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APLICACIÓN DEL FORMALISMO LÍNEA DE MUNDO A ESTADOS LIGADOS

Resumen

En este estudio utilizamos el formalismo línea de mundo para reunir todas las es-
caleras y escaleras cruzadas en la teoría φ2χ con masa cero para la partícula χ. El
Lagrangiano euclideano para esta teoría es L = 1

2(∂µφ)2+1
2m

2φ2+1
2(∂µχ)2+1

2µ
2χ2+ λ

2!φ
2χ.

Derivamos representaciones integrales para tres clases de amplitudes en la teoría del
campo escalar: (i) propagador escalar intercambiando N momentos con un campo
escalar de fondo, (ii) La ”media” escalera con N peldaños en el espacio x, (iii) en la
escalera de cuatro puntos tanto con N peldaños en el espacio x, como en el espacio de
momentos (fuera de la capa de masa). En cada caso se da una expresión compacta
que combina los N ! diagramas de Feynman que contribuyen a la amplitud. Como
nuestra aplicación principal, se reconsidera el caso bien conocido de dos escalares
masivos que interactúan a través del intercambio de un escalar sin masa. Aplicando
estimaciones asintóticas y una aproximación de punto silla a las escaleras con N pel-
daños más diagramas de escalera cruzados, derivamos una fórmula de aproximación
semi-analitica para el estado ligado de menor masa en este modelo.





APPLICATION OF THE WORLDLINE FORMALISM TO BOUND STATES

Abstract

In this study we use the worldline formalism to sum up all ladders and cross-ladders
in the ϕ2χ theory with zero mass of the χ particle. The (euclidean) Lagrangian for this
theory is L = 1

2(∂µφ)2 + 1
2m

2φ2 + 1
2(∂µχ)2 + 1

2µ
2χ2 + λ

2!φ
2χ. We derive an integral represen-

tations for three classes of amplitudes in scalar field theory: (i) the scalar propagator
exchanging N momenta with a scalar background field (ii) the “half-ladder“with N
rungs in x−space (iii) the four-point ladder with N rungs in x−space as well as in
(off-shell) momentum space. In each case we give a compact expression combining
the N ! Feynman diagrams contributing to the amplitude. As our main application,
we reconsider the well-known case of two massive scalars interacting through the
exchange of a massless scalar. Applying asymptotic estimates and a saddle point
approximation to the N−rung ladders plus crossed ladder diagrams, we derive a
semi-analytic approximation formula for the lowest bound state mass in this model.
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CHAPTER 1

INTRODUCTION

The history of our study goes back to the non-relativistic Schrodinger eq. (1926),
followed by the work of Dirac in 1928 and Gregory in 1929, who treated interactions
of elementary particles relativistically, still without using separate time formalism
and Feynman rules. Thereafter, relativistic bound states and quantum electrody-
namics had a long wait of two or more decades. In 1947 Bethe gave an approximate
but adequate prescription to carry out renormalization in order to deal with diver-
gencies, and to theoretically calculate the Lamb shift for the first time. Tomonaga
(1948), Schwinger (1948), Dyson (1949) and Feynman (1949) published a series of
papers proposing different methods for computing the S−matrix in QFT. However,
Feynman’s formalism had great practical advantages as it could be characterized by
Feynman diagrams and graphs. The Bethe Salpeter equation was given at an Amer-
ican Physical Society meeting at the beginning of 1951 and then published in more
detail later in 1951 Bethe-Salpeter (1951). A proton and an electron can move sepa-
rately, the total center of mass energy greater than the rest masses, and such a pair
of particles can be described as an ionized atom. Once the electron of an atom starts
to “orbit” the proton, the energy becomes smaller than the rest masses, and a bound
state namely the hydrogen atom is formed. At most the lowest energy bound state,
the ground state, is stable. The other excited states are unstable and will decay into
a bound states with less energy.

In chapter 2 of the thesis, we discuss the bound-state problem of Quantum Field
Theory in detail, this problem of QFT has been a field of active research for many
years. Making exact predictions using the correct Lagrangian for a system is not
an easy task. Therefore, we have to make approximations, the most common ap-
proximation is known as perturbation theory. Perturbation theory involves making
an expansion in the coupling strength of the interaction and works for small cou-
plings. Perturbation theory cannot explain bound states, irrespective of how small
the coupling strength is. Therefore, bound states are always fully non-perturbative
or we can say non-perturbative methods are required where standard perturbative
methods are not applicable. Bound states are identified by poles in Green’s function.
The n-body bound state is defined by the pole of the n-body propagator. The bound
state singularity comes from an infinite summation of perturbation series. A pertur-
bative approximation of an n-body propagator does not produce the bound state pole
location. Hence it is essential that reliable non-perturbative methods that take all
orders of interaction into account are developed. Building blocks of matter, quarks
and gluons only exist in bound states. Any reaction involving quarks definitely in-
volves bound states in the initial and final states and necessitates a non-perturbative
treatment.

1



2 CHAPTER 1. INTRODUCTION

The fact that not much work is done at present on this problem reflects its complex-
ity rather than a lack of importance. The present-day description of (light) hadrons,
which are intrinsically relativistic bound states of quarks and gluons, is not satis-
factory from a theoretical standpoint. Not only a precise description of the effective
interaction of quarks and gluons is missing, but also a convenient formalism for the
calculation of the hadronic states once an appropriate description of the interaction
is established.

A fully relativistic equation for the masses and structure of the bound states of
two constituents has been established in quantum field theory a long time ago by
Salpeter and Bethe [1, 2]. Unfortunately, the practical application of this equation
suffers from all kinds of difficulties [3]. In particular, despite the fact that the equa-
tion is exact in principle, applications can hardly go beyond the ladder approximation
to the equation which amounts to replacing the totality of diagrams contributing to
the four-point function with the ladder graphs, excluding all crossed ladder graphs.
The inclusion of the crossed ladder graphs, however, is essential for the consistency
of the one-body limit where one of the constituents becomes infinitely heavy, and for
maintaining gauge invariance (in gauge theories).

Alternatives to the Bethe-Salpeter equation have been devised that partially include
the crossed ladder graphs, the best-known being the Blankenbecler-Sugar equation
[4], the Gross (or spectator) equation [5] and the equal-time equation [6]. In order to
assess how well these so-called quasipotential equations are doing in incorporating
the effects of the crossed-ladder graphs, and to establish some benchmark values
for the relativistic bound state problem, Nieuwenhuis and Tjon [7] have numerically
evaluated the path integrals of the “worldline representation” to be defined below, for
the same scalar model field theory that we will study in this thesis, thus including
all ladder and crossed ladder graphs. The results, if the numerical evaluation is to
be trusted, are not reassuring: while the predictions of the quasi-potential equations
are closer to the numerical values for the lowest bound state mass than the solution
of the Bethe-Salpeter equation, they still differ substantially from the worldline val-
ues (and from one another). On the other hand, the predictions of the quasipotential
equations for the equal-time wave function of the ground state are worse than the
ones of the Bethe-Salpeter equation.

While it is not possible here to give comprehensive review of bound state theory, in
chapter 2 we focus on demonstrating the interplay between the box and the crossed
box diagrams in scalar field theory.

In chapter 3, the worldline formalism is discussed in detail starting with definitions
and various derivations. A Worldline is a curve in space time that traces out the time
history of a particle. The worldline formalism, in which the S−matrix is constructed
as a relativistic path integral over particle trajectories [8] is an alternative [9] to the
usual second quantized formalism in Quantum Field Theory.

This formalism which goes under various names, e.g. “Feynman-Schwinger repre-
sentation”, “quantum mechanical path integral formalism”, “first-quantized formal-
ism” or “worldline formalism” (which we will adopt here) has been studied by many
authors (see [9] for an extensive bibliography), but for several decades was considered
as mainly of conceptual interest. However, partly as a consequence of developments
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Fig. 1.1: Diagrams contributing to QED photon-photon scattering.

Fig. 1.2: Diagrams contributing to the three loop QED photon propagator.

in string theory [10], it has in recent years emerged also as a powerful practical
tool for the computation of a wide variety of quantities in quantum field theory.
This includes one-loop on-shell [11, 12, 13, 14] and off-shell [15, 16] gluon ampli-
tudes, one- and two-loop Euler-Heisenberg-Weisskopf Lagrangians [14, 17], heat-
kernel coefficients [18, 19], Schwinger pair creation in constant and non-constant
fields [20, 21, 22], Casimir energies [23] and various types of anomalies (see [11],
QED/QCD bound states [7, 24, 25], heavy-quark condensates [26], and QED/QCD
instantaneous Hamiltonians [27], Extensions to curved space [28] and quantum grav-
ity [29] have also been considered.

Here we concentrate on one specific advantage of the worldline formalism. One of
the interesting aspects of this approach is that often it combines into a single ex-
pression contributions from a large number of Feynman diagrams. For example,
in the QED case it generally allows one to combine into one integral all contribu-
tions from Feynman diagrams which can be identified by letting photon legs slide
along scalar/fermion loops or lines. Thus e.g. the well-known sum of six permuted
diagrams for one-loop QED photon-photon scattering (see fig. 1.1) here naturally ap-
pears combined into a single integral [9].

While in this case the summation involves graphs that differ only by permutations of
the external legs, at higher loop orders the summation will generally involve topolog-
ically different diagrams; as an example, we show in fig. 1.2 the “quenched” contri-
butions to the three-loop photon propagator.

This property is particularly interesting in view of the fact that it is just this type of
summation which in QED often leads to extensive cancellations, and to final results
which are substantially simpler than intermediate ones (see, e.g., [30, 31]). More re-
cently, similar cancellations have been found also for graviton amplitudes (see, e.g.,
[32]).
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Our two main goals here are, firstly to obtain the expression for the ground integral
formulas combining sum of many Feynman diagrams and secondly, semi-analytically
calculating the lowest bound state mass in the Wick-Cutosky model, using the spe-
cific example of the ladder graphs.

In chapter 4 we discuss the work of Tjon and Nieuwenhuis, mentioned above, where
the authors already tried to explore this property for the case of the scalar ladder
where exchange mass was 0.15 times the mass of the constituents. Here a brute-force
Monte Carlo calculation of the path integral was employed.

All our investigations in this thesis will be based on the well known ϕ2χ−theory with
two scalars interacting through a cubic vertex is

S[φ, χ] =

∫
dDx

(
1

2
(∂µφ)2 +

1

2
m2φ2 +

1

2
(∂µχ)2 +

1

2
µ2χ2 +

λ

2!
φ2χ

)
.

Here we consider three classes of Green’s functions: the first one depicted in fig. 1.3,
is the x− space propagator for one scalar interacting with the second one through the
exchange of N given momenta.

Fig. 1.3: Sum of diagrams contributing to the N - propagator

This ”N− propagator” is given by a set of N ! simple tree-level graphs in section 3.2
of chapter 3. We use the worldline formalism to combine them into a single integral.
We also obtain a momentum space version of this result. More precisely, in the back-
ground field formalism (φ → φq + φ) we have an expression for the full propagator in
the worldline formalism represented as a two point function containing the interac-
tion. The integral for the full propagator is computed by summing over all possible
paths including the quantum fluctuations between the two points.

In chapter 5, in going from the two point to the four point function, we take the prod-
uct of two copies of the N-propagator, identifying ki of one N- propagator with the -ki
of second to obtain N-ladder graphs: Here we are able to combine, for a fixed number
of rungs, the uncrossed ladder graph with all N !− 1 crossed ones see fig. 1.5.

In chapter 6, we start on the application of this representation of the four-point func-
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tion in the extraction of the lowest bound state mass. We use the fact that only the
large time limit is needed for this task to achieve a number of simplifications.

In chapter 7, we use a gaussian approximation around the saddle point in the large
time limit. This expression is then summed to obtain the full Green’s function given
in terms of coefficient cn whose asymptotic behaviour we study.

In chapter 8, we extract the lowest bound state mass contained in the expression
for the binding energy

e(2m−Eb) 2t̂
m = e(−4+ 1

2
π2g2)t̂ (1.1)

obtained in the nonrelativistic limit of the Schrodinger equation. Using this in the full
representation of the Green’s function we get an exponential expression in terms of
the coupling constant. The coefficient c̄N appearing in the full Green’s function has
a specific asymptotic behaviour. From the resummed expression we get an analytic
expression for the lowest bound state mass by a second saddle point approximation
(8.18) or expanded in the coupling.

Hence we have our main result:

m0

m
= 2− π2g2

4
− 9

64
(π2g2)2 − 81

512
(π2g2)3 − . . . (1.2)

where m0 is the lowest bound state mass, m is the mass of the free ϕ particle and
g = ( λ

4πm)2.

Finally, we compare the result of the lowest bound state mass with the relativistic
eikonal approximation or Todorov’s equation [33, 34] and we also make a comparison
of the maximal value of the coupling constant, to the critical value of the variational
worldline approximation [35]. The latter value without self- energy and vertex cor-
rections, for a massless exchanged particle, comes out be somewhat larger than our
value. The existence of a critical coupling constant is attributed to the instability of
the vacuum in a scalar field theory [35].

Chapter 9, deals with the N−half ladders. This third class are as shown in fig 1.5,
defined by a line connecting the points x and y and N further points z1, . . . , zN con-
necting to this line in an arbitrary order.

Chapter 10, presents the conclusions and suggestions for further work. There-
after there are three appendices, appendix A which includes conventions, appendix B
which includes more details on the variables cN ,MN and RN and appendix C which
includes a comparison with Feynman diagrams.

