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Resumen

En la presente tesis aplicamos métodos modernos de teoría de estabilidad y
teoría de Brill-Noether para curvas a un problema de estabilidad de haces.
Más precisamente, el problema en cuestión relaciona la estabilidad de series
lineales y la estabilidad del haz de sizigias asociado a dichas series, mientras
que los métodos utilizados incluyen una extensión de la teoría de Brill-
Noether para curvas k-gonales, el estudio de las condiciones de estabilidad
en superficies K3, la estabilidad de la restricción de haces de una superficie
a una curva dentro de la misma.

En el Capítulo 1 introducimos aspectos básicos de la teoría de Brill-
Noether, introducimos el problema principal, un par de conjeturas pro-
puestas por Ernesto Mistretta y Lidia Stoppino en [25] que relacionan la
estabilidad de series lineales, en el caso completo e incompleto y su relación
con la estabilidad del haz de sizigias asociado a estas series lineales, así como
las respuestas positivas o negativas que se han presentado al momento.

En los siguientes 2 capítulos estudiamos la solución a una de las con-
jeturas en el caso de una curva k-gonal general para gonalidad genérica
e intermedias. En el Capítulo 2 proponemos una solución a la conjetu-
ra para curvas generales siguiendo las ideas propuestas por Castorena y
Torres-Lopez en [11], estudiaremos una aplicación multiplicación de seccio-
nes globales obtenidos mediante manipulación del diagrama de Butler. En
el Capítulo 3 presentamos una introducción a la teoría de Brill-Noether para
curvas k-gonales, lo cual nos permite estudiar la dimensión de las varieda-
des de Brill-Noether asociada a este tipo de curvas vía la no-negatividad de
una modificación al número de Brill-Noether conocido en la teoría clásica.
Presentaremos así condiciones para las cuales las pruebas del Capítulo 2
para curvas genéricas se pueden extender a curvas generales en los estratos
k-gonales utilizando esta teoría.

En el Capítulo 4 estudiamos las condiciones de estabilidad de haces vec-
toriales sobre superficies K3. Nos enfocamos también en la estabilidad de
algunos haces de sizigias muy específicos, llamados los haces de Lazersfeld-
Mukai, así como la estabilidad de su restricción a curvas que viven en dichas
superficies. Concluimos con algunas condiciones bajo las cuales la estabili-
dad de la restricción de estos haces vectoriales , aunado a la estabilidad de
la serie lineal, implica la estabilidad de los haces de sizigias sobre curvas,
estudiados a lo largo de esta tésis.

Palabras Clave: Estabilidad de haces, Condiciones de estabilidad, Teoría de
Brill-Noether, Haces de sizigias, Moduli de curvas.
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Abstract

In this thesis, we apply modern methods from stability theory and Brill-
Noether theory for curves to a problem concerning the stability of bundles.
More precisely, we relates the stability of linear series to the stability of the
syzygy bundle associated with these linear series. The methods employed
include an extension of Brill-Noether theory for k-gonal curves, the study
of stability conditions on K3 surfaces, and the stability of restrictions of
bundles from a surface to a curve within that same surface.

In Chapter 1, we introduce the fundamental aspects of Brill-Noether
theory and present the main problem, along with a couple of conjectures
proposed by Ernesto Mistretta and Lidia Stoppino in [25]. These conjec-
tures relate the stability of linear series, in both complete and incomplete
cases, to the stability of the syzygy bundle associated with these linear se-
ries, as well as the positive or negative responses that have been presented
thus far.

In the following two chapters, we study the solution to one of the con-
jectures in the case of a general k-gonal curve for generic and intermediate
gonality. In Chapter 2, we propose a solution to the conjecture for general
curves, following the ideas of Castorena and Torres-Lopez in [11]. We will
examine a multiplication application of global sections obtained through
manipulation of the Butler’s diagram. In Chapter 3, we present an in-
troduction to Brill-Noether theory for k-gonal curves, which allows us to
study the dimension of Brill-Noether varieties associated with these types of
curves via the non-negativity of a modification to the classical Brill-Noether
number. We will present conditions under which the proofs from Chapter 2
for generic curves can be extended to general curves within k-gonal strata
using this theory.

In Chapter 4, we examine stability conditions for vector bundles on K3
surfaces. We also focus on the stability of specific syzygy bundles known
as Lazarsfeld-Mukai bundles, as well as their restrictions to smooth curves
residing on these surfaces. We conclude with certain conditions under which
the stability of these bundles restrictions, combined with the linear stability
of the linear series, implies the stability of syzygy bundles on curves studied
throughout this thesis.

Keywords: Stability of vector bundles, Stability conditions, Brill-Noether
theory, Syzygy bundle, Moduli of curves.



Introduction

In this thesis we provide new families of curves where the Mistretta-Stoppino conjecture
holds shedding light over deep connections between linear stability of linear series and
slope stability of associated syzygy bundles. Such connections are important in Brill-
Noether theory and the minimal resolution conjecture.
Let C be a smooth projective curve over the complex numbers and L a globally gener-
ated line bundle of degree d on C. Consider a subspace V ⊆ H0(L) of dimension r + 1
that generates L. The pair (L, V ) is called a generated linear series of type (d, r + 1).
Associated to this linear series is the syzygy bundle MV,L, defined as the kernel of the
evaluation map V ⊗OC

ev−→ L. That is, we have the short exact sequence

0→MV,L → V ⊗OC
ev−→ L→ 0.

The bundle MV,L is also known as the syzygy bundle, kernel bundle or dual span
bundle. When V = H0(L), we denote the bundle MH0(L),L by ML. Slope-stability of
the syzygy bundle MV,L is closely related to the study of Brill-Noether varieties and
the minimal resolution conjecture, as discussed in [17]. In [31] Stoppino generalizes
the notion of linear stability introduced by Mumford in [26] for projective varieties to
the setting of pairs (L, V ) over a curve C. It is an interesting question when the linear
semi-stability of the pair (L, V ) implies the slope-semistability of the associated syzygy
bundle MV,L. This is the focus of two conjectures proposed by Mistretta and Stoppino
in [25]:

Conjecture (Conjecture 1.2.1). Let C be a smooth curve of genus g and (L, V ) be a
generated linear series of type (d, r + 1) over C with V ⊊ H0(L). If d ⩽ kr where k
denotes the gonality of C, then linear (semi)stability of (L, V ) is equivalent to slope-
(semi)stability of MV,L.

Conjecture (Conjecture 1.2.2). For any curve C, and any line bundle L on C, linear
(semi)stability of (L, H0(L)) is equivalent to slope-(semi)stability of ML.

Conjecture 1.2.2 has a positive answer for general and hyperelliptic curves due to [11].
In this thesis we present families of curves for which Conjecture 1.2.1 holds. Considering
techniques from [11] and using that for general curves when d ⩽ g + r the condition
d ⩽ kr is satisfied, we prove the following:

Theorem (Corollary 2.1.1). Let (L, V ) be a generated linear series of type (d, r + 1)
over a general curve C of genus g ⩾ 2 with codimH0(L)(V ) ⩽ h1(L). Then linear
(semi)stability of (L, V ) is equivalent to the slope-(semi)stability of MV,L.

vi



We also consider k-gonal curves, for which a modified Brill-Noether number ρk(g, r, d)
was introduced in [28]. We give bounds on the number of global sections r + 1 and
degree d of (L, V ) in terms of g and k to get an analogue of Theorem for general
k-gonal curves:
In [28] it is introduced a modified Brill-Noether number for k-gonal curves ρk(g, r, d),
see Definition 3.1.1. We construct bounds for the projective dimension of V , called r
and the degree of L, called d for the pair (L, V ) in terms of g and k to verify that we
prove Mistretta-Stoppino’s conjecture for k-gonal general curves.

Theorem (Proposition 3.2.3). Let C be a general k-gonal curve of genus g > 2, with
k non-generic, and let (L, V ) be a generated linear series of type (d, r + 1) over C.
Suppose that d ⩽ g + r and d ⩽ kr. If (r, d) satisfies at least one of the conditions:

1. If g + 1− k + 2(r − 1) ⩽ r−1
r

d and satisfies one of the following conditions:

(a) k ⩽ 6.
(b) k > 6 and g ⩾ k2

4 .
(c) k > 6 and 2(r − 1) ⩾

√
k2 − 4g + k − 2.

2. (a) If r−1
r

d ⩽ g − 1 and satisfies all the following conditions:

i. r − 1 ⩽ g−k+1
k−1 .

ii. r−1
r

d ⩽ g + 2(r − 1) + 1− k.
iii. r−1

r
d ⩾ g + (r − 1) + 1− k.

(b) Or if r−1
r

d ⩾ g − 1 and satisfies all the following conditions:
i. (r − 1) + 2 ⩽ k.

ii. r−1
r

d ⩽ g + 2(r − 1) + 1− k.
iii. (r − 1) ⩽

√
4g + 5k2 − 4k − 2k.

Then the linear (semi)stability of (L, V ) is equivalent to the slope-(semi)stability of
MV,L.

Finally, over a principally polarized K3 surface (X, H) we consider curves C lying in
|H|. By studying the stability conditions on X, we prove that the Lazarsfeld-Mukai
bundle FV,L associated to (L, V ) is H-Gieseker stable. Under a degree bound, we can
conclude that the restriction of FV,L to C is slope-stable, leading to the following,

Theorem (Proposition 4.1.2). Let (X, H) be a polarized K3 surface with the property
that H2 divides H.D for any curve classes D on X. Take C ∈ |H| a curve of genus
g > 2, let (L, V ) be a generated linear series of type (d, r + 1) over C with 1 < r < d ⩽
min{g − 1, kr} where k is the gonality of C. If (L, V ) is linearly stable then MV,L is
slope-stable.



Chapter 1

Preliminaries

In this chapter, we introduce classical results of Brill-Noether theory for line bundles
over smooth curves in order to introduce the problem we aim to study in this thesis.
We work over the complex numbers C and all varieties and schemes will be assumed
to be projective. Also, by curve we mean a one-dimensional closed irreducible smooth
subscheme of Pn for some n ⩾ 1. For a curve C, we denote by KC the canonical line
bundle on C.
LetMg be the coarse moduli space of smooth irreducible projective curves of genus g.
By abuse of notation we write C ∈ Mg to denote the class [C] ∈ Mg. We say that
C is general when C is an element of an open dense subset of Mg, in this thesis we
mainly work with the notion of Petri general curve or k-gonal general curve.

1.1 Brill-Noether Theory and stability
Brill-Noether theory for line bundles on curves studies projective realizations by mor-
phisms induced by line bundles. For a smooth curve C of genus g any (non-degenerated)
morphism C → Pr defines a degree d line bundle L on C together with a subspace
V ⊆ H0(L) of dimension r + 1. On the other side, a line bundle L′ on C with a sub-
space V ′ ⊆ H0(C, L′) of sections induces a map C → Pdim(V ′−1). Such a pair (L′, V ′)
is called a linear series on C of type (degree(L′), dim(V ′)).
A pair (L, V ) is a point in the determinantal variety

Gr
d(C) := {(L, V )|L ∈ Picd(C), V ⊆ H0(L), dimV = r + 1}.

When it is not necessary to specify the elements of the linear series, we denote by gr
d

a point in the variety Gr
d(C) and we denote by |V | the linear system of (L, V ). For

v = (L, V ) ∈ Gr
d(C) on a curve C of genus g, we have the cup-product morphism

µ0,V : V ⊗H0(KC ⊗ L∨)→ H0(KC).

Following [2, Proposition 4.1 of §4] the dimension

dim Tv(Gr
d(C)) = ρ(g, r, d) + dim(ker µ0,V ),

where ρ(g, r, d) = g − (r + 1)(g − d + r) is called the Brill-Noether number of the
gr

d. In [19], D. Gieseker showed that for a general curve of genus g, the cup-product
morphism µ0,V is injective. The following result summarizes the relation between the
Brill-Noether number and the variety Gr

d(C) over a general curve.

1



Brill-Noether Theory and stability

Theorem 1.1.1 ([2, Theorem V.1.5]). Let C be a general curve of genus g. Let d and
r be integers such that d ⩾ 1, r ⩾ 0. Then if ρ(g, r, d) < 0, the variety Gr

d(C) is empty.
If ρ(g, r, d) ⩾ 0, then Gr

d(C) is reduced of pure dimension ρ(g, r, d).

We say that the linear series (L, V ) is a generated (globally generated or base point free)
linear series if V ⊆ H0(L) is free of base points, that is, the evaluation map of sections
V ⊗OC

ev−→ L is surjective.

Definition 1.1.1. Let (L, V ) be a generated linear series over a smooth curve C. We
say that (L, V ) is linear (semi)stable if any linear series of degree d′ and dimension r′

contained in |V | satisfies
d′

r′ >
d

r
(respectively ⩾).

The associated syzygy bundle (kernel bundle or dual span bundle) of a generated linear
series (L, V ) is defined as

MV,L = Ker(V ⊗OC
ev−→ L).

This bundle fits into the exact sequence

0→MV,L → V ⊗OC
ev−→ L→ 0.

The vector bundle MV,L has rank r and degree deg(MV,L) = −d. When V = H0(L),
we denote MH0(L),L by ML. With these invariants we can define another stability
condition:

Definition 1.1.2. Let E be a vector bundle over C, we define the slope of E as the
rational number

µ(E) = deg(E)
rk(E) .

We say that a vector bundle E over C is slope-(semi)stable if for any proper subbundle
F ⊆ E we have

µ(F ) < µ(E)(⩽ respectively).

If E is not slope-semistable we say that is slope-unstable.

We seek to investigate the slope-stability of the bundle MV,L due to its connections with
several research areas, including the geometry of Brill-Noether varieties, the Resolution
Minimal Conjecture (see [16]), the stability of the tangent bundle of a projective space
when restricted to a curve (see [9]), theta divisors associated with vector bundles on
curves (see [12]), and the exploration of moduli spaces for vector bundles, among other
topics. For example,

■ Ein and Lazarsfeld used the stability of MV,L to prove the stability of the Picard
bundle, see [15].

■ Paranjape and Ramanan proved in [27] that MKC
is semistable.

■ David C. Butler showed that ML is stable for d > 2g, and it is semistable for
d = 2g, see [8].

2



Brill-Noether loci

In the study of MV,L it is important to consider the following situation: Let S ⊆MV,L

be a proper subbundle considered as a saturated sheaf. There exists a vector bundle
FS and a subspace W ↪→ V fitting into the commutative diagram (called Butler’s
diagram):

0

��

0

��
0 // S //

��

W ⊗OC
//

��

FS
//

α

��

0

0 //MV,L
// V ⊗OC

// L // 0

(1.1.1)

The bundle F ∨
S can be defined as the syzygy bundle

F ∨
S = Ker(W ∨ ⊗OC → S∨)

and we define W ↪→ V as the space W ∨ = Im(V ∨ → H0(S∨)). Note that W ∨ generates
S∨ because V ∨ generates M∨

V,L.
Properties 1.1.1 (See [8]). In the above notation, the following properties hold:

1. The sheaf FS is globally generated and h0(F ∨
S ) = 0.

2. The induced map α : FS → L is not the zero map.

3. If S is a maximal destabilizing subbundle of MV,L, that is µ(S) ⩾ µ(MV,L),
then deg(FS) ⩽ deg(I) where I := Im(α), and the equallity holds if and only
if rank(FS) = 1.

