.196593 249 1 2 4 18 0.13961 250 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.13961 253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706713 258	245 2 1 38 49 -0.106896 246 2 1 49 38 0.102828 247 2 1 38 48 -0.193441 248 2 1 48 38 0.196593 249 1 2 4 18 0.13961 250 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.13961 251 1 2 18 4 -0.13961 252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 257 <td>243</td> <td>2</td> <td>1</td> <td>57</td> <td>56</td> <td>0.0061122</td>	243	2	1	57	56	0.0061122
246 2 1 49 38 0.102828 247 2 1 38 48 -0.193441 248 2 1 48 38 0.196593 249 1 2 4 18 0.13961 250 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 24 25 0.0679138 259 1 2 24 26 -0.105311 260	246 2 1 49 38 0.102828 247 2 1 38 48 -0.193441 248 2 1 48 38 0.196593 249 1 2 4 18 0.13961 250 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 24 25 0.0706717 257 1 2 24 25 0.0679138 258 1 2 24 25 0.0679138 259 1 2 24 26 -0.105311 260<	244	2	1	56	57	-0.0058755
247 2 1 38 48 -0.193441 248 2 1 48 38 0.196593 249 1 2 4 18 0.13961 250 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.076717 257 1 2 24 25 0.0679138 259 1 2 24 26 -0.105311 26	247 2 1 38 48 -0.193441 248 2 1 48 38 0.196593 249 1 2 4 18 0.13961 250 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0706717 257 1 2 26 24 0.105311 2	245	2	1	38	49	-0.106896
248 2 1 48 38 0.196593 249 1 2 4 18 0.13961 250 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.07067913 259 1 2 26 24 0.105311 <td< td=""><td>248 2 1 48 38 0.196593 249 1 2 4 18 0.13961 250 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0706717 257 1 2 24 26 -0.105311 260 1 2 26 24 0.105311 2</td><td>246</td><td>2</td><td>1</td><td>49</td><td>38</td><td>0.102828</td></td<>	248 2 1 48 38 0.196593 249 1 2 4 18 0.13961 250 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0706717 257 1 2 24 26 -0.105311 260 1 2 26 24 0.105311 2	246	2	1	49	38	0.102828
249 1 2 4 18 0.13961 250 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0766713 259 1 2 24 25 0.0679138 259 1 2 24 26 -0.105311 260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262	249 1 2 4 18 0.13961 250 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0706717 257 1 2 24 25 0.06706713 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0679138 259 1 2 26 24 0.105311 260 1 2 26 24 0.105311 2	247	2	1	38	48	-0.193441
250 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.079138 259 1 2 24 26 -0.105311 260 1 2 26 24 0.105311 261 1 2 26 24 0.105311 261 1 2 26 24 0.105311 261 1 2 34 32 0.0746068 2	250 1 2 18 4 -0.13961 251 1 2 4 18 0.17872 252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.079138 259 1 2 26 24 0.105311 260 1 2 26 24 0.105311 261 1 2 29 7 -0.600862	248	2	1	48	38	0.196593
251 1 2 4 18 0.17872 252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0679138 259 1 2 24 26 -0.105311 260 1 2 26 24 0.105311 261 1 2 26 24 0.105311 261 1 2 26 24 0.105311 261 1 2 27 29 0.600862 262 1 2 34 32 0.0746068 <td< td=""><td>251 1 2 4 18 0.17872 252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0679138 259 1 2 26 24 -0.105311 260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 <t< td=""><td>249</td><td>1</td><td>2</td><td>4</td><td>18</td><td>0.13961</td></t<></td></td<>	251 1 2 4 18 0.17872 252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0679138 259 1 2 26 24 -0.105311 260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 <t< td=""><td>249</td><td>1</td><td>2</td><td>4</td><td>18</td><td>0.13961</td></t<>	249	1	2	4	18	0.13961
252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0679138 259 1 2 24 26 -0.105311 260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624	252 1 2 18 4 -0.17872 253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0679138 259 1 2 26 -0.105311 260 1 2 26 -0.105311 260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 34 -0.0746068 265 <td>250</td> <td>1</td> <td>2</td> <td>18</td> <td>4</td> <td>-0.13961</td>	250	1	2	18	4	-0.13961
253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706713 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0679138 259 1 2 24 26 -0.105311 260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624	253 1 2 21 20 0.0108026 254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0679138 259 1 2 26 24 -0.0679138 259 1 2 26 -0.105311 260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 41 41 0.0918624 266	251	1	2	4	18	0.17872
254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0679138 259 1 2 24 26 -0.105311 260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 266 1 2 41 11 -0.0918624	254 1 2 20 21 -0.0108026 255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0679138 259 1 2 24 26 -0.105311 260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932	252	1	2	18	4	-0.17872
255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0679138 259 1 2 24 26 -0.105311 260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932 268 1 2 41 43 -0.115932	255 1 2 24 25 0.0706717 256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0679138 259 1 2 24 26 -0.105311 260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932	253	1	2	21	20	0.0108026
256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0679138 259 1 2 24 26 -0.105311 260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 268 1 2 43 41 0.115932	256 1 2 25 24 -0.0706717 257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0679138 259 1 2 24 26 -0.105311 260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 266 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 268 1 2 45 15 -0.373323	254	1	2	20	21	-0.0108026
257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0679138 259 1 2 24 26 -0.105311 260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 266 1 2 41 41 0.0918624 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 268 1 2 43 41 0.115932	257 1 2 24 25 0.0679138 258 1 2 25 24 -0.0679138 259 1 2 24 26 -0.105311 260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 11 -0.0918624 267 1 2 41 41 0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323	255	1	2	24	25	0.0706717
258 1 2 25 24 -0.0679138 259 1 2 24 26 -0.105311 260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323	258 1 2 25 24 -0.0679138 259 1 2 24 26 -0.105311 260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323	256	1	2	25	24	-0.0706717
259 1 2 24 26 -0.105311 260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 46 14 -0.478905	259 1 2 24 26 -0.105311 260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 <	257	1	2	24	25	0.0679138
260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 266 1 2 41 13 -0.015932 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 <t< td=""><td>260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 41 0.0918624 266 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 <</td><td>258</td><td>1</td><td>2</td><td>25</td><td>24</td><td>-0.0679138</td></t<>	260 1 2 26 24 0.105311 261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 41 0.0918624 266 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 <	258	1	2	25	24	-0.0679138
261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 <t< td=""><td>261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 <t< td=""><td>259</td><td>1</td><td>2</td><td>24</td><td>26</td><td>-0.105311</td></t<></td></t<>	261 1 2 7 29 0.600862 262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 <t< td=""><td>259</td><td>1</td><td>2</td><td>24</td><td>26</td><td>-0.105311</td></t<>	259	1	2	24	26	-0.105311
262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 <	262 1 2 29 7 -0.600862 263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 13 49 0.324484 276 1 2 49 13 -0.324484 <	260	1	2	26	24	0.105311
263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484	263 1 2 34 32 0.0746068 264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484 277 1 2 11 43 0.135932 278 1 <td>261</td> <td>1</td> <td>2</td> <td>7</td> <td>29</td> <td>0.600862</td>	261	1	2	7	29	0.600862
264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484	264 1 2 32 34 -0.0746068 265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484 277 1 2 11 43 0.135932 278 1 2 43 11 -0.135932	262	1	2	29	7	-0.600862
265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484	265 1 2 11 41 0.0918624 266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484 277 1 2 11 43 0.135932 278 1 2 43 11 -0.135932	263	1	2	34	32	0.0746068
266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484	266 1 2 41 11 -0.0918624 267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484 277 1 2 11 43 0.135932 278 1 2 43 11 -0.135932	264	1	2	32	34	-0.0746068
267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484	267 1 2 41 43 -0.115932 268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484 277 1 2 11 43 0.135932 278 1 2 43 11 -0.135932	265	1	2	11	41	0.0918624
268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484	268 1 2 43 41 0.115932 269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484 277 1 2 11 43 0.135932 278 1 2 43 11 -0.135932	266	1	2	41	11	-0.0918624
269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484	269 1 2 15 45 0.373323 270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484 277 1 2 11 43 0.135932 278 1 2 43 11 -0.135932	267	1	2	41	43	-0.115932
270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484	270 1 2 45 15 -0.373323 271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484 277 1 2 11 43 0.135932 278 1 2 43 11 -0.135932	268	1	2	43	41	0.115932
271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484	271 1 2 14 46 0.478905 272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484 277 1 2 11 43 0.135932 278 1 2 43 11 -0.135932	269	1	2	15	45	0.373323
272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484	272 1 2 46 14 -0.478905 273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484 277 1 2 11 43 0.135932 278 1 2 43 11 -0.135932	270	1	2	45	15	-0.373323
273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484	273 1 2 10 51 0.296316 274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484 277 1 2 11 43 0.135932 278 1 2 43 11 -0.135932	271	1	2	14	46	0.478905
274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484	274 1 2 51 10 -0.296316 275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484 277 1 2 11 43 0.135932 278 1 2 43 11 -0.135932	272	1	2	46	14	-0.478905
275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484	275 1 2 13 49 0.324484 276 1 2 49 13 -0.324484 277 1 2 11 43 0.135932 278 1 2 43 11 -0.135932	273	1	2	10	51	0.296316
276 1 2 49 13 -0.324484	276 1 2 49 13 -0.324484 277 1 2 11 43 0.135932 278 1 2 43 11 -0.135932	274	1	2	51	10	-0.296316
	277 1 2 11 43 0.135932 278 1 2 43 11 -0.135932	275	1	2	13	49	0.324484
077 1 0 11 49 0.197090	278 1 2 43 11 -0.135932	276	1	2	49	13	-0.324484
277 1 2 11 43 0.135932		277	1	2	11	43	0.135932
278 1 2 43 11 -0.135932	279 1 2 40 56 0.0345625	278	1	2	43	11	-0.135932
279 1 2 40 56 0.0345625		279	1	2	40	56	0.0345625