The results decribed in this thesis will be published in ref. [36].



CHAPTER 2

BOUND STATES IN QUANTUM FIELD

THEORY

The bound-state problem in Quantum Field Theory has been a field of active research
for many years. Making exact predictions using the correct Lagrangian for a system is
not an easy task. Therefore, one has to make approximations, one common approx-
imation is known as perturbation theory. Perturbation theory involves making an
expansion in the coupling strength of the interaction and works for small couplings.
Perturbation theory cannot explain bound states, irrespective of how small the cou-
pling strength is. Therefore, bound states are always fully non-perturbative or we
can say non-perturbative method is required where standard perturbative methods
are not applicable. Bound states problems are an important example of it. Bound
states are identified by poles in Green’s function. The n-body bound state is defined
by the pole of the n-body propagator. Bound state singularity comes from an infinite
summation of perturbation series. A perturbative approximation of n-body propaga-
tor does not produce the bound state pole location. Hence it is essential that reliable
non-perturbative methods that takes all orders of interaction into account are devel-
oped. Building blocks of matter, quarks and gluon only exist in bound states. Any
reaction involving quarks definitely involve bound states in the initial and final states
and necessitates a non-perturbative treatment.

1

G=
P

__________

P
2

M
2−

}

Fig. 2.1: Bound states mass is determined by the pole of Green’s function.
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8 CHAPTER 2. BOUND STATES IN QUANTUM FIELD THEORY

2.1 Bethe-Salpeter equation
The Bethe-Salpeter (B-S) equation [1, 2] is the most orthodox tool for discussing the
relativistic two-body problem in quantum field theory. It was proposed more than
sixty years ago. The Bethe-Salpeter equation describes the bound state of two parti-
cles. Though the equation appears in many forms however the most commonly used
form is

Γ(P, p) =

∫
d4k

(2π)4
K(P, p, k)S(K − P

2
)Γ(P, k)S(k +

P

2
) (2.1)

where Γ is the Bethe-Salpeter amplitude, K is the interaction and S the propagators
of the two propagating constituents.

Fig. 2.2: A graphical representation of the Bethe-Salpeter equation.

2.2 Derivation of the B-S equation
Consider the scattering of two non-identical scalar particles a and b. Let ϕa(x) and
ϕb(x) be the field operators of a and b, respectively in the Heisenberg representation.
The scattering Green’s function G(xa, xb; ya, yb) is defined by

G(xa, xb; ya, yb) ≡ 〈0|T [ϕa(xa)ϕb(xb)ϕ
†
a(ya)ϕ

†
b(yb)]|0〉 (2.2)

On expanding G into a perturbation series, expressed in terms of connected Feynman
graphs corresponding to the process a+ b→ a+ b.

G(xa, xb; ya, yb) = ∆
′
Fa(xa − ya)∆

′
Fb(xb − yb)

+

∫
d4za

∫
d4zb

∫
d4z

′
a

∫
d4z

′
b∆
′
Fa(xa − za)∆

′
Fb(xb − zb)

I(za, zb; z
′
a, z

′
b)G(za, zb; ya,yb), (2.3)
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Fig. 2.3: Graphical representation of the position-space B-S equation (2.3)

where G and I are functions of xa − xb,−ya + yb and ηa(xa − ya) + ηb(xb − yb), where
ηa and ηb are arbitrary real quantities such that ηa + ηb = 1. If p,q and P are the
conjugate momenta. Then

[∆
′
Fa(ηaP + p)∆

′
Fb(ηbP− p)]−1G(p,q, ; P) (2.4)

= δ4(p− q) +

∫
d4p

′
I(p, p

′
;P )G(p

′
, q;P ) (2.5)

where ∆
′
Fa, G and I are the fourier transforms of ∆

′
Fa, G and I.

Fig. 2.4: Graphical representation of the momentum-space B-S equation eq. (2.5)
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To simplify

K(p,q, ; P) ≡ [∆
′
Fa(ηaP + p)∆

′
Fb(ηbP− p)]−1δ4(p− q) (2.6)

using operator notation: ∫
d4p

′
A(p, p

′
)B(p

′
, q) ≡ (AB)(p, q). (2.7)

Then eq. (2.5) can be written as
KG = 1 + IG (2.8)

G = (K − I)−1; (2.9)

hence

GK = 1 +GI (2.10)

The time-reversed equation of (2.8) can be written as

ḠK̄ = 1 + ḠĪ (2.11)

If theory is invariant under time reversal, then Ḡ = G, K̄ = K and Ī = I eq. (2.10) and
eq. (2.11) are identical.
If the invariant squares of momenta are denoted as below and if, P 2 = P2 − P 2

0 :

−P 2 = s,−(p− q)2 = t,

−[(ηa − ηb)P + p+ q)]2 = u

−(ηaP + p)2 = v,−(ηb − p)2 = w,

−(ηaP + q)2 = v0,−(ηb − q)2 = w0. (2.12)

If m1,m2 be the masses of a and b respectively. Then the mass shells are defined by

v = m2
1, w = m2

2 (2.13)

v0 = m2
1, w0 = m2

2 (2.14)

The Feynman amplitude F (p, P ) equals the residue of −(G − K−1) at (2.14) and the
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scattering amplitude is defined as residue of G−K−1 at both (2.11) and (2.14).
For practical considerations we are concerned with the ladder approximation. More-
over, ∆

′
F is replaced by a free Feynman propagator.

∆F (k,m) ≡ −i(m2 + k2 − iε)−1, (2.15)

where ε is always an infinitesimal positive quantity. The integral kernel I contains a
single- particle-exchange contribution, so I is independent of P and is proportional
to a coupling parameter Λ ≡ gagb

(4π)2 , where gj(j = a, b) denotes the coupling constant
between the particle j and the exchanged particle (for ga = gb, we denote it by g)

We now discuss the homogeneous B-S equation for bound states. Let | B, 1〉, | B, 2〉, · · · |
B,n〉 be degenerate bound states having the 4-momentum PB with PB = P and
P 2
B = sB. The B-S amplitude for | B, r〉 and its conjugate is defined to be

φBr(xa,xb; PB) ≡ 〈0 | T[ϕa(xa)ϕb(xb)] | B, r〉,

φ̄Br(xa,xb; PB) ≡ 〈B, r | T[ϕ†a(xa)ϕ†b(xb)] | 0〉

= 〈B, r | T̄ [ϕa(xa)ϕb(xb)] | 0〉∗, (2.16)

respectively, where T̄ and ∗ denote anti-chronological operator and complex conjuga-
tion, respectively. Because of translational invariance, we can write

φBr(xa,xb; PB) = (2π)−
3
2 e−iPBXφBr(x,PB)

φ̄Br(xa,xb; PB) = (2π)−
3
2 e−iPBXφ̄Br(x,PB) (2.17)

where

X = ηaxa + ηbxb,

X = xa − xb (2.18)

The reduced amplitude φBr(x,PB) is called the B-S amplitude.
If we insert the complete set of states1 into the middle of the right-hand side of
(2.2), then the contribution to G(xa,xb; ya,yb) from the intermediate states 〈B, r |
(r01, 2, · · ·n) may be written as

n∑
r=1

∫
d4PφBr(xa,xb; P)φ̄Br(ya,yb; P)θ(P0)δ(P2 − sB)θ(X0 −Y0)

1We here assume that all states have positive norm.
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= (2π)−3
∑
r

∫
d4P

2ωB
φBr(x; PB)φ̄Br(y; PB)

×exp[−iωB(X0 − Y0) + iP(X−Y)]θ(X0 −Y0), (2.19)

where
ωB = (PB)0 = (P2 + sB)

1
2 (2.20)

Y and y are defined analogous to (2.18). using an identity

θ(z) = −(2πi)−1

∫
dk e−ikz(k + iε)−1 (2.21)

after a transformation k = P0 − ωB eq.(2.19) can be rewritten as

−i(2π)−4
∑
r

∫
d4P φBr(x,PB) φ̄Br(y,PB)

exp[−iP(X−Y)]

2ωB(P0 − ωB + iε)
(2.22)

Fourier transform of (3.22)

i
∑

r φBr(p, P )φ̄Br(p, P )

2ωB(P0 − ωB + iε)
(2.23)

aprat from a term regular at P0 = ωB. By adding the contribution from anti-particle
states of | B, r〉, we find that G(p, q;P ) has a pole term at

i
∑n

r φBr(p, P )φ̄Br(p, P )

(s− sB + iε)
(2.24)

Substituting (5.14) for the pole term of G in (2.5), and comparing the residues at
s = sB of both sides, due to the linear independence of φB1, φB2, · · ·φBn, we find

[∆
′
Fa(ηaPB + p)∆

′
Fb(ηbPB − p)]−1G(p,PB)

=

∫
d4p

′
I(p, p

′
;PB)φBr(p

′
, PB) (2.25)

KBφBr = IBφBr (2.26)

where the subscript B means to put s = sB. Eq. (2.25) or (2.26) is usually called the
B-S equation.
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2.3 Ladder Approximation
The interaction kernel contains all possible two-particle interactions that occur be-
tween the constituents. In the ladder approximation we use only a single interaction
in the kernel. This over simplification of the ladder approximation caused a lot of
problems and thus crossed ladders have to be included

Fig. 2.5: A graphical representation of the Bethe-Salpeter equation in ladder approx-
imation.

2.4 Non-relativistic Bound State
In non- relativistic Quantum Mechanics bound states have a fairly simple structure.
One dimensional Schrodinger equations for bound states in various potentials have
simple and exact solutions. Scattering problems can be solved exactly in many cases,
especially in one-dimensional situations. Two-body bound states could be solved by
reducing them to one body problems by introducing relative coordinates. For systems
with more particles few exact solutions are not known but principles are.

For a bound state made up of two scalar partices of equal masses m that interact
via the exchange of another, the massless scalar nonrelativistic Schrodinger equation
is given by

(− 1

2mr
52 −α

r
)Ψ(r) = (E − 2m)Ψ(r) (2.27)

In the center of mass system (c.m.s). where mr is the reduced mass and mr = m/2.
Ψ(r) is the non relativistic wave function depending on the relative coordinate. E is
the energy of the rest mass (in the c.m.s.) of the bound state. Eb = 2m − E is the
binding energy.

For our scalar model, in the nonrelativistic limit, the binding energy in the ground
state would be [37],
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Eb =
1

2
mrα

2 =
1

4
mα2 (2.28)

where

α =
λ2

16πm2
= πg (2.29)

λ is the coupling constant.

2.5 Relativistic Bound State
In an exact relativistic treatment, one has to deal with an infinite number of particles
due to pair production and radiative corrections. Thus, there are infinitely many de-
grees of freedom. Relativistic equations for bound states have to be formulated in the
framework of relativistic field theory.

Describing relativistic dynamics is an important issue in the study of composite
hadronic systems at higher energies. Our knowledge of the relativistic two-body
bound state problem in field theory is mostly based on application of the ladder
approximation to the Bethe-Salpeter equation (BSE). The general applicability of lad-
der theory can be questioned on physical grounds. The so called one-body limit
(where, in the case of different constituent masses, the one-body limit means that
one of the masses becomes infinite and the other remains fixed.) does not lead to the
Klein-Gordon equation as it should. Moreover gauge invariance cannot be satisfied
within this approximaton. To recover these properties, all cross ladder contributions
are needed additionally. So-far, however, the study of the two-body Green function
beyond the ladder theory has not been considered feasible in practice. Therefore,
several quasipotential equations have been proposed and studied as possible candi-
date for an effective theory. Both the ladder BSE as well as several quasipotential
equations (QPEs) have been used in numerous studies throughout a wide range of
systems, including mesons, small nuclei, few electron atoms and positronium.

In constructing the QPEs, one usually chooses the approximations leading to them
such that the above mentioned problems are, at least partially, solved. However, due
to our ignorance of the behaviour of full BSE solutions, it is presently unclear which
of the possibly infinite number of QPEs provides the best effective desciption. In this
connection, it is actually of interest to have actual solutions available for cases where
a larger class of graphs than the ladder series is included in the BSE and that do not
suffer from the difficulties inherent in the latter approximations. Such solutions may
serve as a testing ground for various QPE descriptions.

There are at least three areas of physics in which the relativistic bound state problem
needs to be addressed: the first one is bound-state Quantum Electrodynamics (QED)
where ultra-precise experimental data are available.

Another area for relativistic bound-state calculations where strong coupling is re-
quired: the electromagnetic structure of nuclear few-body systems at intermediate
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and high energies. Example, relativistic effects in the electromagnetic form factor of
the deutron is important at low momentum transfers.

Finally, there is the area of hadronic physics where (light) relativistic quarks and
gluons bind to form the low energy mesons and baryons.

To describe bound states let us consider the scattering process below

k’ k

p’ p

1

2

Fig. 2.6: Scattering of particle of type 1 and 2

The S−matrix for the process is given by

S = 〈k′p′|UI |kp〉 (2.30)

where UI is the time translation operator to second order expressed in terms of hamil-
tonian densities.

UI = 1− i
∫
d4xHint(x) +

(−i)2

2

∫
d4x1d

4x2T (Hint(x1)Hint(x2)) + . . . (2.31)

S = −i (2π)4δ(k′ + p′ − k − p)
(2π)6

√
16E1(k)E1(k′)E2(p)E2(p′)

M (2.32)

andM is the amputated four-point function.