4. The sheaf FS has no trivial summands.
In Butler’s diagram, when rank(FS) = 1 then S is exactly the syzygy bundle MW,FS

and
the pair (FS, W ) contradicts that (L, V ) is linear (semi)stable exactly when µ(MW,FS

) >
(⩾)µ(MV,L), that is:
Remark 1.1.1. Linear (semi)stability of (L, V ) is equivalent to the condition that the
bundle MV,L can not be destabilized by subbundles of the form MV ′,L′ where (L′, V ′) is
a generated linear subseries of (L, V ).
We have the following implication for a generated linear series (L, V ) over C:

Slope-(semi)stability of MV,L =⇒ Linear (semi)stability of (L, V ). (1.1.2)

1.2 Brill-Noether loci
In this section, we explore properties of specific families of curves parameterized by
gonality. Such families allow us to stratify the moduli space M}.
For positive integers g, r and d, we introduce the Brill-Noether locus

Mr
g,d as the locus of curves C ∈Mg that admits a gr

d on C.

From Theorem 1.1.1, when ρ(g, r, d) is negative, Mr
g,d is a proper subvariety of Mg

all of whose components have codimension at most −ρ(g, r, d). There is a well known
result by D. Eisenbud and J. Harris (see [15]) that when ρ(g, r, d) = −1, the variety
Mr

g,d has a divisorial component (pure codimension 1) in Mg.

3



Brill-Noether loci

1.2.1 Stratification by gonality
Now we introduce the definition of gonality of a curve. The gonality of a curve C ∈Mg,
denoted by gon(C) is the minimum positive integer d > 1 such that there exists a g1

d

on C. In other words, the gonality of C is the smallest degree of a rational map from
C to the projective line. This geometric invariant gives us an indication of how "far"
the curve C is from being rational. For g > 2 consider the stratification of the moduli
space Mg given by the gonality

M1
g,2 ⊆M1

g,3 ⊆ ... ⊆M1
g,k ⊆ ... ⊆Mg,

where
M1

g,k = {C ∈Mg|C has a g1
k},

is called the k-gonal locus. These strata have the following properties (see [3]):

Properties 1.2.1. Let g > 2 be an integer and Mg the moduli of curves of genus g,
the following properties holds:

■ For k ⩽ g+2
2 , the k-gonal locus is an irreducible variety of dimension 2g + 2k− 5.

■ For k ⩾ [ g+3
2 ], the dimension of M1

g,k is equal to the dimension of Mg.

■ The number [ g+3
2 ] is called the generic gonality of curves of genus g.

In [25] the authors study the converse of 1.1.2 formulating the following conjecture for
non-complete linear series on a curve:

Conjecture 1.2.1 ([25, Conjecture 8.6]). Let C be curve of genus g and (L, V ) be a
generated linear series of type (d, r + 1) over C with V ⊊ H0(L). If d ⩽ kr where
k = gon(C), then linear (semi)stability of (L, V ) is equivalent to slope-(semi)stability
of MV,L.

Condition d ⩽ kr for non-complete linear series (L, V ) seems to be natural due to:

Proposition 1.2.1 ([25, Proposition 8.4]). On any curve C there exists a non-complete
linear system V ⊆ H0(L) such that (L, V ) is linearly stable and MV,L is slope-unstable.

To prove this result authors produce a linear series satisfying d > kr such that V ⊆
H0(L) is not general. For complete linear series, they also formulate the following
conjecture:

Conjecture 1.2.2 ([25, Conjecture 8.7]). For any curve C and any line bundle L on
C linear (semi)stability of (L, H0(L)) is equivalent to slope-(semi)stability of ML.

Conjecture 1.2.2 has a positive answer:

Theorem 1.2.1 ([11, Corollary 4.1]). Let L ∈ Picd(C) be a generated line bundle over
a general curve C of genus g ⩾ 2. Suppose that h0(L) = r + 1. Then

1. Linear (semi)stability of (L, H0(L)) is equivalent to slope-(semi)stability of ML.

4



Brill-Noether loci

2. ML fails to be stable if and only if all the following three conditions hold:

(a) h1(L) = 0.
(b) deg(L) = g + r and r divides g.
(c) There is an effective divisor Z with h0(L(−Z)) = h0(L) − 1 and deg(Z) =

1 + g
r
.

In [10] authors gived a counterexample for Conjecture 1.2.2 for plane curves of degree
7:

Theorem 1.2.2 ([10, Theorem 4.1]). For any smooth plane curve C of degree 7, the
general element in W 2

15(C) satisfies

■ The complete linear series (L, H0(L)) is generated and linearly stable.

■ The vector bundle ML is not slope-stable.

This shows the importance to study when the equivalence between linear (semi)-
stability of linear series and stability of syzygy bundles holds for incomplete linear
series over a curve. In this thesis we aim to state results concerning this equivalence
for general curves and for different families of special curves.

5



Chapter 2

Linear stability for non-complete
linear series on general curves

In this Chapter we use classical Brill-Noether theory to prove that the Conjecture 1.2.1
holds for non-complete generated linear series on general curves. In order to prove this
result we follow the approach used by Castorena and Torres-Lopez to prove Conjecture
1.2.2 for complete generated linear series on general curves. Moreover, we prove that
for non-complete generated linear series on general curves the slope-stability of MV,L

is equivalent to another kind of stability, called cohomological stability.

2.1 Determinant bundles
In this section, we present similar results to those given by Castorena and Torres-Lopez
in [11] emphasizing the diferences with our case. As a first approach to understand the
Conjecture 1.2.1, we have the following result of [25] giving conditions for the bundle
FS and for its determinant bundle det(FS).

Lemma 2.1.1 ( [25, Lemma 4.3] ). Let C be a k-gonal curve. With the notation of
Butler’s diagram of the pair (L, V ) by S, suppose that rank(FS) ⩾ 2. If FS fits in an
exact sequence

0→
rank(FS)−1⊕

OC → FS → det(FS)→ 0

which is also exact on global sections, then the following properties hold:

1. If deg(L) ⩽ k(dim(V ) − 1) where k = gon(C), then µ(S) ⩽ µ(MV,L). Further-
more, we have equality if and only if

■ W = H0(FS)
■ k = deg(det(FS))

h0(det(FS))−1

■ k = deg(L)
dim(V )−1

2. If deg(L) < k(dim(V )− 1) where k = gon(C), then µ(S) < µ(MV,L)

6
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By dualizing the first exact row in Butler’s diagram of the pair (L, V ) by S (0→ S →
W ⊗OC → FS → 0) and twisting by KC , we get a map at sections

mW : W ∨ ⊗H0(KC)→ H0(S∨ ⊗KC).

In contrast to [11] we consider the incomplete case, that is (L, V ) a generated linear
series with V ∈ Gr(r + 1, H0(L)) generating space with r + 1 < h0(L) and the Butler’s
diagram of the pair (L, V ) by S.

Proposition 2.1.1. Let Q = MV,L/S

i) If the multiplication map

mW : W ∨ ⊗H0(KC)→ H0(S∨ ⊗KC)

is surjective, then H0(Q) = 0.

ii) If mW is surjective, then W = H0(FS).

iii) If S ⊆MV,L is stable of maximal slope, then H0(Q) = 0.

Proof. i) We follow [11]. By dualizing Butler’s diagram of (L, V ) by S as shown in
1.1.1, twisting by KC and taking cohomology,

H0(L∨ ⊗ KC ) // V ∨ ⊗ H0(KC )
m1 //

p1

��

H0(M∨
V,L ⊗ KC )

p2

��

A // H1(L∨ ⊗ KC )
D // V ∨ ⊗ H1(KC ) // 0

H0(F ∨
S ⊗ KC ) // W ∨ ⊗ H0(KC )

mW // H0(S∨ ⊗ KC )
E //

a

��

H1(F ∨
S ⊗ KC )

B // W ∨ ⊗ H1(KC ) // 0

H1(Q∨ ⊗ KC )

b

��
H1(M∨

V,L ⊗ KC )

Since mW is surjective and W ↪→ V , it follows that p1 is also surjective, and
mW ◦p1 is surjective as well. By commutativity of the diagram mW ◦p1 = p2 ◦m1
is surjective and this implies that p2 is also surjective, which is equivalent to
stating that the morphism a is equal to zero.
On the other hand, by Serre duality,

H1(Q∨ ⊗KC) ∼= H0(Q)∨ and H1(M∨
V,L ⊗KC) ∼= H0(MV,L)∨.

Furthermore, since H0(MV,L) ∼= 0 then a ≡ 0 and b is an isomorphism. We
conclude that H0(Q)∨ ∼= 0, equivalently H0(Q) = 0.

ii) If mW is surjective then the map E vanishes and B is an isomorphism. By Serre
duality H1(F ∨

S ⊗ KC) ∼= H0(FS)∨. Thus H0(FS)∨ ∼= W ∨ ⊗ H1(KC), leading to
the isomorphisms,

H0(FS)∨ ∼= W ∨ ⊗H1(KC) ∼= W ∨.

By dualizing we obtain H0(FS) ∼= W .

7
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iii) This proof is analogous to [11, Theorem 1.1] which is based on the study of
Q when MV,L is slope-semistable (for which Q is slope-semistable of negative
degree) or when MV,L is slope-unstable (in this case, the maximal slope of the
Harder-Narasimhan filtration for Q is negative, leading to H0(Q) = 0).

■

Remark 2.1.1. In Theorem 1.1 of [11] the case i) is an if and only if result. How-
ever, in the non-complete case as in Proposition 2.1.1, the proof of H0(Q) = 0 implies
that the map mW is surjective is non true in general. This is due to the fact that the
morphism D : H1(L∨ ⊗KC) → V ∨ ⊗H1(KC) (following the notation of the proof) is
not an isomorphism since r + 1 < h0(L). Consequently, when V ⊊ H0(L) we cannot
assert that the morphisms m1 and p2 are surjective as the authors do in [11]. This
indicates that the results established for the complete case cannot be directly extended
to the incomplete case.

Using this construction, for a general curve we can give a proof of the slope-semistability
of MV,L and conditions for the strictly slope-semistability of MV,L.

Proposition 2.1.2. Let C be a general curve of genus g ⩾ 2. Let (L, V ) be a generated
linear series of type (d, r + 1) on C, and consider c : = codimH0(L)V ⩽ h1(L). Then
MV,L is slope-semistable. Moreover, if there exists a proper subbundle S ⊆ MV,L with
µ(S) = µ(MV,L), then

■ h1(L)− c = 0.

■ s := rank(S) = r − 1.

■ d = g + r with r|g.

Proof. This proof is analogous to [11, Lemma 4.1]; we will refer to this proof later but
for completeness we will provide the entire argument here. Consider a proper subbundle
S ⊆ MV,L with inclusion 0→ S → MV,L. By dualizing the sequence M∨

V,L → S∨ → 0,
we obtain S∨ as a quotient of M∨

V,L. Consequently, for any U ∈ Gr(s + 1, H0(S∨)), we
have the following exact sequence,

0→ S → U∨ ⊗OC → det(S∨)→ 0

inducing the exact sequence in cohomology

0→ H0(S)→ U∨ → H0(det(S∨))→ ...

Since h0(MV,L) = 0 and S ↪→MV,L, it follows that H0(S) = 0, leading to h0(det(S∨)) ⩾
dim(U) = s+1. Using that C is general we get h0(det(S∨)) ⩾ s+1 and deg(det(S∨)) =
deg(S∨), the last argue implies that det(S∨) is a degree deg(S∨) line bundle with at
least s + 1 global sections. The Brill-Noether number for det(S∨) is given by

ρ(g, s, deg(S∨)) = g − (s + 1)(g − deg(S∨) + s) ⩾ 0

where
deg(S∨) ⩾ s(s + g + 1)

s + 1 . (2.1.1)
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Thus,

µ(S) = −deg(S∨)
s

⩽ −
s(s+g+1)

s+1
s

= −s + g + 1
s + 1 = −1− g

s + 1
Now, from Riemann-Roch theorem for the line bundle L and letting h = h1(L), we
have

µ(MV,L) = −d

r
= r + h0(L)− (r + 1)− h + g

r
= r + c− h + g

r
= −1 + h− c− g

r
.

Consequently,

µ(S)− µ(MV,L) ⩽ −1− g

s + 1 + 1− h− c− g

r
= g

(1
r
− 1

s + 1

)
− h− c

r
. (2.1.2)

Since h − c is greater than 0, inequality 4.1.4 is less or equal to 0 which implies that
µ(S) ⩽ µ(MV,L). Therefore, we conclude that MV,L semistable. For the last inequality
in 4.1.4, if µ(S) = µ(MV,L), then h1 = c and r = s + 1. Moreover, from Riemann-Roch
theorem we get that d = g + r and µ(MV,L) = deg(MV,L/S) ∈ Z and we deduce that r
divides g. ■

At this point, we turn our attention to the bundle FS associated with the subbundle
S rather than S∨, as FS appears in the Butler’s diagram of (L, V ) by S. To effectively
apply Lemma 2.1.1, we consider the case in which MV,L is strictly slope-semistable, with
S being a subbundle that shares the same slope as MV,L, specifically µ(S) = µ(MV,L).
This condition allows us to compute the dimension of global sections for the bundle
det(FS), which for the case of rank(FS) ⩾ 2 will provide valuable insights into the
stability properties of MV,L.

Proposition 2.1.3. Let C be a general curve of genus g ⩾ 2, (L, V ) be a generated
linear series over C and let c = codimH0(L)(V ) ⩽ h1(L). If S is a proper subbundle of
MV,L with µ(S) = µ(MV,L). Then

h0(det(FS)) = s + 1.

Proof. As in [11] we have that

µ(S) = −deg(FS)
s

= deg(S)
s

= −deg(L)
r

= µ(MV,L).

From Proposition 2.1.2 then deg(FS) = s + g − g
r
∈ Z. Notice that h0(det(FS)) =

h0(det(S∨)) ⩾ s + 1 = r. Assume that h0(det(FS)) ⩾ r + 1. Using that C is general
and det(FS) is a degree deg(FS) line bundle with at least r + 1 sections, it follows that
the corresponding Brill-Noether number ρ = ρ(g, r, deg(FS)) is non-negative. However,
we have,

0 ⩽ ρ = g − (r + 1)(r − deg(FS) + g) = g − (r + 1)
(

1 + g

r

)
= −r − 1− g

r
< 0

contradicting the generality of C. Therefore h0(det(F )) = s + 1 = r. ■
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We aim to prove that under the conditions outlined in Proposition 2.1.2 we can conclude
the same result as in part ii) of Proposition 2.1.1. From Remark 2.1.1, this conclusion
does not hold in general for the non-complete case. By establishing the semistability of
MV,L, we can analyze the properties of the bundle FS associated with the subbundle S.
This connection is essential, as it allows us to leverage the results from the semistability
of MV,L to draw conclusions about the behavior of FS.

Proposition 2.1.4. Let C be a general curve of genus g ⩾ 2, (L, V ) be a generated gr
d

over C, if S is a proper subbundle of MV,L with µ(S) = µ(MV,L) and rank(FS) > 1,
then W = H0(FS).

Proof. Since MV,L is strictly slope-semistable from Proposition 2.1.2 we conclude that
s = rank(S) = r − 1. From the inclusion W ↪→ V the dimension w = dim(W ) can
take only two possible values: either w = r +1 or w = r. First, consider the case where
w = r. In this case we have rank(FS) = 1, which does not fall within the cases we
are currently considering. Next, we assume w = r + 1. In this case W ∼= V leading to
rank(FS) = 2. Since W ⊆ H0(FS), it follows that w ⩽ h0(FS). Moreover, according
to [25, Proposition 4.1], FS fits into the following exact sequence

0→ OC → FS → det(FS)→ 0.

