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Fahre fort, übe nicht allein die Kunst, sondern dringe auch in ihr Inneres; sie verdient

es, denn nur die Kunst und die Wissenschaft erhöhen den Menschen bis zur Gottheit.

Do not merely practice your art, but penetrate into its interior; it deserves that, because

only art and science exalt man to divinity.

Ludwig van Beethoven
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Resumen

Proponemos el estudio de expansiones rígidas en gráficas desde un contexto es-

tocástico, usando la gráfica de Radó y el modelo de Erdős-Rényi para gráficas aleatorias.

Revisamos la motivación para estudiar este fenómeno como un concepto concebido en

la gráfica de curvas de una superficie y la viabilidad de hacerlo usando estos modelos.

Proveemos de simulaciones computacionales con las optimizaciones correspondientes

Palabras clave: Probabilidad, topología, superficies, gráficas aleatorias, expan-

siones rígidas.





Abstract

We propose the study of rigid expansions in graphs in a stochastic context using

the Radó graph and the Erdős-Rényi model. We review the motivation to study this

phenomenon as a concept originally conceived in the curve graph of a surface and then

the feasibility to do it through probabilistic models. We also provide computational

simulations with the corresponding optimizations.

Key words: Probability, topology, surfaces, random graphs, rigid expansions.
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Introduction

The curve graph Γ(S) associated to a surface S appears naturally in the study of

Mod(S), the mapping class group of S, which is a central subject in contemporary

mathematical research. We are interested in a rigidity concept of this graph; in general,

the idea behind rigidity phenomena is to describe morphisms among objects using their

structure.

The folkloric version of rigidity in the Mod(S) context is that if we consider X and

Y , under suitable conditions, then every homomorphism Mod(X) → Mod(Y ) will be
induced by manipulation of the underlying surfaces.

Ivanov sketched in [20, Ivanov 97] the proof that every automorphism of C(S), the
flag complex of Γ(S), is induced by a self-homeomorphism of S. Due to its simplicity and

resemblance to the other rigidity results, this argument is the favorite in the literature.

A research line, lead by Aramayona and Leininger, introduced the idea of rigid sets

as subsets of vertices that allows to extend a local notion of rigidity to a global one. To

find large rigid sets, in [2, Aramayona, Leininger 16] there’s a proof of the existence of

an increasing sequence of finite rigid sets, that exhaust the curve graph. For this, they

introduced a method called rigid expansions.

Rigidity in graphs is, regardless of its interpretation in the curve graph, an interest-

ing phenomenon by itself. Due to the discrete nature of rigid expansions, it is reasonable

to seek for a probabilistic approach; our goal is to address this particular path.

We want to answer the rather vague question: How common is rigidity in graphs,

specifically by answering how rigid expansions usually behave. Also, we review the

feasibility of studying the curve complex of a surface from a probabilistic point of view.

Probabilistic models give formal meaning to words like "common" or "usually". We

study the rigidity phenomenon in this context and analyze the conditions under which

these models fit the known properties of the curve graph.
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Introduction 2

In Chapter 1, we motivate the study of the curve graph and review its most essential

properties. Then, we introduce rigidity within the context of Graph theory.

In the Chapter 2, we propose the study of rigidity from the stochastic point of view

through the Radó graph and the Erdös-Rényi model. In the aim to study the curve graph

of a surface with a simple model, we justify that the genus of the surface cannot be finite.

Thus, we end up with an asymptotic probabilistic analog to Bering and Gaster’s result.

This result asserts that the Radó graph embeds into the curve graph C(S) of a surface

S if and only if S has infinite genus.

Finally, we present a computational implementation of the algorithm to handle rigid

expansions. With the corresponding optimizations that the method requires, we can take

a closer look at the rigidity phenomena.



Chapter 1

The curve graph of a surface

The study of surfaces in a strictly topological viewpoint has led us to forget significant

information about them. A way to revert this is to attach a group to it, the mapping

class group of the surface. It is denoted by Mod(S) and encodes the symmetries of

the surface. This group is defined as the set of isotopy classes of orientation-preserving

homeomorphisms of S. In the first section of this chapter, we give the formal definition

of this group and establish the very important role of this concept in Mathematics.

The curve complex of the surface, denoted by C(S) appears naturally in the study

of Mod(S). It is a simplicial complex that encodes intersection patterns of simple closed

curves in S. We focus part of the discussion on the relationship between the algebraic

structure of Mod(S) and the combinatorial topology of S.

Many of the progress in understanding Mod(S) has been possible by a well-known

analogy among two very important classes of groups: arithmetic groups and mapping

class groups. In this parallelism panorama, the desire of an equivalent result to the

Margulis Superrigidity for mapping class groups arises.

In the last section of this chapter, we settle the bases to understand rigidity within a

Graph theory context. An approach called rigid expansions, see [2, Aramayona, Leininger

16] and [19, Hernandez 19], allows us to build up subgraphs preserving the rigidity

property and is compatible with stochastic tools.

Many results and definitions in this chapter were extracted from [16, Farb]. They

are quite popular and equivalents can easily be found in the literature, however, they are

written here to establish nomenclature. Familiarity with basic concepts is assumed.

3



Chapter 1. The curve graph of a surface 4

1.1 Mapping class group of a surface

We have the following fundamental, well-known result about surfaces.

Theorem 1.1.1 (Classification of surfaces). Any closed, connected, orientable surface

is homeomorphic to the connected sum of a 2-dimensional sphere with g ≥ 0 tori. Any

compact, connected, orientable surface is obtained from a closed surface by removing b ≥ 0

open disks with disjoint closures. Even more, the set of homeomorphism types of compact

surfaces is in bijective correspondence with the set {(g, b) ∶ g, b ≥ 0}.

We are so familiar with this result that we usually forget what it is saying. It

seems like, in the eyes of a topologist, surfaces are just boring, but this is because we

are forgetting all the geometric information about them. Mod(S) helps to recover this

data, the magic happens when this group acts on the Teichmüller space of S, which is

the space of hyperbolic metrics on S up to isotopy. A central result is that this action is

properly discontinuous and the quotient spaceM(S) = Teich(S)/Mod(S) is themoduli

space of Riemannian surfaces homeomorphic to S. The spaceM(S) is an essential

object in mathematics and the group Mod(S) encodes most of the topological features

of M(S).

Mod(S), Teich(S), and M(S) can be found in several of different contexts in

mathematics: hyperbolic geometry, algebraic geometry, combinatorial group theory, ge-

ometric group theory, symplectic geometry, 3-manifold theory, dynamics, and so on. The

algebraic structure of Mod(S), the geometry of Teich(S), and the topology of M(S)
are just the strands that are used to weave the rich tapestry of the nature of the surface.