2.6 Ladder diagrams
For the box diagram in the φ2χ theory (here, we have two φ fields with different
masses), We are looking at contribution toM.
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P − p P − k P − p’

k − p p’ − k

p k p’

Fig. 2.7: Box diagram

M = iλ2
1λ

2
2

∫
d4k

(2π)4

1

D1D2D0D‘
0

(2.33)

where λ1λ2 → λ

M = −iλ2
1λ

2
2

∫
d4k

(2π)4

1

(m2
1 + (P − k)2 − iε)(m2

2 + k2 − iε)(µ2 + (k − p)2 − iε)(µ2 + (k − p′)2 − iε)
(2.34)

m1 < m2 are the masses of two heavy particles being scattered,µ � m1 mass of the
light meson being exchanged.

. . .
. ...

.
8 7 6 5

1 2 43

k
0

complex plane

Fig. 2.8: Singularities of the box diagram in the complex k0 plane when | k | is small.
As | k | increases singularities in the lower half plane move to the right and those in
the upper half plane move to the left.
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There are eight poles as shown in the figure (2.8) and obtained from the zeros of
the denominators in eq. (2.34) as shown below.

D1 = m2
1 + (P − k)2 − iε = (E1 −W + k0 − iε)︸ ︷︷ ︸

5

(E1 +W − k0 − iε)︸ ︷︷ ︸
4

(2.35)

where W = E1(p) + E2(p) = E1(p′) + E2(p′) in the center of mass frame.

D2 = m2
2 + k2 − iε = (E2 + k0 − iε)︸ ︷︷ ︸

8

(E2 − k0 − iε)︸ ︷︷ ︸
1

(2.36)

D0 = µ2 + (k − p)2 − iε = (ω − E2(p) + k0 − iε)︸ ︷︷ ︸
6

(ω + E2(p)− k0 − iε)︸ ︷︷ ︸
2

(2.37)

D‘
0 = µ2 + (k − p′)2 − iε = (ω′ − E2(p′) + k0 − iε)︸ ︷︷ ︸

7

(ω + E2(p′)− k0 − iε)︸ ︷︷ ︸
3

(2.38)

and

Ei =

√
m2
i + k2 ω =

√
µ2 + (k− p)2 (2.39)

Ei(p) =
√
m2
i + p2 ω′ =

√
µ2 + (k− p’)2 (2.40)

If we evaluate the box diagram in the lower half of the complex p0 plane, we see
that the pole at E2 dominates as it is close to the singularity k0 = W −E1 in the upper
half plane. Now, retaining this term only, the box diagram reduces to

M' −λ2
1λ

2
2

∫
d3k

(2π)3

1

2E2(E2
1 − (W − E2)2 − iε)(ω2 − (E2 − E2(p))2)(ω′2 − (E2 − E2(p′))2)

(2.41)

Using the approximation E2 ∼ m2 and E1 + W − E2 ∼ 2m1 in terms where weak k-
dependence is not critical we have

M' − λ2
1λ

2
2

4m1m2

∫
d3k

(2π)3

2mr

(E1 − E2 −W − iε)ω2ω′2
(2.42)

and mr is the reduced mass.

Considering the case when m1 and m2 are both large and p = p′ with meson en-
ergies ω = ω′ and k =| k |' µ we have
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M' − λ2
1λ

2
2

4m1m2

∫
d3k

(2π)3

2mr

(k2 − p2 − iε)(µ2 + (k− p)2)2
(2.43)

= − λ2
1λ

2
2

4m1m2

∫ ∞
0

k2dk

2π2

2mr

(k2 − p2 − iε)
[
(k2 + p2 + µ2)2 + 4k2p2

] (2.44)

= −λ
2
1λ

2
2

16π

1

(m1 +m2)µ2

1(
µ− 2ip

) (2.45)

Comparing eq. (2.45) with one boson exchange amplitude, we have

λ1λ2

µ2
' −λ

2
1λ

2
2

16π

1

(m1 +m2)µ2

1(
µ− 2ip

) (2.46)

Now, substituting effective dimensionless coupling strength geff =
λ2

1λ
2
2

4m1m2
for the φ3

Yukawa interaction in eq. (2.45) we have

geff
4π

mr(
µ− 2ip

) ' 1 (2.47)

When this condition is satisfied, the fourth order box digram is comparable with
second order one boson exchange (OBE) term. Now let p = iδ. With ε = m1 + m2 −W
and p =

√
2mrε, we have

geff
4π

mr(
µ+ 2δ

) ' 1 (2.48)

Relativistic bound state equation has solutions when equation condition (2.48) is
satisfied.

Eq. (2.48) tells us that a potential with a finite range (µ 6= 0) will have a bound
state (δ ≥ 0) only when

geff
4π

mr

µ
& 1 (2.49)

A potential with an infinite range (µ = 0) will have always have a bound state, and
the ground state energy estimated from − δ2

2mr
, will be of the order of
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E0 ' −
δ2

2mr
' −mr

8

(geff2

4π

)2 (2.50)

2.7 Role of crossed ladders

P − p P − k P − p’

k − p p’ − k

p p + p’ + k p’

Fig. 2.9: The crossed box diagram.

The crossed box is the only fourth order diagram which describes a long range
(two boson exchange) interaction. For the crossed box shown in the figure above,

M = −iλ2
1λ

2
2

∫
d4k

(2π)4

1

D1DX
2 D0D

′
0

(2.51)

where D1, D0 and D
′
0 are identical to (2.33), but

Dx
2 = m2

2 − (p+ p
′ − k)2 − iε = (E1 −W + k0 − iε)︸ ︷︷ ︸

5

(E1 +W − k0 − iε)︸ ︷︷ ︸
4

(2.52)

= (Ex2 + 2E2(p)− k0 − iε)︸ ︷︷ ︸
8x

(Ex2 − 2E2(p) + k0 − iε)︸ ︷︷ ︸
1x

(2.53)

where

Ex2 =
√
m2

2 + (p + p′ − k)2 (2.54)
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.
. .. .

. ..7 6 5 1

2 3 4 8

x

x

k complex plane
0

Fig. 2.10: Singularities of the crossed box diagram in the complex k0 plane when | k |
is small. Compare with figure (2.8) and note that the only difference is that pole 1 is
replaced by 1x and pole 8 is replaced by 8x.

There are still eight poles in the complex k0 plane, but two of the poles 1x and 8x
are in different locations as shown in the figure (2.11) above. The major difference
between the box and crossed box is that pole 1, which dominated the box, has moved
from the lower half plane to the upper half plane. These two poles are located at

pole1 : k0 = E2 − iε ∼= m2 +
k2

2m2
− iε (2.55)

pole1x : k0 = 2E2(p)− Ex2 ∼= m2 +
p2

m2
− (p + p

′ − k)2

2m2
+ iε (2.56)

Evaluating the crossed box by closing the contour in the lower half plane leads to
the following observations: The contribution which dominated the box (pole 1) is no
longer present in the lower half plane, and hence the leading contribution is missing
from the crossed box. The meson poles dominated the crossed box, and the only dif-
ference between their contribution to the crossed box and the box is the denominator
D2.

Introducing k0 = k
′
0 + E2(p), two denominators become

box :
1

D2

∼= 1

2m2(k
2−p2

2m2
− k′0)

crossedbox :
1

Dx
2

∼= 1

2m2( (p+p′−k)2

2m2
− p2

2m2
+ k

′
0)

(2.57)

If m2 is very large, the terms in (2.57) is proportional to m−1
2 and may be neglected

compared to k
′
0 (which is equal to ω or ω

′
at the meson poles), and we have

1

D2

∼= − 1

Dx
2
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Hence, in this approximation the dominant contributions from the crossed box are
equal to the meson pole contributions from the box but have the opposite sign, so
that their sum (box plus crossed box), cancels. The role of crossed box is to cancel
the meson pole contribution from the box.

Fig. 2.11: The box and crossed box diagrams with new labeling of momenta to prove
the cancelation theorem.

Cancellation theorem: In a theory in which spin zero particle of mass m1 interacts
with a heavy particle of mass m2 (with no charge states) exchanging a spin zero me-
son of mass µ, the meson pole contributions from the ladder diagram are cancelled
by meson pole contributions from crossed ladder diagrams, and this cancellation is
exact in the limit m2 →∞ .
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CHAPTER 3

THE WORLDLINE FORMALISM

A Worldline is a curve in space time that traces out the time history of a particle. The
Worldline formalism, also referred to as string inspired formalism, is an alternative
to the usual second quantized formalism in Quantum Field Theory, based on a rela-
tivistic path integral approach. It allows to calculate amplitudes and effective actions
etc in QFT. It was invented by Feynman as an alternative to the formulation of second
quantization.

In 1948, Feynman developed the path integral approach to nonrelativistic quantum
mechanics (based on earlier work by Wentzel and Dirac). Two years later, he started
his famous series of papers that laid the foundations of relativistic quantum field
theory (essentially quantum electrodynamics at the time) and introduced Feynman
diagrams. However, at the same time, he developed a representation of the QED
S-matrix in terms of relativistic path integrals. It appears that he considered this ap-
proach less promising, since he relegated the information on it to appendices of [38]
and [8]. And indeed, no essential use was made of those path integral representations
for many years after; and even today path integrals are used in field theory mainly
as integrals over fields, not over particles. Except for an early brilliant application
by Affleck et al. [39] in 1984, the position of this particle path integral or "worldline"
formalism to improve on standard field theory methods at least for certain types of
computations, was recognised in the early nineties through the work of Bern Kosower
[20] and Strassler [40] and [10].

3.1 Free Particle Propagator
In this section we follow the presentation in [41] closely. The Feynman propagator for
a free scalar particle of mass m in D-dimensional space-time is a specific solution of
the inhomogeneous Klein-Gordon equation

(2x +m2)4F (x− y) = δD(x− y) (3.1)

such that positive frequencies propagate forward in time, and negative frequencies
backward. An explicit expression for 4F (x− y) in terms of a Fourier integral is

4F (x− y) =

∫
dDp eip(x−y)

(2π)D(p2 +m2 − iε) (3.2)

In the limit ε → 0+ the simple real pole at positive p0 = E(−→p ) =

√−→
p2 +m2 gives the

mass of the particle as m = E(0). The arbitrarily small imaginary part iε implements
the causality condition.

23
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There is a straightforward connection between this propogator and the classical
mechanics of a relativistic point−particle through the path integral formalism. To
establish this, let us first consider the very general problem of finding the inverse of
a non-singular hermitian operator Ĥ. Following Schwinger, we construct the formal
solution

Ĥ−1 = lim
ε→0+

i

∫ ∞
0

dTe−iT (Ĥ−iε) (3.3)

Here the exponential operator

K̂ε(T ) = e−iT (Ĥ−iε) (3.4)

is the solution of the Schrodinger equation

∂K̂ε(T )

∂T
=
(
Ĥ − iε

)
K̂ε(T ) (3.5)

K̂ε(0) = Î , lim
ε→∞

K̂ε(T ) = 0 (3.6)

If the operator Ĥ acts on a single−particle state−space with a complete coordinate
basis | x > , the matrix elements of the operator in the coordinate basis are

K̂ε(x− y | T ) =< x | K̂ε(T ) | y > (3.7)

Completeness of basis then implies Huygens composition principle∫
dDx′Kε(x− x′ | T ′′)Kε(x

′ − x′′ | T ′′) = Kε(x− x′′ | T ′ + T ′′) (3.8)

Note that ε = (ε′T ′ + ε′′T ′′) /(T ′+T ′′) stays arbitrarily small if ε′ and ε′′ are small enough.
Repeated use of eq.(3.8) allows one to write

K̂ε(x− y | T ) =

∫ N∏
n=1

dDxn

N∏
m=0

Kε (xm+1 − xm | 4T ) (3.9)

with 4T = T/ (N + 1) , and x0 = y, xN+1 = x. Keeping T fixed, the limit N → ∞
becomes an integral over continuous (but generally non−differential) paths in co-
ordinate space-time between points y and x. (Observe that Kε (x− y | 4T ) depends
only on the difference (x− y) and converges to δD (x− y) for 4T → 0.)