By taking cohomology

0→ H0(OC)→ H0(FS) φ−→ H0(det(FS))→ · · · . (2.1.3)

From Proposition 2.1.3 we get h0(det(FS)) = s + 1 = r and from dimension theorem,

h0(FS) = dim(Im(φ)) + dim(Ker(φ)).

Using the exactness of the sequence 2.2.1 and the fact that Im(φ) is a subspace of
H0(det(FS)), we obtain the following inequality

h0(FS) = dim(Im(φ)) + dim(Ker(φ)) = dim(Im(φ)) + 1 ⩽ r + 1.

We conclude that r + 1 = w ⩽ h0(FS) ⩽ r + 1, which implies that W = H0(FS). ■

We recall that linear semistability of (L, V ) is equivalent to the fact that the bundle
MV,L cannot be destabilised by subbundles of the form MW,L′ . Next we show that it
is possible to construct a specific linear subseries associated with a proper subbundle
S ⊆MV,L that shares the same slope.

Theorem 2.1.1. Let C be a general curve of genus g ⩾ 2 and let (L, V ) a globally
generated linear series such that dim(V ) = r + 1 with c = codimH0(L)(V ) ⩽ h1(L).
Consider S ⊆MV,L a proper subbundle with µ(S) = µ(MV,L). Then, there exists a line
bundle FS which fits into the commutative diagram

0 // S //

��

W ⊗OC
//

��

FS
//

��

0

0 //MV,L
// V ⊗OC

// L // 0

10
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Proof. This proof is analogous to [11, Theorem 4.1]. From Proposition 2.1.2 S is a
stable bundle, since µ(S) = µ(MV,L), we conclude that h = h1(L) = c and s = r − 1.
Since W ⊆ V and dim(W ) ⩾ rank(S), it follows that the rank of FS is either 1 or 2.
Consider the case r = 2, then d = g + 2 and h = c. We have that µ(S) = µ(MV,L) =
−g+2

2 . From Proposition 2.1.3 h0(S∨) = 2 and since W ∨ := Im(V ∨ ϕ−→ H0(S∨)), which
generates S∨, we conclude FS = S∨ is a line bundle and W = H0(S∨) has dimension
2. This completes the case r = 2.
Now, consider r > 2. By hypothesis, the gonality of C is k = gon(C) ⩾ g+2

2 , leading
to the inequality

d = g + r <
g + 2

2 r ⩽ kr.

Assuming that rank(FS) = 2, we apply Proposition 2.1.4 to find that h0(FS) =
dim(W ) = r + 1. Additionally, since h0(det(FS)) = r, it follows that the exact se-
quence

0→ OC → FS → det(FS)→ 0 (2.1.4)
is exact on global sections. To see this, consider the cohomology of sequence 2.1.4,

0 // H0(OC) f1 // H0(FS) f2 // H0(det(FS)) δ // H1(OC) // · · ·

From exactness, we notice that dim(Im(f1)) = dim(Ker(f2)) = 1 then,

r + 1 = h0(FS) = dim(Ker(f2)) + dim(Im(f2)) = 1 + dim(Im(f2)).

This implies that dim(Im(f2)) = r meaning that f2 is surjective. Consequently, the
sequence 2.1.4 is exact on global sections. This leads to µ(S) < µ(MV,L) (see Lemma
2.1.1), which is a contradiction. Therefore FS is a line bundle. ■

From above results, in the context of Theorem 2.1.1, we know properties of the elements
that appear in the Butler’s diagram of (L, V ) by S when S has the same slope as MV,L.
This allows us to leverage these properties to conclude that the linear stability of (L, V )
implies the slope-stability of MV,L.

Corollary 2.1.1. Let (L, V ) be a generated linear series of type (d, r + 1) over a
general curve C of genus g ⩾ 2 with c ⩽ h1(L). Then linear (semi)stability of (L, V )
is equivalent to slope-(semi)stability of MV,L

Proof. If MV,L is stable, then (L, V ) is linearly stable. Suppose that MV,L is strictly
slope-semistable and let S ⊆MV,L be a subbundle with µ(S) = µ(MV,L). By Theorem
2.1.1 the rank of FS is equal to 1 and this implies that (L, V ) is strictly linear semistable.

■

Finally, with the same assumptions as in the Corollary, we aim to study under which
conditions MV,L fails to be slope-stable in terms of the elements of the linear series
(L, V ). Specifically, we explore how the properties of the elements in the Butler’s
diagram of (L, V ) by S when S has the same slope as MV,L influence the slope-
stability of the vector bundle MV,L. The proof is similar to that given in Castorena and
Torres-Lopez with the difference that in our case we have to consider the linear series
(L(−Z), V (−Z)) where the space V (−Z) := H0(L(−Z)) ∩ V for a specific effective
divisor Z on C.
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Proposition 2.1.5. Let C be a general curve of genus g ⩾ 2 and let (L, V ) be a globally
generated linear series such that dim(V ) = r + 1 and deg(L) = d. Then, MV,L fails to
be stable if and only if the following three conditions hold:

i) c := codimH0(L)(V ) = h1(L) = h1.

ii) d = g + r with r|g.

iii) There is an effective divisor Z, with h0(L(−Z)) = h0(L)− 1 and dim(V (−Z)) =
r, where V (−Z) = V ∩H0(L(−Z)) ⊆ H0(L) and deg(Z) = 1 + g

r
.

Proof. ⇐) The evaluation map ev : H0(L(−Z))⊗O → L(−Z) is surjective. Notice
that V ⊊ H0(L(−Z)) because dim(V ∩H0(L(−Z))) < dim(V ). We know that
L(−Z) is generated by V (−Z); otherwise, there exists a point p ∈ C such that
ev|p : V (−Z)⊗Op → L(−Z)p is not surjective. This leads to two cases:

· If p ∈ C and p ̸∈ Z, since V generates L, the evaluation map ev|p : V (−Z)⊗
Op → L(−Z)p is surjective.
· If p ∈ Z, given that the map ev : H0(L(−Z)) ⊗ O → L(−Z) is surjective,

it follows that ev|p : V (−Z)⊗Op → L(−Z)p is also surjective.

Moreover, we have FS = L(−Z) and W = V (−Z) = H0(L(−Z))∩V in the But-
ler’s diagram of (L, V ) by S = MV (−Z),L(−Z), with µ(MV (−Z),L(−Z)) = µ(MV,L).
Hence, MV,L is slope-semistable but not slope-stable.

⇒) Following the ideas in [11, Corollary 4.3]. If MV,L is strictly slope-semistable.
According to Proposition 2.1.2, there exists a subbundle S ⊆MV,L of rank r − 1
such that c = h1(L) and d = g + r with r|g.
Since F is a line bundle and the morphism α : F → L is non-zero, there exists
an effective divisor Z such that F = L(−Z) and dim(W ) = r. We have the
inclusion W ↪→ V , since F is generated W ↪→ H0(L(−Z)) making W a subspace
of H0(L(−Z)) ∩ V = V (−Z) of maximal dimension, thus W = V (−Z).
Since deg(F ) = −deg(S) and µ(S) = µ(MV,L), it follows that deg(Z) = 1 + g

r
.

Note that Q := MV,L/S = OC(−Z), so h0(Q) = 0 and dim(H0(L(−Z)) ∩ V ) =
dim W = r, which gives condition iii).

■

2.2 Cohomological stability
In this section, we consider another type of stability for vector bundles. In [25] authors
studied the relation between this type of stability (that results stronger than the slope-
stability) for MV,L, the slope-stability of MV,L and linear stability of (L, V ). We present
similar results of to those presented by Castorena and Torres-Lopez in [12], we show
sketches of the proofs where we emphatize the diferences with our case.
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Definition 2.2.1. Let E be a vector bundle over a curve C. We say that E is coho-
mologically (semi)stable if for any A ∈ Pica(C), and for every t < rank(E), we have
that

h0
(

t∧
E ⊗ A

)
= 0

whenever a ⩽ t · µ(E) ( respectively a < t · µ(E)).

In [15], authors show that cohomological semistability is equivalent to slope-semistability,
and that cohomological stability implies slope-stability. We want to look for precise
conditions for when such stabilities are equivalent since we know they satisfy the fol-
lowing implications:

Cohomological stability of MV,L ⇒ Slope-stability of MV,L ⇒ Linear stability of (L, V )

In order to find precise conditions for the equivalence between the first two stabilities,
we study the following property for syzygy bundles associated to linear subseries related
by divisors.

Lemma 2.2.1 ([25, Lemma 7.4]). Let (L, V ) be a gr
d on a smooth curve C, which

induces a birational morphism, and let Dk = p1 + ... + pk be a general effective divisor
on C, with k < r. The kernel bundle associated to the linear series lies in the following
exact sequence of sheaves

0→MV (−Dk),L(−Dk) →MV,L →
k⊕

i=1
OC(−pi)→ 0.

Remark 2.2.1. ■ With notation and conditions in Lemma 2.2.1, if we consider a
general effective divisor D of maximal degree r− 1, we have that MV (−D),L(−D) is
a line bundle which is dual to OC(pr + ... + pd) and

MV (−D),L(−D) ∼= OC(−pr − ...− pd).

■ Let (L, V ) and x1, ..., xr−1 be as in Lemma 2.2.1 and let F = ⊕r−1
j=1OC(−xj). For

any integer t < r, we get the following short exact sequence of exterior powers

0→
t−1∧

F ⊗ L∨

r−1∑
j=1

xj

→ t∧
MV,L →

t∧
F → 0. (2.2.1)

Now, we follow [12] in the incomplete case in direction to give conditions for which
bundle MV,L is cohomological (semi)stable.

Proposition 2.2.1. Let (L, V ) be a generated gr
d on a smooth curve C which induces a

birational morphism. Let A ∈ Pica(C) such that a ⩽ t · d
r

and h0(A) ⩽ t with integers
t, d and r satisfying 0 < t < r < d. Then h0(∧tMV,L ⊗ A) = 0.

Proof. In a similar way as in [12, Proposition 3.4] MV,L fits into the sequence 2.2.1.
Moreover, since h0(A) ⩽ t, we can take points x1, ..., xr−1 satisfying the property: for
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any i1, . . . , it ∈ {1, . . . , r − 1}, with 1 ⩽ i1 < · · · < it ⩽ r − 1, we have h0(A(−xi1 −
· · · − xit)) = 0. By twisting 2.2.1 by A, we get at cohomology

⊕
H0

L∨ ⊗ A

r−1∑
j=1

xj −
t∑

j=1
xij

→ H0(
t∧

MV,L ⊗ A)→
⊕

H0

A

− t∑
j=1

xij

 .

(2.2.2)
Next we prove that first and the last terms of this sequence are trivial. Each summand
of the right side is zero due to the properties on A and on the points {xi1 , . . . , xit}. The
left side is zero since each summand is the global sections of line bundles with degrees

deg

L∨ ⊗ A

r−1∑
j=1

xj −
t∑

j=1
xij

 = (r − t)
(

1− d

r

)
< 0,

since r > t and d > r. Hence h0(∧tMV,L ⊗ A) = 0. ■

From now on, let us assume that C is a general curve. We aim to establish a bound
on the dimension of H0(A) for a line bundle A, as above.
Remark 2.2.2. It follows from Riemman-Roch formula that hypothesis

c := codimH0(L)(V ) ⩽ h1(L)

is equivalent to condition d ⩽ g + r.
Proposition 2.2.2. Let C be a general curve of genus g. Let A ∈ Pica(C) with a ⩽ t· d

r

with integers t, d and r satisfying 0 < t < r < d ⩽ g + r, then h0(A) ⩽ t+1. Moreover,
h0(A) = t + 1 if and only if a = t · d

r
, d = g + r and t + 1 = r.

Proof. This proof is analogous to [12, Proposition 3.6], which is based in the study
of Brill-Noether numbers associated with the line bundle A and the property that C
is general. Assuming that h0(A) ⩾ t + 2, the corresponding Brill-Noether number
ρ(g, t + 1, a) satisfies

0 ⩽ ρ(g, t + 1, a) ⩽ −g − (t + 2)(t + 1) + t(t + 2)
(

g + r

r

)
− tg

= −g − (t + 2)− tg
(

1− t + 2
r

)
< 0.

giving a contradiction since C is general,thus we conclude that h0(A) ⩽ t + 1.
Assuming now that h0(A) = t + 1, it follows that

0 ⩽ ρ(g, t, a) = g − (t + 1)(t− a + g)
= −t(t + 1) + a(t + 1)− tg

⩽ t(t + 1)d

r
− t(t + 1)− tg

⩽ t(t + 1)
(

g + r

r

)
− t(t + 1)− tg

= gt
(

t + 1
r
− 1

)
⩽ 0

Thus, we find that h0(A) = t + 1 if and only if ρ(g, t, a) = 0, which is equivalent to
a = d

r
t, d = g + r, and t + 1 = r. ■
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To establish the cohomological semistability of MV,L, notice that from Proposition
2.1.2 and the results presented in [15], cohomological semistability is equivalent to
slope-semistability. This leads us to conclude that MV,L is cohomologically semistable.
We aim to characterize the conditions under which this cohomological semistability
holds. Specifically, we analyze the implications of the Brill-Noether numbers associated
with A, as well as the dimensions of the relevant cohomology groups, to provide a
comprehensive understanding of the stability properties of the sheaf.

Proposition 2.2.3. Let (L, V ) be a generated linear series of type (d, r + 1) which
induces a birational morphism over a smooth general curve C. Then MV,L is cohomo-
logically semistable.

Proof. This proof is analogous to [12, Theorem 3.7], let t < r and consider A ∈ Pica(C)
with a < td

r
. From Propositions 2.2.1 and 2.2.2 h0(A) ⩽ t and h0(∧tMV,L ⊗ A) = 0.

Hence MV,L is cohomologically semistable. ■

As for slope-semistability, we want to find suitable conditions for the cohomological
stability of MV,L. A first step in this direction is the following result.

Corollary 2.2.1. Let (L, V ) be a generated linear series of type (d, r + 1) which in-
duces a birational morphism over a general curve C with c ⩽ h1(L). Then MV,L is
cohomologically stable if one of the following conditions holds:

i) c < h1(L).

ii) c = h1(L) and r does not divide g.

Proof. In a similar way as in [12, Corollary 3.8] for t < r and A ∈ Pica(C) with a ⩽ d
r
t.

In case i), since c < h1(L) then d < g + r. From Proposition 2.2.2 h0(A) ⩽ t and case
i) follows from Proposition 2.2.1.
If h1(L) = c and t = r − 1, then d = g + r and

t
d

r
= (r − 1)g + r

r
= g + r − 1− g

r
.

Assume that r does not divide g then the condition a ⩽ (r − 1)d
r

implies a < (r − 1)d
r

and hence h0(A) ⩽ t = r − 1. This proves ii). ■

Next result states that the slope-stability of MV,L is equivalent to its cohomological
stability. To achieve this, we generalize the results presented in [12] to the setting of
the sheaf MV,L. We show that the conditions under which MV,L is slope-stable imply
its cohomological stability, and viceversa. This equivalence allows us to leverage the
powerful tools of Brill-Noether theory and the study of Brill-Noether varieties to draw
conclusions about the stability properties of MV,L.

