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Abstract 
This research work focuses on the way of extending a conventional Newton-based Optimal 
Power Flow (OPF) approach to compute optimum steady state operating points under two 
important aspects in power systems operation. On the one hand, the conventional OPF 
approach is modified to consider a proposed steady state detailed model of a Voltage 
Source Converter-based High Voltage Direct Current (VSC-HVDC) system. The  
VSC-HVDC’s ability to provide independent control of the converters AC voltage 
magnitudes and phase angles relative to the system voltage, which allows the use of 
separate active and reactive power control loops for system regulation, is well represented 
by the proposed model. This development allows computing optimum steady state 
equilibrium points of power systems considering the operation of VSC-HVDC devices.  
On the other hand, the conventional OPF approach is modified to derive two new global 
Transient Stability Constrained-Optimal Power Flow (TSC-OPF) approaches. In both 
approaches, the SIngle Machine Equivalent (SIME) method is used to represent the multi-
machine system dynamics by a corresponding One Machine Infinite Bus (OMIB) 
equivalent system. The multi-machine system transient stability is controlled by ensuring 
the transient stability of the corresponding OMIB equivalent system. Each one of the 
proposed TSC-OPF approaches formulates a corresponding new stability constraint in 
terms of the angular deviation of the OMIB equivalent rotor angle trajectory, at one specific 
integration time step of the interval to be considered into the TSC-OPF analysis. This 
formulation yields the following two main advantages: a substantial reduction of problem 
size and complexity related to the TSC-OPF global approaches and a non-heuristic 
representation of the system transient stability limits.  
Clearly, these advantages are the effect of using SIME salient parameters into the proposed 
TSC-OPF formulation, and allow the efficient and accurate computation of steady state 
operating points that ensure the system transient stability under credible contingency 
scenarios. 

The effectiveness and main characteristics of the two main aspects developed in this 
research work are illustrated by means of numerical examples. 
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Chapter 1  

Introduction 

 

1.1. Motivation and Justification 
Engineers in the power industry are facing the complex problem of operating large and 
interconnected power systems. This task becomes more complicated due to the continuous 
demand increasing under a stressed and competitive environment, where economical along 
with security aspects must be integrated for power systems accurate operation. Trying of 
operating a power system in the most accurate way, engineers in control centers routinely 
execute three main computations; power flow, fault and stability analysis [Stott, 1979]. 
Conventional power flow analysis yields steady state operating points [Acha et al., 2004], 
from which contingency and stability analysis are carried out to assess the system static and 
dynamic security [Vittal, 2000]. However, conventional power flow analysis can not handle 
with the economic operation of power system, as required by the aforementioned 
competitive environment. In addition, contingency and stability analysis determine if the 
system is secure for a given contingency scenario, but do not yield recommended control 
actions to guarantee the system security. 

The aforementioned encourage the development of more sophisticated power 
system operation tools able to be used in either control centers or energy management 
systems. By way of example, the concept of optimal power flow has received great 
attention since its introduction to power systems analysis. At the beginning, this analysis 
represented a rout toward the power system economic operation, since its formulation is 
given as an optimization problem with an economical objective function to be minimized 
under a large variety of constraints [Huneault and Galiana, 2009; Gomez-Exposito et al., 
2009]. These constraints can accurately represent steady state physical and operating limits, 
in other words, power systems static security limits [Gomez-Exposito et al., 2009]. 
Therefore, the solution of an optimal power flow model yields steady state operating points 
that readily can satisfy static security constraints. This means that the optimal power flow 
formulation is flexible so to as consider not only economical aspects of power systems, but 
also security requirements [Momoh et al., 1997]. As consequence, in order to accurately 
assess optimal operating points that satisfy static security limits, the optimal power flow 
analysis must consider into the optimization problem the steady state mathematical models 
of basics elements of a power system.  

Nowadays, flexible AC transmission systems (FACTS) have been worldwide 
installed with the concern of making more controllable the power networks [Acha et al., 
2004]. In this context, high voltage DC systems are installed with the aims of transferring 
scheduled amounts of electric energy between power systems. The new generation of 
power electronics devices has given rise to innovative technologies, such as voltage source 
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converters (VSC)-based high voltage DC systems. In order to assess optimum steady state 
operating points that satisfies static security constraints whilst exploiting the capabilities of 
the voltage source converters (VSC)-based high voltage DC systems [Hingorani and 
Gyugyi, 1999], the conventional optimal power flow analysis must be upgraded to consider 
models of this kind of devices. 

However, static aspects are not today the only challenges to optimal power flow 
[Momoh et al., 1997], since the stressed and competitive environment of power systems 
imposes the needed of fulfilling dynamic security aspects along with static security and 
economical issues. A main component that affects the dynamic security is the system 
transient stability [Kundur et al., 2004], this dynamic phenomenon is therefore of great 
interest in electric power systems operation and planning. Attempts of including stability 
constraints along with the economical operation of power systems have been developed in 
two main different ways; by means of global and sequential approaches [Ruiz-Vega and 
Pavella, 2003].  Global approaches yield optimal solutions that ensure system transient 
stability but suffer of the course of dimensionality, huge computational burden and 
robustness. Sequential approaches are robust and very efficient, but yield sub-optimal 
solutions that guarantee system transient stability. In other words, global approach could 
assess more economical solutions than sequential approaches, but might not be applied for 
practical operation purposes. This fact suggests that from a practical viewpoint, the 
compromise between economy and transient stability security requirements has not been 
enough fulfilled through either global or sequential approaches. 

1.2. Current state of art 
Complexity of planning and operating modern power systems is continually increasing 
because of larger power transfers over longer distances, opening of the market for delivery 
of cheaper energy to customers, greater interdependence among interconnected systems, 
more difficult coordination and complex interaction among various system controllers and 
less power reserves. These requirements must be addressed with the objective of planning 
and operating the modern electric power systems in a reliable, secure and economical way. 
To accomplish this objective, it is necessary to integrate the aforementioned requirements 
into different power system analysis tools or Energy Management Systems (EMS) 
functions, which allow assessing high quality control strategies that reduce the complexity 
of the tasks achieved by control center operators and planners [Carpentier and Bornard, 
1991]. In this context, this research work aims at improving one of the main functions of 
the EMS; the Optimal Power Flow Analysis (OPF).  

The idea of optimal power operation was first introduced by Dommel and Tinney in 
the early 1960's [Huneault and Galiana, 2009]. OPF is a generic term that describes a broad 
class of optimization problems in which a specific objective function must be optimized 
while satisfying operational and physical constraints of the electric network [Momoh et al., 
1999a]. It must be pointed out that the objective function can be formulated in different 
ways to reflect the optimization of a specific aspect of the power system operation. In 
conventional OPF analysis the minimization of the operating cost of thermal resources is 
usually considered. The mathematical OPF formulation constitutes a static nonlinear 
optimization problem. From the power systems planning viewpoint the solution of this 
model yields the optimal settings for electric variables in a power network, for given values 
of loads and system parameters [Huneault and Galiana, 2009]. From the power system 
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operation and control viewpoints, an OPF solution gives an answer to adjust available 
controls should be adjusted in order to meet demand in the most economically manner 
while keeping within bounds all the constraints imposed on the system. 

A great deal of optimization techniques have been employed to solve OPF 
problems, such as linear, nonlinear, quadratic, mixed integer programming, interior-point 
methods and Newton-based methods [Huneault and Galiana, 2009; Momoh et al., 1999a; 
Momoh et al., 1999b]. The OPF Newton algorithm has been used in several practical 
applications [Sun et al., 1984; Maria and Findlay, 1987; Sun et al., 1988; Hong, 1992] and 
in available commercial software [Gomez-Exposito et al., 2009]. For example, Newton 
method was the most popular for EMS applications [Alsac et al., 1990] and a commercial 
software product [PTI Version 30.2.1], with a global users base, has selected this method as 
the optimization vehicle for carrying out optimization studies of electrical power systems. 

In recent years, OPF studies are being used more and more by engineers in the 
electric power industry for assessing steady state and recommending control actions for  
off-line and on-line studies, but further applications ranging from modern system planning 
studies to operational control are of great interest and must be investigated [Momoh et al., 
1997]. In this work a Newton-based conventional OPF approach is considered to take into 
account the development of two important applications for modern power systems planning 
and operation, as described below. 

1.2.1. Steady State Operation of VSC-HVDC systems 
The need for more efficient power systems management, and the fast development of 
power electronics equipments based on new and powerful semiconductor devices, have 
given rise to innovative technologies, such as Voltage Source Converters (VSC)-based 
FACTS controllers [Hingorani and Gyugyi, 1999].  

Among the VSC-based controllers commissioned and installed in several 
transmission systems around the world, the VSC-HVDC system, also called HVDC-Light  
or HVDC-Plus , is a recent technology which has demonstrated to be successful in 
enhancing the power system controllability [Asplund, 2001]. In contrast to traditional 
HVDC transmission, which uses phase commutated converters; HVDC links using voltage 
source converters can not only control active power flow but also provide an independent 
voltage regulation to the connected AC system because the surplus or deficit in reactive 
power can be accommodated by the VSC. The first project at Näs Head on the Southern tip 
of Gotland started operation in November 1999. This has been followed by several VSC-
HVDC projects around the world. Examples of such installations can be found in Sweden, 
Australia, USA, México and Norway [Asplund, 2001]. 

In contrast to the healthy number of publications addressing key aspects on the 
performance and characteristics of the VSC-HVDC technology [Bahrman et al., 2003; 
ABB, 2005], very few papers have actually focused on mathematical modeling suitable for 
large scale power systems steady-state analysis; with references [Angeles-Camacho et al., 
2003; Zhang, 2005] being a fair representation of the latter category. In these papers, the 
modeling approach is based on an ideal variable AC voltage source, where the voltage 
source magnitude and angle are iteratively adjusted to achieve control targets. Simplicity is 
a key asset of this modeling approach but a major drawback is the fact that there is no way 
of assessing whether or not the DC side voltages, as well as the amplitude modulation 
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index of the Pulse Width Modulation (PWM) scheme, are within limits. This is of 
fundamental importance because such parameters impinge directly on the AC voltage 
magnitudes required to achieve the specified control targets. To circumvent this modeling 
shortcoming, in this research work the VSC-HVDC model has been developed with explicit 
representation of the converter AC and DC voltages as a function of the PWM modulation 
index.  

It should also be brought to attention that the work in references [Angeles-Camacho 
et al., 2003; Zhang, 2005] is limited to modeling and implementation of VSC-HVDC for 
power flow analysis. A very useful literature review of OPF algorithms incorporating 
FACTS controllers is given in [Abdel-Moamen and N.P. Padhy, 2003]. However, suitable 
VSC-HVDC models for the more challenging problem of optimal power flow (OPF) 
studies, using Newton approach, have not yet been reported anywhere. Therefore the 
developed VSC-HVDC model is implemented into an existing OPF program to carry out 
power system optimum steady state operating points whilst exploiting the controller 
capabilities. 

1.2.2. Dynamic security of power systems 
Modern power systems are large and complex systems whose operation should be reliable, 
secure, and economical [Stott et al., 1987]. On one hand, the reliability and security are the 
first important things that need to be considered. Security refers to the ability of the power 
system to withstand sudden disturbances with minimum loss of the quality of service 
[Kundur et al., 2004]. For proper planning and operation, this means that, after a 
disturbance occurs, the system survives the ensuing transient and moves into an acceptable 
equilibrium point where all components are operating within established limits. Analyses 
required to judge if the system is secure are based on both, Dynamic and Static Security 
Assessment studies (DSA and SSA, respectively) [Vittal, 2000].  

DSA covers all aspects of power system stability, and transient stability is one of its 
essential components [Vittal, 2000]. If DSA determines that transient instability could take 
place when the power system is subjected to credible contingency scenario, control actions 
need to be designed and applied preventively in order to avoid a partial or complete service 
interruption. Among different preventive control measures, generation rescheduling has 
been considered to be one effective control scheme to bring a vulnerable system into a 
secure state under transient stability constraints [Kuo and Bose, 1995]. Though this idea is 
simple and intuitive, traditionally the generation dispatch that steers the system to a secure 
equilibrium point is sought in a heuristic way, which may produce high operating costs and 
possible discrimination among market players [Gan et al., 2000]. 

The aforementioned heuristic search of a secure steady state operating point thus 
affects the economical factors, which on the other hand are very important to the optimal 
operation of power systems. The economic operation can be readily achieved by operating 
the power system according to the optimal equilibrium point assessed by conventional OPF 
study, however this analysis does not consider security constraints and therefore yields an 
equilibrium point that might not guarantee the system transient stability. In this context, 
security and economical aspects of power system operation should not be treated as 
separated problems [Stott, 1979]. Bearing this in mind, and trying to reconcile the conflict 
between economics and dynamic security requirements in power system operation, it has 
been proposed to formulate the transient stability and the optimal generation dispatch 



 

5 
 

problems as an integrated mathematical optimization problem, which is referred to as 
transient stability-constrained optimal power flow (TSC-OPF) [Momoh et al., 1997].  

In addition to a given objective function, the general TSC-OPF optimization model 
is composed by three main set of constraints: Steady state, dynamic state and transient 
stability constraints. The steady state constraints are just those considered in a conventional 
OPF model, so they represent the physical laws and operating limits that govern the system 
steady state operation. The dynamic-state equality constraints are formulated by a set of 
Differential-Algebraic Equations (DAEs) representing in its simple form the so-called 
swing equations and nodal power flow mismatch equations, and must be satisfied during 
the whole transient period of the system dynamics. By converting the differential equations 
into numerically equivalent difference (algebraic) equations, the TSC-OPF problem is 
formulated as an algebraic optimization problem that can be solved by conventional 
nonlinear optimization techniques [La Scala et al., 1998; Gan et al., 2000]. However, 
because of this new set of difference-algebraic equality constraints must be satisfied in 
every time step of the whole transient period of the dynamics, the number of constraints 
considered into the TSC-OPF model is extremely huge and proportional to the number of 
discretized intervals. Transient stability constraints ensure that the synchronous generators 
maintain stability in response to a specified contingency, to formulate these constrains a 
transient stability index must be defined. 

In general, the solution of the TSC-OPF problem consists of an iterative procedure 
of two main steps [La Scala et al., 1998; Gan et al., 2000]. Firstly, from a given initial 
equilibrium point, transient stability analysis is carried out to determine if the system is 
stable under a set of contingencies. In case a contingency (or more) could make the system 
unstable, simulation results are used in order to compute a set of stability constraints. 
Secondly, transient stability constraints are included into the conventional optimal power 
flow model, which determines a new improved steady state operating condition. Stability 
analysis is performed again to check that the new operating condition guarantees the system 
transient stability. This two-step iterative process is repeated iteratively until reaching an 
equilibrium point which satisfies transient stability constraints. 

Many researchers have been investigating the most efficient and accurate way of 
integrating transient stability constraints into the conventional OPF model. Up to now, 
based on how these dynamic and stability constraints are handled in the optimization 
problem, TSC-OPF approaches are classified in either sequential or global approaches 
[Ruiz-Vega and Pavella, 2003; Sun et al., 2004]. In the sequential category, transient 
stability constraints are indirectly expressed in terms of the traditional OPF constraints, and 
the general two main steps of the TSC-OPF approaches can be implemented by 
sequentially using a conventional OPF and a transient stability programs [Fouad and 
Jianzhong, 1993; Bettiol et al., 1999; Ruiz-Vega and Pavella, 2003; Nguyen and Pai, 2003]. 
Since sequential approaches use a conventional OPF formulation they are computationally 
efficient and can provide transparency about the salient parameters responsible for the 
system loss of synchronism, but the main objection is that they do not ensure finding a 
optimal solution [Ruiz-Vega and Pavella, 2003]. That sub-optimality is mainly associate 
with the fact of sequential approaches do not consider an explicit stability constraint into 
the optimization problem.  

On the other hand, the global category focused in this research work extends the 
conventional OPF formulation by including additional sets of stability and dynamic 
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constraints [La Scala et al., 1998; Gan et al., 2000; Yuan et al., 2003; Sun et al., 2004; 
Hakim et al., 2009]. The optimization process minimizes a given objective function by 
rescheduling the available generation while satisfying both, transient stability and steady-
state security constraints at the same time. The optimal equilibrium point given by the 
solution assures that the system would maintain stability in response to a specified 
contingency. Attempting to reduce the course of dimensionality and computational burden 
of the aforementioned global approaches, the TSC-OPF problem can be viewed as 
aproblem of controlling transient trajectories which are completely defined by their 
corresponding steady state operating point, the TSC-OPF problem can be considered as an 
initial value problem that can be formulated in the Euclidian space if there is not interest in 
the detail of transient trajectories of the state variables [Chen et al., 2001]. Based on this 
idea, a functional transformation technique is applied in [Chen et al., 2001; Xia and Chan, 
2006] to transform the TSC-OPF problem from the functional space of time domain to the 
Euclidian space where the problem is completely defined by the variable values computed 
at the steady-state period. Hence, the transformed TSC-OPF problem has the same number 
of variables as those of the conventional OPF with finite number of constraints. 

Despite the computational burden reduction achieved by the aforementioned global 
approaches, it must be pointed out that the stability index, used to indicate if whether or not 
the system is stable, necessarily affects the computational burden and accuracy of the TSC-
OPF approaches. On the one hand, the number of dynamic and transient stability 
constraints to be included in the formulation is a direct function of the adopted transient 
stability index. On the other hand, if the selected transient stability index does not well 
represent the system testability limit, the computed solution by global approaches could be 
even less optimal (economic) than that given by a sequential approach, but requiring much 
more computational effort. In this context, two transient stability indexes have already been 
widely adopted in the TSC-OPF global formulations to assure the transient stable behavior 
of the power system, namely dot product [La Scala et al., 1998] and rotor angle limit [Gan 
et al., 2000], as described below. 

 

a) Transient stability index based on dot product 
This index is obtained from the assumption that a stable equilibrium point (SEP) is 
surrounded by unstable equilibrium points lying in a surface called potential energy 
boundary surface (PEBS) [La Scala et al., 1996]. Considering that all system trajectories 
crossing the PEBS are unstable whereas all stable trajectories remain inside the PEBS, it is 
possible to define a transient stability constraint to prevent the system trajectories crossing 
the PEBS, which is used as an index of system stability. The constraint is formulated as the 
dot product of the vector of the accelerating power of rotors and the vector of rotor angles 
displacements from rotors angles of the SEP at the post-disturbance dynamical period. All 
vectors are expressed with respect to the center of inertia (COI). Based on the fact that the 
dot product is negative inside the PEBS and positive outside, the stability index establishes 
that as long as the dot product evaluated is less than zero at each time step of the discretized 
trajectory, the system is stable [La Scala et al., 1998]. This stability index has been also 
been formulated as stability constraint in [Sun et al., 2004]. 

This index is completely general and it is independent of the number of machines in 
the system; i.e. it is only required one stability constraint for each time step of integration 
included in the optimization process because the PEBS criterion is referred to the whole 
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system but not to each machine. However, the number of dynamic plus stability constraints 
depends on the upper integration interval endt which is selected arbitrarily. The formulation 
of this index into the TSC-OPF problem is more complicated than the rotor angle index due 
to the computation of the derivative in the optimization process. Lastly, a-power flow-alike 
algorithm is employed at the beginning of each iteration of the optimization process to 
evaluate the post-contingency stable operating point used in the computation of the dot 
product [La Scala et al., 1998]. 