If the operator Ĥ is an ordered expression in terms of a canonical set of operators
(x̂µ, p̂µ) :

Ĥ =
∑
k,l

p̂µ1 . . . p̂µkH
µ1...µk
ν1...νl x̂

ν1 . . . x̂νl (3.10)

then we expand the co−ordinate path-integral expression (3.9) further to a phase−space
path−integral

K̂ε(x− y | T ) =

∫ ∫ N∏
n=1

dDxnd
Dpn

(2π)D
exp [i

N∑
k=0

(pk.(xk+1 − xk)−4TH(pk, xk))]

→
∫ x

y
Dp(τ)Dx(τ) exp[i

∫ T
0 dτ(p.ẋ−H(p,x))] (3.11)

Here H(p, x) is the c−number of the ordered operator Ĥ, and we have tacitly assumed
that the ordered symbol of the exponential can be replaced by the exponential of
the ordered symbol. This is certainly correct for the main applications we consider
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in this work, as may be checked by explicit calculations. It is now clear that one
may interpret the symbol H(p, x) as the hamiltonian of some classical system, and
the argument of the exponential as the classical action. Integration over momentum
variables p(τ) then in general leads to the lagrangian form of this action

K̂ε(x− y | T ) =

∫ x

y
Dx(τ) exp [i

∫ T

0
dτL(ẋ, x)] (3.12)

where the precise meaning of the integration measure can be recovered either from
the phase-space expression (11), or from requiring the path−integral to satisfy Huy-
gens’ composition principle (8). Returning to eq.(1), it states that 4F (x − y) is the
inverse of the Klein−Gordon operator (in the space of square−integrable functions).
Rescaling it for later convenience by a factor 1/2m, we consider the evolution operator

Kε(T ) = exp[− iT
2m

(
−2 +m2 − iε

)
] (3.13)

In the co−ordinate representation the explicit expression of the matrix element of this
operator is

K̂ε(x− y | T ) = −i
( m

2πT

)D/2
ei

m
2T

(x−y)2− iT
2

(m−iε) (3.14)

The Feynman propogator can then be written as

4F (x− y) =
i

2m

∫ ∞
0

dTKε(x− y), (3.15)

Using previous results this can be cast in the form of a path integral eq.(3.14)

4F (x− y) =
i

2m

∫ ∞
0

dT

∫ x

y
Dx(τ) exp [

im

2

∫ T

0
dτ(ẋµ

2 − 1)]

Now, to change to euclidean space we set T → T 2m
i and τ → τ 2m

i and
we use this transformation in the last part of the eq. (3.16) to get∫ T

0
dτ(ẋµ

2 − 1) =

∫ T

0

(
d

dτ
xµ

d

dτ
xµ − 1

)
(3.16)

Similarly,

exp [
im

2

∫ T

0
dτ(ẋµ

2 − 1)] = exp
im

2

∫ T

0
dτ

(
i

2m
ẋ2 − 2m

i

)
(3.17)

= exp

∫ T

0
dτ

(
− ẋ

2

4
−m2

)
(3.18)

= e−m
2T−

∫ T
0 dτ ẋ

2

4 (3.19)

Finally, eq. (3.16) reduces to

4F (x− y) =

∫ ∞
0

dT

∫ x

y
Dx(τ) e−m

2T−
∫ T
0 dτ ẋ

2

4 (3.20)
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Fig. 3.1: Here we have a straight line representing the background xµbg(τ) =
[
yµ + (x−

y)µ τT
]

and zµ(τ) representing quantum fluctuations, where zµ(T ) = zµ(0) = 0 at the
two ends as shown in figure above.

3.2 Sum of tree level propagator corrections
The full propagator in the scalar background field in the worldline formalism is rep-
resented as

〈0|Tφq(x)φq(y)|0〉 =
1

− +m2 + λφ(x)
=

∫ ∞
0
dT

∫ x(1)=x

x(0)=y

Dx e−
∫ T
0 dτ

[
1
4
ẋ2+m2+λφ(x)

]
. (3.21)

We will now demonstrate this by comparing with standard Feynman diagrams.

Order λ0

At zeroeth order the worldline formalism gives a standard representation of the free
propagator,

〈0|Tφq(x)φq(y)|0〉
(0)

=

∫ ∞
0
dT

∫ x(T )=x

x(0)=y

Dx e−
∫ T
0 dτ ( 1

4
ẋ2+m2) =

∫ ∞
0

dT

(4πT )
D
2

e−
(x−y)2

4T
−Tm2

. (3.22)

The path integral is computed by splitting xµ(τ) into a background part xµbg(τ), which
encodes the boundary conditions, and a quantum part zµ(τ), which has zero Dirichelet
boundary conditions at τ = 0, T ,

xµ(τ) = xµbg(τ) + zµ(τ) =
[
yµ + (x− y)µ

τ

T

]
+ zµ(τ) . (3.23)

For future use, we record the propagator for zµ(τ) [42]

〈zµ(τ)zν(σ)〉 = −2δµν∆T (τ, σ) (3.24)

∆T (τ, σ) =
τσ

T
− τθ(σ − τ)− σθ(τ − σ) =

τσ

T
+
|τ − σ|

2
− τ + σ

2

∆T (τ, τ) =
τ2

T
− τ .
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Fourier transforming to momentum space gives (momenta will always be ingoing in
the following)

〈φ̃(p1)φ̃(p2)〉
(0)
≡
∫ ∫

dxdy eip1xeip2y 〈0|Tφq(x)φq(y)|0〉
(0)

= (2π)DδD(p1 + p2)

∫ ∞
0
dT

e−Tm
2

(4πT )
D
2

∫
dx e−

x2

4T eip1x

= (2π)DδD(p1 + p2)

∫ ∞
0
dT e−T (p2

1+m2)

= (2π)DδD(p1 + p2)
1

p2
1 +m2

. (3.25)

Order λ

We set the background field φ(x) = ε eikx, pick the linear term in ε from (3.21), and set
ε = 1

〈0|Tφq(x)φq(y)|0〉
(1)

=

∫ ∞
0

dT

(4πT )
D
2

e−
(x−y)2

4T
−Tm2

(−λ)

∫ T

0
dτ 〈eik·x(τ)〉 . (3.26)

We need the Wick contraction

〈eik·z(τ)〉 = ek
2( τ

2

T
−τ) (3.27)

so that

〈0|Tφq(x)φq(y)|0〉
(1)

=

∫ ∞
0

dT

(4πT )
D
2

e−
(x−y)2

4T
−Tm2

(−λ)

∫ T

0
dτ eikyeik·(x−y) τ

T︸ ︷︷ ︸
classical path

e−k
2(τ− τ

2

T
)︸ ︷︷ ︸

Wick con.

.(3.28)

We Fourier transform, rescale τ = Tu, do the T integral and obtain the product of two
propagators in the Feynman parametrization

〈φ̃(p1)φ̃(p2)〉
(1)

= (2π)DδD(p1 + p2 + k)(−λ)

∫ 1

0
du

∫ ∞
0

dT T e−T [p2
1+m2+(k2+2p1·k)u]

= (2π)DδD(p1 + p2 + k) (−λ)

∫ 1

0
du

Γ(2)

[p2
1 +m2 + (k2 + 2p1 · k)u]2

= (2π)DδD(p1 + p2 + k)
1

p2
1 +m2

(−λ)
1

(p1 + k)2 +m2
. (3.29)

The standard Feynman rule coefficient (−λ) assigned to the vertex arises this way.

Fig. 3.2: Scalar vertex
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Order λ2

We set the background field φ(x) = ε1 e
ik1x + ε2 e

ik2x, pick the multi-linear terms in
ε1 and ε2 from (3.21), and then set εi = 1. In the process we have to compute

〈eik1·z(τ1)eik2·z(τ2)〉 = e−
1
2

∑
ij kiµ〈zµ(τi)z

ν(τj)〉kjν = e
∑
i k

2
i (
τ2
i
T
−τi)+

∑
i<j 2ki·kj ∆T (τi,τj) . (3.30)

Again, we Fourier transform, rescale τi = Tui, i = 1, 2, and perform the T integral.
This yields

〈φ̃(p1)φ̃(p2)〉
(2)

= (2π)DδD(p1 + p2 + k1 + k2)(−λ)2

∫ 1

0
du1

∫ 1

0
du2

× 2![
p2

1 +m2 + (k2
1 + 2p1 · k1)u1 + (k2

2 + 2p1 · k2)u2 + 2k1 · k2

(
u1θ(u2 − u1) + u2θ(u1 − u2)

)]3
(3.31)

Recalling the standard Feynman parametrization to represent products of propaga-
tors

1

A1A2 · · ·AN
=

∫ 1

0
da1

∫ 1

0
da2 · · ·

∫ 1

0
daN

Γ(N)δ(1−∑ ai)

[
∑
aiAi]N

(3.32)

it is now easy to rewrite (3.31) as

〈φ̃(p1)φ̃(p2)〉
(2)

= (2π)DδD(p1 + p2 + k1 + k2)

× 1

p2
1 +m2

(−λ)

[
1

(p1 + k1)2 +m2
+

1

(p1 + k2)2 +m2

]
(−λ)

1

p2
2 +m2

.

(3.33)

It thus corresponds to the sum of the two graphs shown in figure 3.3.

+

Fig. 3.3: Order λ2 tree graphs

Order λN

The generalization to N external particles is now easy to see. It produces
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〈φ̃(p1)φ̃(p2)〉
(N)

= (2π)DδD(p1 + p2 +
∑
i

ki)(−λ)N
∫ ∞

0
dT

∫ T

0
dτ1 · ·

∫ T

0
dτN (3.34)

×exp

{
−T
(
p2

1 +m2
)
−
∑
i

(k2
i + 2p1 · ki)τi −

∑
i<j

2ki · kj
(
τiθ(τj − τi) + τjθ(τi − τj)

)}

= (2π)DδD(p1 + p2 +
∑
i

ki)(−λ)NN !

∫ 1

0
du1 · ·

∫ 1

0
duN

×
[
p2

1 +m2 +
∑
i

(k2
i + 2p1 · ki)ui +

∑
i<j

2ki · kj
(
uiθ(uj − ui) + ujθ(ui − uj)

)]−N−1

.

Each of the N ! orderings of the u1, .., uN parameters along the worldline region [0, 1]
identifies a range of integration. Each range of integration produces the product of
the (N + 1) propagators where the momentum flows according to momentum con-
servation. This gives the total of N ! contributions corresponding to the various ex-
changes of the external lines carrying momentum kµi . The explicit proof is given in
the appendix C.
Fourier transforming (3.34) back to x - space one obtains

〈0|Tφq(x)φq(y)|0〉
(N)

=

∫
dp1

(2π)D

∫
dp2

(2π)D
e−ip1x−ip2y〈φ̃(p1)φ̃(p2)〉

(N)

= (−λ)N
∫ ∞

0

dT

(4πT )
D
2

e−
(x−y)2

4T
−m2T

∫ T

0
dτ1 · ·

∫ T

0
dτN ei

∑
i ki·
(
y+

τi
T

(x−y)
)

×exp

[ N∑
i,j=1

ki · kj∆T (τi, τj)

]
(3.35)

Our main interest is to find representations like (3.35) and (3.34) that unify the Feyn-
man diagrams corresponding to different orderings. However, we wish to mention
also that the contribution of any ordered sector to (3.35) can be recast in a form that
is a finite-dimensional analogue of the initial path-integral (3.21). First, introducing
the inverse of the N ×N matrix −∆ij = −∆1(ui, uj), as well as its determinant | −∆|,
we can write the final exponential factor in (3.35) in terms of a gaussian integral over
auxiliary variables ξ1, . . . ξN as

exp

[
T

N∑
i,j=1

ki · kj∆1(ui, uj)

]
=

∫
dDξ1 · · ·

∫
dDξN

(
(4πT )N | −∆|

)−D
2

× exp

[
− 1

4T

N∑
i,j=1

(−∆−1)ijξi · ξj + i

N∑
i=1

ki · ξi
]

(3.36)

It is sufficient to consider the standard ordering 1 ≥ u1 ≥ u2 ≥ . . . ≥ uN ≥ 0. For this
sector, it is straightforward to show inductively that | −∆| and (−∆−1) are given by

| −∆| = (1− u1)(u1 − u2)(u2 − u3) · · · (uN−1 − uN )uN (3.37)
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and

−∆−1=


1

1−u1
+ 1
u1−u2

− 1
u1−u2

0 0 0

− 1
u1−u2

1
u1−u2

+ 1
u2−u3

− 1
u2−u3

0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
0 0 − 1

uN−2−uN−1

1
uN−2−uN−1

+ 1
uN−1−uN

− 1
uN−1−uN

0 0 0 − 1
uN−1−uN

1
uN−1−uN

+ 1
uN


(3.38)

Thus in the first term in the exponent in (3.36) we can rewrite

N∑
i,j=1

(−∆−1)ijξi · ξj =
ξ2

1

1− u1
+

N−1∑
i=1

(ξi − ξi+1)2

ui − ui+1
+
ξ2
N

uN
(3.39)

Using (3.39) in (3.35) and performing a linear shift

ξi → ξi − y − ui(x− y) (3.40)

we get

〈0|Tφ(x)φ(y)|0〉(12...N)
(N)

= (−λ)N
∫ ∞

0

dT

(4πT )
D
2

e−m
2TTN

∫ 1

0
du1

∫ u1

0
du2 · · ·

∫ uN−1

0
duN

×
∫
dDξ1 · · ·

∫
dDξN

(
(4πT )N | −∆|

)−D
2

×exp

{
− 1

4T

[
(x− ξ1)2

1− u1
+
N−1∑
i=1

(ξi − ξi+1)2

ui − ui+1
+

(ξN − y)2

uN

]
+ i

N∑
i=1

ki · ξi
}

(3.41)

Here on the lhs the superscript (12 . . . N) indicates the restriction to the standard
ordering. Comparing with the original path integral (3.21) it will be observed that
(3.41) can be viewed as a restriction of this path integral to the finite-dimensional set
of polygonal paths leading from x to y, corresponding to the propagation of a particle
that is free in between absorbing (or emitting), at proper-time τi = uiT and the space-
time point ξi, the momentum ki. Despite of its simplicity we have not been able to
find this formula in the literature.



CHAPTER 4

WORK OF TJON AND NIEUWENHUIS

In the work of Tjon and Nieuwenhuis [7], the inadequacy of the Bethe-Salpeter equa-
tion to explain the relativistic two body bound state problem beyond the ladder ap-
proximation which was already discussed earlier, has been addressed. We recall the
main objections to the ladder approximation: The one body limit does not lead to
the Klein-Gordon equation and gauge invariance is not satisfied. Hence, it becomes
imperative to include all cross ladders diagrams. Now, since the study of two-body
Green’s function beyond the ladder approximation is not viable, this led to consider
several quasipotential equations as possible explanation for an effective theory (to
study systems like mesons, small nuclei, few electron atom and positronium).