Theorem 2.2.1. Let (L, V ) be a generated gr
d over a general curve C which induces a

birational morphism with c ⩽ h1(L). Then

1. MV,L is strictly slope-semistable if and only if the following three conditions hold:

(a) h1(L) = c.
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Cohomological stability

(b) d = g + r and r|g.
(c) There is a line bundle A with degree deg(A) = g + r − 1− g

r
and h0(A) = r

such that h0(∧r−1MV,L ⊗ A) = 1.

2. If MV,L is slope-stable, then MV,L is cohomologically stable.

Proof. The proof is the same as in [12, Corollary 3.10]. ■

It follows from Proposition 2.1.2 and Theorem 2.2.1 that for general curves satisfying
assumptions of Theorem 2.2.1, the linear stability of the pair (L, V ) is equivalent to
the slope-stability of MV,L, and this slope-stability is equivalent to the cohomological
stability of MV,L.
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Chapter 3

Mistretta-Stoppino’s conjecture on
k-gonal curves

In this chapter, we focus in Brill-Noether theory for general curves inside the strata
M1

g,k, that is, curves with non-generic gonality k. In this direction, we review some
key results from Ballico-Keem [4], Coppens-Martens [13], and Pflueger [28]. We aim
to estimate the dimension of the Brill-Noether varieties W r

d (C) associated with these
k-gonal curves. We introduce the number ρk(g, r, d) defined by Pflueger, which seeks to
extend the classical Brill-Noether number. We also recall an important result of Jensen
and Ranganathan, who proved that the dimension of W r

d (C) indeed coincides with
ρk(g, r, d) for general k-gonal curves. This solves a conjecture proposed by Pflueger.
The goal of this chapter is to address the Mistretta- Stoppino conjecture for general
k-gonal curves using techniques as above.

3.1 Brill-Noether theory for gonal curves
In this section, we use a version of Theorem 1.1.1 for k-gonal general curves for non-
generic values of the gonality k. Let C be a curve of gonality k. For each possible value
of k, when d ⩾ kr, we can always construct a gr

d by adding d− kr base point to r · g1
k.

From Riemann-Roch we can estimate the dimension of W r
d = {L ∈ Picd(C) : h0(L) ⩾

r + 1} as follows,

dim W r
d (C) ⩾ max{d− kr, (2g − 2− d)− k(g − d + r − 1)}

= ρ(g, r − r′, d)− r′k

where r′ = min{r, g − d + r − 1}.
In [4], Ballico and Keem, show that under the assumption g ⩽ 4k − 4 the dimension
dim W r

d (C) can exceed ρ(g, r, d) by at most g − 2k + 2. In [13], Coppens and Martens
exhibit components of W r

d (C) of dimension ρ(g, r−l, d)−lk for l ∈ {0, 1, r′}. Moreover,
in [14], they expand the results for the case where r′ +1−l divides either r′ or r′ +1 and
is smaller than k. This result, with the upper bound in [28] determines the dimension
of W r

d (C) for general trigonal and tetragonal curves, they also define a number namely
ρk(g, r, d) to generalize the notion of the Brill-Noether number for k-gonal curves.
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Quadratic expression associated to ρk

Definition 3.1.1. Fix an integer k ⩾ 2 and integers d, r ⩾ 1, g > 2 with d ⩽ g + r.
Let r′ = min{r, g − d + r − 1}. Define

ρk(g, r, d) := max
l∈{0,...,r′}

{ρ(g, r − l, d)− lk} (3.1.1)

The expresion of r′ comes from the fact that W r
d (C) ∼= W g−d+r−1

2g−2−d (C). This ensures
that definition of ρk(g, r, d) is invariant under this duality. Pflueger shows in [28] that
dim W r

d (C) ⩽ ρk(g, r, d) and conjetures that the equality holds. Later, in [21], Jensen
and Ranganathan prove the following theorem that gives an affirmative answer to
Pflueger’s conjecture.

Theorem 3.1.1 ([21, Theorem 9.4]). Let C be a general k-gonal curve of genus g.
Then

dim W r
d (C) = ρk(g, r, d).

For a general k-gonal curve the scheme W r
d (C) can have irreducible components of

different dimensions. For example, if C is a general trigonal curve of genus 6, then
W 1

4 (C) has a 1-dimensional component and an isolated point, see [22, Lemma 2.1].
Thus, Theorem 3.1.1 says that W r

d (C) has a component of maximal possible dimension
ρk(g, r, d).

3.2 Quadratic expression associated to ρk

In this section, we present a quadratic expression that allows us to study the dimension
of the Brill-Noether varieties associated to k-gonal curves. In Proposition 2.1.2 we
consider a subbundle S of MV,L with rank(S) = s and we use this bundle to exhibit a
linear series in Gs

deg(S∨)(C) to make sure that the Brill-Noether number ρ(g, s, deg(S∨))
is non-negative. We are interested in studying the expression inside the definition of
ρk(g, r, d), particularly ρ(g, r−l, d)−lk. Let f1(l) := ρ(g, r−l, d)−lk, this is a quadratic
function of a real variable l with expression

f1(l) = g − rg + rd− r2 − g + d− r + (r + g − d + r + 1− k)l − l2

which reach its maximum at l1 = 1
2(g−d+2r+1−k), say f1(l1) =

(
d−g+k−1

2

)2
+d−kr.

Pflueger defines the following Brill-Noether ρk(g, r, d) with respect the gonality of C
and f1(l):

ρk(g, r, d) = max
l∈{0,...,r′}

f1(l).

Let d′ = deg(S∨) be and let f2(l) := ρ(g, s − l, d′) − lk the quadratic function which
reach its maximum at l2 = 1

2(g − d′ + 2s + 1− k), say f2(l2) =
(

d′−g+k−1
2

)2
+ d′ − ks.

Now we analize both of these quadratic functions under the assumptions that d ⩽ kr,
d ⩽ g + r, s < r and for more specific properties of S. Since we are exhibiting
(L, V ) ∈ Gr

d(C) and an element of Gs
d′(C), using that C is a k-gonal general curve,

we know that ρk(g, r, d) and ρk(g, s, d′) are both non-negative. Thus, if we call the
intervals I1 = [0, r′] and I2 = [0, s′], we can make sure that the sets f1(I1)∩ [0,∞) and
f2(I2) ∩ [0,∞) are non-empty.
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Quadratic expression associated to ρk

Remark 3.2.1. With notation as in Definition 3.1.1, let s′ = min{s, g− (d′) + s− 1}.
The condition s′ = s is equivalent to d′ ⩽ g − 1. Similarly, s′ = g − d′ + s − 1 is
equivalent to d′ ⩾ g − 1.

The roots of the quadratic functions fi(l) are r±
i = li±

√
∆i

2 where ∆i is the discriminant
of fi, explicitly

∆1 = d2 − 2dg + 2dk + 2d + g2 − 2gk + 2g + k2 − 4kr − 2k + 1

equivalently ∆1 = (d− g + k−2r− 1)2 + 4d(r + 1)− 4r(g + r + 1) and for f2(l) we have

∆2 = (d′)2 − 2(d′)g + 2(d′)k + 2(d′) + g2 − 2gk + 2g + k2 − 4ks− 2k + 1.

Remark 3.2.2. The expression 2.1.1 that we aim to get in Proposition 2.1.2, said
d′(s + 1) ⩾ s(s + g + 1), is equivalent using above notation to

√
∆2
2 ⩾ l2.

Notice that the expression
√

∆2
2 ⩾ l2 at the same time is equivalent to

((d′)− g + k − 2s− 1)2 + 4(d′)(s + 1)− 4s(g + s + 1) ⩾ (g − (d′) + 2s + 1− k)2.

Solving for d′ and sustracting ((d′)− g + k − 2s− 1)2 at both sides,

4(d′)(s + 1)− 4s(g + s + 1) ⩾ 0,

which is equivalent to the condition in Proposition 2.1.2.
Now, we want to study the possible values of s and d′ for which the condition in
Remark 3.2.2 holds. We focus on the numerical conditions pertaining to s and d′

without considering their potential relations with the invariants r and d of the linear
series (L, V ). For this, we consider the following cases for l2, only in the interval
l2 ⩽ s′ = min{s, g − d′ + s− 1}:

Proposition 3.2.1. Let C be a general k-gonal curve of genus g, if the variety Gs
d′(C)

is non empty and the pair (d′, s) satisfies one of the following conditions:

1. If g + 1− k + 2s ⩽ d′ and satisfies one of the following conditions:

(a) k ⩽ 6.
(b) k > 6 and g ⩾ k2

4 .
(c) k > 6 and 2s ⩾

√
k2 − 4g + k − 2.

2. (a) If d′ ⩽ g − 1 and satisfies all the following conditions:
i. s ⩽ g−k+1

k−1 .
ii. d′ ⩽ g + 2s + 1− k.

iii. d′ ⩾ g + s + 1− k.
(b) Or if d′ ⩾ g − 1 and satisfies all the following conditions:

i. s + 2 ⩽ k.
ii. d′ ⩽ g + 2s + 1− k.

iii. s ⩽
√

4g + 5k2 − 4k − 2k.
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Quadratic expression associated to ρk

3. (a) If d′ ⩽ g − 1 and all the following conditions hold:
i. g + 1− k ⩽ d′.

ii. d′ − s ⩽ g + 1− k.
iii. s ⩽ 1

2

√
4g + (k − 2)2 − k.

(b) Or if d′ ⩾ g − 1 and all the following conditions hold:
i. k − 2 ⩽ s.

ii. d′ ⩽ g − 3 + k.
iii. 2s ⩽

√
4g + 2k2 − 4k − k.

Then ρ(g, s, d′) ⩾ 0.

Proof. Since C is a general k-gonal curve and there exists an element in the variety
Gs

d′(C), it follows from Theorem 3.1.1 that ρk(g, s, d′) = dimW s
d′ = dimGs

d′ is non-
negative. Note that condition ρ(g, s, d′) ⩾ 0 is equivalent to the expression in Remark
3.2.2. Now we study the possible values for l2:

Case 1 Consider l2 ⩽ 0, which implies g − d′ + 2s + 1− k ⩽ 0 or equivalent

g + 1− k + 2s ⩽ d′.

Since f2(I2) ∩ [0,∞) ̸= ∅, we have that ρ(g, s, d′) = f2(0) ⩾ 0. Given that
ρ(g, s)(d′) is increasing for d′ ⩾ −1 and that g + 2− k + 2s is greater than zero,
it follows that

ρ(g, s)|d′=d′ ⩾ ρ(g, s)|d′=g+1−k+2s

The expression on the right side is greater or equal to zero for either k ⩽ 6 or
k > 6 or for g ⩾ k2

4 ; another case for k > 6 is 2s ⩾
√

k2 − 4g + k− 2 and 4g < k2

In this case, conditions that must be satisfied are g + 1− k + 2s ⩽ d′ and one of
the following:

k ⩽ 6 (3.2.1)

k > 6 and g ⩾
k2

4 (3.2.2)

k > 6 and 2s ⩾
√

k2 − 4g + k − 2. (3.2.3)

Case 2 Now consider 0 ⩽ l2 ⩽ 1
2s′:

1. For s′ = s, the condition in this case is equivalent to

0 ⩽ g − d′ + 2s + 1− k ⩽ s

which leads to g + s + 1 − k ⩽ d′. The condition in Remark 3.2.2 holds if√
∆2 ⩾ s, and considering the bound g + s + 1 − k ⩽ d′ in the expression

of ∆2 (noting that ∆2(d′) is increasing for d′ ⩾ g − k − 1), we find that√
∆2 ⩾ s is satisfied for s such that

s ⩽
g − k + 1

k − 1 .
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Quadratic expression associated to ρk

Thus, if s′ = s the conditions that must be satisfied are

s ⩽
g − k + 1

k − 1 (3.2.4)

d′ ⩽ g + 2s + 1− k (3.2.5)
d′ ⩾ g + s + 1− k (3.2.6)

2. When s′ = g − d′ + s − 1, the condition is equivalent to the following
inequalities

0 ⩽ g − d′ + 2s + 1− k ⩽ g − d′ + s− 1.

From the right side we get g−d′ +2s+1−k ⩽ g−d′ +s−1 or equivalently,
s + 2 ⩽ k. From the left side, 0 ⩽ g − d′ + 2s + 1− k or equivalently, d′ ⩽
g+2s+1−k. The condition in Remark 3.2.2 holds if ∆2−(g−d′+s−1)2 ⩾ 0,
which is equivalent to

d′(2 + 2s)− 2gk − 2gs + 4g + k2 − 4ks− 2k − s2 + 2s ⩾ 0

Notice that this expression, as a function in the variable d is increasing,
since d′ ⩾ g − 1, we can use

(∆2 − (g − d′ + s− 1)2)|d′=d′ ⩾ (∆2 − (g − d′ + s− 1)2)|d′=g−1.

The right side of this inequality evaluates to 4g + k2 − 4ks− 4k − s2 and is
greater than zero for s ⩽

√
4g + 5k2 − 4k − 2k.

Thus, if s′ = g − d′ + s− 1, the conditions that must to be satisfied are:

s + 2 ⩽ k (3.2.7)
d′ ⩽ g + 2s + 1− k (3.2.8)

s ⩽
√

4g + 5k2 − 4k − 2k. (3.2.9)

Case 3 In this case, we consider that l2 satisfies 1
2s′ ⩽ l2 ⩽ s′. For each possible value of

s′, the conditions for 1
2
√

∆2 ⩾ l2 are as follows:

1. When s′ = s. The bounds for l2 lead to the following two inequalities

s ⩽ g − d′ + 2s + 1− k

2s ⩾ g − d′ + 2s + 1− k.

Simplifying,

g + 1− k ⩽ d′

d′ − s ⩽ g + 1− k.

The condition in Remark 3.2.2 holds if
√

∆2 ⩾ 2s, which is equivalent to
∆2 − 4s2 ⩾ 0. This expression, as a function of the variable d′ is increasing
for d′ ⩾ g− k− 1, and since d′ ⩾ g− k + 1 satisfies this condition, it follows
that

4g − 4ks− 4k − 4s2 + 4 = (∆2 − 4s2)|d′=g−k+1 ⩽ (∆2 − 4s2)|d′=d′
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The left side of this inequality is greater than zero if s ⩽ 1
2

√
4g + (k − 2)2−k.

Thus, for s′ = s and 1
2s′ ⩽ l2 ⩽ s′ the conditions that must be satisfied for

s and d′ to ensure
√

∆2 ⩾ 2l2 are:

g + 1− k ⩽ d′ (3.2.10)
d′ − s ⩽ g + 1− k (3.2.11)

s ⩽
1
2
√

4g + (k − 2)2 − k. (3.2.12)

2. When s′ = g−d′ +s−1. The bounds for l2 can be expressed as the following
two inequalities:

g − d′ + s− 1 ⩽ g − d′ + 2s + 1− k ⩽ 2(g − d′ + s− 1).

From the left side inequality, k − 2 ⩽ s. Similarly, the right side simplifies
to d′ ⩽ g − 3 + k. Thus, we have the following inequalities for s and d′

k ⩽ s + 2
d′ ⩽ g − 3 + k.

To establish conditions under which Remark 3.2.2 holds, we note that it
holds if ∆2 − 4(s′)2 ⩾ 0, which is equivalent to

d′(2 + 2s)− 2gk − 2gs + 4g + k2 − 4ks− 2k − s2 + 2s ⩾ 0.

This expression, as a function of the variable d′ is increasing for 3g + k +
3s− 3 ⩾ 3d′ and since d′ = g − 1 satisfies this condition, then

(∆2 − 4(s′)2)|d′=d′ ⩾ (∆2 − 4(s′)2)|d′=g−1 = 4g + k2 − 4ks− 4k − 4s2.