 

b) Transient stability index based on rotor angle limit 
This index is directly obtained from the observation of time domain simulations by 
considering that rotor angles of unstable machines move away from the COI and eventually 
loss synchronism, whereas rotor angles of stable machines move coherently with respect to 
the COI and oscillate within a certain boundary. Hence, the transient stability constraint is 
formulated such as the deviation of rotor angles with respect to COI must be within certain 
limit for each time step of the entire integration period T. This limit corresponds to the 
index for identifying transient instability [Gan et al., 2000]. 

The actual value of this index is not easy to establish because its variation with 
different systems and operating conditions; therefore, this problem has been solved by 
adopting a fixed value heuristically during the whole optimization process. By way of 
example, the maximum allowable deviation of rotor angles w.r.t. COI is of 100° in [Gan et 
al., 2000; Yuan et al., 2003; Layden and Jeyasurya, 2004], whilst values of 120° and 144° 
have been used in [Xia and Chan, 2006] and [Chen et al., 2001], respectively. The lack of a 
generic method to select an appropriate value to the index can produce a very conservative 
transiently stable optimal operating point if index is set to a low value. On the other hand, if 
the threshold is too relaxed, the operating point can be transiently unstable even if the limit 
has not been exceeded in the period span considered in the TSC-OPF problem.  

Lastly, independently of the value given to the stability index, the number of 
stability constrains to be included into the TSC-OPF is equal to the number of generators 
times the number of the integration steps considered in the optimization process. But the 
dimensionality burden increases due to the fact that the integration period to be considered 
into the TSC-OPF problem is also heuristically selected, thus the number of transient 
stability plus dynamic constraints might substantially increase. 

Real-world power systems are operated such that any generator rotor angle w.r.t. 
COI will not be greater than a specified threshold, which has a value of 180 degrees in 
extreme cases [Sauer and Pai, 1998]. Hence the index based on the rotor angle limit has 
been widely adopted for utility engineers for determination of transient stability [Gan et al., 
2000]. Based on this fact and previous discussions, this research work aims on improving 
not only the course of dimensionality and computational efficiency of TSC-OPF global 
approaches using the rotor angle limit index, but also the accuracy and transparency about 
the salient parameters responsible for the system loss of synchronism. This goal is achieved 
by reducing the multi-machine system angle trajectories to a Single One Infinite Bus 
(OMIB) equivalent angle trajectory by applying the SIME approach [Pavella et al., 2000], 
from which a new stability index is proposed as described below. 
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c) Transient stability index based on OMIB rotor angle limit 
Based on the equivalent model, it is possible to compute a transiently stable optimal 
equilibrium point by stabilizing the OMIB single rotor angle trajectory, representing the 
whole system rotors angle dynamics, instead of stabilizing the whole set of individual 
machine angle trajectories. The limit imposed on the angular deviation of the single 
equivalent machine to ensure transient stability can be calculated off-line through SIME 
approach, so that it is not selected heuristically. This idea is investigated in this research 
work and also in [Zárate-Miñano et al., 2010], but having quite different stabilization 
procedures and advantages w.r.t. those approaches based on the dot product and the rotor 
angle limit.  

In this thesis the new proposed stability index based on OMIB rotor angle limit is 
used in two different ways, such that two general, non-heuristic, accurate and efficient 
transient stability preventive control approaches are investigated. The theoretical basis, 
detailed characteristics and main advantages of the proposed transient stability preventive 
control approaches are discussed in this document. 

1.3. Objectives 
This research work focuses the way of extending a conventional Newton-based Optimal 
Power Flow (OPF) approach to compute optimum steady state operating points under two 
important aspects in power systems operation. The first aspect considers the steady state 
operation of a VSC-HVDC system, such that a detailed mathematical model of this device 
must be developed and included into the conventional OPF analysis. 

The second issue is related to the accurate and efficient determination of optimum 
steady state operating points where the system transient stability is preventively ensured for 
a credible contingency scenario. To accomplish this task, the SIME method must be 
considered to reduce the problem size and complexity associated to global transient 
stability constrained-optimal power flow approaches.  

1.4. Methodology 
In order to accomplish with the proposed objectives, this research work was developed 
according to the following methodology, 

a) Computation of steady state optimum operating points considering VSC-HVDC 
systems 

Review of the state of the art of VSC-HVDC systems 
Development of the VSC-HVDC steady state detailed model  
Computational implementation of the VSC-HVDC model 
Development of case studies  

b) Computation of transiently stable steady state operating optimum operating points 
Review of the state of the art of preventive transient stability control 
global and sequential approaches 
Computational implementation of the TD program 
Computational implementation of SIME method 
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Results validation 
Development of transient stability control Approach I 
Development of transient stability constraint for Approach I 
Computational implementation of Approach I 
Approach I results validation 
Development of transient stability control Approach II 
Development of transient stability constraint for Approach II 
Computational implementation of Approach II 
Approach II results validation 

1.5. Primary Contributions 
The main contributions of this research work are summarized below. 

1. A detailed steady state model of a VSC-HVDC system suitable for OPF studies has 
been developed. The model has been also implemented into an existing C++ code 
for large scale Newton based-OPF program [Ambriz-Pérez, 1998]. 

2. Two novel SIME-based transient stability constrained OPF for the transient 
stabilization of multi-machine power systems is proposed in this thesis. The most 
important aspect of the new proposed approach is the significant reduction of the 
computational burden of global OPF-based approaches.  

3. The first proposed approach allows reducing the computational burden of extended 
(global) OPF-based approaches in both important aspects: 1) The size of the set of 
dynamic constraints. The length of the time domain simulation that should be 
discretized and included into the extended OPF formulation (hence the size of the 
set of dynamic constraints) is limited to the time to instability tu determined by 
SIME, and is thus no longer arbitrary or unnecessarily large. 2) The size of the set of 
stability constraints. Using SIME, the proposed transient stability constraint is 
formulated for one machine equivalent trajectory at a single integration time step, 
making the dimension of the TSC-OPF problem well-defined, and reducing the 
dimension of the set of stability constraints with respect to other approaches by Ng 
times the number of time integration steps. Furthermore, as the stability constraint is 
formulated with respect to a critical trajectory of the OMIB rotor angle, power 
system operation is not limited with respect to a fixed value, but to a sound 
physically-based value that is adjusted to the actual system dynamics. The proposed 
approach’s capability to control transient stability has been successfully illustrated 
by numerical examples. 

4. In the second proposed approach, the global TSC-OPF formulation only requires 
considering a single stability constraint applied at the initial system operating point, 
replacing the (usually large) sets of dynamic and transient stability constraints 
required by other TSC-OPF formulations. This is because the optimization process 
is performed in the Euclidian space, such that is not necessary to add either dynamic 
constraints or transient stability constraints in the TSC-OPF formulation to stabilize 
a specified fault scenario. 
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1.8. Organization of the thesis 
This thesis is organized as follows, 

 

In Chapter 2, the theoretical bases of the conventional OPF analysis are presented. The OPF 
problem is firstly formulated as a general nonlinear programming problem, subjected to 
equality and inequality constraints. In order to solve this constrained problem, the 
Lagrangian function is assembled to convert the problem into a nonlinear unconstrained 
optimization problem. The Karush-Kuhn-Tucker (KKT) first order optimality conditions 
are applied to the Lagrangian function, resulting in a nonlinear algebraic equation set. The 
solution of this nonlinear algebraic set is then solved by mean the Newton method, where 
the inequality constraints are handled by means of quadratic penalty functions and the 
Lagrange multipliers method. The Newton based-OPF algorithm is presented. 

 

The Chapter 3 gives in detail the derivation of the model of a VSC-HVDC system suitable 
for conventional OPF solutions using Newton algorithm. The VSC-HVDC’s ability to 
provide independent control of the converters AC voltage magnitudes and phase angles 
relative to the system voltage, which allows the use of separate active and reactive power 
control loops for system regulation, is well represented by the model. In this new 
development in Newton OPF, the VSC-HVDC system equations are incorporated directly 
into the Lagrangian function, Hessian matrix and gradient vector of whole system for a 
unified optimal solution in a single frame-of-reference. The effectiveness of the VSC-
HVDC model and its proposed implementation in a Newton-based OPF existing program 
[Ambriz-Pérez, 1998] is demonstrated by means of two sample systems. 

 

In Chapter 4 the theoretical bases for transient stability assessment and preventive control 
through a generic global approach are presented. To investigate the system transient 
stability of the power system the TD analysis is formulated according to the Simultaneous 
Implicit model. To accomplish with this model, the system transient dynamics are 
mathematically modeled by the classical model of the generator and the structure 
preserving model of the network, which is described by a set of differenetial-alegebraic 
equations DAE. The DAE set is transformed into difference algebraic equations by 
applying the implicit trapezoidal rule, resulting in a set of non linear algebraic equations 
that can be readily solved by means of Newton method.  

The general formulation of the TSC-OPF problem is presented in terms of steady 
state, dynamic state and stability constraints. Steady state constraints are those 
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corresponding to the conventional OPF, whilst the dynamic constraints are the difference 
algebraic equations set, which results of applying the trapezoidal rule to the DAE set that 
describes the power system dynamics. In this generic TSC-OPF model, the transient 
stability constraints are formulated according with the stability index based on the rotor 
angle limit. The general TSC-OPF algorithm is presented in order to fix the basis of the 
proposed stability control approaches. 

 

The Chapter 5 deals with the SIME method and the proposed transient stability preventive 
control approaches. Based on the assumption that the mechanism of loss of synchronism in 
a power system originates from the irrevocable separation of its machines into two groups, 
the SIME SIngle Machine Equivalent (SIME) method reduces the trajectories of a multi-
machine system to a trajectory of a One Machine Infinite Bus (OMIB) equivalent. This 
reduced model makes easy to carry out the transient stability preventive control because it 
is only necessary to stabilize one single trajectory, which represents the whole system, 
instead of each machine trajectory. Based on this idea, it is proposed to take advantage of 
the OMIB equivalent derived by SIME to carry out the transient stabilization process by a 
global TSC-OPF approach. 

 

Chapter 6 presents the general conclusion of this research work and discusses related areas 
that require further investigation. 
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Chapter 2  

Optimal Power Flow 

 
In this chapter the theoretical bases of the conventional OPF analysis are presented. The 
OPF problem is firstly formulated as a general nonlinear programming problem, subjected 
to equality and inequality constraints. In order to solve this constrained problem, the 
Lagrangian function is assembled to convert the problem into a nonlinear unconstrained 
optimization problem. The Karush-Kuhn-Tucker (KKT) first order optimality conditions 
are applied to the Lagrangian function, resulting in a nonlinear algebraic equation set. The 
solution of this nonlinear algebraic set is then solved through the Newton method, where 
the inequality constraints are handled by means of quadratic penalty functions and the 
Lagrange multipliers method. The Newton based-OPF algorithm is presented. 

2.1. General formulation 
Since its early stages the OPF problem has been a very interesting and active research area 
of electric power systems [Huneault and Galiana, 2009; Momoh et al., 1999a]. Different 
methods have been proposed for efficiently solving the OPF problem, their differences 
mainly depend on the objective considered to be optimized and the search algorithm used in 
the optimization process [Huneault and Galiana, 2009; Momoh et al., 1999a]. Despite the 
large variety of OPF methods, the conventional OPF problem is stated as the following 
constrained nonlinear optimization general mathematical model [Bertsekas, 1998], 

 Minimize ( )f y  (2.1) 
 Subject to    ( ) 0;  h y  (2.2) 
 ( ) 0g y  (2.3) 
 y y y  (2.4) 

where the mapping ( ) : qf y  is the objective function to be minimized. ( ) : q nh y  
is a set of equality constraint functions corresponding to both power flow mismatch 
equations and control equations. ( ) : q mg y is a set of inequality constraint functions 
which prevent the violation of system operating and physical limits. The vector of system 
variables qSy , includes the dependent steady state variables svx  and control 
variables cvu (see §2.1.1), with lower and upper limits represented by y  and y , 
respectively.  

A point y  in the search space S that satisfies the set of equality and inequality 
constraints is defined as a feasible point Fy , the infinite set of feasible points defines the 
feasible region F. Additionally, a feasible point Fy  is said to be an optimum point *y  if the 
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evaluation of the objective function at points *y  and Fy of F satisfies ( ) ( )Ff f*y y . The 
active set of inequality constraints consists of those variables and functions explicitly 
enforced to specified values in a particular feasible solution. The set of inequality 
constraints that must be active at the optimum solution *y  is called the binding set. All 
equality constraints are regarded as active at any feasible point since they must be satisfied 
unconditionally at the solution of (2.1)-(2.4). 

2.1.1. Classification of variables 
The solution of (2.1)-(2.4) involves the computation in a single unified reference frame of a 
large set of system variables y  and constraint variables n mc . For the purpose of 
efficiently implementing an OPF algorithm, all variables to be considered in the 
optimization model can be classified into the categories described below.  

The set of control variables u y  represent the quantities that can be adjusted 
within limits by the algorithm to achieve the minimization of the objective function. 
Variables of this kind represent the active power output of generators, transformer tap 
ratios, transformer phase shift angles and voltage magnitudes at all nodes with reactive 
power compensation [Sun et al., 1984; Sun et al., 1988].  

The dependent steady state variables x y  represent the quantities of the system 
that are achieved as consequence of the tuning of the control variables. Equal to the control 
variables, the dependent variables are set at any value within their limits by the 
optimization process to perform an OPF solution. Examples of those variables are the 
reactive power at all generation nodes, active power generation cost, active and reactive 
power flows in the network elements, the network voltage profile represented by magnitude 
and phase angle of all nodes, except the voltage magnitude at nodes with reactive 
compensation, and the phase angle of the slack node. This phase angle is fixed at zero to be 
considered as the reference of any system variable representing an angular quantity.  

The set of constraint variables c  includes the subset n  and m , where the 
vector of variables n  is related to equality constraints (2.2), whilst the vector of 
variables m

 is associated to inequality constraints (2.3) and (2.4). Both subsets are 
classified as auxiliary variables and represent the Lagrangian Multipliers (see §2.2.1). 
For the computational implementation of an OPF algorithm it is also necessary to consider 
a set of parameters that are not variables during the optimization process, but are required 
to perform the problem solution. Examples of such parameters are the power system 
topology, electric power demand, electric characteristics of the network and devices of the 
power system, etc. 

2.1.2. Objective function 
Conventional OPF studies can consider a large variety of objectives to be optimized, the 
one most studied is the total generation cost [Huneault and Galiana, 2009] and it is 
considered in this research work. The generation cost iC ($/hr ) at thermal unit i  can be 
represented by the following non-linear second order model [Sun et al., 1984; Wollenberg 
and Wood, 1984],  
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 2( )i Gi i i Gi i GiC P a b P c P  (2.5) 

where the variable GiP (MW) is the active power generated  at unit i . The parameters ia , ib  
and ic  are the cost curve coefficients. Based on (2.5) the model that represents the total 
system generation cost can be readily represented as, 

 ( ) ( )
gN

Gi
i

f C Py  (2.6) 

where gN  is the number of generator in the power system to be included in the dispatch. At 
difference with the conventional power flow studies, the generator connected at slack node 
must be considered in the formulation (2.6) [Lee et al., 2010], otherwise the minimization 
algorithm will dispatch at its maximum capacity this generator while dispatching all the 
remaining units at their minimum capacity. This fact might not be practical because could 
produce transmission lines overloading, and even could yield algorithm convergence 
problems.  

2.1.3. Equality constraints 
The set of equality constraints ( )h y  of the OPF model describe the laws that are governing 
the physics of the power system and, as already mentioned, they must be satisfied 
unconditionally at the optimal solution. The equality constraints are typically associated to 
the nodal power mismatch equations, and provide a means to achieve the active and 
reactive power balance in every node of the whole network during steady state operation.  

The set of power mismatch equations states that the power generation must satisfy 
the active and reactive power demand plus network losses,  

 ( , ) 0inj
i Li GiP P PV  (2.7) 

 ( , ) 0inj
i Li GiQ Q QV  (2.8) 

where LiP  and LiQ  are the active and reactive power loads at node i , respectively. GiP  and 

GiQ  are the active and reactive power generations at node i , respectively. inj
iP and inj

iQ  are 
the active and reactive power injections at node i, respectively. It must be pointed out that 
constraints (2.7) and (2.8) have nonlinear terms, which are function of system variables that 
represent the network nodal voltage magnitudes V  and phase angles . Consequentially, 
equality constraints can relate control variables u  and dependent steady state variables x . 

Among other applications, equality constraints can also be used to set the value of a 
control or dependent state variable at some predefined set point, for example, setting the 
complex power flow through a transmission line at some specified value. These kinds of 
applications are presented with more detail further in the document. 

2.1.4. Inequality constraints 
The set of inequality constraints considered in an OPF model can be classified in different 
categories as functional and variable inequality constraints [Acha et al., 2004]. The 
functional inequality constraints represent the bounds of functions that depend on control 
and dependent variables, such as the bounds on the reactive output power of a controllable 
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source. On the other hand, the variable inequality constraints are useful to represent the 
bounds of one variable, such as active output power of the generators. 

The most common functional inequality constraints considered in OPF studies are, 
Lower min

GiQ  and upper max
GiQ  bounds on the reactive output power GiQ of 

the generators, 
 min max 1, ,Gi Gi Gi gQ Q Q i N  (2.9) 

where gN  is the number of generation nodes  and GiQ  is computed from 
(2.8), as follows, 

 ( , )inj
Gi i DiQ Q QV  (2.10) 

Upper bound max
kmF  on the active power flow kmF  in the transmission line 

connecting node k and m, 
 max( , ) 1, ,km i km i LcF F i NV  (2.11) 

where LcN  is the number of transmission lines with constrained active 
power flow. The active power flow in the line is assessed through of the 
nonlinear term ( , )kmF V , which is a function of the complex voltages at 
nodes k and m.  

The most common variable inequality constraints considered in OPF studies are, 
Lower min

GiP  and upper max
GiP  bounds on the active output power GiP of 

the generators, 
 min max 1, ,Gi Gi Gi gP P P i N  (2.12) 

Lower min
iV  and upper max

iV  limits on nodal voltage magnitudes V , 

 min max 1, ,i i i bV V V i N  (2.13) 

where bN  is the number of node of the system and gN  is the number of 
generation nodes.  

2.2. Application of Newton method for computing OPF solutions 
The Newton method is a powerful solution algorithm of nonlinear equations; this is because 
of its quadratic convergence characteristic near the solution. In electrical engineering, this 
method is widely used to solve the power flow analysis, which is commonly modeled by a 
set of nonlinear equations whose initial conditions are well defined near the solution.  

The OPF research can be characterized as the application of increasingly powerful 
optimization tools [Huneault and Galiana, 2009]. Some of these optimization tools have 
been developed based on the Newton method, so they are classified as Newton-Based 
category [Momoh et al., 1999b]. To solve the OPF problem through the Newton method, it 
is necessary to construct a Lagrangian function ( , , )yL  that converts the constrained 
nonlinear OPF problem into a nonlinear unconstrained problem. The function ( , , )yL  
is written in terms of the Karush-Kuhn-Tucker (KKT) first order optimality conditions 
[Luenberger, 1984; Nocedal and Wright, 1999], which results in a set of nonlinear 
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equations. The Newton method is then applied to solve this set of nonlinear equations, as in 
the conventional power flow analysis.  

It must be pointed out that, due to the fact ( , , )yL  is constructed with terms 
associated with inequality constraints, its composition suffers k changes, according to the 
active set updating, until reaching the binding set. This means the Lagrangian function is k 
times rewritten according to the KKT conditions, and therefore the Newton method must be 
sequentially applied to solve k different set of nonlinear systems. The k-th nonlinear system 
corresponds to the binding set and its solution yields the steady state operating point that 
minimizes the objective function and satisfies the whole set of equality and inequality 
constraints. 

