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Abstract 

This thesis presents the modeling of electric power systems including FACTS and 
Custom Power (CP) devices and their stability analysis through application of bifurcation 
theory, continuation methods, and Newton methods to compute the periodic steady state. 

The previous stability analyses of FACTS and Custom Power devices based on 
bifurcation theory using continuation methods neglected the harmonic distortion introduced 
by the voltage source converter (VSC). Besides, the network transients have not been taken 
into account. Under this formulation, the electric power network was modeled through a 
phasor representation, and obviously, only the fundamental frequency was considered in 
those analyses. 

In this research, two VSC models based on Fourier series and hyperbolic tangent 
function are proposed. The proposed models can be used for fast simulation in the time 
domain of power-electronic devices based on sinusoidal pulse-width modulation VSCs; the 
undesirable error introduced by the high commutates rates are removed; even though the 
harmonic distortion coming from the converter is taken into account. The switching instants 
in the Fourier model are approximated in a closed form, and an iterative algorithm based on 
the Newton-Raphson method is developed for the exact calculation of the switching 
instants. The hyperbolic tangent model does not need the calculation of the switching 
instants as in the case of the Fourier model. With these VSC’s models the computation of 
the periodic steady-state solution of power systems including FACTS is efficiently obtained 
by extrapolation to the limit cycle using a Newton method. In addition, it is possible to 
assess the stability through the Floquet multiplier. Two Newton methods to compute 
efficiently the periodic steady state solution are presented. One is based on an Enhanced 
Numerical Differentiation technique, and the other one is based on Discrete Exponential 
Expansion approach of the transition matrix. These methods prove to be more efficient than 
the conventional methods such as [Aprille Jr. and Trick 1972], [Colon and Trick 1973], and 
[Semlyen and Medina 1995]. It is also presented the stability analysis for a distribution 
static compensator (DSTATCOM) that operates in current control mode and voltage 
control mode based on bifurcation theory. A control design for the DSTATCOM is 
proposed. Along with this control, a suitable mathematical representation of the 
DSTATCOM is proposed. In addition, the stability analysis for a capacitor-supported 
dynamic voltage restorer (DVR) based on bifurcation theory and a continuation method is 
presented. The stability regions in the Thevenin equivalent plane are computed for different 
operating scenarios. In addition, the stability regions in the control gain space, as well as 
the contour lines for different Floquet multipliers are computed. 

The proposed models and analysis are validated against the solution obtained with the 
power system blockset of Simulink and with PSCAD/EMTDC. Additionally, the proposed 
VSC models based on the Fourier series and the hyperbolic tangent approach are validated 
against the response obtained by measurements from a 1.5 kVA ASD experimental setup 
system. 
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1 Introduction 
 

 

Flexible ac Transmission Systems (FACTS), provide higher controllability in power 
systems by means of power electronic devices. Several FACTS devices have been already 
introduced for various applications worldwide. A number of new types of devices are in 
the stage of being introduced in practice. Even more concepts of configurations of 
FACTS-devices are discussed in research and literature. FACTS technology provides a 
better ability to varying operational conditions and improve the usage of existing 
installations. 

1.1 State of the Art 
It can be seen that with growing line length and with higher power demand the 

opportunity for FACTS devices gets more important. The devices work electrically as fast 
current, voltage or impedance controllers. The power electronic allows very short reaction 
times down to far below one second (~ms). Detailed introductions in FACTS devices can 
also be found in the literature [Hingorani and Gyudyi 2000] [Sood 2004] [Acha, et al. 
2004] [Mathur and Varma 2002] [Padiyar 2007] [Zhang, et al. 2006] with the main focus 
on basic technology, modeling and control. 

Basically, there are two groups of FACTS, one is based on thyristor valve operation 
[Hingorani and Gyudyi 2000], and the other is based on Voltage Source Converters (VSCs) 
[Segundo-Ramírez and Medina 2008] [Segundo-Ramírez and Medina 2009]. A list of some 
FACTS devices are shown in Table 1.1. 

TABLE 1.1 OVERVIEW OF THE PRINCIPAL FACTS-DEVICES 

Connection Type 
FACTS Devices 

Thyristor-Based FACTS VSC-Based FACTS 

Shunt Connected Static Var Compensator (SVC) Static Compensator (STATCOM) 

Series Connected Thyristor Controlled Series 
Compensator (TCSC) 

Static Series Synchronous 
Compensator (SSSC) 

Shunt and Series Connected HVDC 

Unified Power Flow Controller 
(UPFC) 

HVDC VSC 
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The FACTS devices based on VSCs provide a controllable voltage magnitude and phase 
angle due to a Pulse Width Modulation (PWM) technique [Mohan, et al. 1995]. The Static 
Compensator (STATCOM) [Hingorani and Gyudyi 2000] is a shunt connected device that 
is able to provide reactive power support at a network location far away from the 
generators. Through this reactive power injection, the STATCOM can regulate the voltage 
at the connection node. The Static Synchronous Series compensator (SSSC) [Hingorani and 
Gyudyi 2000] is a series device which injects a voltage in series with the transmission line. 
The Unified Power Flow Controller (UPFC) [Hingorani and Gyudyi 2000] is the most 
versatile device of the family of FACTS devices, since it is able to control the active and 
the reactive power, respectively, as well as the voltage at the connection node. In Figure 1.1 
a schematic representation of the STATCOM, the SSSC, and the UPFC are presented. The 
mathematical representation adopted in this thesis is the state space approach of non-
autonomous nonlinear ODE sets periodically forced, where the electric transients and the 
harmonic distortion are not neglected. Additionally, all the state variables are in 
instantaneous values, thus the steady-state solution is a limit cycle. In the conventional 
stability analysis of power systems including FACTS and CP devices [Srivastava and 
Srivastava 1998], the power system is represented using Root Mean Square (RMS) 
quantities, and the network transients are neglected 

 
Figure 1.1 FACTS devices based on VSCs. (a) STATCOM, (b) SSSC, and (c) UPFC 

To explore both stable and unstable limit cycles [Parker and Chua 1989], the bifurcation 
analysis is used; a nonlinear mathematical theory [Parker and Chua 1989] [Nayfeh and 
Balachandran 1995] used to qualitatively investigate how the integral curves change as the 
parameters are varied. The bifurcation theory has been applied to the analysis of voltage 
collapse [Dobson and Chiang 1989], analysis of the Electric Arc Furnace (EAF) [Medina, 
et al. 2005], chaotic oscillations [Wang, et al. 1994], ferroresonance analysis [Wörnle, et al. 
2005], and the design of nonlinear controllers [Lee, et al. 2001]. It has also been applied to 
assess the dynamic behaviour of nonlinear components such as induction motors [Rosehart 
and Cañizares 1999], load models [Cañizares 1995] [Pai, et al. 1995], tap changing 
transformers [Vu and Liu 1989], and FACTS devices [Srivastava and Srivastava 1998] 
[Mithulananthan, et al. 2003]. 

In power electronic, the bifurcation theory has been used successfully to analyze the 
stability of power converters and switched circuits [Azzouz, et al. 1983] [Zhusubaliyev and 
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Mosekilde 2006] [Jalali, et al. 1996] [di Bernardo and Vasca 2000] [di Bernardo, et al. 
1998] [lu and Robert 2003] [Tse 2004] [Deane and Hamill 1990]. Conventionally, this 
analysis is carried-out with the discrete-time iterative mapping approach [Zhusubaliyev and 
Mosekilde 2006] [Jalali, et al. 1996] [di Bernardo and Vasca 2000] [di Bernardo, Garofalo, 
et al. 1998] [lu and Robert 2003] [Tse 2004]. Under this approach, the switching converter 
is essentially modeled as piecewise switched circuits. This results in a nonlinear time-
varying operating mode, which naturally demands the use of nonlinear theory [Tse 2004]. 
In the discrete-time iterative mapping approach, it is assumed that between switching 
instants, the network is linear time-invariant. Thus, the solution between switches can be 
found in a closed-form. Here, the nonlinearity comes from the switching control. 

The previous stability analyses of FACTS and Custom Power devices based on 
bifurcation theory using continuation methods neglected the harmonic distortion introduced 
by the voltage source converter (VSC). Besides, the network transients have not been taken 
into account. Under this formulation, the electric power network was modeled through a 
phasor representation, and obviously, only the fundamental frequency was considered in 
those analyses. 

The compensating FACTS devices based on VSCs, under analysis in this investigation 
are briefly described below. 

1.1.1 Static Compensator (STATCOM) 
It is a shunt device that does not require passive elements for reactive compensation. The 

STATCOM operation is based on a VSC, which is supplied by a dc storage capacitor. The 
VSC terminals are connected to the dc system through a coupling transformer. The VSC 
produces a quasi-sine wave voltage at the fundamental frequency (50 or 60 Hz). The 
STATCOM can generate or absorb reactive power. A schematic representation of the 
STATCOM is shown in Figure 1.1(a). 

Assuming that the losses in the VSC and the coupling transformer are negligible, vstatcom 
is in phase with the voltage at the terminal bus vk. In this situation, the current istatcom is 
completely reactive. If the magnitude of the voltage vk is more than the magnitude of 
vstatcom, the reactive current flows from the bus to the VSC, which means that the STACOM 
absorbs reactive power. On the other hand, if the magnitude of vstatcom is more than the 
magnitude of vk, the reactive current flows from the VSC to the ac system. Then, the 
STATCOM injects reactive power to the system. In practice, the power losses of the 
STATCOM are not negligible and must be drawn from the ac system to maintain constant 
the dc capacitor voltage. 

1.1.2 Static Synchronous Series Compensator (SSSC) 
The SSSC is a series device in which a synchronous voltage source injects a 

fundamental frequency voltage in series with the transmission line through a coupling 
transformer. The synchronous voltage source is supplied by a VSC. A schematic 
representation of the SSSC is shown in Figure 1.1(b) 

Ideally, the injected voltage is in quadrature with the line current. In this mode the VSC 
does not absorb or generate any real power. However, in practice, the VSC losses must be 
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replenished by the ac system, in consequence a small phase lag is introduced for this 
purpose. There are two modes of operation of this device, one is in which the injected 
voltage is proportional to the line current and the other in which the injected voltage is 
independent of the line current [Gyugyi, et al. 1997]. The operating characteristics make 
this device very attractive for power transmission application. The main limitation of 
application is due to the losses and cost of the converter. The SSSC is a device which has 
so far not been built at transmission level because Series Compensator (fixed capacitor) and 
TCSC [Hingorani and Gyudyi 2000] are fulfilling all the today’s operational requirements 
and a lower cost. 

1.1.3 Unified Power Flow Controller (UPFC) 
This device contains two VSCs connected together through a dc link storage capacitor. 

One of the VSCs is connected in series with the transmission line, while the other VSC is 
connected in shunt with the transmission line. The UPFC can control the active and reactive 
power flow in the transmission line, and at the same time can regulate the voltage 
magnitude at the connection node. To control the real and reactive power flow in the series 
side, the UPFC allows interchange of real power between the shunt and the series 
converters. The main disadvantage of this device is the high cost level due to the complex 
systems setup [Zhang, et al. 2006]. A schematic representation of the UPFC is shown in 
Figure 1.1(c). 

1.1.4 Other FACTS Devices 

1.1.4.1 Static Var Compensator (SVC) 
The Static Var Compensators are mainly used in power systems for voltage control. 

Some other application can be achieved, for example, for stabilization of power 
oscillations, or for improving transient stability [Hingorani and Gyudyi 2000] [Zhang, et al. 
2006]. 

The SVC behaves like a shunt-connected variable reactance, which generates or absorbs 
reactive power in order to regulate the voltage magnitude at the point of connection to the 
ac network. The thyristor’s firing angle control enables the SVC to swiftly respond 

There are two main building blocks for SVCs; Thyristor Switched Capacitor (TSC) and 
Thyristor Controlled Reactor (TCR). The TSC is shown in Figure 1.2(a). In this 
configuration, a capacitor is connected in series with two opposite poled thyristors. Current 
flows through the device can be stopped by blocking the thyristors, and as a consequence 
the TCS behaves like a variable capacitive reactance. In practical applications, the TCS 
always comes in a group as shown in Figure 1.2(b). 

A TCR is a reactor connected in series with two opposite poled thyristors. A schematic 
diagram of a TCR is shown in Figure 1.3. The firing signal for each thyristor is delayed by 
an angle  from the zero crossing of the vs. This angle, often called conduction angle, is 
shown in Figure 1.4. This Figure shows the typical TCR steady state voltage-current 
waveform. Conduction angle must be between 90° and 180°. Observe that for 90 , the 
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current waveform will be continuous and purely sinusoidal, and for 180 , the current 
will be zero. 

 
Figure 1.2 (a) Schematic diagram of a TSC, and (b) multiple TSC connection 

A practical SVC frequently contains both TCS modules and TCR, as shown in Figure 
1.5. In addition, the SVC would contain a Fixed Capacitor (FC). The tuned filters are 
included to suppress harmonic current flowing into the ac system. The SVC contains firing 
and control circuits. The SVC is connected in shunt to an ac line through a step down 
transformer. The SVC is placed in the middle of the transmission line for line power and 
voltage regulation [Gyudyi 1988]. The SVCs can be placed close to loads to provide 
voltage support at the load bus, thereby avoiding possible voltage instability. 

 
Figure 1.3 Schematic diagram of a TCR 

 
Figure 1.4 Steady state voltage-current waveform of a TCR 
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Figure 1.5 SVC connected to an ac network 

1.1.4.2 Thyristor Controlled Series Compensator (TCSC) 
The Thyristor Controller Series Capacitor [Kinney, et al. 1995] [Hingorani and Gyudyi 

2000] contains an ac Fixed Capacitor (FC) that is connected in parallel with a TCR. A 
schematic representation of the TCSC is shown in Figure 1.6. 

 
Figure 1.6 Schematic Representation of a TCSC 

Since this is a series compensation device, its placement is not that crucial and it can be 
placed anywhere along the line. The equivalent reactance of the parallel combination of a 
TCR with a fundamental reactance of XL( ) and a capacitance with a reactance of CX  is 
given by, 

C L
eq

C L

X X
X

X X
  (1.1) 

It can be noticed from (1.1) that by varying XL( ) the equivalent reactance can be 
inductive or capacitive. The gating signal of each thyristor is delayed by a firing angle , 
from the zero crossing of vc. There are many ways of computing the fundamental frequency 
reactance of XL( ) [Christl, et al. 1992] [Fuerte-Esquivel, et al. 2000]. The voltage-current 
characteristic of the TCSC is very similar to that shown in Figure 1.4. 

The variation of per-unit TCSC reactance, Xeq, as a function of the firing angle , is 
shown in Figure 1.7. 
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Figure 1.7 Variation of TCSC reactance with the firing angle 

1.1.4.3 High Voltage Direct Current (HVDC) Transmission 
The application of power electronics in power systems started with bulk power 

transmission through High Voltage Direct Current. The schematic diagram of a double-
poled HVDC transmission system linking two ac systems is shown in Figure 1.8. One of 
these converters is for the positive pole, and the other for the negative pole. The converters 
are thyristors built and are supplied from the three-phase ac side through transformers. In 
addition, at the point of coupling of the ac system and the dc system, tuned ac filters are 
connected so that harmonics generated by the converters do not flow into the ac systems. 
On the dc side a smoothing inductor Ls is connected to the output of each converter to 
smooth the ripples in the dc current; dc filters are also provided to cancel-out harmonics 
from traveling down the dc transmission line. The direction of the power transfer can be 
reversed as well by changing the operating principle of the converters. 

 
Figure 1.8 A double-poled Thyristor-Based HVDC Link 

1.1.4.4 High Voltage Direct Current (HVDC) Light 
Derived from the Thyristor-Based HVDC is the HVDC Light technology, which uses 

Insulated Gate Bipolar Transistors (IGBTs); the IGBTs constitute the VSCs. The converters 
are operated under a PWM technique. Under this modulation technique, it is possible to 
almost instantaneously create any phase and/or amplitude of the voltage at the terminals of 
the converters, which are connected to the ac system. The use of PWM VSC-based HVDC 
offers the possibility of controlling both active and reactive power flow independently. This 
has many technical and economical characteristics, which make it an ideal candidate for a 
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variety of transmission applications where the conventional HVDC is unable to compete. It 
is said that it has brought down the economical power range of HVDC transmission to only 
a few megawatts. At present, the technology enables power rating up to 300 MW. In the 
simplest form, it comprises two STATCOMs linked by a dc cable, as illustrated in Figure 
1.9 [Acha, et al. 2002]. 

HVDC light uses cables that can be buried under the ground. Unlike the overhead lines, 
the cables are not subjected to storms, snow and ice and there is not right of way problem 
either. It is therefore claimed that the HVDC light is a technology for the future dc 
transmission [Ghosh and Ledwich 2002]. 

 
Figure 1.9 A VSC-Based HVDC Link 

1.2 Power Electronic Application in Distribution Systems 
In analogous way, the devices based on power electronics are also used in the 

distribution systems to increase the reliability and the power quality provided to the end 
users. This technology is called Custom Power [Hingorani 1995] [Ghosh and Ledwich 
2002]. With this technology the electrical companies can provide a service of better quality 
and higher reliability. The CP devices provide an integral solution to the problems that are 
facing the electrical companies in the distribution of power, since this technology improves 
the service in terms of the reduction of interruptions and voltage variation. In early days, 
the power quality was referred to the continuity in the service, at acceptable voltage 
magnitude and frequency. However, the increase of nonlinear loads such as computers, 
microprocessors, and power electronic systems has resulted in new power quality issues. 
These nonlinear loads cause power quality problems, and are very sensitive to voltage 
variations as well. 

These devices are categorized into two broad classes; network reconfiguring devices and 
compensating devices. The network reconfiguring devices include Static Current Limiter 
(SCL), Static Circuit Breaker (SCB), Static Transfer Switch (STS) [Ghosh and Ledwich 
2002]. 

This thesis in only focused on the compensating devices. These are detailed next. 

VSC VSC

Cable Impedance

ac System I ac System II

dcvdcv +
-

+
-
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1.2.1 Distribution Static Compensator (DSTATCOM) 
This it is a shunt connected device that has the same structure that the STATCOM 

[Ghosh and Ledwich 2002]. The DSTATCOM can compensate the load, correct the power 
factor and reduce the harmonic content in the network. This device can even regulate the 
voltage at the connection bus. There are important differences between the STATCOM and 
the DSTATCOM. The STATCOM injects almost sinusoidal a balanced three-phase current, 
whereas the DSTATCOM must be able to inject an unbalanced and harmonically distorted 
current in order to balance and to eliminate the harmonic distortion in the source current. 
Therefore, the compensation algorithm and the control are significantly different between 
DSTATCOM and STATCOM. 

There are two operating modes of the DSTATCOM. The difference is associated to its 
control and its compensation algorithm. These operating modes are the voltage and current 
modes, respectively. 

1.2.1.1 DSTATCOM Operating in Current Control Mode. 
In the current control mode, the DSTATCOM compensates for any unbalance or 

distortion in the load, thus, the load draws a balanced current from the system irrespective 
of any unbalance or harmonic distortion in the load [Ghosh and Ledwich 2003]. One of the 
most important issues for the load compensation is the generation of the reference 
compensator currents. There are several techniques proposed; [Ghosh and Ledwich 2003], 
[Ghosh and Joshi 1998], [Akagi, et al. 1984], [Akagi, et al. 1986], [Ghosh and Joshi 2000] 
and [Mishra, et al. 2003]. However, most of these methods assume that the voltage at the 
Point Common Coupling (PCC) is stiff. Unfortunately this is not a valid assumption for 
most practical applications. In [Ghosh and Ledwich 2003] and [Mishra, et al. 2003] some 
algorithms that take into account the feeder impedance are proposed. 

The schematic diagram of a distribution system compensated by an ideal DSTATCOM 
is shown in Figure 1.10. The DSTATCOM is operating in current control mode and 
behaves ideally as a current source if. It is assumed that the Load-2 is reactive, unbalanced 
and nonlinear. In absence of the compensator, the source current will be unbalanced and 
distorted, and consequently, so will be the voltage at node 1. The compensator must be 
operated in such a way that it does not inject or absorb any real power in steady state. 

 
Figure 1.10 Schematic diagram of load compensating using DSTATCOM 
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In order to mitigate this problem, the DSTATCOM injects a different current, so that the 
current is becomes fundamental and balanced. In addition, the DSTATCOM can force the 
current is to be in phase with the voltage at node 2. 

1.2.1.2 DSTATCOM Operating in Voltage Control Mode. 
A schematic diagram of an ideal DSTATCOM acting as a voltage regulator is shown in 

Figure 1.11. In this ideal representation, the DSTATCOM behaves as a voltage source 
connected to the PCC. The voltage regulation is carried-out by injecting a set of three 
currents id in such a way that the voltage vt follows a specified reference. In steady state the 
DSTATCOM does not interchange any real power. The magnitude of the reference voltage 
can be arbitrarily chosen, and its phase is chosen in such a way that the source current is 
equal to the p component of the load current il. It is assumed that il is unbalanced, and 
harmonic distorted. In absence of the compensator, is=il, consequently, is is also unbalanced 
and harmonic distorted. Besides, vt is unbalanced and distorted. 

 
Figure 1.11 Schematic diagram of voltage regulating using DSTATCOM 

1.2.2 Dynamic Voltage Restorer (DVR) 
The DVR has been proposed to protect critical and sensitive loads from supply-side 

disturbances, except outages [Ghosh and Ledwich 2002]. It is connected in series with a 
distribution feeder and is capable of generating or absorbing real and reactive power at its 
ac terminals. The operation principle of the DVR is simple; it injects a voltage in series 
with the feeder. Ideally, this injected voltage is in quadrature with the line current so that 
the DVR behaves like an inductor or a capacitor for the purpose of increasing or reducing 
the overall reactive voltage drop across the feeder. In this operating mode, the DVR does 
not have any interchange of real power with the system in steady-state. The DVR can 
restore the load-side voltage to the desired amplitude and waveform even when the source 
voltage is unbalanced and distorted. A schematic representation of the DVR is shown in 
Figure 1.12. 

 
Figure 1.12 Schematic diagram of voltage regulating using DVR 
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This series connected device has the same structure that the SSSC. Although DVR and 
SSSC have almost the same structure their principles of operation considerably differ. 
Whereas the SSSC injects a balanced three-phase voltage in series, the DVR has to be able 
to inject unbalance three-phase voltage to maintain the load voltage balanced and sinusoidal 
at the specific magnitude,. In addition, in case of distorted source voltage, the DVR has to 
be able to inject a distorted voltage to compensate the harmonic distortion of the source 
voltage. 

1.2.3 Unified Power Quality Compensator (UPQC) 
This device has the same structure of the UPFC. The UPQC is the most versatile 

compensating device of the family of CP technology, since it can simultaneously inject 
current in parallel and voltage in series. As the DSTATCOM and the DVR, the UPQC must 
be able to inject distorted and unbalanced voltages and currents. It is stipulated that the 
UPQC should perform the following functions: The series VSC must inject a voltage, so 
that the voltage at the critical load bus remains balanced, sinusoidal, with pre-specified 
magnitude and phase angle. The shunt VSC must eliminate unbalance and harmonics from 
the PCC voltage. 

The UPQC connected in a distribution system is shown in Figure 1.13. The UPQC 
combines the series voltage vd and the shunt current if. The voltage vd forced the load 
voltage to be a balanced sinusoid, irrespective of unbalance or distortion in the terminal 
voltage vt. On the other hand, the shunt current if forces the source current is to be a 
balanced sinusoid irrespective of the load current il. 

The UPQC can bear short interruptions and critical sags and swells, meanwhile, the 
DSTATCOM operating in voltage mode and the DVR can only compensate small sags and 
swell in magnitude and duration. Even in the case where the DVR is rectifier supported, it 
cannot properly compensate interruptions and critical voltage variations. In addition, the 
UPQC can regulate the voltage magnitude and phase at the load bus. 

 
Figure 1.13 Schematic representation of UPQC connected in a distribution system 

1.3 Motivation Behind the Present Research 
Reliability and quality are the two most important aspects in power systems operation. A 

power system is reliable if customers always get interruption-free power. The term power 
quality is often referred to as maintaining near sinusoidal voltage at the stipulated 
magnitude and frequency at all times. Maintaining levels and frequency are the 
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responsibility of generation; however, it does not mean that the customers get quality 
power, even if the generation quality levels are properly met. 

From the operation point of view, the FACTS and CP technology is concerned with the 
ability to control the electric variables in the power network in different ways that were not 
possible until the advent of the power electronic technology in power systems. However, 
undesirable nonlinear phenomena related to these devices connected in the electric network 
emerge and must be analyzed. These problems are presented in the electric network as 
adverse power quality effects and nonlinear oscillations [Guckenheimer and Holmes 1990], 
which delimit the practical operating points, since out of these limits the electric system 
losses its stability. 

The common adopted technique to analyze the stability in electric network including 
FACTS or/and CP devices is the brute force approach or eigen-analysis [Kundur 1994] 
[Ghosh and Ledwich 2002]. The brute force method is based on the direct application of a 
numerical integration method to investigate the trajectories of the state variables. However, 
this method is limited to the investigation of asymptotically stable steady states. In the 
eigen-analysis, the system is linearized around an equilibrium operating point. The stability 
of this point is determined by computing its eigenvalues. However, in this conventional 
stability analysis, the power system is represented in RMS quantities, and the network 
transients are neglected. This approach is frequently used due to its simplicity. However, 
there are evident limitations since the harmonic distortion introduced into the power system 
by the FACTS and CP devices is neglected. 

The operation of the FACTS and CP devices produces an excellent controllability of the 
power flows; unfortunately, they also introduce undesirable effects in the nodal voltage and 
current waveforms of the power network such as harmonic distortion. The understanding of 
the harmonic interaction between this device and the network, as well as its impact in the 
system, can be obtained from an accurate mathematical model of these devices. These 
models can give a clear perception about the performance of these devices, as well as the 
possibility to determinate the harmonic distortion produced by a particular device and to 
assess its adverse operation impact. In addition, a Newton method for the fast computation 
in the time domain of the periodic steady state solution of power networks including 
FACTS and CP is necessary. 

In this investigation, the power system is represented through instantaneous quantities, 
the network transients are taken into account and the electric sources voltage are assumed 
to be sinusoidal. In particular, it is difficult to analyze the dynamics of converter-based 
FACTS and CP devices, since they incorporate both continuous time dynamics and discrete 
time events. These analytical difficulties are common in all converter-based components 
whose operation is based on a switching process. For this reasons, fundamental frequency 
models are commonly used [Srivastava and Srivastava 1998] [Mithulananthan, et al. 2003]. 

Since the network between switching instants is nonlinear due to the nonlinear elements 
in the network, it is not easy to represent the FACTS and CP mathematical models through 
discrete-time iterative mapping approach. For this reason, accurate mathematical models 
are needed to carry-out the stability analysis based on the bifurcation theory using a 
continuation scheme to trace the stability boundaries. The bifurcation analysis based on 



13 
 

continuation schemes allows us to identify not only the stability boundaries but the type of 
dynamics in each region, as well as the type of bifurcation that emerges in the system. 