In this situation the expression on the right side is greater than or equal to
zero for s ⩽ 1

2
√

4g + 2k2 − 4k − k
2 . Therefore, for s′ = g − d′ + s − 1 and

1
2s′ ⩽ l2 ⩽ s′, the conditions that must be satisfied for s and d′ to ensure√

∆2 ⩾ 2l2 are:

k − 2 ⩽ s (3.2.13)
d′ ⩽ g − 3 + k (3.2.14)

s ⩽
1
2

√
4g + 2k2 − 4k − k

2 . (3.2.15)

■

Now that we have established conditions on the pair (s, d′) that ensure the non-
negativity of the Brill-Noether number ρ(g, s, d′), the next step is to understand how
these conditions constrain the values of the projective dimension r and degree d of
the linear series (L, V ). By deriving these restrictions, we will be able to leverage the
stability results obtained previously and apply them to a broader class of linear series
on k-gonal curves.
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3.2.1 Extremal cases
In this section, we study the extremal cases of the quadratic expression. We aim to
relate the conditions on (d′) and s as the above with conditions on d and r, on this
direction, we aim to compare this conditions with the worst cases for (d′) and s subject
to the properties of S ↪→MV,L and the Butler’s diagram of (L, V ) by S.
Since we know that S ↪→ MV,L, we get that s ⩽ r − 1. For the degree of S the worst
case is considering it a maximal destabilizing subbundle of MV,L, for which we have
(d′) ⩽ d s

r
. In this way, for condition 1. in Proposition 3.2.1 we have the following

inequalities

g + 1− k ⩽ d′ − 2s

⩽ d
s

r
− 2s

⩽ s

(
d

r
− 2

)

⩽ (r − 1)
(

d

r
− 2

)

= r − 1
r

d− 2(r − 1).

conditions k ⩽ 6, k > 6 and g ⩾ k2

4 stayed as before. For this case last condition can
be expressed as k > 6 and the inequalities 2(r − 1) ⩾ 2s ⩾

√
k2 − 4g + k − 2.

In a similar way, for condition 2. in Proposition 3.2.1, it follow that

a) If r−1
r

d ⩽ g − 1 and satisfies all of the following conditions:

i. r − 1 ⩽ g−k+1
k−1 .

ii. r−1
r

d ⩽ g + 2(r − 1) + 1− k.
iii. r−1

r
d ⩾ g + (r − 1) + 1− k.

b) Or if r−1
r

d ⩾ g − 1 and satisfies all of the following conditions:

i. (r − 1) + 2 ⩽ k.
ii. r−1

r
d ⩽ g + 2(r − 1) + 1− k.

iii. (r − 1) ⩽
√

4g + 5k2 − 4k − 2k.

Furthermore, for condition 3. of Proposition 3.2.1, we estimate the conditions using
∆2 − 4(s′)2, notice that this is not the best estimation since d− kr ⩽ 0 and d− kr is
the value of f1(r′). At this point, we only consider the first two conditions to estimate
the values of r and d.
We summarize the work in this section in thefollowing result that extends Proposition
2.1.2:

Proposition 3.2.2. Let C a general k-gonal curve of genus g > 2, with k non-generic
gonality, and (L, V ) be a generated linear series of type (d, r + 1) over C, let c :=
codimH0(L)(V ) with d ⩽ min{g + r, kr}. If the pair (r, d) satisfies at least one of the
following conditions:
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1. If g + 1− k + 2(r − 1) ⩽ r−1
r

d and satisfies one of the following conditions:

(a) k ⩽ 6.
(b) k > 6 and g ⩾ k2

4 .
(c) k > 6 and 2(r − 1) ⩾

√
k2 − 4g + k − 2.

2. (a) If r−1
r

d ⩽ g − 1 and satisfies all the following conditions:
i. r − 1 ⩽ g−k+1

k−1 .
ii. r−1

r
d ⩽ g + 2(r − 1) + 1− k.

iii. r−1
r

d ⩾ g + (r − 1) + 1− k.
(b) Or if r−1

r
d ⩾ g − 1 and satisfies all the following conditions:

i. (r − 1) + 2 ⩽ k.
ii. r−1

r
d ⩽ g + 2(r − 1) + 1− k.

iii. (r − 1) ⩽
√

4g + 5k2 − 4k − 2k.

Then MV,L is semistable. Moreover, if there exists a proper subbundle S ⊆ MV,L with
µ(S) = µ(MV,L), then

■ h1(L)− c = 0.

■ s := rank(S) = r − 1.

■ d = g + r with r|g.

Proof. In notation as above, following the proof of Proposition 2.1.2, consider the
line bundle det(S∨), for which we have h0(det(S∨)) ⩾ s + 1; thus, it follows that
ρk(g, s, deg(S∨)) = maxl2∈{0,...,s} f2(l2) ⩾ 0. If (g, k, r, d) satisfies condition 1, then
l2 ⩽ 0; furthermore, since f2(0) ⩾ 0, we conclude that f2(0) = ρ(g, s, deg(S∨)).
If the values of (g, k, r, d) satisfy condition 2, then, following the computations above,
we know from Proposition 3.2.1 that these inequalities imply

√
∆2
2 ⩾ l2. As noted in

Remark 3.2.2, this is equivalent to condition deg(S∨)(s + 1) ⩾ s(s + g + 1). In either
case, we have established that deg(S∨)(s + 1) ⩾ s(g + s + 1) and we can proceed with
the proof of Proposition 2.1.2 to reach our conclusion. ■

For the complete case we can extend Proposition 3.2.2 following [11, Lemma 4.1] instead
of Proposition 2.1.2, in which case we get:

Corollary 3.2.1. Let C a general k-gonal curve of genus g > 2, with k non-generic
gonality, and L ∈ Picd(C) be a generated line bundle over C with h0(L) = r + 1,
d ⩽ g + r and d ⩽ kr. If the pair (r, d) satisfies one of the following conditions:

1. If g + 1− k + 2(r − 1) ⩽ r−1
r

d and it satisfies one of the following conditions:

(a) k ⩽ 6.
(b) k > 6 and g ⩾ k2

4 .
(c) k > 6 and 2(r − 1) ⩾

√
k2 − 4g + k − 2.

2. (a) If r−1
r

d ⩽ g − 1 and satisfies all the following conditions:
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i. r − 1 ⩽ g−k+1
k−1 .

ii. r−1
r

d ⩽ g + 2(r − 1) + 1− k.
iii. r−1

r
d ⩾ g + (r − 1) + 1− k.

(b) If r−1
r

d ⩾ g − 1 and satisfies all the following conditions:
i. (r − 1) + 2 ⩽ k.

ii. r−1
r

d ⩽ g + 2(r − 1) + 1− k.
iii. (r − 1) ⩽

√
4g + 5k2 − 4k − 2k.

Then ML is semistable. Moreover, if there exists a proper subbundle S ⊆ ML with
µ(S) = µ(ML), then

■ h1(L) = 0.

■ s := rank(S) = r − 1.

■ d = g + r with r|g.

Proof. Using the conditions established in 1 and 2, along with Proposition 3.2.1, we
see from Proposition 3.2.2 that in both cases

deg(S∨)(s + 1) ⩾ s(g + s + 1).

Thus, we can follow the proof of [11, Lemma 4.1] to reach our conclusion. ■

Now we aim to compare the linear stability of the linear series (L, V ) (possibly com-
plete) with the slope-stability of MV,L.

Proposition 3.2.3. Let C be a general k-gonal curve of genus g > 2, with k non-
generic gonality, and let (L, V ) be a generated linear series of type (d, r + 1) over C.
Suppose that d ⩽ g+r and d ⩽ kr. If (r, d) satisfies one of the conditions of Proposition
3.2.2 then the linear (semi)stability of (L, V ) is equivalent to the slope-(semi)stability
of MV,L.

Proof. Let S ⊆ MV,L be a proper subbundle with µ(S) = µ(MV,L), by Corollary 3.2.1
and Proposition 3.2.2 the bundle S is stable (for complete and non-complete case,
respectively). Consider the Butler’s diagram of (L, V ) by S as in 1.1.1

0 // S //

��

W ⊗OC
//

��

FS
//

α

��

0

0 //MV,L
// V ⊗OC

// L // 0,

from Proposition 2.1.1, we get that W = H0(FS). Again, from Corollary 3.2.1 and
Proposition 3.2.2 follows that h = h1(L) = c and s = r − 1. Since W ⊆ V (with
V possibly equal to H0(L)) and the dimension of W is greater than s, it follows that
rank(FS) = 1 or rank(FS) = 2. Using that C is a k-gonal general curve and r, d satisfies
at least one of the conditions of Corollary 3.2.1 (for complete case) or Proposition 3.2.2
(for non-complete case), Proposition 2.1.3 holds. Then h0(det(FS)) = r and from the
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proof of Theorem 2.1.1, we conclude that FS is a line bundle, and the Butler’s diagram
of (L, V ) by S is

0 // S //

��

H0(F )⊗OC
//

��

FS
//

α

��

0

0 //MV,L
// V ⊗OC

// L // 0.

Now, in order to prove the main result of the proposition, recall that if MV,L is stable
then (L, V ) is linearly stable. Suppose that MV,L is strictly semistable and S ⊆ MV,L

is a subbundle with µ(S) = µ(MV,L). By the above computations, FS is of rank one
and this implies that (L, V ) is strictly linear semistable. ■

We provide concrete examples to exhibit the non-emptiness of the numerical bounds
on the rank r and degree d of the linear series (L, V ) in Proposition 3.2.2. We consider
specific values for the genus g and gonality k that satisfy the hypotheses of cases (1.)
and (2.) in the proposition. These examples will illustrate how the restrictions on
(r, d) ensure the existence of linear series (L, V ) that are linear semistable, with their
associated syzygy bundles MV,L being slope semistable on general k-gonal curves.

Example 3.2.1. Consider the moduli space of smooth projective curves of genus g =
15. Within this moduli space, we can examine non-generic values of k and construct
pairs of (r, d) that satisfies each condition of the Proposition 3.2.2.

■ A general curve C inM1
15,8 does admit an element (L, V ) ∈ G5

20(C) for which the
associated syzygy bundle MV,L is semistable. Specifically, the parameters g = 15,
k = 8, r = 5 and d = 20 satisfy the condition 1. in Proposition 3.2.2:

15 + 1− 8 = 8 ⩽
5− 1

5 20− 2(5− 1) = 8.

and since k > 6 and 2(5− 1) = 8 ⩾
√

64− 60 + 8− 2 = 8.

■ A general curve C in M1
15,6 admits an element (L, V ) ∈ G3

18(C) for which the
syzygy bundle MV,L is semistable. Here, the parameters g = 15, k = 6, r = 3
and d = 18 satisfy the condition 2. in Proposition 3.2.2, note that 3−1

3 18 = 12 <
14 = 15− 1 and we can verify the following inequality:

15 + 2 + 1− 6 = 12 ⩽
3− 1

3 18 = 12 ⩽ 15 + 2(2) + 1− 6 = 14.

The existence of values (g, k, r, d) that satisfy each of the specified conditions in Propo-
sition 3.2.2 can be examined by using computational tools. To facilitate this analysis,
Appendix A provides resources and examples that enhance the discussion in this chap-
ter.
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Chapter 4

Curves in K3 surfaces

In this chapter, we consider a pair (X, H) where X is a smooth K3 surface over C and
H is an hyperplane section of X such that

(∗∗) H2 divides H.D for all curve classes D on X

An example of such pairs is the case when H is an hyperplane section of X such
that Pic(X) ∼= Z.H. For a more detailed discussion of the stability conditions in
this chapter, please see Appendix B. Throughout this chapter, we will reference the
necessary theory to clarify the notation.
Let d, g ∈ Z with g > 1. The moduli space of H-Gieseker stable sheaves with Mukai
vector v = (0, H, d+1−g) is MH(v) (see B.0.1), the moduli space MH(v) parametrizes
one-dimensional sheaves F of Euler characteristic d + 1 − g where the support |F |
corresponds to a curve in the linear system |H|.
We consider the stability condition σβ,α associated to α, β ∈ R with α > 0. We study
the wall-crossing for the moduli space Mσβ,α

(v) (see B.0.3), with v = (0, H, d + 1− g)
as above. From Theorem B.0.4 we have Mσβ,α

(v) = MH(v) for α >> 0, and we want to
find the walls that bounds this chamber called the Gieseker-chamber, for wall-chamber
structure see B.0.7.
Consider β = 0. In this case Im(Z0,α(OX)) = 0, this means we have stability conditions
for

α > α0 =
√

2
H2 ,

for details see B.0.1. For these stability conditions, notice that OX [1] is an object in
the category Coh0(X) with

Im(Z0,α(OX [1])) = 0,

i.e. of slope µ0(OX [1]) = +∞ (see B.0.1), therefore it is automatically semistable.
Using Proposition B.0.3 OX [1] has no subobjects in Coh0(X) (see B.0.2), and so OX [1]
is stable for β = 0.

Lemma 4.0.1 ([5, Lemma 6.1]). For α > α0 and β = 0, we have an isomorphism
Mσ0,α(v) = MH(v) identifying the stable objects with stable sheaves.

In other words, there is no wall intersecting the line segment β = 0, α =
(

2
H2 ,∞

)
. The

interplay between Brill-Noether theory and wall-crossing theory is fundamental in this
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section. While Brill-Noether theory allows us to study properties of the Lazarsfeld-
Mukai sheaves FV,L associated to a linear series (L, V ), wall-crossing theory provides
the tools to analyze the stability of these sheaves when restricted to curves living on K3
surfaces. The conditions presented in Lemma 4.0.2 complement the result presented
in Lemma 4.0.1.

Lemma 4.0.2 ([5, Lemma 6.2]). There is a wall bounding the Gieseker-chamber where
Zβ,α(OX) aligns with Zβ,α(v). The sheaves L ∈Mσβ,α

(v) getting destabilised are exactly
those with h0(L) > 0, and the destabilising short exact sequence are given by

H0(L)⊗OX ↪→ L ↠ W (4.0.1)

for some object W that remains stable at the wall.

Proof. The locus where the central charges of all objects in 4.0.1 are aligned is the line
segment between v and v(OX). In Figure 4.1, we observe an arc of a circle ending at
(0, α0). Next, consider the path in the upper half-plane in Figure 4.1, which begins at
β = 0 and α >> 0, proceeds straight to the point (0, α0 + ε) a bit above (0, α0), and
then turns left until it hits the above mentioned semicircle. The visualization of walls
as lines clearly indicates that if this path were to encounter any other wall beforehand
to reach the semicircle, that wall would also intersects the straight line segment defined
by β = 0 and α ∈ (α0,∞), contradicting Lemma 4.0.1. Additionally, along this path,
the sheaf OX cannot be destabilized: for values of (β, α) close to (0, α0), we get that
|Zβ,α(OX)| << 1, making it the only stable object with that property.

Figure 4.1: Path to construct σ. [5, Figure 2]

Let σ = (Cohβ(X), Z) be the stability condition at the wall. In the abelian category of
σ̂-semistable objects with central charge aligned with Z(v), the object OX is a simple
object, hence the natural map H0(L)⊗OX → L must necessarily be an injective map,
and the quotient W must be semistable. It remains to show that W is stable. Notice
that Hom(W,OX) = 0 as W is a quotient of L. Moreover, Hom(OX , W ) = 0 follows
by applying Hom(OX , ·) to the short exact sequence

H0(L)⊗OX ↪→ L ↠ W.