2.2.1. Lagrangian function 
The solution of (2.1)-(2.4) by the Newton approach requires the creation of a Lagrangian 
function where equality and inequality constraints on variables are handled by means of the 
Lagrange multiplier method [Bertsekas, 1996]. In this method, inequality constraints on 
functions are handled by penalty functions which are added to the objective function to 
obtain an augmented Lagrangian function. Furthermore, in order to ensure that this function 
becomes convex in the neighborhood of a feasible solution, convexification terms are 
added to the system variables [Bertsekas, 1979]. The augmented Lagrange function is,    

 

 2( ) ( ) ( , ) ( , )t a fi c ai cv t
sys rfL cy, , y h y g y y C y y  (2.14) 

  

where ( , )a ficg y and ( , )aicvy are penalty functions for the ith active functional 
inequality constraint (afic) and ith active inequality constraint on variables (aicv); 
respectively. n   and afic aicv  are vectors of Lagrange multipliers. Cc is a vector of 
penalty parameters, and yr is a vector of reference system variables. 

2.2.2. Optimality conditions for Newton method 
According to the optimization theory, the optimal solution of the OPF optimization 

model must satisfy the following KKT first order necessary optimality conditions 
[Luenberger, 1984; Nocedal and Wright, 1999], 

 

 *( ) 0sysL * *
y y , ,  (2.15) 

 *( ) 0sysL * *y , ,  (2.16) 

 * >0, if  ( ) = 0a fic g y  (2.17) 

 * 0, if =0aicv y- y  (2.18) 
 * 0, if =0aicv y- y  (2.19) 

 0, aicv afic*   (2.20) 
 

where the vector ** *z= y , , defines the optimal solution, the last four constraints are 
called complementary conditions. Therefore according to the KKT conditions, the optimal 
solution of the OPF model (2.1)-(2.4) can be found by solving, 

 

 ( ) 0z zL  (2.21) 
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In OPF studies the gradient of the Lagrangian function (2.21) is a set of nonlinear 
equations, which can be solved through the Newton method. 

2.2.3. Linearized set of equations 
The OPF solution by Newton method requires the linearization of the nonlinear 

system (2.21), obtained from the application of the KKT conditions to (2.14). For the sake 
of illustration, in this section the linearized set of equations is derived from the Lagrangian 
function (2.22), which is constructed based on power balance equality, 

 

 
1 1

( , ) ( ( , ) ) ( ( , ) )
b bN N

inj inj
sys T pi i Li Gi qi i Li Gi

i i
F P V P P Q V Q QL y  (2.22) 

 

where bN  is the number of buses of the system. FT  is the objective function described by 
(2.6). pi and qi are the Lagrange multipliers for active and reactive power equations, 
respectively. The summations are taken over all the nodes, except those where the reactive 
power injected by generators is within limits. In (2.22) the term associated to each 
inequality constraint is not considered, but its formulation into the OPF analysis by Newton 
method is given in sections 2.2.4 and 2.2.5.  

According with Newton method, the linearized system is as follows, 
 

 ( )sysLW z  (2.23) 
 

This equation (2.21) can be written as, 
 

 
( )
( )

sys

sys

L
L

yyW  (2.24) 

where 

 
tr

0
H JW
J

 (2.25) 

 
( ) ( ) ( )

( ) , ,
tr

sys sys sys
sys

L L L
Ly

GP V
 (2.26) 

 
( ) ( )

( ) ,
tr

sys sys
sys

p q

L L
L  (2.27) 

 tr
Gy P V  (2.28) 

 
tr

p q  (2.29) 

where the superscript tr denotes transposition. Partial derivatives are used to assemble the 
Hessian matrix W. Matrix W contains the second partial derivatives of the Lagrangian 
function ( )sysL  with respect to the state variables y and Lagrange multipliers , as follows,  

 
2 2 2

2 2 2

( ) ( ) ( )
tr

sys f hL y yH
y y y

 (2.30) 
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2 ( ) ( )sys hL yJ

y y
 (2.31) 

Matrix W is symmetric and has a null matrix at its lower right hand corner because the 
second partial derivatives of the form 2 ( )sys i jL  do not exist. First partial 
derivatives of the gradient vector ( )sysL  yield the second partial derivatives of the 
Lagrangian function ( )sysL . z  is the vector of correction terms. The steady state 
variables are the active power generations, the nodal voltage magnitudes and angles, Pg, V 
and , respectively. Lagrange multipliers are the incremental costs for active and reactive 
powers, p and q, respectively [Acha et al., 2004].  

2.2.4. Handling of inequality constraints on variables 
The selection of inequality constraints to be enforced is carried out in two steps [Sun et al., 
1988]: i) The candidate constraints for enforcement are identified; ii) from the candidate 
set, those constraints that are to be added to the active set are identified.  

A constraint is considered to be a candidate if it is not already part of the active set, 
and following its updating according to (2.23), one of its limits is violated.  

The criterion to enforce a candidate constraint is based on the relative severity of its 
limits violation.  In order to have consistency in their relative ranking, candidate constraints 
are grouped in different sets according to the kind of variables they are, e.g. voltage 
magnitudes, active powers, reactive powers. The controller’s variables and its inequality 
control specifications are grouped as follows: (i) magnitudes of the voltage sources 
representing the controller and the set of AC voltage magnitude inequalities are grouped 
together with the nodal voltage magnitudes of the entire network; (ii) the active (reactive) 
power to be controlled within limits is grouped with the active (reactive) power 
transmission lines limits. For each candidate constraint yi of a given set, a violation index is 
defined by [Crisan and M. Mohtadi, 1992], 

 

 violated limit 1, ,
k

k i
i k

i

y i m
y

 (2.32) 

where k indicates the main iteration number. The relative severity of limit violations is 
obtained by defining the normalized candidate violated constraint set (NCVCS) as follows 
[Crisan and M. Mohtadi, 1992], 

 

 1

1

, ,

max , ,

k k
m

k k
m

NCVCS  (2.33) 

 

Candidate constraints that will be added to the active set are those corresponding to 
the elements of NCVCS which are equal to or larger than a specified tolerance TOLadd. A 
value of TOLadd=0.7 was found to be a good compromise between the selection of active 
constraints and algorithm performance [Acha et al., 2004]. 
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Once inequality constraints to be added to the active set have been selected, they are 
included into L  using the following generic form of function 1( , )k k

i i iy  [Bertsekas, 
1996]: 

 

1
1 2 1

1
1 1 2 1

( ) ( )  if ( ) 0 
2

( , ) ( ) ( )  if ( ) 0
2

0                                 otherwise

k
k k k k k
i i i i i i i i

k
k k k k k k k

i i i i i i i i i i ii

cy y y y y y

cy y y y y y y  (2.34) 

In order to consider the activated inequality constraint in (2.22), the first and second 
derivatives of 1( , )k k

i i iy with respect to y are added to ( )sysL  and the W matrix, 
respectively, of the linear system given by (2.23).  

All constraints in the active set are checked at the end of a main iteration, for its 
possible removal from the set. From a given set of active inequality constraints, a constraint 
is considered a candidate to be released if it has reached its maximum (minimum) limit and 
its Lagrange multiplier 1k

i  has a negative value, or a positive value, depending on the 
limit it has reached. The normalized candidate released constraint set (NCRCS) is defined 
as, 

 

 
1 1

1

1 1
1

, ,

max , ,

k k
m

k k
m

NCRCS  (2.35) 

 

The candidate constraints that will be released from the active set are the ones 
corresponding to the elements of NCRCS whose normalized Lagrange multipliers are equal 
to or larger than a specified tolerance TOLfree. A value of TOLfree=0.1 is used in the 
algorithm. The release of inequality constraints from the active set is considered in (2.22) 
by eliminating their contributions to the gradient and W matrix elements. 

Once the set of active inequality constraints has been refined, the Lagrange 
multipliers i are updated as follows [Bertsekas, 1996],  

 

 

1 1 1 1

1 1 1 1

( )   if  ( ) 0    
( )   if  ( ) 0    

0           otherwise 

k k k k k k
i i i i i i

k k k k k k k
i i i i i i i

c y y c y y
c y y c y y  (2.36) 

 

The accurate selection of the weighting factor initial condition c0 is very important 
for the good performance of the Lagrangian Multipliers method. Suggestions for a good 
initial condition selection are given in 2.3.4. 

2.2.5. Handling of inequality constraints on functions 
Arguably, the most important functional inequality constraints are those corresponding to 
controllable sources of reactive power. Reactive power generator limits are checked at the 
end of each global iteration. It should be pointed out that the reactive power equation of 
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each generator is placed in the matrix W, however, when the generator is within limits, the 
method places a large penalty weighting factor S in the diagonal element associated to q. 
Hence, the corresponding equation is deactivated from the Lagrangian function and its 
effects on the optimization process are nullified. The functional inequality constraints are 
activated only when it becomes necessary to enforce either upper or lower limits on 
reactive power. This is done by removing the large number from the corresponding 
diagonal element. Penalty function techniques are used to either activate or deactivate the 
equations corresponding to generation nodes.  

Quadratic penalty functions are used since they have first and second derivatives. 
The form of the penalty function for the reactive power constraint at generation node k is 
[Luenberger, 1984; Nocedal and Wright, 1999], 

 21
2qi qiE S  (2.37) 

and its first and second derivatives are, 
 

 qi
qi

qi

dE
S

d
 (2.38) 

 
2

2
qi

qi

d E
S

d
 (2.39) 

 

where S is a positive large penalty weighting factor (e.g. S=1x109). 
Adding the first and second derivatives to the corresponding gradient and diagonal 

element in matrix W associated with qi, deactivates the reactive power flow equations of 
the generation node i. In this situation qi has a zero value. When a reactive power limit is 
violated, the derivatives are removed and the node changes from being a generation node to 
a load node, then qi changes its value from zero to nonzero. The sign of qi indicates 
whether or not the reactive power has returned to be within limits [Luenberger, 1984; 
Nocedal and Wright, 1999], as shown in Table 2.1.  

Table 2.1. Handling constraints on reactive power generation 
Violated Limit qi < 0 qi > 0 

Upper to add penalty term to remove penalty term 
Lower to remove penalty term to add penalty term 

 

2.3. Implementation of Newton-Based OPF 
The OPF mathematical theory given in previous sections was implemented into an existing 
object oriented C++ computer program [Ambriz-Pérez, 1998]. The main steps of the 
algorithm are shown in Fig. 2.1. 
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Fig. 2.1. Newton-based optimal power flow chart.  

 

The first step of the Newton-Based OPF algorithm is the initialization of control u  
and steady state x  variables, as well as of both sets of Lagrangian Multipliers and . 
The related details are given in this section.  

After setting initial conditions, the algorithm considers a main loop. One of the two 
main tasks of this loop is to update the active set of inequality constraints, Lagrangian 
multipliers  and weighting factors. The second task is verifying the KKT conditions, if 
these conditions are satisfied, the algorithm ends, else goes to the inner loop.  

In the inner loop, the nonlinear system obtained from the KKT conditions is solved 
through the iterative Newton process. In other words, the Newton method is applied to 
solve the gradient of the Lagragian function equals to zero (2.21). This fact implies the 
repetitive assembling and solution of the linear system (2.23), until reaching the pre-
specified convergence tolerance of Newton method, e.g. 61e . It must be clear that the inner 
loop is either executed as many times as the KKT conditions are not satisfied in the main 
loop or until reaching the pre-specified number of allowed main loop iterations, e.g. 20.  

An important practical detail is that matrix W is modified to nullify the increments 
of the slack node angle. This is achieved by placing a large penalty weighting factor in the 
diagonal element associated with slack. Very small increments may still exist but their effect 
on the rest of the variables is negligible. For practical purposes, the increment slack is set 
as 0 at every iteration. 

2.3.1. Network voltages initial conditions 
Steady state variables are similarly initialized to load flow problems, i.e. 1 pu voltage 
magnitudes and 0 voltage angles for all nodes. This provides a suitable starting condition. 
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Engineering experience indicates that, for most problems, the variation of voltage 
magnitude and voltage angle from the 1 and 0 initial conditions is relatively small, i.e. 0.95 

 Vk  1.05 and -150  k  150. 

2.3.2. Economic active power schedule 
An economic dispatch as opposed to a load flow solution provides good starting conditions 
for the full OPF solution. The equal incremental cost criterion is used for this purpose 
[Wollenberg and Wood, 1984]. The economic dispatch considering active power generation 
limits, and a lossless network, yields a good starting condition for the Lagrangian 
multipliers associated to active power balance equality constraints and active power 
generation variables. The consideration of the network losses into the economic dispatch 
might yield a better initial condition guess, however it would require higher computing 
time.  

2.3.3. Lagrange multipliers 
As already mentioned, the Lagrangian multipliers p , associated to the active power 
balance constraints, are initialized at their corresponding value of the incremental cost 
computed by the economic dispatch. The Lagrangian multipliers q , associated to the 
reactive power balance constraints, are initialized as zero. The Lagrangian Multipliers 
method uses the multipliers , which are also initialized as zero.  

2.3.4. Penalty-weighting factors 
Effective evaluation of the penalty parameter c is achieved by giving an initial value c0, 
with subsequent evaluations of ck based on monotonic increments: 1k kc c . Values of c0 
within the range 102 - 105 have proved being effective starting conditions. In the developed 
program, a value of c0=1000 is chosen for voltage magnitude constraints, whereas for 
active power constraints a good value of c0 is 1000 times the largest quadratic coefficient of 
the cost curves [Acha et al., 2004]. Values of  = 1.3 produce very reliable solutions. It is 
our experience that larger values of  lead to ill-conditioned situations whereas smaller 
values of   lead to a slow rate of convergence. 

The Penalty Functions method used to handle inequality constraints on functions 
uses the weighting factor S, which is initialized as S=1010. 

2.3.5. Convexification term 
At the nth iteration of the inner loop, the convexification term is given by 

 

 
2n k

c rC y y  (2.40) 
 

The scalar penalty parameter Cc has a fixed value during the iterative process. A value of Cc 
between 0.005 and 0.05 is used in the program. We have found that a value of 0.01 works 
well on the majority of cases. In (2.40), k

ry  is a reference value of the variable y, at the kth 
iteration of the main loop, and it changes through the optimization process according with 
(2.41), at the end of each inner iteration loop. If at the end of this loop y is within limits, the 
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reference value is given by k k
ry y . Otherwise, if ky  violates one of its limits, 1k

ry  has a 
constant value equal to the violated limit.  

 

 

if

if
if

k

k k
r

k k

y y y

y y y y
y y y y

 (2.41) 

 

In the developed program, the convexification factor is only applied to voltage 
magnitude variables. The rationale behind this is that minimization of active power 
generation costs will, indirectly, reduce transmission network losses; i.e. large network 
losses mean more active power generation. As a consequence of this, during the repetitive 
solution of (2.23), voltage magnitudes tend to high values in order to reduce transmission 
losses. During the development stage of the algorithm, it was observed that in certain cases 
the voltage magnitudes would tend to unrealistically high values, say around 2 pu. Such a 
bizarre voltage profile performance was solved by using convexification factors. It should 
be pointed out that similar observations concerning high voltage magnitudes during the 
optimization process have been reported elsewhere [Soman et al, 1994], where the 
unrealistic voltage profile was corrected by using a quadratic penalty term similar to (2.40) 
but with no convexification factor Cc. 

2.4. Conclusions 
The OPF analysis is one important function of the Energy Management System, since it is 
able to provide much useful information for realistic power system operation. In general, 
the analysis yields the steady state operating point of the power system that minimizes any 
objective function and satisfies static security aspects. This chapter presents the Newton-
based OPF mathematical principles, which focuses on the determination of the most 
economic dispatch to supply the electric power demand, whilst the violation of any 
considered power system limit is avoided.  

The basic OPF formulation presented in this chapter can be extended to consider 
different objective functions, many realistic steady and dynamic state security constraints, 
as well as to consider the inclusion of mathematical models representing a large variety of 
different power system electric components. Some of these important issues are focused 
further in this work. 
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Chapter 3  

VSC-HVDC representation in  

Newton-based OPF  

 
This chapter presents in detail the derivation of the model of a VSC-HVDC system suitable 
for conventional OPF solutions using the Newton algorithm. The VSC-HVDC’s ability to 
provide independent control of the converters AC voltage magnitudes and phase angles 
relative to the system voltage, which allows the use of separate active and reactive power 
control loops for system regulation, is well represented by the model. In this new 
development in the OPF Newton method, the VSC-HVDC system equations are 
incorporated directly into the Lagrangian function, Hessian matrix and gradient vector of 
whole system for a unified optimal solution in a single frame-of-reference. The 
effectiveness of the VSC-HVDC model and its proposed implementation in the  
Newton-based OPF existing program [Ambriz-Pérez, 1998] is demonstrated by means of 
two sample systems.  

3.1. VSC-HVDC system model 
The VSC-HVDC system consists of two VSC converters with series-connected Insulated 
Gate Bipolar Transistor (IGBT) valves controlled with Pulse Width Modulation (PWM). 
According to the application, the converters are connected Back to Back (BtB) in a 
substation or linked through a common DC link, as shown in Fig. 3.1 [ABB, 2005].  

 
 

 
Fig. 3.1. VSC-HVDC transmission link. 

 

The PWM switching control makes possible to have a simultaneous adjustment of 
the amplitude and phase angle of the converter AC output voltage with constant DC 
voltage. This control characteristic allows representing the converter AC output voltage at 
side i (i=k,m) by a modulated AC voltage source C i C i C iV V , with amplitude and phase 
angle limits min max

C i C i C iV V V  and 0 2C i , respectively. Hence, the VSC-HVDC 
transmission link can be represented by the voltage source-based model given in Fig. 3.2. 
The impedance of the coupling transformer is given by C iZ . The converter DC side is 
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represented by the active power exchanged among the converters via the common DC link, 
which must be balanced at any instant, and the AC-DC side voltage converter relationships.  

 

 
Fig. 3.2. Equivalent circuit of the VSC-HVDC transmission link. 

3.1.1. Physical constraints 
Based on the equivalent circuit shown in Fig. 3.2, it is possible to obtain the power flows 
across the AC terminals k and m of the VSC-HVDC system.  The powers flowing from 
node i to j (i=k,m; j=k,m; i j) are, 
 

 2 ( ) ( )inj
ij i C i k C i C i i C i C i i C iP V G V V G cos B sin  (3.1) 

 2 ( ) ( )inj
ij i C i i C i C i i C i C i i C iQ V B VV G sin B cos  (3.2) 

 

where 1/C i C i C iG jB Z . The powers flow into the converter connected at node i=k,m are 
given as follows: 
 

 2 ( ) ( )C i C i C i C i i C i C i i C i C i iP V G V V G cos B sin  (3.3) 

 2 ( ) ( )C i C i C i C i i C i C i i C i C i iQ V B V V G sin B cos  (3.4) 
 

The AC side voltage magnitude of the converter connected at node i, CiV , is related 
to the PWM’s amplitude modulation index CiM , and to the average DC capacitor voltage 

DCiV  by [Acha et al., 2004],  

 [0,1]
2 2
Ci DCi

Ci Ci
M V

V M  (3.5) 

The constraining equation relating to the active power exchanged between 
converters is obtained by neglecting losses in the converter circuits. For the BtB scheme, it 
is given by, 
 

 * *Re 0Ck Ck Cm CmV VI I  (3.6) 
 

For a DC link with a series resistance 0DCR , the active power exchanged between 
converters is constrained by, 
 

 * *Re 0
DC

loss
Ck Ck Cm CmV VI I P  (3.7) 

 

The active power flow direction through the DC link must be in accordance with the 
DC voltage magnitudes. This relation is achieved by including the Kirchhoff voltage law 
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equation on the DC side given by (3.8), where the power flowing into the converter 
connected at node j is considered negative. 
 