1.4 Objectives 
This investigation is centered on the following main objectives: 

1. Efficient modeling of FACTS and Custom Power devices including the 
harmonic distortion. 

2. Development of efficiency methods to compute the periodic steady-state 
solution of nonlinear components and systems represented by non-autonomous 
ordinary differential equations. 

3. Stability analysis based on bifurcation theory and continuation methods of 
Custom Power devices. In this analysis, the power system is modeled as 
instantaneous rather phasor quantities, and the harmonic distortion is taken into 
account. 

1.5 Methodology 
In general terms, the construction of a bifurcation diagram consists of the following 

steps: a) finding a first periodic steady-state solution of ordinary differential equations 
system, b) based on the first solution, find other equilibrium solutions based on a 
continuation scheme, and c) determining the stability of each solution. 

The results obtained through bifurcation analysis can be shown in a bifurcation diagram, 
which provides qualitative information about the behavior of the steady state solutions. At 
certain points (bifurcation points) infinitesimal changes in system parameters can cause 
significant qualitative changes in periodic solutions. 

A continuation algorithm can trace the path of an already established solution, as the 
parameters are varied. In this thesis, the sequential method [Nayfeh and Balachandran 
1995] is used as the predictor; in this method, the periodic solution determined in the 
previous step is used as an initial guess for the periodic solution to be determined in the 
next step. The Newton method based on a Discrete Exponential Expansion (DEE) 
[Segundo-Ramírez and Medina 2009] process is used as the corrector. 

The stability of a periodic solution is computed from its Floquet multipliers; they 
describe the stability around the limit cycle of interest. Floquet theory is based on the fact 
that a periodic solution can be represented through a fixed-point of an associated Poincaré 
map [Parker and Chua 1989] [Nayfeh and Balachandran 1995]. Consequently, the stability 
of a periodic solution can be determined by computing the stability of the corresponding 
fixed-point of the Poincaré map. The Floquet multipliers are the eigenvalues of the 
Jacobian of this Poincaré map. Stable periodic solutions correspond to Floquet multipliers 
inside the unit circle; on the other hand, unstable periodic solutions have at least one 
characteristic multiplier outside the unit circle. Therefore, loss of stability is encountered 
when a multiplier leaves the unit circle. 
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1.6 Contributions 
The most significant contributions of this research work are summarized below: 

1. An algorithm which dramatically reduces the computer effort required for the 
identification process of the transition matrix used for the fast steady state solution 
in the time domain on nonlinear power systems by extrapolation to the limit cycle is 
introduced. It is demonstrated that the proposed Enhanced Numerical 
Differentiation (END) Newton method increases the computer efficiency in nearly 
hundred percent, when compared against the original Numerical Differentiation 
(ND) method [Semlyen and Medina 1995]. 

 
2. A Newton method to compute the periodic steady-state solution of nonautonomous 

ODE set based on a Discrete Exponential Expansion DEE method. This contribution 
introduces an efficient methodology for the fast periodic steady state solution of 
nonlinear power networks. It is based on the application of the Poincaré map to 
extrapolate the solution to the limit cycle through a Newton method based on a DEE 
procedure. 

 
3. Two Voltage Source Converters models based on Fourier series and hyperbolic 

tangent function are proposed. The proposed models can be used for fast simulation 
in the time domain of power electronic devices based on SPWM VSCs; the 
undesirable error introduced by the high rates in the commutation instants are 
removed; even though the harmonic distortion coming from the converter is taken 
into account. The switching instants in the Fourier model are approximated in a 
closed form, and an iterative algorithm based on the Newton-Raphson method is 
developed for the exact calculation of the switching instants. The hyperbolic tangent 
model does not need the calculation of the switching instants as in the case of the 
Fourier model. 

 
4. Stability analysis of a DSTATCOM, operating in voltage control mode, using 

bifurcation theory. The mathematical model of the DSTATCOM in voltage control 
mode to carry-out the bifurcation analysis is derived. The stability regions in the 
Thevenin equivalent plane are computed. In addition, the stability regions in the 
control gains space, as well as the contour lines for different Floquet multipliers are 
computed. The impact of ac capacitor and dc capacitor on the stability are analyzed 
through bifurcation theory. The observations are verified through simulation studies. 
The computation of the stability region allows the assessment the stable operating 
zones for a power system that includes a DSTATCOM operating in voltage mode. 

 
5. Stability analysis for a DSTATCOM that is operating in current control mode based 

on bifurcation theory. A control design for the DSTATCOM is proposed. Along 
with this control, a suitable mathematical representation of the DSTATCOM is 
proposed to efficiently carry out the bifurcation analysis. The stability regions in the 
Thevenin equivalent plane are computed for different power factors at the point of 
common coupling (PCC). In addition, the stability regions in the control gain space, 
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as well as the contour lines for different Floquet multipliers are computed. The 
observations are verified through simulation studies. 

 
6. Stability analysis for a DVR connected to an ac system is presented using 

continuation techniques and bifurcation theory. The system dynamics are explored 
through the continuation of periodic solutions of the associated dynamic equations. 
The switching process in the DVR converter is taking into account to trace the 
stability regions through a suitable mathematical representation of the DVR 
converter. The stability region in the Thevenin equivalent plane is computed. The 
bifurcation approach is shown to be both computationally efficient and robust, since 
it eliminates the need for numerically critical and long lasting transient simulations. 

1.7 Thesis Outline 
The rest of this thesis is organized into 6 Chapters. A brief overview of each one of these 

Chapters is given below: 

Chapter 2 presents an overview of a collection of controllers which conforms the 
FACTS and CP technology based on VSCs. Their features, applications, and influences on 
power systems are briefly described. 

Chapter 3 presents the modelling of FACTS and Custom Power devices including 
harmonic distortion. The proposed models can be used for the efficient computation of the 
transient and periodic steady state solutions. These models allow the use of a Newton 
method for efficient computation of the periodic steady state solution. In addition, a larger 
integration step can be used. 

Chapter 4 describes the details of the development of Newton methods based on an 
Enhanced Numerical Differentiation method (END) and Discrete Exponential Expansion 
(DEE) procedures, respectively, for the fast and efficient computation of the periodic steady 
state solution of nonlinear power systems. 

Chapter 5 presents the stability analysis for the DSTATCOM operating in voltage 
control mode, for the DSTATCOM operating in current control mode, and for the DVR. 

Chapter 6 draws the overall conclusions of this research and gives suggestions for 
future research work. 
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2 A General Overview of 
Power Converters Employed by 

FACTS and CP Devices 
 

 

The STATCOM, SSSC, UPFC, DSTATCOM, DVR, and the UPQC are based on 
power converters. The power converters employed by FACTS devices have much higher 
power rating than the custom power devices since they are specially used in bulk power 
transmission systems [Ghosh and Ledwich 2002]. In addition, the operation principle 
between the FACTS and CP devices is quite different since it is assumed that the FACTS 
devices work under balanced sinusoidal conditions, meanwhile, the CP devices have to 
work under unbalanced, nonsinusoidal and distorted conditions. Consequently, the 
control strategies and converters structures between the FACTS and CP devices are 
different. For more details on power electronics please check [Mohan, et al. 1995] and 
[Rashid 2004]. 

2.1 Introduction 
A power converter is a power electronic circuit that acts as an interface between two 

different electric systems, for instance, two dc systems with different voltage levels; two 
electric systems where one is in dc and the other is in ac; or the ac with different frequency. 
There are two types of ac power converters: Current Source Converter (CSC) and Voltage 
Source Converter (VSC). The schematic representations of them are shown in Figure 2.1. 

A converter has a dc side, a power electronic circuit built of power electronic switches, 
and an ac side. The power electronic circuit for both CSC and VSC is the same. The ac side 
is connected to loads or is interfaced to another ac system. Therefore, it is the dc side what 
differentiates these two converters. The dc input of the CSC is a current source. This 
current source is usually formed by a controlled dc source that is connected to a large 
inductor in series. On the other hand, the dc input to a VSC is a dc voltage source that is 
usually obtained by rectifying an ac voltage, since dc capacitors are more efficient, smaller 
and less expensive than inductors. Therefore, VSCs are most commonly used in CP and 
FACTS devices, and we will restrict our discussion to VSCs only. 
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Figure 2.1 Schematic representation of a (a) CSC and (b) VSC 

2.2 Inverter Topology 
In this section, the structure employed in this investigation will be presented. The state 

space representation of these topologies will be discussed. In addition, the performance of 
these inverters is illustrated with the help of some simulation results. 

2.2.1 Single-Phase H-bridge Inverter 
The schematic diagram of a H-bridge inverter is shown in Figure 2.2. This topology 

enables a voltage to be applied across the load in either direction. The inverter contains 4 
switches S1-S4, these are power semiconductor devices and anti-parallel diode. The power 
semiconductor can be a power MOSFET for low power application or a gate turn-off 
(GTO) thyristor for high power applications. However, for distribution applications, the 
IGBT is usually used, since it can drive large currents and allows high switching 
frequencies with low losses. 

In Figure 2.2, it is assumed that the load is a RL branch. The load is connected between 
the two legs of the inverter. The inverter is supplied from a dc voltage, vdc. The switches of 
each leg have complementary values, e.g. when S1 is on, S4 is off and vice versa. In 
addition, the switches operate in pairs, e.g. when S1 is on, S2 is on, and S3 and S4 are off, 
and vice-versa. There is a small time delay provided between the switching on and off of 
the pairs of semiconductors; this time is called blanking period, and it is provided to 
prevent the dc source from being short-circuited. For example, in the blanking period, the 
switch S1 is getting turned on before S4 turns off completely. In practice, the blanking time 
has to be taken into account; however, this period can be neglected for analysis purposes. 

In Figure 2.3 the equivalent circuits are presented for the two modes of operation of the 
H-bridge shown in Figure 2.2. The load current, il, is given by 

1l
l dc

di R i v u
dt L L

  (2.1) 

where u is defined as 
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1 2

3 4

1 when  and  are on
1 when  and  are on

S S
u

S S
  (2.2) 

 
Figure 2.2 Schematic diagram of a H-bridge inverter 

 
Figure 2.3 Equivalent circuits of the H-bridge inverter (a) when S1 and S2 are on, and (b) when S3 and S4 are on. 

Example 2.1: Assuming that 

vdc=5 V, R=1 , L=2 mH, h=0.4 A 

show the operation of the H-bridge through numerical simulations. Let us assume that the 
tracking reference current (desired current) is given by 

sin 0.2 sin 5 0.1sin 7lrefi t t t   (2.3) 

where =120 . 

The load reference current, ilref is shown in Figure 2.4. In addition, the hysteresis band is 
shown between the region ilref +h and ilref –h by mean of the dash line. 

The switching function u is computed using the following logic 

1;

1;

l lref

l lref

if i i h

u
elseif i i h

u
end

  (2.4) 



19 
 

 
Figure 2.4 Reference current and hysteresis band 

In Figure 2.5 the load current is shown for different load inductances. For L=2 mH, L=5 
mH, L=8 mH, and L=11 mH, in Figure 2.5(a), Figure 2.5(b), Figure 2.5(c), and Figure 
2.5(d), respectively. The tracking error, defined as il-ilref, is shown in Figure 2.6. 

 
Figure 2.5 Load current for various load inductors 

We could conclude from Figure 2.5 that the fundamental frequency of each waveform is 
60 Hz since the fundamental frequency of the reference current is 60 Hz; however, this is 
not the case for each set of parameter values of the circuit shown in Figure 2.2. Figure 2.7 
shows a bifurcation diagram computed through the Brute Force (BF) [Parker and Chua 
1989] approach to illustrate the performance of the single H-bridge when the load inductor 
is varied between 2 mH and 162 mH, and h=0.8 A. Notice that many periodic steady state 
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solutions appear when the load inductor is varied. This bifurcation diagram shows that the 
load current goes out of the hysteresis band for L>14.2 mH. 

 
Figure 2.6 Tracking error for various load inductors 

 
Figure 2.7 Bifurcation diagram of the single H-bridge inverter for h=0.8 A 

The phase portrait of iref – il for L=2.2 mH, and L=2.38 mH are shown on Figure 2.8(a) 
and 2.8(b), respectively. The solution in Figure 2.8(a) is T-periodic, meanwhile in Figure 
2.8(b) is 34T-periodic. 
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Figure 2.8 Phase portrait of iref – il for (a) L=2.2 mH showing a T-periodic solution and for (b) L=2.28 mH showing a 

34T-periodic solution. 

For the particular case of the solution shown in Figure 2.8(b), if we use a window of 
1/60 s to carry-out the DFT, there will be interharmonics and subharmonics from the 
frequency of 60 Hz. However, every component in its spectrum is an integer multiple of the 
frequency 60/34 Hz, which is now the fundamental frequency of the 34T-periodic steady 
state solution. Figure 2.9 shows the harmonic spectrum of the periodic steady state solution 
given in Figure 2.8(b). Observe that the harmonic spectrum contains interharmonics and 
subharmonics. 

 
Figure 2.9 Spectrum of the load current 

Figure 2.10 shows the bifurcation diagram for h=0.2 A. This is different in comparison 
with that shown in Figure 2.7; however, it still contains several types of periodic solutions. 
Please observe that the tracking error is within the limits up to L=5 mH. 
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Figure 2.10 Bifurcation diagram of the single H-bridge inverter for h=0.2 A 

Figure 2.11 shows the periodic steady state solution for different values of the load 
inductor, e.g. for L=1.05 mH in Figure 2.11(a); for L=1.06 mH in Figure 2.11(c); and for 
L=3.83 mH in Figure 2.11(e). Please, notice that each solution follows the reference current 
within the limits imposed by the hysteresis band and apparently the fundamental frequency 
of each of those solutions is 60 Hz. In order to evaluate the fundamental frequency, the load 
current has been plotted in discrete times multiples of T, where T=1/60 s. In Figure 2.11(b) 
the solutions are 2T-periodic for L=1.05 mH; in Figure 2.11(d) the solutions are 5T-periodic 
for L=1.06 mH; and in Figure 2.11(f) the solutions are 17T-periodic for L=3.83 mH.  

 
Figure 2.11 Periodic solutions for different load inductors 

From these results the following conclusion can be drawn: 

 The tracking becomes better as the hysteresis band becomes narrower 
 The switching frequency becomes higher as the hysteresis band becomes 

narrower; however, high switching frequency results in increased losses in the 
semiconductor switches. Thus, the choice of the hysteresis band is a compromise 
between tracking error and inverter losses. 
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 For the same hysteresis band, the switching frequency becomes higher as the 
load inductor becomes smaller. In addition, the tracking becomes inferior for 
large load inductors. 

 For a large load inductor, even by decreasing the hysteresis band, the tracking is 
not acceptable since di/dt slowly varies. For a large load inductor, di/dt can be 
increased by increasing the dc voltage. 

2.2.2 Three-Phase H-bridge Inverter 
The schematic diagram of a three-phase H-bridge inverter commonly employed in 

compensating CP devices is shown in Figure 2.12 [Ghosh and Ledwich 2002]. In a 
practical case, the converter must be able to inject distorted currents in one phase, 
independently of the other two phases. The three-phase H-bridge inverter is constituted of 
three single-phase H-bridge inverters connected to a common dc storage capacitor, as 
shown in Figure 2.12. Each inverter is connected to the load through a transformer. The 
transformers are used to provide isolation between the inverter legs. This also prevents the 
dc capacitor from short circuits between phases. The compensating devices based on this 
structure can independently compensate each phase. It is to be noticed that due to the 
presence of transformers, this topology is not suitable for cancelling-out any dc component 
in the load current. The inductance Lf represents the leakage inductance of each transformer 
and the additional external inductance, if any. The switching losses of an inverter and the 
copper loss of the connecting transformer are represented by a resistance Rf.  

 
Figure 2.12 Schematic diagram of a three-phase H-bridge inverter 

The switches of each leg have complementary values, e.g. when S1 is on, S4 is off and 
vice versa. Additionally, the switches are operated in pairs, when S1 is on, and S2 is on, S3 
and S4 are off, and vice versa. 

The load currents, if, are given by 
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1

1

1

fa f
fa dc a

f f

fb f
fb dc b

f f

fc f
fc dc c

f f

di R
i v u

dt L L

di R
i v u

dt L L

di R
i v u

dt L L

  (2.5) 

where 

1 2

3 4

5 6

7 8

9 10

11 12

1 when  and   are on
1 when  and   are on

1 when  and   are on
1 when  and   are on

1 when  and   are on
1 when  and   are on

a

b

c

S S
u

S S

S S
u

S S

S S
u

S S

  (2.6) 

The dc current is given by 

dc fa a fb b fc ci i u i u i u   (2.7) 

Example 2.2 Generate the following currents 

1.3sin 0.2sin 5 0.1sin 7

sin 2 / 3 0.1sin 5 2 / 3 0.3sin 7 2 / 3

1.1sin 2 / 3 0.15sin 5 2 / 3 0.2sin 7 2 / 3

ref
fa

ref
fb

ref
fc

i t t t

i t t t

i t t t

 (2.8) 

Assuming that 

vdc=5 V, R=1 , L=2 mH, h=0.1 A and =120  

The current tracking results are shown in Figure 2.13(a), and the neutral current is 
shown in Figure 2.13(b). Notice that the error in the neutral current is higher than the error 
in the phase currents since this is the sum of errors in the three currents. 

In Figure 2.14 the bifurcation diagram using Lf as a bifurcation parameter is shown. The 
operation of the converter when the tracking error is within the limits (Lf<5mH) imposed by 
the hysteresis band introduces harmonics, subharmonics, and interharmonics, since its 
solution is not T-periodic. 
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Figure 2.13 Currents for the three-phase H-bridge inverter (a) load currents, and (b) neutral current 

 
Figure 2.14 Bifurcation diagram for the three-phase H-bridge inverter 

2.2.3 Three-Phase Inverter 
A schematic diagram of a three-phase inverter is shown in Figure 2.15. It consists of six 

semiconductor switches S1-S6. In this configuration, the switches of each leg are 
complementary, it means that when one switch is on the other is off. For example, when S1 
is on, S4 is off and vice versa. The inverter is supplied by two equal dc sources vdc/2. The 
load neutral is denoted by n, meanwhile the converter neutral is denoted by N. 

In order to show the modeling of this inverter, we have assumed for simplicity a RL load 
(Rf+j Lf). However, this analysis can be applied for any different load. For inspection, the 
voltage across the point a and the converter neutral is 
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1

4

 if  is on
2

 if  is on
2

dc

aN
dc

v S
v

v S
  (2.9) 

Similar equation can be obtained for vbN, and vcN. 

2
dcv

fai

fbi

fci
fRfL
fRfL
fRfL

n

1dci

1S 3S

6S4S

5S

2S

2
dcv

N
a

b
c

2dci

 
Figure 2.15 Schematic diagram of a three-phase inverter 

Assuming that the path Nn is open, the voltage between n and N, vnN, is non zero. Thus, 
the state equation can be written as 

2
fa dc

f f fa a nN

di vL R i u v
dt

  (2.10a) 

2
fb dc

f f fb b nN

di vL R i u v
dt

  (2.10b) 

2
fc dc

f f fc c nN

di vL R i u v
dt

  (2.10c) 

ua, ub, and uc are the switching functions defined as 

1

4

3

6

5

2

1 if  is on
1 if  is on

1 if  is on
1 if  is on

1 if  is on
1 if  is on

a

b

c

S
u

S

S
u

S

S
u

S

  (2.11) 
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The system is a three-phase, three-wire configuration, and the load neutral point is 
floating, therefore 

0fa fb fci i i   (2.12) 

Because of (2.12) has to be satisfied, the three-phase, three-wire configuration is not 
suitable for independently tracking the three currents. 

The voltage between n and N can be obtained from (2.10) and (2.12), and can be written 
as 

6
dc

nN a b c
vv u u u   (2.13) 

The dc currents idc1 and idc2 are given by, 

1 1 3 5

2 4 6 2

dc a b c

dc a b c

i i S i S i S
i i S i S i S

  (2.14) 

Remember that Si is 0 when open, and 1 when closed, with i=1,2,…,6. 

If the two neutral points are connected, idc1 = idc2, and the restriction (2.12) can no longer 
be imposed, then 

0nNv   (2.15) 

Example 2.3 Generate the following currents 

sin 0.2sin 5 0.1sin 7

sin 2 / 3 0.2sin 5 2 / 3 0.1sin 7 2 / 3

sin 2 / 3 0.2sin 5 2 / 3 0.1sin 7 2 / 3

ref
fa a

ref
fb b

ref
fc c

i I t t t

i I t t t

i I t t t

 (2.16) 

Assuming that 

vdc=5 V, R=1 , L=2 mH, h=0.05 A, and =120  

Case 1: Balanced reference current 

In the balanced case 

1Aa b cI I I   (2.17) 

The load currents are shown in Figure 2.16(a), and the neutral current is shown in Figure 
2.16(b). Please observe that the neutral current is not zero even for a balanced load and 
reference current, in spite of the reference current does not have any triplen harmonic. 
However, the load currents contain triplen harmonics. This current is due to the switching 
process. 
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Figure 2.16 Currents for the three-phase inverter (a) load currents, and (b) neutral current  

The bifurcation diagram for the three-phase converter is shown in Figure 2.17. Notice 
that the tracking error is maintained within the limits up to Lf<3.5 mH. In addition for 
Lf<3.5 mH the converter has several types of solutions. For instance, for Lf =2 mH the 
solution has period 7, and for Lf =3.29 mH the periodic solution has period T (1/60 s); these 
can be seen in Figure 2.18(a) and Figure 2.18 (b), respectively. In this Figure, ifa is plotted 
in discrete time multiples of T. 

 
Figure 2.17 Bifurcation diagram for the three-phase inverter: balanced case 
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Figure 2.18 Periodic solution for different load inductors (a) Lf =2 mH, and (b) Lf =3.3 mH 

Case 2: Unbalanced reference current 

In this case 

0.8 A, 1.5 A,and 1 .1 Aa b cI I I   (2.18) 

The current tracking results are shown in Figure 2.19. Notice that the neutral current is 
significantly higher, when compared with the balanced case. The error in the neutral current 
is higher that the tracking error in the load currents since the hysteresis modulation scheme 
controls only the error in the load current but it does not directly control the error in the 
neutral current. 

 
Figure 2.19 Currents for the three-phase inverter (a) load currents, and (b) neutral current 

Figure 2.20 shows the bifurcation diagram of the three phase converter for the 
unbalanced case. In this case, there are also several types of periodic steady-state solutions. 
Notice also that the tracking error cannot be within the limits for Lf >2.5 mH. 
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Figure 2.20 Bifurcation diagram for the three-phase inverter: unbalanced case 

2.2.4 Six-Pulse Voltage Source Converter 
The circuit representation of a six-pulse converter is shown in Figure 2.21. The 

bidirectional switching function is identified by Si and '
iS  for each phase (i=a,b,c), which 

can be on or off, r is the switch-on state resistance, Si is 1 or 0, corresponding to the on and 
off states of the switch, respectively. In addition, Si and '

iS  are complementary, e.g. Si+ '
iS

=1. 

 
Figure 2.21 Three-phase Six-pulse converter 

To describe the mathematical model of this converter, let us consider the phase A and 
the dc side as shown in Figure 2.22. 

 
Figure 2.22 Equivalent circuit of phase A 
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The equation that describes the voltage vta can be written as 

ta aH Hnv v v   (2.19) 

When Sa is on we have 

aH a dc av ri v S   (2.20) 

On the other hand, when Sa is off we have 

aH a av ri S   (2.21) 

Since Sa and aS  are complementary 

aH a dc av ri v S   (2.22) 

Similar equations are found for the other two phases: 

bH b dc b

cH c dc c

v ri v S
v ri v S

  (2.23) 

Since vta+ vtb+ vtc=0 and ia+ ib+ ic=0, we obtain 

3
dc

Hn a b c
vv S S S   (2.24) 

Then, the terminal voltage can be expressed as 

/ 3

/ 3

/ 3

ta a dc a dc a b c

tb b dc b dc a b c

tc c dc c dc a b c

v ri v S v S S S

v ri v S v S S S

v ri v S v S S S
  (2.25) 

Equations (2.25) can be represented by the circuit of Figure 2.21; however, an 
alternative equivalent circuit for (2.25) is shown in Figure 2.23. 

 
Figure 2.23 Equivalent three-phase six-pulse converter model 
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The dynamics of the dc capacitor, Cdc, is 

1dc
dc

dc

dv i
dt C

  (2.26) 

The dc current idc can be obtained using the using the energy preservation principle, e.g. 

ac dc lossP P P   (2.27) 

where 

ac ta a tb b tc cP v i v i v i   (2.28) 

and 

dc dc dcP v i   (2.29) 

ploss is the switching loss and it is expressed as 

2 2 2
loss a b cp r i i i   (2.30) 

From (2.28) and (2.29), we can express idc as 

ta a tb b tc c loss
dc

dc

v i v i v i Pi
v

  (2.31) 

Using (2.25) and (2.30), the dc current can be also expressed as 

/ 3dc a a a a a a a b c a a ai i S i S i S i i i S S S   (2.32a) 

Since ia+ ib+ ic=0, idc takes the form, 

dc a a a a a ai i S i S i S   (2.32b) 

2.2.5 Sinusoidal Pulse Width Modulation (SPWM) 
Consider one arm of a converter as illustrated in Figure 2.22. The desired signal 

(reference signal) is vs and the dc voltage across the capacitor is vdc. The reference signal is 
defined as 

coss sv E t   (2.33) 

Es is the magnitude of vs, and  is its phase angle. The purpose is to transform the 
continuous vs into a series of pulses having a fixed amplitude vdc. To achieve this result, a 
sawtooth wave (tri) with a magnitude of vdc is drawn. Now, conduction takes place 
whenever vs lies above the triangular waveform (tri), and conduction ceases whenever it 
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lies below. The resulting pulse train contains the signal vs/2. The amplitude of the triangular 
signal is kept constant. The SPWM process is illustrated by Figure 2.24(a). The 
corresponding switching function is shown in Figure 2.24. 

 
Figure 2.24 Transforming a desired continuous signal vs into a SPWM signal. 

In practice, Tc is much shorter than that shown in Figure 2.24. Consequently, the change 
in vs during one carrier period Tc is considerably less than the indicated in Figure 2.24(a). In 
other words, a higher carrier frequency fc directly improves the reproduction of the original 
signal vs; the carrier frequency fc is defined as 1/Tc. 

The frequency-modulation radio mf is defined as fc/fs, where fs is the frequency of vs. 
Higher mf implies a high switching frequency. 

The SPWM technique can be also applied to the converter structure illustrated in Figure 
2.15. 

Example 2.4 For the circuit shown in Figure 2.25, find the fundamental terminal voltage 
for different amplitude modulation ratios and for different frequency modulation ratios. 
Assume vdc=10 V. 

 
Figure 2.25 Circuit of example 2.4 
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In Figure 2.26 the magnitude of the fundamental terminal voltage, in terms of the dc 
voltage capacitor for different frequency modulation ratios (ma) is shown; Figure 2.27 
shows nonlinear range for magnitude of the fundamental frequency voltage control by 
varying ma, where ma is defined as Es/vdc. 