280	1	2	56	40	-0.0345625
281	1	2	39	57	0.0385354
282	1	2	57	39	-0.0385354
283	1	2	9	55	0.189311
284	1	2	55	9	-0.189311
285	2	2	4	18	0.0243574
286	2	2	18	4	-0.0134544
287	2	2	4	18	0.0118915
288	2	2	18	4	0.00182565
289	2	2	21	20	0.00402933
290	2	2	20	21	-0.00391894
291	2	2	24	25	0.0171185
292	2	2	25	24	-0.010861
293	2	2	24	25	0.0164504
294	2	2	25	24	-0.0104372
295	2	2	24	26	-0.0153003
296	2	2	26	24	0.0158838
297	2	2	7	29	0.130028
298	2	2	29	7	-0.106386
299	2	2	34	32	0.0378689
300	2	2	32	34	-0.0309793
301	2	2	11	41	0.0352392
302	2	2	41	11	-0.0282685
303	2	2	41	43	-0.0294402
304	2	2	43	41	0.0353785
305	2	2	15	45	-0.00794183
306	2	2	45	15	0.0215144
307	2	2	14	46	0.273157
308	2	2	46	14	-0.253933
309	2	2	10	51	0.124688
310	2	2	51	10	-0.118145
311	2	2	13	49	0.337025
312	2	2	49	13	-0.302082
313	2	2	11	43	0.0484611
314	2	2	43	11	-0.0453785
315	2	2	40	56	0.0408281
316	2	2	56	40	-0.0375133
317	2	2	39	57	0.0292653
318	2	2	57	39	-0.0261122
319	2	2	9	55	0.103797

320	2	2	55	9	-0.0986292
321	5	0	1	1	1.04

En los casos con datos erróneos se reemplazaron de la siguiente manera:

Caso con 1 error:

Número	Tipo	Dispositivo	Nodo Envío	Nodo Recepción	Magnitud
21	1	1	9	12	0.0254997
21	1	1	9	12	2.0254997

Caso con 5 errores:

Número	Tipo	Dispositivo	Nodo Envío	Nodo Recepción	Magnitud
21	1	1	9	12	0.0254997
21	1	1	9	12	2.0254997
33	1	1	1	17	0.933395
33	1	1	1	17	-1.933395
52	1	1	15	14	0.697131
52	52 1 1	1	15	14	-0.697131
96	1	1	47	46	-0.472871
96	1	1	47	46	+0.472871
169	2	1	12	13	0.602671
169	2	1	12	13	0.0

Sistema 118 nodos

A continuación se muestran los datos utilizados para obtener las soluciones que se utilizaron para formar el conjunto de mediciones considerados.

		-			
Nodo Envío	Nodo Recepción	R	X	В	tap
1	2	0.0303	0.0999	0.0254	-
1	3	0.0129	0.0424	0.01082	-
4	5	0.00176	0.00798	0.0021	-
3	5	0.0241	0.108	0.0284	-
5	6	0.0119	0.054	0.01426	-
6	7	0.00459	0.0208	0.0055	-
8	9	0.00244	0.0305	1.162	-
9	10	0.00258	0.0322	1.23	-
4	11	0.0209	0.0688	0.01748	-
5	11	0.0203	0.0682	0.01738	-
11	12	0.00595	0.0196	0.00502	-
2	12	0.0187	0.0616	0.01572	_
3	12	0.0484	0.16	0.0406	-
7	12	0.00862	0.034	0.00874	-
11	13	0.02225	0.0731	0.01876	-
12	14	0.0215	0.0707	0.01816	-
13	15	0.0744	0.2444	0.06268	-
14	15	0.0595	0.195	0.0502	-
12	16	0.0212	0.0834	0.0214	-
15	17	0.0132	0.0437	0.0444	-
16	17	0.0454	0.1801	0.0466	-
17	18	0.0123	0.0505	0.01298	-
18	19	0.01119	0.0493	0.01142	-
19	20	0.0252	0.117	0.0298	-
15	19	0.012	0.0394	0.0101	-
20	21	0.0183	0.0849	0.0216	-
21	22	0.0209	0.097	0.0246	-
22	23	0.0342	0.159	0.0404	-
23	24	0.0135	0.0492	0.0498	-
23	25	0.0156	0.08	0.0864	-
25	27	0.0318	0.163	0.1764	-
27	28	0.01913	0.0855	0.0216	-
28	29	0.0237	0.0943	0.0238	-
30	8	0.00431	0.0504	0.514	-