  0DC DCj DCi Cj DC DCjV V V P R V  (3.8) 
 

It must be pointed out that in order to get practical OPF feasible solutions, the VSC-HVDC 
model takes into account the operational constraints presented in the following section. 

3.1.2. Operational constraints 
The operational constraints considered in the model are listed below. 

The AC voltage magnitude CV  and phase angle C  limits of the VSCs connected at 
node ,i k m , are given as: 

 min max
Ci Ci C iV V V  (3.9) 

 0 2ci  (3.10) 
 

The modulation index CM and DC capacitors voltage DCiV  limits of the converter 
connected at node ,i k m , are defined as: 

 min max
Ci Ci C iMM M  (3.11) 

 min max
DCi DCi DCiV V V   (3.12) 

 

It should be noted that (3.12) is only applicable when VDCi is not fixed at a specified 
value.  

In addition, each converter has a specified rating complex power, which is 
mathematically represented by, 

 r
Ci CiS S  (3.13) 

where CiS  is the complex power flowing through the voltage source converter connected at 
node i ( , )i k m , defined as follows, 

 2 2
Ci Ci CiS P Q  (3.14) 

where 2
CiP  and 2

CiQ  are the active an reactive power through the voltage source converter, 
respectively. It must be pointed out that 2

CiP  and 2
CiQ , and therefore CiS , are function of 

system variables, as corroborated by (3.3) and (3.4).  

3.1.3. Control mode constraints 
The active power exchanged between the converter and the network is controlled by 
adjusting the phase shift angle iCi  between the voltage on the AC bus and the fundamental 
frequency voltage generated by the converter, iCi i C i . The reactive power flow is 
determined by controlling the difference between these voltage amplitudes, iCi i C iV V V . 
Hence, two independent power control loops can be used for regulation, namely active 
power and reactive power control loops [Bahrman et al., 2003]. In the active power control 
loop, one converter is set to control the injected active power inj

ijP at its AC terminal while 
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the other is set to control the DC side voltage DCjV  [Bahrman et al., 2003]. In the reactive 
power control loop both converters have independent control over either voltage magnitude 

iV or injected reactive power inj
ijQ  at their AC terminal. 

Based on the aforementioned sentence, the control modes PQ and PV are defined.  
If the active and reactive powers are set to be controlled by converter i at values spec

ijP  and 
spec
ijQ , respectively; the constraint equations to be satisfied are, 

 

 0 0inj spec inj spec
ij ij ij ijP P Q Q  (3.15) 

 

If the active power and AC voltage magnitude are set to be controlled by converter i, 
at values spec

ijP  and spec
iV , respectively; the constraint equations to be satisfied are 

 

 0 0inj spec spec
ij ij i iP P V V  (3.16) 

 

In both cases, the other converter is set to control the DC side voltage at a fixed 
value esp

DCV , independently of the reactive power loop control setting, i.e., 

 espc
DCj DCjV V  (3.17) 

 

Since the DC side voltage is kept constant by converter j at a value spec
DCjV , this control 

action is used in the constraining equation representing the active power balance between 
the two converters to assess losses in the common DC link. Hence, the active power losses 
in the DC link are

22loss spec
DC Cj DC DCjP P R V .  

3.2. VSC-HVDC OPF formulation 
The inclusion of the VSC-HVDC in the OPF algorithm requires the construction of the 
controller’s Lagrangian function which is added to the augmented Lagrangian function 
given by (2.14). The nodal power mismatch equations at the AC controller terminals and 
the active power exchanged between converters are considered in the OPF formulation 
through equality constraints. If the power flow through the VSC-HVDC is controlled at a 
specified value, then this control action is considered as an equality constraint in the 
formulation. On the other hand, if a control is setting within physical limits, this is taken 
into account through inequality constraints.  

3.2.1. Lagrangian terms of physical and control modes constraints 
The equality constraints associated with the VSC-HVDC system operation and all control 
settings must be satisfied exactly and unconditionally for a feasible OPF solution, so they 
must be terms of the general augmented Lagrangian function.  

For the VSC-HVDC link shown in Fig. 3.2, the Lagrangian term corresponding to 
the power mismatch equations at nodes k and m is,  

 

 
( , ) ( ) ( )

( ) ( )

inj inj
km pk k Lk Gk qk k Lk Gk

inj inj
pm m Lm Gm qm m Lm Gm

P P P Q Q Q

P P P Q Q Q

L y
 (3.18) 
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where pk, pm, qk, qm  are Lagrange multipliers at nodes k and m, respectively.  The vector 
of system variables is y = [V, , VC, C]tr, where V and  are nodal voltage magnitudes and 
angles, whilst VC and C are source converter voltage magnitudes and angles; respectively. 
The superscript tr indicates transposition. PLi, and QLi are the active and reactive power 
loads at node i=(k, m); respectively. PGi and QGi are the scheduled active and reactive 
power generations at node i=(k, m); respectively.  inj

iP and inj
iQ are the active and reactive 

power flows at the controller node i=(k, m), given by  
 

 inj inj inj inj
i ij i ij

j i j i
P P Q Q  (3.19) 

where 
j i

is the set of nodes adjacent to node i. The equality constraints associated to the 

VSC-HVDC system operation are included in the OPF algorithm by the following 
Lagrangian terms,  

 

 
,

( , ) 2 2ACDC ti Ci Ci DCi
i k m

V M VL y  (3.20) 

 ( , )LVK V DCVL y  (3.21) 

 ( , ) ( )loss
DC DC Ck Cm DCP P PL y  (3.22) 

 

where ti , V  and DC  are the Lagrange multipliers. For the case of the BtB scheme, the 
explicit representation of the DC link is not required and 0loss

DC DCP R .  

The control of active and reactive power flowing from node i to j (i=k,m; j=k,m; i j) 
through the VSC-HVDC is represented by the following Lagrangian functions, 

 

 ( )
ij ij

spec inj
CP CP ij ijP PL  (3.23) 

 ( )
ij ij

spec inj
CQ CQ ij ijQ QL  (3.24) 

 

where
ijCP  and 

ijCQ are Lagrange multipliers, spec
ijP and spec

ijQ are the active and reactive 

power flows to be controlled; respectively. Lastly, inj
ijP and inj

ijQ are the calculated active and 
reactive powers given by (3.1) and (3.2), respectively. 

As explained in Section 3.1.3, the active power control loop of one converter can be 
set to control either the active power or the DC side voltage. Similarly, the reactive power 
control loop can be set to control either the reactive power or the AC voltage magnitude. If 
a converter is controlling neither, active nor reactive power, then a quadratic penalty factor 
is applied to the corresponding multiplier 

ijCF (F=P or F=Q). In this case the quadratic 
penalty term given by (3.25) is added to the augmented Lagrange function. 

 

 
2

/ 2
CFij CFij CFijE S  (3.25) 

 
The first and second derivatives of (3.25) are added to the corresponding location of 

the gradient and diagonal entry in the W matrix, associated with
ijCF ; respectively. This is 

equivalent to removing the Lagrangian term (3.23) or (3.24) from (3.30), but without 
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changing the matrix structure, i.e. a large number 101 10
CFij

S x is introduced in the diagonal 

element of matrix W leading to 
ij

k
CF =0. 

The voltage magnitude to be controlled at one of the VSC-HVDC AC terminals is 
set at the specified value spec

iV  (i=k,m) and a quadratic penalty term is imposed on this 
variable during the optimization process. The term to be added to the Lagrange function to 
take account of this control option is, 

 
2,1

2
g W

CVi CV iS VL  (3.26) 
 

Since the specified voltage is different from zero, it is necessary to produce a null 
correction of iV  in order to keep it at the specified value during the iterative process. This is 
achieved by considering a null gradient of (3.26), i.e. 0g

CVS , whilst the second derivative 
of CViL  adds a large penalty weighting factor 101x10

DC

W
VS  to the diagonal entry 

corresponding to Vi in W matrix. This is equivalent to deactivating equations of partial 
derivatives of the augmented Lagrangian function with respect to Vi from Newton 
formulation. Similarly, the DC controlled voltage DCjV  is kept at a specified value by using 
the penalty function, 

 
2,( ) 2

DCj DC

g W
V V DCjE S Vy  (3.27) 

 

where 0
DC

g
VS  and 101x10

DC

W
VS . 

3.2.2. Handling operational inequality constraints 
The operational constraints considered in the VSC-HVDC are all represented by 
inequalities. Constraints (3.9)-(3.12) are inequality constraints on variables, which can be 
readily handled through the Lagrange Multiplier method described in Section 2.2.4.  
On the other hand, the apparent power rating of each converter is represented as inequality 
constraint on functions (3.13). In the OPF algorithm it is implemented as described in the 
next section.  

3.2.3. MVA ratings modeling 
The power rating of the converters is modeled by the inequality (3.13). In order to handle it 
with the Quadratic Penalty Function method (see §2.2.5), the constraint is represented by 
the Lagrangian and penalization terms given below,  

 

 ( , ) ( )
Ci Ci

r
r r Ci CiS SL y  (3.28) 

 21 ( )2Ci Ci Cir r rE S  (3.29) 
 

where the 
Cir  is the Lagrangian Multiplier associated to (3.28), CiS  is the net complex 

power output of the converter Ci connected at node ,i k m . 
CirS  is a large positive scalar 

number ( 101x10
CirS ).  
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The term (3.28) is unconditionally considered in the OPF model during all the 
optimization process. However, at the beginning of the optimization process it is considered 
that the complex power of any converter satisfies its MVA power rating ( CiS  is lower or 
equal than r

CiS ). Thus, 
Cir  must be initialized as zero, and penalized at this value by 

adding only the second derivative of Lagrangian term (3.29) to corresponding diagonal W  
matrix element. This is equivalent to remove (3.28) from the OPF model, therefore the 
source complex output power CiS  is not enforced at its rating r

CiS . 

At each step of the optimization process, the apparent output power of any converter 
must be verified. If there is any violation ( CiS  is higher than r

CiS ), the inequality (3.13) is 
activated and the penalization on 

Cir  must be removed, i.e., the second derivative of the 

Lagrangian term is eliminated from W . This fact allows updating of 
Cir , which acquires 

values different from zero. This is equivalent to activate the equality r
Ci CiS S , which is 

implicit in (3.28), so the apparent output power of the converter is enforced to be its rating 
value.  

After removing the penalization on 
Cir , it is necessary verifying the sign of 

Cir  
during the next iterations of the optimization process. If the value of the multiplier is 

0
Cir , it means that the converter apparent output power is newly inside of its MVA 

ratings. Then, the multiplier 
Cir  must be set at zero and must be penalized as at the 

beginning of the procedure. Otherwise, no penalization on 
Cir  must be set. 

It is important to mention that the aforementioned procedure does not produce 
structural changes in matrix W , which avoids to execute sparse matrix re-ordering 
techniques. 

3.2.4. VSC-HVDC system general Lagrangian function 
Based on the control options given in Section 3.1.3, the Lagrange function of the  
VSC-HVDC system C

kmL  can take several forms according with the selected control mode. 
For the case of active and reactive power flow control from node k to m and the voltage 
magnitude at node m set at a specified value, the Lagrangian term to be added to the 
augmented Lagrangian function (2.14) is given by (3.30). For this case, the reactive power 
control from node m to k is deactivated by the quadratic penalty term

CQkm
E . The converter 

connected at node k is assumed to be operating within its MVA rating limits, therefore 
Ckr

must be penalized with the quadratic term 
CkrE . On the other hand, it is assumed that the 

converter connected at node m is operating outside its MVA rating limits. 
 

 km km mk

CQ DCm m Ck Cm Ckmk

C
km km CD LVK CADC CP CQ CQ

V CV r r rE E E

L L L L L L L L
L L L

 (3.30) 
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3.2.5. Linearized system of equations 
To achieve the minimization of the Lagrangian function (3.30), it is necessary to obtain a 
set of linearized equations using Newton method as given by (2.23). The vector of 
correction terms for the system variables and Lagrange multipliers ( , )C

z y , the gradient 
vector CL  and the CW  matrix associated to the VSC-HVDC system are, 

 

 
( , )

km km mk

Ck

C
k k pk qk m m pm qm

Ck Ck Cm Cm CD CP CQ CQ

DCk DCm Ck Cm V tk tm r

V V
V V
V V M M

z y
 (3.31) 
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 (3.32) 
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where the elements of submatrices Wi,j (i,j=1,…,6) containing the second derivatives of 

C
kmL are given in Appendix A. 

Once (3.31)-(3.33) are placed into the vector of correction terms z, gradient vector 
L  and the matrix W of the entire network at the corresponding locations, a sparsity-

oriented solution of the KKT conditions is carried out. If different VSC-HVDC operating 
modes are selected, C

z , CL  and CW  are suitably modified to reflect the modification of 
C

kmL  associated to such operating modes. 

3.3. Study Cases 
The OPF program including the VSC-HVDC model has been applied to the solution of a 
large number of networks and varying degrees of operational complexity. This section 
presents the computational results of two different networks to demonstrate the reliability 
of the proposed approach and developed program. The objective function adopted for 
minimization is the total cost of active power generation, defined by the quadratic form 
(2.5). Inequality constraints considered are voltage magnitudes of modulated AC voltage 
sources, the amplitude modulation index of each converter, the DC side uncontrolled 
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voltage, the active and reactive power generations, and nodal voltage magnitudes. Also, the 
last study case considers the apparent power ratings limits of the VSC-HVDC converters. 

3.3.1. 11-Nodes network without apparent power rating limits 
The two-area benchmark power system [Xu et al., 1998] is employed to demonstrate how 
the controller performs. The system consists of two identical areas connected through a 
relatively weak double-circuit tie line. Each step-up transformer has a reactance of j0.017 
pu on a 100 MVA, 20/230 kV base and an off-nominal tap ratio of 1. The lines series 
impedance and total shunt susceptance are sZ =0.0001+j0.001 pu/km and bc=0.00175 
pu/km, respectively. Shunt capacitors are added to buses 7 and 9 to provide system voltage 
support. The reference voltage angle at node 1 is set to zero. The active power quadratic 
cost function and generation limits are the same for all generators. The coefficients of the 
quadratic cost function are a=60 $/hr, b=3.4 $/MWhr and c=0.004 $/MW2hr. Active and 
reactive power generation limits are 30 1200GP MWs and 500 500GQ MVARs, 
respectively. Nodal voltage magnitude limits have been set to 0.95 1.05V pu.  

Under aforementioned base case conditions, a 321 MW power is transferred from 
Area 1 to Area 2 with a total cost of 17665.6 $/hr. The original network has been modified, 
as shown in Fig. 3.3, to include a BtB VSC-HVDC system which is used to increase the 
active power flow through the inter-area link to 450 MW, and to set voltage magnitudes at 
nodes 8 and 8fa at 1 pu. The controller coupling transformer impedances are set at 

8 8 0.001 0.01 puC C faZ Z j . The lower and upper limits associated to the controller 
voltage magnitude sources are 0.97 pu and 1.04 pu, respectively. The amplitude modulation 
index limits and their initial conditions are 0.5 1.0CiM and 0.9, respectively. The DC 
voltage is fixed at 3.0 pu. 

Convergence to the optimal solution was obtained in 4 main iterations to a tolerance 
of 1x10-9. All the inequality constraints are within limits, except voltage magnitudes at 
generator nodes which were suitably enforced by means of the multiplier method at their 
maximum limit. The resultant generated power, losses and total cost are shown in Table 3.1. 

  

 
Fig. 3.3. IEEE two-area benchmark system with a BtB VSC-HVDC system. 

  

The control settings were achieved with the VSC having values of 

8 1.0048 41.63o
CV and 8fa 1.001211.13o

CV  at nodes 8 and 8fa, respectively. The 
modulation indexes are 8 0.9474CM  and 8fa 0.9440CM . The VSC-HVDC injected 104.35 
MVAR at node 8, and absorbed 22.35 MVAR at node 8fa, in order to maintain the nodal 
voltage magnitudes controlled at the set values. Owing to the increased active power 
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transfer between the two areas, a larger amount of active power generation will be required 
leading to an increase in active power losses. As expected, the optimal solution gives a total 
system cost higher than the original solution, with no controller. 

 

Table 3.1. Power generation, losses and total cost given by the OPF 

Case 
OPF with VSC-HVDC OPF without VSC-HVDC 
Active 
(MW) 

Reactive 
(MVAr) 

Active 
(MW) 

Reactive 
(MVAr) 

Gen 1 711.78 140.26 642.24 96.91 
Gen 2 753.82 254.85 677.16 175.83 
Gen 3 659.96 100.84 720.94 113.13 
Gen 4 695.48 178.89 763.27 185.01 
Total Generation 2821.05 674.84 2803.61 570.88 
Total Losses 87.05 1024.84 69.60 920.88 
Total Cost ($/hr) 17808.1 17665.6 

3.3.2. 166-Nodes network without apparent power rating limits 
To show how the OPF algorithm performs when a VSC-HVDC system is operating in a 
realistic power system, a network consisting of 166 nodes, 108 transmission lines and 128 
transformers was used [Aboytes and Arroyo, 1986]. This network is actually part of a much 
larger interconnected system which consists of 160 power plants (76 hydro and 84 thermal) 
with 579 generating units, 2172 nodes, 2294 transmission lines and 768 transformers. The 
relevant part of the network is shown in Fig. 3.4 which shows the locations of the two 
VSC-HVDC links.  

The OPF study for the base case, without VSC-HVDC links, gives an injected 
complex power at nodes n1 and n3 of n1 60.30 15S j MVA and n3 73.09 8.66S j MVA, 
respectively. The voltage magnitude at n3 is 1.012 pu. Each VSC-HVDC replaced an 
existing transmission line. HVDC1 is used to control the injected power at node n1 at 

n1 90 15S j MVA, and to set a voltage magnitude of 1 pu at node n2. Similarly, HVDC2 
is used to transfer 80 MW into node n3 and to set the voltage magnitudes at their AC 
terminals to 1 pu. The impedances of the coupling transformers and the limits of the 
controller voltage sources are 0.001 0.1 puC iZ j  and 0.97 1.04

iCV pu (i=1,2,3,4); 
respectively. Voltages at the DC sides of converters C2 and C4 are specified at 

n2 n4
3spec spec

DC DCV V pu, and the DC line resistance is 0.00334 pu.  The DC voltage magnitude 
limits of converters C1 and C3 are 2.7 4.9CDV . The modulation indexes are initialized at 
0.8 and their limits are 0.5 1.0CM .  

The solution converged in 3 main iterations to a tolerance for the inner loop of  
1x10-9. The controllers upheld their target values. Table 3.2 and Table 3.3 summarize the 
OPF results. In the latter table, the results correspond to the VSC-HVDC system final 
values.  
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Fig. 3.4. 166 nodes power system with two VSC- HVDC links. 
 