Hence stability of the object W follows from the next lemma. ■

Lemma 4.0.3. Let σ be a stability condition on the wall constructed above. Let W
be an object of class v − tv(OX) for some t ∈ Z, and assume that W is σ-semistable.
Then, W is stable if and only if Hom(OX , W ) = 0 = Hom(W,OX).
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When L is globally generated, the object W in 4.0.1 is the shift FL[1] of the kernel
bundle FL of the evaluation map H0(L)⊗OX

ev−→ L, called the Lazarsfeld-Mukai bun-
dle. This result establishes the stability of the Lazarsfeld-Mukai bundle FL associated
to a complete linear series (L, H0(L)) on a curve C ∈ |H|. For a non-complete gen-
erated linear series (L, V ) on C ∈ |H|, we can construct the Lazarsfeld-Mukai bundle
associated to the evaluation map V ⊗OX

ev−→ L, and we have the the following,

Corollary 4.0.1. Suppose β < 0. If L is generated by V ∈ Gr(r + 1, H0(L)) then
4.0.1 have the form

V ⊗OX ↪→ L ↠ FV,L[1]

with FV,L[1] strictly-semi-stable on the wall and stable on the side of the wall where L
is stable.

Proof. First, notice that OX ⊗H0(L) ↪→ L ↠ W . If L is globally generated then the
evaluation map ev is surjective as a map in Coh(X) leading to the inclusion OX ⊗
H0(L) ↪→ L ↠ W , where W = FL[1] and W1 = FV,L[1]. Let ι : V → H0(L) be the
inclusion, from Lemma 4.0.3 Hom(W,OX) = 0 since W1 and W are quotient of L,
which implies Hom(W,OX) = Hom(W1,OX) = 0 as well. Consider the diagram

V ⊗OX
// L //W1

H0(L)⊗OX
//

ι⊗Id

OO

L

Id

OO

//W

OO

By applying Hom(OX , ·) we get

Hom(OX , V ⊗OX)
Hom(OX ,ι)
��

Hom(OX , L)oo

Hom(OX ,Id)
��

Hom(OX , W1)

��

oo

Hom(OX , H0(L)⊗OX) Hom(OX , L)oo Hom(OX , W )oo

Let us denote the dimension of dim(Hom(·)) by hom(·). By Theorem 4.0.2, we have
Hom(OX , W ) = 0 and hom(OX , H0(L)⊗OX) = h0(L) = hom(OX , L). Therefore,

hom(OX , W1) = h0(L)− dim(V ) = codimH0(L)(V ).

By Lemma 4.0.3, it follows that W1 is strictly semistable and it is stable at the same
side where L is stable. ■

Now that we have established the basic results for studying moduli spaces of stable ob-
jects with respect to a given stability condition, we aim to take advantage of these tools
to relate the stability of vector bundles to the stability of their restrictions to divisors.
By employing wall-crossing techniques, we are able to construct precise connections
between the (semi)stability of a vector bundle on a surface X and the (semi)stability
of its restriction to a curve C lying on X. This approach allows us to relate the stability
of linear series on curves to the stability of the associated syzygy bundles, which is the
main objective of this thesis.
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Cohomological conditions for the stability of MV,L and restriction theorem

4.1 Cohomological conditions for the stability of
MV,L and restriction theorem

In this section, we explore the relation among the stability of vector bundles on a K3
surface X and the stability of their restrictions to curves C inside X. Specifically, we
focus on Lazarsfeld-Mukai bundles FV,L associated to a generated linear series (L, V )
on C. By leveraging the results on stability conditions for sheaves on K3 surfaces
developed in the previous sections, we establish conditions under which the restriction
of FV,L to C remains stable.
We recall results of stability for restrictions from the literature, such as those appearing
in [18]. These results provide sufficient conditions to ensure that the restriction of a
stable bundle remains stable when restricted to a curve. By adapting and extending
these conditions to the specific setting of Lazarsfeld-Mukai bundles, we are able to
relate their stability to the stability of the associated syzygy bundles MV,L on the
curve C. The insights gained from this analysis are crucial to state the main results in
this thesis, which aim to connect the stability of linear series to the stability of syzygy
bundles. By understanding the interplay between the geometry of K3 surfaces and
the stability of restrictions, we aim to use the stability of Lazarsfeld-Mukai bundles to
draw conclusions about the stability of syzygy bundles.
Let X be a smooth complex projective variety of dimension n ⩾ 2 with an ample
divisor H. For a µ-stable coherent sheaf E of positive rank on X, we have

∆̃(E) =
(

ch1(E).Hn−1

ch0(E)Hn

)2

− 2ch2(E).Hn−2

ch0(E)Hn

■ µmax(E) = max{µ(F ) : F is a subsheaf of E with µ(F ) < µ(E)}

■ µmin(E) = min{µ(F ′) : F ′ is a proper quoatient sheaf of E}

and δ(E) = min{µmin(E)− µ(E), µ(E)− µmax(E)}.

Theorem 4.1.1 ([18, Theorem 1.1]). Let E be a µ-stable reflexive sheaf on X of rank
r > 0. The restricted sheaf E|D for any irreducible divisor D ∈ |mH| is µ-semistable
on D if

m ⩾
r + 2√
r + 1

√
∆̃(E) and m

2 +
√

m2

4 − ∆̃(E) ⩾ ∆̃(E)
δ(E) .

Moreover, E|D is µ-stable if the inequalities are both strict.

When r > 1, then δ(E) ⩾ 1
Hnr(r−1) and we can restrict the conditions as:

Proposition 4.1.1 ([18, Proposition 4.6]). Let E be a µ-stable reflexive sheaf as above
with rank r > 1. The restricted sheaf E|D for any irreducible divisor D ∈ |mH| is
µ-(semi)stable on D if

m > (⩾)r(r − 1)∆̃(E) + 1
r(r − 1) . (4.1.1)
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For a smooth K3 surface X, a smooth curve C ⊆ X and a generated linear series
(L, V ) ∈ Gr

d(C), the Lazarsfeld-Mukai bundle is defined via the following elementary
modification on X

0→ FC,V,L → V ⊗OS → L→ 0
For short we write FV,L when the context is understood. Now, let C ∈ |H| be a smooth
curve with a (L, V ) ∈ Gr

d(C) a generated linear series gr
d on C such that d ⩽ g − 1,

and consider the corresponding Lazarsfeld-Mukai bundle FV,L on X. Let’s compute
the condition 4.1.1 for this case: First observe that ch(FV,L) = (r + 1, H, g − 1 − d),
n = 2 and

∆̃(FV,L) =
(

H.H1

r.H2

)2

− 2(g − 1− d).H0

(r + 1)H2 = 1
(r + 1)2 − 2 g − 1− d

(r + 1)(2g − 2)

= 1
r + 1

(
d

g − 1 −
r

r + 1

)
,

by substituting the right side of 4.1.1 for m = 1,

r(r + 1) · 1
r + 1

(
d

g − 1 −
r

r + 1

)
+ r

r + 1 = rd

g − 1 −
r2

r + 1 + 1
r(r + 1)

= rd

g − 1 + 1− r3

r(r + 1)

Since d ⩽ g − 1 then d
g−1r ⩽ r, then for r ⩾ 2,

rd

g − 1 + 1− r3

r(r + 1) ⩽ r + 1− r3

r(r + 1)

= r3 + r2 + 1− r3

r(r + 1)

= r2 + 1
r2 + r

< 1.

We conclude that the restriction of the bundle FV,L to the curve C, denoted by FV,L|C ,
is stable. The following short exact sequence relates FV,L|C with MV,L (see [1]). We
denote K−1

C L for the line bundle L⊗K−1
C :

0→ K−1
C L→ FV,L|C →MV,L → 0

Proposition 4.1.2. We have the following correspondence between the subbundles of
MV,L and the subbundles of FV,L|C:

{S ⊆MV,L} ⇐⇒
{
S ′ ⊆ FV,L|C : K−1

C L ⊆ S ′
}

Proof. (⇒) Taking S ⊆MV,L, consider the following diagram:

K−1
C L

=
��

S

ι

��
0 // K−1

C L // FV,L|C //MV,L
// 0
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Where ι is the inclusion, we can complete the diagram by using the pullback of
the diagram FV,L|C →MV,L

ι←− S in the abelian category Coh(C) (see [29, Lemma
7.29] for the case of modules, the proof is analogue for abelian categories), called
S ′ and we obtain:

0 // K−1
C L

=
��

// S ′

��

// S

ι

��

// 0

0 // K−1
C L // FV,L|C //MV,L

// 0

by uniqueness of the pullback, the correspondence S 7→ (K−1
C ↪→ S ′) is injective.

(⇐) Taking S ′ ⊆ FV,L|C with K−1
C L ↪→ S ′, consider S as the quotient S ′/K−1

C , since
S ′ ↪→ FV,L|C then S ↪→MV,L and the following diagram is commutative

0 // K−1
C L

=
��

// S ′

��

// S

��

// 0

0 // K−1
C L // FV,L|C //MV,L

// 0

■

Consider the following diagram under the correspondence above, with the snake’s
lemma we have that the last row is an isomorphism.

0

��

0

��
0 // K−1

C L

=
��

// S ′

��

// S

��

// 0

0 // K−1
C L // FV,L|C //

��

MV,L
//

��

0

FV,L|C/S ′ = //

��

MV,L/S

��
0 0

(4.1.2)

From now on we denote by Q the quotient MV,L/S or equivalently FV,L|C/S ′. Given
the relation between the bundles MV,L and FV,L|C , we aim to take advantage of this
connection and the fact that the restriction of FV,L|C is stable to construct conditions
under which this stability implies the stability of MV,L. We recall a result that connects
the stability of a stable vector bundle E with the global sections of the elements that
appear in a short exact sequence involving E.

Lemma 4.1.1 ([30, Lemma 1.1]). Let E be a slope-stable vector bundle. Assume that
we have an exact sequence

0→ E ′ → E → E ′′ → 0.

Then h0((E ′′)∨ ⊗ E ′) = 0.
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This result allows us to conclude that in the case when d ⩽ g−1 then H0(Q∨⊗S ′) = 0
and H0(M∨

V,L ⊗K−1
C L) = 0, by considering the exact sequences presented in diagram

4.1.2 and the stability of FV.L|C in this case.
Lets recall that we consider polarized K3 surfaces (X, H) that satisfy the next property:

(∗∗) H2 divides H.D for all curve classes D on X

Theorem 4.1.2. Let (X, H) be a polarized K3 surface satisfying property (∗∗) and
consider C ∈ |H| a curve of genus g > 2, let (L, V ) be a generated linear series of type
(d, r + 1) over C, with 1 < r < d ⩽ min{g − 1, kr} where k is the gonality of C. If
(L, V ) is linearly stable then MV,L is slope-stable.

Proof. Let FV,L the Lazarsfeld-Mukai bundle associated to (L, V ). We recall that with
our hyphotesis the restriction to C, FV,L|C , is a slope-stable bundle. Suposse that MV,L

is not slope-stable and let S be a slope-stable maximal destabilizing subbundle of MV,L.
We denote by s and dS the rank and degree of the bundle S, respectively.
Since S is slope-stable with µ(S) ⩾ µ(MV,L) then −dS

rS
⩽ d

r
, and d ⩽ g − 1. We can

compare the slopes µ(FV,L|C) and µ(S), given that µ(FV,L|C) = −2g−2
r+1 ,

µ(FV,L|C)− µ(S) = −2g − 2
r + 1 −

dS

rS

⩽ −2g − 2
r + 1 + d

r

⩽ −2g − 2
r + 1 + g − 1

r

= g − 1
r
− 2

r + 1(g − 1)

= (g − 1) 1
r(r + 1)(r + 1− 2r)

= g − 1
r(r + 1)(1− r)

< 0.

Thus, we conclude that µ(FV,L|C) < µ(S), which implies that Hom(S, FV,L|C) = 0, or
equivalently, H0(S∨ ⊗ FV,L|C) = 0.
Next, using the short exact sequence 0 → S ′ → FV,L|C → Q → 0 and that FV,L|C is
slope-stable, from Lemma 4.1.1 we obtain H0(S ′ ⊗ Q∨) = 0 and H0(S ′ ⊗M∨

V,L) ↪→
H0(S ′ ⊗ S∨), where this space satisfies H0(S ′ ⊗ S∨) ↪→ H0(FV,L|C ⊗ S∨).
We aim to establish conditions under which the space H0(S ′ ⊗M∨

V,L) is non-zero. By
Serre duality, H0(S ′ ⊗M∨

V,L) ∼= H1(MV,L ⊗ (S ′)∨ ⊗KC)∨. To compute the dimension
of this space we use [1, Theorem 2.28], for which we aim to compute H1(MV,L ⊗
(S ′)∨ ⊗ KC ⊗ L). Additionally, from Serre duality H1(MV,L ⊗ (S ′)∨ ⊗ KC ⊗ L) ∼=
H0(M∨

V,L ⊗ S ′ ⊗ L−1)∨.

Claim: H0(M∨
V,L ⊗ S ′ ⊗ L−1) = 0.
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Proof of Claim: If H0(M∨
V,LS ′ ⊗ L−1) ̸= 0, then L ↪→ M∨

V,L ⊗ S ′, or equivalently,
r + 1 < h0(L) ⩽ h0(M∨

V,L ⊗ S ′). Now, consider the short exact sequence obtained by
twisting the first exact row of diagram 4.1.2 by S∨

0→ K−1
C L⊗ S∨ → S ′ ⊗ S∨ → S ⊗ S∨ → 0.

Since S is slope-stable and K−1
C L is a line bundle, we have that K−1

C L ⊗ S∨ is slope-
stable with degree

deg(K−1
C L⊗S∨) = rS(d+2−2g)−dS = rS(d+1−g)+rS(1−g)−dS < rS(1−g)−dS < 0.

Therefore, h0(K−1
C L⊗ S∨) = 0 and h0(S ′ ⊗ S∨) ⩽ h0(S ⊗ S∨) = 1 by stability of S.

On the other hand, by dualizing the right exact column of diagram 4.1.2 and twisting
by S ′,

0→ S ′ ⊗Q∨ → S ′ ⊗M∨
V,L → S ′ ⊗ S ′ ⊗ S∨ → 0.

Since FV,L|C is slope-stable, from Lemma 4.1.1 we get h0(S ′ ⊗ Q∨) = 0 and h0(S ′ ⊗
M∨

V,L) ⩽ h0(S ′ ⊗ S∨) ⩽ 1, which leads to a contradiction, since we assumed that
h0(M∨

V,L ⊗ S ′) > r + 1. Therefore, we conclude that h0(M∨
V,L ⊗ S ′ ⊗ L−1) = 0. □

Since H0(M∨
V,L⊗S ′⊗L−1) = 0 and H1(MV,L⊗(S ′)∨⊗KC⊗L) ∼= H0(M∨

V,L⊗S ′⊗L−1)∨,
it follows that H1(MV,L ⊗ (S ′)∨ ⊗KC ⊗ L) = 0. From [1, Theorem 2.28], we conclude
that

H0(S ′ ⊗M∨
V,L)∨ ∼= H1(MV,L ⊗ (S ′)∨ ⊗KC) ∼= Kr−1,2(C, MV,L ⊗ (S ′)∨ ⊗KC , L, V ).

The latter space is isomorphich to (see [1]):

coker

(
r∧

V ⊗H0(MV,L ⊗ (S′)∨ ⊗KC ⊗ L)→ H0
(

MV,L ⊗ (S′)∨ ⊗KC ⊗
r−1∧

MV,L ⊗ L2
))

.