30	26	0.00799	0.086	0.908	-
17	31	0.0474	0.1563	0.0399	-
29	31	0.0108	0.0331	0.0083	-
23	32	0.0317	0.1153	0.1173	-
31	32	0.0298	0.0985	0.0251	-
27	32	0.0229	0.0755	0.01926	-
15	33	0.038	0.1244	0.03194	-
19	34	0.0752	0.247	0.0632	-
35	36	0.00224	0.0102	0.00268	-
35	37	0.011	0.0497	0.01318	_
33	37	0.0415	0.142	0.0366	_
34	36	0.00871	0.0268	0.00568	_
34	37	0.00256	0.0094	0.00984	_
37	39	0.0321	0.106	0.027	_
37	40	0.0593	0.168	0.042	_
30	38	0.00464	0.054	0.422	
39	40	0.0184	0.0605	0.01552	_
40	41	0.0145	0.0487	0.01222	
40	42	0.0555	0.183	0.0466	_
41	42	0.041	0.135	0.0344	
43	44	0.0608	0.2454	0.06068	
34	43	0.0413	0.1681	0.04226	
44	45	0.0224	0.0901	0.0224	
45	46	0.04	0.1356	0.0332	
46	47	0.038	0.1330 0.127	0.0332	
46	48	0.0601	0.127	0.0310 0.0472	
47	49	0.0191	0.169	0.0472	
42	49	0.0191 0.0715	$\frac{0.0023}{0.323}$	0.01004	
42	49	0.0715	$\frac{0.323}{0.323}$	0.086	
	49				
45	49	$\frac{0.0684}{0.0170}$	0.186	0.0444	-
		0.0179	0.0505		
49	50	0.0267	0.0752	0.01874	
49	51	0.0486	0.137	0.0342	
51	52	0.0203	0.0588	0.01396	-
52	53	0.0405	0.1635	0.04058	-
53	54	0.0263	0.122	0.031	-
49	54	0.073	0.289	0.0738	-
49	54	0.0869	0.291	0.073	-
54	55	0.0169	0.0707	0.0202	-
54	56	0.00275	0.00955	0.00732	-

55	56	0.00488	0.0151	0.00374	-
56	57	0.0343	0.0966	0.0242	-
50	57	0.0474	0.134	0.0332	-
56	58	0.0343	0.0966	0.0242	-
51	58	0.0255	0.0719	0.01788	-
54	59	0.0503	0.2293	0.0598	-
56	59	0.0825	0.251	0.0569	-
56	59	0.0803	0.239	0.0536	-
55	59	0.04739	0.2158	0.05646	-
59	60	0.0317	0.145	0.0376	-
59	61	0.0328	0.15	0.0388	-
60	61	0.00264	0.0135	0.01456	-
60	62	0.0123	0.0561	0.01468	-
61	62	0.00824	0.0376	0.0098	-
63	64	0.00172	0.02	0.216	-
38	65	0.00901	0.0986	1.046	-
64	65	0.00269	0.0302	0.38	-
49	66	0.018	0.0919	0.0248	-
49	66	0.018	0.0919	0.0248	-
62	66	0.0482	0.218	0.0578	-
62	67	0.0258	0.117	0.031	-
66	67	0.0224	0.1015	0.02682	-
65	68	0.00138	0.016	0.638	-
47	69	0.0844	0.2778	0.07092	-
49	69	0.0985	0.324	0.0828	-
69	70	0.03	0.127	0.122	-
24	70	0.00221	0.4115	0.10198	-
70	71	0.00882	0.0355	0.00878	-
24	72	0.0488	0.196	0.0488	-
71	72	0.0446	0.18	0.04444	-
71	73	0.00866	0.0454	0.01178	-
70	74	0.0401	0.1323	0.03368	-
70	75	0.0428	0.141	0.036	-
69	75	0.0405	0.122	0.124	-
74	75	0.0123	0.0406	0.01034	-
76	77	0.0444	0.148	0.0368	-
69	77	0.0309	0.101	0.1038	-
75	77	0.0601	0.1999	0.04978	-
77	78	0.00376	0.0124	0.01264	-
78	79	0.00546	0.0244	0.00648	-

77	80	0.017	0.0485	0.0472	-
77	80	0.0294	0.105	0.0228	-
79	80	0.0156	0.0704	0.0187	-
68	81	0.00175	0.0202	0.808	-
77	82	0.0298	0.0853	0.08174	-
82	83	0.0112	0.03665	0.03796	-
83	84	0.0625	0.132	0.0258	-
83	85	0.043	0.148	0.0348	-
84	85	0.0302	0.0641	0.01234	-
85	86	0.035	0.123	0.0276	-
86	87	0.02828	0.2074	0.0445	-
85	88	0.02	0.102	0.0276	-
85	89	0.0239	0.173	0.047	-
88	89	0.0139	0.0712	0.01934	-
89	90	0.0518	0.188	0.0528	_
89	90	0.0238	0.0997	0.106	_
90	91	0.0254	0.0836	0.0214	_
89	92	0.0099	0.0505	0.0548	_
89	92	0.0393	0.1581	0.0414	_
91	92	0.0387	0.1272	0.03268	_
92	93	0.0258	0.0848	0.0218	_
92	94	0.0481	0.158	0.0406	_
93	94	0.0223	0.0732	0.01876	_
94	95	0.0132	0.0434	0.0111	_
80	96	0.0356	0.182	0.0494	_
82	96	0.0162	0.053	0.0544	_
94	96	0.0269	0.0869	0.023	
80	97	0.0183	0.0934	0.0254	
80	98	0.0238	0.108	0.0286	_
80	99	0.0454	0.206	0.0546	_
92	100	0.0648	0.295	0.0472	_
94	100	0.0178	0.058	0.0604	_
95	96	0.0171	0.0547	0.01474	_
96	97	0.0173	0.0885	0.024	_
98	100	0.0397	0.179	0.0476	_
99	100	0.018	0.0813	0.0216	_
100	101	0.0277	0.1262	0.0328	_
92	102	0.0123	0.0559	0.01464	
101	102	0.0246	0.112	0.0294	
	103	0.016	0.0525	0.0536	

100	104	0.0451	0.204	0.0541	_
103	104	0.0466	0.1584	0.0407	-
103	105	0.0535	0.1625	0.0408	-
100	106	0.0605	0.229	0.062	-
104	105	0.00994	0.0378	0.00986	-
105	106	0.014	0.0547	0.01434	-
105	107	0.053	0.183	0.0472	-
105	108	0.0261	0.0703	0.01844	-
106	107	0.053	0.183	0.0472	-
108	109	0.0105	0.0288	0.0076	-
103	110	0.03906	0.1813	0.0461	_
109	110	0.0278	0.0762	0.0202	-
110	111	0.022	0.0755	0.02	_
110	112	0.0247	0.064	0.062	-
17	113	0.00913	0.0301	0.00768	-
32	113	0.0615	0.203	0.0518	-
32	114	0.0135	0.0612	0.01628	-
27	115	0.0164	0.0741	0.01972	_
114	115	0.0023	0.0104	0.00276	_
68	116	0.00034	0.00405	0.164	_
12	117	0.0329	0.14	0.0358	_
75	118	0.0145	0.0481	0.01198	-
76	118	0.0164	0.0544	0.01356	-
8	5	0	0.0267	0	0.985
26	25	0	0.0382	0	0.96
30	17	0	0.0388	0	0.96
38	37	0	0.0375	0	0.935
63	59	0	0.0386	0	0.96
64	61	0	0.0268	0	0.985
65	66	0	0.037	0	0.935
68	69	0	0.037	0	0.935
81	80	0	0.037	0	0.935
-					

Obteniendo,

Número	Tipo	Dispositivo	Nodo Envío	Nodo Recepción	Magnitud
1	1	1	1	2	-0.12356
2	1	1	2	1	0.124537
3	1	1	1	3	-0.38644