Before we continue, let us establish some nomenclature. The g in 1.1.1 is called the

genus of the surface and the b is the number of boundary components. One way to obtain

a non-compact surface from a compact one is to remove m points from the interior of

it; in this case, we say that the resulting surface has m punctures. From now on, unless

otherwise specified, we will be thinking of compact, connected, oriented surfaces that are

possibly punctured (in this case they cease to be compact). Therefore, we can specify

the surfaces by the triplet (g, b,m). We will denote by Sg,m a surface of genus g with

m punctures and empty boundary; such a surface is homeomorphic to the interior of a

compact surface with m boundary components. Also, for a closed surface of genus g, we

will abbreviate Sg,0 as Sg and ∂S denotes the (possibly disconnected) boundary of S.

There are numerous definitions for the mapping class group of a surface. We will

be working with the following:
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Definition 1.1.1.1. Let S be a surface, the mapping class group of S, denoted by

Mod(S), is the following quotient:

Mod(S) =Homeo+(S)/Homeo0(S),

where Homeo+(S) is the group of orientation-preserving homeomorphisms of S, that are

the identity on the boundary. Homeo0(S) is the subgroup formed by homeomorphisms of

S that are isotopic to the identity.

We could consider diffeomorphisms instead of homeomorphisms, or homotopy classes

instead of isotopy classes; this results in isomorphic groups, see [16, Farb, p. 41] for de-

tails in why we can do this. Summarizing, we can find the following variations in the

definition of Mod(S):
Mod(S) = π0(Homeo+(S, ∂S))

≈ Homeo+(S, ∂S)/homotopy

≈ π0(Diff+(S, ∂S)),

where Diff+(S, ∂S) is the group of orientation-preserving diffeomorphisms of S that are

the identity on the boundary. It can be taken to be either smooth homotopy relative to

the boundary or smooth isotopy relative to the boundary.

Thanks to Thurston’s classification theorem there is a characterization of the home-

omorphisms of a compact orientable surface. This classification is useful to describe the

curve graph which will be analyzed in the next section.

1.1.1 Nielsen–Thurston classification

Given a homeomorphism f ∶ S → S, there is a map g isotopic to f such that at least one

of the following statements holds:

• g is periodic, i.e. some power of g is the identity;

• g preserves some finite union of disjoint simple closed curves on S (in this case, g

is called reducible); or

• g is pseudo-Anosov.

The definition of a pseudo-Anosov map relies on the notion of a measured folia-

tion, a geometric structure on S. It consists of a singular foliation and a measure in the

transverse direction (i.e. that is constant in transverse arcs). For the full definition of

pseudo-Anosov elements and the proof of this theorem, we can refer to [16, Farb, ch. 13].
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The study of mapping class groups is a wide and challenging area. It is outside of

the interests of this thesis to review the details and repercussions of this vast field. Yet,

there are several known properties of Mod(S) that it would be nice to have in mind for

further work:

• Finitely generated and presented.

• It has a subgroup of finite index which doesn’t have torsion.

• Mod(Sg,m) ≅ Out(π1(Sg,m)), for the closed case.

• H1(Mod(Sg,m),Z) = 1 when (g ≥ 3,m = 0).

1.2 Curve graph

1.2.1 Simple closed curves

Definition 1.2.0.1. A closed curve in a surface S is a continuous map S1 → S and

it’s called simple if the map is an embedding. We will usually identify a closed curve

with its image in S. A closed curve is called essential if it is not homotopic to a point,

a puncture, or a boundary component.

Among the adjectives that a curve can acquire we have the following:

• α is separating, if S−α has two components, otherwise it is called non-separating.

• It is called essential if no component of S − α is a disk.

• It is non-peripheral if no component of S − α is an annulus.

We are interested in essential and non-peripherial curves, and all curves will be

assumed in this sense unless otherwise specified.

The idea behind the construction of the curve graph is to stratify the set of ho-

motopy classes of curves on a surface. For this to make sense we define the geometric

intersection number between free homotopy classes a and b of simple closed curves in

a surface S. This is defined to be the minimal number of intersection points between a

representative curve in the class a and a representative curve in the class b:

i(a, b) =min{∣α ∩ β∣ ∶ α ∈ a, β ∈ b}.
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It is convenient to adopt a slight abuse of notation by writing i(α,β) for the intersection
number between the homotopy classes of simple closed curves α and β. It is useful to

think that this number can be computed by finding representatives α and β that achieve

the minimal intersection in their homotopy classes so that i(a, b) = ∣α ∩ β∣ (when this

is the case, we say that α and β are in minimal position). Although the geometric

intersection number is a useful and intuitive invariant it is not always easy to compute,

whenever this is the case we can appeal to the algebraic intersection number. For further

discussion on this see [16, Farb].

1.2.2 The curve graph

Definition 1.2.0.2. The curve graph Γ(S) of a surface S is constructed with the

following data:

• Vertices. There is a vertex in Γ(S) for every isotopy class of essential, non-

peripheral, simple, closed curves in S.

• Edges. There is an edge between the corresponding vertices of isotopy classes a

and b whenever i(a, b) = 0.

Definition 1.2.0.3. The curve complex of the surface C(S) is defined to be the flag

complex of the curve graph just defined.

1.3 Properties of the curve graph

The goal of this section is to state known properties of the curve graph, we use this

to establish the appropriate parameters in a probabilistic model. Notice that the con-

struction of the curve complex is completely determined by the curve graph, hence the

probabilistic models can work in the same sense. Let’s keep in mind the following ex-

ceptional cases; they are responsible for the conditions stated in the hypothesis of the

following theorems for g and n. For S2, S0,1, S0,2, S0,3 the curve graph is empty and for

T 2, S1,1 and S0,4 is a countable disjoint union of points.

1.3.1 Cardinality of the number of vertices

Theorem 1.3.1. If g ≥ 1 or n ≥ 4 then the set of vertices in Γ(Sg,n) is countably infinite.
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It is well known that for T 2 there is an explicit identification for the isotopy classes

of essential curves with the rational numbers. In this case, there aren’t disjoint curves,

the following figure can help to convince us of this fact.

Figure 1.1: T 2 with representatives of typical elements of curves.

This identification can be thought of as the induction basis. The induction step over

g comes from splitting the surface, by induction hypotheses none of the resulting surfaces

can have a infinitely many classes of curves. Since the surfaces are second countable, the

number of classes of curves cannot be uncountable.

1.3.2 Connectivity

Theorem 1.3.2. If 3g + n ≥ 5, then Γ(Sg,n) is connected.

To proof this theorem we can show that, for any two isotopy classes a and b of

simple closed curves in Sg,n there exists a sequence of isotopy classes

a = c1, . . . , ck = b,

where i(ci, ci+1) = 0. This can be done proceeding by induction over i(a, b). The full

proof of this theorem can be found in [16, Farb, p. 93].

1.3.3 Locally infinite

Theorem 1.3.3. If 3g + n ≥ 5, then Γ(Sg,n) is locally infinite.