(4.1.3)

To compute the dimension of this vector space, we use the fact that M∨
V,L
∼=
∧r−1 MV,L⊗

L and apply Riemann-Roch formula for the bundles MV,L⊗ (S ′)∨⊗KC⊗L and MV,L⊗
(S ′)∨⊗KC⊗

∧r−1 MV,L⊗L2 to compute the Euler characteristic of this bundles, called
χ1 and χ2 respectively. We get

χ1 = r(−d− dS + 2g − 2) + (rS + 1)(−d) + r(rS + 1)(d + g − 1)
χ2 = r2(−d− dS + 2g − 2) + r2(rS + 1)(d + g − 1).

To simplify these expressions, we compute the dimensions of the first cohomology space
of both vector bundles. Denote by h1 the dimension

dimCH1(MV,L ⊗ (S ′)∨ ⊗KC ⊗ L).

From Serre duality, h1 = h0(S ′ ⊗M∨
V,L ⊗ L−1) and from our previous claim, we know

that h1 = 0 and χ1 = h0(MV,L⊗ (S ′)∨⊗KC ⊗L). For the second vector bundle, let h2
denote the dimension

dimCH1(MV,L ⊗ (S ′)∨ ⊗KC ⊗
r−1∧

MV,L ⊗ L2).
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From Serre duality, h2 = h0(S ′ ⊗ MV,L ⊗ M∨
V,L ⊗ L−1). Consider the second exact

row of the Butler’s diagram of (L, V ) by S, twisting by S ′ ⊗M∨
V,L ⊗ L−1 and taking

cohomology, we obtain the exact sequence

0→ H0(MV,L ⊗ S ′ ⊗M∨
V,L ⊗ L−1)→ V ⊗H0(S ′ ⊗M∨

V,L ⊗ L−1)→ · · ·

Since the second term of this sequence is zero, it follows that h0(S ′⊗MV,L⊗M∨
V,L⊗L−1)

vanishes as well. Thus, we conclude that h2 = 0 and χ2 = h0(MV,L ⊗ (S ′)∨ ⊗ KC ⊗∧r−1 MV,L ⊗ L2). Now, the vector space in 4.1.3 is not zero if (r + 1)χ1 < χ2 and this
is equivalent to

r(rS + 1)d + r(d + dS − (2g − 2)) + (rS + 1)d− r(rS + 1)(d + g − 1) > 0 (4.1.4)

Notice that the expression in the left side of 4.1.4 is greater than

r(d + dS − (2g − 2)) + (rS + 1)d− r(rS + 1)(d + g − 1). (4.1.5)

Now, we analize the last expression. Since S ⊆ MV,L is a slope-stable maximal desta-
bilizing subbundle, then 0 ⩽ dS + d, and since we are considering 0 < r < d, we have
that expression 4.1.5 is greater than

−(2g − 2)r + r(rS + 1) + r(rS + 1)(−d− g + 1) (4.1.6)

Besides that, since we are considering d ⩽ g− 1, we know that −d ⩾ −(g− 1) and the
expression in 4.1.6 is greater or equal than

−(2g−2)r +r(rS +1)+r(rS +1)(2−2g) = (2g−2)(−r−r(rS +1))+r(rS +1) (4.1.7)

Since rS + 1 ⩽ r then −(rS + 1) ⩾ −r and the expression 4.1.7 is greater or equal than

(2g − 2)(−r + r2) + r(rS + 1) (4.1.8)

From the hypothesis of r ⩾ rS + 1 > 1 and g > 2 the expression 4.1.8 is always
positive. Then h0(S ′ ⊗M∨

V,L) ̸= 0 and this implies that h0(S∨ ⊗ FV,L|C) ̸= 0 which is
a contradiction, then MV,L has to be slope-stable. ■

In conclusion, Theorem 4.1.2 establishes a positive answer to the Mistretta-Stoppino
conjecture for generated linear series (L, V ) on smooth curves on K3 surfaces for
d ⩽ min{g − 1, kr}, that is, under these conditions we have that linear stability of
a pair (L, V ) is equivalent to the slope-stability of the associated syzygy bundle MV,L.
We highlight that this proposition does not contradict the counterexample presented in
Theorem 1.2.2 of Castorena, Mistretta, and Torres-López in [10]. Their counterexample
involves a plane curve of degree 7, which lies outside the framework of the Martens the-
orem established in [24, Theorem 3.1]. This theorem asserts that a complex projective
K3 surface cannot contain a curve isomorphic to a smooth plane curve of degree ⩾ 7.
Consequently, the counterexample provided by Castorena, Mistretta and Torres-López,
which relies on a plane curve of degree 7, does not apply to the context considered in
Theorem 4.1.2. This distinction underscores the significance of the specific hypotheses
and geometric contexts in which positive or negative results relating linear stability of
linear series to slope stability of syzygy bundles can be derived.
Final Remark. As the reader can check, if the restriction FV,L|C is slope-stable for
g−1 ⩽ d ⩽ 2g−1, then the proof of Proposition 4.1.2 can be adapted modifying some
numerical inequalities to get the slope-stability of MV,L.
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Appendix A

Computational tools

Let C be a general k-gonal curve of genus g > 2, consider (L, V ) ∈ Gr
d(C) a generated

linear series over C.
In this appendix, we present a code in [32] to list the 4-plets (g, k, d, r) for which the
general k-gonal curve C of genus g, the pair (r, d) satisfies the Proposition 3.2.3. We
only consider non-generic values of k.
All examples on this appendix uses the following code:

1 def find_solutions (g):
2 """
3 Finds all the solutions (g, k, d, r) that satisfy the given

conditions for a specific value of g.
4
5 Args:
6 g (int): The value of g to find solutions for.
7
8 Returns :
9 list: A list of tuples , where each tuple represents a solution

in the format (g, k, d, r, condition ).
10 """
11 solutions = []
12
13 # Iterate over the possible values of r, d, and k
14 for r in range (1, g+1):
15 for k in range (2, int ((g+3) /2)):
16 for d in range (1, g+r+1):
17 # Check if the triple (r, d, k) satisfies the first

set of inequalities
18 if (d <= g+r and d <= k*r and g+1-k <= (r -1)*d/r - 2*(

r -1)):
19 if (k <7):
20 solutions . append ((g,k,d,r, " Condition 1"))
21 if (k >6):
22 if (4*g > pow(k ,2)):
23 solutions . append ((g,k,d,r, " Condition 1"))
24 if (2*(r -1) +2-k >= pow(pow(k ,2) -4*g ,0.5)):
25 solutions . append ((g,k,d,r, " Condition 1"))
26
27 # Check if the triple (r, d, k) satisfies the second

set of inequalities
28 if (d*(r -1)/r <= g -1):
29 if (d <= g+r and d <= k*r):
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30 if (r-1 <= (g-k+1) /(k -1) and g+r-k <= (r -1)*d/
r and (r -1)*d/r <= g+2*(r -1) +1-k):

31 solutions . append ((g, k, d, r, " Condition 2
"))

32 else:
33 if (g-1 <= (r -1)*d/r):
34 if (d <= g+r and d <= k*r):
35 if (r+1 <= k and (r -1)*d/r <= g+2*(r -1) +1-

k and r+1 +2*k <= pow (4*g + 5*k*k - 4*k ,0.5)):
36 solutions . append ((g, k, d, r, "

Condition 2"))
37 return solutions
38
39 # Example usage
40 g = 15
41 solutions = find_solutions (g)
42
43 print(f"There are {len( solutions )} solutions for g = {g}, denoted by (

g,k,d,r, Number of condition that satisfy ) the solutions are:")
44 for solution in solutions :
45 print( solution )

Listing A.1: Code example for genus 15

A.0.1 Small genus
For genus 3 to 8, there is no 4-plets that satisfies the Proposition 3.2.3, for genus 9,
the first 4-plet that satisfy is:

1 There are 1 solutions for g = 9, denoted by (g,k,d,r, Number of
condition that satisfy ) the solutions are:

2 (9, 4, 12, 3, ’Condition 2’)

The second 4-plet that satisfy the conditions for Proposition 3.2.3 appear in genus 12:
1 There are 1 solutions for g = 12, denoted by (g,k,d,r, Number of

condition that satisfy ) the solutions are:
2 (12, 5, 15, 3, ’Condition 2’)

Note that for g < 15, there aren’t 4-plets that satisfies the Condition 1 in Proposition
3.2.3.

A.0.2 Genus for condition 1
For genus 15 is the first genus where appear a 4-plet that satisfy the condition 1, said:

1 There are 2 solutions for g = 15, denoted by (g,k,d,r, Number of
condition that satisfy ) the solutions are:

2 (15, 6, 18, 3, ’Condition 2’)
3 (15, 8, 20, 5, ’Condition 1’)

Note that the number of solutions in each genus g is not an increasing function, for
instance, the number of solutions for genus from 15 to 30 are 2, 2, 0, 2, 0 , 2, 2, 0, 0,
4, 2, 0, 2, 2, 0 and 4 respectively.
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Appendix B

Bridgeland stability conditions

In this appendix, we examine the fundamental concepts of stability conditions on the
bounded derived category Db(X) of coherent sheaves on a smooth projective variety
X. The translation functor on Db(X) denoted by [1].
A key ingredient in our analysis is the construction of a certain abelian subcategory
Cohβ(X) within Db(X), which consists of two-term complexes. This abelian category
Cohβ(X) depends on the choice of a real parameter β.
To establish the necessary foundations for working with Cohβ(X), first we need to
introduce some basic notions from homological algebra and the theory of stability
conditions. These concepts provide the framework for our subsequent results of how
stability conditions on Db(X) can be utilized to study the stability of vector bundles
and their restrictions on curves.

B.0.1 The heart of coherent sheaves
We recall the slope of a coherent sheaf E shifted by β:

µβ(E) : =


H.c1(E)
rk(E) − β if rk(E) > 0

+∞ otherwise
(B.0.1)

Definition B.0.1. We say that E ∈ Coh(X) is µβ-(semi)stable if for all subsheaves
A ⊊ E, we have µβ(A) < (⩽)µβ(E/A)
The introduction of the slope function µβ generalizes the classical notion of slope that
depends solely on the hyperplane section H. By definition, when β = 0, the slope
µβ reduces to the standard slope on the abelian category Coh(X). This enrichment
of the category of coherent sheaves Coh(X) with the parameter β ∈ R allows us to
establish a broader set of properties that extend the well-known results obtained using
the classical slope. These generalized properties play a crucial role in our analysis of
the stability conditions on the K3 surface X and the associated syzygy bundles.
Proposition B.0.1. ■ Every sheaf E has a (unique and functorial) Harder-Narasimhan

filtration (HN-filtration):
0 = E0 ⊆ E1 ⊆ E2 ⊆ ... ⊆ Em = E

of coherent sheaves where Ei/Ei+1 is µβ-semistable for 1 ⩽ i ⩽ m, and with
µ+

β (E) : = µβ(E1/E0) > µβ(E2/E1) > ... > µβ(Em/Em−1) =: µ−
β (E)
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■ If E, F are slope-semistable with µβ(E) > µβ(F ), then Hom(E, F ) = 0

We use the existence of Harder-Narasimhan filtrations for µβ to construct a specific
torsion pair that decomposes the abelian category into two pieces. This torsion pair,
denoted by (T β, F β), is crucial for our analysis as it allows us to study the stability
of objects within the category. By exploiting the structure of the torsion pair, we
can relate the existence of Harder-Narasimhan filtrations to the stability properties of
objects in the category, providing a deeper understanding of the stability conditions.

T β = {E ∈ Coh(X) : µ−
β (E) > 0}

= {E ∈ Coh(X) : all HN-factors of E satisfy µβ(·) > 0}
= {E ∈ Coh(X) : all quotients E → Q→ 0 satisfy µβ(Q) > 0}
= ⟨E ∈ Coh(X) : E is slope-stable with µβ(E) > 0⟩

F β = {E ∈ Coh(X) : µ+
β (E) ⩽ 0}

= {E ∈ Coh(X) : all HN-factors of E satisfy µβ(·) ⩽ 0}
= {E ∈ Coh(X) : all subobjects 0→ A→ E satisfy µβ(A) ⩽ 0}
= ⟨E ∈ Coh(X) : E is slope-stable with µβ(E) ⩽ 0⟩

Here, the notation ⟨·⟩ denotes the smallest subcategory of Coh(X) that includes the
given objects and is closed under extensions.

Remark B.0.1. The pair (T β, F β) is a torsion pair, i.e:

■ For T ∈ T β, F ∈ F β, we have Hom(T, F ) = 0

■ Each E ∈ Coh(X) fits into a (unique and functorial) short exact sequence

0→ T (E)→ E → F (E)→ 0

with T (E) ∈ T β, F (E) ∈ F β

With the aid of a torsion pair, we can use homological algebra tools, such as tilting, to
construct a new abelian subcategory A of the bounded derived category Db(X). This
abelian subcategory A, known as the heart of the torsion pair, captures the essential
information of the objects in Db(X) or their translations. An important property of
this heart A is that its associated Grothendieck group coincides with the Grothendieck
group of the entire derived category Db(X).

Proposition B.0.2 ([20, Corollary 2.2]). The following (equivalent) characterization
define an abelian subcategory of Db(X):

Cohβ(X) = ⟨T β, F β[1]⟩
= {E ∈ Db(X) : H0(E) ∈ T β, H−1(E) ∈ F β, H i(E) = 0 for i ̸= 0, 1}

= {E ∈ Db(X) : E ∼= (F−1
d−→ F0), ker(d) ∈ F β, coker(d) ∈ T β}

39



Since we aim to leverage the Grothendieck group of the heart A = Cohβ(X), which
coincides with the Grothendieck group of the bounded derived category Db(X), we
need to study the short exact sequences within the abelian category A. These short
exact sequences in A correspond precisely to the exact triangles in Db(X) of the form

A
a−→ E

b−→ B → A[1]

where all the objects A, E and B belong to the heart A, using the two-terms structure
of A we have that the short exact sequence can be expressed as follows:

A :
a

��

A−1

a−1

��

dA // A0

a0
��

E :
b
��

E−1

b−1
��

dE // E0

b0
��

B : B−1
dB // B0

with all squares commutative, columns exact with ai injective and bi surjective.
Since we have T β ↪→ Cohβ(X) as T 7→ T· = (0 0−→ T ) ∈ Cohβ(X), if F ∈ F β then

F· : ...
0 // 0 0 // F︸︷︷︸

index 0

0 // 0 0 // ... ∈ Db(X)

F·[1] : ...
0 // F︸︷︷︸

index −1

0 // 0 0 // 0 // ... ∈ Db(X)

and F 7→ F·[1] = (F 0−→ 0) ∈ Cohβ(X) where F 7→ F· is the same morphism that
before, that is, the injection in the index 0.
In particular, every object E ∈ Cohβ(X) fits into a short exact sequence

H−1(E)· ↪→ E ↠ H0(E)·

The isomorphism class of E ∈ Cohβ(X) is determined by the extension class

Ext1
Db(X)(H0(E)·, H−1(E)·[1])

that is equivalent to Ext2
Coh(X)(H0(E), H−1(E)) as:

H−1(E)·[1] :

��

H−1(E)

��

0 // 0
0
��

E :

��

E−1

0
��

d // E0

��
H0(E)· : 0 0 // H0(E)

Now, since we can see the objects E of T β as objects in Cohβ(X), denoted as E·,
we want to study a characterization of the subobjects A· ↪→ E· in Cohβ(X) using
properties of the abelian category Coh(X).
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Proposition B.0.3 ([5, Proposition 2.4]). Let E ∈ T β and E· considered as an object
of Cohβ(X). To give a subobject A· ↪→ E· of E respect to the category Cohβ(X) is
equivalent of giving a sheaf A ∈ T β with a map f : A→ E whose kernel (as a map in
Coh(X)) satisfies ker(f) ∈ F β.