4	1	1	3	1	0.38894
5	1	1	4	5	-1.03213
6	1	1	5	4	1.03414
7	1	1	3	5	-0.68103
8	1	1	5	3	0.693413
9	1	1	5	6	0.884559
10	1	1	6	5	-0.875257
11	1	1	6	7	0.355257
12	1	1	7	6	-0.354657
13	1	1	8	9	-4.40635
14	1	1	9	8	4.45255
15	1	1	9	10	-4.45255
16	1	1	10	9	4.5
17	1	1	4	11	0.642129
18	1	1	11	4	-0.633476
19	1	1	5	11	0.772055
20	1	1	11	5	-0.759973
21	1	1	11	12	0.342837
22	1	1	12	11	-0.34137
23	1	1	2	12	-0.324537
24	1	1	12	2	0.327359
25	1	1	3	12	-0.09791
26	1	1	12	3	0.098975
27	1	1	7	12	0.164657
28	1	1	12	7	-0.164385
29	1	1	11	13	0.350612
$\frac{29}{30}$	1	1	13	11	-0.347445
$\frac{30}{31}$	1	1	12	14	0.182862
$\frac{31}{32}$	1	1	14	12	-0.182101
$\frac{32}{33}$	1	1			0.007445
			13	15	
34	1	1	15	13	-0.007434
35	1	1	14	15	0.042101
36	1	1	15	14	-0.041801
37	1	1	12	16	0.075034
38	1	1	16	12	-0.074851
39	1	1	15	17	-1.03718
40	1	1	17	15	1.05297
41	1	1	16	17	-0.175149
42	1	1	17	16	0.176598
43	1	1	17	18	0.802684

44	1	1	18	17	-0.793874
45	1	1	18	19	0.193874
46	1	1	19	18	-0.193179
47	1	1	19	20	-0.10648
48	1	1	20	19	0.106914
49	1	1	15	19	0.114107
50	1	1	19	15	-0.113734
51	1	1	20	21	-0.286914
52	1	1	21	20	0.288626
53	1	1	21	22	-0.428626
54	1	1	22	21	0.432806
55	1	1	22	23	-0.532806
56	1	1	23	22	0.543208
57	1	1	23	24	0.082979
58	1	1	24	23	-0.082647
59	1	1	23	25	-1.62612
60	1	1	25	23	1.66813
61	1	1	25	27	1.43486
62	1	1	27	25	-1.37091
63	1	1	27	28	0.328584
64	1	1	28	27	-0.326379
65	1	1	28	29	0.156379
66	1	1	29	28	-0.155676
67	1	1	8	30	0.742186
68	1	1	30	8	-0.73865
69	1	1	26	30	2.23701
70	1	1	30	26	-2.19724
71	1	1	17	31	0.147721
72	1	1	31	17	-0.145801
73	1	1	29	31	-0.084324
74	1	1	31	29	0.084487
75	1	1	23	32	0.929937
76	1	1	32	23	-0.90215
77	1	1	31	32	-0.298685
78	1	1	32	31	0.302066
79	1	1	27	32	0.124987
80	1	1	32	27	-0.124597
81	1	1	15	33	0.072304
82	1	1	33	15	-0.072046
83	1	1	19	34	-0.036606

84	1	1	34	19	0.037187
85	1	1	35	36	0.006708
86	1	1	36	35	-0.006699
87	1	1	35	37	-0.336708
88	1	1	37	35	0.338249
89	1	1	33	37	-0.157954
90	1	1	37	33	0.159425
91	1	1	34	36	0.304255
92	1	1	36	34	-0.303301
93	1	1	34	37	-0.945824
94	1	1	37	34	0.948562
95	1	1	37	39	0.549626
96	1	1	39	37	-0.539687
97	1	1	37	40	0.440981
98	1	1	40	37	-0.429257
99	1	1	30	38	0.625329
100	1	1	38	30	-0.62275
101	1	1	39	40	0.269687
102	1	1	40	39	-0.268165
103	1	1	40	41	0.155128
104	1	1	41	40	-0.154752
105	1	1	40	42	-0.117705
106	1	1	42	40	0.11863
107	1	1	41	42	-0.215248
108	1	1	42	41	0.217449
109	1	1	43	44	-0.165694
110	1	1	44	43	0.16746
111	1	1	34	43	0.014382
112	1	1	43	34	-0.014306
113	1	1	44	45	-0.32746
114	1	1	45	44	0.330045
115	1	1	45	46	-0.363163
116	1	1	46	45	0.368595
117	1	1	46	47	-0.310997
118	1	1	47	46	0.314636
119	1	1	46	48	-0.147598
120	1	1	48	46	0.148965
121	1	1	47	49	-0.095548
122	1	1	49	47	0.095901
123	1	1	42	49	-0.64804

124	1	1	49	42	0.679637
125	1	1	42	49	-0.64804
126	1	1	49	42	0.679637
127	1	1	45	49	-0.496882
128	1	1	49	45	0.514229
129	1	1	48	49	-0.348965
130	1	1	49	48	0.351083
131	1	1	49	50	0.536665
132	1	1	50	49	-0.528818
133	1	1	49	51	0.666353
134	1	1	51	49	-0.643525
135	1	1	51	52	0.285612
136	1	1	52	51	-0.283738
137	1	1	52	53	0.103738
138	1	1	53	52	-0.103196
139	1	1	53	54	-0.126804
140	1	1	54	53	0.127328
141	1	1	49	54	0.377729
142	1	1	54	49	-0.36582
143	1	1	49	54	0.377511
144	1	1	54	49	-0.363854
145	1	1	54	55	0.070754
146	1	1	55	54	-0.070651
147	1	1	54	56	0.185343
148	1	1	56	54	-0.185233
149	1	1	55	56	-0.214263
150	1	1	56	55	0.214528
151	1	1	56	57	-0.229943
152	1	1	57	56	0.232177
153	1	1	50	57	0.358818
154	1	1	57	50	-0.352177
155	1	1	56	58	-0.066714
156	1	1	58	56	0.066907
157	1	1	51	58	0.187913
158	1	1	58	51	-0.186906
159	1	1	54	59	-0.303751
160	1	1	59	54	0.308966
161	1	1	56	59	-0.27957
162	1	1	59	56	0.286678
163	1	1	56	59	-0.293069

164	1	1	59	56	0.300666
165	1	1	55	59	-0.345085
166	1	1	59	55	0.351482
167	1	1	59	60	-0.433127
168	1	1	60	59	0.439351
169	1	1	59	61	-0.517142
170	1	1	61	59	0.526345
171	1	1	60	61	-1.12061
172	1	1	61	60	1.12399
173	1	1	60	62	-0.098743
174	1	1	62	60	0.098915
175	1	1	61	62	0.254874
176	1	1	62	61	-0.254185
177	1	1	63	64	-1.51752
178	1	1	64	63	1.52235
179	1	1	38	65	-1.81409
180	1	1	65	38	1.84621
181	1	1	64	65	-1.82756
182	1	1	65	64	1.83749
183	1	1	49	66	-1.32183
184	1	1	66	49	1.35181
185	1	1	49	66	-1.32183
186	1	1	66	49	1.35181
187	1	1	62	66	-0.371662
188	1	1	66	62	0.379348
189	1	1	62	67	-0.243068
190	1	1	67	62	0.245028
191	1	1	66	67	0.531645
192	1	1	67	66	-0.525028
193	1	1	65	68	0.141685
194	1	1	68	65	-0.141645
195	1	1	47	69	-0.559088
196	1	1	69	47	0.586499
197	1	1	49	69	-0.465093
198	1	1	69	49	0.487478
199	1	1	69	70	1.08348
200	1	1	70	69	-1.04917
201	1	1	24	70	-0.062086
202	1	1	70	24	0.062096
203	1	1	70	71	0.166466