Tjon and Nieuwenhuis then go on to use the worldline formalism to obtain the four-
point Green’s function in the ϕ2χ theory.

4.1 Worldline Formalism
Neglecting the contributions from self energy and vertex corrections, we have an ex-
pression for the four point Greens function in the ladder approximation (i.e. after
neglecting the possible occurrence of vacuum fluctuation ϕϕ loops) in terms of path
integrals over particle trajectories z and z̄ of two ϕ particles as below.

G =

∫ ∞
0

ds

∫ ∞
0

ds̄

∫
(Dz)xy(Dz)x̄ȳ × exp(−K[z, s]−K[z̄, s̄] + V [z, z̄, s, s̄]) (4.1)

where K and V are given by

K[z, s] = m2s+
1

4s

∫ 1

0
dτ ż2

λ(τ), (4.2)

V [z, z̄, s, s̄] = g2ss̄

∫ 1

0
dτ

∫ 1

0
dτ̄∆(z(τ)− z̄(τ)). (4.3)

After the functional integration over all possible paths in eq. (4.1), subject to the
boundary conditions z(0) = x, z(1) = y, and similarly for z̄. With the free two point
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∆(x) function in 3 + 1 dimensions, given by

∆(x) =
µ

4π2 | x |k1(µ | x |) (4.4)

The authors obtain an expression for G in large timelike separations T = 1
2(y4 + ȳ4 −

x4 − x̄4) and the bound state spectrum can be determined by studying the behaviour
of G with respect to variations of its initial points (x, x̄) and final points (y, ȳ)

G =

∞∑
n=0

cn exp(−mnT ),
T→∞' c0 exp(−m0T ) (4.5)

This implies that asymptotically the Green function is dominated by the ground state
contribution.

Since the path integrals in (4.1) are quantum mechanical ones, not field path inte-
grals, this amounts to a considerable reduction in the number of degrees of freedom.

The solutions to Feynmann-Schwinger representation could be obtained by discretiz-
ing the functional integral according to

(Dz)xy →
(
N

4πs

)2N N−1∏
i=1

∫
d4zi (4.6)

The normalization in Eq.(4.6) has been chosen such that, when expanded in the cou-
pling g2, the Green function correctly reproduces the Feynman perturbation series.
In terms of the discretized variables the functionals k and V assume the following
form:

K[z, s]→ m2s+
N

4s

N∑
i=1

(zi − zi−1), (4.7)

V [z, z̄, s, s̄]→ g2ns̄

N2

N∑
i,j=1

∆(
1

2
(zi + zi−1 − z̄j + z̄j−1)). (4.8)

The boundary conditions are z0 = x and zN = y and similarly for z̄.

The ground state mass is given by (see eq.(4.1) for the definition of G).

L(T ) = − d

dT
[lnG(T )]

T→∞→ m0 (4.9)
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Substituting Z for the full set of degrees of freedom we have S(Z) = K[z, s]−V [z, z̄, s, s̄],
therefore L(t)

L(T ) =

∫
DZS′[Z]e−S[Z]∫
DZe−S[Z]

(4.10)

where prime denotes differentiation with respect to T . Therefore the ground state
mass is the average of S′[Z] over an ensemble generated by an action S[Z] for suf-
ficiciently large T . The FSR ground state wave function Ψ can be obtained by an
additional integration of G in eq.(4.1) over the spatial relative components r ≡ ȳ − y
of the final point and incorporating this coordinate in the set Z. Keeping track of the
distribution of | r |’s while computing L(T ) the r dependence of Ψ can be determined.
The dependence on N was studied and the bound state mass was found to become
independent of N at values of N = 35− 40.

4.2 Results and Comparison

Fig. 4.1: The ground state mass as a function of the dimensionless coupling constant
g2

4πm2 for µ
m = 0.15, taken from Tjon and Nieuwenhuis ([7]).

Fig.1 shows the ground state mass as a function of the dimensionless coupling
constant g2

4πm2 for µ
m = 0.15. Since the self-energy has been neglected in the FSR

calculations, predictions could directly be compared to those of Ladder BSE and the
various QPEs. The range of validity of the ladder theory is restricted to small coupling.
For large couplings all approximations tend to underbind the system as compared to
FSR results. All QPEs generate more binding energy than the ladder BSE, and the
results are closer to FSR ones. The equal-time (ET) approximation provides the best
correspondence with the FSR ones.

Fig. 2 compares FSR and BSE ground state wave function for relative time t = 0
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Fig. 4.2: The ground state wave function Ψ(r) as a function of relative distance r
taken from Tjon and Nieuwenhuis ([7]).

with various QPE wave functions is made. The coupling constant g is adjusted such
that the same value of the ground state mass m0 = 1.882m is found. At large separa-
tions wave function behaviour is essentially determined by the binding energy of the
composite system. At short distances, the main difference between the QPE predic-
tions is due to the asymptotic behaviour of their two-particle free propagator SQEP (q)
for large values of q.

An important role is played by the relative time t dependence of the wave function,
especially at small spatial separations between the constituents.

The authors present for the scalar case the first calculations of bound state proper-
ties beyond the ladder approximation using the Feynman-Schwinger representation.
When compared with results from Bethe-Salpeter equation in the ladder approxima-
tion, it is observed that cross ladders contribute significantly to the binding energy.



CHAPTER 5

LADDER GRAPHS IN SCALAR FIELD

THEORY

We use an euclidean signature. The action for λϕ3 theory is

S[φ] =

∫
dDx

(
1

2
(∂µφ)2 +

1

2
m2φ2 +

λ

3!
φ3

)
. (5.1)

In the background field formalism (φ→ φq +φ) the action quadratic in quantum fields
φq is

S(2)[φq, φ] =

∫
dDx

1

2
φq

(
− +m2 + λφ

)
φq + ... (5.2)

It is now simple to use equation number (3.34) to sum all the propagator graphs
(simply called ”N - propagators“ in the following) for constructing the sum of all lad-
der and crossed-ladder graphs with N rungs (simply called "N-ladders" in the follow-
ing) in φ3 theory, and more generally, putting a different mass µ for the rungs, for
scalar Yukawa theory. Let us start with the graphs in momentum space. Start-
ing with the product of two copies of (3.34), identifying ki of one N - propaga-
tor with −ki of the second one, and inserting the connecting propagator integrals∫

dk1

(2π)D
1

k2
1+µ2 . . .

∫
dkN

(2π)D
1

k2
N+µ2 produces precisely N ! times the N-ladder graphs (see fig.

1.4):

〈φ̃(q1)φ̃(q2)φ̃(p1)φ̃(p2)〉
(N)

= (2π)DδD(p1 + p2 + q1 + q2)
λ2N

N !

∫ ∞
0

dS

∫ ∞
0

dT e−m
2(S+T )

×
∫ S

0
dσ1 · ·

∫ S

0
dσN

∫ T

0
dτ1 · ·

∫ T

0
dτN

×
∫

dk1

(2π)D
1

k2
1 + µ2

. . .

∫
dkN

(2π)D
1

k2
N + µ2

(2π)DδD(p1 + p2 +
∑
i

ki)

×exp

{
−Sp2

1 −
∑
i

(k2
i + 2p1 · ki)σi −

∑
i<j

2ki · kjD(σi, σj)

}

×exp

{
−Tq2

1 −
∑
i

(k2
i − 2q1 · ki)τi −

∑
i<j

2ki · kjD(τi, τj)

}

(5.3)

where we have now also defined
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D(τi, τj) := τiθ(τj − τi) + τjθ(τi − τj) (5.4)

Next, we introduce Schwinger parameters α1, . . . , αN to exponentiate the connecting
propagators,

1

k2
i + µ2

=

∫ ∞
0

dαi e−αi(k
2
i+µ2) (5.5)

and we also (re-)exponentiate the second δ - function factor,

(2π)DδD
(
p1 + p2 +

∑
i

ki
)

=

∫
dv eiv·

(
p1+p2+

∑
i ki

)
(5.6)

The ki - integrals are now Gaussian, and performing them involves only the inverse
and the determinant of the symmetric N ×N - matrix AN with entries

ANii = σi + τi + αi

ANij = D(σi, σj) +D(τi, τj) (i 6= j)

(5.7)

The v - integral then also becomes Gaussian. Doing it one is left with the following
integral representation for the N - ladder (henceforth we will omit the global δ function
factor (2π)DδD(p1 + p2 + q1 + q2)):

〈φ̃(q1)φ̃(q2)φ̃(p1)φ̃(p2)〉
(N)

=
1

(4π)(N−1)D
2

λ2N

N !

∫ ∞
0

dS

∫ ∞
0

dT e−m
2(S+T )

×
∫ S

0
dσ1 · ·

∫ T

0
dτN

∫ ∞
0

dα1 · ·
∫ ∞

0
dαN

e−µ
2
∑
i αi

(aN detAN )
D
2

×exp

{
−Sp2

1 − Tq2
1 −

b2N
aN

+ (p1~σ − q1~τ) ·A−1
N · (p1~σ − q1~τ)

}
(5.8)

Here we have further defined

aN := ~1 ·A−1 ·~1
bN := p1 + p2 −~1 ·A−1

N · ~σ p1 +~1 ·A−1
N · ~τ q1

(5.9)

with ~1 := (1, . . . , 1), ~σ := (σ1, . . . , σN ) etc. It is understood that the matrix AN acts
trivially on Lorentz indices.

Note that (5.8) is still valid in D dimensions, and that it could be modified in an
obvious way to give different masses to the two N - propagators and/or to the internal
propagators.

Fourier transforming (5.8) we obtain the corresponding amplitude in x - space in
the form
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〈φq(x)φq(x̄)φq(y)φq(ȳ)〉
(N)

=
1

(4π)(N+2)D
2

λ2N

N !

∫ ∞
0

dS

∫ ∞
0

dT e−m
2(S+T )

×
∫ S

0
dσ1 · ·

∫ T

0
dτN

∫ ∞
0

dα1 · ·
∫ ∞

0
dαN

e−µ
2
∑
i αi

(detLdetAN )
D
2

×exp

{
−1

4

[
aN (y − ȳ)2 + (w, w̄)L−1(w, w̄)

]}
(5.10)

where

L =

(
S − ~σA−1

N ~σ ~σA−1
N ~τ

~σA−1
N ~τ T − ~τA−1

N ~τ

)
detL = (S − ~σA−1

N ~σ)(T − ~τA−1
N ~τ)− (~σA−1

N ~τ)2

w = x− y +~1A−1
N ~σ (y − ȳ)

w̄ = x̄− ȳ −~1A−1
N ~τ (y − ȳ)

(5.11)

Starting from equation (3.35) we obtain

〈φq(x)φq(x̄)φq(y)φq(ȳ)〉
(N)

=
1

(4π)(N+2)D
2

λ2N

N !

∫ ∞
0

dS

∫ ∞
0

dT e−m
2(S+T )− (x−y)2

4S
− (x̄−ȳ)2

4T

×
∫ S

0
dσ1 · ·

∫ T

0
dτN

∫ ∞
0

dα1 · ·
∫ ∞

0
dαN

e−µ
2
∑
i αi−

1
4
~rM−1

N ~r

(STdetMN )
D
2

(5.12)

where MN is the symmetric N ×N matrix

MNij = δijαi −∆S(σi, σj)−∆T (τi, τj)

(5.13)

and

~r = (y − ȳ)~1 +
x− y
S

~σ − (x̄− ȳ)

T
~τ (5.14)

We note that the two x-space representations (5.10),(5.12) can be related by

MN = AN −
~σ ⊗ ~σ
S
− ~τ ⊗ ~τ

T

M−1
N = A−1

N + L−1
11 A

−1
N · ~σ ~σ ·A−1

N − L−1
12 A

−1
N · ~σ ~τ ·A−1

N − L−1
21 A

−1
N · ~τ ~σ ·A−1

N + L−1
22 A

−1
N · ~τ ~τ ·A−1

N

(5.15)

which also implies that

STdetMN = detLdetAN (5.16)
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CHAPTER 6

PROJECTION ON THE LOWEST BOUND

STATE

We proceed to the simplest possible application of our formulas for the ladder graphs,
which is the extraction of the lowest bound state. Following [7], this can be done by
considering the limit of large timelike separation, i.e., t→∞, where

t =
1

2
(y4 + ȳ4 − x4 − x̄4) (6.1)

namely, defining our four – point Green’s function in the ladder approximation by G,
so that

G =

∞∑
N=0

GN =

∞∑
N=0

〈φq(x)φq(x̄)φq(y)φq(ȳ)〉
(N)

(6.2)

one has

G
t→∞' c0 e−m0t (6.3)

with m0 the lowest bound state mass. We can further simplify by setting

y = ȳ, x = x̄ (6.4)

so that t = y4 − x4 = ȳ4 − x̄4. Further, since the limit t → ∞ is taken at fixed spatial
separation, in this limit we can effectively set

t2 = (y − x)2 = (ȳ − x̄)2 (6.5)

Using this approximation in eqs. (5.10), (5.11) one finds

w = w̄ = −t~e (6.6)

where ~e := (1, 0, 0, 0), and
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GN =
1

(4π)(N+2)D
2

λ2N

N !