 
Figure 2.26 Voltage control by varying ma 

 
Figure 2.27 Nonlinear range for magnitude of the fundamental frequency voltage control by varying ma 

Observe that for , the terminal voltage is directly proportional to  in spite of  
the frequency modulation ratio. However, this relation becomes nonlinear for  . 
Thus, since the amplitude of the fundamental frequency terminal voltage varies linearly 
with  for , this range is called linear modulation; meanwhile, for   results 
in what is called overmodulation [Mohan, et al. 1995]. In the overmodulation ratio, the 
relation between the dc voltage capacitor and the terminal voltage depends on the used 
frequency modulation ratio. 

In the linear modulation, the SPWM pushes around the switching frequency and its 
multiples. One of the main drawbacks is that the maximum available amplitude of the 
fundamental frequency component is not as high as we would wish. To increase the 
amplitude of the fundamental frequency component in the terminal voltage, the index 
amplitude modulation, ma, is increased beyond ma=1. However, overmodulation causes the 
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output voltage to contain many more harmonics in the sidebands, as compared with the 
linear modulation. 

In Figure 2.28(a) the terminal voltage and its fundamental frequency component are 
shown for ma =0.8 and mf =15. On the other hand, in Figure 2.28(b) the harmonic spectrum 
of vta it terms of vdc/2 is illustrated. Please observe that for , the fundamental 
frequency component of vta is ma times vdc/2. Choosing mf as an odd integer results in odd 
symmetry as well as a half-wave symmetry with the origin. For more details on SPWM 
please review [Mohan, et al. 1995]. 

 
Figure 2.28 Sinusoidal pulse width modulation (a) voltage at the terminal of the converter. (b) Harmonic spectrum of 

the voltage at the terminal of the converter in terms of the dc voltage capacitor 

2.3 Simplified Models 

2.3.1 Fundamental Frequency Component of the Switching 
Functions for the SPWM  

Fundamental component of the switching function obtained with the SPWM technique 
for the converter topologies shown in Figure 2.15 and Figure 2.21 are 

0.5 cos
2

0.5 cos 2 / 3
2

0.5 cos 2 / 3
2

a
a

a
b

a
c

mS t

mS t

mS t

  (2.34) 

Using (2.34), the fundamental frequency voltage at the terminals of the converter can 
expressed as, 
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cos
2

cos 2 / 3
2

cos 2 / 3
2

a dc
ta

a dc
tb

a dc
tc

m vv t

m vv t

m vv t

  (2.35) 

Similar equations can be obtained for the converter shown in Figure 2.15. The switching 
functions ua, ub, and uc used in (2.10) can be represented in terms of Sa, Sb, and Sc as 
follows 

2 1
2 1
2 1

a a

b b

c c

u S
u S
u S

  (2.36) 

Using the fundamental component of the switching functions, the dc currents idc1 and idc2 
are equal if the neutrals are connected or not. 

2.3.2 Simplified Representation of the Hysteresis Modulation 
Technique 

In the detailed model, the switching devices, the modulation process and the dc capacitor 
dynamic are explicitly represented. The switching elements are modeled as ideal switches. 
This model sometimes requires very small times to well represent the commutation process, 
thus, the simulation time could be considerably long. If we are not interested in the 
chopping, one can use a source having the average value computed upon a chopping period. 
With the simplified model, one can simulate the system using a larger time step. 

There are two ways for obtaining a simplified representation of the hysteresis 
modulation technique. The first one is to assume the converter as a set of ideal current or 
voltage sources. The second one is to assume h=0 for the hysteresis band modulation, 
which we call zero hysteresis band approach. 

2.3.2.1 Ideal Sources 
For this approach, the converter can be replaced by three ideal current or voltage 

sources, depending on the case. In this approach it is assumed that the converter is able to 
instantaneously generate the reference currents or voltages. From this assumption, all the 
mathematical equations of the power network are developed. The link between the dc side 
and the ac side is well represented using the energy preservation principle. 

2.3.2.2 Smooth Hysteresis Band Approach 
In the ideal sources approach we assume an instantaneous response of the converter to 

generate the reference currents and voltages. However, this approach does not take into 
account the switching control (LQR, dead-beat, etc.) nor the converter structure. The 
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smooth-hysteresis band approach is simpler than the ideal sources approach, since it is 
possible to obtain the simplified model from the detailed model directly. In addition, this 
approach takes into account the converter structure and the switching control. 

This method is based on the next observation: suppose that the hysteresis band is 
decreased until h=0; as a consequence the harmonic distortion introduced by the converter 
no longer exists. 

The hysteresis curve in the detailed model can be replaced for a sigmoid function or a 
hyperbolic tangent. The sigmoid function is also called the sigmoidal curve or logistic 
function. The approximation of the hysteresis curve using the sigmoid function is defined 
as 

4
2 1

1
cu

h

u
e

 

The approximation through the hyperbolic tangent is defined as 

tan cuu h
h

 

Here, uc is a continuous function defined as the controlled current or voltage obtained 
from measurements minus the reference signal. Figure 2.29 shows the hysteresis function 
represented with solid lines; the smooth hysteresis curve is drawn with dashed lines. 

u

cuhh

 
Figure 2.29 Hysteresis modulation technique and the smooth hysteresis approximation 

2.4 Conclusions 
In this chapter the structures of various converters circuits have presented; these 

structures are widely used in FACTS and custom power devices. In addition, the sinusoidal 
pulse width and the hysteresis modulation techniques have been presented, these are used in 
FACTS and custom power devices, respectively. Several examples have been presented to 
illustrate the performance of these converters and modulation techniques. 

Bifurcation diagrams for the H-bridge and the three-phase 4-wires converters modulated 
with the hysteresis band technique has been reported, and it has been illustrated that this 
modulation technique normally works with a period longer that the fundamental one. From 
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the stability point of view, this modulation technique cause loss of stability as shown in 
examples 2.1 and 2.2; however, for practical purposes, the instability is retained in the 
hysteresis band and it can be neglected. The SPWM does not present stability problems. 
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3 Modeling of FACTS and 
Custom Power Devices 

 

 

In this chapter two Voltage Source Converters (VSC) models based on Fourier series 
and hyperbolic tangent function are proposed. The models are described in detail. The 
proposed models can be used for fast simulation in the time domain of power electronic 
devices based on SPWM VSCs. The undesirable error introduced by the high rates in the 
commutation instants are removed; even though the harmonic distortion coming from 
the converter is taken into account. The switching instants in the Fourier model are 
approximated in a closed form, and an iterative algorithm based on the Newton-Raphson 
method is developed for the exact calculation of the switching instants. The hyperbolic 
tangent model does not need the calculation of the switching instants as in the case of the 
Fourier model. These models can be extended to FACTS and custom power devices. In 
particular these models are directly applied to FACTS devices based on SPWM VSCs. 
however, for custom power devices is not that easy since the power converters employed 
in custom power devices usually have different topologies in comparison with FACTS 
technology [Ghosh and Ledwich 2002]. In general, the converters can be modeled using 
the energy preservation principle approach to obtain average models. If the converter is 
modulated in a hysteresis fashion, then the approaches described in Section 2.3.2 can be 
applied. The proposed models are validated against the solution obtained with the Power 
System Blockset (PSB) of Simulink and with PSCAD/EMTDC. The VSC model based on 
Fourier series approach hyperbolic tangent are validated against the response obtained 
by measurements from a 1.5 kVA ASD experimental setup system. 

3.1 Modeling of FACTS Devices Based on SPWM VSCs 
The FACTS technology is the application of power electronics in transmission systems 

[Hingorani and Gyudyi 2000]. The main purpose of this technology is to control and 
regulate the electric variables in power systems. This is achieved by using converters as a 
controllable interface between two power system terminals. The resulting converter 
representation can be useful for a variety of configurations. 

Basically, the family of FACTS devices based on Voltage Source Converters (VSCs) 
consists of a series compensator (SSSC), a shunt compensator (STATCOM), and a 
shunt/series compensator (UPFC). In Figure 1.1 a schematic representation of the 
STATCOM, the SSSC, and the UPFC is presented. 
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To understand and control the interactions between the FACTS devices based on VSCs 
and the utility system, there is a need for appropriate models to obtain fast and accurate 
results. There are several models of the FACTS devices based on ideal VSCs; [Uzunovic, et 
al. 1998], [Nabavi-Niaki and Iravani 1996], [Tavakoli-Bina and Hamill 2005], [Uzunovic, 
et al. 1997], and [Cañizares 2000]. This approach is frequently used due to its simplicity. 
However, these models have evident limitations to evaluate the harmonic distortion 
introduced into the power system by the VSCs, as well as the phenomena related to the 
switching process in the VSCs. 

With any VSC application, converter-based FACTS equipment act as a source of 
harmonic current injection into the system and it also interacts with harmonic distortions 
present within the system. The representation of the harmonic interaction between these 
devices and the network, as well as its impact in the system, can be achieved from an 
accurate mathematical model of the VSC. This model can give a clear perception about the 
performance of the FACTS devices, as well as the possibility to determinate the harmonic 
distortion produced by these devices and to assess its adverse power quality impact. 
However, it is difficult to analyze the dynamics of voltage source converter systems, since 
they incorporate both continuous time dynamics and discrete time events. These analytical 
difficulties are common in all FACTS components since their operations are based on a 
switching process. 

The switching devices employed in these VSC-based FACTS are semiconductor 
switches. Modeling of switches devices can be performed with different levels of detail. A 
very detailed model can be justified and necessary when we are interested on studying any 
phenomena associated with the switching process, but typically the computational cost is 
very high because the Ordinary Differential Equations (ODEs) that model the electric 
system become stiff, requiring a stiff ODE solver, since small time-constants are 
introduced. Besides, the derivatives are very large during the switching transitions, 
requiring very small values of the integration step to be used, and probably causing the non-
convergence of the iterative solver of the implicit ODE method; typically, the Newton-
Raphson method. On the other hand, in power systems we are more interested on a 
fundamental understanding, for this reason in most cases it is advantageous to model the 
switch as an open and short circuit, respectively. However, this model has some 
disadvantages; for instance, inconsistent initial conditions can appear [Vlach, et al. 1995]. 
The source of these numerical problems are the discontinuities and the non-differentiability 
introduced for the ideal switch; e.g. to numerically follow the trajectory of an ODE system, 
the solution can be achieved using a sufficiently small integration step if the solution of the 
system is continuous and smooth. However, this is not satisfied by power electronic devices 
based on ideal switches models. Please notice that the original continuous ODE system 
representation of the electric circuit becomes a discontinuous ODE system when we replace 
the real model of the semiconductor switch by the ideal switch model. An important 
problem arising from this model is that the numerical error introduced by discontinuities 
does not allow computing the solution to a very high precision. Conventional numerical 
integration methods, such as the trapezoidal rule has a marked difficulty to achieve a high 
precision in power electronic systems. The interpolation techniques incorporated in 
PSCAD/EMTDC [HVDC Research Centre 2003] have shown to give better results in the 
simulation of electric circuits including switching events, even allow the use of much larger 
integration steps. However, the numerical solution cannot be computed to a high precision, 
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especially when more than one switching event takes place during one integration step. 
Alternatively, the switching instant can be exactly integrated, then switch and then proceed 
to integrate the switched system [Hiskens and Pai 2000]. The exact computation of the 
switching instants is a time consuming task, as additional algorithms, such as the Newton-
Raphson method, among others are needed for the exact computation of the switching 
instants. 

In this section, two VSCs models are proposed for the fast and efficient simulation of 
FACTS devices containing hard-switched Sinusoidal Pulse Width Modulation (SPWM) 
VSCs. 

3.2 Modeling and Simulation of VSCs 
The modeling of VSCs using switching functions is not a new issue; in [Lehn 2002], 

[Lian and Lehn 2006], [Zuñiga-Haro and Ramírez 2009], and [Nabavi-Niaki and Iravani 
1996] several models have been reported based on the switching function approach. Under 
this approach, the power electronic circuit is modeled as a time-varying-topology network. 
This is a very useful approach at power system level. Usually, power switching devices are 
modeled as ideal switches; e.g. infinite resistance when the switch is open, and a zero 
resistance when the switch is closed. Unfortunately, some problems during the solution 
process can appear, such as numerical oscillations, the need of very small integration steps 
to achieve a high precision, and inconsistent initial conditions [Vlach, et al. 1995]. 

The models presented in this chapter are an enhancement of the 6-pulse VSC based on a 
conventional switching function approach, since we preserve all the advantages of the ideal 
switch model and eliminate its disadvantages. 

Basically, the conventional switching function approach is a special case when the 
maximum harmonic order in the Fourier model is infinite and when the cutoff frequency is 
infinite in the hyperbolic tangent model. 

The models proposed in this section can be easily incorporated in existing FACTS 
models, such as those proposed in [Zuñiga-Haro and Ramírez 2009], since multi-pulse 
arrangements in [Zuñiga-Haro and Ramírez 2009] are achieved by combining several 6-
pulse VSCs. 

3.3 VSC State Space Representation 
The circuit representation of a six-pulse converter is shown in Figure 2.21. According to 

its mathematical model, this is a discontinuous time-varying system since the switching 
function Si instantaneously changes from one state to another. Under these conditions, the 
conventional numerical integration does not give numerical solutions to a high precision 
due to the discontinuity. 

To alleviate these problems, in this chapter two models for the representation of the VSC 
are proposed; one is based on a Fourier series expansion and the other is based on a 
hyperbolic tangent function of the switching function. It will be shown that with the 
proposed approaches, the numerical integration process can use larger integration steps, as 
the discontinuities produced by the commutation process no longer exist. 
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In the next section, the two proposed models for the fast and efficient simulation of VSC 
power converters are detailed. 

3.4 Sinusoidal Pulse-Width Modulation Converter 
Representation 

3.4.1 Fourier Model 
It can be observed that the switching function S shown in Figure 2.24(b) contains 

discontinuities at each switching instant. The discontinuities produced during the 
commutation process are avoided if a smoother pulse train Sf obtained with the Fourier 
series replaces S in (2.25) and (2.32a). 

The switching instants ts are obtained with the solution of the nonlinear algebraic 
equations set describing the sawtooth waveform and vs. In principle, the computation of the 
switching instants requires the application of an iterative process for the solution of the 
nonlinear algebraic equations. However, vs can be approximated through a first order 
Taylor series, to allow the original nonlinear algebraic system to be transformed into a 
linear algebraic system. Let’s kt  be the approximated switching instants. The equations 
defining the straight lines with positive slope for the triangular signal of Figure 2.24(a) are 
given by, 

1 4 1 1 4 1 3
;

2 4 4pk p
f f f

k T k k
y m t for T t T

m m m
  (3.1) 

The equations defining the straight lines with negative slope for the triangular signal are 
given by, 

1 4 1 1 4 1 1
;

4 4nk p
f f f

k T k k
y m t for T t T

m m m
 (3.2) 

where T is the fundamental period of vs, and mp is the positive slope, calculated as, 

4 f
p

m
m

T
  (3.3) 

The control signal vs is given by, 

coss sv E t   (3.4) 

its first order Taylor approximation around t=ak is 

cos sins s k s k k kv E a E a t a   (3.5) 

For instance, the switching instant 1t  for 0 / 4 ft T m is computed through 
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1 1 1 1 1cos sins s pE a E a t a m t  (3.6) 

with a1 = 0 , then 

1

cos

sin p

s

t m
E

  (3.7) 

For / 4 3 / 4f fT m t T m , with 2 / 2 fa T m , we obtain, 
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  (3.8) 

In general, for k = 1, 2, 3, … 

cos sin 1

sin 1

k p
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k

k p
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s

m
a a a a

Et m
a

E

  (3.9) 

where, 

2k
f

Ta k
m

  (3.10) 

Equation (3.9) is the general expression for the approximated computation of the 
switching instants. Once tk has been calculated, the pulse train is automatically obtained. 
The proposed model can be resumed by using an approximation of S in terms of the Fourier 
series, e.g. Sf, being 

max

1
cos sin

n

f o k o k o
k

S A A k t B k t   (3.11) 

where nmax is the highest harmonic order, and 

0.5oA   (3.12) 

2
11 1 sin

fm
n

k o n
n

A n t
k

  (3.13) 
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2
11 1 cos

fm
n

k o n
n

B n t
k

  (3.14) 

For the balanced case, Sf is calculated for one phase, and for the other phases it is 
obtained with the appropriate phase angle if mf is multiple of three. In addition, if mf is odd 
the switching function has half-wave symmetry, consequently, all even-numbered 
harmonics vanish. In addition, 

1
2fn m nt t
T

  (3.15) 

Using half-wave symmetry property, we only need to compute half of the switching 
times with (3.15). 

It is clear that with this Fourier series approximation, the harmonic number for the 
analysis can be selected. The harmonic number introduced in the analysis increases the 
computational effort for each integration step; however, this aspect is compensated with the 
use of larger integration steps, since the discontinuities no longer exist. 

In Figure 3.1 a time domain comparison between the discontinuous switching function 
and the Fourier approach for different harmonic orders is presented. In Figure 3.1(a) a time 
domain comparison between S and Sf for a maximum harmonic order of 19 (1140 Hz) is 
shown, in Figure 3.1(b) for a maximum harmonic order of 113 (6780 Hz), and in Figure 
3.1(c) for a maximum harmonic order of 300 (18 kHz), respectively. 

 
Figure 3.1 Time domain comparison between the discontinuous switching function S and the Fourier approach for 

different harmonic orders. 

Figure 3.2 shows the harmonic domain comparison; in Figure 3.2(a) a harmonic domain 
comparison between S and Sf for a maximum harmonic order of 19 (1140 Hz) is shown, in 
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Figure 3.2(b) for a maximum harmonic order of 113 (6780 Hz), and in Figure 3.2(c) for a 
maximum harmonic order of 300 (18 kHz), respectively. The obtained responses are in 
close agreement. 

 
Figure 3.2 Spectrum comparison between the discontinuous switching function S and the Fourier approach for 

different harmonic orders. 

It can be noticed from Figure 3.2 that for a Fourier series approximation with a 
maximum harmonic order of , the switching function Sf contains up to the harmonic  of S, 
where all the harmonics are included. If higher precision is required, an iterative process 
can be implemented with (3.9) to increase the precision, so that, 
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for i = 0, (3.16) corresponds to (3.9). It can be noticed that (3.16) is the iterative Newton 
method. Expression (3.16) can be also represented as, 
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The harmonic spectrum of (3.11) is finite, for this reason, there are not aliasing problems 
if the selected integration step is chosen according to the Nyquist criterion. For example, 
for nmax equal to 51 with a fundamental frequency of 60 Hz, the integration step must be at 
least 1.634 ×10-4 s. A smaller integration step would be necessary if numerical stability 
problems are detected, since this integration step is in general large. 
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3.4.2 Smooth Switching Function 
A numerical error is introduced during the numerical integration of electric systems 

including power electronic switches coming from the discontinuities of the ideal switch 
model. 

If the discontinuities introduced by the switch are avoided, then the numerical error 
during the integration process can be reduced and high precision in the simulation process 
can be obtained. 

The elimination of the discontinuities in the converter can be achieved by changing the 
discontinuous commutation signal S by a piecewise commutation signal Ss. 

The commutation signal Ss shown in Figure 3.3 satisfies the purpose of avoiding 
discontinuities. In Figure 3.3(a) Ss versus time is shown, and in Figure 3.3(b) Ss versus u 
( )su v tri . 

 
Figure 3.3 Continuous switching function Ss. 

3.4.2.1 Selection of m 
The selected slope m for Ss determines the maximum harmonic order retains, then, m can 

be selected to satisfy the maximum harmonic of interest. The spectrum of S is 

sin
2

a
S a

a
  (3.18) 

It can be observed from (3.18) that the bandwidth of S is infinite. For practical purposes, 
during the numerical integration process, the switching function S is a discrete function 
rather than a continuous function. According to the Nyquist-Shannon sampling theorem 
[Shannon 1998]; if a function f(t) contains no frequencies higher than c (Hz) this is 
completely determined by sampling f(t) at a series of samples spaced 1/(2 c) s. 
Consequently, the highest frequency retained from f(t) by its samples is fc/2, where fc (1/ t) 
is the sampling frequency. 

Based on Figure 3.4, where Sn is the discrete representation of S, and since it can be 
observed that m is defined as 

1m
t

  (3.19) 

then m is related to the maximum frequency retained during the simulation process by 
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2 cm   (3.20) 

 
Figure 3.4 Continuous switching function and discrete switching function. 

3.4.2.2 Hyperbolic Tangent Model 
The proposed switching function Ss shown in Figure 3.3 is continuous; however, it is no 

differentiable in the corners. To solve this problem, this function can be represented by a 
smoother function. A continuous and differentiable function that satisfies these conditions 
is the hyperbolic tangent function, 

tanh 1
2
si

si

v tri
S   (3.21)

 

vsi is the control signal, i = a, b, c, tri is the sawtooth waveform and, and  is maximum 
slope of Ssi. 

The relationship between m and (3.21) is given by 
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From (3.20) and (3.22),  can be selected as 
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  (3.23) 

ma is time varying and can take values from 0 to 1 in linear modulation, and larger than 
1 when operating in overmodulation.  must be fixed to the maximum value in (3.23), i.e. 
ma=0, 
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  (3.24) 

Figure 3.5 shows the approximated commutation functions based on the Fourier series 
for different harmonic orders, and for different cutoff frequencies c in the hyperbolic 
tangent model; e.g. c=1140 Hz in Figure 3.5(a) and c= 6780 Hz in Figure 3.5(b). Please 
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notice that both Fourier and hyperbolic tangent approximation, respectively, are in good 
agreement for the same harmonic order. It is to be remarked how the raising slope in the 
proposed commutation functions proportionally increases with the inclusion of a higher 
harmonic order in the approximation. Please observe that the Fourier approximation 
satisfies this remark, which, besides, agrees with the sampling theorem. 

 
Figure 3.5 Commutation functions Sf and Ss for different harmonic orders and cutoff frequencies. 

The spectrum of (3.21) is not finite, and it has aliasing problems, therefore, the Nysquist 
criterion is not enough to avoid overlapping. Besides, the aliasing problem is not the only 
error introduced by the approximation of the commutation function with the hyperbolic 
tangent model, since there is another error due to the rounding corners in the commutation 
function Ss, for this reason, the frequencies close to c are not well retained.  

 
Figure 3.6 Comparison between the discontinuous switching function S and the hyperbolic tangent approach for 

=7.33. (a) Time domain waveforms, (b) Harmonic spectrum. 
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Figure 3.7 Comparison between the discontinuous switching function S and the hyperbolic tangent approach for 

=14.66. (a) Time domain waveforms, (b) Harmonic spectrum. 

To alleviate this problem,  can be fixed at a higher value than that obtained in (3.24). A 
comparison between the commutation functions S and Ss for c=6.6 kHz, which is 
equivalent to the first 110 harmonics with a fundamental frequency of 60 Hz is shown in 
Figure 3.6 for =7.33, and in Figure 3.7 for =14.66, respectively. Please notice from 
Figure 3.6(a) that the waveform in time S is closely followed by Ss; however, the spectrum 
in Figure 3.6(b) is only well retained up to the harmonic 40th. This error is due to the 
rounding corners in the commutation function Ss. For this case,  is computed directly from 
(3.24), e.g. =7.33. In Figure 3.7(a) the waveforms in the time domain are very close to 
each other. Besides, the first 110 harmonics contained in S are contained in Ss. For this 
case,  is computed as twice the value obtained with (3.24), e.g. =14.66. 

3.5 Solution Comparisons and Results Validation  
In this section, the proposed commutation functions are applied to analyze the 

performance of three FACTS devices based on VSCs. The results obtained with the 
proposed models of the VSC are validated against those obtained with Simulink [TEQSIM 
International Inc 2001], and PSCAD/EMTDC [HVDC Research Centre 2003]. 

Power System Blockset (PSB) for use with Matlab/Simulink employs state-variable 
analysis, whereas, PSCAD/EMTDC is based on analysis nodal using Northon equivalents 
based on difference equations. The difference equations set is obtained by discretization of 
the original ODE set using the trapezoidal rule. In PSB more complex control algorithms 
can be implemented into the models in an easier and faster way than using 
PSCAD/EMTDC. Besides, PSB can use several Matlab toolboxes. In particular, it has the 
PWM generator and the VSC blocks. In general terms, both programs are suitable for 
transient analysis of power electronic components and are very easy to use. The main 
advantage of the PSB is that it is developed in Matlab/Simulink environment, this fact 

0   1

0

0.2

0.4

0.6

0.8

1

(a) Cycles
S  

 a
nd

  S
s

 

 
=14.66

0 20 40 60 80 100
0

0.25

0.5

(b) Harmonic Order

|S|
  a

nd
  |S

s|

 

 

S Ss

 S
Ss



50 
 

makes possible to use it together with several other control design tools. On the other hand, 
the main advantage of the PSCAD/EMTDC is the computing time. In this software the 
simulations run very fast. However, it is possible to use the Simulink Accelerator and the 
Real-Time Workshop to improve the PSB performance; a C code is generated. 
Additionally, the PSB can use several integration methods, meanwhile PSCAD/EMTDC 
only uses the trapezoidal rule. 

The test case is shown in Figure 3.8. In this circuit there are two VSCs; one is connected 
in series, and the other is shunt connected. There is a dc link capacitor between both VSCs. 
Both VSCs operating together constitute the UPFC. The series VSC constitutes the SSSC, 
and the shunt VSC the STATCOM. The series and shunt transformer are represented by RL 
branches, whose impedance is 0.018+j0.34 pu. In the test system circuit breakers have been 
included to allow the reconfiguration of the system. The base power is 5 kVA and the base 
voltage is 166.6 Volts. For more details of this study case see Appendix A. 

 
Figure 3.8 Single-phase test system. 

The periodic steady-state solution is achieved once the difference between two 
successive state vectors at the beginning and at the end of one period is within a specific 
tolerace, e.g. 10-10 pu. 

3.5.1 Static Compensator (STATCOM) 
The STATCOM includes the control system described in [Mahyavanshi and Radman 

2006]. The initial conditions are zero, the reference line to line voltage is 0.975 pu at node 
1, and the reference voltage for the dc capacitor is 2 pu. The modulation index is mf =15. 
The maximum harmonic order in the Fourier approach is 51 (3060 Hz). 

In Figure 3.9(a) the convergence error in reference to the steady state solution obtained 
with PSCAD/EMTDC using different integration steps is shown. The convergence error at 
the cycle n+1 is computed as max(abs(x(nT)- x(nT+T))), where T is the period of the limit 
cycle. An error of the order of 10-5 is achieved when t is at least 0.1 μs and the 
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interpolation option is enabled; a similar behavior is observed with Simulink. A still 
smaller integration step would be needed to ensure a reliable harmonic evaluation. On the 
other hand, the convergence errors to the steady state solution obtained with the proposed 
models are shown in Figure 3.9(b). Notice that the proposed models achieve high precision 
even for large integration steps, e.g. 110 μs for the Fourier model, and 33 μs for the 
hyperbolic tangent model. 

 
Figure 3.9 Convergence error for the STATCOM. (a) PSCAD/EMTDC solution using the ideal switch model. (b) 

Solution obtained using the proposed models. 

 
Figure 3.10 Transient solution comparison for the STATCOM (a) Transient solution computed using Simulink and 
PSCAD/EMTDC for the STATCOM. (b) Transient solution comparison for the STATCOM between Simulink, 

PSCAD/EMTDC, and the proposed models. 