204	1	1	71	70	-0.166084
205	1	1	24	72	0.014734
206	1	1	72	24	-0.014562
207	1	1	71	72	0.10596
208	1	1	72	71	-0.105439
209	1	1	71	73	0.060124
210	1	1	73	71	-0.06
211	1	1	70	74	0.162015
212	1	1	74	70	-0.160055
213	1	1	70	75	-0.001407
214	1	1	75	70	0.00201
215	1	1	69	75	1.09972
216	1	1	75	69	-1.05122
217	1	1	74	75	-0.519945
218	1	1	75	74	0.523612
219	1	1	76	77	-0.611704
220	1	1	77	76	0.632265
221	1	1	69	77	0.621049
222	1	1	77	69	-0.609482
223	1	1	75	77	-0.346349
224	1	1	77	75	0.354388
225	1	1	77	78	0.453729
226	1	1	78	77	-0.452945
227	1	1	78	79	-0.257055
228	1	1	79	78	0.25759
229	1	1	77	80	-0.966161
230	1	1	80	77	0.9839
231	1	1	77	80	-0.443871
232	1	1	80	77	0.450686
233	1	1	79	80	-0.64759
234	1	1	80	79	0.655268
235	1	1	68	81	-0.443034
236	1	1	81	68	0.443602
237	1	1	77	82	-0.030869
238	1	1	82	77	0.032256
239	1	1	82	83	-0.471089
240	1	1	83	82	0.474427
241	1	1	83	84	-0.247339
242	1	1	84	83	0.252931
243	1	1	83	85	-0.427088

244	1	1	85	83	0.436019
245	1	1	84	85	-0.362931
246	1	1	85	84	0.367367
247	1	1	85	86	0.171725
248	1	1	86	85	-0.170531
249	1	1	86	87	-0.03947
250	1	1	87	86	0.04
251	1	1	85	88	-0.503344
252	1	1	88	85	0.508731
253	1	1	85	89	-0.711766
254	1	1	89	85	0.724267
255	1	1	88	89	-0.988731
256	1	1	89	88	1.00267
257	1	1	89	90	0.581738
258	1	1	90	89	-0.56436
259	1	1	89	90	1.10743
260	1	1	90	89	-1.07853
261	1	1	90	91	0.012887
262	1	1	91	90	-0.012803
263	1	1	89	92	2.01788
264	1	1	92	89	-1.97796
265	1	1	89	92	0.636016
266	1	1	92	89	-0.620201
267	1	1	91	92	-0.087197
268	1	1	92	91	0.087688
269	1	1	92	93	0.57715
270	1	1	93	92	-0.568176
271	1	1	92	94	0.522561
272	1	1	94	92	-0.508481
273	1	1	93	94	0.448176
274	1	1	94	93	-0.442864
275	1	1	94	95	0.409769
276	1	1	95	94	-0.407379
277	1	1	80	96	0.189281
278	1	1	96	80	-0.18628
279	1	1	82	96	-0.101167
280	1	1	96	82	0.101366
281	1	1	94	96	0.199148
282	1	1	96	94	-0.197871
283	1	1	80	97	0.263835

284	1	1	97	80	-0.261432
285	1	1	80	98	0.288637
286	1	1	98	80	-0.286589
287	1	1	80	99	0.194791
288	1	1	99	80	-0.192678
289	1	1	92	100	0.314525
290	1	1	100	92	-0.306817
291	1	1	94	100	0.042427
292	1	1	100	94	-0.038499
293	1	1	95	96	-0.012621
294	1	1	96	95	0.013383
295	1	1	96	97	-0.110598
296	1	1	97	96	0.111432
297	1	1	98	100	-0.053411
298	1	1	100	98	0.053612
299	1	1	99	100	-0.227322
300	1	1	100	99	0.228255
301	1	1	100	101	-0.167341
302	1	1	101	100	0.169604
303	1	1	92	102	0.446234
304	1	1	102	92	-0.443686
305	1	1	101	102	-0.389604
306	1	1	102	101	0.393686
307	1	1	100	103	1.21084
308	1	1	103	100	-1.18816
309	1	1	100	104	0.564215
310	1	1	104	100	-0.549548
311	1	1	103	104	0.323103
312	1	1	104	103	-0.317783
313	1	1	103	105	0.429493
314	1	1	105	103	-0.419244
315	1	1	100	106	0.605733
316	1	1	106	100	-0.583374
317	1	1	104	105	0.487331
318	1	1	105	104	-0.484827
319	1	1	105	106	0.086815
320	1	1	106	105	-0.086661
321	1	1	105	107	0.267335
322	1	1	107	105	-0.263275
323	1	1	105	108	0.239922

324	1	1	108	105	-0.238046
325	1	1	106	107	0.240035
326	1	1	107	106	-0.236725
327	1	1	108	109	0.218046
328	1	1	109	108	-0.217399
329	1	1	103	110	0.605563
330	1	1	110	103	-0.59114
331	1	1	109	110	0.137399
332	1	1	110	109	-0.136416
333	1	1	110	111	-0.357029
334	1	1	111	110	0.36
335	1	1	110	112	0.694586
336	1	1	112	110	-0.68
337	1	1	17	113	0.020594
338	1	1	113	17	-0.020552
339	1	1	32	113	0.041075
340	1	1	113	32	-0.039448
341	1	1	32	114	0.093606
342	1	1	114	32	-0.093466
343	1	1	27	115	0.207342
344	1	1	115	27	-0.206534
345	1	1	114	115	0.013466
346	1	1	115	114	-0.013466
347	1	1	68	116	1.84126
348	1	1	116	68	-1.84
349	1	1	12	117	0.201525
350	1	1	117	12	-0.2
351	1	1	75	118	0.401942
352	1	1	118	75	-0.398535
353	1	1	76	118	-0.068296
354	1	1	118	76	0.068535
355	2	1	1	2	-0.130402
356	2	1	2	1	0.110054
357	2	1	1	3	-0.170638
358	2	1	3	1	0.168857
359	2	1	4	5	-0.26792
360	2	1	5	4	0.274925
361	2	1	3	5	-0.144909
362	2	1	5	3	0.172844
363	2	1	5	6	0.0410835

364	2	1	6	5	-0.01302
365	2	1	6	7	-0.0476834
366	2	1	7	6	0.0450178
367	2	1	8	9	-0.897336
368	2	1	9	8	0.244289
369	2	1	9	10	-0.244289
370	2	1	10	9	-0.510422
371	2	1	4	11	-0.00213845
372	2	1	11	4	0.0134371
373	2	1	5	11	0.0296968
374	2	1	11	5	-0.00626277
375	2	1	11	12	-0.351319
376	2	1	12	11	0.351256
377	2	1	2	12	-0.200054
378	2	1	12	2	0.194232
379	2	1	3	12	-0.123947
380	2	1	12	3	0.0885614
381	2	1	7	12	-0.0650178
382	2	1	12	7	0.0575275
383	2	1	11	13	0.114145
384	2	1	13	11	-0.121638
385	2	1	12	14	0.0263081
386	2	1	14	12	-0.0414903
387	2	1	13	15	-0.0383624
388	2	1	15	13	-0.0204747
389	2	1	14	15	0.0314903
390	2	1	15	14	-0.0784057
391	2	1	12	16	0.0428785
392	2	1	16	12	-0.0630026
393	2	1	15	17	-0.244145
394	2	1	17	15	0.25355
395	2	1	16	17	-0.0369974
396	2	1	17	16	-0.00288669
397	2	1	17	18	0.248494
398	2	1	18	17	-0.224895
399	2	1	18	19	0.140227
400	2	1	19	18	-0.147871
401	2	1	19	20	0.0542253
402	2	1	20	19	-0.0797187
403	2	1	15	19	0.122465