Table 3.2. OPF solution of 166 nodes system 

Results Without 
VSC-HVDC

With 
VSC-HVDC 

Total Cost of Generation ($/hr) 293.734 293.800 
Total Active Power Generation (MW) 2095.71 2096.37 
Total Reactive Power Generation (MVAR) 505.52 563.997 
Total Active Power Losses (MW) 19.91 20.57 
Total Reactive Power Losses (MVAR) -111.03 -52.57 

 
Table 3.3. Final value of the VSC-HVDC links variables 

VSC-HVDC variables HVDC1 HVDC2
C1 C2 C3 C4 

VC (pu) 1.02 1.02 1.01 1.01 
C (deg.) 2.75 -4.45 0.63 -7.69 

PC (MW) 90.083 -90.113 80.064 -80.088 
QC (MVARs) 23.297 29.082 10.460 9.039 
Sc 93.050 94.690 80.744 80.597 
VDC (pu) 2.9990 3.0000 2.9991 3.0000 
MC 0.9634 0.9659 0.9507 0.9479 
DC Link Current (pu) 0.300377 0.266960
DC Link Losses 0.0301356 0.0238034 

3.3.3. 166-Nodes network considering apparent power rating limits 
In order to carry out comparisons of results obtained with and without considering the 
VSC-HVDC power ratings, the system and simulation parameters shown in Section 3.3.2 
are newly considered in this case. The VSC-HVDC systems have the same parameters, but 
now the apparent ratings of each converter are considered. Both voltage sources of the 
HVDC1 are 93 MVA rating, whilst both voltage sources of the HVDC2 are 80.1 MVA 
rating. These limits values were selected in order to produce the violation of each converter 
apparent rating, as it can be expected from the converter apparent power reported in Table 
3.3. 
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For this case study the algorithm convergence was achieved at 7 main iterations, 
considering a tolerance in the inner loop of 91 10x . Table 3.4 and Table 3.5 show a 
summary of results. 

From Table 3.2 and Table 3.4 it is possible to observe a small increment of the total 
generation cost when apparent power ratings limits are considered. This effect is produced 
by the increment of the active power losses in the network. At the same time, the network 
active power losses are increased due to the power flow redistribution, along the 
transmission network to satisfy the converters apparent power limits. Note from Table 3.5 
that the converters apparent powers are below the defined ratings, different to the results 
reported in Table 3.3 where apparent power limits of the converters are not considered.  

It must be clear that in this case study the VSC-HVDC systems are operating at 
quite stressed conditions, since the active power flow, voltage magnitude and reactive 
power control settings hit by themselves the apparent power ratings limits. This is the 
reason the algorithm convergence was achieved after four more iterations than the previous 
case study of Section 3.3.2. It must be pointed out that if any active power flow, voltage 
magnitude or reactive power control setting of the VSC-HVDC systems is set at some 
higher value, the solution might be unfeasible. 

Table 3.4. OPF solution of 166 nodes system with VSC-HVDC power ratings limits 
Results With MVA limits 

Total Cost of Generation ($/hr) 293.91 
Total Active Power Generation (MW) 2096.73 
Total Reactive Power Generation (MVAR) 537.549 
Total Active Power Losses (MW) 20.93 
Total Reactive Power Losses (MVAR) -78.9958 

 
Table 3.5. Final value of the VSC-HVDC links variables considering power ratings limits 

VSC-HVDC variables HVDC1 HVDC2
C1 C2 C3 C4 

VC (pu) 1.03 1.01 0.99 0.99 
C (deg.) 2.61 -4.53 0.74 -7.70 

PC (MW) 90.081 -90.111 80.065 -80.089 
QC (MVARs) 23.117 6.953 -2.375 1.352 
Sc 93.00 90.40 80.10 80.10 
VDC (pu) 2.9990 3.0000 2.9991 3.0000 
MC 0.9736 0.9447 0.9385 0.9403 
DC Link Current (pu) 0.299401 0.266467
DC Link Losses (MW) 0.0301344 0.0238037

3.4. Conclusions 
The VSC-HVDC proposed model for OPF studies has been derived from first principles, 
and implemented in an existing OPF program. The controller variables are combined with 
the network unknown variables for a unified solution via the minimization of Lagrange 
functions using Newton method. A detailed description of how the VSC-HVDC and 
network inequality constraints are handled by the multipliers method is provided in this 
chapter. The efficiency of the algorithm has been illustrated by numerical examples. The 
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flexibility that the VSC-HVDC has for controlling active and reactive power flows and 
nodal voltage magnitudes offers great potential in solving many of the operational problems 
facing the electric utility industry. To this end, the proposed Newton OPF gives an answer 
to how to exploit the controller capabilities in order to supply the demand more 
economically, while keeping all the constraints imposed on the system within bounds.  
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Chapter 4  

Global Transient Stability Constrained 

Optimal Power Flow Method 

 
The theoretical bases for transient stability assessment and preventive control by means of a 
generic global approach are presented in this chapter. To investigate the system transient 
stability of the power system the TD analysis is formulated according to the Simultaneous 
Implicit model. To accomplish with this model, the system transient dynamics are 
mathematically represented by the classical model of the generator and the structure 
preserving model of the network, which is described by a set of differential-algebraic 
equations DAE. The DAE set is transformed into difference algebraic equations by 
applying the implicit trapezoidal rule, resulting in a set of non linear algebraic equations 
that can be readily solved through the Newton method.  

The general formulation of the TSC-OPF problem is presented in terms of steady 
state, dynamic state and stability constraints. Steady state constraints are those 
corresponding to the conventional OPF, whilst the dynamic constraints are the difference 
algebraic equations set, which results of applying the trapezoidal rule to the DAE set that 
describes the power system dynamics. In this generic TSC-OPF model, the transient 
stability constraints are formulated according with the stability index based on the rotor 
angle limit. The general TSC-OPF algorithm is presented in order to set the fundamentals 
of the proposed stability control approaches. 

4.1. Power system stability definition and classification 
Power system stability has been recognized as an important problem for secure system 
operation since the 1920s [Kundur, 1994]. Thus the power system operation involves both 
stability and security.  

Power system security is the ability of the power system to withstand sudden 
disturbances such as electric short circuits or non-anticipated loss of system components 
[Kundur et al., 2004]. Power system security involves a wide range of system operation 
aspects, which can be classified into the categories of static and dynamic phenomena 
[Pavella et al., 2000].  

On the other hand, Power system stability is defined as the ability of an electric 
power system, for a given initial operating condition, to regain a state of operating 
equilibrium after being subjected to a physical disturbance, with most system variables 
bounded so that practically the entire system remains intact [Kundur et al., 2004]. Power 
system stability is classified into the dynamic part of security. 
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From a global viewpoint, power system stability is essentially a single problem, 
however, the various forms of instabilities that a power system may undergo cannot be 
properly understood and effectively dealt with by treating it as such [Kundur et al., 2004]. 
Therefore, the system stability has been classified according to the time span required to 
assess the system instability, the size of the disturbance in question and the physical nature 
of the resulting instability. The classification is illustrated in Fig. 4.1. The transient stability 
problem is focused in this research work. 

 
Fig. 4.1. Classification of power system stability. 

4.2. Transient stability 
The Transient Stability (TS) of a power system is defined as its ability to maintain 
synchronism when subjected to a severe disturbance, such as a short circuit on a 
transmission line. A transient instability usually appears in the form of aperiodic angular 
separation of the system machine rotor angles due to insufficient synchronizing torque.  

The phenomenon of transient stability with fast nonlinear dynamics and disastrous 
practical consequences, makes it a problem that must be considered by engineers in charge 
of an electric power system. Therefore, transient stability analysis is an essential study in 
the operation and planning of electric power systems [Kundur, 1994]. If this study 
determines that a rotor angle transient instability takes place due to large electromechanical 
oscillations among generation units and lack of synchronizing torque on the system, control 
actions have to be taken to prevent partial or complete service interruption.  

The transient stability properties of a power system mainly depend on both the 
initial operating state of the system and the severity of the disturbance. These stability 
properties can be determined by Time-Domain (TD) analysis, which is applicable for 
sophisticated mathematical models of electric components, and is feasible for large-scale 
power system analysis. The time frame of interest in TD analysis is usually from 3 to 5 
seconds following the disturbance. It may be extended to 10–20 seconds for very large 
systems with dominant inter-area swings [Stott, 1979; Kundur et al., 2004].  

The TD method is the reference for the transient stability study [Pavella et al., 2000] 
and is considered in this work. However, the TD method by itself does not provide useful 
information for transient stability quantitative assessment and control. Therefore, for the 
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purpose of efficiently assessing and controlling the system transient stability, the SIngle 
Machine Equivalent (SIME) method is considered in this work. 

4.2.1. Mathematical formulation of the problem 
An electric power system dynamic behavior can be mathematically represented by a set of 
differential equations constrained by a set of algebraic equations; this Differential Algebraic 
Equation (DAEs) model is given by (4.1)-(4.2) [Sauer and Pai, 1998], where xs is a vector 
of the dynamic state variables, y is a vector of the algebraic variables (usually network 
complex nodal voltages), and u  is a set of non-time varying system parameters. 

 ( , , ) : n m p n
sF Fsx x y u  (4.1) 

 0 ( , , ) : n m p ng gsx y u  (4.2) 

where n
s Xx , mYy  and pUu . Due to the fact that transmission network 

dynamics are much faster than dynamics of the equipment or loads, it is considered that the 
variables y change instantaneously with variations of the xs states. Hence, only the 
dynamics of the equipment, e.g. generators, controls, FACTS devices, and load at buses, are 
explicitly modeled by the set of differential equations (4.1). The set of algebraic equations 
(4.2) express the mismatch power flow equations at each node of the network. As the power 
system can be viewed as an interconnection of several electric power plant components, 
particulars of each model are given below. All variables are given in per unit, unless 
otherwise specified. 

4.2.2. Generator’s classical model 
The classical model of the generator is considered for transient stability studies in this 
work, since this model is accurate enough to describe the first swing instability phenomena 
[Kundur, 1994]. Fig. 4.2 shows the equivalent circuit of the generator’s classical model. 

 
Fig. 4.2. Classical model of the synchronous generator. 

The generator equivalent circuit is composed by an internal voltage source with 
constant magnitude Ei behind the transient reactance '

dX . Ii is the stator current for the ith 
generator. The complex voltage Vi at the generator terminals is defined by (4.3) [Sauer and 
Pai, 1998]. 

 '
i i di ijXV E I  (4.3) 

The rotor dynamics are mathematically modelled by the swing equations [Kundur, 
1994; Sauer and Pai, 1998]. For the ith generator, these equations are, 

 t t
i i s  (4.4) 
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where the superscripts t0 and t indicate steady and transient state, respectively, Hi is the 
inertia constant in seconds (s), Di is the damping constant, t

i  is the generator rotor angle in 
radians (rad), s is the synchronous speed in rad/sec. 0t

mP represent the turbine mechanical 
injection, which is considered constant during the transient period. This power corresponds, 
without considering internal machine power losses, to that computed by conventional OPF 
analysis. Lastly, t

eiP  is the generator’s active power delivered at its terminals, and associated 
with the internal voltage, as described by (4.6) [Sauer and Pai, 1998].  

 
'

( )
t

i it t t
ei i i

di

EVP Sin
X

 (4.6) 

where t
iV  and t

i  are the voltage magnitude and angle at the generator’s terminal during the 
transient state. Similarly, the generator reactive output power is computed by (4.7) [Sauer 
and Pai, 1998]. 
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4.2.3. Load model 
The classical constant impedance load model is considered to capture the transient system 
trajectories. The equivalent impedance values are computed at the ith load node from the 
equilibrium point that defines the steady state operation of the power system [Sauer and 
Pai, 1998]. In this work, the equivalent load impedance is not explicitly computed, but its 
active and reactive power consumption during the transient state are computed as follows,  
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where PLi and QLi are the nominal load at node i. 0t
iV  is the nominal voltage measured at 

steady state. These quantities are computed from the OPF analysis of Chapter 2. 

4.2.4. Network model for transient state 
The network model describing the transient state of the system is composed by the power 
flow balance equations given by the following constraint set [Sauer and Pai, 1998], 

 0t t t
ei lGi inj ij

j i
P P P  (4.10) 

 0t t t
ei lGi inj ij

j i
Q Q Q  (4.11) 

where t T and i=1,2,…,Nb. T is the time integration interval to be considered in the Time 
Domain analysis and Nb is the number of system buses. The terms t

lGiP  and t
lGiQ  correspond 

to the active and reactive load powers, formulated by (4.8)-(4.9), respectively. t
eiP  and t

eiQ
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are the active an reactive electric output power of the generator, respectively described by 
(4.6) and (4.7). t

inj ijP  and t
inj ijQ  are the active and reactive power flows injected at node i at 

time t of the transient state, and are computed from [Sauer and Pai, 1998],  

 2( ) (t t t t t t t t
inj ij i j ij i j ij i j i iiP V V G Cos B Sin V G  (4.12) 

 2( ) (t t t t t t t t
inj ij i j ij i j ij i j i iiQ V V G Sin B Cos V B  (4.13) 

where Gij and Bij are the equivalent conductance and susceptance of the transmission 
element connected between nodes i and j, respectively. 

4.2.5. Structure preserving Newton-based solution method 
Transient stability studies based on time-domain analysis consist of solving the DAE’s 
mathematical model described by (4.1)-(4.2). There are several methods for solving this 
kind of mathematical model, but there are basically two approaches used in power system 
simulation packages: Simultaneous Implicit (SI) and Partitioned Explicit (PE) methods 
[Sauer and Pai, 1998]. 

The SI method can handle shift equations very well and is more stable than the PE 
method. These two reasons explain why the SI method is the most preferred approach to 
develop of commercial grade transient stability programs. The SI method aims to 
simultaneously solving the DAE’s system. To make it possible, the differential set (4.1) is 
converted (discretized) into algebraic equations by using either the Euler’s implicit method 
or the Implicit Trapezoidal rule. The resulting algebraic equations set is added to the 
nonlinear algebraic set (4.2), then both nonlinear algebraic sets are solved in a unified 
reference frame by using Newton method. In this work the SI method together with the 
Implicit Trapezoidal rule is used to carry out time-domain analysis considering the 
Structure Preserving Model of the power system, details are given below. 

4.2.6. Structure preserving classical model 
The structure preserving model is basically described by the general DAE’s system given 
by (4.1)-(4.2). In power system analysis, this model has been widely used in structure 
preserving transient energy function and voltage collapse literature that uses energy 
functions [Sauer and Pai, 1998]. The schematic representation of this model is shown in 
Fig. 4.3. 

 
Fig. 4.3. Structure preserving model schematic representation. 
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In Fig. 4.3 the nb bus system is extended by the constant voltage behind the 
transient reactances at the generator buses ng=1,2,..,m. The generator internal nodes are 
denoted by ngi =n+1,…,n+m. In the mathematical representation of this model, the general 
differential equation set (4.1) is related to the generator swing equations (4.4)-(4.5). On the 
other hand, the algebraic set (4.2) is associated with the network transient state constraints 
(4.10)-(4.11). Under this context, the structure preserving model of the system is given by 
[Sauer and Pai, 1998], 

 

 , 1,2,...,t t
i i s gt T i n  (4.14) 
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 0 , 1,2,...,t t t
ei lGi inj ij b

j i
P P P t T i n  (4.16) 

 0 , 1,2,...,t t t
ei lGi inj ij b

j i
Q Q Q t T i n  (4.17) 

The Simultaneous Implicit method is used to solve (4.14)-(4.17), which requires  
applying the Implicit Trapezoidal rule to discretize the generator swing equations (4.14)-
(4.15). 

4.2.7. Discretization of the swing equations 
Due to its numerical stability, the implicit trapezoidal rule is widely used to discretize 
differential equations involved in transient stability studies. This rule states that an ordinary 
differential equation of the form (4.1) can be represented at a single time integration step t 
of the integration interval T by the following algebraic function [Rafian et al., 1987], 

 ( , , ) ( , , ) ( , , ) ,
2 2

t t t t t t t t t t t
s s s s s

t tx y u x F x y u x F x y u t T  (4.18) 

where t  is the length of the integration step time. Generator swing equations are 
formulated as difference constraints according to (4.18). Considering the synchronous 
reference frame this set is included into the structure preserving model as follows,  
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 0 , 1,2,...,t t t t
ei lGi inj ij b

j i
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where 2i s iM H  is the inertia coefficient for the i-th generator, ( )s  is the 
rotor’s speed deviation w.r.t. to the synchronous speed s .  



 

44 
 

It must be noted that the structure preserving model is only composed by the 
nonlinear algebraic equation set (4.19)-(4.22). The solution of this set can be readily 
obtained by using Newton method, where the corresponding linearized system is 
formulated by (4.23). 
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Where k indicates the iteration number of the Newton method, the system variables are 
updated according to: 

 1[ , , ] [ , , ] [ , , ] ,t t t t k t t t t k t t t t k t TV V V  (4.24) 
The repetitive solution of (4.23), yields at the kth iteration the system dynamics for 

the single time step t of the whole integration interval T. The whole system dynamics 
defined in T are described by the solution set S, which is composed by the solution of (4.19)
-(4.22) for each time step t. 

4.2.8. Initial conditions for time-domain analysis 
Initial conditions are necessary to carry out the solution of the equation set (4.19)-(4.22). 
System variables xs,y, and u can be initialized based on the steady state operating point 
obtained from a power flow analysis. It is also possible to initialize these variables by using 
the optimum steady state operating point given by OPF analysis, as considered in this work. 
Here, the network dynamic state complex voltages t tV  are initialized with the complex 
voltage steady state profile 0 0t tV  obtained by OPF analysis. The mechanical power of 
generators mP  is scheduled at the values computed by this same analysis. The magnitude of 
each generator internal complex voltage Ei and rotor angle t

i  are initialized from the 
simultaneous solution of (4.25)-(4.26) [Gan et al., 2000].  

 0 0 0 0'( ) 0t t t t
i i i i d i miE V Sin X P  (4.25) 

 0 0 0 0 0
2 '( ) 0t t t t t

i i i i i di giE V Cos V X Q  (4.26) 

The rotor speed t
i is initialize as indicated by (4.27). 

 0t
i s  (4.27) 

where 0t
i  and 0t

i  represent the steady state value of t
i  and t

i , respectively. 0t
iV  and 0t

i  
are the steady state voltage magnitude and angle, respectively, at the ith generator terminals. 
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4.3. Transient Stability-Constrained Optimal Power Flow 
conventional approach 

The aim of the transient stability preventive control approach described in this section 
consists of formulating the generation rescheduling as an optimization problem, where the 
conventional OPF model (2.1)-(2.4) is extended to include the set of differential-algebraic 
equations (4.14)-(4.17) that describes system dynamics subjected to a credible disturbance, 
along with transient stability limits. When the solution of this model is carried out in a 
unified reference frame, the optimization procedure is called global Transient Stability-
Constrained Optimal Power Flow (TSC-OPF) approach [Ruiz-Vega and Pavella, 2003]. 
The global TSC-OPF approach yields the values of control variables, steady and transient 
state variables, which satisfy all the imposed static and dynamic security constraints while 
minimizing the specified objective function. This solution ensures that the synchronous 
generators maintain stability in response to a specified credible contingency.  

4.3.1. General formulation 
For simplicity of notation, assuming that there is only one contingency in the security 
analysis, the general formulation of the Transient Stability-Constrained Optimal Power 
Flow can be expressed, from the time 0t  of the inception of the disturbance to the clearing 
time clt , and from this time to the end of the study time period endt , 0[ , ) ( , ]cl cl endT t t t t , 
as follows [La Scala et al., 1998; Gan et al., 2000]: 

 
 min ( )f u  (4.28) 
subject to 
Prefault steady state constraints: 

 0 0 0 0 0 0, 0, 0, , 0,t t t t t tG I Hy u x y u u u u  (4.29) 

Dynamic constraints: 
 0 0( ) ( ), ( ) 0, ( ) , ( ) ,t F t t t t t Tx x y x x y y  (4.30) 

 ( ), ( ), 0,G t t t Tx y u  (4.31) 

Transient stability constraints: 
 ( ), ( ), 0, ( , ]cl endH t t t t tx y u  (4.32) 

where f  is the objective function; u  is a vector of control variables with upper bound 
u and lower bound u ; ( )tx and ( )ty are the power system state and algebraic variables 
during the transient period, while 0ty and 0tx  are variables at the initial prefault steady 
state, as indicated by superscript t0. 0 ( )tG  and 0 ( )tI  are equality constraints representing 
the power flow mismatch equations and the initial conditions equations for state variables, 
respectively, whilst 0 ( )tH  are inequality constraints associated with the system physical 
and operation limits. ( )F  are functions describing the power plant component dynamics, 

( )G  are equality constraints representing the network power balance equations that must 
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be satisfied at each time step and ( )H are inequality constraints associated with transient 
stability limits.  