The idea behind the proof is that given any α ∈ Γ(S) we can construct a family of

isotopy classes of curves that are disjoint to α. The following picture gives us an intuitive

idea on how to do this whenever we have large enough genus.
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Figure 1.2: S3 with typical representative curves which exemplify the idea behind
locally infinity property.

For the complete argument, let α be any simple closed curve on S, the surface S−α,
obtained by cutting S open along α, contains at least one connected component of Euler

characteristic at most −2 (guaranteed by the 3g + n ≥ 5 condition). Such component

contains infinitely many distinct homotopy classes of simple closed curves disjoint from

α.

1.3.4 Clique number

A clique in a graph G is a complete subgraph of G. The clique number cl(G) of a graph

G is the maximum order of a clique of G.

Theorem 1.3.4. If 3g + n ≥ 5, then the clique number of Γ(Sg,n) is 3g − 3 + n.

3g − 3 + n is the number of curves in a pants decomposition of S, i.e. a maximal

collection of disjoint, not freely homotopic, essential, simple closed curves, which decom-

pose S into 2g − 2+n open subsurfaces homeomorphic to a thrice punctures sphere. For

a full proof of this well-known fact refer to [18, Hatcher, Thurston 80].

Figure 1.3: Exemplification of a pants decomposition of a surface.

1.3.5 Infinite Diameter

Theorem 1.3.5. If 3g + n ≥ 5 then diam(Γ(S)) = ∞.
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The proof for this theorem relies on the fact that for any pseudo-Anosov element

h ∈Mod(S), any γ ∈ V (Γ(S)) and any k ∈ Z

dC(hk(γ), γ) ≥ c∣k∣,

This provides the infinite diameter property. The proof of this theorem is highly non-

trivial, refer to [25, Masur, Minsky 99] for a complete review.

The curve graph and the curve complex are fundamental tools in the study of the

surfaces. There several known properties of them that it would be nice to have in mind

to improve probabilistic models for further work.

1. C(S) is hyperbolic.

2. In the infinite genus case diam(Γ(S)) = 2.

3. There’s an isomorphism between Mod∗(S) and Aut(C(S)), except when (g,m) ∈
{(1,2), (1,1), (2,0), (0,4)}.

1.4 Rigidity in graphs

This section intends to track down the motivation of rigid expansions and give the re-

quired definitions.

As mentioned in the introduction of the chapter, rigidity appears in the mapping

class group context in light of its comparison with arithmetic groups. In [4, Aramayona,

Souto 16] we can find a survey on the search of an analog for the Margulis Superrigidity

theorem. In this article, they provide three different perspectives: a Lie theoretical, a

geometric, and a folkloric one.

The Lie theoretic version states that every homomorphism Mod(X) → Mod(Y )
is induced by a homomorphism between the associated groups of diffeomorphisms with

compact support disjoint from the boundary Diffc(X) → Diffc(Y ).

A direct formulation of geometric superrigidity cannot hold when the moduli space

is endowed with any reasonable metric. However, there are ways to turn this around,

saying that every (irreducible) homomorphism between mapping class groups induces a

holomorphic map between the corresponding moduli spaces.

The folkloric version of Mostow and Margulis superrigidity claims that the only

homomorphisms between lattices are the “obvious ones”, in theMod(S) context this will
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mean that if we consider X and Y , under suitable conditions, then every homomorphism

Mod(X) →Mod(Y ) will be induced by manipulation of the underlying surfaces.

A result due to Ivanov [20, Ivanov 97], Korkmaz [23, Korkmaz 99] and Luo [24, Luo

00], asserts that, excluding few well-understood cases, the curve complexes are simpli-

cially rigid. This means that the group Aut(C(S)) of simplicial automorphisms of C(S)
is isomorphic to the extended mapping class group. This result is sometimes interpreted

as a proof that the automorphisms of the curve complex are all geometric.

In the aim to generalize this result to broader types of simplicial self-maps, in [2,

Aramayona, Leininger 12] was introduced the concept of rigid sets in the curve complex.

Let S be a surface different from S1,2, Y ⊂ C(S) is called rigid if for every locally injective

simplicial map Φ ∶ Y → C(S) there exists h ∈Mod∗(S) with h∣Y = Φ, unique up to the

pointwise stabilizer of Y in Mod∗(S).

Later in [3, Aramayona, Leininger 16] a method for enlarging rigid subgraphs is

presented and the proof that for almost all surfaces of finite topological type, there

exists an increasing sequence of finite rigid sets that exhaust the curve graph of

which has trivial pointwise stabilizer in Mod∗(Sg,n).

In [19, Hernández 19] there is a proof of a similar result to Aramayona and Leininger’s.

The method, called rigid expansions, allowed to obtain new results concerning edge-

preserving maps.

Losing the big picture that rigidity represents, we can land this vast journey in the

following graph-theoretic definitions.

Definition 1.4.0.1. Let Γ be a simplicial graph and H < Γ a vertex-induced subgraph.

A function f ∶H → Γ is locally injective if f ∣star(v) is injective for all v ∈ V (H).

Note 1.4.1. Remember, star(v) is the vertex-induced subgraph with vertices {v}∪N(v)
(v plus its neighborhood).

Definition 1.4.1.1. H < Γ is rigid if every locally injective function defined in H can

be extended to an automorphism of Γ.

A vertex v ∈ V in a graph is uniquely determined by A ⊂ V (G), denoted v = ⟨A⟩, if
v is the unique common neighbor of every element of B, i.e.

{v} = ⋂
w∈B

lnk(w).
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Definition 1.4.1.2. The first rigid expansion of Y ⊂ Γ, denoted by Y 1, is the vertex-

induced subgraph whose vertices are

V (Y ) ∪ {v ∈ V (Γ) ∶ ∃A ⊂ V (Y ) where v = ⟨A⟩}.

We also define Y 0 = Y and, inductively, Y k = (Y k−1)1.

Recalling that in Proposition 3.5 in [2, Aramayona, Leininger 16], Aramayona and

Leininger prove that if Y ⊂ C(S) is a rigid set, then so is Y r for all r ≥ 0. So this method

in fact preserves the desired property.

It would be nice to have conditions which determine whether a subgraph is rigid or

not. So far we don’t know non-trivial, necessary conditions to check rigidity, i.e. other

than connectivity there’s not much else.

With these definitions, we can proceed to settle a probabilistic model so that we

can analyze the rigidity concept in graphs from a stochastic point of view. With the

reviewed properties of the curve graph, we can determine the feasibility of studying the

curve graph through simple models.



Chapter 2

Rigidity in random graphs

The use of the probabilistic method in discrete mathematics has become a prominent

idea in the area in recent times. It provides existence proofs where objects have certain

desirable properties and the construction of explicit examples is challenging. This has

been just the beginning of the use of probabilistic tools within a deterministic context.