Figure 3.10(a) shows the transient solutions for the dc capacitor voltage computed with 
Simulink and PSCAD/EMTDC. Notice that this solution is very sensitive to the integration 
step and it is necessary to use a very small integration step to obtain a reliable solution. 
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Figure 3.10(b) shows a comparison between the transient solution obtained with Simulink, 
the Fourier approach, the hyperbolic tangent model, and PSCAD/EMTDC. It can be 
observed that these solutions are in very close agreement. 

The integration step needed by Simulink is 1 μs, the Fourier model needs 111 μs, the 
hyperbolic model 33 μs, and PSCAD/EMTDC 1 μs. The integration step needed by the 
Fourier approach is 111 times larger than that used by Simulink and PSCAD/EMTDC, 
meanwhile, the integration step of the hyperbolic tangent model is 33 times larger than the 
integration step used by Simulink and PSCAD/EMTDC. 

A comparison between the periodic steady state solution obtained with Simulink, the 
Fourier model, the hyperbolic tangent model, and PSCAD/EMTDC is presented in Figure 
3.11. Figure 3.11(a) shows the voltage at the dc capacitor vdc, Figure 3.11(b) the voltage vPta 
at phase A of node 1, and Figure 3.11(c) the series current of phase A iSa. An integration 
step of 0.1 μs has been used in Simulink and PSCAD/EMTDC, 100 μs with the Fourier 
model, and 30 μs with the hyperbolic tangent model, respectively. Notice that all solutions 
are in very good agreement. 

 
Figure 3.11 Steady state solution comparison for the STATCOM. 

Further correlation between the solution obtained with Simulink, PSCAD/EMTDC and 
the proposed models is illustrated in Figure 3.12, e.g. the harmonic spectrum for the dc 
voltage capacitor vdc in Figure 3.12(a), the voltage of phase A at the node 1 vPta in Figure 
3.12(b), and the series current of phase A iSa in Figure 3.12(c), respectively. Observe that 
the obtained harmonic spectrum is in very good agreement. 
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Figure 3.12 Harmonic content comparisons. (a) Harmonic content in the dc voltage. (b) Magnitude of selected 

harmonics in phase A of the terminal voltage. (c) Magnitude of selected harmonics in phase A of the series current. 

3.5.2 Static Synchronous Series Compensator (SSSC) 
The SSSC includes the control system shown in Figure 3.13. This control has to control 

objectives: to control the active power (P) that flows in the transmission line connected in 
series with the SSSC, and to maintain the dc voltage capacitor at its reference value. 
Remember that the SSSC does not interchange active power in steady-state, only the power 
loss; otherwise the dc capacitor is discharged. In transient state the SSSC has transient 
interchanges of active power with the network, which is reflected in variation of the dc 
voltage. Under this situation, the control regulates the interchange of active power in order 
to maintain the dc voltage capacitor at its steady-state. The initial conditions are zero; the 
active power reference Pref is 1 pu, and the index modulation is 21. Pref is the active power 
reference in the transmission line in series with the SSSC. The maximum harmonic order of 
the Fourier series model is 69 (4140Hz). 

 
Figure 3.13 SSSC control. 

Figure 3.14 shows the transient solution comparison for the dc voltage capacitor. This 
solution has been computed using Simulink, and the two proposed models. An integration 
step of 0.1μs has been used in Simulink, 100μs for the Fourier approach method, 30μs for 
the hyperbolic tangent model, and 0.1μs in PSCAD/EMTDC. Observe that the proposed 
models closely agree with the solution obtained with Simulink and PSCAD/EMTDC. 

A comparison between the periodic steady-state solutions is shown in Figure 3.15; the 
capacitor voltage vdc is shown in Figure 3.15(a), the terminal voltage at node 1 vPta in 
Figure 3.15(b), and the phase A of the series current iSa in Figure 3.15(c), respectively. 
Observe that all solutions are again in very close agreement. 
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Figure 3.14 Transient solution comparison for the SSSC. 

 
Figure 3.15 Steady state solution comparison for the SSSC. 

 
Figure 3.16 Harmonic content comparisons. (a) Harmonic content in the dc voltage. (b) Magnitude of selected 

harmonics in phase A of the terminal voltage. (c) Magnitude of selected harmonics in the phase A of the series current. 
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Figure 3.16(a) shows the harmonic content for vdc, in Figure 3.16(b) for vPta, and in 
Figure 3.16(c) for iSa. It can be seen that the proposed models are in very good agreement 
with the solution obtained with Simulink and PSCAD/EMTDC. 

3.5.3 Unified Power Flow Controller (UPFC) 
The UPFC includes the shunt control described in [Mahyavanshi and Radman 2006], 

and the series control proposed in [Fujita, et al. 2001]. The initial condition is zero, except 
for the dc capacitor voltage, which is 2 pu. The series controller regulates the real (Pref=0.9 
pu) and reactive (Qref=0 pu) power flows by adjusting the injected series voltage. The shunt 
converter regulates the dc-side capacitor voltage (vdc=2 pu) and the sending end voltage 
(vPt=0.96 pu). The modulation index is mf=9. The maximum harmonic order in the Fourier 
approach is 69 (4140 Hz). 

Figure 3.17 shows the transient solution comparison for the capacitor voltage of the 
UPFC operating in open-loop control. For this operating mode, the initial condition has 
been assumed zero. This solution has been computed using Simulink, PSCAD/EMTDC and 
the two proposed models. An integration step of 0.1μs has been used in Simulink and 
PSCAD/EMTDC, 80μs for the Fourier approach method, and 30μs for the hyperbolic 
tangent model. 

 
Figure 3.17 Transient solution comparison for the UPFC. 

A comparison between the periodic steady state solution obtained with Simulink, the 
Fourier model, the hyperbolic tangent model, and PSCAD/EMTDC is shown in Figure 
3.18. Figure 3.18(a) shows the capacitor voltage vdc, Figure 3.18(b) shows the voltage of 
phase A vPa in bus 1, and Figure 3.18(c) shows the series current of phase A iSa. The slight 
difference between the solution obtained with PSCAD/EMTDC and the other solutions is 
because the UPFC implemented in PSCAD/EMTDC is operating in open-loop control, 
meanwhile, the other solutions are operating in closed-loop control; however, all the 
solutions are in good agreement. 

A validation of the proposed models is further illustrated in Figure 3.19, which shows 
the harmonic spectrum for the capacitor voltage vdc in Figure 3.19(a), the voltage of phase 
A at node 1 in Figure 3.19(b), and the phase A of the series current in Figure 3.19(c), 
respectively; all the solutions are in excellent agreement. 
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Figure 3.18 Steady-state solution comparison for the UPFC. 

 
Figure 3.19 Harmonic content comparisons. (a) Harmonic content in the dc voltage. (b) Magnitude of selected 

harmonics in phase A of the terminal voltage. (c) Magnitude of selected harmonics in the phase A of the series current. 

3.6 Distribution Static Compensator 

3.6.1 Distribution Network including the DSTATCOM 
In order to cancel-out unbalance or harmonics in the line current the voltage source 

converter that constitutes the DSTATCOM must be able to inject currents in one phase 
independently of the other two phases. From this point of view the structure of a 
DSTATCOM is very important. The DSTATCOM structure adopted in our analysis is 
shown in Figure 3.20.  
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Figure 3.20 Structure of the DSTATCOM. 

The structure shown in Figure 3.20 contains three H-bridge voltage source converters 
connected to a common dc storage capacitor. Each VSC is connected to the network 
through a transformer. The purpose of including the transformers is to provide isolation 
between the inverter legs. This prevents the dc capacitor from being shorted through 
switches of the different inverters. The structure shown in Figure 3.20 allows three 
independent current injections. It is to be noted that due to the presence of transformers, 
this topology is not suitable for canceling any dc component in the load current [Ghosh and 
Ledwich 2003]. The inductance Lf represents the leakage inductance of each transformer 
and additional external inductance, if any. The switching losses of an inverter and the 
copper loss of the connecting transformer are represented by a resistance Rf. For more 
details about this structure please see [Ghosh and Ledwich 2003]. This converter topology 
is used in this thesis for the DSTATCOM operating in voltage and current mode; however, 
the converter topology shown in Figure 2.15, among other, can be used. 

Now, let us consider the following nonlinear system periodically excited with a T-
periodic function, which can describe the dynamic behavior of the equivalent circuit of the 
compensated system shown in Figure 3.21. 

, ;t tx f x M   (3.25) 

where x and f are n-dimensional vectors and M is a m-dimensional parameter vector. 
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Figure 3.21 Compensation of the EAF when the source is non-stiff and the DSTATCOM contains a passive filter. 

In particular, for the electric system shown in the Figure 3.21, the function f is defined as 
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the state vector is defined as 

' [ ]s t l fi v i ix   (3.27) 

where ´ is the transpose operator. 

The nonlinear load is an electric arc furnace; however, a different load can be connected 
to the PCC. The dynamic behavior of the v  i characteristic of the EAF is described by the 
differential equation introduced in [Acha, et al. 1990]. This differential equation is based on 
the principle of energy balance. Starting from the power balance equation for the electric 
arc, the following differential equation is derived in [Acha, et al. 1990]: 

23
1 2 2

n
lm

KdrK r K r i
dt r

  (3.28) 

Here the arc radius r is chosen as state variable. The arc voltage Veaf is given by 

l
eaf

iV
g

  (3.29) 
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where g is the arc conductance and given by the following equation: 

2

3

mrg
K

  (3.30) 

It is possible to represent the different stages of the arcing process by simply modifying 
the parameters of m and n in (3.28). The complete set of combinations of these parameters 
for different stages of the electric arc can be found in [Acha, et al. 1990]. 

In the detailed model the switches are IGBTs/diodes, the hysteresis modulation scheme, 
and the dc circuit are explicitly represented. The implementation of the three H-bridge 
converters and their switching control can be directly done in any EMTP-type simulator. In 
this thesis, the DSTATCOM detailed model has been implemented in Power 
BlockSet/SIMULINK [TEQSIM International Inc 2001]. 

In bifurcation analysis, the detailed model is not suitable because of the difficulty to 
compute to a high precision the limit cycle, and for assessing its stability. For this reason, 
we propose a simplified model for the DSTATCOM operating in voltage and current mode, 
respectively, in which all the difficulties above mentioned are avoided. In the proposed 
representation, the three H-bridges for the DSTATCOM operating in current control mode 
are represented through controlled current sources, meanwhile the three H-bridges for the 
DSTATCOM operating in voltage control mode are represented through controlled 
voltages sources, the link between the dc side and the ac side is well represented using the 
energy preservation principle. 

3.6.2 DSTATCOM Operating in Current Control Mode 
The DSTATCOM is a shunt connected device similar to the static compensator 

(STATCOM) [Hingorani and Gyudyi 2000]. However, there are important differences in 
the operating characteristic between the DSTATCOM and the STATCOM. The 
STATCOM injects a set of three balanced quasi-sinusoidal voltages. On the other hand, the 
DSTATCOM must be able to inject an unbalanced and harmonically distorted current. 
Therefore, its control is significantly different from that of a STATCOM. 

In the current control mode, the DSTATCOM compensates for any unbalance or 
distortion in the load, thus, the load draws a balanced current from the system irrespective 
of any unbalance or harmonic distortion in the load [Ghosh and Ledwich 2003]. One of the 
most important issues for the load compensation is the generation of the reference 
compensator currents. There are several techniques proposed; [Ghosh and Ledwich 2003], 
[Ghosh and Joshi 1998], [Akagi, et al. 1984], [Akagi, et al. 1986], [Ghosh and Joshi 2000], 
and [Mishra, et al. 2003]. However, most of these methods assume that the voltage at the 
PCC is stiff. Unfortunately this is not a valid assumption for most practical applications. 

For this thesis, the computation of the reference currents will be done using 
instantaneous symmetrical components [Ghosh and Joshi 1998]. In addition, the source is 
not assumed to be stiff.  
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3.6.2.1 Compensation Algorithm and Control 

In (3.26), u is the control signal constrained between +1 and 1. Once the reference 
currents are generated, they are tracked-down in a hysteresis band current control scheme. 
The control signal is computed through, 

*
f fu hys i i   (3.31) 

where *
fi  is the reference compensation current. These are given by [Ghosh and Joshi 

1998], 

*
2

, ,

*
2

, ,

*
2

, ,

( )

( )

( )

avta tb tc
fa la l loss

tfx
x a b c

avtb tc ta
fb lb l loss

tfx
x a b c

avtc ta tb
fc lc l loss

tfx
x a b c

v v vi i P P
v

v v vi i P P
v

v v vi i P P
v

  (3.32) 

where  is computed based on the load power factor. 

In (3.32), av
lP is the average power drawn by the load, Ploss is the power loss due to Rf, 

and vtfx is the fundamental component of vtx, for x = a,b,c. 

The hysteresis function hys is defined by, 

1
1
for w h

hys w
for w h   (3.33) 

where 2h is the hysteresis band.  

The power loss Ploss is computed through the proportional controller [Ghosh and 
Ledwich 2003], e.g. 

* *av av
loss pdc dc dc idc dc dcP K v v K v v dt   (3.34) 

where *
dcv  is the reference dc voltage, av

dcv  is the average voltage across the dc capacitor. 

To compute , we introduce a simple proportional-integral control given by, 

* *
p t t i t tK K dt   (3.35) 
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where 

* 1 *tan cos / 3t PF   (3.36) 

1tan cos / 3t PF   (3.37) 

and PF  is the desired reference power factor at the PCC bus and PF is the load power 
factor at PCC. 

3.6.2.2 Simplified DSTATCOM Model 
In the detailed model, the switching elements are explicitly represented. The modeling 

of the switching devices can be performed with different levels of detail. A very detailed 
model can be justified and necessary when the phenomena associated with the switching 
process are to be analyzed, albeit at a high computational cost. On the other hand, for 
power systems studies, usually the study of the switching phenomena, this is not necessary. 
Thus, it is advantageous to model the switches as open and short circuits. However, this 
model has some disadvantages; for example, inconsistent initial conditions can appear 
[Vlach, et al. 1995]. One way to mitigate the adverse effects related to the switching 
process is to use a small integration time step to carry-out the simulation. However, it takes 
a long simulation time. 

The source of numerical problems for the integration process arises from the 
discontinuities and the non-differentiability introduced by the ideal switch model [Banerjee 
and Verghese 2001] [Mohan, et al. 1995]. 

In Figure 3.22 the schematic representation of the simplified DSTATCOM model in 
current control mode is shown. Figure 3.23 shows the schematic representation of the dc 
link model. The power balance between the dc and ac side can be given as, 

2 2 2 fa fb fc
dc dc dc fa ta fb tb fc tc f fa fb fc f fa fb fc

di di di
P v i i v i v i v R i i i L i i i

dt dt dt
 (3.38) 

where 

2

ta tb tc
tb tc

fa ta tb tcav la dc loss
l loss

dv dv dv d dv v
di v v vdt dt dt dt dt di dP dPP P
dt dt dt dt

 (3.39) 

2

tb tc ta
tc ta

fb tb tc taav lb dc loss
l loss

dv dv dv d dv v
di v v vdt dt dt dt dt di dP dPP P
dt dt dt dt

 (3.40) 

2

tc ta tb
ta tb

fc tc ta tbav lc dc loss
l loss

dv dv dv d dv v
di v v vdt dt dt dt dt di dP dPP P
dt dt dt dt

 (3.41) 
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Figure 3.22 Schematic representation for the simplified model. 

 
Figure 3.23 dc link model. 

From (3.38), the dc current idc is computed as the ac power divided by the dc voltage 
capacitor vdc. Thus, this simplified model based on the energy preservation principle is 
limited for vdc  0. 

3.6.2.3 Comparative Analysis of Models for the DSTATCOM in Current Mode 
In this section, the performance of the simplified model presented in Section 3.6.2.2 is 

compared against the detailed model where the voltage source inverter based on the three 
H-bridge inverter is used. The test system is shown in Figure 3.21. The system parameters 
and the DSTATCOM parameters are given in Table 3.1. The hysteresis band for the 
detailed model is h=1 A. 

TABLE 3.1 SYSTEM PARAMETERS OF THE DSTATCOM IN CURRENT MODE 
Systems Parameters DSTATCOM 

System voltage (|Vs|): 440 Volts (peak). Voltage controllers gains of dc capacitor loops: Kpdc=80, 
Kidc=500. 

Feeder impedance (Rs, Ls): 1+j 7.54   control loop gains: Kp  =0.5, Ki =300. 
ac capacitor (Cdc): 70 F dc capacitor(Cdc): 1500 F 
Feeder load impedance (Rl, Ll): 0.5+j 3.77  Interface circuits (Rf, Lf): 0.05+ j 3.77  
EAF constants: K1=15, K2=0.05, K3=800, m=0 
and n=2. 

Reference value of dc capacitor voltage: 1200 Volts 

 

Initially, for t < 0 the switch sw is open and the electric circuit is in periodic steady-state. 
At t = 0 s the switch sw is closed and the DSTATCOM starts the compensation with the dc 
capacitor pre-charged at 1200 Volts. Selected waveforms are presented in Figure 3.24 and 
Figure 3.25. Figure 3.24 shows the steady-state solution of the power loss Ploss, with 
different integration steps in the detailed model and with an integration step of 65 s for the 
simplified model. From this Figure it is easy to notice that if the commutation process has 
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to be taken into account, a very small integration step size (0.52 s) should be chosen with 
the detailed model, otherwise, the solution will contain a large numerical error due to the 
commutation process. Figure 3.25(a) shows the compensation current ifa, while Figure 
3.25(b) shows the dc voltage vdc with the simplified model and with the detailed model for 
an integration step size of 65 s and 1 s, respectively. A good agreement between the two 
models has been achieved, even though the simplified model has a considerably larger 
integration step size (125 times). 

 
Figure 3.24 Comparison in the time domain between the detailed and the simplified model for Ploss in steady-state for 

different integration steps. 

 
Figure 3.25 Comparison in the time domain between the detailed and the simplified model for (a) compensation 

current ifa and (b) dc capacitor voltage vdc. 

3.6.3 DSTATCOM Operating in Voltage Mode 
The basic purpose of the DSTATCOM is to compensate the load injecting currents in 

such a way that at the point of common coupling (PCC) the source current and the PCC 
voltage are balanced and sinusoidal. In practice, however, the loads are remote from the 
distribution substations and are supplied by feeders. Under this situation, the source is 
termed as non-stiff. The reference compensator currents generated by these shunt 
algorithms are tracked using a voltage source converter (VSC) in the hysteresis scheme. As 
a consequence of this, the compensated source currents contain the inverter switching 
frequency components. This will result on distorted terminal voltages at the PCC due to the 
feeder impedance. Now, these distorted PCC voltages are taken as input voltage signals by 
shunt algorithms, which generally assume a balanced voltage supply. Therefore, the control 
algorithms generate erroneous reference filter currents and consequently the source currents 
are also distorted. Thus, it is easy to infer that the direct application of these shunt 

0 1
110

120

130

Cycles

P lo
ss

 (W
)

 

 

Detailed t=4.16 s
Detailed t=0.52 s
Simplified t=65 s

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-50

0

50

(a) Time (s)

i f  a 
(A

m
p)

 

 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1190

1195

1200

(b) Time (s)

v d  c (
V

ol
ts

)

 

 

Detailed Simplified



64 
 

algorithms with non-stiff source results on distorted PCC voltages and severely distorted 
source currents. In this thesis, the control strategy proposed in [Mishra, et al. 2003] is used. 
With this algorithm, the DSTATCOM operates as a voltage regulator to maintain constant 
the voltage of a specified bus (PCC). The magnitude of the bus voltage is pre-specified, 
while its phase angle is generated from a dc capacitor control loop. A deadbeat controller 
for the inverter is used for voltage tracking. With this algorithm, the DSTATCOM can 
compensate the terminal voltage, irrespective of any distortion or unbalance in the load or 
in the voltage source. For more details about this algorithm, please refer to [Mishra, et al. 
2003]. 

3.6.3.1 Simplified DSTATCOM Model 
In the simplified model, the three H-bridge converters are replaced by three controllable 

voltage sources. The main advantage of this model is to allow larger integration steps. 
Besides, the limit cycle can be computed using a shooting method and its stability can be 
directly assessed through the eigenvalues of the Jacobian of the Poincaré map, which are 
the Floquet multipliers. Moreover, this model is suitable for dynamic studies using 
instantaneous or phasor variables for the network representation, if the harmonic distortion 
is not taken into account. In Figure 3.26, the schematic representation for the simplified 
model of DSTATCOM operating in voltage mode is shown. This model is based on the 
assumption that *

txtx vv , where *
txv  is the reference terminal voltage. Figure 3.27 shows the 

schematic representation of the dc link model. 

 

Figure 3.26 Schematic representation for the simplified model. 

 

Figure 3.27 dc link model. 

The reference terminal voltage *
txv  is 

* sintx m xv V t   (3.42) 
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and  is computed using a proportional-integral controller described by, 

* *
p sh sh i sh shK P P K P P dt   (3.43) 

Psh is the instantaneous power reference in the shunt link and *
shP  is its reference; Psh is 

given by 

sh ta fa tb fb tc fcP v i v i v i   (3.44) 

*
shP  is obtained as, 

* * *average average
sh pdc dc dc idc dc dcP K v v K v v dt   (3.45) 

where v*
dc is the reference dc voltage, average

dcv  is the average voltage across the dc capacitor. 
The converter terminal voltage is given by, 

dx
dx f dx f tx

div R i L v
dt

  (3.46) 

The current injected by the compensator is calculated by, 

sindx fil m x lx sx
di C V t i i
dt

  (3.47) 

The first derivative of idx is computed as, 

22

2sin coslx sxdx
fil m x x

d i idi d dC V t t
dt dt dt dt

 (3.48) 

The dynamic capacitor voltage is given by, 

dc da da db db dc dc
dc

dc

dv i v i v i vC
dt v

  (3.49) 

where 

, ,
0; 2 / 3; 2 / 3a b a

x a b c

 

*
average

sh dc
p pv i sh sh

dP dvd K K K P P
dt dt dt

  (3.50) 
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2 22

2 2 2

average average
sh dc sh dc

p pv i pv
d P d v dP dvd K K K K

dt dt dt dt dt
 (3.51) 

In comparison to the detailed model, the simplified model is advantageous, since the 
simplified models can be described only with an ODEs set. In addition, the simplified 
model can achieve a higher precision that the detailed model as shown in Figure 3.24, for 
the same integration steps. There are some disadvantages with the simplified DSTATCOM 
model. Basically, the high frequency phenomena are neglected. However, to avoid 
erroneous interpretations in our bifurcation analysis, the bifurcation diagrams are validated 
against time domain simulation carried-out with the detailed model implemented in 
Simulink. 

3.6.3.2 Comparative Analysis of Models for the DSTATCOM in Voltage Mode 
In this section, the performance of the simplified DSTATCOM model is compared 

against the detailed model. The system parameters and the DSTATCOM parameters for the 
circuit shown in Figure 3.21 are given in Table 3.2. The hysteresis band for the detailed 
model is h=10. 

TABLE 3.2 SYSTEM PARAMETERS OF THE DSTATCOM IN VOLTAGE MODE 
Systems Parameters DSTATCOM Voltage Mode 

System voltage (Vs): 440 V (peak), sinusoidal and 
may contain harmonics, exhibit sags and swells, and 
possible unbalance. 

Voltage controllers gains of dc capacitor loops: 
Kpdc=154, Kidc=3500. 

Feeder impedance (Rs, Ls): 1+j 7.54   control loop gains: Kp  =27e-6, Ki =8e-3. 
ac capacitor (Cac):70 F dc capacitor(Cdc): 1500 F 
Feeder load impedance (Rl, Ll): 0.5+j 3.77  Interface circuits (Rf, Lf): 0.05+ j 3.77  
EAF constants: K1=15, K2=0.05, K3=800, m=0 and 
n=2. 

Reference value of dc capacitor voltage: 1200 V 

 

Initially, the electric system is in periodic steady state and the switch sw is open. At t=0 
s, the switch sw is closed, thus, the DSTATCOM starts to regulate the terminal voltage vt at 
the PCC bus. Figure 3.28(a) shows the results comparison for the phase angle , Figure 
3.28(b) shows the comparison for the voltage across the dc capacitor vdc, and Figure 3.28(c) 
for the compensation current ifa. The results show a very good agreement between the 
simplified model and the detailed model, with an integration step size of 60 s and 1 s, 
respectively. An excellent agreement between the two models is achieved, even though the 
simplified model has a considerably larger integration step (60 times). The detailed model 
needs to use a small integration step to avoid the numerical error introduced by the 
commutation process. 
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Figure 3.28 Comparison in the time domain between the detailed and the simplified model for (a) phase angle , (b) dc 

capacitor voltage vdc, and (c) compensation current ifa. 

A strong correlation between the detailed model and the simplified model results is 
further illustrated in Figure 3.29, which shows the harmonic spectrum for the compensation 
current ifa. 

 
Figure 3.29 Spectrum comparison between the detailed and the simplified model for ifa. 

3.7 Ideal Source and Smooth Hysteresis Band Approach: 
Comparative Analysis 

3.7.1  DSTATCOM Operating in Current Mode 
A comparison between the detailed model and the simplified model based on the ideal 

source approach is shown in Figure 3.30. The compensator current ifa, the terminal voltage 
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vta, and the dc voltage capacitor vdc, are shown in Figure 3.30(a), Figure 3.30(b), and Figure 
3.30(c), respectively. 

 
Figure 3.30 Comparison in the time domain between the detailed and the simplified model based on the ideal source 

approach for (a) compensation current  ifa, (b) terminal voltage vta, and (c) dc capacitor voltage vdc. 

The same comparison for the simplified model based on the hyperbolic tangent approach 
is presented in Figure 3.31. For this numerical experiment, the hysteresis band has been 
selected as h=5 A. Observe that the dc voltage capacitor computed with the ideal current 
source models has a small error. This error is because this model assumes that the 
DSTATCOM generates the compensation currents instantaneously. On the other hand, the 
model based on the hyperbolic tangent gives much better solutions since it is not assumed 
that the compensator generates the compensation currents instantaneously. 

 
Figure 3.31 Comparison in the time domain between the detailed and the simplified model based on the ideal source 

approach for (a) compensation current ifa, (b) terminal voltage vta, and (c) dc capacitor voltage vdc. 
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3.7.2  DSTATCOM Operating in Voltage Mode 
The comparison solution for the DSTATCOM operating in voltage mode for the phase 

angle , the dc capacitor voltage vdc, and the terminal voltage vta are presented in the Figure 
3.32(a), Figure 3.32(c), and Figure 3.32(e), respectively. Observe from Figure 3.32(b), 
Figure 3.32(d), and Figure 3.32(f) that for this particular case, the solution obtained with 
the simplified model based on ideal voltage sources does not give an accurate solution 
during the first cycles for these variables. 

The same comparison for the simplified model based on the hyperbolic tangent is 
presented in Figure 3.33. Please notice that the initial transients can be accurately 
reproduced with the simplified model based on this approach. 