∫ ∞
0

dS

∫ ∞
0

dT e−m
2(S+T )

×
∫ S

0
dσ1 · ·

∫ T

0
dτN

∫ ∞
0

dα1 · ·
∫ ∞

0
dαN

e−µ
2
∑
i αi

(detLdetAN )
D
2

×exp

{
− t2

4detL

[
S + T − (~σ + ~τ)A−1

N (~σ + ~τ)
]}

(6.7)

Rescaling all integration variables S, T, σi, τi, αi by 1/m2, one arrives at (setting now
also D = 4)

GN =
m4

(4π)4

gN

N !

∫ ∞
0

dS

∫ ∞
0

dT e−(S+T )

×
∫ S

0
dσ1 · ·

∫ T

0
dτN

∫ ∞
0

dα1 · ·
∫ ∞

0
dαN

e−
µ2

m2

∑
i αi

(detLdetAN )2

×exp

{
−t̂2 1

detL

[
S + T − (~σ + ~τ)A−1

N (~σ + ~τ)
]}

(6.8)

where we have introduced the dimensionless parameters

g :=
( λ

4πm

)2
, t̂ := tm/2 . (6.9)

We now specialize to the φ3 - case, µ = m. Here it is useful to introduce the total
proper-time Λ,

Λ := S + T +

N∑
i=1

αi (6.10)

As usual, this variable can be integrated out in closed form: After another rescaling
of S, T, σi, τi, αi by Λ we have

GN =
m4

(4π)4

gN

N !

∫ ∞
0

dΛΛN−3 e−Λ

∫ 1

0
dS

∫ 1

0
dT

×
∫ S

0
dσ1 · ·

∫ T

0
dτN

∫ 1

0
dα1 · ·

∫ 1

0
dαN δ

(
1− S − T −

N∑
i=1

αi

) 1

(detLdetAN )2

×exp

{
− 1

Λ
t̂2

1

detL

[
S + T − (~σ + ~τ)A−1

N (~σ + ~τ)
]}

(6.11)

The Λ - integral can be done using

∫ ∞
0

dxxn e−x−
z
4

1
x = 2−nz

n+1
2 K−n−1(

√
z) (6.12)
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where Kn is the modified Bessel function of the second kind. Thus we have

GN = 2
m4

(4π)4

gN

N !
t̂N−2

∫ 1

0
dS

∫ 1

0
dT

∫ 1

0
dα1 · ·

∫ 1

0
dαN δ

(
1− S − T −

N∑
i=1

αi

)
×
∫ S

0
dσ1 · ·

∫ T

0
dτN

γN−2K−N+2(2γt̂)

(detLdetAN )2

(6.13)

with

γ :=

√
S + T − (~σ + ~τ)A−1

N (~σ + ~τ)

detL
(6.14)

In the limit t→∞, we can use the asymptotic expansion of Kn(z),

Kn(z) ∼ e−z
√
π

2

√
1

z

(
1 +O(1/z)

)
(6.15)

leading to

GN ∼ m4

(4π)4

gN

N !

√
π t̂N−5/2

∫ 1

0
dS

∫ 1

0
dT

∫ 1

0
dα1 · ·

∫ 1

0
dαN δ

(
1− S − T −

N∑
i=1

αi

)
×
∫ S

0
dσ1 · ·

∫ T

0
dτN

γN−5/2 e−2γt̂

(detLdetAN )2

(6.16)

One should now analyze the function γ; presumably it is non-negative and the leading
contributions at large t̂ come from regions in the integrand where it tends to zero. We
return to the general case of two arbitrary different masses. If one uses (5.12) instead
of (5.10), then one obtains the same (6.8) rewritten as

GN =
m4

(4π)4

gN

N !

∫ ∞
0

dS

∫ ∞
0

dT e−(S+T )

×
∫ S

0
dσ1 · ·

∫ T

0
dτN

∫ ∞
0

dα1 · ·
∫ ∞

0
dαN

e−
µ2

m2

∑
i αi

(STdetMN )2

×exp

{
−t̂2
[

1

S
+

1

T
+
(~σ
S
− ~τ

T

)
M−1
N

(~σ
S
− ~τ

T

)]}
(6.17)

Here it seems preferable to also rescale σi = Sui, τi = Tvi, leading to

GN =
m4

(4π)4

gN

N !

∫ ∞
0

dS SN−2

∫ ∞
0

dT TN−2 e−(S+T )

×
∫ 1

0
du1 · ·

∫ 1

0
dvN

∫ ∞
0

dα1 · ·
∫ ∞

0
dαN

e−
µ2

m2

∑
i αi

(detM̂N )2

×exp

{
−t̂2
[

1

S
+

1

T
+ (~u− ~v)M̂−1

N (~u− ~v)

]}
(6.18)
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where now

M̂Nij = δijαi − S∆1(ui, uj)− T∆1(vi, vj)

(6.19)

Eq. (6.13) now takes the form

GN = 2
m4

(4π)4

gN

N !
t̂N−2

∫ 1

0
dS SN−2

∫ 1

0
dT TN−2

∫ 1

0
dα1 · ·

∫ 1

0
dαN δ

(
1− S − T −

N∑
i=1

αi

)
×
∫ 1

0
du1 · ·

∫ 1

0
dvN

γ̂N−2K−N+2(2γ̂t̂)

(detM̂N )2

(6.20)

with

γ̂ =

√
1

S
+

1

T
+ (~u− ~v)M̂−1

N (~u− ~v) (6.21)

We return to (6.18), and perform the following further rescalings

S → t̂S, T → t̂T, αi → t̂αi (6.22)

This yields

GN =
m4

(4π)4t̂2
(t̂g)N

N !

∫ ∞
0

dS SN−2

∫ ∞
0

dT TN−2

×
∫ 1

0
du1 · ·

∫ 1

0
dvN

∫ ∞
0

dα1 · ·
∫ ∞

0
dαN

1

(detM̂N )2

×exp

{
−t̂
[
S + T +

1

S
+

1

T
+
µ2

m2

∑
i

αi + (~u− ~v)M̂−1
N (~u− ~v)

]}
(6.23)
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SADDLE POINT APPROXIMATION

Further, we will now use the large t̂ limit to eliminate, at fixed S, T, αi, the vi integrals
by a gaussian approximation around the point ~v = ~u. Around the point ~v = ~u the
term containning ~v − ~u in the exponential in equ. (6.23) reduces to unity. The result
we have.

GN =
m4

(4π)4t̂2
(πt̂g2)N/2

N !

∫ ∞
0

dS SN−2

∫ ∞
0

dT TN−2

×
∫ 1

0
du1 · ·

∫ 1

0
duN

∫ ∞
0

dα1 · ·
∫ ∞

0
dαN

1

(detM̄N )3/2

×exp

{
−t̂
[
S + T +

1

S
+

1

T
+
µ2

m2

∑
i

αi

]}
(7.1)

where now

M̄Nij = δijαi − (S + T )∆1(ui, uj)

(7.2)

After a further rescaling

αi → (S + T )αi (7.3)

and summation over N , we obtain the following representation for the full Green’s
function:

G =
m4

(4π)4t̂2

∫ ∞
0

dS

S2

∫ ∞
0

dT

T 2
exp

{
−t̂
[
S + T +

1

S
+

1

T

]}
×
∞∑
N=1

(πt̂g2)N/2

N !

[
ST

(S + T )1/2

]N
cN

(
t̂(S + T )µ2/m2

)
(7.4)

where

cN (x) =

∫ 1

0
du1 · · ·

∫ 1

0
duN

∫ ∞
0

dα1 · ·
∫ ∞

0
dαN

e−x
∑
i αi

(detM̃N )3/2
(7.5)
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M̃Nij = δijαi −∆1(ui, uj)

(7.6)

The integrals in (60) are convergent, however this is not very transparent the way
they are written. This motivates the following transformations. First, let us rewrite
the matrix M̂N as

M̃N = DN (1l−RN ) (7.7)

where DN is the diagonal part of M̃N

DNij := δij(αij −∆1(ui, uj)) = δij(αi + ui(1− ui)) (7.8)

and

RN := ∆
′
1D
−1 (7.9)

where ∆′1 denotes the matrix ∆1ij with its diagonal terms deleted. Then, we perform
a change of variables from αi to βi

βi :=

√
−∆1ii

αi −∆1ii
(7.10)

The integrals (60) then turn into

cN (x) = 2N
∫ 1

0

du1√
u1(1− u1)

· · ·
∫ 1

0

duN√
uN (1− uN )

∫ 1

0
dβ1 · · ·

∫ 1

0
dβN

exp
−x

∑
i(−∆ii)(

1

β2
i

−1)

det
3
2 (1l−RN )

(7.11)

Note that now D−1
Nij = δijβ

2
i /(−∆1ii).

Further, since the integrand is permutation symmetric the full ui integrals can be
replaced by N ! times the integral over the ordered sector u1 ≥ u2 ≥ u3 · · · ≥ uN . Thus
we define

c̄N (x) :=
cN (x)

2NN !
=

∫ 1

0

du1√
u1(1− u1)

∫ u1

0

du2√
u2(1− u2)

· · ·
∫ uN−1

0

duN√
uN (1− uN )

×
∫ 1

0
dβ1 · · ·

∫ 1

0
dβN

exp
−x

∑
i(−∆ii)(

1

β2
i

−1)

det
3
2 (1l− RN)

(7.12)

For µ = 0, case functions c̄N (x) reduce to numbers i.e.

c̄N (0) =: c̄N (7.13)

The first coefficient is

c̄1 =

∫ 1

0

du1√
u1(1− u1)

= π (7.14)
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For N > 1, inspection of the determinant det(1l−RN) shows that it simplifies consider-
ably if, instead of u1, . . . , uN one writes it in terms of new variables z2, . . . , zN defined by

zi :=

√
ui(1− ui−1)

ui−1(1− ui)
(7.15)

Changing variables from ui to zi for i = 2,. . .,N , we obtain

c̄N = 2N−1

∫ 1

0
dz2

∫ 1

0
dz3 · · ·

∫
dzNMN

∫ 1

0
dβ1 · · ·

∫ 1

0
dβN

1

det
3
2 (1l− RN)

(7.16)

where R is now written as a function of β1, . . . , βN , z2, . . . , zN and MN is a function of
z2 . . . , zN defined as

MN :=
1

z2z3 · · · zN

∫ 1

0
du1

√
u2(1− u2)u3(1− u3) · · ·uN (1− uN )

u1(1− u1)
(7.17)

It is understood that here first u2, . . . , uN are, backwards starting from uN , trans-
formed to z2, . . . , zN via

ui =
ui−1z

2
i

1− ui−1(1− z2
i )

(7.18)

(i ≥ 2) and then one performs the u1 integral. For N = 2, 3, one finds

M2 =
2 log z2

z2
2 − 1

(7.19)

M3 =
π

(z2 + 1)(z3 + 1)(z2z3 + 1)
(7.20)

Now we write an expression for R2

R2 =

[
0 (u1u2 + |u1−u2|

2 − u1+u2
2 ) λ2

u2(1−u2)

(u1u2 + |u1−u2|
2 − u1+u2

2 ) λ1
u1(1−u1) 0

]
(7.21)

A few main terms forMN and RN are given in appendix B.

After this transformation, the integral for the second coefficient can be done in closed
form:

c̄2 = 2

∫ 1

0
dz2M2

∫ 1

0
dβ1

∫ 1

0
dβ2

1

(1− β2
1β

2
2z

2
2)

3
2

=
π3

6
(7.22)
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Some more coefficients we have obtained by numerical integration:

Tab. 7.1: The coefficients c̄n.

n 1 2 3 4 5 6 7 8 9 10 11
c̄n π π3

6 5.9319 5.3402 4.0192 2.6243 1.5349 0.8044 0.378 0.175 0.0761
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EXPANDING AND MATCHING

Let us now ask what the asymptotic behavior of the coefficients c̄n should be to get
the expected correction to the ground state mass. For µ = 0 in the nonrelativistic
limit, the exact bound state energy would be, (8.1), (8.2)

Eb =
1

4
mα2 (8.1)

where

α =
λ2

16πm2
= πg (8.2)

This corresponds to a large t̂ exponential factor

e−Et = e−(2m−Eb)t = e−(2m−Eb)2t̂/m = e(−4+ 1
2
π2g2)t̂ (8.3)

This should become the exact answer for small g. Now, we know that the trivial
exponent −4t̂ corresponds to a saddle point at S = T = 1; thus at least for small g

it should be a good approximation to set S = T = 1 also in the prefactor
[

ST
(S+T )1/2

]N
.

This leaves us with the series

∑
N

cN
N !

(πt̂
2

)N/2
gN =

∑
N

c̄N
(
2πt̂
)N/2

gN
!

= e
1
2
π2g2 t̂ (8.4)

From the Taylor series

∞∑
n=0

xn

Γ(1 + n/2)
= (1 + Erf(x)) ex

2 x→∞∼ 2 ex
2

(8.5)

we then conclude that the c̄N should have the asymptotic behavior

c̄N
N→∞∼ c∞β

N

Γ(1 +N/2)
(8.6)

which would lead to an exponential
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e2πβ2g2 t̂ (8.7)

Comparison with (8.4) yields

β
!