Complex topological spaces arise quite naturally in a lot of scientific contexts. Prob-

ability theory implements different approaches to model those spaces; even in complex

configurations, it can be possible by doing approximations, to study topological invari-

ants. In this sense, stochastic topology can be thought of as a tool for topology in the

same sense as statistical mechanics is used to studying a macroscopic physical system

when classical mechanics finds these systems too complicated to solve.

Stochastic topology finds its early motivation in applied problems. Nevertheless, in

recent articles, it has been used to provide deeper insight into theoretical questions. For

example, with probabilistic analogs of very classical topology conjectures, like White-

head’s Asphericity Conjecture [13, Costa, Faber 15].

Probability theory can help us understand the ubiquity of certain mathematical

phenomena. For example, many simplicial complexes and posets which arise from com-

binatorial constructions are homotopy equivalent to a wedge of spheres, or that hyperbol-

icity is common in random groups. With Probability theory, we can give formal meaning

to these expressions.

In this chapter, we review rigid expansions in simple probabilistic models. After-

ward, we analyze the feasibility of modeling the curve graph using these proposals.

Familiarity with basic concepts in probability theory such as probability spaces,

random variables, and basic theorems are assumed.

13
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2.1 Models for random graphs

2.1.1 The Radó graph

Let 0 < p < 1 be fixed, G(N, p) is the probability space which consists of all graphs with

vertex set N, whose edges are chosen independently with probability p. In other words,

a random graph G ∈ G(N, p) is a collection (Xij) = {Xij ∶ 1 ≤ i < j} of independent

Bernoulli(p) r.v., where a pair ij is an edge of G if and only if Xij = 1.

Erdős and Rényi proved in [15, Erdős, Rényi 63], that every countably infinite

random graph is isomorphic to the Radó graph. A construction of this graph can be

done using binary numbers; identify the vertices of the graph with the natural numbers

and then every edge appears between vertices x and y in the graph (assuming x < y)
whenever the x-th bit of the binary representation of y is nonzero. This means, for

example, that all odd-numbered vertices will be neighbors of vertex 0, and that the

larger neighbors of vertex 1 are all vertices with numbers congruent to 2 or 3 mod 4.

Figure 2.1: Binary construction of the Radó graph.

2.1.2 Erdős-Rényi model

The Erdős-Rényi model for random graphs is the finite version of the Radó graph. In

this model, the parameter p is usually taken as a function of n. This provides, unlike

the past model, a variety of graphs when n tends to infinity.

Definition 2.1.0.1. Denote by G(n, p) to the probability space formed by all the graphs

of n vertices and probability measure

P(G ∈ G(n, p)) = pk(1 − p)(
n
2
)−k,

where k is the number of edges in G, the σ-algebra is given by the power set.
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Note: There is a variation of the model, where we rather choose randomly exactly

m edges among the (n2) possible.

We can also think this model like (n2) i.i.d. Bernoulli(p) that represent the edges.

From this, we can immediately get some properties of the degree of a vertex v.

• The probability that a given vertex v has degree k is given by

b(k;n − 1, p) = (n − 1

k
) ⋅ pk ⋅ (p − 1)n−k−1.

• The expected degree is (n − 1) ⋅ p.

• The variance of this degree is (n − 1) ⋅ (1 − p) ⋅ p.

The degree distribution can be helpful to do optimizations in the rigid expansions

algorithms. This is outlined in the next chapter.

2.2 Rigid expansions

We will focus on the rigidity calculations for the finite case. Then, we will analyze what

happens when n tends to infinite. For this, we need to compute the probability that the

following events occur.

1. Let us call Em to the event when v = ⟨Am⟩, where v is a vertex and Am a subset

of vertices of size m.

2. Ak generates a rigid expansion.

3. Ak generates a rigid expansion with s new elements.

For the calculations concerning the first event, take a look at the following figure.

Figure 2.2: Probability of uniquely determined vertices.
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If ⟨Am⟩ = v, there is a edge between v and every vertex in A, and none of the

remaining n −m − 1 vertices is also connected to every vertex in A, i.e.

P(Em) ∶= P(⟨Am⟩ = v) = pm(1 − pm)n−m−1.

Using the networkx library in python we reproduce the following experiment:

Uniquely determined vertex experiment. Let n, p,m be fixed.

1. Generate an Erdős-Rényi graph G ∈ G(n, p) with labeled vertices.

2. Excluding the n-th vertex, take a random subset of vertices of size m.

3. Verify if this subset uniquely determine the n-th vertex.

In the next chapter, we explain how to generate random graphs for the first step

of the experiment. To simplify the process we took, without losing generality, the last

vertex as a particular element of the experiment.

Fixing different values for n and p is possible to compute the empiric probability

for each possible value of m.

Figure 2.3: Theoretical and empirical probabilities of uniquely determined a vertex.
For different values of n and p varying among all the possible values of m.

For these estimations, we calculated the empiric probability by repeating this ex-

periment 500 times. Then, we counted the number of times when the n-th vertex was

uniquely determined by the random set.
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Notice that certain values of m are more effective than others, in the sense that,

depending on the parameters of the model, it is more likely that a subset of a certain

size uniquely determines a vertex. This can be used, as described in the next chapter,

to optimize the simulations.

In this table appears the supremum of absolute differences between hypothesized

and empirical probability ∀m ∈ {1,2, . . . n} for the different values of n and p.

p n 8 15 20

0.1 9.01E − 03 1.20E − 02 8.09E − 03

0.1 9.01E − 03 1.20E − 02 8.09E − 03

0.1 9.01E − 03 1.20E − 02 8.09E − 03

Table 2.1: Supremum of absolute differences between hypothesized and empirical
probabilities.

For the second event, if Ak does not generate a rigid expansion is because none of

the subsets of Ak uniquely determined a vertex outside of it. We have:

P(Ak generates a rigid expansion) = 1 −
k

∏
m=1
(ρm,k)(

k
m
),

where ρm,k = (1 − P(Em))
n−k

.

Just as before, we reproduce the following experiment:

Rigid expansion experiment. Let n, p, k be fixed.

1. Generate an Erdős-Rényi graph G ∈ G(n, p).

2. Take a random subset of vertices of size k.

3. Verify if this set generates a rigid expansion.

Notice that the third step is a critical point of the experiment; we must verify among

all the possible subsets of Ak. In the next chapter, we explain the optimizations that

needed to be done.

Again, we repeated this experiment 500 times and calculated the empiric probability

that a random set generates a rigid expansion.



Chapter 2. Rigidity in random graphs 18

Figure 2.4: Theoretical and empirical probabilities of expanding Ak. For different
values of n and p varying among all the possible values of k.

In the following table appears the supremum of absolute differences between hy-

pothesized and empirical probabilities ∀k ∈ {1,2, . . . n} for the different values of n and

p.

p n 8 15 20

0.1 9.01E − 03 1.20E − 02 8.09E − 03

0.1 9.01E − 03 1.20E − 02 8.09E − 03

0.1 9.01E − 03 1.20E − 02 8.09E − 03

Table 2.2: Supremum of absolute differences between hypothesized and empirical
probabilities.