 
Figure 3.32 Comparison in the time domain between the detailed and the simplified based on the ideal source 

approach for (a) phase angle , (b) phase angle  during the first 0.02 s ,(c) dc capacitor voltage  vdc, (d) dc capacitor 
voltage  vdc during the first 0.02 s, (e) terminal voltage vtc, (f) terminal voltage vtc during the first 0.02 s. 

 
Figure 3.33 Comparison in the time domain between the detailed and the simplified based on the sigmoid function 

approach for (a) phase angle , (b) phase angle  during the first 0.02 s ,(c) dc capacitor voltage  vdc, (d) dc capacitor 
voltage  vdc during the first 0.02 s, (e) terminal voltage vtc, (f) terminal voltage vtc during the first 0.02 s. 
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3.8 Dynamic Voltage Restorer 
The capacitor-supported DVR is a power electronic converter-based device that has been 

proposed to protect critical and sensitive loads from supply-side disturbances, except 
outages [Ghosh and Ledwich 2002]. It is connected in series with a distribution feeder and 
it is capable of generating or absorbing real and reactive power at its ac terminals. The 
operation principle of the DVR is simple; it injects a voltage in series with the feeder. 
Ideally, this injected voltage is in quadrature with the line current so that the DVR behaves 
like an inductor or a capacitor for the purpose of increasing or reducing the overall reactive 
voltage drop across the feeder. In this operating mode, the DVR does not have any 
interchange of real power with the system in steady-state. The DVR can restore the load-
side voltage to the desired amplitude and waveform even when the source voltage is 
unbalanced and distorted. The DVR is based on a voltage source converter. The output of 
the VSC is connected in series with a distribution feeder through a transformer. This device 
use IGBTs that are operated in a PWM fashion. The VSC is supplied by a dc capacitor. A 
schematic representation of the DVR is shown in Figure 3.34. 

 
Figure 3.34 DVR inserting voltage to protect a sensitive load. 

3.8.1  DVR Reference Voltage Generation 
The compensation algorithm for the DVR here used is based on that proposed in [Ghosh 

and Ledwich 2002]. The schematic diagram of a series compensated distribution system is 
shown in Figure 3.34. The DVR is connected in series between the PCC and the load. The 
DVR is represented by the voltage sources vfa, vfb, and vfc; the supply voltages are vsa, vsb, 
and vsc; the load voltages are vla, vlb, and vlc; the terminal voltages at the PCC bus are 
represented vta, vtb, and vtc; and the line currents are represented by isa, isb, and isc. The 
critical load is represented by the impedances Zla, Zlb, and Zlc. 

The subscripts a, b, and c denote the phases. However, in the following analysis, these 
are omitted and any equation applies to all three phases. The source is connected to the 



71 
 

DVR through a feeder with an impedance of Rs+jXs. The uppercase characters represent 
phasor quantities. 

 
Figure 3.35 Schematic diagram of a distribution system with ideal series compensator. 

With respect to Figure 3.35, using KVL at PCC bus and neglecting the impedance of the 
DVR injection transformer, we get 

l t fV =V +V   (3.52) 

To avoid the interchange of real power in steady-state between the DVR and the 
network, Vf must be in quadrature with the line current Is. Let´s denote the phasor source 
current as sIsI , where |Is| is the magnitude of Is, and  is its angle. Is is obtained from 
measurements. Therefore, Vf is defined by,  

/ 2fVfV   (3.53) 

Equation (3.53) can be represented in rectangular form as, 

1 1fV a jbfV   (3.54) 

The terminal voltage Vt can be expressed as, 

t t tV a jbtV   (3.55) 

From (3.52), (3.54) and (3.55), we get, 

2 2 2
1 12 0f t t t f t lV V a a bb V V V   (3.56) 

Equation (3.56) has two solutions, given by 

2 4
2f

b b cV   (3.57) 
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where, 

1 12 t t tb V a a b b   (3.58) 

2 2
t lc V V   (3.59) 

Negative and complex values of |Vf | are not feasible. The solution that must be chosen 
from (3.57) is the real and positive, when a solution exists. 

3.8.2  DVR Structure 
Figure 3.36 shows the DVR structure in which a filter capacitor Cf  is connected in 

parallel with the DVR . The voltage vf is the voltage across the filter capacitor Cf [Ghosh 
and Jindal 2004]. 

 
Figure 3.36 Single-phase equivalent circuit of the DVR with filter capacitor connected in shunt with the DVR. 

The converters shown in Figure 2.12, Figure 2.15, and Figure 2.21, among other, can be 
used for the DVR purposes. 

In Figure 3.36, vinj is the voltage at the converter terminals - this voltage is represented in 
terms of the switching functions. 

3.8.3  Closed-Loop Compensation Algorithm 
The compensation formula given by (3.57) gives the magnitude of the voltage that must 

be injected in series by an ideal DVR (no voltage drop across the injection transformer) to 
compensate the magnitude of the voltage at the load bus. We can see (3.57) as an open-loop 
compensation algorithm. However, for a real case, there is a voltage drop across the 
injection transformer. Therefore, an open-loop compensation algorithm is not suitable to 
compute the voltage that must be injected by the DVR, and a feedback compensation 
algorithm is needed instead. For this case, a PI controller is used; this is given by 

ref ref ref
vp l l vi l lV K V V K V V dt   (3.60) 

where ref
lV  is the load voltage reference magnitude, lV  is the load voltage magnitude, 

obtained from measurements. Thus, the closed-loop compensation algorithm is given by 
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22 2
1 12 0ref

inj t t t inj tV V a a bb V V V   (3.61) 

A feasible solution of (3.61) is 

2 4min
2inj

b b cV   (3.62) 

where 

1 12 t t tb V a a b b   (3.63) 

22 ref
tc V V   (3.64) 

Figure 3.37 illustrates the DVR control system, where ma is the amplitude modulation 
ratio and  is the phase of the voltage control signal at the converter terminal. 

 
Figure 3.37 Circuit control of the DVR. 

The performance of the DVR directly depends on its control system; however, there are 
some limitations that are not associated with the control systems but with the compensation 
limits of the DVR. These compensation limits are given by the solutions of (3.61); if there 
is not a real and positive solution means that the DVR is out of its compensation limits, 
which imply that no matter what compensation algorithm, control system, or gains set are 
used, the DVR will not properly compensate. 

3.8.4  Test Case 
Let consider the electric system shown in Figure 3.34. For this particular case, the 

control system used for the DVR is that shown in Figure 3.37; however another control 



74 
 

system can be used. The set of parameters are given in Table 3.3. The modulation 
frequency ratio for this case is 27. 

In the simulation experiment, the load voltage is regulating at vl = 1 pu. At t = 0.05 s the 
source voltage is changed from 1 pu to 1.45 pu. Observe in Figure 3.38(a) that the terminal 
voltage varies as the source voltage varies; however, the load voltage shown in Figure 
3.38(b) is kept constant at 1 pu. The compensation voltage vf is shown in Figure 3.38(c). 
Please observe in Figure 3.38(c) that during the swell the DVR reduces the injected voltage 
to maintain the load voltage at its reference value. 

TABLE 3.3 SYSTEM PARAMETERS OF THE DVR 
Systems Parameters DVR 

System voltage (|Vs|): 1 pu Voltage controllers gains of dc capacitor loops: 
Kpdc=1, Kidc=0.5. 

Feeder impedance (Rs, Xs): 0.05+j 0.94 pu Vl control loop gains: Kp  =0.05, Ki =180. 
ac capacitor reactance (Xac):17.6 pu dc capacitor reactance (Xdc): 8.84 pu 
Load impedance (Rl, Ll): 2+j 1.8 pu Injection transformer impedance (RT, LT): 0.02+j 

0.19 pu 

 
Figure 3.38 Transient solutions for the operation of the DVR. (a) Terminal voltage, (b) Load voltage, and (c) 

Compensation voltage. 
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3.8.5 Experimental Verification of the Fourier and Hyperbolic 
models 

In this section laboratory results of an Adjustable Speed Drive (ASD) are presented in 
order to demonstrate the reliability of the proposed models for the VSCs. This experiment 
is focused on scalar-based speed controllers which are known as constant V/H control 
[Bose 2002]. The electric network including the ASD is modeled in abc and the induction 
machine in the dqo rotating frame of reference. 

3.8.5.1 State Space Representation 
The ASD structure used in our analysis is shown in Figure 3.39. It contains a diode-

bridge and a voltage-source inverter (VSI) operated in a pulse width modulation fashion 
connected to a common dc-link. This circuits constitute a nonlinear periodically excited 
system with a T- periodic function, which can be represented by the following nonlinear 
system: 

, ;tx f x M   (3.65) 

Where x and f are n- dimensional vectors, and M is an m- dimensional parameter vector. 
In particular, for the electric circuit shown in Figure 3.39, the ODE set is defined as 
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with 

* 1 1 1:1/ml
m ls lr

X
x x x   (3.67) 
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0.75 /e ds qs qs ds bT p i i   (3.68) 
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, ,
r si Bi

i a b c
i i S   (3.70) 

, ,
L Mi i

i a b c
i i S   (3.70) 

For a squirrel cage induction machine as is the case of this study, vqr and vdr are zero. SBi 
and Si (for i=a,b,c) are the switching functions for the diode-bridge rectifier and the voltage 
source inverter (VSI), respectively. The behavior of the system is represented by a set of 9 
ODEs. 

3.8.5.2 Simulated and Experimental Results 
In this section, the laboratory results are presented in order to shown the performace of 

the proposed models. A simplified distribution system shown in Figure 3.39 is assumed, in 
which a three-phase load is supplied by a source through a radial feeder. The experimental 
parameters are given in Table 3.4 and Table 3.5. 

 
Figure 3.39 Experimental system configuration. 

TABLE 3.4 INDUCTION MOTOR PARAMETERS 
Rotor Resistance: 12  
Stator Resistance: 12  
Stator Inductance: 0.018 H 
Rotor Inductance: 0.018 H 
Magnetizing Inductance: 0.16 H 
Rotor viscous friction coefficient: 0.0005 
Number of Poles: 4 
Rotor inertia coefficient: 0.015 kg m2 
Mechanical load toque: 0 N-m 
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TABLE 3.5 SYSTEM PARAMETERS  
System voltage (v): 216.7 Volts (L-L rms). 
Feeder impedance (R, L): 0.1+j 0.0136  

DC capacitor(Cdc): 1100 F 
 

Figure 3.40 and Figure 3.41 show the simulated and experimental waveforms in steady 
state, respectively. The simulated results have been obtained using the Fourier approach 
and the hyperbolic tangent model. Observe that these results are in good agreement in 
comparison with the experimental results. 

 
Figure 3.40 Simulated waveforms (a) Motor current of phase A (b) Rectifier current of phase A. 

 
Figure 3.41 Experimental waveforms (a) Motor current of phase A (b) Rectifier current of phase A. 

A validation of the proposed models is further illustrated in Figure 3.42 and Figure 3.43. 
The harmonic spectrum for the motor current of phase A is presented in Figure 3.42(a) and 
Figure 3.43(a), respectively. The harmonic spectrum for the inverter current of phase A is 
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presented in Figure 3.42(b) and Figure 3.43(b), respectively. Observe that all the solutions 
are in excellent agreement. 

 
Figure 3.42 Harmonic content computed with proposed models. (a) Harmonic content in the motor current of phase A. 

(b) content in the rectifier current of phase A. 

 
Figure 3.43 Harmonic content obtained from measurements. (a) Harmonic content in the motor current of phase A. (b) 

content in the rectifier current of phase A. 

The difference between the simulation and experimental results is due to the following 
reasons: 

1. The hyperbolic tangent model and the Fourier model do not take into account the 
forward voltage of the IGBT, the snubber circuit, and the switching on and off 
times. 

2. The harmonics in the network are not taken into account. 
3. The voltage oscillation in the voltage source is not taken account. 

The formal basis and dynamic behavior of the ASD using the proposed models have 
been presented. Besides, a circuit implemented in the laboratory has been used to validate 
these models and the results compared well with those obtained by simulation. As a result 
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of these comparisons, it can be concluded that the proposed model works very well and is 
well suited for time domain simulation of any device based on SPWM VSCs. 

3.9 Conclusions 
Two efficient Voltage Source Converter models based on a Fourier series approach and 

a hyperbolic tangent procedure have been proposed for the six-pulse converter. The 
proposed models have been used for the computation of the solution of FACTS devices 
connected to a power network. 

It has been shown that the proposed models can be used to compute both the transient 
and the periodic steady state solution of a power network containing VSC-based FACTS. 

The response given by the proposed methods has been successfully validated against the 
solution obtained with the widely accepted digital simulators Simulink and 
PSCAD/EMTDC, respectively. In all cases the obtained results were in excellent 
agreement. In addition, it has been shown through simulations that the proposed models 
allow larger integration steps, as compared with the ideal switch model approach, e.g. for 
the conducted studies, more than 800 times the integration step needed by Simulink and 
PSCAD/EMTDC when the Fourier approach was used, and at least 300 times when the 
hyperbolic tangent method was applied. 

The proposed VSCs models have been only implemented in a network including FACTS 
devices; however, these models can be used in any power electronic device based on 
SPWM six pulse converters, or even for multilevel converters based on arrangement of six-
pulse converters. 

Two different state space approaches have been used to represent in the time domain the 
dynamics of the DSTATCOM connected to the system. Particularly, the models based on 
the sigmoid or hyperbolic tangent model can be used for representing the switching 
functions in the hysteresis band modulation technique of any other device, for example, the 
DVR, and the UPQC, among others. 

An experimental validation of the proposed VSC based on the Fourier approach and the 
hyperbolic tangent model has been provided in order to demonstrate the applicability of 
these mathematical models. 

In [Segundo-Ramírez and Medina 2009] a Newton method and the proposed VSCs-
based models on the Fourier and hyperbolic tangent techniques have been applied to 
compute the periodic steady state solution of power network including FACTS devices. In 
that article, the power restrictions have been imposed using PI controllers; however, the 
dynamics equations of the PI controllers can be transformed into algebraic restrictions if the 
integral gains are fixed equal to zero. Thus, this periodic steady state solution [Segundo-
Ramírez and Medina 2009] is a harmonic power flow in the time domain of power 
networks including FACTS devices. 
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4 Construction of Periodic 
Solutions 

 

 

This Chapter describes on detail of the development of Newton methods based on an 
Enhanced Numerical Differentiation method (END) and Discrete Exponential 
Expansion (DEE) procedures, respectively, for the fast and efficient computation of the 
periodic steady state solution of nonlinear power systems. These methods are used to 
compute the periodic steady-state of nonlinear switched circuits 

4.1 Introduction 
The periodic steady-state solution of an electric/electronic system is required for 

different types of studies. For instance, it is needed in electronic circuits since the circuit 
design specifications are given for its period steady-state operation. In power quality 
analysis, the periodic steady-state solution is needed to assess the network harmonic 
content. The computation of bifurcation diagrams through continuation methods requires 
the efficient computation of the periodic steady-state solution; in addition, information 
concerning the stability of the detected limit cycle is needed [Parker and Chua 1989]. Other 
practical application is for the initialization of simulation software of the EMTP type for 
electromagnetic transient [Perkins, et al. 1995] [Wang and Marti 1996] [Neves, et al. 2006]. 

The practical precision required for the periodic steady-state solution depends on the 
analysis to be done, e.g. a precision of 10-5 is sufficient to quantify the harmonic distortion 
in power networks, to initialize EMTP-type programs and for the determination of practical 
specification of electronic circuits. However, more rigorous and precise steady-state 
solutions are essential for the determination of bifurcation diagrams [Parker and Chua 
1989]. 

The methods to compute the periodic steady state solution may be grouped in two 
distinct classes, e.g. according to the fact of being based on a time-domain and on a 
frequency domain approach, respectively. The former can be considered as derivations or 
improvements of the shooting method [Aprille Jr. and Trick 1972] and the latter as 
derivations of the harmonic balance method [Lindenlaub 1969]. In this thesis, we consider 
only the time domain methods. 

Established knowledge on the modeling and analysis of power systems indicates that the 
periodic steady-state solution of nonlinear power networks can be obtained in the time 
domain trough the direct application of a numerical integration method to solve the 
resulting system, representing the dynamic behavior of the electric network, once the 
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transient eventually dies-out [Parker and Chua 1989]. However, the application of this 
Brute Force approach (BF) can take an excessive computational effort in poorly damped 
systems. This drawback has limited the application of the time domain for the computation 
of the periodic steady state solution of nonlinear systems, especially if these are poorly 
damped. Besides, the BF method has notorious difficulties to locate unstable limit cycles 
[Parker and Chua 1989]. To overcome this problem, an early contribution [Aprille Jr. and 
Trick 1972] proposed a Newton method in the time domain for the fast periodic steady state 
solution of nonlinear circuits, namely the shooting method. In [Colon and Trick 1973] and 
[Grosz and Trick 1982], some modifications to the Newton method are proposed to 
improve the convergence of the Newton method presented by Aprille and Trick. In [Colon 
and Trick 1973] a method is presented based on finite differences to obtain the Jacobian of 
the Poincaré map ( ). In addition, it has been shown in [Colon and Trick 1973] that the 
shooting method can be added to most current transient circuit analysis programs, in order 
to provide fast steady state analysis of large-signal circuits. In [Perkins, et al. 1995], [Wang 
and Marti 1996], and [Neves, et al. 2006] different procedures are proposed for the 
computation of the steady-state to initialize EMTP-type programs. In contributions 
[Usaola-Garcia 1990] and [Semlyen and Medina 1995] Newton methods are used to solve 
in the time domain the nonlinear networks of a hybrid time and frequency representation of 
power systems. In [Usaola-Garcia 1990] the shooting method reported in [Aprille Jr. and 
Trick 1972] is used and in [Semlyen and Medina 1995] three different Newton type 
procedures are proposed to obtain . In [Bedrosian and Vlach 1992], [Donde and Hiskens 
2006], [Garcia and Medina 2003], [Medina, et al. 2003], [Chang, et al. 2006], [Lizhong and 
Vlach 1995], [Armanazi 1973], [Wong 1987], [Kuroe, et al. 1988], and [Li and Tymerski 
2000] Newton methods are applied to obtain the periodic steady state solution of systems 
containing commutated devices. In [Li and Tymerski 2000] a comparison of the different 
algorithms for the accelerated determination of periodic steady state of switched networks 
is presented. 

The Newton methods require the computation of the state transition matrix to be used 
during the iterative solution process. An important part of these Newton techniques is the 
process followed to obtain . Different procedures have been proposed to obtain ; 
[Aprille Jr. and Trick 1972], [Colon and Trick 1973], [Semlyen and Medina 1995], and [Li 
and Tymerski 2000]. 

4.2 Fast Time Domain Solution 
Let us assume the following nonlinear time-varying system periodically excited with a 

T-periodic function, 

0 0, ,t t tx f x x x   (4.1) 

where x and f are n-dimensional vectors, f(t,x) is piecewise continuous and has a 
continuous first derivative with respect to x. We assume that f(t,x) is T-periodic, so 

,, Ttt ff . Also, it is assumed that the trajectory started in x0 is attracted to a limit cycle 
of period T, so (4.1) has a periodic steady state solution (t+T) = (t), where  is the orbit 
of the system (4.1) in the limit cycle. Since the solution of (4.1) is assumed periodic, it can 
be found by using the Poincaré map to extrapolate the state variables to the limit cycle 
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through the application of a Newton method. The state variables x  at the limit cycle are 
estimated as [Semlyen and Medina 1995], 

1i i ix x C x x   (4.2) 

where, 

1C I   (4.3) 

and 

( )
( )

t T
t

x
x

  (4.4) 

x  state variables at the limit cycle; 
ix  state variables at the beginning of the base cycle; 

1ix  state variables at the end of the base cycle; 

 discrete transition matrix. 

I  identity matrix 
 

1ix  can be obtained through integration from ix  over one period. The proposed process 
for calculating  will be detailed in the next section. Once x  is computed using (4.2), ix
is equated to x  and the iteration (4.2) is repeated until consecutive state vectors meet a 
convergence criterion error. 

An important characteristic of  relies on the fact that the eigenvalues are actually the 
Floquet multipliers related to the limit cycle, therefore, it is possible to know the stability of 
the periodic steady-state solution. 

This thesis proposes two methodologies for the fast periodic steady state solution of 
nonlinear electric networks, e.g. a Discrete Exponential Matrix (DEE) and an Enhanced 
Numerical Differentiation (END), respectively, significantly more efficient than the 
methods described in [Aprille Jr. and Trick 1972], [Colon and Trick 1973], [Semlyen and 
Medina 1995], and [Li and Tymerski 2000]. The proposed methodologies are able to 
compute the limit cycle of nonautonomous nonlinear switched and continuous system. 
Besides, as this method is based on the shooting method, the stability of the limit cycle can 
be assessed. 

4.3 Discrete Exponential Expansion Method 
4.3.1 Recursive Formulation 

The dynamics of (4.1) in the neighborhood of the limit cycle can be approximated as, 
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t tx J x   (4.5) 

where J(t) is the Jacobian of f(t,x), and is defined as, 

,t txJ f x   (4.6) 

The solution of (4.5) expressed in discrete times, multiples of T is, 

1k k kx x   (4.7) 

where, 

( )k kTx x   (4.8) 

If f is one-dimensional, then 

( 1)

( )

exp

k T

kT

t dt

k

J

  (4.9) 

k  is the discrete transition matrix of (4.5). For our purpose, it is possible to assume 
that in the neighborhood of the limit cycle the following approximation of k  applies, 

1 2 3...k k k k k m   (4.10) 

For the multivariable case, (4.9) applies only if the Jacobian matrix J(t) is constant. 
However, for practical purposes it can be assumed that if J(t) exists, then it is possible to 
take J(t) constant for small time intervals. Therefore, the solution of (4.5) for the 
multivariable case, where J(t) is time-varying can be approximated as [D'Angelo 1970], 

1 1 2 2 1 1
1 ...N N N Nt t t t

k ke e e eJ J J Jx x   (4.11) 

where ti is defined as 1ii tt , N is the number of intervals in one period and Ji is, 

1 1( ) / 2, ( ) / 2i i i i it txJ f x x   (4.12) 

ti represents the i-th element of the time vector from t to t+T, also xi is the state vector 
corresponding to time ti. 

The equation (4.4) can be directly approximated as, 

( )
( )

t T
t

x
x

  (4.13) 

Comparing (4.4), (4.11) and (4.13) it is clear that  has the form, 
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1

i i

N
te

i
J   (4.14) 

The expression (4.14) represents the approximated transition matrix  based on a 
discrete exponential expansion [D'Angelo 1970]. It will be applied to obtain the periodic 
steady state solution of nonlinear systems through a Newton method based on the Poincaré 
map and extrapolation to the limit cycle procedure. Besides, it will be shown that this 
approach is significantly more efficient than the methods proposed in [Aprille Jr. and Trick 
1972], [Colon and Trick 1973], [Semlyen and Medina 1995], and [Li and Tymerski 2000]. 
In addition, this formulation is not tied to the numerical integration method used, as is the 
case of [Aprille Jr. and Trick 1972] tied to the trapezoidal rule and the backward Euler 
method, instead, (4.14) allows any type of integration method to be used for the 
determination of . It can be noticed that if J(t) is piecewise time-invariant, then the exact 
discrete transition matrix of (4.4) can be computed using (4.14) [D'Angelo 1970]. Equation 
(4.14) implies that the nonlinear system represented by (4.1) is approximated by successive 
linear systems for each integration step. In [Armanazi 1973] the computation of  is 
achieved through matrix exponential products, restricted to commutating linear systems. In 
this contribution, it is demonstrated that  can be approximated by matrix exponential 
products, even for nonlinear-switched systems. 

As far as we know, the DEE method detailed in this contribution has not been proposed 
before to compute the accelerated time domain steady-state solution of nonlinear-switched 
circuits nor nonlinear power systems. 

The Jacobian can be calculated using a numerical, symbolic or automatic differentiation 
process [Nocedal 1999]. In this investigation, the Jacobian is calculated using the forward-
difference approximation [Nocedal 1999]. Considerable savings can be obtained if one 
notes that for each integration step, the Jacobian Ji is nearly identical, and thus only the 
nonlinear and time-varying elements of the Ji are computed at each integration step. 

It is important to notice that ti can be equal to the integration step used during the 
solution of the system. However, the computation effort for the determination of  can be 
halved if ti is twice the original integration step length. 

4.3.2 Identification of  
The transition matrix  of n n  dimension, where the number of state variables n is 

obtained following a step-by-step identification procedure based on a recursive application 
of (4.14). This is a very efficient process since it is not required the sequential perturbation 
column-by-column of the state variables and thus, of the numerical integration of n periods 
of time to fully identify  as needed by Newton methods such as the Numerical 
Differentiation (ND) and Direct Approach (DA), respectively, reported in [Semlyen and 
Medina 1995]. Instead, each identification of  with the DEE method requires of a 
numerical integration process to be carried-out over a single period (cycle) of time. 

4.3.3 Incorporation of Sparsity 
Considering the Jacobian numerical structure, it is possible to incorporate sparse matrix 

techniques to efficiently process the numerical operation involved in the Taylor 
approximation. The exponential matrices approximated by Taylor series are sparse. Thus, 



85 
 

(4.14) can be efficiently performed using sparse techniques, as it will be demonstrated in 
Section 4.3.7.2. The sparse solution facility of MATLAB was used for the case studies 
reported in this thesis. 

4.3.4 Variants of the DEE Method 
For the practical implementation of the proposed DEE method, two variants named 

DEE-1 and DEE-2 methods, respectively, have been developed: 

a) DEE-1 method. Here all the elements of the Jacobian are numerically computed at 
each integration step. 

b) DEE-2 method. In this method, only the nonlinear and time-varying elements of 
the Jacobian are computed at each integration step. 

The efficiency of both methods is further enhanced with the incorporation of the 
following strategy of solution: 

4.3.5 Updating of the Transition Matrix  
The computation effort involved for the iterative solution of (4.2) can be considerably 

reduced if the transition matrix  is not updated at each application (iteration) of (4.2) 
[Colon and Trick 1973]. The proposed procedure to update the transition matrix can be 
summarized as follows. 

Consider ix x  to be the i-iteration of (4.2) obtained with , then integrate xi over one 
period to obtain xi+1. Compute the new x  using (4.2) and the last . Finally integrate x  
over one period to obtain 1x . 

 

1) If <0.2 hold the current  
 

2) >0.2 recalculate  

 

The 0.2 criterion is an experimentally determined value by the authors. This solution 
scheme is at the expense of degrading the natural quadratic convergence properties of the 
Newton method. However, the overall efficiency of the DEE methods is increased as the 
computational effort is reduced with the proposed updating scheme of . 