The TSC-OPF formulated by (4.28)-(4.32) is a nonlinear optimization problem with 
differential and algebraic equation constraints. Conventional optimization techniques can 
not directly handle with differential equations so, in order to be able to solve this problem, 
the set of differential equations (4.30) are converted into difference (algebraic) equations by 
a discretizing scheme [La Scala et al., 1998; Gan et al., 2000]. Here, trapezoidal rule is 
applied to convert the dynamic constraint (4.30) as follows [Rafian et al., 1987]: 

 ( ), ( ), ( ), ( ), ( ), ( ), 0,t ht t t t t t t t t Tx y u x y u x y u  (4.33) 

where t  is the integration time step,  represents a set of difference equations of 

(4.30), and terms t  and h  are defined by, 

 ( ), ( ), ( ) ( ), ( ),
2t
tt t t F t tx y u x x y u  (4.34) 

 ( ), ( ), ( ) ( ), ( ),
2h
tt t t t t t F t t t tx y u x x y u  (4.35) 

Now the optimization problem described by the general equations (4.28)-(4.29) and 
(4.31)-(4.35), can be solved via a conventional optimization nonlinear technique. It must be 
pointed out that the discretization scheme results in a huge increasing of the number of 
variables involved in the optimization model.  

In order to present a more explicit structure of the TSC-OPF mathematical model, 
the previous general formulation is developed according to the specific optimization model 
considered in this work. For the sake of simplicity, the classical model of the generator is 
considered. The generator internal power losses are ignored, and therefore at steady state 
the scheduled mechanical input power Pm of the generators equals the electric active output 
power Pe. The explicit TSC-OPF formulation is given, in polar coordinates, as follows. 

4.3.2. Objective function 
The objective function is the minimization of the total power generation cost, described by 
[Huneault and Galiana, 2009], 

 0 0 2

1
( ) ( ) ( )

gN
t t

i i m i i mi
i

f a b P c P  (4.36) 

where ai, bi and ci are the cost curve coefficients for the generation bus i. Ng is the number 
of generators, whose individual scheduled mechanical power is miP . Superscript t0 means 
that these values correspond to the initial steady state. 

4.3.3. Pre-fault steady state constraints 
Similarly to conventional OPF, the system steady state is subjected to the sets of constraints 
given below. 

The power balance at each bus must be satisfied according to the following 
constraint set [Acha et al., 2004], 
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where Nb is the number of buses, and g iQ  is the scheduled reactive power at bus i. The 

nodal active and reactive constant power loads are represented by liP  and liQ , respectively. 

j i
 is the set of nodes adjacent to node i, whilst 0t

inj i jP and 0t
inj i jQ  are active and reactive 

power flows injected at bus i, given by [Acha et al., 2004], 

 0 0 0 0 0 0 0 0
2

( ) ( )t t t t t t t t
injij i j ij i j ij i j i iiP V V G Cos B Sin V G  (4.38) 

 0 0 0 0 0 0 0 0
2

( ) ( )t t t t t t t t
inj ij i j ij i j ij i j i iiQ V V G Sin B Cos V B  (4.39) 

where Vk and k are the voltage magnitude and angle at node k (k=i,j). Gij+jBij is the 
transfer admittance between bus i and j. 

The constant voltage iE  behind the direct axis transient reactance '
diX , as well as 

the initial conditions 0t
i  and 0t

i  for the rotor angle and speed, respectively, are obtained 
by means of the following constraint set [Sauer and Pai, 1998; Gan et al., 2000],  
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where Vi and i are the voltage magnitude and angle at the ith generation bus. 
Physical and operating limits constrain the practical steady state operation of power 

systems. Some of these limits are mathematically described by [Acha et al., 2004], 
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For preventive transient stability control, one of the most important control 
variables is the generator scheduled mechanical power input. This control variable is bound 
by power plant design limits, given by [Acha et al., 2004],   

 0 0 0 , 1,2,...,t t t
mi mi mi gU P P P i N  (4.42) 

4.3.4. Dynamic constraints 
The following equations comprise the dynamic state constraint sets, 

The power flow mismatch equations regarding the transient state are modeled by the 
following constraint set [Sauer and Pai, 1998], 
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where terms PlGi and QlBi correspond to the active and reactive load powers, formulated by 
(4.44). Pei and Qei are the active and reactive electric power output of the generator, 
respectively, described by (4.45). t

inj i jP  and t
inj i jQ  are active and reactive power flows 

injected at node i at each time step of the transient state, given by (4.46)-(4.47) [Sauer and 
Pai, 1998]. 
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where i is the state variable that represents the rotor angle of the generator at time t. 
In addition to the power flow mismatch equations, the generator swing equations 

must be formulated as difference constraints according to (4.33). Considering the 
synchronous reference frame this set is given by [La Scala et al., 1998; Gan et al., 2000; 
Yuan et al., 2003], 
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where Mi is the moment of inertia (s2/rad) and Di represents the constant damping for the i-
th generator. i is the state variable that represents the rotor speed of the generator at time t.  

4.3.5. Transient stability constraints  
Transient stability constraints aim to represent the system transient stability boundary, such 
that the steady state operating point computed by TSC-OPF analysis lies inside this 
boundary. There are two main transient stability criterions used in the literature to represent 
stability constrains in global transient stability approaches; the first criterion is the dot 
product [La Scala et al., 1998] and the second is the rotor angle limit index [Gan et al., 
2000].  

The dot product criterion states that system stability is ensured as long as the dot 
product is less than zero in the whole study integration interval. Hence, the number of 
stability constraints formulated into the TSC-OPF model equals the number of integration 
time steps included into the optimization process. 
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The rotor angle stability index states that system stability is guaranteed if the 
angular deviation of each generator with respect to the center of inertia (COI) is less than a 
pre-specified threshold in the whole study integration interval. The rotor angle stability 
index can be formulated as a set of stability constraints ( )H , given by [Gan et al., 2000]: 
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 (4.49) 

where Ng is the number of generators, Hk is the inertia constant (s) of the kth generator and 
t

i is the ith generator rotor angle with respect to the center of inertia (COI). According to 
(4.49), the number of stability constraints to be considered in the TSC-OPF model 
increases, and equals the number of integration time steps included into the optimization 
process times the number of generators Ng.  

4.3.6. Generic algorithm for TSC-OPF global approaches 
Preventive transient stability control global approaches, in its basic version, are 

comprised of three main components; conventional OPF (Chapters 2 and 3), time-domain 
simulation (Section 4.2) and TSC-OPF (Section 4.3) analysis, which interact as described 
below and illustrated in Fig. 4.4.  

 
Fig. 4.4. Transient stability preventive control flow chart. 

 
The conventional OPF is executed to determine an optimum initial steady state 

operating point IP0. Then, it is convenient to run a time-domain analysis to verify if the 
credible contingency scenario to be considered into the TSC-OPF analysis makes the 
system transiently unstable. If this is the case, the TSC-OPF analysis is carried out 
considering the dynamic constraints that represent the system dynamics during the whole 
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time integration interval 0[ , ) ( , ]k
cl cl endT t t t t , along with the transient stability 

constraints. The optimum steady state operating point IPk given by this analysis might 
preventively ensure the system stability, but in order to make it sure, its transient stability is 
assessed using this point as an initial condition to carry out a new time-domain analysis. In 
this new time-domain analysis the system might hits stability limits after endt  (be unstable). 
This is because of the TSC-OPF analysis enforces stability constraints of the system 
dynamics within the time integration period T, thereafter the system trajectories (dynamics) 
could result unstable. If this is the case, the time integration period T is updated to a higher 
value of endt , then the preventive stability control procedure goes to the next TSC-OPF 
analysis. This iterative procedure is carried out until the TSC-OPF analysis yields an 
optimum steady state operating point that ensures the system transiently stable, which is 
corroborated by TD analysis. 

The objective function and steady state constraints involved in the TSC-OPF model 
are those considered in the conventional OPF model, whose solution procedure through the 
Newton-Based approach was explained in Chapter 2. Bearing this in mind, the Newton 
method can be readily applied to carry out the solution of the TSC-OPF model by 
representing the first and second derivatives of Lagrangian terms associated to the dynamic 
constraints into the linear system of equations given by (2.23), the first and second 
derivatives of Lagrangian terms associated to the dynamic constraints. It must be noted that 
these constraints are all equality constraints. On the other hand, the transient stability rotor 
index is formulated as an inequality constraint on variables (4.49), which can be handled by 
means of the Lagrangian Multiplier method explained in Section 2.2.4. 

4.4. Conclusions 
This Chapter presents theoretical bases for transient stability assessment and preventive 
control. Here, the Time Domain analysis is formulated in terms of power flow injections in 
polar form. In addition, the Time Domain model is expressed according to the 
Simultaneous Implicit model, which considers the Structure Preserving Model.  

The theoretical information of global TSC-OPF is presented with the purpose of 
state the main reference frame of the proposed approaches derived from this research work.  

It must be pointed out that all the previous models have been implemented in C++ 
computational programs using sparsity techniques. Results obtained by using these 
developed computational tools are presented implicitly in results obtained by the proposed 
transient stability control approaches, which are presented in following chapters. 
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Chapter 5  

Transient Stability Constrained  

OPF-OMIB Based Global  

Approaches 

 
This chapter deals with the SIME method and the proposed transient stability preventive 
control approaches.  
Based on the assumption that the mechanism of loss of synchronism in a power system 
originates from the irrevocable separation of its machines into two groups, the SIME SIngle 
Machine Equivalent (SIME) method reduces the trajectories of a multi-machine system to 
the trajectory of a One Machine Infinite Bus (OMIB) equivalent [Pavella et al., 2000]. This 
reduced model makes it easy to carry out the transient stability preventive control because it 
is only necessary to stabilize one single trajectory, which represents the whole system, 
instead of each machine’s trajectory. Based on this idea, it is proposed in this chapter that 
the OMIB equivalent derived by SIME can be used to carry out the transient stabilization 
process by a global TSC-OPF. 

5.1. The SIME method 
The SIngle Machine Equivalent (SIME) method belongs to the general class of transient 
stability methods which relies on a one-machine infinite bus (OMIB) equivalent. At 
difference with other method based on OMIB equivalents, SIME method uses the concept 
of generalized OMIB equivalent, which relaxes the coherency assumption among machines 
and considers detailed power system models. More precisely, it is a hybrid temporal-direct 
method, since it relies on the multi-machine system evolution with the time and the equal 
area criterion [Pavella et al., 2000].  

There are two versions of the method, Emergency and Preventive SIME. The first 
uses real-time measurements collected on the system power plants, which are used by 
SIME to control the power system after a disturbance inception, so as to prevent loss of 
synchronism. In the preventive version, prior to the disturbance occurrence, the temporal 
information of the multi-machine power system is provided by a Time-Domain (TD) 
program [Pavella et al., 2000]. Here the preventive SIME is considered, and it is simply 
called as SIME. 
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The salient parameters of SIME method are; the determination of a One Machine 
Equivalent that represent a multi-machine system, the assessment of the very moment at 
which the system (in)stability occurs, and the computation of stability margins. These 
salient parameters have been accurately used to derive a preventive transient stability 
control sequential approach [Pavella et al., 2000; Ruiz-Vega and Pavella, 2003]. In this 
work, all information provided by SIME is used to derive two transient stability control 
global approaches based on a global formulation of the problem, and to reduce the 
computational burden associated to address the problem of computing a transiently stable 
optimal equilibrium point. 

5.1.1. SIME foundations 
The SIME method relies on the observation that the loss of synchronism of a multi-
machine system originates from the irrevocable separation of system machines into two 
groups: one composed of the Critical Machines (CMs) responsible for the loss of 
synchronism, the other of the Non-critical Machines (NMs) [Pavella et al., 2000]. Based on 
time-domain (TD) simulations, SIME uses the physical parameters and time varying data of 
CMs and NMs to generate an OMIB equivalent system. 

The transformation of the multi-machine system to an OMIB equivalent system is 
performed at each time step of the post-fault transient stability simulation by three main 
steps: i) Decomposition of the system machines into two groups of machines: CMs and 
NMs, ii) Representation of the two groups of machines by two single machines, and then by 
an OMIB equivalent, iii) Finally, the assessment of the transient stability condition of the 
multi-machine system by the Equal Area Criterion (EAC) on the OMIB equivalent system. 
More details about these steps are given in the following sections. 

5.1.2. Identification of critical machines 
The critical machines are those which cause the system loss of synchronism. To identify 
them, SIME drives the time domain transient stability program first in the during-fault, then 
in the post-fault configuration [Ernst et al., 2001]. To accomplish this task, at each time step 
of the post fault simulation, SIME sorts the machines according to their rotor angles, 
identifies the very first largest rotor angular distances between adjacent machines, and 
considers as candidate CMs those which are above each one of the (say, 5) largest distances, 
whilst the remaining machines are considered as candidate NMs. The procedure is carried 
out until a candidate group of CMs and corresponding OMIB reach the unstable conditions 
defined in Section 5.1.4. Each candidate OMIBs is uniquely represented by its parameters, 
which are derived from temporal information given by the TD simulation. 

5.1.3. OMIB structure and time-varying parameters 
Several decomposition patterns of the system machines into two candidate groups of 
critical and non-critical machines are constructed based on the previous CMs identification 
procedure [Pavella et al., 2000]. Each candidate group of machines is replaced by a single 
equivalent machine, whose equivalent angle and speed parameters are computed by 
aggregation as, 

 1( ) ( ) ( )C C k k
k C

t M t M  (5.1) 



 

53 
 

 1( ) ( )C C k k
k C

t M t M  (5.2) 

 1( ) ( ) ( )N N j j
j N

t M t M  (5.3) 

 1( ) ( )N N j j
j N

t M t M  (5.4) 

where the subscripts C and N refer to the group of critical and non-critical machines, 
respectively. The equivalent inertia coefficient of each candidate group of machines is 
given by,  

 C k
k C

M M  (5.5) 

 N j
j N

M M  (5.6) 

where k C  and j N defines the critical and non-critical machines of a candidate group. 
( , )iM i k j  is the moment of inertia of the ith generator. 

A candidate OMIB’s equivalent structure is computed from each one of the defined 
decomposition patterns, and its parameters are calculated from the corresponding individual 
machines parameters by [Pavella et al., 2000], 

 ( ) ( ) ( )C Nt t t  (5.7) 

 ( ) ( ) ( )C Nt t t  (5.8) 

Lastly, the candidate OMIB equivalent inertia coefficient M, electrical power Pei and 
mechanical power Pm parameters are computed by,  

 C N

C N

M MM
M M

 (5.9) 

 1 1( ) ( ) ( )e C ek N ej
k C j N

P t M M P t M P t  (5.10) 

 1 1( ) ( ) ( )m C mk N mj
k C j N

P t M M P t M P t  (5.11) 

Each candidate OMIB is verified to be the critical OMIB according with the 
unstable condition given in the following section.  

5.1.4. Stability conditions and margins 
The severity of a fault scenario can be assessed in terms of the stability margin, which is 
stated by the EAC criterion as the excess of the decelerating over the accelerating area of 
the P  plane: 

 dec accA A  (5.12) 

Accordingly, the OMIB equivalent system, and hence the multi-machine system, is 
stable if 0 , and unstable if 0 . The stability margin  is computed in accordance with 
the following procedure.  
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From the whole set of candidate OMIBs, the first candidate that satisfies the 
instability condition is declared as the critical OMIB equivalent or simply the OMIB. This 
condition is fulfilled at the time to instability ut where the electrical power curve ( )eP t  and 
the mechanical power curve ( )mP t  intersect each other. This condition is formulated 
mathematically by (5.13) and, once it is satisfied, SIME stops the TD simulation and 
computes the OMIB unstable margin as given by (5.14), where ( )ut  is the rotor speed at 

ut . 

 ( ) ( ) ( ) 0 ; ( ) 0a u m u e u a uP t P t P t P t  (5.13) 

 2( ) 2u uM t  (5.14) 

Since the OMIB equivalent system is obtained from a group of critical machines, it 
can only be derived for unstable cases. However, the OMIB stable condition ( 0 ) can be 
established by continuation of the less unstable OMIB equivalent [Pavella et al., 2000]. In 
this case, the OMIB equivalent is stable if the ( )eP t  curve returns before crossing the ( )mP t  
curve at time to stability rt and the return angle ( )rt , where OMIB rotor speed ( ) 0rt , 
as stated by (5.15).  

 ( ) 0 ; ( ) ( ) ( ) 0r a r m r e rt P t P t P t  (5.15) 

Once conditions (5.15) have been met, the stable margin is computed by (5.16), 
where ( )ut is the rotor angle at ut  obtained from the less unstable case, and ( )a rP t is the 
accelerating power at rt . 

 ( ) ( ) ( ) 2st a r u rP t t t  (5.16) 

Due to the fact that stability conditions are tested at each time step of the TD 
simulation, once conditions (5.13) or (5.15) are satisfied, the simulation can be stopped, 
unless multi-swing instability phenomena are of interest. In this latter case, only conditions 
(5.15) are verified for the whole study time period T, which is usually set to a span of 10 to 
20 seconds [Pavella et al., 2000; Kundur et al., 2004]. 

5.1.5. SIME sensitivity analysis 
SIME sensitivity analysis provides a quantitative measure of the OMIB’s stability margin 

changes with respect to variations in a selected sensitivity parameter ps, such as clearing 
time or an OMIB’s parameter. Based on this analysis it is possible to set guidelines to drive 
the system dynamics toward a desired behavior, as proposed in the preventive transient 
stability control sequential approach [Pavella et al., 2000; Ruiz-Vega and Pavella, 2003]. 

It has been observed through numerous examples that there is a quasi-linear 
relationship between changes of u  and variations of the fault clearing time clt  or the 
OMIB mechanical power 0( )mP t  [Pavella et al., 2000; Ruiz-Vega and Pavella, 2003], in 
this case ps= clt  or ps= 0( )mP t .  

Taking advantage of the quasi-linear relationship of  vs ps, it is possible to make 
an accurate prediction of the value that ps must have to achieve the system transient 
stability limit. This is carry out by performing successive linear extra- (inter-) polations 
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using the OMIB’s parameters and stability margins values of two successive SIME 
simulations. The abovementioned stability limit search conventionally requires few linear 
extra- (inter-) polations. Arguably, its efficiency could be influenced by the choice of the 
perturbation length sp on the sensitivity parameter ps, but not its accuracy [Pavella et al., 
2000]. 

 
Fig. 5.1. Sensitivities behavior of OMIB stability margin  w.r.t. changes in ( )crlt . 

Fig. 5.1 presents the sensitivity behavior of OMIB stability margin , for a fixed 
fault clearing time clt , with respect to changes of the OMIB rotor angle deviation ( )crlt  at 
a given selected time step ctrlt . It must be pointed out that crlt  is a fixed time at which the 
OMIB angular deviation is measured, and could be selected along the whole study time 
period 0,[ ]endT t t , lasting from the initial simulation time step t0 to the end of the study 
time period tend. The behavior of vs ( )ctrlt  is also shown to be quasi-linear in this figure. 
This relationship suggests that the system transient stability limit can be computed as a 

function of ( )s ctrlp t , by using the sensitivity 
( )

( )
ctrl

k ctrl
s t

S t
p

into a linear extra- 

(inter-) polations process. 
In the successive extra- (inter-) polations process, the margin’s sensitivity ( )k ctrlS t is 

analytically represented by the slope of the linear function joining two successive points
1 ( 1), ( )k k ctrlt  and 2 ( 2), ( )k k ctrlt  computed by two successive SIME analysis. 