The calculations for the last question are helpful if we want to approximate the

sequence of rigid expansions of Ak by a Markov chain. Consider {0,1, . . . n} as the states
space of the Markov chain with transition matrix given by:

ak,k+s = P(Ak generates a rigid expansion by s elements).

Notice that the deterministic process stops once an iteration fails to add new vertices.

In our stochastic approximation, a new G ∈ G(n, p) is considered for each step, hence, it

is allowed to "have extra tries to expand".

This probability calculations are more difficult to obtain. To start understanding

this phenomenon we can simulate with our computational tools the following experiment:
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Increase size by a rigid expansions experiment

Let n, p, k be fixed.

1. Generate an Erdős-Rényi graph G ∈ G(n, p).

2. Take Ak a random set of k vertices.

3. Produce the first rigid expansion from the graph spanned by Ak.

4. Return the size of the expanded subgraph.

This experiment yields a random variable that depends on n, p, and k. Fixing n

and p we obtained a sample of size 50 for every possible value of k. Using the resulting

histogram as an empirical density function we obtain the following figure. It graphically

describes the nature of the transition matrix of a sequence of rigid expansions.

Figure 2.5: Empirical transition probability matrix.

2.3 Radó graph as a model for the curve graph

In Chapter 1 we outlined the properties of the curve graph associated with a surface,

thus the proposed models should at least guarantee the following properties:

1. Countably infinite number of vertices.

2. Connectedness.
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3. Locally infinite.

4. Clique number 3g − 3 +m.

5. Infinite diameter.

The Radó graph satisfies that every finite or countably infinite graph is an induced

subgraph of it [11, Cameron 97]. The clique number property of Γ(S) implies that, if S

is a surface of finite genus, is not possible that the Radó graph is embedded into Γ(S).
Even more, a result by Bering and Gaster [7, Bering, Gaster 17] states that the converse

is also valid.

Theorem 2.3.1. The random graph embeds into the curve graph C(S) of a surface S if

and only if S has infinite genus.

Therefore, if we want to study the curve graph of a surface of finite genus using

the Radó graph, we have to think of it as a subgraph of it. A simple approach to do it is

to take a random subset of vertices of a graph G ∈ G(N, p) and then consider the vertex

induced subgraph. It turns out that for a.e. G ∈ G(N, p) the sequence cl(Gn) is almost

entirely determined.

To study cliques in the Radó graph, let us denote Er de expected number of cliques

in a subgraph of size n, i.e Er ∶= E(n, r) = (nr)p
(r
2
).

Let 0 < ε < 1
2 . Given a natural number r > 2 let nr be the maximal natural

number for which E(nr, r) ≤ r−(1+ε), and let n′r be the minimal natural number for

which E(n′r, r) ≥ r1+ε.

Theorem 2.3.2. For a.e. G ∈ G(N, p) there is a constant m0 = m0(G) such that if

n ≥mo and n′r ≤ n ≤ nr+1, then cl(G) = r.

The theorem states that if r is fixed and finite, the number of vertices must be finite

as well, the proof can be found in [8, Bollobás p. 284]. Therefore, it is not possible to

obtain a curve graph by a uniform selection of vertices.

Notice that the clique number property is not generic at all, unlike the others

listed above, the clique number is the only property which actually depends on the genus

of the surface. Therefore, is not a surprise that this property is highly restrictive in the

plan of setting a generic model.

Prohibited configurations appear often in the literature, for example in [1, Alcazar

15] they want to ensure that a random graph does not have cycles, implying that the

clique number is 2. A discrete MCMC algorithm was used to sample uniformly random
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trees of size n, with the Generate algorithm. It produces a maximal tree of any not

directed graph with n vertices uniformly among all the possible ones. In the appendix,

we summarize the results of this method, read [9, Broder 89] for the full analysis.

There is a chance of finding an analog of the Generate algorithm to ensure a fixed

clique number, but the scope of this work is to study rigid expansions in a simple prob-

abilistic model. In this spirit, it remains to examine the plausibility of the Erdős-Rényi

model and do an asymptotic analysis.

2.4 Erdős-Rényi as a model for the curve graph

2.4.1 Connectivity

Theorem 2.4.1. Let ω(n) be a function that tends to infinity arbitrarily slow as n tends

to infinity.

• If p ≥ log(n)+ω(n)
n then

lim
n→∞

P(G ∈ G(n, p) is connected) = 1.

• If p ≤ log(n)−ω(n)
n then

lim
n→∞

P(G ∈ G(n, p) is disconnected) = 1.

Here ω(n) represents the control over the convergence, in other words, the uncer-

tainty. The theorem is just saying that in order to reduce ω(n) we must increase the size

of the graph.

This theorem can be proved by first showing that for a large n almost all graphs

consist of a single connected component and k isolated points, the theorem follows from

a counting argument. The complete proof can be found in [14, Erdős-Rényi, p. 59].

2.4.2 Locally infinite

To fulfill this property we need to take p(n) in a way that the expected degree grows

along with the vertices, i.e np → ∞. Notice that the conditions for the connectivity

threshold are more than enough to ensure this. The full argument is stated in the

following theorem:
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Theorem 2.4.2. Let G ∈ G(n, p) and Dn ∼ b(k;n − 1, p) the random variable that de-

scribes the degree of a vertex in G. Take p(n) = ε
na with fixed ε, a > 0 then:

• If a ≥ 1 then {Dn}
p
Ð→ c, where c is a finite constant.

• If a < 1 then lim
n→∞

P(Dn is finite) = 0.

Proof. When a = 1 this is the Binomial’s Poisson approximation.

For a > 1 take k = 0 so we have:

lim
n→∞

P(Dn = 0) = lim
n→∞
(1 − ε

na
)
n

= lim
n→∞

exp(ln(1 − ε

na
)
n

) = lim
n→∞

exp(n ⋅ ln(1 − ε

na
)) .

If f(n) = n ⋅ ln (1 − ε
na
), then lim

n→∞
f(n) = lim

n→∞

ln (1 − ε
na
)

1
n

. Using L’Hôpital’s rule for

limits we obtain:

lim
n→∞

f(n) = lim
n→∞

1
(1− ε

na
) ⋅ (εan

−a−1)

−1 ⋅ n−2
= lim
n→∞

na

na−ε ⋅ (εan
−a−1) ⋅ n2

−1
= lim
n→∞

− εan

na − ε
= lim
n→∞

− εa

ana−1
.

From here, if a > 1 then lim
n→∞

f(n) = 0, if a < 1 then lim
n→∞

f(n) = −∞. So we have

lim
n→∞

P(Dn = 0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

lim
n→∞

ef(n) = 1, if a > 1

lim
n→∞

ef(n) = 0, if a < 1
.