4.3.6 Computation of the Exponential Matrix 
The discrete exponential expansion of (4.11) can be computed in several ways [Moler 

and Loan 2003]. In practice, it is important to take into account the stability and the 
efficiency of the method; these features indicate that some of the methods are preferable to 
others. However, none of them is completely satisfactory, although some are much better 
than others. In this thesis, the exponential matrix is computed using a scaling and squaring 
algorithm with a Taylor approximation; however, any other method can be used. For more 
details about this technique see [Moler and Loan 2003]. 
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4.3.7 Simulation Results 
The efficiency and the potential of the proposed discrete exponential expansion method 

are demonstrated with the periodic steady state solution of the two case studies presented 
next. The proposed variants of the DEE method, e.g. DEE-1 and DEE-2, respectively, will 
be compared against the BF [Parker and Chua 1989], ND [Colon and Trick 1973] [Semlyen 
and Medina 1995], Aprille and Trick method (AT) [Aprille Jr. and Trick 1972], and the 
Finite Differences (FD) [Parker and Chua 1989] [Nayfeh and Balachandran 1995] methods. 
The FD method has been programmed using the sparse matrix techniques of MATLAB. 
The numerical integration process based on the fourth-order Runge-Kutta (RK4) method 
has been used for the two case studies; however, any other numerical integration method 
can be used. The process to compute the transition matrix using the algorithm proposed by 
Aprille and Trick [Aprille Jr. and Trick 1972] with the RK4. The BF, ND, AT, FD, DEE-1 
and DEE-2 methods were developed in the MATLAB language. The process to compute 
the transition matrix using the algorithm proposed by Aprille and Trick based on the RK4 
method is detailed in Appendix B. A 2.99 GHz, 0.99 GB, Pentium 4 HT, PC computer was 
used. 

4.3.7.1 Six-Pulse Rectifier 
The first case to be analyzed is the six-pulse rectifier of Figure 4.1. The diodes are 

modeled as ideal switches. Zero initial conditions are used. In order to incorporate 
nonlinearities in the circuit, the rectifier is connected to the voltage source through a three-
phase -  transformer, including magnetic saturation effects. The saturation characteristic 
curve is modeled with the polynomial approximation [Lin, et al. 1989]. The system 
parameters are given in Table 4.1. The behavior of the system is represented by a set of 9 
differential equations. This case study is particularly interesting, since it contains nonlinear 
variables and noncontinuous states. 

TABLE 4.1 SIX-PULSE RECTIFIER PARAMETERS 
Voltage Source: 300 V (L-L rms), and phase angle of phase 

A is 0°. 
The load resistor: R=32 . 
Transformer parameters: r1=0.5 , r1=0.02 H, r2=0.5 , 

r2=0.02 H;  Rm=5 K . im=1.44 +4.69 5 Amp. 

 
Figure 4.1 Schematic representation of the test system with the six-pulse rectifier 

Table 4.2 shows the comparative solution process, in terms of absolute mismatches 
errors obtained with the ND, FD, DEE-1 and DEE-2 methods. For the six-pulse rectifier 
case, the AT method does not converge. The DEE-1 and DEE-2 method have the same 
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convergence error characteristic. Thus, the fourth column of Table 4.2 shows the 
convergence error for both DEE-1 and DEE-2, respectively 

TABLE 4.2 MISMATCHES DURING CONVERGENCE OF THE ND,FD AND DEE METHODS 
Iteration ND FD DEE 

1 7.44 10-2 7.44 10-2 7.44 10-2 
2 4.16 10-2 4.16 10-2 4.16 10-2 
3 1.61 10-4 1.61 10-4 1.61 10-4 
4 5.58 10-9 5.58 10-9 5.72 10-9 

 

For this particular case, the ND, FD, DEE-1 and DEE-2 methods needed 4 iterations to 
reach the limit cycle. The steady state solution obtained with the DEE-2 technique is 44.9, 
5.5, 6.6, and 1.6 times faster than the BF, ND, FD and DEE-1 methods, respectively. The 
BF method requires 338 full cycles to reach the steady-state, while the ND needs 54. 

The approximation process followed to obtain  with (4.14) results on a slightly 
affected rate of convergence for the DEE method, which can be observed from the fourth 
iteration; the convergence error is larger than the obtained with the ND and FD method. 
However, the DEE method is notoriously faster than the ND and FD methods. 

The waveforms for the dc voltage across the load resistor vdc and the ac current ilc 
obtained with SIMULINK solution based on the brute force approach [TEQSIM 
International Inc 2001], and with the proposed DEE method are shown in Figure 4.2. The 
high correlation between the solutions obtained with SIMULINK and the DEE method is 
further illustrated in Figure 4.3, which shows the harmonic spectrum for vdc and ilc. 

The reason for the very small discrepancy between the two sets of results is due to the 
fact that the saturation model in SIMULINK is simulated using piecewise linear 
relationships between the flux and the magnetization current. Besides, the diode model in 
SIMULINK includes a snubber resistance and a snubber capacitance. 

This case study shows the practical application of the DEE method for nonlinear-
switched circuits. 

 
Figure 4.2 Selected waveforms. (a) dc voltage vdc (b) ac current ilc. 
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Figure 4.3 Harmonic spectrum for (a) dc voltage vdc, and (b) ac current ilc. 

4.3.7.2 Twelve-Node Three-Phase Test System 
The 12 node three phase system of Figure 4.4 contains 2 two-winding transformers, with 

a magnetizing branch each, 14 transmission lines and 10 loads, two are arc furnaces [Acha, 
et al. 1990] and the rest are represented with RL branches. Three-phase transformers are 
assumed with the magnetic saturation included, the transmission lines are represented by a 

 nominal model. The system parameters are given in Table 4.3. The complete power 
network is represented by a 141 differential-algebraic equation set. 

TABLE 4.3 TWELVE-NODE PARAMETERS 
Voltage source (vG1): 300 V (L-L rms), and phase angle of phase A is 0°. 
Voltage Source (vG2): 300 V (L-L rms), and phase angle of phase A is 20°. 
Source voltage impendance (RG1+j LG1): 0.1+j 0.001 . RG1=RG2  and LG1=LG2. 
RL Loads (Rl+j Ll): 10+j 0.2 . 
Transmission line parameters: R=0.1 , L=0.03H, and C=1 F. 
Electric arc furnace parameter: Rh=1 , Lh=5mH, K1=15, K2=0.05, K3=120, m=0, and n=2. 
Transformer parameter: rp=0.05 , lp=5mH, rs=0.05 , ll=5mH, and im=1.44 +4.69 5 Amp. 

 

 
Figure 4.4 Twelve-node three phase test system 
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Table 4.4 shows the comparative solution process, obtained with the ND, AT, FD, DEE-
1 and DEE-2 methods. For this particular case, the ND, AT, FD, DEE-1 and DEE-2 
methods needed 5 iterations to reach the limit cycle; the BF method required 2105 cycles, 
and the ND needs 725. 

TABLE 4.4 MISMATCHES DURING CONVERGENCE OF THE ND, AT, FD AND DEE METHODS 
Iteration ND AT FD DEE 

1 1.56 10-2 1.56 10-2 1.57 10-2 1.57 10-2 
2 1.15 10-3 1.15 10-3 1.15 10-3 1.15 10-3 
3 1.76 10-4 1.76 10-4 1.76 10-4 1.76 10-4 
4 1.27 10-6 1.27 10-6 1.27 10-6 1.27 10-6 
5 1.20 10-11 1.05 10-11 1.51 10-11 6.52 10-10 

 

The DEE-2 method meets the convergence criterion 63.05, 21.11, 6.80, 22.83, and 3.92 
times faster than the BF, ND, AT, FD and DEE-1 methods, respectively. 

The waveforms for the voltage at bus 6 vc6a, for the voltage at bus 9 vc9a, and for the 
terminal voltage at the electric arc furnace connected at bus 3 vh3a, obtained with 
SIMULINK and the proposed DEE methods are shown in Figure 4.5(a), Figure 4.5(b), and 
Figure 4.5(c), respectively. 

The excellent agreement achieved between the solutions obtained with SIMULINK and 
the DEE methods is further illustrated in Figure 4.6, which shows the harmonic spectrum 
for vc6a, vc9a, and vh3a. 

 
Figure 4.5 Selected waveforms for the twelve-node three phase test system. (a) vc6a, (b) vc9a, and (c) vh3a. 
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Figure 4.6 Harmonic spectrum for the twelve-node three phase test system. (a) vc6a, (b) vc9a, and (c) vh3a. 

(a) Incorporation of Sparsity Techniques and of the Algorithm to Update the 
Transition Matrix . 

For the test case of Figure 4.4 only the 2.3% of the elements of the Jacobian matrix are 
nonzero; this justifies the incorporation of sparse matrix techniques to efficiently carry-out 
the computation of  using (4.14). 

Table 4.5 shows the solution process obtained with the DEE method including both the 
sparse matrix techniques and the algorithm for updating . For this case study, when the 
algorithm for updating the transition matrix is incorporated in the DEE methods,  is 
computed three times, e.g. in the first, third, and fifth iteration. 

TABLE 4.5 MISMATCHES DURING CONVERGENCE OF THE DEE METHOD 
Iteration DEE 

1 1.57 10-2 
2 5.84 10-3 
3 7.94 10-4 
4 2.98 10-4 
5 4.84 10-6 
6 4.62 10-8 
7 7.60 10-10 

 

The quadratic convergence characteristic of the DEE method is altered when  is not 
computed at each iteration; however, the computational efficiency is incremented 1.8 times 
for the DEE-1, and the DEE-2 method, respectively, with the incorporation of the proposed 
algorithm for the update of  and the use of sparsity techniques. The DEE-2 method is now 
112.1, 37.5, 12.1, 40.6 and 3.9 times faster than BF, ND, AT, FD and DEE-1 methods, 
respectively. 
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4.4 Enhanced Numerical Differentiation Method 
The proposed END method is oriented to the accelerated time domain periodic steady 

state solution of nonlinear power systems; it takes advantage of the half-waveform 
symmetry of excitation signals, such as voltage sources. 

This methodology basically consists on the evaluation of (4.4), by the approximation of 
x(t+T) through the extrapolation of x(t+T/2). With this approximation, the integration of 
(4.1) for the computation of x(t+T) is not required to be done over a full period T, as it is 
usually the case [Colon and Trick 1973], [Semlyen and Medina 1995], [Medina, Ramos-
Paz and Fuerte-Esquivel 2003], [Garcia and Medina 2003], [Segundo-Ramírez and Medina 
2008] and [Segundo-Ramírez and Medina 2008], but only over a half period, thus 
increasing the computational efficiency of the ND method in approximately 100%. 

Typically, in power electric systems, there are several operating scenarios. The simplest 
case is when the electric power network is balanced and free of harmonic distortion. Under 
this condition, the dc signals only have a dc component in their harmonic spectrum, and the 
ac components only have the fundamental frequency component. The periodic steady state 
solution of this type of systems can be found by using the phasor concept and a power flow 
algorithm. 

A second case is when the power network is balanced and harmonic distorted. In this 
operating condition, the dc and ac signals have different harmonic components. The 
harmonic distortion is produced by the interaction between the power network and 
nonlinear loads and components, such as saturated transformer inductances, electric arc 
furnaces, and power electronic devices, among others. Due to the nature of the nonlinear 
inductances in power transformers, the harmonic components in the ac signals are odd and 
not multiple of three, except the third harmonic, meanwhile in the dc signal the harmonics 
components are even and do not contain the fundamental frequency component. For the 
case of power electronic converters, the harmonic components in their ac side are usually 
odd and the harmonic components in the dc side are even. The power electronics converter 
can also produce even harmonic components in their ac side by changing the frequency of 
the carrier waveform employed in the modulation technique; however, in practice the index 
modulation is chosen to generate only odd harmonic component in the ac side of the 
converters and consequently even harmonics components in the dc side [Mohan, et al. 
1995]. 

A more realistic case is when the voltage sources, the load, and the power system are 
unbalanced and harmonic distorted. However, the characteristic harmonic components in 
the dc and the ac signal are the same of the second case. Therefore, it can be generalized if 
the ac signal in the limit cycle satisfies the next equation: 

/ 2i ix t T x t T   (4.15) 

The dc signals cannot satisfy (4.15), since they have in general only even harmonics in 
practical power systems. Therefore, it is equivalent to say that if a signal satisfies (4.15), 
then this signal does not have a dc component. On the other hand, the dc signals in the limit 
cycle satisfy the following equation: 
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/ 2i ix t T x t T   (4.16) 

Therefore, if a signal satisfies (4.16) in the limit cycle, then it is possible conclude that 
this is a dc signal. Furthermore, this dc signal satisfies (4.17). 

/ 2
0i idx t dx t T

dt dt
  (4.17) 

Summarizing, the proposed END method is based on the following steps:  

1) To integrate the system (4.1) from t to t+T/2. 
2) To evaluate (4.17); for instance, using finite differences approximations of its 

derivatives. 

This is a simple and fast operation, since it is performed only twice during the solution 
process. To evaluate (4.17) needs of a very simple operation and it is not a time consuming 
task. If (4.17) is not satisfied then proceed to integrate the system (4.1) from t+T/2 to t+T 
and use the conventional ND method. On the other hand, if (4.17) is satisfied, identify the 
dc and ac variables. To do this, it is possible to say that in the neighborhood of the limit 
cycle, the ac variables satisfy the following equation, 

/ 2i ix t T x t T   (4.18) 

and, the dc variables satisfy the following equation, 

/ 2i ix t T x t T   (4.19) 

With this proposed method we only need to integrate over half period T/2, instead of one 
period T, as in the case of ND method. To apply successfully this method, the solution must 
be close to the limit cycle, thus a good guess is required. 

4.4.1 Simulation Results 

4.4.1.1 Three-Phase Electric System Including the Unified Power Flow 
Controller (UPFC) 

In order to proof the proposed method, the test circuit including a Unified Power Flow 
Controller (UPFC) shown in Figure 4.7 is used. This system contains two three-phase 
transmission lines between two voltage sources with a fundamental frequency of 60 Hz, 
and a shift angle of zero. The UPFC is represented with the model proposed in [Segundo-
Ramírez and Medina 2009]. It includes the series control proposed in [Fujita, Watanabe and 
Akagi 2001], and the shunt control proposed in [Mahyavanshi and Radman 2006]. 
Moreover, the UPFC model has the switching function explicitly represented. The 
advantage of this model is its applicability to various forms of pulse-width modulation or to 
other switching strategies. In this contribution, the sinusoidal pulse width modulation 
(SPWM) technique is used [Mohan, Underland and Robins 1995]. The series and shunt 
transformers are represented through RL branches. 
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Figure 4.7 Single-phase test system 

The reference voltage vector for the series converter is calculated as [Fujita, Watanabe 
and Akagi 2001], 

/
/

ref ref
Sr pSq iSqsd sd sd

ref ref
pSp iSp Srsq sq dq

K K K sv i i
K K s Kv i i

  (4.20) 

where ref
sdi  and ref

sqi  are the active and reactive reference currents, ref
sdv  and ref

sqv  are 
reference voltages of the series converter, respectively. The active and reactive reference 
currents are obtained from the active and reactive power flows and by measuring the 
voltage at the receiving end. 

A two-stage control loop scheme is employed for the shunt converter of the UPFC. This 
scheme has two objectives: to control the voltage across the dc capacitor, and to regulate 
the ac voltage of the power system bus where the shunt converter is connected. The control 
scheme is given by 

/ 0
0 /

ref
pm im Pt Ptsh

ref
p ish dc dc

K K s v vm
K K s v v   (4.21) 

where ref
Ptv  is reference magnitude of the shunt bus, Ptv  is the instantaneous magnitude of 

the shunt bus, msh is the index modulation ratio of the shunt converter and sh is the phase 
angle shunt voltage. 
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The series controller regulates the real (Pref=0.45 pu) and reactive (Qref=0 pu) power 
flows by adjusting the injected series voltage. The shunt converter regulates the dc-side 
capacitor voltage (vdc=2 pu) and the sending end voltage ( ref

Ptv =0.96 pu). The modulation 
index used is mf =9. The limit cycle is reached once a maximum absolute error criterion in 
the state variables is within 10-10 pu. The test system dynamics are represented by a set of 
26 ODEs. An integration step of 0.1 s has been used in Simulink, and 33 s and 16.3 s, 
respectively, for the proposed model. The fourth-order Runge-Kutta numeric integration 
method was used. 

The voltage vs is harmonic distorted with third and fifth components, this voltage is 
given by 

cos( ) 0.03cos(3 ) 0.013cos(5 )
cos( 2 / 3) 0.03cos(3 2 / 3) 0.013cos(5 2 / 3)  pu
cos( 2 / 3) 0.03cos(3 2 / 3) 0.013cos(5 2 / 3)

sa

sb

sc

v t t t
v t t t
v t t t

 (4.22) 

In addition, the transmission line connected with the series converter of the UPFC is 
unbalanced, with 0.016 1.15laZ j  pu, 0.017 1.15lbZ j  pu, and 0.018 1.15lcZ j  pu. 

The comparison of CPU times between the proposed method and SIMULINK cannot be 
done since the proposed method and this simulator are developed in different platforms. 
However, the comparisons can be carried out using the number of full cycles as a common 
unit of time instead of seconds. In this case, as the integration step has to be different, the 
computational efficiency must take into account the ratio of the integration step. 

(a) Convergence to the limit cycle 
In order to make the damping of the system very low, e.g. with a Floquet multiplier of 

0.99, the gains set has been selected as KSr=0.566, KpSq=1, KiSq=0.0029, KpSp=1, 
KiSp=0.0029, Kpm=0.001, Kim=0.5, Kp =0.0005, Ki =0.1. 

Table 4.6 shows the results obtained in terms of number of full cycles of time (NFC) 
required to obtain the periodic steady state solution using two different integration step, e.g. 

t=33 s, and t=16.3 s . In both cases, the performance of the BF, ND and the END is 
almost the same. The small difference is because the same ODE set is mapped at a different 
discrete-time system for each integration step. In both cases, the periodic steady state is 
achieved after 10495 periods using the BF approach based on the RK4 method, after 94 
cycles when the ND method is applied, and after 38 cycles when the END method is 
applied. For t=33 s, the END method is 2.82, and 356 times faster than the ND method, 
and the BF method, respectively.  For t=16.3 s, the END method is 2.84, and 361 times 
faster than the ND method, and the BF method, respectively. In addition, for both cases, the 
END and the ND methods converge in two and three iterations, respectively. The results in 
Table 4.6 show that it is more efficient to use the END, since only 38 full cycles are 
required to locate the limit cycle. In this particular case, the ND method needs one more 
iteration as compared with the ND method. However, in most cases the END and the ND 
methods require the same iterations to meet the specified criterion error. 
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Figure 4.8 shows the computed steady state solution for two different integration steps 
using the END method, e.g t=33 s and t=16.3 s, respectively, and an integration step 
of t=0.1 s for Simulink. Figures 4(a) and 4(b) show the dc voltage and the sending end 
voltage of phase A, respectively. Please notice that these variables achieve their reference 
values, e.g. 2 pu for the dc voltage capacitor and 0.96 pu for the sending end voltage, 
respectively. The results show to be in good agreement. It should be remarked that the END 
method represents a remarkable computational advantage over the BF method, and even 
over the ND method. 

TABLE 4.6 MISMATCHES DURING CONVERGENCE OF THE BF, ND AND END METHODS  

NFC 
t=33 s t=16.3 s 

BF ND END BF ND END 
1 2.00×10-1 2.00×10-1 2.00×10-1 2.00×10-1 2.00×10-1 2.00×10-1 
2 6.28×10-2 6.28×10-2 6.28×10-2 6.28×10-2 6.28×10-2 6.28×10-2 
: : : : : : : 

10 3.78×10-3 3.78×10-3 3.78×10-3 3.78×10-3 3.78×10-3 3.78×10-3 
: : : : : : : 

24 9.69×10-4 : 5.67×10-6 9.69×10-4 : 5.71×10-6 
38 1.32×10-3 1.89×10-5 7.60×10-11 1.32×10-3 1.89×10-5 5.17×10-11 
66 9.00×10-4 1.47×10-10  9.04×10-4 2.02×10-10  
94 1.22×10-3 2.25×10-15  1.21×10-3 5.52×10-15  
: :   :   

10495 9.91×10-11   9.74×10-11   
 

 
Figure 4.8 Steady-state solution comparison 

(b) Harmonic 
A close agreement between the Simulink and the END method solutions is obtained, as 

illustrated in Figure 4.9(a) and Figure 4.9(b), which show the harmonic distortion produced 
in the dc voltage and the sending end voltage of phase A, respectively. In this Figure, it can 
be noticed that dc voltage capacitor has only even harmonic components, not only multiple 
of 6. On the other hand, the terminal voltage and the series current contain only odd 
harmonic components [Mohan, Underland and Robins 1995]. Please notice that the 
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spectrum obtained using the END method is in very close agreement for the two different 
integration steps, and a smaller integration step is needed when the solution is computed 
with Simulink. 

 
Figure 4.9 Harmonic content comparisons. (a) Harmonic content in the dc voltage. (b) Harmonics in phase A of the 

terminal voltage. (c) Harmonics in the phase A of the series current 

4.5 Conclusion 
Newton methods based on a discrete exponential expansion approach and enhanced 

numerical differentiation process have been proposed for the fast periodic steady state 
solution in the time domain of nonlinear electric networks using a Poincaré map and an 
extrapolation to the limit cycle process. 

Two variants for the proposed DEE method have been introduced, i.e. DEE-1 and DEE-
2. In the DEE-1 method, all the Jacobian elements are obtained numerically, whereas with 
the DEE-2 method, only the nonlinear and time-varying elements are calculated at each 
integration step. In all cases, the DEE-2 method is more efficient than the DEE-1 method, 
since it needs fewer operations to carry-out the computation of . 

The proposed DEE methods have been successfully applied for the computation of the 
periodic steady state solution of a nonautonomous nonlinear-switched system and for larger 
electric system, e.g. a nonautnomous nonlinear-continuous 12-bus three-phase test system. 

The efficiency of the introduced DEE-1 and DEE-2 methods has been further enhanced 
with the incorporation of sparsity techniques and an algorithm for the updating of  during 
the iterative solution of the DEE method. 

It has been observed that for the 12-bus three-phase test system, the incorporation of 
these strategies of solution resulted in an increase of the DEE-1 and DEE-2 methods 
computer efficiency. On average, the DEE-2 method was 112, 37.5, 12, 40.6 and 4 times 
faster than the BF, ND, AT, FD and DEE-1 methods, respectively. 

The response given by the proposed methodology has been successfully compared 
against the periodic steady state solution obtained with the widely accepted digital 
simulator Power Blockset of SIMULINK for electromagnetic transient studies. In all cases 
the obtained results have been in close agreement. 

On the other hand, a Newton method based on an Enhanced Numerical Differentiation 
approach has been proposed for the fast periodic steady state solution in the time domain of 
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nonlinear power networks using a Poincaré map and extrapolation to the limit cycle 
process. 

The proposed END method has been successfully applied for the computation of the 
periodic steady state solution of nonlinear-switched electric systems. The application END 
method approximately halved the number of cycles and, therefore, the computation effort 
needed by the ND method to reach the limit cycle and thus the periodic steady state; even 
though the ND and END methods have a quadratic rate of convergence. 

It has been observed, for the analyzed case studies, that the END method is on average 
356 and 2.8 times faster than the BF and ND methods, respectively. The results have been 
also successfully compared against the response obtained with the power block set of 
SIMULINK. 
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5 Stability Analysis Based on 
Bifurcation Theory of the 

DSTATCOM and DVR 
 

 

This Chapter presents the stability analysis for the DSTATCOM operating in voltage 
control mode, for the DSTATCOM operating in current control mode, and for the DVR. 
It is shown through the bifurcation theory that the stability boundary of the DSTATCOM 
on the Thevenin space is limited by the Neimark-Sacker bifurcation. For the case of the 
stability analysis of the DVR it is shown that fundamental frequency model can give 
erroneous results if the switching frequency is close to the network frequency. 
Additionally, it is shown through the bifurcation theory that different stability scenarios 
can appears if we use detailed models of the power converters including harmonic 
components. 

5.1 Continuation Techniques and Bifurcation Theory 
The transient and steady-state response of a system represented by a set of ODEs can be 

computed by conventional numerical integration methods; this method is known as a Brute 
Force approach [Parker and Chua 1989]. Therefore the stability of any system can be 
computed through time domain simulations. However, with bifurcation theory it is possible 
to predict the system behavior around the operating points without resorting to the 
numerical integration solution. The results obtained with this analysis can be represented 
with a bifurcation diagram, which provides qualitative information about the behavior of 
the steady-state solutions (limit cycles), as physical parameters are varied. At certain points 
(bifurcation points) infinitesimal changes in system parameters can cause significant 
qualitative changes in periodic solutions. In general terms, the construction of a bifurcation 
diagram consists of the following steps [Parker and Chua 1989] [Nayfeh and Balachandran 
1995]: a) finding a first periodic steady-state solution; b) based on the first solution, find 
other equilibrium solutions based on a continuation scheme [Parker and Chua 1989] 
[Nayfeh and Balachandran 1995], and c) determining the stability of each solution. 

Continuation schemes are used to determine how the solutions of a system vary with a 
given parameter. Implementing a predictor–corrector scheme, a continuation algorithm can 
trace the path of an already established solution as the parameters are varied. A software 
package widely used is XPPAUTO [Doedel 1986]; however, this software has not been 
used in this investigation since it presents convergence problems to trace the bifurcation 
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diagrams of periodically forced nonlinear - switched systems. In this thesis, the sequential 
method [Nayfeh and Balachandran 1995] is used as the predictor; in this method, the 
periodic solution determined in the previous step is used as an initial guess for the periodic 
solution to be determined in the next step. After the third point, an extrapolation method 
based on the cubic spline is used as a predictor. The Newton method based on the DEE 
process [Segundo-Ramírez and Medina 2009] is used as the corrector. This continuation 
method is schematically explained in Figure 5.1.  

 
Figure 5.1 Continuation method 

The stability of a periodic solution is computed from its Floquet multipliers; they 
describe the stability near the limit cycle of interest. Floquet theory is based on the 
observation that a periodic solution can be represented through a fixed point of an 
associated Poincaré map [Parker and Chua 1989] [Nayfeh and Balachandran 1995]. 
Consequently, the stability of a periodic solution can be determined by computing the 
stability of the corresponding fixed point of the Poincaré map. The Floquet multipliers are 
the eigenvalues of the Jacobian of this Poincaré map. Stable periodic solutions correspond 
to Floquet multipliers inside the unit circle; on the other hand, unstable periodic solutions 
have at least one characteristic multiplier outside the unit circle. Therefore, loss of stability 
is encountered when a multiplier leaves the unit circle; this can occur in three different 
ways: A fold bifurcation is encountered when a single real Floquet multiplier crosses the 
unit circle at +1. The flip bifurcation or period-doubling bifurcation takes place when a 
single real Floquet multiplier crosses the unit circle at -1. At this bifurcation point, the 
prevailing solution branch becomes unstable and a new branch is born. Solutions on this 
new branch have twice the period of the previous limit cycle. The generalized Hopf 
bifurcation or Neimark bifurcation [Parker and Chua 1989] [Nayfeh and Balachandran 
1995] is found when two complex conjugated Floquet multipliers leave the unit cycle. This 
bifurcation corresponds to a quasiperiodic solution. This is shown graphically in Figure 5.2. 