However, the following considerations should be taken into account in the computation of 
these points to assure that the sensitivity analysis is valid: 

Both different angular deviations ( 1) ( )k crlt  and ( 2) ( )k crlt are measured on two 
different equivalent trajectories ( 1)k and ( 2)k , respectively, but at the same specified time 
step ctrlt  (see Fig. 5.2). 

Equivalent trajectories ( 1)k  and ( 2)k  are uniquely defined by their respective 

initial operating points 1kIP  and 2kIP , which also characterize the pre-disturbance state of 
the multi-machine system represented by these trajectories (see Fig. 5.2).  

Equivalent trajectories ( 1)k  and ( 2)k  must to correspond to OMIBs that have the 
same m-swing structure: they are composed by the same groups of critical and non-critical 
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machines, and satisfy the condition of instability in the same m-swing instability. This 
means that the OMIBs assessed at the (k-1) and (k-2) SIME simulations have the same 
value of the equivalent inertia coefficient M, ( 1) ( 2)k kM M . 

Despite both OMIBs associated to ( 1)k  and ( 2)k  have the same m-swing 
structure, they are also uniquely defined by the two different steady state operating points 

1kIP  and 2kIP . This implies that the set of time-varying parameters along with the 
stability margin  associated to each OMIB have different values each other. Otherwise, 
both OMIBs dynamic responses given by trajectories ( 1)k  and ( 2)k  will be equal, such 
that the computation of the margin’s sensitivity could yield indeterminate values since both 

 and ps would tend to zero. 
 

 
Fig. 5.2. OMIB angular trajectories and its deviation at tctrl. 

 

The value of the margin sensitivity ( )k ctrlS t  at the kth successive linear 
extra- (inter-) polation is then calculated as: 

 2 1

( 2) ( 1)

( )
( ) ( )

ctrl

k k
k ctrl

t k ctrl k ctrl

S t
t t

 (5.17) 

Based on (5.17), the desired value of the OMIB’s rotor angle deviation ( )sh k ctrlt  
that might yield a null stability margin k =0 is given by: 

 ( 1) ( 1)
( 1)

( )
( ) ( )

( )
k k ctrl

sh k ctrl k ctrl
k ctrl

t
t t

S t
 (5.18) 

The points , ( )ctrlt can be predicted by using (5.17) and (5.18) in proposed TSC-
OPF approach given in Section 5.5.  

5.2. Approach I: OMIB reference trajectory TSC-OPF 
This section presents the formulation of a new transient stability constraint. This constraint 
uses the OMIB equivalent constructed by SIME from the multi-machine system 
parameters. Based on this constraint the Approach I: OMIB reference trajectory TSC-OPF 
approach is performed. The proposed transient stability constraint is carried out from the 
observations given below. 
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5.2.1. Approach I: Stability constraint formulation 
For any given unstable contingency scenario and Initial steady state operating Point (IP), 
the stabilization process aims to modify this point by considering stability limits that bound 
rotor angular deviations to maintain the system synchronism.  

From the IP and contingency scenario, SIME simulations are carried out to compute 
the unstable and stable (critical) equivalent trajectories, considering the original fault 
clearing time tcl and the computed critical clearing time (CCT), respectively, for the same 
OMIB composition. Recall that for the critical clearing time the system has a small positive 
stability margin. Based on transient stability concepts, the transient evolution of the 
unstable trajectory is always above the corresponding critical trajectory after clearing time, 
as shown in Fig. 5.3, where ( )CT ut  and ( )UT ut  are the rotor angles at to instability tu on 
the stable and unstable trajectories, respectively. 

 

 
Fig. 5.3. Schematic representation of critical and unstable OMIB trajectories. 
To reduce the instability degree, it is proposed that the stabilization process must be 

carried out at tu, which is the time where the OMIB is identified. At this time, the stability 
of the OMIB will be guaranteed as long as its angular trajectory is bounded by the critical 
trajectory. Bearing this in mind, it is proposed to set the unstable trajectory deviation 

( )UT ut  at the value of the critical trajectory ( )CT ut , such that the difference ( )UT ut -
( )CT ut  must tend to zero. Based on this idea the transient stability constraint is set as 

 ( ( ), ( )) ( ) 0CT u UT u u hH t t t T  (5.19) 

where hT  is a desired deviation threshold (e.g. 41e ), and ( ) ( ( ) ( ))u UT u CT ut abs t t . 
( )CT ut is a scalar value corresponding to the angular deviation of the critical trajectory at 

tu. The value ( )CT ut  is maintained fixed during the solution of the optimization process. 
On the other hand, ( )UT ut  is a function of the CMs and NMs variables described by (5.7), 
such that the rotor angles of the machines associated to both groups are variables during the 
optimization process to satisfy (5.19). The single explicit constraint (5.19) replaces the set 
of stability constraints represented by either (4.32) or (4.49). 



 

58 
 

5.2.2. OMIB reference trajectory stability constraint advantages 
The simple inclusion of the proposed constraint (5.19) into the TSC-OPF model derives the 
following advantages w.r.t. the dot product criterion and the rotor angle stability index: 1) 
The control is performed in one equivalent trajectory at one single time step tu, instead of 
controlling Ng  trajectories at each time step as proposed in other formulations [Gan et al., 
2000; Yuan et al., 2003; Xia and Chan, 2006]; 2) The rotor angle limits are not confined to 
a fixed value as proposed in [Gan et al., 2000]; 3) The time integration period in which the 
transient stability constraints must be included in the optimization process is defined from 
t0 to tu (i.e. 0[ , ) ( , ]cl cl uT t t t t ), such that the problem dimension is objectively defined, 
instead of selecting an arbitrary upper integration interval tend, as proposed in [Gan et al., 
2000; Yuan et al., 2003; Xia and Chan, 2006; La Scala et al., 1998]; 4) The generation re-
dispatch is performed by the TSC-OPF.  

Aforementioned advantages of the new proposed approach in the reduction of the 
programming problem size and complexity, with respect to the ones of approaches 
presented in [Gan et al., 2000] and [La Scala et al., 1998], are explicitly displayed in Table 
5.1, where a direct size comparison between the different approaches is performed.  

 

Table 5.1. Size comparison between the Approach I and other approaches 
 Gan et al., 2000 La Scala et al., 1998 Approach I 
Upper integration 
period tend 

Arbitrary 
tend 

Arbitrary 
tend 

Not arbitrary 
tu 

Number of integration 
steps 

Arbitrary 
Nsa=(tend - t0)/ t 

Arbitrary 
Nsa= (tend - t0)/ t 

Not arbitrary 
Nsb = (tu - t0)/ t

Number of transient 
stability constraints 

*g saN N  saN  1 

Number of dynamic 
constraints (2Nb+2Ng)*Nsa (2Nb+2Ng)*Nsa (2Nb+2Ng)*Nsb

Heuristic stability 
criterion Yes No No 

 

It must be pointed out that the same number of prefault steady state constraints of 
Section 4.3.3 is employed in the formulation of all approaches reported in this table. 
However, the number of transient stability constraints of equation (4.32) is reduced to a 
single constraint in the new proposed approach, whilst it depends on the upper integration 
interval tend in [Gan et al., 2000; La Scala et al., 1998], and is at least equal to the number of 
integration steps Nsa in [La Scala et al., 1998], or as large as Nsa times the number of 
generators Ng as in [Gan et al., 2000].  

In addition, the proposed approach avoids arbitrariness of tend of [Gan et al., 2000; 
La Scala et al., 1998] by setting tend =tu. This usually decreases the number of integration 
time steps to the minimum number of steps required to assess instability, objectively 
determined by SIME (normally,  tu < tend thus Nsb<Nsa) and therefore reduces the number of 
dynamic constraints of Section 4.3.4. 

The stability of the system operating at the initial IP is improved once the TSC-OPF 
model formulated by (4.36)-(4.48) and (5.19) is solved, which yields a new steady state 
operating point. However, the complete contingency stabilization may not be achieved 
because the critical trajectory accurately describes the maximum angular deviations for the 
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initial equilibrium point IP, and not for the new equilibrium point (and additionally due to 
the nonlinearity of the problem). To verify that the new operating point is transiently stable, 
a stability analysis must be executed. As long as the system is not stable, it is necessary to 
compute the critical trajectory for the new operating point in order to update the stability 
inequality constraint (5.19) that must be considered in the next TSC-OPF analysis. 

5.2.3. OMIB reference trajectory TSC-OPF algorithm 
The proposed algorithm for preventive transient stability control readily derives from the 
foregoing discussion and is summarized below.  

 
 

Step 1.- Run a conventional OPF to obtain an Initial operating Point (IP). 
Step 2.-For the IP and given fault scenario, run a SIME simulation of the multi-machine 
system to analyze the transient stability of the OMIB equivalent system. If the stability 
condition is met, go to Step 8, or else determine the time tu where the instability condition 
is met and go to Step 3. 
Step 3.- On the Unstable Trajectory obtained in Step 2 determine the OMIB rotor angle 
deviation at tu, UT(tu ), then go to Step 4. 
Step 4.- For the IP and fault scenario given in Step 2, run  SIME to compute the critical 
clearing time CCT and the OMIB equivalent critical trajectory CT. Find out the OMIB 
rotor angle deviation at tu, CT(tu ).  
Step 5.- Formulate the transient stability constraint H( CT(tu ), UT(tu )) given by (5.19) 
Step 6.- Compute a new steady state operating point by solving the optimization problem 
described by (4.36)-(4.48) and (5.19) for the time integration interval T=[t0,tcl) (tcl,tu]. 
Step 7.- Replace the IP with the new operating point computed in Step 6, and go to Step 2.  
Step 8.- The IP is the transiently stable operating point sought, such that the transient 
stability control has been achieved. END. 

This proposed algorithm is applied for the purpose of present numerical examples, 
as given below.  

5.3. OMIB reference trajectory TSC-OPF results 
In order to illustrate numerically the prowess of the proposed approach to control the 
transient stability, the 3-machine 9-bus IEEE system [Sauer and Pai, 1998] and the 10-
machine 39-bus New England system [Pai, 1989] are considered in the numerical 
examples, their corresponding data and one-line diagram are respectively shown in 
appendix B and C. It must be pointed out that these systems have been also used by other 
authors to exemplify their proposals [Gan et al., 2000; Nguyen and Pai, 2003]. The classical 
generator model is considered in both cases presented in this section. However, it is 
important to notice that the use of a simplified model is not a constraint imposed either by 
the approach, i.e. the TSC-OPF formulation [Gan et al., 2000] or SIME [Pavella et al., 
2000], which may deal with any power system component model. All loads are modeled as 
constant powers in the steady-state stage and as constant impedances in the dynamic stage 
of the TSC-OPF. In all simulations transient period of simulation is tu with integration time 
step of 0.01s.  
The design of the examples and the stability control results are given below. 
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5.3.1. Approach I: Three-Machine Nine-Bus system Results 
For this system, the steady state voltage magnitude limits in pu for generation and load 
nodes are 1.00  Vg  1.06 and 0.97  Vg  1.05, respectively. The cost functions for 
generators and their ratings are given in Table 5.2. Taking into account these parameters 
and system’s data given in Appendix B, the optimum initial operating point IP0 is computed 
by a conventional OPF analysis (Step 1), and is shown in Table 5.3. 

 

Table 5.2. Cost curves for 9-bus system 

Node A $
hr

 B BMVA $
MWhr

C 2
B

2
MVA $
MW hr

Rating 
(MW) 

1 0.1 3.0 2.0 200 
2 0.1 2.0 0.8 200 
3 0.1 3.0 0.9 200 

 

Table 5.3. Initial steady state operating point IP0 

Node V 
(pu) 

 
(deg) 

IPmP  
(MW)

IPgQ
(MVAR)

1 1.05 0.000 50.19 23.66 
2 1.05 11.104 171.60 13.05 
3 1.04 7.153 98.62 -15.50
4 1.04 -1.510 0.00 0.00 
5 1.01 -2.753 0.00 0.00 
6 1.03 -2.389 0.00 0.00 
7 1.05 5.536 0.00 0.00 
 8 1.04 2.778 0.00 0.00 
9 1.05 4.120 0.00 0.00 

Total Generation Cost 11.931 ($/hr) 
 

It is considered that the system operating in this first IP0 is subjected to the 
contingency scenario defined by a solid three-phase fault, incepted at t0=0ms at Node 7 and 
cleared at tcl=250ms by tripping the line connecting the nodes 5-7. According to the 
proposed stabilization procedure, the next step is to carry out SIME analysis to assess the 
severity of the contingency scenario (Step 2). This analysis determines an unstable OMIB 
equivalent, where generators G2 and G3 are the critical machines, whilst G1 is a non 
critical machine. The OMIB instability condition was satisfied at tu1=320ms with an 
unstable angle of ( tu1)=133.797° and an unstable margin of u1=-1.592pu rad (Step 3). 
The corresponding unstable trajectory is shown in Fig. 5.3. 

Fig. 5.4 shows the contingency severity in terms of the excess of the accelerating 
area over the decelerating area in the -P plane. In order to find the critical stable trajectory, 
the extrapolation-based critical clearing time search is executed for the current IP0, giving a 
value of 138CCT ms . Then, considering the composition of the previous unstable OMIB 
equivalent, the critical stable trajectory is calculated to assess its angular deviation at tu1, 
which is 1( ) 96.790o

CT ut (Step 4). The angular deviations between the unstable and 

critical stable trajectories at tu1 is 1( ) 37.01o
ut , as shown in Fig. 5.3, and then the 

transient stability constraint (5.19) is formulated (Step 5). 
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Fig. 5.4. P  Plane for the initial operating point. 

 

Using these previous results, the proposed TSC-OPF approach is solved for the 
integration interval [0,320 ]T ms . The solution of this optimization problem yields a 
second steady state point that satisfies static constraints, as given in Table 5.4 (Step 6).  

 

Table 5.4. Second steady state operating point 

Node V 
(pu) 

 
(deg) 

IPmP  
(MW)

IPgQ
(MVAR)

1 1.02 0.000 85.87 2.53
2 1.06 5.057 130.83 16.74
3 1.05 4.024 102.21 -7.06
4 1.02 -2.725 0.00 0.00
5 1.00 -5.213 0.00 0.00
6 1.02 -4.348 0.00 0.00
7 1.05 0.832 0.00 0.00
8 1.04 -1.309 0.00 0.00
9 1.05 0.894 0.00 0.00

Total Generation Cost 12.343 ($/hr) 
 

The stabilization procedure goes to the next iteration considering the second steady 
state point as the new operating point of interest (Step 7). For this case, SIME analysis 
yields an unstable OMIB equivalent with the same composition of machines, i.e. G1 as 
NM, G2 and G3 as CMs, but satisfying the instability condition at 2 710ut ms . At this 

time, the unstable angle and stability margin are 2( ) 145.646o
UT ut and 2 -0.004u

pu rad , respectively. It must be observed that the unstable margin was reduced in 99.75 % 
with respect to the first iteration. The computation of the critical clearing time for this new 
initial operating point yields 249CCT ms , where the critical trajectory has 

2( ) 142.437o
CT ut  at 2ut .  

Based on previous SIME results, a TSC-OPF solution is now computed considering 
the integration interval [0,710 ]msT , obtaining the third steady state point shown in Table 
5.5. It must be pointed out that the mechanical power re-dispatching, w.r.t. the IP of Table 
5.3, does not obey the criterion of always decreasing mechanical power in selected CM to 
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stabilize the system; the mechanical power of some CM could even be increased, in some 
cases, to find a more economical security re-dispatch, as in case of generator G3. 

 
 

Table 5.5. Third steady state operating point 

Node V 
(pu) 

 
(deg) 

IPmP  
(MW)

IPgQ
(MVAR)

1 1.06 0.000 86.42 23.45
2 1.05 5.321 128.07 3.86
3 1.04 4.607 104.30 -18.50
4 1.05 -2.567 0.00 0.00
5 1.02 -4.914 0.00 0.00
6 1.04 -4.011 0.00 0.00
7 1.05 1.156 0.00 0.00
8 1.04 -0.913 0.00 0.00
9 1.05 1.392 0.00 0.00

Total Generation Cost 12.367 ($/hr) 
 
 

The third steady state point is considered as the new operating point for SIME 
analysis in the procedure’s second iteration. In this analysis, stable condition (5.15) is 
satisfied (see Fig. 5.5), and the stabilization procedure ends, after two iterations.  

 
 

 
Fig. 5.5. P  Plane for the third operating point. 

 
 

In this case, the stable stability margin is almost zero, and the OMIB equivalent 
stable trajectory is bound by the critical stable trajectory, as shown in Fig. 5.6. Lastly, the 
multi-machine swing curves are stable for the contingency scenario due to this transiently 
stable third steady state point satisfies static and dynamic security constraints, as shown in 
Fig. 5.7. 

The clearing time used in this example (250 ms) is long in order to show that the 
proposed approach is able to stabilize the system in these demanding conditions. In the next 
section, the approach is tested using a more realistic clearing time.  
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Fig. 5.6. Stable and critically stable OMIB trajectories at the third operating point. 

 
 

 
Fig. 5.7. Rotor angle trajectories at the third operating point. 

 

5.3.2. Approach I: New England system Results 
The data of this system were taken from [Pai, 1989], whilst generator ratings and quadratic 
generation cost curves are as reported [Nguyen and Pai, 2003], these data are shown in 
Appendix C. The active power load at bus 30 has been considered of 680 MW instead of 
the 628 MW given in Table C.IV. The steady state voltage magnitude limits in pu for 
generation and load nodes are 0.95 Vg 1.09 and 0.95 Vl 1.09. The initial operating point 
IP1 computed by the OPF provides the optimum power dispatch given in Table 5.6.  

 

Table 5.6. Initial OPF dispatch  

Node IPmP  
(MW)

IPgQ
(MVAR)

Node IPmP  
(MW)

IPgQ
(MVAR)

30 244.03 -75.44 35 654.87 159.71 
31 569.82 426.47 36 562.54 116.61 
32 645.97 193.63 37 538.12 39.89 
33 635.24 106.69 38 835.07 16.88 
34 512.12 137.30 39 981.84 48.48 

Total Generation Cost 61,558.0 ($/hr)  
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Under those initial operating conditions, 92 contingences were ranked using SIME 
according to their corresponding CCT. This ranking shows that the most severe 
contingency is a solid three-phase fault applied at 0 0t ms  at Node 29 of the system, 
which is cleared by opening the line that connects nodes 28-29, with a CCT=62ms. We 
consider that the system protections operating time is tcl=100ms, such that the system is 
transiently unstable for this most severe contingency scenario, and the proposed approach is 
applied to enhance the system stability under this contingency.  

The first SIME analysis of the stabilization process is carried out to assess the 
OMIB equivalent. From the multi-machine system swing curves, drawn w.r.t. COA in 
Fig. 5.8, SIME analysis determines the time to instability tu1=430ms and identifies 
generator at node 38 as the single CM. The unstable OMIB angular trajectory is also shown 
in Fig. 5.8, where the unstable angle and stability margin at tu1 are UT(tu1)=113.784° and  

u1=-0.929pu rad, respectively.  
As already mentioned, for the initial power dispatch and contingency scenario, the 

system has a CCT=62ms, such that the OMIB critical trajectory has an angular deviation of 
CT(tu1)=87.256°, as shown in Fig. 5.8. Consequently, the stability constraint (5.19) is 

formulated and included into the TSC-OPF analysis, which yields an operating point IP2 
with a corresponding power dispatch shown in Table 5.7. For this IP2 the multi-machine 
system is again subjected to the contingency scenario, but it is now transiently stable. The 
stable swing curves are shown with respect to COA in Fig. 5.9. 