404	2	1	19	15	-0.130681
405	2	1	20	21	0.0497187
406	2	1	21	20	-0.0616134
407	2	1	21	22	-0.0183866
408	2	1	22	21	0.0149165
409	2	1	22	23	-0.0649165
410	2	1	23	22	0.0741018
411	2	1	23	24	0.107957
412	2	1	24	23	-0.156135
413	2	1	23	25	-0.259194
414	2	1	25	23	0.383819
415	2	1	25	27	0.300555
416	2	1	27	25	-0.152657
417	2	1	27	28	-0.00588787
418	2	1	28	27	-0.00436457
419	2	1	28	29	-0.0656354
420	2	1	29	28	0.0463904
421	2	1	8	30	0.277675
422	2	1	30	8	-0.750711
423	2	1	26	30	-0.116812
424	2	1	30	26	-0.363843
425	2	1	17	31	0.115479
426	2	1	31	17	-0.14756
427	2	1	29	31	-0.0863904
428	2	1	31	29	0.0791562
429	2	1	23	32	0.0471353
430	2	1	32	23	-0.0591333
431	2	1	31	32	0.118158
432	2	1	32	31	-0.130371
433	2	1	27	32	0.0101992
434	2	1	32	27	-0.0268757
435	2	1	15	33	-0.0488288
436	2	1	33	15	0.0195704
437	2	1	19	34	-0.105674
438	2	1	34	19	0.047538
439	2	1	35	36	0.062483
440	2	1	36	35	-0.0650151
441	2	1	35	37	-0.152483
442	2	1	37	35	0.146623
443	2	1	33	37	-0.10957
443	2	1	33	37	-0.10957

444	2	1	37	33	0.0793235
445	2	1	34	36	0.114968
446	2	1	36	34	-0.117521
447	2	1	34	37	-0.385653
448	2	1	37	34	0.386085
449	2	1	37	39	0.0374799
450	2	1	39	37	-0.0306595
451	2	1	37	40	-0.0292878
452	2	1	40	37	0.0220772
453	2	1	30	38	0.180841
454	2	1	38	30	-0.551022
455	2	1	39	40	-0.0793405
456	2	1	40	39	0.0697365
457	2	1	40	41	0.0117237
458	2	1	41	40	-0.0219227
459	2	1	40	42	-0.064683
460	2	1	42	40	0.0232041
461	2	1	41	42	-0.0780773
462	2	1	42	41	0.0525579
463	2	1	43	44	-0.0103262
464	2	1	44	43	-0.0410324
465	2	1	34	43	0.0192157
466	2	1	43	34	-0.0596738
467	2	1	44	45	0.0580566
468	2	1	45	44	-0.0694275
469	2	1	45	46	-0.0337521
470	2	1	46	45	0.0192399
471	2	1	46	47	-0.0122386
472	2	1	47	46	-0.00790014
473	2	1	46	48	-0.0583117
474	2	1	48	46	0.0141901
475	2	1	47	49	-0.108273
476	2	1	49	47	0.0927067
477	2	1	42	49	0.0521415
478	2	1	49	42	0.00370324
479	2	1	42	49	0.0521415
480	2	1	49	42	0.00370324
481	2	1	45	49	-0.0194718
482	2	1	49	45	0.0217099
483	2	1	48	49	0.0320638

484	2	1	49	48	-0.0392486
485	2	1	49	50	0.134257
486	2	1	50	49	-0.13139
487	2	1	49	51	0.204413
488	2	1	51	49	-0.174016
489	2	1	51	52	0.0624497
490	2	1	52	51	-0.069935
491	2	1	52	53	0.019935
492	2	1	53	52	-0.0544809
493	2	1	53	54	-0.0555191
494	2	1	54	53	0.0299406
495	2	1	49	54	0.130689
496	2	1	54	49	-0.155965
497	2	1	49	54	0.111967
498	2	1	54	49	-0.137872
499	2	1	54	55	0.0145635
500	2	1	55	54	-0.0324968
501	2	1	54	56	0.0434458
502	2	1	56	54	-0.0497322
503	2	1	55	56	-0.0582228
504	2	1	56	55	0.0556442
505	2	1	56	57	-0.091008
506	2	1	57	56	0.0748883
507	2	1	50	57	0.0913903
508	2	1	57	50	-0.104888
509	2	1	56	58	-0.0369055
510	2	1	58	56	0.0153076
511	2	1	51	58	0.0315658
512	2	1	58	51	-0.0453076
513	2	1	54	59	-0.0750878
514	2	1	59	54	0.0425805
515	2	1	56	59	-0.0417608
516	2	1	59	56	0.00989
517	2	1	56	59	-0.0390937
518	2	1	59	56	0.0113123
519	2	1	55	59	-0.0826386
520	2	1	59	55	0.0587944
521	2	1	59	60	0.0357308
522	2	1	60	59	-0.0440427
523	2	1	59	61	0.0503083

524	2	1	61	59	-0.0462518
525	2	1	60	61	0.0851799
526	2	1	61	60	-0.082264
527	2	1	60	62	-0.0711373
528	2	1	62	60	0.0573735
529	2	1	61	62	-0.138566
530	2	1	62	61	0.13198 0
531	2	1	63	64	-0.674842
532	2	1	64	63	0.52506 0
533	2	1	38	65	-0.570101
534	2	1	65	38	-0.090705
535	2	1	64	65	-0.66495
536	2	1	65	64	0.400625
537	2	1	49	66	0.0431268
538	2	1	66	49	0.083283
539	2	1	49	66	0.0431268
540	2	1	66	49	0.083283
541	2	1	62	66	-0.172635
542	2	1	66	62	0.146752
543	2	1	62	67	-0.144131
544	2	1	67	62	0.121462
545	2	1	66	67	0.19272
546	2	1	67	66	-0.191462
547	2	1	65	68	-0.224316
548	2	1	68	65	-0.418489
549	2	1	47	69	0.116173
550	2	1	69	47	-0.100617
551	2	1	49	69	0.106326
552	2	1	69	49	-0.12054
553	2	1	69	70	0.160776
554	2	1	70	69	-0.139947
555	2	1	24	70	-0.0297429
556	2	1	70	24	-0.0680194
557	2	1	70	71	-0.123752
558	2	1	71	70	0.116766
559	2	1	24	72	0.0330552
560	2	1	72	24	-0.0798082
561	2	1	71	72	-0.00938266
562	2	1	72	71	-0.0314937
563	2	1	71	73	-0.107383