 
Figure 5.2 Three scenarios for the loss of stability of a solution: (a) Fold bifurcation. (b) Period double bifurcation. (c) 

Neimark-Sacker bifurcation. 
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5.2 DSTATCOM Operating in Current Control Mode 
Stability Analysis Based on Bifurcation Theory 

In this Section the bifurcation theory will be applied to the electric system shown in 
Figure 5.3 to compute the stability regions of the electric system including the 
DSTATCOM operating in current control mode. The simplified DSTATCOM model 
presented in Section 3.6.2.2 will be used to carry-out the stability analysis based on 
bifurcation theory. Additionally, the reference compensation current is computed with 
(3.32). The stability regions computed through bifurcation analysis are also compared 
against the time domain simulation using both the detailed and the simplified DSTATCOM 
models. The stability analysis of the ac electric arc furnace (EAF) based on bifurcation 
theory and continuation methods has been already presented in [Medina, et al. 2005] 
[Gomez-Martinez, et al. 2006]; however, in those publications, the ODE set that represents 
the EAF connected to the power network is not periodically forced. 

 
Figure 5.3 Compensation of the EAF when the source is non-stiff and the DSTATCOM contains a passive filter. 

5.2.1 Bifurcation Analysis for DSTATCOM in Current Control Mode 

5.2.1.1 Stability Regions in the Ls  Rs Plane 
The network of Figure 5.3 has been represented through its Thevenin equivalent. The 

network upstream from the PCC towards the source side may contain different feeders and 
loads. Thus the radial line and the source shown in Figure 5.3 is a Thevenin representation 
of the upstream network, where vs, Rs, and Ls represent the Thevenin equivalent looking 
towards the left into the network. 

Since the Thevenin equivalent can change at any time depending on the load at left side 
of the PCC, it is desirable to assess a set of vs, Rs, and Ls, for which the DTATCOM 
performance is stable. 

For the electric system shown in Figure 5.3, only the Neimark bifurcation was located in 
the parametrical-space used in this analysis. In analogy with the Hopf bifurcation, a 
bifurcation is expected at a critical value, as the limit cycle loses its stability, so that an 
attracting torus is born; this is the secondary Hopf bifurcation or a Neimark bifurcation. 
Besides, the bifurcated solution can be either stable and supercritical or unstable and 
subcritical [Nayfeh and Balachandran 1995]. 
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Figure 5.4 shows the bifurcation set on the Rs  Ls plane. This Figure shows the stability 
regions for different power factor corrections with |Vs| =440 Volts, where |Vs| is the peak 
value. The solid line represents the Neimark bifurcation set. Inside the contour line the 
solutions are T-periodic and the gray zones represent the unstable regions. The stable region 
in the Rs  Ls plane changes according to the power factor at the PCC. For instance, Figure 
5.4(d) shows that for a 0.822 lead power factor, an unstable region within the stable region 
exists. In a practical distribution system, the set (Rs, Ls) is smaller than those stable sets 
computed through the bifurcation analysis, which means that for all the possible operating 
points the DSTATCOM operating in current control mode will properly compensate. 

 
Figure 5.4 Stability regions for the DSTATCOM operating in current control for different power factors at the 

terminal bus with |Vs|=440 Volts 

To corroborate the bifurcation diagrams shown in Figure 5.4, time domain simulations 
were carried-out. Figure 5.5(a) shows phase portrait in the vta  ilb plane with PF=1, 
Ls=87.77 mH, and Rs=12.1 ; Figure 5.5(b) shows the phase portrait in isa  vta plane with 
PF=0.822, Ls=30 mH, and Rs=1 . It is to be noted that only the parameters mentioned 
above are changed, while the rest of the parameters are those given in Table 3.1. These 
solutions agree with the bifurcation analyses which predict quasiperiodic solutions. A 
comparison between the detailed and the simplified models is shown in Figure 5.5; good 
agreement is achieved between both solutions. 
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Figure 5.5 Phase portrait for different operating points. (a) Phase portrait in the vta  ilb plane with PF=1, Ls=87.77 

mH, and Rs=12.1 . (b) Phase portrait in the isa  vta plane with PF=0.822, Ls=30 mH, and Rs=1  

Figure 5.6 shows the simulated waveforms for the compensation current ifa, the dc 
capacitor voltage vdc, and the terminal voltage vta, for PF=1, Ls=87.77 mH, and Rs=25 . 
For this operating point the dc capacitor voltage suddenly collapses around 0.65 s. This 
operating point is in the unstable region; however, since it is far from the Neimark 
bifurcation, the dc capacitor voltage collapses, as shown in Figure 5.6(b). In Figure 5.6 only 
the solution with the detailed model is presented, since as we mentioned above, the 
simplified model does not give exact time domain solutions for vdc 0. However, it has 
correctly predicted the loss of stability, as shown in Figure 5.4(c). In addition, the 
bifurcation diagram (Figure 5.4(c)) predicts the loss of stability due to the emergence of a 
Neimark bifurcation. Please notice the presence of oscillations in the time domain solution 
shown in Fig. 5.3. It indicates the existence of a Neimark bifurcation, which agrees with the 
predicted behavior by the simplified model. 

 
Figure 5.6 Simulated waveforms for PF=0, Ls=87.77 mH, and Rs=25 . (a) Compensator current ifa,. (b) dc capacitor 

voltage vdc. (c) Terminal voltage vta 
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To show the impact of the Thevenin equivalent voltage on the stability regions in the 
Ls Rs plane, Figure 5.7 shows the bifurcation set for |Vs|=440, 400, and 300 Volts with 
PF=1. Figure 5.7 shows that the stable regions in the Rs  Ls plane decrease as the Thevenin 
voltage decreases. This is an important observation, since voltage sags can collapse the 
system if this is operating near a Neimark bifurcation. 

 
Figure 5.7 Stability regions for the DSTATCOM operating in current control for |Vs|=440 Volts, for |Vs|=400 Volts, 

and for |Vs|=300 Volts with PF=1 

5.2.1.2 Stability Regions in the Gains Plane. 

In this section, we compute the stability region in the Kidc  Kpdc space, and in the Ki   
Kp  space, as well as the contour lines for different Floquet multipliers. 

Figure 5.8(a) shows the stability regions in the Kidc  Kpdc space, and Figure 5.8(b) 
shows the stability regions in the Ki   Kp  space. Also, in these figures, contour lines are 
presented for different Floquet multipliers to show the different speed of response. For 
example, from the Figure 5.8(a), it is easy to notice that the pair of gains Kidc = 80000 and 
Kpdc = 1040 give the fastest response. The implementation of this set of gains in a physical 
controller depends on the precision available in the hardware and software employed. 

Figure 5.9(a) shows time domain simulations of the convergence error for Kpdc = 1040 
and different Kidc. It can be observed that this agrees with the bifurcation diagram of Figure 
5.8(a). From Figure 5.8(b), it is easy to notice that in the stable region, there is an important 
area for which the maximum Floquet multiplier is constant. This means that for this area, 
the speed of response should almost be the same. To corroborate this observation, the 
convergence error for Kp  = 1.5 and different Ki  is shown in Figure 5.9(b). As expected, 
the convergence error is almost the same in this area. 

Figure 5.10 shows the torus solution for compensation current if for Kp =0.5, Ki =300, 
Kpdc=1040, and Kidc=2.5×105. This operating point corresponds to a quasiperiodic solution. 
Note that the detailed model and the simplified model are in very good agreement, even in 
the unstable regions. 
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Figure 5.8 Stability regions for the DSTATCOM operating in current control mode in (a) the Kidc  Kpdc space, and (b) 

Ki   Kp  space 

The correlation between the speed response of the DSTATCOM and its stability is 
shown in the Figure 5.11. This Figure shows two bifurcation sets in the Rs  Ls plane for 
two different sets of gains. The first one correspond to the nominal gains given in Table 
3.1, and the second one corresponds to the fastest set of gains for the nominal electrical 
parameters given in Table 3.1. From Figure 5.11 it is possible to observe that the stable 
region decreases as the speed of response becomes faster. The set of gains can be selected 
through an assessment of bifurcation diagrams, such as those shown in Figure 5.11. 

 
Figure 5.9 Convergence error for different gains in the DSTATCOM controllers. (a) For dc capacitor voltage 

controller. (b) For power factor controller 
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Figure 5.10 Quasiperiodic solution for Kp =0.5, Ki =300, Kpdc=1040, and Kidc=2.5×105. ifa vs ifb 

 
Figure 5.11 Comparison between the stability regions for two different set of gains 

5.2.1.3 dc Capacitor Impact on the Stability 

The impact of the dc capacitor size in the stability regions in the Rs  Ls plane is 
qualitatively shown through bifurcation analysis. This analysis shows that the stable region 
increases as the dc capacitor size increases. However, as the capacitor size becomes larger 
than a certain value, the stable region remains constant. From this analysis, the size of the 
dc capacitor can be chosen to suit the load demand. Figure 5.12 shows the stability regions 
in the Rs  Ls plane for different dc capacitor sizes. 

 
Figure 5.12 Comparison between the stability regions for different dc capacitors 
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current introduced by the DSTATCOM. However, it is shown in [Ghosh and Ledwich 
2003], that this passive filter has an important impact on the DSTATCOM performance and 
on its stability. High capacitances in the capacitor filter provide a low impedance path for 
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third one is that the stable region decreases as the capacitance becomes larger. This is 
shown in Figure 5.13, where the stability region in the Rs  Ls plane has been computed for 
three different capacitor filters. 

 
Figure 5.13 Comparison between the stability regions for different ac capacitors 

5.2.1.5 Discussion of the Results 
With the tracing of bifurcation diagrams, an accurate portrait is drawn for the dynamic 

system, and the operating zones have been delimited. 

Variation in the Thevenin equivalent can cause the limit cycle to loss stability. This is 
because a Neimark bifurcation appears. The periodic solutions in the unstable region near 
to the Neimark bifurcation become quasiperiodic and an attracting torus is born. However, 
for the operating points in the unstable region far from the Neimark bifurcation, the system 
collapses, as shown in Figure 5.6. 

With the tracing of bifurcation diagrams in the gains plane, the operating zones are also 
delimited and the speed of response of the DSTATCOM known. It is also shown in Figure 
5.11 that for slower speed response of the DSTATCOM, the stable region is increased. 

The dc capacitor size asymptotically increases the stable region as this becomes larger. 
Beyond certain value the stable region remains nearly constant.  

An interesting result is shown in Figure 5.13. The ac capacitor filter connected at PCC 
bus to eliminate the high frequency component of the current injected by the DSTATCOM 
has an adverse effect on the stability. For a small ac capacitor filter the impedance for the 
harmonic current is high. Therefore, some harmonic currents injected by the DSTATCOM 
remain in the system. On the other hand, for a larger ac capacitor filter, the impedance to 
the harmonic currents is low. In consequence, the harmonic current is efficiently drained by 
the passive filter. Unfortunately, the stable region decreases as the ac capacitor filter 
becomes larger. 

The bifurcation diagrams have been successfully verified through time domain 
simulations using both the simplified DSTATCOM model and the detailed DSTATCOM 
model, demonstrating that the stability regions have been correctly computed using the 
bifurcation theory. However, there are some aspects that must be emphasized to avoid 
misunderstanding of the results. For instance, for the stable region computed through the 
bifurcation theory there is a set of initial conditions for which the DSTATCOM properly 
compensates. This set of initial conditions is not known with the bifurcation analysis. 
However, for the unstable regions there are not any initial conditions for which the 
DSTATCOM properly compensates. 
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For example, Figure 5.12 shows that after certain capacitance of Cdc, the stable region 
remains constant in spite of the size of Cdc. However, in this figure it is not possible to 
notice that the energy in the storage capacitor is higher as the capacitance of Cdc becomes 
larger. Consequently, the DSTATCOM will be able to compensate larger and more serious 
disturbances in the network because the set of initial conditions for which the DSTATCOM 
compensation properly increases. 

5.3 Bifurcation Analysis for DSTATCOM in Voltage Control 
Mode 

In this section, the bifurcation theory is applied to the electric system shown in Figure 
5.3 to assess the stability regions of the electric system including the DSTATCOM 
operating in voltage control mode. The bifurcations in a power system are basically 
produced by the nonlinear loads and nonlinear elements. In particular, the DSTATCOM is 
a nonlinear element due to its controllers and its compensation algorithm.  

In the section to follow, bifurcation diagrams in the Thevenin space are computed to 
show the set of Ls, Rs, and vs (derived from Thevenin reactance) for which the 
DSTATCOM contains stable solutions. The stability regions on the gains space are 
calculated through bifurcation theory, and the set of gains for the fastest speed response of 
the DSTATCOM is obtained from this analysis. Besides, the gains impact on the stability 
regions in the Thevenin space is analyzed. Finally, the ac and dc capacitors size impact on 
the stability in the Thevenin space is analyzed. 

The simplified DSTATCOM model presented in Section 3.6.3.1 is used in this analysis; 
however, the solutions will be compared against the detailed DSTATCOM model to 
validate the results. The simplified model is used in this analysis rather than the detailed 
model basically because the detailed model does not allow the correct implementation of 
the shooting method during the correcting process in the computation of the bifurcation 
branches through the continuation methods. 

5.3.1 Stability Regions in the Rs - Ls Plane 
In general, there may be various feeder segments and load buses before the PCC. 

Therefore, at the best, the source and feeder impedances are the Thevenin equivalent 
obtained by looking into the network at the PCC. Thus, not only is the feeder impedance 
unknown a priori, it may suddenly change depending on the loads connected upstream. A 
non-stiff source supplying a load is shown in Figure 5.3. Here, vs, Rs, and Ls represent the 
Thevenin equivalent looking towards the left into the network. The nonlinear load is a three 
phase EAF [Acha, Semlyen and Rajakovic 1990] looking towards the right into the 
network. In addition, there is a filter capacitor connected at the PCC bus. Since the 
Thevenin equivalent can change any time depending on the load at the left side of PCC, it is 
desirable to assess the set of vs, Rs, and Ls, for which the DTATCOM performance is stable. 

For the electric system shown in Figure 5.3, only the Neimark bifurcation [Nayfeh and 
Balachandran 1995] was located in the parametrical space used in this analysis. The Figure 
5.14 shows the bifurcation set on the Ls - Rs plane for different Thevenin voltages. The 
dotted line represents the Neimark bifurcation set. Inside the contour line the solutions are 
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T-periodic, and the dark zone is the unstable region. The stability region for |Vm|=350 Volts, 
|Vm|=400 Volts, and |Vm|=440 Volts, are shown in Figure 5.14(a), Figure 5.14(b), and 
Figure 5.14(c), respectively. In Figure 5.14(d) a comparison is presented between the 
different stability boundaries; the stability region decreases as the source voltage becomes 
smaller. Also, Figure 5.14(a) to Figure 5.14(c) can be seen as bifurcation diagrams in the 
Thevenin space. These stability regions in the Thevenin space can be adjusted through a 
least-squares exercise to an analytical expression, thus, allowing to have the complete 
information on the three-dimensional space stability of the Thevenin equivalent, without 
having to show a bifurcation diagram in the Ls - Rs plane for each Thevenin voltage vs. 

Selected waveforms for Rs=1 , Ls=2 mH, and |Vm|=440 Volts are shown in Figure 5.15. 
The voltage across the dc capacitor vdc, the terminal voltage vta, and the angle  are 
presented in Figure 5.15(a), Figure 5.15(b), and Figure 5.15(c), respectively. This 
behaviour is in agreement with the solution predicted in Figure 5.14(c), since for this set of 
parameters the bifurcation diagram predicts a quasiperiodic solution. Please notice that for 
this operating point the dc voltage control given by (3.45) maintains the dc voltage 
oscillating around its reference. However, the DSTATCOM is not able to efficiently 
regulate the terminal voltage vt. 

 
Figure 5.14 Stability regions for the DSTATCOM operating in voltage control in the Ls  - Rs plane for different 

Thevenin equivalent voltages; (a) |Vm|=350 Volts, (b) |Vm|=400 Volts, and (c) |Vm|=440 Volts. (d) Comparison of the 
stability boundaries. 
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Figure 5.15 Time domain solutions. (a) vdc, (b) vta, and (c) isa for Rs=1 , Ls=0.2 mH, and |Vm|=440 Volts. 

Figure 5.14(d) shows that the only region for which the DSTATCOM properly operates 
in the Thevenin space for |Vm| is from 350 Volts to 440 Volts; between the inner stability 
boundary of |Vm|=440 Volts and the outer stability boundary of |Vm|=350 Volts. In this 
region, the DSTATCOM can compensate any disturbance from the network. To 
corroborate this observation, various time domain simulations were carried-out for different 
Thevenin voltages. The Rs - Ls set used for these simulations were Rs=1 , and Ls=20 mH. 
Initially, the system including the passive filter capacitor is in periodic steady-state with the 
nominal parameters given in Table 3.2; then, the DSTATCOM is connected at t=0 s. At 
t=0.5 s the Thevenin voltage magnitude is changed from |Vm|=440 Volts to |Vm|=400 Volts; 
for this operating point, the DSTATCOM properly compensates, as we expected from 
Figure 5.14(d). However, when |Vm| is decreased to |Vm|=380 Volts for )7.1,1[t s, the 
electric system becomes unstable and a quasiperiodic solution appears. At t=1.7 s |Vm| is 
increased to |Vm|=500 Volts; for this operating point the DSTATCOM correctly 
compensates. Now, |Vm| is increased to 850 Volts at t=2.2 s; for this operating point a 
Neimark bifurcation appears. All these changes in the Thevenin voltage are shown in the 
waveforms of Figure 5.16. The dc capacitor voltage vdc is shown in Figure 5.16(a) and the 
angle  in Figure 5.16(b). Please notice that the detailed and the simplified models are used 
to conduct the time domain simulation and both models are in excellent agreement. These 
observations agree with the bifurcation diagrams shown in Figure 5.14. To illustrate the 
quasiperiodic solution at |Vm|=850 Volts, the phase portrait in the vdc -  plane is shown in 
Figure 5.17. 
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Figure 5.16 Time domain solutions. (a) vdc, and (b)  

 
Figure 5.17 Phase portrait in the vdc -  plan for |Vm|=850 Volts. 

5.3.2 Stability Regions in the Gains Plane. 
The dynamic behaviour of the DSTATCOM in transient state is strongly related to the 

gain of the PI controllers; therefore, an important task to do deals with the proper gains 
assessment. In addition, the set of gains has an important impact on the DSTATCOM 
steady state performance, since they modify the stability regions. 

In this section the stability region in the Kidc - Kpdc space, and in the Ki  - Kp  space are 
computed, as well as the contour lines for different Floquet multipliers, with the purpose of 
assessing the set of gains for which the fastest speed of response is obtained. 

Figure 5.18(b) in the Kidc - Kpdc space. Also, in these figures, contour lines are presented 
for different Floquet multipliers to show the different speed of response. Figure 5.19(a) 
shows the convergence error for different pairs of gains Ki  - Kp . In Figure 5.19(a), the 
convergence error for Kp =30×10-6, and different Ki  are shown. From this figure, we can 
see that the fastest response is around Ki =10.5×10-3 and Kp =30×10-6. Figure 5.19(b) shows 
the convergence error for Kpdc=74, and different Kidc. From this figure, it is easy to see that 

0 0.5 1 1.5 2 2.5 3

1150

1200

1250

(a) Time (s)

v dc
 (V

ol
ts)

 

 

0 0.5 1 1.5 2 2.5 3

0

0.5

1

(b) Time (s)

 (r
ad

)

Detailed Simplified



111 
 

the fastest response is around Kpdc=74 and Kidc=1320. These results are in agreement with 
the bifurcation analysis illustrated in Figure 5.18(a) and Figure 5.18(b), respectively. 

 

 
Figure 5.18 Stability regions for the DSTATCOM operating in voltage control mode. (a) Ki  - Kp  space. (b) Kidc - Kpdc 

space. 

 
Figure 5.19 Convergence error for different gains of the DSTATCOM controllers. (a) For  controller. (b) For the dc 

capacitor voltage controller. 

As mentioned previously, the gains of the PI controller have a direct impact on the 
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regions for different sets of gains. In particular, the stability region obtained for Kidc=1320, 
Kpdc=74, Ki =8×10-3, and Kp =27×10-6 with |Vm|=440 Volts is compared against that shown 
in Figure 5.14(c). This comparison is shown in Figure 5.20; it can be noticed that the size 
of the stable regions significantly change as we change the set of gains. Figure 5.20 has 
been computed using the parameters given in Table 3.2; only the gains are varied. 

 
Figure 5.20 Comparison between the stability regions for two sets of gains. 

The bifurcation diagrams only show the stability over a parametric region, these do not 
give us information about the initial condition set for which the trajectories go back to their 
original steady-state. With the purpose of showing which set of gains shown in Figure 5.20 
has a larger attractor, a voltage sag of 41% is produced, and it is defined through simulation 
that the stability critical recovery time for the set of nominal gains presented in Table 3.2, 
named set I, is ta=0.0212 s. For the set of gains Kidc=1320, Kpdc=74, Ki =8×10-3, and 
Kp =27×10-6, named set II, tb=0.175 s. The relationship tb / ta is 8.25 between the two 
different sets of gains. For the case of set I, the maximum Floquet multiplier for |Vm|=440 
Volts and |Vm|=260 Volts is 0.88 and 1.43, respectively. For the set II, the maximum 
Floquet multiplier for |Vm|=440 Volts and |Vm|=260 Volts is 0.45 and 1.07, respectively. The 
maximum Floquet multiplier gives information about the limit cycle stability. As 
previously described, values within the unit circle indicate stable solutions, while external 
values correspond to unstable solutions. However, it also gives information about the speed 
of damping attenuation or increase of possible perturbations around the limit cycle. For 
instance, values close to the unit circle have slow dynamics, whereas farther away values 
have faster dynamics. 

For the case of the response obtained for the set I, it is noticed that the Floquet multiplier 
in |Vm|=260 Volts is larger than the corresponding Floquet multiplier for set II. Therefore, 
the trajectories during the voltage sag go away more rapidly from the limit cycle 
corresponding to |Vm|=440 Volts for the set I. Thus, in a lesser time the state vector for the 
set I is outside of the attractor region for the limit cycle corresponding to |Vm|=440 Volts. 

In conclusion, the set II is better than the set I for three main reasons: First, the response 
in nominal operation condition is faster, as shown in Figure 5.18. Second, the size of the 
stable region in the Ls - Rs plane is bigger than the corresponding region for the set I, as 
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shown by Figure 5.20, and third, its dynamics during the voltage sag is slower, and 
therefore, it withstands longer duration disturbances. 

Figure 5.21(a) and 5.18(b), show the waveforms for  and the voltage vdc across the dc 
capacitor, respectively, for the set I of gains. In these figures, the steady state is shown for 
the first 150 ms; in t=150 ms the source voltage drops 41% and it is maintained over 21.2 
ms; it then recovers to its pre-fault steady-state, with the DSTATCOM successfully 
compensating the system. Figure 5.21(c) and 5.18(d) show the waveforms for  and the 
voltage vdc across the capacitor for the set II of gains, respectively. The waveforms are 
obtained as determined for set I, with the only difference being the voltage sag lasting 175 
ms. 

 
Figure 5.21 Comparison between the transient responses for two set of gains. 

5.3.3 dc Capacitor Impact on the Stability Region 
The dc capacitor is a very important element in the design of DSTATCOM, as it stores 

the energy necessary to compensate the load during disturbances. In steady state, the 
DSTATCOM has to provide the active power fluctuation and the reactive power demanded 
by the system, in order to maintain the voltage at the PCC bus. Thus, the dc capacitor size 
is important for the compensator performance; e.g. for large capacitances, the storage 
energy is high; consequently, the DSTATCOM can bear larger and more severe 
disturbances. This observation suggests that the stable region increases as the dc capacitor 
size becomes larger. To corroborate this, a comparison between the stability regions for 
different dc capacitor sizes is presented in Fig. 15. It can be seen that the stable regions on 
the Ls - Rs asymptotically increases as the dc capacitor becomes larger. Please notice that 
even the inner unstable region decreases as the ac capacitor size increases. Figure 5.22 has 
been computed using the parameters given in Table 3.2. From this analysis, the dc capacitor 
size can be selected to suit the load demand. Obviously, the selected dc capacitor size also 
depends on its cost. 
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Figure 5.22 Comparison between the stability regions for different dc capacitors. 

5.3.4 ac Capacitor Filter Impact on the Stability Region 
The main purpose of the ac capacitor filter is to drain the harmonic currents coming 

from the DSTATCOM converters. A small ac capacitor size presents high impedance to the 
harmonic currents; in consequence, the harmonic currents are not efficiently drained. For a 
large ac capacitor size, the harmonic currents are efficiently drained; however, there are 
some problems with a large ac capacitor filter. For instance, the transients in a capacitor 
increase as its size increases. To assess the ac capacitor filter impact on the stability, the 
stable regions in the Thevenin plane have been compared for three different ac capacitors; 
this comparison can be seen in Figure 5.23. From this figure, it easy to notice that the ac 
capacitor has a positive impact on the stability, since the stable region on the Ls - Rs plane 
increases as the ac capacitor becomes larger. However, it should be noticed that not only 
the outer boundary increases; the inner boundary becomes larger as well. Basically, the ac 
capacitor filter size has a positive effect on the stability because the ac capacitor acts as 
reactive power compensator as well, and this action reduces the reactive power injected by 
the DSTATCOM to maintain the reference terminal voltage. Figure 5.23 has been 
computed using the parameters given in Table 3.2. 

 
Figure 5.23 Comparison between the stability regions for different ac capacitors. 
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5.4 DVR Bifurcation Analysis 
In this section, the bifurcation theory is applied to the electric system shown in Figure 

3.34 to assess its stability regions. For this particular case, the control system used for the 
DVR is that shown in Figure 3.37; however, another control system can be also used. In the 
following section, bifurcation diagrams in the Thevenin space are computed to show the set 
of Xs, Rs, and vs for which the DVR contains stable solutions. The stability regions on the 
gains space are calculated through bifurcation theory, and the set of gains for the fastest 
speed response of the DVR is obtained from this analysis. Besides, the gains impact on the 
stability in the Thevenin space is analyzed. Finally, the ac and dc capacitors impact on the 
stability in the Thevenin space is analyzed. 

5.4.1 Stability Regions in the Rs  Xs Plane 
The network of Figure 3.34 has been represented through its Thevenin equivalent. The 

network upstream from the PCC towards the source side may contain different feeders and 
loads. Thus the radial line and the source shown in Figure 3.34 are a Thevenin 
representation of the upstream network, where vs, Rs, and Xs represent the Thevenin 
equivalent looking towards the left into the network. 

Since the Thevenin equivalent can change any time depending on the load at the left side 
of PCC, it is desirable to assess a set of vs, Rs, and Xs, for which the DVR performance is 
stable. 

5.4.1.1 Comparison Between the Fundamental Frequency Model and the 
Detailed Model with Low Frequency Modulation Ratio 

The Figure 5.24 shows the bifurcation set on the Rs  Xs plane computed using the 
fundamental frequency model of the DVR converter. This figure shows the stability regions 
for different Thevenin equivalent voltages, e.g., for |Vs|=0.9 pu in Fig. 6(a), for |Vs|=1 pu in 
Figure 5.24(b), and for |Vs|=1.1 pu in Figure 5.24(c), where |Vs| is the peak value of vs. The 
rest of the parameters are those given in the Table 3.3. The solid line represents the 
Neimark-Sacker [Nayfeh and Balachandran 1995] bifurcation set. This bifurcation 
corresponds to a quasiperiodic solution. Inside the contour line the solutions are T-periodic. 
For the electric system shown in Figure 3.34, only the NS bifurcation was located in the 
parametrical-space using the fundamental frequency model of the DVR converter. Observe 
that the magnitude of the voltage source has a positive impact on the size of stability 
regions in the Rs  Xs plane. 