This concludes the first part of the theorem.

For a < 1 and k > 0:

lim
n→∞

P(Dn = k) = lim
n→∞
(n
k
) ⋅ ( ε

na
)
k

⋅ (1 − ε

na
)
n−k

= lim
n→∞

Ck ⋅ nk ⋅
( ε
na
)k

(na−ε
na
)k

⋅ (1 − ε

na
)
n

= Ck lim
n→∞

nk ⋅ ( 1

na − ε
)
k

⋅ (1 − ε

na
)
n

= Ck lim
n→∞

ns ⋅ (1 − ε

na
)
n

where s = k(1 − a) > 0, hence lim
n→∞

P(Dn = k) = 0,∀k > 0

So, when a < 1 we obtain the locally infinite property, and this condition is always

satisfied in the connectivity threshold.
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Consider Xk =Xk(G), the random variable that describes the number of vertices of

degree k in a graph G. The following theorem gives a complete description of the degree

distribution.

Theorem 2.4.3. Let ε > 0 be fixed, εn−3/2 ≤ p = p(n) ≤ 1 − εn−3/2, let k = k(n) be

a natural number and set λk = λk(n) = E(Xk) = n ⋅ b(k;n − 1, p). Then the following

assertions hold.

• If lim
n→∞

λk(n) = 0, then lim
n→∞

P(Xk = 0) = 1.

• If lim
n→∞

λk(n) = ∞, then lim
n→∞

P(Xk > t) = 1 for every fixed t.

• If 0 < lim
n→∞

λk(n) < ∞, then Xk asymptotically behaves like a Poisson r.v. with

mean λk:

P (Xk = r) ∼ eλk ⋅ λrk/r!

for every fixed r.

The εn−3/2 ≤ p = p(n) ≤ 1− εn−3/2 hypothesis is to rule out when we consider a loose

upper bound on the expected degree of Xk, if pn2 → ∞ then almost every G ∈ G(n, p)
consist of independent edges and isolated vertices.

The first assertion comes directly from Markov’s inequality and implies that if k is

a finite fixed number and limλk(n) = 0 then a.a.s. there are no vertices of degree k. In

the second case, there are an infinite number of vertices with degree k. In the third case,

we can describe explicitly the degree distribution. The complete arguments for proving

this theorem can be found in [8, Bollobás, p. 61].

2.4.3 Clique number

As outlined for the Radó graph model, the clique number is a highly restrictive property,

for the Erdős Rényi model it is not different. Let Xr be the random variable that counts

the number of r−cliques in a graph G, we are looking for a threshold were:

lim
n→∞

E(Xr) > 0 and lim
n→∞

E(Xr+1) = 0.

But this is not possible if r is a fixed finite number. The closest we can get is stated in

the following result:

Theorem 2.4.4. Let r = r(n) = O(n1/3) and let p = p(n), 0 < p < 1, be such that

(n
r
)p(

r
2
) →∞ and ( n

r + 1
)p(

r+1
2
) → 0,
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then a.e G ∈ G(n, p) has clique number r.

This theorem can be proven using the calculations for E(Xr) and a first moment

argument. A full proof can be found in [8, Bollobás, p. 290].

Given that r(n) must grow along with n and r = 3g − 3 +m, this implies that the

curve graph corresponds to a surface with infinite genus or with an infinite number of

punctures.

2.4.4 Diameter

The diameter of a graph G, denoted by diam(G), is the maximal distance between pairs

of vertices of G.

If we want to model a surface of finite genus we must ensure infinite diameter, there

are a number of theorems that describe the conditions under which this can be achieved

[8, Bollobás, p. 259].

Following the past result, we now must guarantee that the diameter is equal to 2.

The idea is to have an analog of Bering and Gaster result (Theorem 2.3.1).

Theorem 2.4.5. Let d be a fixed integer, if

(pn)d−1

n
→ 0 and

(pn)d

n
→∞

then, a.a.s G ∈ G(n, p) has diameter d

The proof of this theorem is due to Klee and Larman and can be found in [22,

Klee, Larman 81]. For d = 2 this means we are have that p(n) → 0 and p2ṅ → ∞, i.e

p(n) = f(n)
n1/2 where f(n) ∈ o(n1/2) and f(n) → ∞.

Using the expression for p(n) in 2.4.2, we must have a < 1
2 to ensure diameter 2.

To conclude, the following result states that Erdős-Rényi graphs, that asymptoti-

cally approach the Radó graph, naturally satisfies the condition for the diameter. This

gives us some insight into the interconnection between the object of study and the models

when an asymptotic context is taken; the diameter condition of the curve graph appears

naturally when modeling a surface of infinite genus.

Theorem 2.4.6. If p is taken fixed G(n, p) has diameter 2 with high probability.

Proof. Let Xn be the random variable that counts the number of vertex pairs in a graph

in G(n, p) with no common neighbors. By Markov’s inequality we have that
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P(Xn ≥ 1) ≤ E(Xn) = (n
2
) ⋅ P(Two vertices don’t have common neighbors)

= (n
2
)(1 − p2)n−2,

where lim
n→∞
(n
2
)(1 − p2)n−2 = 0.

2.5 Conclusions

Theorems 2.4.1, 2.4.2, and 2.4.5 give the thresholds where each of the properties of the

curve graph of infinite genus surface are satisfied. Theorem 2.4.4 describes the asymptotic

behavior of the clique number.

In summary, if ε, a > 0 are fixed real numbers and ω(n) a function that tends to

infinity arbitrary slow, we have:

1. p ≥ log(n)+ω(n)
n Ô⇒ a.a.s G ∈ G(np) is connected.

2. p = ε
na with a < 1 Ô⇒ a.a.s G ∈ G(np) is locally infinite.

3. p = (n) = f(n)
n1/2 with f(n) ∈ o(n1/2) and f(n) → ∞, particularly if p(n) = ε

na a <
1
2

Ô⇒ a.a.s G ∈ G(np) has diameter 2.

4. r = r(n) = O(n1/3) with (nr)p
(r
2
) →∞ and ( nr+1)p

(r+1
2
) → 0 implies a.a.s G ∈ G(n, p)

has clique number r.

For the simplified form of p(n) = ε
na we can plot the following thresholds:

Figure 2.6: Thresholds for the properties of the curve complex.

Some particular properties of the random graphs, such as a fixed clique number,

will be linked to the asymptotic behavior of the vertices. Meanwhile, some conditions,

like diameter 2, are strong enough that other properties come along.
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The clique number property is highly restrictive when setting a generic model, thus

different techniques must be implemented. The problem with this approach is that we

will end up with a model so complicated that it will not be suitable for studying further

phenomena.