In order to reply the additive property of deg(·) and rank(·) under the short exact
sequences, we define the Grothendieck group, denoted as K(A), for an abelian category
A. This group is constructed as the quotient of the free abelian group generated by
the objects of A, under the relation [B] = [B′] + [B′′] for any short exact sequence of
the form 0→ B′ → B → B′′ → 0 in A. For example, if

0→ OX(−1)→ OX → OC → 0

is a short exact sequence in Coh(X), where C is a curve on the surface X, then
[OX ] = [OX(−1)] + [OC ] in K(X). This relation reflects the additivity of the degree
and rank under short exact sequences.
In our case, for the abelian category A = Coh(X) the Grothendieck group denoted as
K(X) := K(Coh(X)) is generated by the classes of vector bundles [F ] on the variety
X, modulo the relation defined above. This group, K(X), provides a convenient way
to encode numerical invariants of coherent sheaves, such as the rank and degree, in a
linear algebraic setting.
We fix a finite rank lattice Λ (that is, a free abelian group with finite rank) and a
surjective group homomorphism ν : K(A) → Λ. This allows us to define numerical
invariants of objects in Coh(X) by considering their images under ν. For instance, the
rank and degree of a vector bundle F can be recovered as ν([F ]) = (rank(F ), deg(F )).

B.0.2 Stability conditions on abelian categories
In this subsection, we explore the fundamental concepts related to stability conditions
on abelian categories. The formal definition of stability conditions was introduced by
Bridgeland in [6].
Bridgeland’s framework provides a powerful tool for studying the structure of the
bounded derived category Db(X) of a variety X. Central to this approach is the
notion of a stability condition, which endows the objects in Db(X) with a notion of
(semi)stability. These stability conditions are parametrized by a manifold, known as
the stability manifold, which exhibits a rich wall and chamber structure.
For the specific case of K3 surfaces, we focus on a 2-dimensional family of stability
conditions. This specialized setting allows us to gain a more refined understanding of
the structure of the walls and chambers in the stability manifold.
The key ideas and properties of Bridgeland stability conditions on abelian categories
will be introduced in the following subsection, laying the groundwork for our subsequent
results.

Definition B.0.2. A weak stability function on an abelian category A is a group ho-
momorphism Z : Λ→ C such that for any E ∈ A,

Z(ν(E)) = m(ν(E))exp(iπϕ(ν(E)))

where m(ν(E)) ⩾ 0 and 0 < ϕ(ν(E)) ⩽ 1
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If for any non-trivial object E, we have Z(ν(E)) ̸= 0, the homomorphism Z is called
a stability function. If Z(ν(E)) = 0 for a non-trivial object E ∈ A, then we define
ϕ(ν(E)) = 1. The real number ϕ(ν(E)) ∈ (0, 1] is called the phase of the object E.
For abuse notations we write Z(E) and ϕ(E) instead of Z(ν(E)) and ϕ(ν(E)).

Definition B.0.3. A non-zero object E ∈ A is said to be Z-(semi)stable when Z is a
stability function if

0 ̸= E ′ ⊊ E =⇒ ϕ(E ′) < ϕ(E)(⩽ resp.)

We say that the stability function Z satisfies the Harder-Narasimhan property if every
non-zero object E ∈ A has a finite filtration

0 = E0 ⊊ E1 ⊊ ... ⊊ En−1 ⊊ En = E

whose factors Fi = Ei/Ei+1 are Z-semistable and

ϕ+(E) = ϕ(F1) > ϕ(F2) > ... > ϕ(Fn) = ϕ−(E)

Definition B.0.4. Pick a norm || · || on ΛR = Λ ⊗ R. A (weak) stability function Z
on an abelian category A satisfies the support property if there exists a constant C > 0
such that for all Z-semistable objects 0 ̸= E, we have

||ν(E)|| ⩽ C|Z(ν(E))|

The support property plays a crucial role in endowing the set of stability functions
with a geometric structure. By comparing stability functions to norms in an Euclidean
space, the support property allows us to define a metric and topology on the space of
stability functions on an abelian category A.
Building upon this foundation, we can extend the notion of a stability function from
abelian categories to the bounded derived category Db(X). The key idea is to leverage
the concept of the heart A of a t-structure. Since the heart A and the entire derived
category Db(X) share the same Grothendieck group, we can define a stability function
on Db(X) that restricts to a stability function on A. This extension allows us to study
the stability of complexes in Db(X) using the same framework as for objects in the
abelian category A.

Definition B.0.5. A (weak) stability condition on the bounded derived category Db(X) =
Db(Coh(X)) is a pair v = (Z,A) where A is the heart of a bounded t-structure on
Db(X) and Z is a (weak) stability function on the abelian category A which satisfies
the Harder-Narasimhan property and the support property.

If v = (Z,A) is a stability condition on Db(X) an object E ∈ Db(X) is said to be
v-(semi)stable if a shift E[k] is contained in the abelian category A and the object
E[k] is (semi)-stable with respect to the stability function Z.
The definition of stability conditions on a triangulated category, such as the bounded
derived category Db(X), relies crucially on the concept of the heart of a t-structure.
This abelian subcategory A plays a central role in Bridgeland’s framework, as it pro-
vides the appropriate setting for defining a stability function and the associated notion
of (semi)stability.
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The construction of the heart A is not a trivial task and often involves the use of
homological algebra tools, such as tilting. By performing a tilting procedure, we can
produce new hearts of t-structures that exhibit different properties and allow for a
more refined analysis of the stability conditions.
Furthermore, the concept of a slicing is intimately connected to the heart of a t-
structure. A slicing is a parametrization of the subcategories of the triangulated cat-
egory using the real numbers. This parametrization enables us to consider families of
objects that belong to specific subcategories within given intervals. These families of
objects are crucial for the definition and study of stability conditions on Db(X).

Definition B.0.6. A slicing P of a triangulated category D consist of full additive
subcategories P (ϕ) for each ϕ ∈ R satisfying the following axioms:

1. ∀ϕ ∈ R, P (ϕ + 1) = P (ϕ)[1]

2. If ϕ1 > ϕ2 and Ai ∈ P (ϕi) then HomD(A1, A2) = 0

3. for each non-zero object E ∈ D there is a finite sequence of real numbers

ϕ+(E) = ϕ1 > ϕ2 > ... > ϕn = ϕ−(E)

and a collection of triangles

0 = E0 // E1 //

~~

E2

}}

// ... // En−1 // En

~~
F1

cc

F2

``

Fn

bb

with Fi ∈ P (ϕi) for all i

Any weak stability condition v = (Z,A) defines a slicing Pv (which depends of v)
of Db(X) as follows: for each ϕ ∈ (0, 1], let Pv(ϕ) be the full additive subcategory of
Db(X) of semistable objects with phase ϕ, together with 0. The part 1 of the Definition
B.0.6 determines Pv(ϕ) for all ϕ ∈ R. Then, to refer to a stability condition ν, we can
use the pair (Z,A) where A is the hearth of a bounded t-structure on Db(X) or the
pair (Z, Pν) where Pν is a slicing of Db(X).

Theorem B.0.1 ([7, Lemma 6.2]). For each β, α ∈ R with α > 0, considerer the pair
σβ,α = (Zβ,α, Cohβ(X)) with Cohβ(X) as below and with Zβ,α : K(Db(X))→ C defined
by:

Zβ,α(E) = α2H2 − b2H2

2 v0(E) + βHv1(E)− v2(E) + iαH(v1(E)− βHrk(E))

= ⟨exp(iαH + βH), v(E)⟩
= ⟨exp(iαH + βH), (ch0(E), ch1(E), ch2(E) + ch0(E)⟩

This pair defines a Bridgeland stability condition on Db(X) if Re(Zβ,α(δ)) > 0 for all
roots δ ∈ H∗

alg(X;Z) of the form (r, rβ, s) with r > 0 and s ∈ Z arbitrary; in particular,
this holds for α2H2 ⩾ 2.
Moreover, the family of stability conditions σβ,α varies continuously as (β, α) vary in
R× R>0.
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In order to explain the notation we introduce the Mukai vector of an object E.
The Mukai vector of an object E ∈ Db(X) given by

v(E) = (v0(E), v1(E), v2(E)) = (ch0(E), ch1(E), ch2(E) + ch0(E))

lies in the algebraic cohomology H∗
alg(X;Z). The pairing ⟨ , ⟩ is the Mukai pairing

⟨v(E), v(F )⟩ = −χ(E, F ) = v1(E)v1(F )− v0(E)v2(F )− v2(E)v0(F )

For each sheaf E, we have Im(Zβ,α(E)) ⩾ 0 if and only if µβ(E) ⩾ 0. And Zβ,α(F [1]) =
−Zβ,α(F ).
Let Stab(X) be the set of stability conditions of Db(X) (with respect to the lattice Λ
and the vector v). This set can be enriched with a topology as the coarsest topology
such that for any E ∈ Db(X) the maps (Z,A) 7→ Z, (Z,A) 7→ ϕ+(E) and (Z,A) 7→
ϕ−(E) are continuous.

Theorem B.0.2 ([6, Theorem 1.2]). The map Z : Stab(X) → Hom(Λ,C) given by
(A, Z) 7→ Z is a local homeomorphism. In particular, Stab(X) is a complex manifold
of dimension rk(Λ).

We can study the behavior of an object E ∈ Coh(X) when we let vary the stability
condition in Stab(X). We want to study the sets of stability conditions for which E is
stable, semistable or unstable.

Definition B.0.7. Let v0, w ∈ Λ − 0 be two non-parallel vectors. A numerical wall
Ww(v0) for v0 with respect to w is a non-empty subset of Stab(X) given by

Ww(v0) = {σ = (Z, P ) ∈ Stab(X) : Re(Z(v0)) · Im(Z(w)) = Re(Z(w)) · Im(Z(v0))}

The wall and chamber structure of the stability manifold Stab(X) is intimately re-
lated to the topology of this space. We denote by W(v0) the set of numerical walls
for a fixed Mukai vector v0. These numerical walls are real codimension-1 submani-
folds of Stab(X), which divide the stability manifold into connected components called
chambers.
This wall and chamber structure encodes crucial information about the behavior of
(semi)stability for objects with fixed Mukai vector v0. As we vary the stability con-
dition by moving within a chamber, the (semi)stability of objects with Mukai vector
v0 remains unchanged. However, when crossing a wall, the (semi)stability can change
abruptly. By understanding this wall and chamber structure, we gain a global perspec-
tive on how the stability of objects depends on the choice of stability condition.
Furthermore, the topology of Stab(X) is closely related to the wall and chamber de-
composition. The connected components of the complement of the union of all walls
are precisely the chambers. The walls themselves form a locally finite arrangement,
ensuring that the topology of Stab(X) is well-behaved.
In order to study the case of K3 surfaces, we want to describe the wall and chamber
structure on the (β, α)-plane for the σβ,α stability conditions as in [23] section 6.4.
Consider T = {v ∈ K(X) : χ(v, w) = 0 for all w ∈ K(X)} and the numerical
Grothendieck group Knum(X) = K(X)/T as a finitely generated Z-lattice. In the case
where X is a K3 surface, the group Knum(X) coincides with the algebraic cohomology
group H∗

alg(X).
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Proposition B.0.4 ([23, Proposition 6.22]). Fix a class v ∈ Knum(X).

1. All numerical walls are either semicircles with center on the β-axis or vertical
rays.

2. Two different numerical walls for v cannot intersect.

3. For a given class Knum(X) the hyperbola Re(Zβ,α(V )) = 0 intersects all umerical
semicircular walls at their top points.

4. If ch0(v) ̸= 0, then there is an unique numerical vertical wall defined by the
equation

β = H · ch1(v)
H2 · ch0(v)

5. If ch0(v) ̸= 0, then all semicircular walls to either side of the unique numerical
vertical wall are strictly nested semicircles.

6. If ch0(v) = 0, then there are only semicircular walls that are strictly nested.

7. If a wall is an actual wall at a single point, it is an actual wall everywhere along
the numerical wall.

Building upon the foundational result established in Theorem B.0.1, which states that
the pair σβ,α = (Zβ,α, Cohβ(X)) defines a stability condition on the bounded derived
category Db(X), we now turn our attention to understanding the behavior of the
stability of coherent sheaves as we navigate the wall and chamber structure of the
(β, α)-plane.

Corollary B.0.1 ( [5, Corollary 3.5] ). Given a class v ∈ H∗
alg(X;Z). For objects of

Mukai vector v, being σβ,α-(semi)stable is independent on the choice of (β, α) in any
given chamber.

Now that we have established the independence of (semi)stability on the choice of sta-
bility condition within a given chamber of the (β, α)-plane, the natural next step is to
study the moduli spaces that parametrize the semistable objects for a fixed Mukai
vector v. These moduli spaces encode crucial information about the behavior of
(semi)stable objects as we vary the stability condition by moving between different
chambers in the (β, α)-plane.

B.0.3 Moduli spaces of stable objects and restriction theorem
In this subsection, we delve into the study of moduli spaces that parametrize stable
objects with respect to a given stability condition. Our goal is to understand how the
structure of these moduli spaces varies as we change the stability condition. Further-
more, we investigate whether there exist stability conditions for which the associated
moduli spaces coincide with the moduli spaces obtained under classical stability no-
tions, such as Gieseker stability.
To lay the groundwork for this analysis, let us first recall some fundamental results
regarding the structure and non-emptiness of moduli spaces of stable objects. These
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results serve as a foundation for our subsequent investigations of how the moduli spaces
depend on the choice of stability condition.
A crucial question is whether these moduli spaces are non-empty for a given stability
condition. This is closely related to the existence of stable objects for that condition. By
leveraging the wall-crossing techniques developed in the previous sections, we establish
conditions under which the moduli spaces are non-empty and study how their structure
changes as we vary the stability condition.

Theorem B.0.3 ( [5, Theorem 4.1] ). Consider a vector v ∈ H∗
alg(X;Z), and let

σ = σβ,α be a stability condition that is not on any of the walls for the wall and
chamber decomposition with respect to v. Then the coarse moduli space Mσ(v) of σβ,α-
stable objects of Mukai vector v exists as a smooth projective irreducible holomorphic
symplectic variety. It is non-empty if and only if v2 ⩾ −2 and its dimension is given
by dimMσ(v) = v2 + 2

Consider now the moduli space of H-Giesker-stable sheaves and lets compare this set
with the moduli space of σβ,α-stable objects with α >> 0.

Theorem B.0.4 ( [5, Theorem 4.4] ). Let v = (v0, v1, v2) a class in H∗
alg(X;Z) having

either positive rank v0 > 0, or satisfying v0 = 0 with v1 being effective. Then there
exists α0 such that for all α ⩾ α0 and all β > H·v1

H2·v0
(or β > v2

H·v1
in case v0 = 0), the

moduli space Mσβ,α
(v) is equal to the moduli space MH(v) of H-Gieseker-stable sheaves

of class v. More precisely, and object E ∈ Db(X) with v(E) = v is σβ,α-stable if and
only if it is the shift of a Gieseker-stable sheaf.
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