=

√
π

2
= 0.886 (8.8)

To compare with our numerical results for the c̄N , we note that from (8.6) it follows
that the sequence

βN :=
c̄N+1Γ

(
1 + N+1

2

)
c̄NΓ

(
1 + N

2

) (8.9)

should converge to β for N →∞. From table 7.1 we find

Tab. 8.1: The coefficients βn.

n 1 2 3 4 5 6 7 8 9 10
βn 1.856 1.525 1.355 1.251 1.179 1.134 1.081 1.035 1.061 1.043

In fig. 8.1 we graph the coefficients βn together with the supposed asymptotic limit
β.

2 4 6 8 10

0.5

1.0

1.5

Fig. 8.1: The coefficients βn

The graph clearly suggests that, if there is convergence at all, it will be to a higher
value than β.

To understand what this means, let us now return to the coefficients c̄n of table
7.1, and plot the combination

c̃N := Γ

(
1 +

N

2

)
c̄N
βN

(8.10)

If (8.6) were true, the coefficients would converge to the constant c∞; instead we find
(see fig. 8.2) a curve which looks parabolic.
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2 4 6 8 10

20

40

60

80

Fig. 8.2: The coefficients c̃n

Therefore, let us look at yet another set of coefficients c′N ,

c′N :=
c̃N
N2

(8.11)

2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 8.3: The coefficients c′n

These modified coefficients indeed seem to converge to a constant (see fig. 8.3); let us
call this constant c′∞. Thus we now have, instead of (8.6), the asymptotic behaviour

c̄N
N→∞∼ c′∞N

2βN

Γ(1 +N/2)
(8.12)

Fortunately, this does not change anything essential: instead of (8.5) we now have

∞∑
n=0

n2 xn

Γ(1 + n/2)

x→∞∼ 8x4 ex
2

(8.13)

So, there is no modification of the exponent, only of the prefactor, which does not
interest us right now1

1(however, it is curious to note that this change of the prefactor precisely removes the 1/t̂2 in the
master formula (7.4))
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Using eq. (8.12) , we obtain, in analogy to eq.(8.9), an expression

β′N =
(N + 1)2

N2
βN =

c̄N+1N
2Γ
(
1 + N+1

2

)
c̄N (N + 1)2Γ

(
1 + N

2

) (8.14)

Should converge to β for N →∞, where β = 0.886 from eq. (8.8)

Tab. 8.2: The coefficients β′n.

n 1 2 3 4 5 6 7 8 9 10
β′n 0.464 0.678 0.762 0.801 0.818 0.833 0.828 0.818 0.859 0.861

This table forβ′N is generated by substituting values for βN in eq. (8.14).

Β = 0.886

2 4 6 8 10

0.5

1.0

1.5

Fig. 8.4: The coefficients β′N .

Fig. 8.4 the coefficient β′n is plotted for various values of N . The graph shows β′N
converging to value β for N →∞.

Assuming that (8.6) with (8.8) are true, let us now undo the assumptions of small
g and of the saddle point at S = T = 1 and return to (7.4). The asymptotic summation
formula (8.5) with (8.8) now leads to a total exponential factor

exp

[
−t̂
(
S + T +

1

S
+

1

T
− π2g2 S

2T 2

S + T

)]
(8.15)

As long as g2 < 1/3π2, one finds a saddle point (local maximum) of the exponent at
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S = T =

√
2

3

1

πg

√
1−

√
1− 3πg (8.16)

with saddle point value

exp

{
−t̂4
√

2

3

[(
1 +

√
1− 3π2g2

)−1/2

+

(
1 +

√
1− 3π2g2

)1/2]}
(8.17)

From (6.3), (6.9) this gives for the lowest bound state mass m0

m0

m
=

2
√

2

3

[(
1 +

√
1− 3π2g2

)−1/2

+

(
1 +

√
1− 3π2g2

)1/2]
(8.18)

As g2 increases from zero to its maximal value 1/3π2, the result (8.18) for this mass
m0 decreases monotonically from 2m to 4

√
2

3 m = 1.886m. An expansion of (8.18) in g
yields

exp

[
−t̂
(

4− π2g2

2
− 9

32
(π2g2)2 − 81

256
(π2g2)3 − . . .

)]
(8.19)

Conjectured formula for the lowest bound state mass,

m0

m
= 2− π2g2

4
− 9

64
(π2g2)2 − 81

512
(π2g2)3 − . . . (8.20)

In the second term of the expansion we find again, of course, the nonrelativistic limit
(8.1) of the binding energy, which we have already used as an input for our matching
procedure; but the order g4 term is already new. It is remarkable, that in the expan-
sion (8.20) of the bound state mass in powers of g no term of the order g3 ln g appears,
as it would be the case for the corresponding result in the Wick-Cutkosky model,
i.e., for the ladder approximation of the Bethe-Salpeter equation in the same model
theory [43]. As we have mentioned before in the introduction, such a contribution is
generally considered to be unphysical.

Our result for the mass of the lowest bound state may be compared to the result
of the relativistic eikonal approximation or Todorov’s equation [33],[34], in our nota-
tion

m0

m
=
√

2

(
1 +

√
1− π2g2

)1/2

m0

m
= 2− π2g2

4
− 5

64
(π2g2)2 − . . . (8.21)
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In terms of diagrams, the eikonal approximation sums up all ladder and crossed lad-
der diagrams, but neglects any self-energy contributions and vertex corrections just
as in our approach. To reproduce the contributions of the ladder and crossed ladder
diagrams correctly up to the order g4 ([35]). The coefficients of the g4− term in the
expansion of (8.21) of the bound state mass in powers of the coupling constant is
somewhat smaller (in absolute value) than in our approximation, but it has the same
sign.

Finally, we compare the maximal value of the coupling constant, g2 = 1
3π2 , to the

critical value of the variational worldline approximation ([35]). The latter value is
(approximately) α = 0.814 (without self- energy and vertex corrections, for a massless
exchanged particle), somewhat larger than our value α = πg = 1√

3
= 0.577. The exis-

tence of a critical coupling constant isattributed to the instability of the vacuum in a
scalar field theory ([35]).
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N HALF LADDER IN X-SPACE

Fig. 9.1: Three point function.

Here we study the N - ladder in x - space, that is, a scalar propagator from y
to x with N propagators attached, connecting it to points z1, . . . , zN . In fig. 9.1 we
show the case N = 1, where x, y and z are the three points in x-space, λ the order of
interaction, ϕ is the field associated with the propagator between x and y with mass
m and χ is the field associated with the connecting propagator between the vertex w
and z with mass µ.
The starting point is the worldline representation of the dressed propagator,

〈0|Tφq(x)φq(y)|0〉 =
1

− +m2 + λφ(x)

=

∫ ∞
0
dT

∫ x(T )=x

x(0)=y

Dx e−
∫ T
0 dτ

[
1
4
ẋ2+m2+λφ(x)

]
(9.1)

As in chapter 3, we will generally use the shift

xµ(τ) =
[
yµ + (x− y)µ

τ

T

]
+ qµ(τ) (9.2)

where the first term on the rhs is the equation of a straight line and qµ(τ) represents
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the quantum fluctuation. The path integral over qµ(τ) will then be calculated using
the worldline propagator ∆T ,

〈zµ(τ)zν(σ)〉 = −2δµν∆T (τ, σ)

∆T (τ, σ) =
τσ

T
− τθ(σ − τ)− σθ(τ − σ) =

τσ

T
+
|τ − σ|

2
− τ + σ

2

∆T (τ, τ) =
τ2

T
− τ .

(9.3)

From the propagator with one interaction 3.26 we can get the three-point function
replacing eik·x(τ) by

∫
d4k

eik·(x(τ)−z)

k2 + µ2
(9.4)

where x(τ) is the interaction point and z is a fixed point, as shown in the 9.1 Now,
making use of the Schwinger parameter α to exponentiate the connecting propagator,

1

k2 + µ2
=

∫ ∞
0

dα e−α(k2+µ2) (9.5)

we have

∫
d4k

e−ik·z

k2 + µ2
=

∫
d4k

∫ ∞
0

dα e−(ik·z+α(k2+µ2)) (9.6)

This leads to

Γ(x, y, z,m, µ) = −λ
∫ ∞

0

dT

(4πT )
D
2

e−
(x−y)2

4T
−m2T

∫
dDk

(2π)D

∫ ∞
0

dα e−(ik·z+α(k2+µ2))

×
∫ T

0
dτ eik·yeik·(x−y) τ

T e−k
2(τ− τ

2

T
) (9.7)

Performing the gaussian k-integral and rescaling τ = Tu as well as α = T α̂, we obtain

Γ(x, y, z,m, µ) = − λ

(4π)D

∫ ∞
0

dT

TD−2
e−

(x−y)2

4T
−m2T

∫ ∞
0

dα̂ e−α̂µ
2T

×
∫ 1

0
du

1

[α̂+ u(1− u)]
D
2

e
−(y−z+(x−y)u)2

4T (α̂+u(1−u)) (9.8)

Now, we specialize to the massless case, m = µ = 0. The T - integral then becomes
elementary, and one gets
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Γ(x, y, z, 0, 0) = − λ

(4π)D
Γ(D − 3)

∫ 1

0
du

∫ ∞
0

dα̂

× 1

[α̂+ u(1− u)]
D
2

4D−3[
(x− y)2 + [y−z+(x−y)u]2

α̂+u(1−u)

]D−3

Further simplification is possible if we now also assume D = 4. This makes the α̂ -
integral elementary, and results in

Γ(x, y, z, 0, 0) = − λ

64π4

∫ 1

0
du

1

uc+ (1− u)b− u(1− u)a
log
[uc+ (1− u)b

u(1− u)a

]
(9.9)

where we have now abbreviated

(x− y)2 = a (y − z)2 = b (x− z)2 = c (9.10)

The u - integral can be reduced to the standard integral

∫
du

ln(Au+B)

u− C = ln(Au+B) ln
(

1− Au+B

AC +B

)
+ Li2

(Au+B

AC +B

)
(9.11)

The final result is then easy to identify with the well-known representation of the
massless triangle function due to Ussyukina and Davydychev [44],

Γ(x, y, z, 0, 0) = 4π4λ
1

a
Φ(1)

( b
a
,
c

a

)
(9.12)

where

Φ(1)(x, y) ≡ 1

Λ

{
2
(

Li2(−ρx) + Li2(−ρy)
)

+ ln
y

x
ln

1 + ρy

1 + ρx
+ ln(ρx) ln(ρy) +

π2

3

}
(9.13)

with

Λ ≡
√

(1− x− y)2 − 4xy,

ρ ≡ 2(1− x− y + Λ)−1.

(9.14)

After this warm-up, we proceed to the much more challenging N = 2 case. Eq. (9.7)
generalizes straightforwardly to
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We proceed to the two-rung case. We now have to replace

eikixi(τi) −→ eiki(x(τi)−zi)

k2
i + µ2

(9.15)

for i = 1, 2. Using again

1

k2
i + µ2

=

∫ ∞
0

dαie
−αik2

i+µ2
(9.16)

Fig. 9.2: Four-point function
.

Γ(x, y, z1, z2,m, µ) = (−λ)2

∫ ∞
0

dT T 2

(4πT )D/2
e−

(x−y)2

4T
−m2T

∫
dDk1

(2π)D

∫
dDk2

(2π)D
e−i(k1·z1+k2·z2)

×
∫ ∞

0
dα1e

−α1(k2
1+µ2)

∫ ∞
0

dα2 e
−α2(k2

2+µ2)

∫ 1

0
du1

∫ 1

0
du2

×eik1·[y+(x−y)u1]eik2·[y+(x−y)u2]eT
[
k2

141(u1,u1)+k2
241(u2,u2)+2k1·k241(u1,u2)

]
(9.17)

Here we have already rescaled τi = Tui, i = 1, 2. The ordered sector u1 < u2 of this
integral corresponds to the first diagram shown in 9.1 (for N = 2), the sector u1 > u2

to the second one.