564	2	1	73	71	0.096513
565	2	1	70	74	0.128944
566	2	1	74	70	-0.154235
567	2	1	70	75	0.0994154
568	2	1	75	70	-0.131699
569	2	1	69	75	0.20492
570	2	1	75	69	-0.183232
571	2	1	74	75	-0.0619051
572	2	1	75	74	0.0644265
573	2	1	76	77	-0.210319
574	2	1	77	76	0.243873
575	2	1	69	77	0.0680877
576	2	1	77	69	-0.138401
577	2	1	75	77	-0.0954367
578	2	1	77	75	0.0736952
579	2	1	77	78	0.0661686
580	2	1	78	77	-0.0763411
581	2	1	78	79	-0.183659
582	2	1	79	78	0.179487
583	2	1	77	80	-0.373971
584	2	1	80	77	0.37517 1
585	2	1	77	80	-0.205386
586	2	1	80	77	0.205859
587	2	1	79	80	-0.29578
588	2	1	80	79	0.310795
589	2	1	68	81	-0.0460527
590	2	1	81	68	-0.755453
591	2	1	77	82	0.173433
592	2	1	82	77	-0.250781
593	2	1	82	83	0.245052
594	2	1	83	82	-0.271079
595	2	1	83	84	0.147313
596	2	1	84	83	-0.16039
597	2	1	83	85	0.120694
598	2	1	85	83	-0.123701
599	2	1	84	85	0.0903896
600	2	1	85	84	-0.0928833
601	2	1	85	86	-0.0735367
602	2	1	86	85	0.0509097
603	2	1	86	87	-0.15091

604	2	1	87	86	0.110216
605	2	1	85	88	0.0758173
606	2	1	88	85	-0.0751904
607	2	1	85	89	0.00660889
608	2	1	89	85	0.0373429
609	2	1	88	89	-0.0248096
610	2	1	89	88	0.0770149
611	2	1	89	90	-0.0471721
612	2	1	90	89	0.057963
613	2	1	89	90	-0.0543148
614	2	1	90	89	0.0704191
615	2	1	90	91	0.0446153
616	2	1	91	90	-0.0649981
617	2	1	89	92	-0.0659373
618	2	1	92	89	0.214945
619	2	1	89	92	-0.0648712
620	2	1	92	89	0.0872039
621	2	1	91	92	-0.0834683
622	2	1	92	91	0.0533021
623	2	1	92	93	-0.107532
624	2	1	93	92	0.115679
625	2	1	92	94	-0.14311
626	2	1	94	92	0.149455
627	2	1	93	94	-0.185679
628	2	1	94	93	0.184777
629	2	1	94	95	0.0933673
630	2	1	95	94	-0.0962949
631	2	1	80	96	0.208521
632	2	1	96	80	-0.244235
633	2	1	82	96	-0.0687486
634	2	1	96	82	0.016006
635	2	1	94	96	-0.0946001
636	2	1	96	94	0.076111
637	2	1	80	97	0.255375
638	2	1	97	80	-0.269837
639	2	1	80	98	0.0833372
640	2	1	98	80	-0.104491
641	2	1	80	99	0.0818418
642	2	1	99	80	-0.129629
643	2	1	92	100	-0.158126

644	2	1	100	92	0.145571
645	2	1	94	100	-0.492999
646	2	1	100	94	0.444928
647	2	1	95	96	-0.213705
648	2	1	96	95	0.201787
649	2	1	96	97	-0.199669
650	2	1	97	96	0.179837
651	2	1	98	100	0.0244907
652	2	1	100	98	-0.0731342
653	2	1	99	100	-0.0457402
654	2	1	100	99	0.0277673
655	2	1	100	101	0.220734
656	2	1	101	100	-0.243538
657	2	1	92	102	-0.0766828
658	2	1	102	92	0.0738657
659	2	1	101	102	0.0935381
660	2	1	102	101	-0.103866
661	2	1	100	103	-0.0430093
662	2	1	103	100	0.0628848
663	2	1	100	104	0.106215
664	2	1	104	100	-0.0933567
665	2	1	103	104	0.0792941
666	2	1	104	103	-0.100776
667	2	1	103	105	0.0655174
668	2	1	105	103	-0.0738506
669	2	1	100	106	0.0917215
670	2	1	106	100	-0.0678306
671	2	1	104	105	0.000651383
672	2	1	105	104	-0.000377409
673	2	1	105	106	0.0454691
674	2	1	106	105	-0.0581909
675	2	1	105	107	-0.0185355
676	2	1	107	105	-0.0108572
677	2	1	105	108	-0.106078
678	2	1	108	105	0.0939089
679	2	1	106	107	-0.0339785
680	2	1	107	106	0.00218638
681	2	1	108	109	-0.103909
	2	1	109	108	0.0985754
682			103		0.0000101

684	2	1	110	103	-0.0102633
685	2	1	109	110	-0.128575
686	2	1	110	109	0.112252
687	2	1	110	111	0.00956135
688	2	1	111	110	-0.0184382
689	2	1	110	112	-0.306142
690	2	1	112	110	0.285117
691	2	1	17	113	0.0604257
692	2	1	113	17	-0.0678766
693	2	1	32	113	-0.175299
694	2	1	113	32	0.131082
695	2	1	32	114	0.0216788
696	2	1	114	32	-0.0361116
697	2	1	27	115	0.0466601
698	2	1	115	27	-0.0613455
699	2	1	114	115	0.00611156
700	2	1	115	114	-0.00865453
701	2	1	68	116	-0.663593
702	2	1	116	68	0.513237
703	2	1	12	117	0.0519725
704	2	1	117	12	-0.08
705	2	1	75	118	0.235941
706	2	1	118	75	-0.235641
707	2	1	76	118	-0.0969908
708	2	1	118	76	0.0856415
709	1	2	8	5	3.38416
710	1	2	5	8	-3.38416
711	1	2	26	25	0.902993
712	1	2	25	26	-0.902993
713	1	2	30	17	2.31056
714	1	2	17	30	-2.31056
715	1	2	38	37	2.43684
716	1	2	37	38	-2.43684
717	1	2	63	59	1.51752
718	1	2	59	63	-1.51752
719	1	2	64	61	0.305212
720	1	2	61	64	-0.305212
721	1	2	65	66	0.084623
722	1	2	66	65	-0.084623
723	1	2	68	69	-1.25658

724	1	2	69	68	1.25658
725	1	2	81	80	-0.443602
726	1	2	80	81	0.443602
727	2	2	8	5	1.24723
728	2	2	5	8	-0.920139
729	2	2	26	25	0.215849
730	2	2	25	26	-0.186393
731	2	2	30	17	0.933713
732	2	2	17	30	-0.705062
733	2	2	38	37	1.12112
734	2	2	37	38	-0.86623
735	2	2	63	59	0.674842
736	2	2	59	63	-0.570284
737	2	2	64	61	0.139889
738	2	2	61	64	-0.136861
739	2	2	65	66	0.722495
740	2	2	66	65	-0.705548
741	2	2	68	69	1.12813
742	2	2	69	68	-1.03649
743	2	2	81	80	0.755453
744	2	2	80	81	-0.730469
745	5	0	69	69	1.035

En los casos con datos erróneos se reemplazaron de la siguiente manera:

Caso con 1 error:

Número	Tipo	Dispositivo	Nodo Envío	Nodo Recepción	Magnitud
273	1	1	93	94	0.448176
273	1	1	93	94	2.448176

Caso con 5 errores:

Tabla 4.5: Tabla 5 errores sistema 118 nodos

Número	Tipo	Dispositivo	Nodo Envío	Nodo Recepción	Magnitud
21	1	1	11	12	0.342837
21	1	1	11	12	-2.342837
60	1	1	25	23	1.66813
60	1	1	25	23	-1.66813
134	1	1	51	49	-0.643525
134	1	1	51	49	2.643525
185	1	1	49	66	-1.32183
185	1	1	49	66	0.32183
273	1	1	93	94	0.448176
273	1	1	93	94	2.448176