There is a lot of progress in the study of random clique complexes that can help

understand better the curve complex for infinite genus surfaces, for example in [21,

Khale,09] we find the following result:

Theorem 2.5.1. If p = na, with a < −1/k or a > −1/2k+1, then the k-th homology group

of X(G(n, p)) is almost always vanishing, and if −1/k < a < −1/(k + 1), then it is almost

always non vanishing.

Although interpretation might not be direct, the thresholds are within those defined

for C(S).

Studying a concept from a stochastic perspective could be helpful to understand its

particularities. Also, the challenges to explain a phenomenon in a specific framework,

although it can be defined in a general manner.

From the Gaster and Bering result, we can also conclude that some objects, with

apparently very particular constructions, end up being very generic.

Using the Erdős-Rényi model we can bring insightful results of the asymptotic

behavior of certain properties that in the Radó graph are given immediately.

Understanding the probabilistic nature of anything, in which computational opera-

tions are involved, can be helpful when optimizing procedures. This is explained in the

next chapter.
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Computational experimentation

Nowadays Scientific Computing is one of the most important tools that we have for

Stochastic means. It becomes crucial when the problem cannot be solved by tradi-

tional experimentation or theoretical means. There are many reasons why this might

happen, for example whenever experimentation may be dangerous, too expensive, or

time-consuming.

In this chapter, we use the outlined probabilistic material to accomplish an efficient

implementation of the rigidity phenomenon in graphs. We describe our results with their

technical difficulties and the actions taken to endure them.

All the computational experimentation was developed in python. We used NetworkX

library to create and modify graphs.

3.1 Simulating Erdős-Rényi random graphs

There is a direct algorithm to obtain a graph in G(n, p), it simulates a Bernoulli(p) r.v.
for each of the n(n−1)

2 possible edges. Thus, it runs in O(n2) time.

It is possible to execute faster algorithms for small values of p. It runs in O(n+m)
time, where m is the expected number of edges, which equals to pn(n−1)

2 . This is the one

that we use for generating all the graphs in our executions. Details in performance and

accuracy can be found in [6, Batagelj, Brandes 05].

Visual aid is helpful while writing the code for the experimentation. In Figure 3.1

appears a set of graphs obtained with the built-in algorithms for Erdős–Rényi graphs,

fixing n = 10 an varying the parameter p.

Figure 3.2 shows the execution times when varying n.

27

https://networkx.github.io/
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Figure 3.1: Erdős-Rényi random graphs with n fixed and varying p.

Figure 3.2: Execution times varying n. Normal and log scales.

3.2 Rigid expansions algorithms

A priori, the algorithm to determine a rigid expansion is supposed to be executed in a

large amount of time. As the definition lets us see, it depends on the size of G, and

exponentially on the size of A; it must check among all possible subsets of A, that is 2k

verifications, where ∣A∣ = k. Thus, it is important to do some optimizations and evaluate

when they have more impact on the expected execution time according to the parameters

taken.
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The following is the straightforward algorithm for rigid expansions.

Rigid Expansions Algorithm

Input: Random graph G (dictionary),

set of vertices A (array).

Output: Set of vertices obtained after expanding A (array).

1. Initialize N as empty (the set of new vertices).

2. For every B, subset of A:

If ⋂
b∈B

N(b) = v and v /∈ A ∪N :

Add v to N .

3. If N is not empty:

Replace A by A ∪N and return to step 1.

Otherwise:

Return A.

To optimize memory in step two the iterations were indexed by generators.

For time-execution optimizations, we implemented the following:

1. Consideration of isolated vertices and leaves. None of the isolated vertices in

G have any influence in rigid expansions, so they should not be considered. Also,

whenever A contains a leaf, it is convenient to ignore them; the unique neighbor

of a leaf, which we will call petioles should be automatically added in the first

expansion an then it does not contribute to uniquely determine new vertices. This

means that the input should be replaced with:

A′ = A ∪ {u ∶ ∃x,N(x) = {u}} − {v ∶ deg(v) ≤ 1},

and add them again by the end of the expansions. This will be particularly helpful

for small values of p.

2. Relative size of A. In Step 2, if A is big enough, it is faster to check if a

vertex outside of A can be uniquely determinate by a subset of A. This can reduce

dramatically the execution time when p is small; it reduces the size of revisions by
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taking only the effective part of A, this is convenient to do whenever

k ⋅ log(2) > log(n − k) + (kp) ⋅ log(2),

where k is the size of A.

3. Restriction to effective subsets. Calculations in chapter 2 showed that some

subsets are more likely to generate rigid expansions than others. This depends on

the parameters of the space and the size of the subsets. If we restrict verifications

to these effective subsets we can reduce the number of verifications.

With these optimizations we obtain the following algorithm:

Optimized Rigid Expansions Algorithm

Input: Random graph G (dictionary),

set of vertices A (array),

n(int) and p(float).

Output: Set of vertices obtained after expanding A (array).

1. Remove isolated vertices and replace A with A′.

2. Calculate the range of effective subsets.

If k ⋅ log(2) > log(n − k) + (kp) ⋅ log(2):
For every v ∈ V −A:
Take C = A ∩N(v) and for every B, effective subset of C:

If ⋂
b∈B

N(b) = v and v /∈ A ∪N :

Add v to N .

Otherwise:

For every B, effective subset of A:

If ⋂
b∈B

N(b) = v and v /∈ A ∪N :

Add v to N .

3. If N is not empty:

Replace A with A ∪N , initialize N as empty and return to step 3.

Otherwise:

Return A ∪ {v ∶ deg(v) ≤ 1}.
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3.3 Time execution comparison

The task of finding the first rigid expansion of A ⊂ V of size k in G ∈ G(n, p) depends
on n, p, k. To keep track of the enhancements implemented we measured the execution

time, varying the parameters.

For each collection of n, p, and k we calculated the mean execution time for 30

different rigid expansions, with and without optimizations. We took k in some proportion

of n, explicitly: 1/4, 1/2 and 3/4.

Having a larger n impacts heavily when executing the non-optimized algorithm and

even in certain thresholds the enhancement algorithms still take too much time. Also,

considering the nature of rigid expansions and that we must execute multiple tests for

each collection of parameters, n is fixed to be small, 20 in this case.

Results are presented in Figure 3.3.

Figure 3.3: Mean execution time varying n, p and k for 30 rigid expansions. Measured
in ms.

Notice that these enhancements have an important impact on reducing the execution

time. The results presented in Chapter 2 were obtained with these optimizations, so we

can also conclude that accuracy is not compromised.
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We expect to see an exponential behavior for the execution time. To have a better

comparison we can use the logarithmic scale.

Results in log scale are presented in Figure 3.4

Figure 3.4: Mean execution time varying n, p and k for 30 rigid expansions. Measured
in ms. log scale.

Notice that optimizations have more impact for lower values of p, this sounds reason-

able given that the first-proposed optimizations are explicitly helpful for sparse graphs.