To corroborate the bifurcation diagrams shown in Figure 5.24, these are computed again 
using now the detailed model, which includes the harmonic distortion produced by the 
converter switching process. The purpose of this simulation experiment is to assess the 
harmonic interaction between the DVR and the electric system. Figure 5.25 shows the 
bifurcation diagram computed using the detailed model of the DVR converter. For this 
analysis, the frequency modulation ratio used is mf=9 (540 Hz), and the highest harmonic 
order included in this analysis is 113 (6780 Hz). Comparing Figure 5.24 and Figure 5.25, 
we can observe that the solutions given by the fundamental frequency model and the 
detailed model are noticeably different. In addition, the detailed model predicts the 
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supercritical symmetry-breaking bifurcation (Sup. SB), and the NS [Nayfeh and 
Balachandran 1995]. In the Sup. SB bifurcation, the stable branch of symmetric periodic 
solutions that exist prior to the bifurcation continues as an unstable branch of symmetric 
periodic solutions after the bifurcation. In addition, two locally stable asymmetric periodic 
solutions coexist with unstable symmetry periodic solutions. The maximum and minimum 
of an asymmetric periodic solution differs. 

 
Figure 5.24 Stability regions for the DVR in the Rs  Xs plane for different Thevenin equivalent voltages using the 

fundamental frequency model. 

 
Figure 5.25 Stability regions for the DVR in the Rs  Xs plane for different Thevenin equivalent voltages using the 

detailed model. 

0.2 0.4 0.6 0.8 1
0.225

0.95

1.69

(a) Rs (pu)
X s (p

u)
 

 

0.2 0.4 0.6 0.8 1
0.225

0.94

1.69

(b) Rs (pu)

X s (p
u)

 

 

0.2 0.4 0.6 0.8 1
0.225

0.94

1.69

(c) Rs (pu)

X s (p
u)

 

 

|Vs|=0.9 pu

|Vs|=1.0 pu

|Vs|=1.1 pu

NS

Stable

Stable

Stable

Unstable

Unstable

Unstable

NS

NS

0.2 0.4 0.6 0.8 1
0.225

0.94

1.69

(a) R
s (pu)

X s (p
u)

0.2 0.4 0.6 0.8 1
0.225

0.94

1.69

(b) R
s (pu)

X s (p
u)

0.2 0.4 0.6 0.8 1
0.225

0.94

1.69

(c) R
s (pu)

X s (p
u)

NS

Stable

Stable

Unstable

Unstable

Unstable
NS

NS

Sup.  SB

Sup. SB

0.9 pusV

1.0 pusV

1.1 pusV



117 
 

Figure 5.26 shows the bifurcation diagram for |Vs|=1 pu, Xs=1.31 pu, with Rs taken as the 
bifurcation parameter. Please notice that close to Rs=0.405 pu a supercritical symmetry-
breaking bifurcation occurs. Also, a NS bifurcation is born at Rs=0.325 pu and disappears at 
Rs=0.38 pu. At Rs=0.45 pu, a NS bifurcation is born in the two locally stable asymmetric 
periodic solutions. 

 
Figure 5.26 Supercritical symmetry-breaking for |Vs|=1 pu and Xs=0.0013 pu. 

Figure 5.27 shows the quasiperiodic(QP) solution in isa-vfa plane, with Rs=0.22 pu, 
Xs=1.13 pu and |Vs|=1 pu. This operating point corresponds to a quasiperiodic solution. This 
solution agrees with the bifurcation analyses which predict quasiperiodic solutions for this 
operating point. 

 
Figure 5.27 Quasiperiodic solution for |Vs|=1 pu, Rs=0.22 pu, and Xs=1.13 pu. 

5.4.1.2 Comparison Between the Fundamental Frequency Model and the 
Detailed Model with Higher Frequency Modulation Ratio 

Figure 5.28 illustrates the bifurcation set in the Rs  Xs plane computed using the 
detailed model of the DVR converter. This figure shows the stability regions for different 
Thevenin equivalent voltages, e.g. |Vs|=0.9 pu in Figure 5.28(a), |Vs|=1 pu in Figure 
5.28(b), and |Vs|=1.1 pu in Figure 5.28(c). For this analysis, the frequency modulation ratio 
is mf = 27 (1620 Hz), and the highest harmonic order included in the analysis is 113. Please 
notice that the bifurcation diagrams in Figure 5.28 are identical to those given in Figure 
5.24. 
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Figure 5.28 Stability regions for the DVR in the Rs  Xs plane for different Thevenin equivalent voltages using the 

detailed model. 

From the conducted experiment, it can be observed that the harmonic distortion has an 
important effect on the stability of the DVR, thus the harmonic distortion cannot be 
neglected. Under these conditions, the fundamental frequency model would give erroneous 
results because the harmonic interaction between the DVR and the electric system is 
neglected; however, for cases where the switching frequency significantly exceeds the 
network transient frequencies, the fundamental frequency model would give reliable 
results. 

Hereafter, the frequency modulation ratio used will be mf =27, and the highest harmonic 
order included in this analysis will be 113. 

5.4.2 Stability Regions in the Gains Plane. 
The stability region in the gains space is useful for some practical applications: first, it 

determines the whole set of gains for which the system stability is preserved, and second, 
because it make easier to know the speed of response directly from the Floquet multipliers. 

In this section, the stability region in the K p K i space, and in the Kvp Kvi space is 
computed, as well as the contour lines for different Floquet multipliers. 

Figure 5.29 shows the stability regions in the K p  K i space. In this figure, contour 
lines are presented for different Floquet multipliers to show the different speed of response. 
From this figure it can be noticed that there is large area in the plane K p  K i for which the 
speed of response is very similar, so we can select any set of gains K p  K i in this area. 
However, for practical applications, a large set of gains is not a good choice. A smaller set 
of gains has an easier implementation, e.g. K p=0.6 and K i=180. 
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Figure 5.29 Stability regions for the DVR in the K p  K i space. 

Now, the stability region in the Kvp  Kvi plane is shown in Figure 5.30 for the set of 
gains K p=0.6 and K i=180 chosen from Figure 5.29. The set of gains for the load voltage 
controller is selected from the Figure 5.30 as Kvp=0.2, and Kvi=100. Thus, the whole set of 
gains are now selected as K p=0.6, K i=180, Kvp=0.2, and Kvi=100. 

 
Figure 5.30 Stability regions for the DVR in the Kvp  Kvi space. 

To show the impact of the selected set of gains on the DVR stability, the stability 
regions in the Thevenin equivalent space are shown in Figure 5.31 for |Vs|=0.9 pu in Figure 
5.31(a), |Vs|=1 pu in Figure 5.31(b), and |Vs|=1.1 pu in Figure 5.31(c), respectively. Notice 
that the stability boundaries have been increased, as compared with those shown in Figure 
5.28. The set of gains I are given in Table 3.3, and the set of gains II are K p=0.6, K i=180, 
Kvp=0.2, and Kvi=100. 
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Figure 5.31 Stability regions for the DVR in the Rs  Xs plane for different Thevenin equivalent voltages and different 

set of gains. 

The selected set of gains obtained with the bifurcation analysis improves the stability 
region and the speed of response of the DVR. 

5.4.3 ac Capacitor Impact on the Stability 
The main purpose of the ac capacitor filter is to reduce the harmonic content of the 

injected voltage by the converter. For a low value of Xf, the capacitor current is high, while 
this current reduces with the increase in the value of Xf. In effect, a reduction of Xf behaves 
like a short circuit, and the DVR cannot properly compensate, while a large value of Xf 
makes the filtering inadequate [Ghosh and Jindal 2004]. The value of the ac capacitor filter 
impacts the filtering performance; besides, this impacts the stability of the DVR. To assess 
the ac capacitor filter impact on the stability, the stable regions in the Thevenin plane have 
been compared for three different ac capacitors; this comparison can be seen in Figure 5.32. 
From this figure, it is easy to notice that the ac capacitor has a negative impact on the 
stability, since the stable region on the Rs - Xs plane reduces as the ac capacitor capacity 
becomes larger. 

From the results shown in Figure 5.32, it is possible to observe that for a good selection 
of Cf, two important design specifications have to be taken into account: 1) the THD in load 
voltage should be within a limit of 5% [Mohan, et al. 1995], and 2) that the stability region 
should be the maximum possible, since it means that inside of this region the DVR can 
properly compensate the load voltage. Therefore, we can deduce that the optimum value of 
Cf is that for which the maximum THD inside of the stable region is 5%. It is important to 
notice for this particular case, that if the maximum THD is reduced by increasing Cf, then 
the stable region on the Rs - Xs becomes smaller, which is undesirable for practical 
purposes. 
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Figure 5.33 shows the stability region on the Rs  Xs plane for Xf =21 pu. In addition, the 
THD in the load voltage is plotted in this figure as contour lines and it is observed that the 
THD is within the limits inside of the stable region in the Rs  Xs plane. Thus, from the 
simulation experiment the ac capacitor is selected as Xf =21 pu. 
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Figure 5.32 Stability regions for the DVR in the Rs  Xs plane for different Xf using the detailed model. 

 

 
Figure 5.33 Stability regions for the DVR in the Rs  Xs plane for |Vs|=1 pu, and Xf = 21. The contour lines (gray) show 

the THD (%) in the load voltage. 

5.4.4 dc Capacitor Impact on the Stability 
The dc capacitor is a very important element in the design of the DVR, as it stores the 

necessary energy to compensate the load during disturbances. In steady state, the DVR has 
to provide the active power fluctuation and the reactive power demanded by the system, in 
order to maintain the voltage at the PCC bus. Thus, the dc capacitor size is important for 
the compensator performance; e.g. for large capacitances, the stored energy is high; 
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Figure 5.35 Time domain solution. (a) vdc, and (b) |Vl| 

Figure 5.36 shows how the quasiperiodic solution in the isa-vfa plane becomes chaotic 
when |Vs| is changed from 0.82 pu to 0.81 pu. In Figure 5.36(a) the solution in the isa-vfa for 
|Vs|=0.82 pu; this form describes a quasiperiodic solution. On the other hand, in Figure 
5.36(b) the solution in the isa-vfa plane for |Vs|=0.81 pu is shown; this is a chaotic solution. 
The solutions in Figure 5.36 are illustrated by their Poincaré maps. 

 
Figure 5.36 Phase portrait for different operating points. (a) |Vs|=0.82 pu. (b) |Vs|=0.81 pu. 

5.4.5 Feasible Solutions of the DVR 
The real and positive solutions of (3.61) are the feasible solutions of the DVR. In 

particular, for the test systems shown in Figure 3.34, the feasible solution in the Rs  Xs 
plane is limited by Rs. For example, for |Vs|=1 pu, |Vl|=1 pu, Zl=2+j1.8 pu, the feasible 
solution in the Rs  Xs plane is limited by 0 sX , and 0 0.69 pusR . Most of these 
solutions are impractical, since large values of |Vf| are necessary for large values of Xs. In 
addition, very large values of Xs are not present in a real feeder or transmission line. 
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In a more realistic case, the power converter capability imposes additional restrictions to 
the feasible solutions of the DVR. Such restriction is basically associated to the injected 
saturated voltage when the converter is operating in the nonlinear region, e.g ma>1. In the 
nonlinear region, the harmonic distortion increases in the voltages injected by the converter, 
which is undesirable. In this investigation, the converter has been only operated in the 
linear region. 

Figure 5.37 shows a comparison between the feasible solution and the stability region in 
the Rs  Xs plane for |Vs|=0.9 pu, |Vs|=1 pu, and |Vs|=1.1 pu in Figure 5.37(a), Figure 
5.37(b), and Figure 5.37(c), respectively. In these Figures, the amplitude modulation index 
has been also included. An amplitude modulation index of 0.9 has been imposed to the 
feasible solution. 

 
Figure 5.37 Stability and feasible regions for the DVR in the Rs  Xs plane for different Thevenin equivalent voltages 

and different amplitude modulation indexes. 

It can be noticed that the feasible solution, even for an amplitude modulation index of 
0.9 is larger than the stability region. However, it has been shown in Figure 5.34 and Figure 
5.33 that the stability boundary can be increased if the dc capacitor size is increased and/or 
the ac filter capacitor size is decreased, respectively. To increase the dc capacitor size 
increases its price, and to decrease the ac filter capacitor size increases the THD in the load 
voltage. For these reasons they could not be practical options to increase the stability 
region. 

A comparison between the stability regions in the Rs  Xs plane for different options of 
ac and dc capacitor sizes are shown in Figure 5.38 in order to illustrate some possible 
options to increase the stable boundary of the DVR. The shadow region shows the feasible 
solution in the Rs  Xs plane for different amplitude modulation indexes. In addition, the 
stability boundary for different sets of dc and ac capacitors is presented. The contour line A 
will be taken as the base case, and shows the stability boundary for Xf =21 pu and Xdc =9.2 
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pu; this contour line has been also shown in Figure 5.37(b). The contour line B shows the 
stability boundary for Xf =21 pu and Xdc =4.6 pu; it can be observed that the increment of 
the dc capacitor increases the size of its associated stability boundary. This could be a good 
option in order to increase the stability boundary, if the price is not a primary concern. The 
contour line C shows the stability boundary for Xf =42 pu and Xdc =9.2 pu; it can be noticed 
that the stability boundary is also increased as compared with the base case when the ac 
capacitor size is decreased. It is not a good option to increase the stability boundary, since 
higher harmonic distortion coming from the converter of the DVR is introduced to the 
power circuit, unless that the frequency modulation index is increased or a multilevel 
inverter topology is used [Wang, et al. 2006] [Loh, et al. 2004]. Finally, the contour line D 
shows the stability boundary for Xf =42 pu and Xdc =4.6 pu; it can be noticed that the 
stability boundary is also increased as compared with the line C when the ac capacitor size 
is decreased. 

 
Figure 5.38 Stability and feasible regions for the DVR in the Rs  Xs plane for different ac and dc capacitor sizes. 

5.5 Conclusion 
Bifurcation theory has been applied to compute the nonlinear oscillations of the 

DSTATCOM operating in voltage and current control mode, respectively. It allowed 
delimiting the stable region in which the DSTATCOM is able to keep constant the voltage 
at the PCC bus. This analysis has been done using the proposed simplified DSTATCOM 
model based on a state space approach. 

Bifurcation diagrams in the Thevenin space have been computed to show the impact on 
the stability due to voltage variations, as well as Thevenin impedance variations. The 
variations in the voltage source are associated to voltage sags and voltage swells, as well as 
disturbances in the network. The connection and disconnection of loads change the 
Thevenin impedance; it was previously mentioned that the source side impedance is, at 
best, the Thevenin impedance looking towards the source from the bus controlled. 

In addition, the bifurcation diagrams in the gains space have been presented. From this 
analysis, the set of gains for which the DSTATCOM operates in a stable region can be 
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obtained. The assessed set of gains for the fastest response of the DSTATCOM has been 
obtained. 

The ac capacitor and dc capacitor impact on the stability has been assessed through 
bifurcation analysis. 

A stability analysis of the DVR based on bifurcation theory using a detailed model of the 
DVR has been presented. The detailed model used in this analysis includes the switching 
process in the DVR converter. The bifurcation analysis has been performed using 
continuation techniques. It has been shown that by moving the system parameters, the 
system exhibits loss of stability; a Neimark-Sacker bifurcation appears when the 
fundamental frequency model is used. On the other hand, a Neimark-Sacker bifurcation and 
supercritical breaking symmetry bifurcation appear when the detailed model of the DVR is 
used. 

It has been shown, through bifurcation analysis, that the widely used fundamental 
frequency model yields erroneous results if the switching frequency is close to the network 
transient frequency; the results given by the fundamental frequency model would be 
reliable if the switching frequency is far from the network transient frequencies. 

Bifurcation diagrams in the Rs  Xs plane for different Thevenin voltages have been 
presented. In addition, the bifurcation diagrams in the K p K i space and in the Kvi Kvp 
space have been presented. From these bifurcations diagrams in the gain space, the set of 
gains have been obtained. 

The effect on the DVR performance and, the stability of the dc storage capacitor, as well 
as the ac filter capacitor has been shown. For the case of the dc storage capacitor, it has 
been demonstrated that the capacitor size has a positive effect on the DVR stability. On the 
other hand, the ac filter capacitor size has an adverse impact on the DVR stability. In 
addition, the ac capacitor filter and the dc storage capacitor have been designed using the 
bifurcation theory. 

It has been demonstrated that bifurcation theory can be successfully applied to assess 
nonlinear oscillations in distribution systems containing DVR. An assessment of qualitative 
effects of electrical parameters on the stability and on the speed of response of the DVR has 
been detailed. This analysis allows an effective selection of the DVR parameters to ensure 
the rated operation condition of the DVR far away from a possible bifurcation. In addition, 
the bifurcation analysis allowed increasing the stability boundary up to the boundary of 
feasible solutions. 
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6 Conclusion 
 

 

6.1 General Conclusions 
Upon the completion of the doctoral research reported throughout the previous chapters 

of this thesis, the following main conclusions are drawn: 

Two efficient Voltage Source Converter models based on Fourier series approach and 
hyperbolic tangent have been proposed for the six-pulse power converter. The proposed 
models have been used for the computation of the transient and steady state solution of 
FACTS devices connected to a power network. An experimental validation of the proposed 
VSC based on the Fourier approach and the hyperbolic tangent model has been provided in 
order to demonstrate the potential and accuracy of these models. 

The modular SPWM converter blocks have been successfully applied to shunt, series 
and hybrid FACTS devices. These devices act as distorting sources which interact with the 
power network. 

The response given by the proposed methods has been successfully validated against the 
solution obtained with the widely accepted digital simulators Simulink and 
PSCAD/EMTDC, respectively, in all the cases the obtained results were in excellent 
agreement. In addition, it has been shown through simulations that the proposed models 
allow significant larger integration steps, as compared with the ideal switch model 
approach, e.g. for the conducted studies, more than 800 times the integration step needed by 
Simulink and PSCAD/EMTDC when the Fourier approach was used, and at least 300 times 
when the hyperbolic tangent method was applied. 

These VSCs models have a remarkable advantage over the ideal switch model, since 
allow to compute the fast periodic steady state solution through a Newton method including 
the switching process , and as a consequence it is possible to assess the stability of the limit 
cycle and the impact of the switching on the stability. 

The proposed VSCs models can be used in any power electronic device based on SPWM 
six pulse converters, or even for multilevel converters based on arrangement of six-pulse 
converters. 

A stability analysis of the DSTATCOM in current control mode, the DSTATCOM in 
voltage control mode, and the DVR based on bifurcation theory has been presented. A state 
space approach has been developed to represent in the time domain the dynamics of each 
device connected to the system. A mathematical model based on the energy preservation 
principle has been developed for the DSTATCOM operating in current control mode, and 
other for the DSTATCOM in voltage control mode. In addition, a general simplified model 
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based the smooth functions have been proposed. For the case of the DVR, the VSC models 
based on the hyperbolic tangent approach has been used. 

Bifurcation diagrams in the Ls  Rs plane for different Thevenin voltages have been 
presented. In addition, the bifurcation diagrams in the Kidc  Kpdc space and in the Ki   Kp  
space have been presented. From these bifurcations diagrams in the gain space, the set of 
gains for the fastest response of the DSTATCOM has been obtained. 

Time domain simulations have been only presented to corroborate the solution obtained 
from the bifurcation diagrams. From this comparison we have shown that the proposed 
simplified models retain the nonlinearities, when the switching frequency is far away from 
the natural frequency of the power system. 

The effects on the custom power devices performance and on their stability of the dc 
storage capacitor, as well as the ac filter capacitor have been presented. It has been shown 
that the dc capacitor size has a positive effect on the stability. On the other hand, the ac 
filter capacitor size has an adverse impact on the stability of the DSTATCOM operating in 
current control mode and on the DVR. The ac filter capacitor size has a positive impact on 
stability of the DSTATCOM operating in voltage control mode. 

It has been demonstrated that bifurcation theory can be successfully applied to assess 
nonlinear oscillations in distribution systems containing custom power devices. An 
assessment of qualitative effects of electrical parameters on the stability and on the speed of 
response of the custom power devices has been achieved. This analysis allows an effective 
selection of the parameters to ensure the rated operation condition far away from a possible 
bifurcation. 

Newton methods based on a discrete exponential expansion (DEE) approach and 
enhanced numerical differentiation (END) process have been proposed for the fast periodic 
steady state solution in the time domain of nonlinear electric networks using a Poincaré 
map and an extrapolation to the limit cycle process. 

The response given by the proposed methodologies have been successfully compared 
against the periodic steady state solution obtained with the widely accepted digital 
simulator Power Blockset of SIMULINK for electromagnetic transient studies. In all cases 
the obtained results have been in close agreement. 

6.2 Recommendations for Further Research Developments 
Taking as a reference the research work reported in this thesis, the author proposes to 

proceed in the following directions: 

1) To apply the proposed voltage source converter models to other FACTS devices. For 
example an Interline Power Flow Control (IPFC) and the HVDC light. 

 
2) To apply the proposed models of the power converter based on the Fourier method 

and the hyperbolic tangent approach to power electronic devices based on multi-
level converters. 
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3) To implement the DEE and the END methods using parallel processing techniques, 
object oriented programming techniques and sparsity techniques. 

 
4) Harmonic state estimation and transient state estimation in the time domain using the 

DEE and the END methods 
 

5) To extend the DEE and END method to compute the periodic steady state solution of 
large-scale power electric systems decoupling the ODE set in linear and nonlinear 
sets. 

 
6) Harmonic power-flow of power systems in the time domain including flexible ac 

transmission systems. 
 

7) To carry-out the bifurcation analysis of power networks including FACTS devices 
using the proposed VSCs models to assess the adverse impact of the harmonic 
distortion introduced by power converters in the power quality and stability. 

 
8) To incorporate power flow restrictions to Newton Methods (ND, END, DA, and 

DEE) to develop a powerful method in the time domain for the computation of the 
periodic steady state solution of nonlinear power systems, including FACTS and/or 
Custom Power devices. 

 
9) To carry-out stability analysis of power networks with FACTS and Custom power 

devices including the harmonic distortion injected by the power converters. 
 

10) To carry-out stability analysis of Custom Power Parks with the bifurcation theory 
and continuation methods. 

 
11) To carry-out stability analysis of wind generators and wind farms including FACTS 

and Custom Power devices. 
 

12) To assess the impact of distributed generation on power system stability studies 
through bifurcation theory. 
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Appendix A 

ORDINARY DIFFERENTIAL EQUATION (ODE) SET FOR ELECTRIC NETWORK INCLUDING FACTS 

 

Consider the test system shown in Figure A.1 

 
Figure A.1 Electric Network Including FACTS 

The ODE set for the circuit shown in the Figure A.1 is given for the equations (A.1) to 
(A.6). The rest of the ODEs are given by the signal filters and control schemes. 
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Ssi are the switching functions for the series converter, and Sshi are the switching 
functions for the shunt converter. These switching functions can be computed using the 
proposed approximations presented in Section 3.4. 

For the case of the UPFC, vseries and vshunt are computed using (A.7) and (A.8), 
respectively. For the case of the SSSC, vseries is computed using (A.7), the shunt bypass is 
opened and the shunt converter is disconnected from the common dc link. Finally, for the 
case of the STATCOM, vshunt is computed with (A.8), the series bypass is opened, and the 
series converter is disconnected from the dc common link. 

 

STATCOM Control 
A two-stage control loop scheme is employed for the shunt converter of the STATCOM. 

This scheme has two objectives: to control the voltage across the dc capacitor, and to 
regulate the ac voltage of the power system bus where the shunt converter is connected. 
The control scheme is give in the Figure A.2. 
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Figure A.2 STATCOM control configuration 

For the study case carried-out in Section 3.5.1, the selected gains with real quantities are  

K shp=0.0005, K shi=0.05, Kmshp=0.0005, and Kmshi=1.25. 

 

UPFC Control 
The controller given for the STATCOM is used for the shunt side of the UPFC. The 

controller proposed in [Fujita, Watanabe and Akagi 2001] is adopted for the series side of 
the UPFC and is described below. 

The reference voltage vector for the series converter is calculated as [Fujita, Watanabe 
and Akagi 2001], 

/
/

ref ref
Sr pSq iSqsd sd sd

ref ref
pSp iSp Srsq sq dq

K K K sv i i
K K s Kv i i

  (A.9) 

where ref
sdi  and ref

sqi  are the active and reactive reference currents, ref
sdv  and ref

sqv  are reference 
voltages of the series converter, respectively. The active and reactive reference currents are 
obtained from the active and reactive power flows and by measuring the voltage at the 
receiving end. 

The magnitude of the voltage at node 1, |vPt|, is computed using (A.10) and (A.11). 

1 1 2 1 1atan2 0 ,
3 3 33 3

f f
Pt Ptv v   (A.10) 

2 2 2cos cos cos
3 3 3

f
Pt Ptv v   (A.11) 

where the superscript f represents the fundamental component. 
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The active and reactive reference currents are computed using (A.12) and (A.13), 
respectively. 

1.5
refref

sd
R

P
i

v
  (A.12) 

1.5
refref

sq
R

Q
i

v
  (A.13) 

Here, |  | represents the peak magnitude. 

The active and reactive actual currents are computed using (A.14) 

2 2cos cos cos
3 32
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R R R
sd

S
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R R R

t v t v t v
i

i
i

t v t v t v
 (A.14) 

where Rv  is the phase angle of vR. 

Finally, the amplitude modulation index and the phase angle in the series side of the 
UPFC are given by (A.15) and (A.16), respectively. 

2 2
2 ref ref

sd sq
series

dc

v v
m

v
  (A.15) 

atan2 ,ref ref
series sq sdv v   (A.16) 

The gain set for the study case presented in Section 3.5.3 is: 

Ksr=1, KpSq=1, KiSq=250, KpSd =1, KiSd =250, K shp=0.0008, K shi=0.1, Kmshp=0.001, and 
Kmshi=0.8. 

 

SSSC Control 
The SSSC includes the control system shown in Figure A.3. 
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Figure A.3 SSSC control scheme 

For the study case carried-out in Section 3.5.2, the selected gains with real quantities are  

K sp=0.006, K si=1.25, Kmsp=0.0001, and Kmsi=0.008. 

 

 

Remember that for the SPWM technique in the linear range 0 1m , the fundamental 
voltage (v f ) at the converter output is 

cos
2

f dcvv m t   (A.17) 

In particular, the fundamental voltage at the shunt converter output and the series 
converter output are given by (A.18) and (A.19), respectively. 
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f dc
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Appendix B 

COMPUTATION OF THE TRANSITION MATRIX IN THE AT METHOD USING THE FOUR-ORDER RUNGE-
KUTTA INTEGRATION METHOD 

 

The method to compute the transition matrix in the AT method based on the RK4 
method is described next. 

The Equation (4.11) can be expressed in terms of the RK4 method as follows: 
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