Referencias

- [Abur y Gomez-Exposito, 2004] Abur, A. y Gomez-Exposito, A. (2004). Power system state estimation: Theory and implementation.
- [Agency, 2019] Agency, I. E. (2019). World Energy Outlook. p. 257.
- [Alcaide, 2016] Alcaide, B. (2016). Electric power systems state estimation using scada and pmu measurements.
- [Armijo, 1966] Armijo, L. (1966). A fast algorithm for the weighted least absolute value state estimation (for power systems). *Pacific Journal of Mathematics*, 16(1):1–3.
- [Aschmoneit et al., 1977] Aschmoneit, F., Peterson, N., y Adrian, E. (1977). State estimation with equality constraints. Tenth PICA Conference Proceedings.
- [Barrodale y Roberts, 1970] Barrodale, I. y Roberts, F. (1970). Applications of mathematical programming to p approximation. *Nonlinear Programming*, PAS-102:447–464.
- [Bartels et al., 1978] Bartels, R. H., Conn, A. R., y Sinclair, J. W. (1978). Minimization techniques for piecewise differentiable functions: The l1 solution to an overdetermined linear system. SIAM Journal on Numerical Analysis, 15(2):224–241.
- [Branham, 1982] Branham, R. (1982). Alternatives to least squares. Astronomical Journal, 87:928–937.
- [Bretas et al., 2021] Bretas, A. S., Bretas, N. G., London, J. B., y Carvalho, B. E. (2021). Chapter 9 data-driven state estimation in electric power systems. En Cyber-Physical Power Systems State Estimation, pp. 259–277. Elsevier.
- [Caro et al., 2011] Caro, E., Conejo, A. J., Minguez, R., Zima, M., y Andersson, G. (2011). Multiple bad data identification considering measurement dependencies. IEEE Transactions on Power Systems, 26(4):1953–1961.
- [Celik y Abur, 1992] Celik, M. y Abur, A. (1992). A robust wlav state estimator using transformations. *IEEE Transactions on Power Systems*, 7(1):106–113.
- [David G. Luenberger, 2008] David G. Luenberger, Y. Y. (2008). Linear and nonlinear programming.
- [Dehghanpour et al., 2019a] Dehghanpour, K., Wang, Z., Wang, J., Yuan, Y., y Bu, F. (2019a). A survey on state estimation techniques and challenges in smart distribution systems. *IEEE Transactions on Smart Grid*, 10(2):2312–2322.
- [Dehghanpour et al., 2019b] Dehghanpour, K., Yuan, Y., Wang, Z., y Bu, F. (2019b). A game-theoretic data-driven approach for pseudo-measurement generation in distribution system state estimation. *IEEE Transactions on Smart Grid*, 10(6):5942–5951.

- [Force, 2004] Force, U.-C. P. S. O. T. (2004). Final report on the august 14, 2003 blackout in the united states and canada.
- [Gjelsvik et al., 1985] Gjelsvik, A., Aam, S., y Holten, L. (1985). Hachtel's Augmented Matrix Method- A Rapid Method Improving Numerical Stability in Power System Static State Estimation. IEEE Transactions on Power Apparatus and Systems, pp. 2987–2993.
- [Gomez, 1986] Gomez, A. (1986). Estimación de estado en sistemas eléctricos de potencia. Automática e Instrumentación, (155):185–193.
- [Gu et al., 1983] Gu, J. W., Clements, K. A., Krumpholz, G. R., y Davis, P. W. (1983). The solution of ill-conditioned power system state estimation problems via the method of peters and wilkinson. *IEEE Transactions on Power Apparatus and Systems*, PAS-102(10):3473–3480.
- [Göl y Abur, 2014] Göl, M. y Abur, A. (2014). Lav based robust state estimation for systems measured by pmus. *IEEE Transactions on Smart Grid*, 5(4):1808–1814.
- [Handschin et al., 1975] Handschin, E., Schweppe, F., Kohlas, J., y Fiechter, A. (1975). Bad data analysis for power system state estimation. *IEEE Transactions on Power Apparatus and Systems*, 94(2):329–337.
- [Martínez-Parrales y Fuerte-Esquivel, 2021] Martínez-Parrales, R. y Fuerte-Esquivel, C. R. (2021). Static state estimation with inequality constraints in a complementarity framework for detecting infeasible operation states. *IEEE Transactions on Power Systems*, 36(1):533–536.
- [Milan y Militky, 2011] Milan, M. y Militky, J. (2011). Statistical data analysis: A practical guide.
- [Mili et al., 1994] Mili, L., Cheniae, M., y Rousseeuw, P. (1994). Robust state estimation of electric power systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 41(5):349–358.
- [Mili et al., 1996] Mili, L., Cheniae, M., Vichare, N., y Rousseeuw, P. (1996). Robust state estimation based on projection statistics [of power systems]. IEEE Transactions on Power Systems, 11(2):1118–1127.
- [Mili et al., 1991] Mili, L., Phaniraj, V., y Rousseeuw, P. (1991). Least median of squares estimation in power systems. *IEEE Transactions on Power Systems*, 6(2):511–523.
- [Monticelli, 2001] Monticelli, A. (2001). State estimation in electric power systems.
- [Monticelli y Garcia, 1983] Monticelli, A. y Garcia, A. (1983). Reliable bad data processing for real-time state estimation. *IEEE Transactions on Power Apparatus and Systems*, PAS-102(5):1126–1139.
- [Mundial, 2020] Mundial, B. (2020). Valor Perdido por Cortes de Electricidad.
- [Papoulis, 1989] Papoulis, A. (1989). Probability random variables and stocastic processes.
- [Sarri et al., 2012] Sarri, S., Paolone, M., Cherkaoui, R., Borghetti, A., Napolitano, F., y Nucci, C. (2012). State estimation of active distribution networks: Comparison between wls and iterated kalman-filter algorithm integrating pmus. pp. 1–8.
- [Schweppe y Rom, 1970] Schweppe, F. y Rom, D. (1970). Power System Static-State Estimation, Part II: Approximate Model. *IEEE Transactions on Power Apparatus and Systems*, pp. 125–130.
- [Schweppe y Wildes, 1970] Schweppe, F. y Wildes, J. (1970). Power System Static-State Estimation, Part I: Exact Model. *IEEE Transactions on Power Apparatus and Systems*, pp. 120–125.
- [Spiegel et al., 2000] Spiegel, M., Schiller, J., y Srinivasan, R. (2000). Probabilidad y estadística.

- [Venkatraman et al., 2019] Venkatraman, A., Shchetinin, D., y Hug, G. (2019). A computationally efficient solution algorithm for least absolute value state estimation problem. En 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), pp. 1–5.
- [Wagner, 1959] Wagner, H. M. (1959). Linear programming techniques for regression analysis. Journal of the American Statistical Association, 54(285):206–212.
- [Zamora, 2004] Zamora, A. (2004). Estimación de estado en sistemas flexibles de trasnmisión de corriente alterna. p. 17.
- [Zarco y Gomez, 1999] Zarco, P. y Gomez, A. (1999). Estimación de estado en sistemas eléctricos de potencia. pp. 9–10.
- [Zhao et al., 2017] Zhao, J., Zhang, G., Scala, M. L., y Wang, Z. (2017). Enhanced robustness of state estimator to bad data processing through multi-innovation analysis. *IEEE Transactions on Industrial Informatics*, 13(4):1610–1619.