Increasing k has a big impact on performance that corresponds with still having

to search among an exponentially bigger number of subsets. Even using the second and

third optimization we are still obtaining the same exponential behavior.

Further optimizations can be implemented, such as excluding the parts of G that

are not connected with vertices of A, nevertheless, this will only have an impact in sparse

graphs as well.

3.4 Conclusions

We could not have done experiments on larger graphs without probabilistic optimizations.

The understanding of the combinatorial nature of rigid expansions was also key.
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In general, the use of probability theory in computational experiments has demon-

strated to be powerful and efficient. Algorithms based on random sampling provide

state-of-the-art techniques due to their great degree of flexibility and reliability.

To name a few:

• The PageRank algorithm was the first method used by Google to order search

results [26, Page 99]. It outputs a probability distribution used to represent the

likelihood that a person randomly clicking on links will arrive at any particular

page.

• In motion planning, the use of Rapidly-exploring random trees (RRTs) are one of

the most successful algorithms [1, Alcazar 15]. Problems in motion planning consist

of finding a collision-free path that connects an initial configuration of geometric

bodies to a final goal configuration. A RRT is a rooted tree that grows from a

starting configuration by using random samples from the search space.

But it also works in the opposite direction, the use of computational tools can

bring value for theoretical means. For theoretical means it has allowed, for example, to

verify whether the established conditions in a probabilistic model are sharp enough ([5,

Aronshtam 13]).

Bottom line, the use of computational tools can be very helpful to understand a

topic even in the most theoretical contexts.





Appendix A

The Generate algorithm

In this section we describe the algorithm due to [9, Broder 89]. Given a not directed

graph G with n vertices, it produces a maximal tree of G sampled uniformly among all

the possible ones. For almost every graph the expected executed time of the algorithm

is O(n ⋅ log(n)) for each tree and O(n3) in the worst cases.

One of the first algorithms published for this problem has execution time O(n5). It
is based on the fact that the total number of directed trees in a graph can be explicitly

calculated through a determinant of n × n size. The algorithm considers the edges of

the graph labeled from 1 to m, each maximal tree is labeled by the set of its edges.

This induces a lexicographic order in the set of trees and the same tree can be found by

calculating at most m determinants. Further improvements by [12, Colbourn 89] reduce

the number of calculations, thus reducing the execution time to O(n3) or O(L(n)), where
L(n) is the execution time of multiplying matrices of size n×n, but the new algorithms

turn out to be far more complicated.

For a stochastic approach, consider a particle that moves among vertices in a graph.

At each step it moves, choosing uniformly random, from the current vertex to a neighbor

of it. This stochastic process is a Markov chain called Random Walk.

35
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Generate Algorithm
Input: Graph G (dictionary),

Output: Maximal tree T (dictionary)

1. Choose a random vertex s of G (uniformly).

2. Simulate a simple random walk in G. It stops when every vertex gets

visited.

3. For each i in V − s collect the edge (j, i), the first entrance corresponds

to the vertex where the particle was before it visited for the first time the

vertex i. Let T be the collection of such edges.

4. Return T .

T is a maximal tree because it contains ∣V ∣−1 edges; it has an edge for every vertex

in G except for s, and by construction it does not contains cycles.

The Generate algorithm is based on a simulation of Markov chains in the space of

interest. In this case, the Markov chain has a stationary distribution πi = di/∑j∈V dj
where di is the degree of the vertex i. The pounded digraph associated to this chain

GM = (V,E′), is obtained by replacing each edge {i, j} ∈ A by two directed edges; (i, j)
with weight 1/di and (j, i) with weight 1/dj . The justification that the algorithm actually

provides a method to sample with uniform distribution is summarized in the next three

results, their proofs can be found in [9, Broder 89].

Let Ti(GM) be the family of maximal directed trees of GM with root i, when the

root is not under consideration it will be denoted simply by T (GM).

Theorem A.0.1. Let M be a irreducible Markov chain in n states with stationary dis-

tribution π1, . . . , πn. Let GM be the weighted digraph associated to M . Then

πi =
∑T ∈Ti(GM ) ω(T )
∑T ∈T (GM ) ω(T )

where ω(T ) = ∏a∈A(T ) ω(a), this means that the weight of the a directed tree is defined

as the product of the weight of the edges of the tree.

We define the (forward tree) at time t, Ft as follows: Let It be the set of states visited

before time t+ 1. For every i ∈ It, let p(i, t) be the first time that the state i was visited.
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The root of the tree Ft is {(Xp(i,t),Xp(i,t)−1)∣i ∈ It − X0}, where (Xt)t∈N corresponds

to the Markov chain given by the random walk. In other words Ft is constructed by

overlapping the first entrance at each state with inverted orientation. Clearly Ft is a

directed tree with root where each edge points from the leaves to the root.

Let C be the covering time, i.e. the first time that all the states where visited.

Clearly for t ≥ C the tree Ft is a directed maximal tree and Ft = FC . Note that with

the past definition, the random walk {Xt} in the vertices of GM induces a Markov chain

{Ft} in the space of all directed trees of GM , it is called forward trees chain.

For this chain, every non-maximal tree is a transitive state and every maximal tree

is an absorbent state. Even more, the next theorem establishes the distribution of FC .

Theorem A.0.2. With the same notation and conditions of the past theorem. Let FC
be the forward tree in time C. Then, for any maximal directed tree with root T of GM
we have

P(FC = T ) =
∏(i,j)∈T Pi,j

∑T ∈T (GM )∏(i,j)∈T ′ Pi,j
.

Corollary A.0.2.1. (Proof of the Generate algorithm) Let M be a simple random walk

in a connected non-directed graph G = (V,E) starting from a vertex s and GM the

directed graph associated to M and covering time C for G. Starting from the stationary

distribution, we have that FC , without considering direction, is a maximal tree of G with

random uniform distribution among all the maximal possible trees of G.

This algorithm can be implemented using Python. Fixing G as the complete graph

Kn it was possible, using the generate algorithm, to sample uniformly from the set of

maximal trees with n vertices. In figure A.1 appears a set of trees obtained with this

method, which are drawn using the function draw_random of the NetworX library.

The expected execution time of the algorithm per tree is equal to E(Cs). It is

known that for the connected graph E(Cv) = O(n3), nevertheless in [10, Broder, Andrei

89] there is a proof that if the transition matrix of a random walk have the second greater

eigenvalue bounded away from 1, then the expected covering time is only O(n ⋅ log(n)).
Almost every graph in the Erdös-Rényi model satisfy this condition when p > c⋅log(n)

n , in

particular when p = 1
2 and for almost every d-regular graphs [17, Friedman 89]. In figure

A.2 shows the results of the algorithm’s execution time.
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Figure A.1: Maximal tree chosen randomly with uniform distribution among all the
possible ones in complete graph (10) of vertices.

Figure A.2: Execution time of the algorithm in seconds varying the size of the tree.
It appears the normal and the logarithmic scale.
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