As before, we first do the gaussian k1,2 - integrals, and obtain (in the following we
abbreviate 41(ui, uj) by 4ij)
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Γ(x, y, z1, z2,m, µ) =
λ2

(4π)D

∫ ∞
0

dT T 2

(4πT )D/2
e−

(x−y)2

4T
−m2T

∫ 1

0
du1du2

∫ ∞
0

dα1dα2e
−(α1+α2)µ2

×
exp
{
− (α1−T411)β2

2+(α2−T422)β2
1+2T412β1·β2

4
[
(α1−T411)(α2−T422)−T 242

12

] }
[
(α1 − T411)(α2 − T422)− T 242

12

]D
2

(9.18)

where we have defined

βi := y − zi + ui(x− y) (9.19)

Specializing to the massless case m = µ = 0, and changing from αi to α̂i via

αi = T (α̂i +4ii), i = 1, 2, (9.20)

we can do the T - integral. This leads to

Γ(x, y, z1, z2, 0, 0) =
λ2

(4π)
3
2
D

Γ
(

1 +
3

2
(D − 4)

)∫ 1

0
du1du2

∫ ∞
−411

dα̂1

∫ ∞
−422

dα̂2

× 1[
α̂1α̂2 −∆2

12

]D
2

[
4

(x− y)2 +
α̂1β2

2+α̂2β2
1+2∆12β1·β2

α̂1α̂2−∆2
12

]1+ 3
2

(D−4)

(9.21)

Setting D = 4, this becomes

Γ(x, y, z1, z2, 0, 0) =
4λ2

(4π)6

∫ 1

0
du1du2

∫ ∞
−411

dα̂1

∫ ∞
−422

dα̂2

× 1[
α̂1α̂2 −∆2

12

][
(x− y)2(α̂1α̂2 −∆2

12) + α̂1β2
2 + α̂2β2

1 + 2∆12β1 · β2

]
(9.22)

Performing the α̂1 - integral, which is elementary, we find

Γ(x, y, z1, z2, 0, 0) =
4λ2

(4π)6

∫ 1

0
du1du2

∫ ∞
−422

dα̂2

×
ln

{
α̂2

[
α̂2(β2

1−∆11(x−y)2)+2∆12β1·β2−∆11β2
2−∆2

12(x−y)2
]

(α̂2(−∆11)−∆2
12)(α̂2(x−y)2+β2

2)

}
(α̂2β1 + ∆12β2)2

(9.23)
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The α̂2 - integral is still a straightforward one. Introducing the zeroes α̂± of the
quadratic form in the denominator,

α̂± := −∆12

β2
1

[
β1 · β2 ± i

√
β2

1β
2
2 − (β1 · β2)2

]
(9.24)

we can write the result as

Γ(x, y, z1, z2, 0, 0) =
4λ2

(4π)6

∫ 1

0
du1du2

1

(α̂+ − α̂−)

[
ln

(
−∆11a+ β2

1

−∆11a

)
ln

(
−∆22 − α̂−
−∆22 − α̂+

)

+I(0) + I

(
2∆12β1 · β2 −∆11β

2
2 −∆2

12a

β2
1 −∆11a

)
− I
(∆2

12

∆11

)
− I
(β2

2

a

)]
(9.25)

where

I(A) := (α̂+ − α̂−)

∫ ∞
−422

dα̂2
ln(α̂2 +A)

(α̂2 − α̂+)(α̂2 − α̂−)

=

{
Li2

(A−∆22

A+ α̂−

)
+ ln(A−∆22) ln

( α̂− + ∆22

α̂− +A

)
+

1

2
ln2
(
− 1

A+ α̂−

)}
− (α̂− → α̂+) (9.26)

and we have abbreviated a ≡ (x − y)2 as before. To rewrite the new integrand com-
pletely in terms of the external Lorentz invariants, we further introduce

bi := (x− zi)2

ci := (y − zi)2

d := (z1 − z2)2 (9.27)

In terms of those variables,

β2
i = uibi + (1− ui)ci − ui(1− ui)a

2β1 · β2 = (2u1u2 − u1 − u2)a+ u2b1 + u1b2 + (1− u2)c1 + (1− u1)c2 − d
(9.28)

Although we are not able to perform the remaining two integrals analytically, the rep-
resentation (9.25) is the most explicit representation available for this integral which
plays an important role in SYM theory [45, 46, 47].



59

For the general N-rung case, the formulas (9.7), (9.17) generalize immediately to

Γ(x, y, z1, z2, . . . , zN ) = (−λ)N
∫ ∞

0

dT TN

(4πT )D/2
e−

(x−y)2

4T
−m2T

∫
dDk1

(2π)D
· · · d

DkN
(2π)D

e−i
∑
i=1 ki·zi

×
∫
dα1 · · · dαNe−

∑N
i=1 αi(k

2
i+µ2)

∫
du1 . . . duNe

i
∑N
i=1 ki·(y+(x−y)ui)

×exp
[
T

N∑
i,j=1

∆ijki · kj
]

(9.29)
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CHAPTER 10

CONCLUSIONS

To summarize, in this thesis we have used the worldline formalism to derive integral
expression for three classes of amplitudes - the N− propagators, N− half ladders -
in scalar field theory involving an exchange of N momenta, and in each case have
given a compact expression combining the N ! Feynman diagrams contributing to the
amplitude. For the N− propagators and N− ladders we have given these representa-
tions in both x and (off-shell) momentum space, for the N− half-ladders in x− space
only. These amplitudes are not only of interest in their own right, but being off-shell,
can also be used as building blocks for many more complex amplitudes.

For the N half ladders in x−space, eq. (9.9) is a new integral representation for
the famous massless triangle function ([44]). The four-point integral corresponding
to N = 2 eq. (9.25) figures prominently in N = 4 SYM theory [45, 46, 47, 48] but is
presently still not known in closed form. We have achieved a new two-parameter inte-
gral representation for this integral, which is not only more explicit than other known
representations, but also promising as a starting point for a closed form calculation.

We have derived a compact expression for the sum of all ladder graphs with N rungs,
including all possible crossings of the rungs, and we have used this to extract an
approximate formula for the mass of the lowest-lying bound state, explicitly for the
case of a massless particle exchange between the constituents. Technically, we apply
a saddle point approximation to our formula for the N-rung ladders, after summing
over all N .

In our approach the truncation to the non-crossed ladder graphs is induced naturally
by Gaussian approximation −→v =←−u , rather than done ad hoc from the beginning. Our
final result (8.18) for the mass of the lowest bound state does not display any obvious
inconsistencies.

In particular, in the expansion (8.20) of the bound state mass in powers of g no
term of the order g3 ln g appears, as in the case for the corresponding result in the
Wick-Cutkosky model, i.e., for the ladder approximation of the Bethe-Salpeter equa-
tion in the same model theory [43]. Such contribution is considered unphysical.

Equation (8.18) is similar to the result of the relativistic eikonal approximation ([33],[34]).
In terms of diagrams, the eikonal approximation sums up all ladder and crossed
ladder diagrams, but neglects any self-energy contributions and vertex corrections
just as in our approach. The resulting coefficients of the g4− term in the expansion
of (8.21) of the bound state mass in powers of the coupling constant is somewhat
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smaller (in absolute value) than in our approximation, but it has the same sign.

Finally, we compare the maximal value of the coupling constant, g2 = 1
3π2 , to the

critical value of the variational worldline approximation ([35]). The latter value is
(approximately) α = 0.814 (without self- energy and vertex corrections, for a massless
exchanged particle), somewhat larger than our value α = πg = 1√

3
= 0.577. The exis-

tence of a critical coupling constant is attributed to the instability of the vacuum in a
scalar field theory ([35]).

It would be straightforward to extend our various master formulas to the case of
scalar QED (i.e. scalar lines and photon exchanges). In the spinor QED case (fermion
lines and photon exchanges) closed-form expression for general N could still be
achieved using the worldline super-formalism ([9]), however at the cost of introducing
additional multiple Grassman integrals. For an eventual extension to the nonabelian
case it may turn out essential to work with a path integral representation of the color
degrees of freedom, such as the one given in ([49]), rather than with explicit color fac-
tors. Finally even a closed-form treatment of ladder graphs involving the exchange of
gravitons between the scalars or spinors - a completely hopless task in the Feynman
diagram approach due to the existence of vertices involving an arbitrary number of
gravitons - may be feasible in the worldline formalism along the lines of ([28, 29]).



APPENDIX A

THE VARIABLES cN , MN AND RN

In the representation for the full Green’s function coefficient cN is given by

cN (x) =

∫ 1

0
du1 · · ·

∫ 1

0
duN

∫ ∞
0

dα1 · ·
∫ ∞

0
dαN

e−x
∑
i αi

(detM̃N )3/2
(A.1)

M̃Nij = δijαi −∆1(ui, uj)

(A.2)

c̄N = 2N−1

∫ 1

0
dz2

∫ 1

0
dz3 · · ·

∫
dzNMN

∫ 1

0
dβ1 · · ·

∫ 1

0
dβN

1

det
3
2 (1l− RN)

(A.3)

Here RN given by eq.(7.7), (7.8) and (7.9) see chapter 7. MN is a function of z2, . . . , zN
defined as

MN :=
1

z2z3 · · · zN

∫ 1

0
du1

√
u2(1− u2)u3(1− u3) · · ·uN (1− uN )

u1(1− u1)
(A.4)

where z2, , zN are defined in terms of u1, . . . , uN as

zi :=

√
ui(1− ui−1)

ui−1(1− ui)
(A.5)

u2, . . . , uN are, backwards starting from uN , transformed to z2, . . . , zN via

ui =
ui−1z

2
i

1− ui−1(1− z2
i )

(A.6)

for (i ≥ 2) one performs the u1 integral. One findsMN for N = 2, 3,

M2 =
2 log z2

z2
2 − 1

(A.7)

M3 =
π

(z2 + 1)(z3 + 1)(z2z3 + 1)
(A.8)
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M4 =
(2z3(−z2

2(−1 + z2
3)(−1 + z2

4)(−1 + z2
3z

2
4) log[z2]

((−1 + z2
2)(−1 + z2

3)(−1 + z2
2z

2
3)(−1 + z2

4)(−1 + z2
3z

2
4)(−1 + z2

2z
2
3z

2
4))

+
(−1 + z2

2)((−1 + z2
4)(−1 + z2

2z
4
3z

2
4) log[z3]− (−1 + z2

3)(−1 + z2
2z

2
3)z2

4 log[z4])))

((−1 + z2
2)(−1 + z2

3)(−1 + z2
2z

2
3)(−1 + z2

4)(−1 + z2
3z

2
4)(−1 + z2

2z
2
3z

2
4))

(A.9)

Similarly the expression for R2, R3 and R4 can be written as

R2 =

[
0 (u1u2 + |u1−u2|

2 − u1+u2
2 ) λ2

u2(1−u2)

(u1u2 + |u1−u2|
2 − u1+u2

2 ) λ1
u1(1−u1) 0

]
(A.10)

R3 =

 0 (u1u2 + |u1−u2|
2 − u1+u2

2 ) λ2

u2(1−u2)
(u1u3 + |u1−u3|

2 − u1+u3

2 ) λ3

u3(1−u3)

(u2u1 + |u2−u1|
2 − u2+u1

2 ) λ1

u1(1−u1)
0 (u2u3 + |u2−u3|

2 − u2+u3

2 ) λ3

u3(1−u3)

(u3u1 + |u3−u1|
2 − u3+u1

2 ) λ1

u1(1−u1)
(u3u2 + |u3−u2|

2 − u3+u2

2 ) λ2

u2(1−u2)
0

(A.11)

R4 =


0 (u1u2 +

|u1−u2|
2

− u1+u2
2

)
λ2

u2(1−u2)
(u1u3 +

|u1−u3|
2

− u1+u3
2

)
λ3

u3(1−u3)
(u1u4 +

|u1−u4|
2

− u1+u4
2

)
λ4

u4(1−u4)

(u2u1 +
|u2−u1|

2
− u2+u1

2
)

λ1
u1(1−u1)

0 (u2u3 +
|u2−u3|

2
− u2+u3

2
)

λ3
u3(1−u3)

(u2u4 +
|u2−u4|

2
− u2+u4

2
)

λ4
u4(1−u4)

(u3u1 +
|u3−u1|

2
− u3+u1

2
)

λ1
u1(1−u1)

(u3u2 +
|u3−u2|

2
− u3+u2

2
)

λ2
u2(1−u2)

0 (u3u4 +
|u3−u4|

2
− u3+u4

2
)

λ4
u4(1−u4)

(u4u1 +
|u4−u1|

2
− u4+u1

2
)

λ1
u1(1−u1)

(u4u2 +
|u4−u2|

2
− u4+u2

2
)

λ2
u2(1−u2)

(u4u3 +
|u4−u3|

2
− u4+u3

2
)

λ3
u3(1−u3)

0

 (A.12)



APPENDIX B

COMPARISON WITH FEYNMAN

DIAGRAMS

Let’s consider the term appearing in (3.35)

N !

∫ 1

0
du1 · ·

∫ 1

0
duN

[
p2

1 +m2 +
∑
i

(k2
i + 2p1 · ki)ui +

∑
i<j

2ki · kj
(
uiθ(uj − ui) + ujθ(ui − uj)

)]−N−1

(B.1)

The integration region can be split into N ! subregions specified by a unique ordering
σ(i) of the indices i = 1, 2, .., N so that ti = uσ(i) are ordered as 1 ≥ t1 ≥ t2 ≥ ... ≥ tN ≥ 0.
Then each integration subregion contributes

N !

∫ 1

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 · ·

∫ tN−1

0
dtN

[
p2

1 +m2 +
∑
i

(k2
σ(i) + 2kσ(i) · p1)ti

+
∑
i<j

2kσ(i) · kσ(j)

(
ti θ(tj − ti)︸ ︷︷ ︸

=0

+tj θ(ti − tj)︸ ︷︷ ︸
=1

)]−N−1

= N !

∫ 1

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 · ·

∫ tN−1

0
dtN

[
p2

1 +m2 +
∑
i

(k2
σ(i) + 2kσ(i) · p1)ti +

∑
i<j

2kσ(i) · kσ(j)tj

]−N−1

= N !

∫ 1

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 · ·

∫ tN−1

0
dtN

[
p2

1 +m2 +
∑
i

[
(k2
σ(i) + 2kσ(i) · (p1 +

i−1∑
j=1

kσ(j))
]
ti

]−N−1

=
1

p2
1 +m2

1

(p1 + kσ(1))2 +m2

1

(p1 + kσ(1) + kσ(2))2 +m2
· · · 1

(p1 +
∑N

i=1 kσ(i))2 +m2
(B.2)

This shows that in each internal propagator flows the momentum as implied by mo-
mentum conservation at each vertex. The last integration above has been carried out
by using the formula

1

A0A1A2 · · ·AN
= N !

∫ 1

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 · ·

∫ tN−1

0
dtN (B.3)

× 1

[A0 + (A1 −A0)t1 + (A2 −A1)t2 + · · ·+ (AN −AN−1)tN ]N+1

which can be derived from (3.32) by enforcing the delta function and suitably chang-
ing integration variables.
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