 

 
Fig. 5.8. Multi-machine and OMIB rotor angle trajectories for IP1. 

 
 

Table 5.7. TSC-OPF power dispatch for IP2  

Node IPmP  
(MW)

IPgQ
(MVAR)

Node IPmP  
(MW)

IPgQ
(MVAR)

30 249.51 -92.41 35 665.94 165.60 
31 580.70 438.57 36 572.81 118.48 
32 657.30 183.21 37 547.90 23.98 
33 646.60 98.28 38 728.87 -4.35 
34 520.37 150.54 39 1006.42 66.46 

Total Generation Cost 61,660.8 ($/hr) 
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Fig. 5.9. Multi-machine and OMIB stable rotor angle trajectories for IP2. 

 

At Step 2, once stability condition (5.15) has been satisfied at time to stability tr (for 
IP2, tr2=590ms), a last CCT computation might be carried out with SIME to assess how far 
the new system CCT is from the time of response of system protections.  

In this case, the CCT is 121ms for IP2, i.e. 21ms larger than the time response of 
system protections (100ms). This means that the contingency scenario has been over-
stabilized. In order to get a transiently stable operating point nearer the stability boundary 
than IP2, we formulate (5.19) at time tr to decrease the angular deviation between the 
critical and stable trajectories, ( CT) and ( ST), both shown for IP2 in Fig. 5.9, where 

ST(tr2)=93.593° and CT(tr2)=113.784°. Therefore, the proposed stability constraint (5.19) 
and stabilization procedure are now a function of tr, CT(tr2) and ST(tr2). At Step 5 the 
optimization process is carried out to obtain IP3, whose power dispatch is displayed in 
Table 5.8. 

Table 5.8. TSC-OPF power dispatch for IP3 

Node IPmP  
(MW)

IPgQ
(MVAR)

Node IPmP  
(MW)

IPgQ
(MVAR)

30 247.25 -99.93 35 66130 163.41 
31 575.75 437.67 36 568.52 117.75 
32 652.19 181.52 37 543.99 31.00 
33 641.89 84.07 38 776.52 6.83 
34 516.91 163.26 39 993.46 71.09 

Total Generation Cost 61,589.6 ($/hr) 
 
 

The system operating at IP3 and subjected to the contingency scenario is again 
unstable, and the instability condition is satisfied at tu3=710ms, where the generator 
connected to node 38 remains as the single CM. At tu3 the angular deviation of the unstable 
trajectory is UT(tu3)=112.722° and the stability margin is u3=-0.132 pu rad . For IP3 the 
critical clearing time is CCT=95ms, such that the OMIB critical trajectory has an angular 
deviation of CT(tu3)=114.151°. Consequently, the stability constraint (5.19) is newly 
formulated and included into the next optimization process, which yields the operating 
point IP4 with a corresponding power dispatch shown in Table 5.9.  
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Table 5.9. TSC-OPF power dispatch for IP4  

Node IPmP  
(MW)

IPgQ
(MVAR)

Node IPmP  
(MW)

IPgQ
(MVAR)

30 247.89 -90.02 35 662.66 163.84
31 576.89 437.71 36 569.79 117.93
32 653.41 181.18 37 545.22 22.53
33 643.31 94.52 38 765.65 4.18
34 517.81 152.89 39 994.87 69.87

Total Generation Cost 61,602.1($/hr)
 
 

For IP4
 the contingency scenario has now CCT=101ms, which is very close to the 

time of the protections’ response (100ms), the stabilization procedure ends. The stable 
swing curves are shown with respect to COA in Fig. 5.10, where generator connected to 
node 38 is still the most advanced one. It is observed that, in order to stabilize the harmful 
contingency scenario, the initial mechanical power of the critical generator connected to 
node 38 has been reduced in 8.3 %. 

 
 

 

Fig. 5.10. Multi-machine rotor angle trajectories for IP4. 

5.4. Approach I: Comparison to other approaches 
This section presents numerical comparisons of the results of the proposed approach with 
the ones of approaches reported by other authors considering the same systems analyzed in 
the last sections. 

5.4.1. Approach I: Three-Machine, Nine-Bus system results comparison 
System data are as given in Section 5.3.1, except the fuel cost parameters and rating of 
generators which are given in Table 5.10 [Nguyen and Pai, 2003]. The contingency 
scenario is defined by a solid three phase to ground fault at bus 7 applied at t=0, which is 
cleared by tripping line 7-5 at tcl=350 ms with a CCT=291 ms.  
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Table 5.10. Cost curves for 9-bus system. Adopted from [Nguyen and Pai,2003].  

Node A $
hr

 B $
MWhr

 C 
2

$
MW hr

Rating 
(MW) 

1 140 2.0 0.006 200 
2 120 1.5 0.0075 150 
3 80 1.8 0.0070 100 

 

Comparisons of power dispatches associated to the OPF base case and the final 
transiently stable operating point are given in Table 5.11 and Table 5.12, respectively. A 
trajectory sensitivity method is used in [Nguyen and Pai, 2003], whilst a differential 
evolution algorithm is used in [Cai et al., 2008], to reschedule power generation to ensure 
system stability. These comparisons show the effectiveness of the proposed approach 
because its solution yields a more economical generation cost than those reported in 
[Nguyen and Pai, 2003] and [Cai et al., 2008]. The reason of this result, despite the fact that 
[Cai et al., 2008] uses a global search method, is that the SIME stability criterion is able to 
avoid system’s over-stabilization, as shown by comparing its final CCT (350.1 ms) w.r.t. 
that reported in [Cai et al., 2008] (398 ms, which is 13% above of the specified clearing 
time). 

 

Table 5.11. Comparison of power dispatches for OPF base case of 9-bus system 

Node OPF Dispatch (MVA) 
Nguyen and Pai, 2003 Cai et al., 2008 Approach I 

1 106.19+j24.26 105.94+j17.14 105.93+j17.28 
2 112.96+j0.37 113.04+j4.92 113.05+j4.76 
3 99.20-j11.62 99.29-j15.31 99.24-j15.53 

Cost ($/hr) 1132.59 1132.30 1132.18 
 
 

Table 5.12. Comparison of transient stable power dispatches of 9-bus system 

Node OPF Dispatch (MVA) 
Nguyen and Pai, 2003 Cai et al., 2008 Approach I 

1 170.20+j27.31 130.94-j9.63 121.55+j17.07 
2 48.94-j0.08 94.46+j9.22 99.79+j4.00 
3 98.74-j9.86 93.09+j24.77 96.57-j15.66 

Cost ($/hr) 1191.56 1140.06 1135.2 

5.4.2. Approach I: New England system results comparison 
In this section, the stabilization of the contingency scenario is defined by a solid three phase 
to ground fault at bus 29 applied at t=0, and cleared by tripping line 26-29 at tcl=100 ms, 
which is longer than the initial system critical clearing time, and tu=0.5s. System data are 
given in 5.3.2, but considering the original load data presented in Table C.IV of  
 Appendix C. The results obtained by the current proposal are compared with those reported 
in [Layden and Jeyasurya, 2004]. The total cost and CCTs obtained by both TSC-OPF 
approaches are reported in Table 5.13. 
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Table 5.13. Comparison results for New England test system 
Approach Generation Cost ($/hr) CCT (ms) 

Approach I 60,916.8 107.1 
Layden and Jeyasurya, 2004 61, 148.0 159.0 

 

The proposed approach obtains the lowest cost and guarantees system stability with 
a CCT only 7% above the specified clearing time. On the other hand, a less economic and 
very conservative operation is reported in [Layden and Jeyasurya, 2004]. This is because 
the adopted transient stability constraint, based on the angular deviation of each generator 
w.r.t. the COI, results in an unnecessary large stability margin for this fault; i.e. the CCT is 
59% above the specified clearing time. In addition (see Table 5.1), if tend is arbitrarily 
defined for this system as 1.5s, and SIME finds tu=0.5s, the number of dynamic plus 
stability constraints employed in the proposed formulation and in [Layden and Jeyasurya, 
2004], for a time step t=0.01, are 4901 and 14850, respectively. These quantities of 
dynamic plus stability constraints clearly suggest that the proposed Approach I reduce the 
TSC-OPF problem size in a 70% w.r.t. that approach reported in [Layden and Jeyasurya, 
2004] 

5.5. Approach II: TSC-OPF using SIME sensitivity analysis 
In Section 5.2.1 it was shown that for a given unstable scenario and a selected controlling 
time step tctrl along of the integration interval T, the multi-machine system stability can be 
enhanced by reducing at tctrl the angular deviation UT(tctrl) of its unstable OMIB equivalent 
angular trajectory UT w.r.t the critical stable trajectory deviation CT(tctrl), where both 
angular deviations are measured at the same controlling time tctrl. In other words, the multi-
machine system represented by its unstable OMIB equivalent becomes more stable when at 
tctrl the angular excursion of its unstable OMIB equivalent CT(tctrl) is set to a lower 
reference value, as stated by constraint (5.19). 

The aforementioned observation and the SIME sensitivity analysis of Section 5.1.5 
are then considered to derive the so called TSC-OPF using SIME sensitivity analysis 
approach. 

5.5.1. Approach II: Stability constraint formulation 
The quasi-linear relationship between different points ( , (tctrl)) shown by the SIME 

sensitivity analysis (see Fig. 5.1), is used to predict the maximum value that the OMIB’s 
angular trajectory deviation sh(tctrl) must have at a selected controlling time tctrl, so as to 
make its corresponding multi-machine system transiently stable ( sh>0) for a specified 
unstable contingency scenario. 

This quasi-linear relationship between different points ( , (tctrl)) implies the 
comparison among different stability margins , which must be computed for the same 
multi-machine system operating at different steady state operating points IP, and from 
which the multi-machine system dynamics are uniquely represented by OMIBs having the 
same m-swing structure (see Section 5.1.5). Under these considerations, it is possible to 
perform the sensitivity computation of  in terms of (tctrl), where the OMIB equivalent 
deviation (tctrl) is assessed at any selected time step 0 ,ctrl ut T t t  along the OMIB 
angle trajectories considered in the calculation.  
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Due to the OMIB’s trajectories are uniquely defined by the initial operating point, 
their computation can be interpreted as the solution of an initial-value problem, where 
(t0)= IP is the initial condition. The OMIB stable equivalent trajectory for this reason, 

could be used to define the stability index at any selected time step of the trajectory
0,ctrl ut T t t , since it bounds at all times (see Fig. 5.2) other OMIB trajectories (for the 

same composition and m-swing) and therefore its stability properties, which define the 
transient stability properties of the multi-machine system, are independent of the selected 
controlling time tctrl. This important characteristic makes it possible to define the selected 
controlling time step as tctrl=t0 in order to compute the margin’s sensitivity and set up the 
stability constraint. In this way, the value of sh k(t0) that might yield a null stability margin 

k =0 is in accordance with (5.18) given by, 

 ( 1) ( 1) 0
0 ( 1) 0

0

( )
( ) ( )

( )
k k

sh k k
k

t
t t

S t
 (5.20) 

Based on (5.20), the transient stability constraint (5.19) can be reformulated as,  
 

 0 0 0 0( ( ), ( )) ( ( ) ( )) 0sh k UT UT sh k hH t t abs t t T  (5.21) 
 

where Th is a desired deviation threshold (e.g. 41e ), sh k(t0) is a scalar value assessed by 
(5.21). This value is maintained fixed during the solution of the optimization process. On 
the other hand, UT(t0) is a function of the CMs and NMs variables described by (5.7), such 
that the initial condition of the machines rotor angles associated to both groups are 
variables during the optimization process to satisfy (5.21).  

It has been found that the length of the time domain simulation required to be 
considered to form the set of dynamic constraints depends on the controlling time tctrl. By 
imposing the stability constraint at tctrl=t0, the TSC-OPF model becomes only a function of 
initial steady-state variables, so dynamic constraints (4.43)-(4.48) related to the time-
domain simulation are no longer required to be included in the TSC-OPF formulation. 
Hence, the proposed TSC-OPF model is fully described by the objective function (4.36), 
steady-state constraints (4.37)-(4.42) and the single stability constraint (5.21). 

The stability margin of the multi-machine system operating point IP0, computed at 
iteration n=0 of the stabilization process, is improved once the new proposed TSC-OPF 
model is solved, which yields a new, more stable, steady state operating point IPn=k. It must 
be pointed out that contingency stabilization may not be achieved because the value of 

0( )sh t  is obtained by considering that the margin’s sensitivity has a strictly linear behavior. 
Hence, to verify that the new steady-state operating point IPn=k is transiently stable, SIME 
stability analysis must be performed. As long as the system is unstable, it is necessary to 
compute a new value of 0( )sh t  in order to update the stability constraint (5.21) that must 
be considered in the next TSC-OPF iteration, details of this fact are given below. 

5.5.2. Assembling the transient stability constraint 
It must be pointed out that (5.21) has to be firstly assembled before including it into 

the TSC-OPF problem. Hence, two successive points 1 ( 1) 0, ( )k k t  and 2 ( 2) 0, ( )k k t
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should be computed. We consider that the first point 1 ( 1) 0, ( )k k t  is scheduled based on 
the initial steady state operating point IPk-1 considered in the transient stability control 
procedure, such that 1k  and ( 1) 0( )k t  can be readily computed by simply running SIME 
analysis, as illustrated in Fig. 5.11. On the other hand, to assess the other point 

2 ( 2) 0, ( )k k t , at the first iteration of the stabilization procedure, the value of ( 2) 0( )k t  is 
computed as, 

 ( 2) 0 ( 1) 0 ( 1) 0( ) ( ) ( )k k kt t t  (5.22) 

where ( 1) 0( )k t  is a small increment on the previous OMIB angular deviation ( 1) 0( )k t . 
Then the scalar value sh k(t0) is set to sh k(t0)= (k-2)(t0), and is considered into (5.21). It 
must be noted that at this first step (5.21) is not by itself a stability constraint, but due to its 
inclusion into the TSC-OPF solution process, the initial unstable OMIB equivalent angular 
deviation 0( )UT t  is set to be ( 1) 0( )k t , which consequentially yields a steady state 
operating point IPk-2. Based on this point, SIME analysis is carried out to compute the 
stability margin 2k . With this information on hand, the sensitivity 0( )kS t and the first 
value 1( )sh ctrlt  that might yield the system stable can be readily computed by (5.17) and 
(5.20), respectively, thus the stability constraint (5.21) can be now assembled, as shown in 
Fig. 5.11. When the stabilization procedure has passed the first iteration, the last two 
computed points namely ( k-1, k-1(t0)) and ( k-2, k-2(t0)) are considered to calculate Sk(t0) by 
(5.17), and  the valued of sh k(t0) by (5.20), respectively to assemble constraint (5.21), as 
illustrated in Fig. 5.11. 

 

 
Fig. 5.11. Schematic process for assembling stability constraint (5.21). 

 
 

The new proposed TSC-OPF approach readily derives from aforementioned 
observations and constraint (5.21), as given below.  
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5.5.3. Algorithm for TSC-OPF using SIME sensitivity analysis 
Step 1.- Run a conventional OPF to obtain an base Initial operating Point (IP0).  
Step 2.- For the current iteration operating point IP0 and fault scenario, run a SIME 
stability simulation of the multi-machine system to compute the OMIB’s equivalent 
structure and determine the system stability. If the OMIB satisfies the stable condition, go 
to Step 8; else, determine the unstable margin u and obtain the OMIB’s equivalent initial 

deviation 0t
UT  at t0. Proceed to Step 3. 

Step 3.- Determine an initial value of the OMIB angle stability limit sh  from 0t
UT  using 

0 0t t
sh UT UT , where  represents a usually small decrement’s percentage of 0t

UT  at t0. 
 is usually set to 0.1 and, if necessary, is changed as indicated in Steps 5 or 6. Set the 

iteration number n of the stabilization process as n=1. 
Step 4.- Based on the structure of the last identified OMIB equivalent and of the computed 
value of the stability limit OMIB angle sh , formulate the stability constraint (5.21), and 
solve the TSC-OPF model described by (4.36)-(4.42) and (5.21) to obtain a new, improved, 
initial operating point IPn. 
Step 5.- Starting from the new IPn calculated at Step 4, run a SIME simulation to identify 
its corresponding OMIB equivalent system and to determine its stability condition. Two 
main cases could then be found: 

5.1 If the stable condition (5.15) is met, compute the stable margin stn  and the 

           OMIB’s initial deviation 0t
ST n  at t0. If 0.1stn pu rad  (a established stability  

            tolerance), go to Step 8 or, if the stability margin is too conservative, the  
            following two cases have to be considered; 

a)   The algorithm is at the beginning of the first iteration, n=1: set =0.5 and go  
                   to step 3. 

b) The algorithm is at the beginning of the second or higher iteration: set  
                 n stn and 00 tt

n ST n , then proceed to Step 6.  

5.2 If the unstable condition (5.13) is met, compute the OMIB’s initial rotor  
           deviation 0t

UT n  and the unstable margin un ; set n un and 00 tt
n UT n , then  

            proceed to Step 6. 

Step 6.-If and only if the above computed pairs ( 0t
UT , u ) and ( 0t

n , n ) correspond to the 
same OMIB’s m-swing structure, compute the new value of sh  that might make the 
system marginally stable by (5.20); then proceed to Step 7. Otherwise, set =0.05 and if the 
unstable condition (5.13) was met at Step 5, update 0t

UT = 0t
n and u = n . Then go to Step 3. 

Step 7.-If the unstable condition was satisfied in Step 5, update 0t
UT = 0t

n and u = n  and 
increase the iteration counter as n=n+1, else, only increase n=n+1. Then go to Step 4. 
Step 8.- The initial operating point is the transiently stable operating point sought, such that 
the transient stability control has been achieved. END. 
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At Step 3 of the proposed algorithm, the first desired value sh  is computed as a 

percentage of the unstable OMIB’s initial angle condition 0t
UT . It must be pointed out that 

the  percentage must be accurately selected so as to enforce a TSC-OPF solution in 
which the system is unstable or has a very small stable positive margin at Step 5. To 
accomplish this purpose, the proposed algorithm considers firstly =0.1 at Step 3; if the 
system is detected to be very stable at Step 5,  is updated as =0.5 and then the 
algorithm returns to step 3.  

Lastly, the number of iterations required by the algorithm to reach convergence 
depends on the quasi-linear characteristic behavior of the OMIB unstable margin u with 

respect to the rotor angle initial condition 0t
UT ; the closer the system behavior is to being 

linear, the less iterations are required. At any case, this quasi-linear characteristic behavior 
defines the algorithm’s efficiency, but not the accuracy of results.  

Despite the complexity that the algorithm seems to have, it is very efficient in terms 
of computational effort compared to other approaches, as inferred below. 

5.5.4. TSC-OPF using SIME sensitivity constraint advantages 
SIME method provides the possibility of representing the dynamics of a multi-machine 
system by means of the OMIB equivalent dynamics, which can be used to importantly 
reduce the programming size and complexity of conventional global TSC-OPF approaches 
[Gan et al., 2000] and [La Scala et al., 1998].  

In this context, the transient stability constraint proposed in [Zárate-Miñano et al., 
2010] is formulated based on the OMIB equivalent rotor angle derived by SIME, which 
allows a reduction of the number of constraints required to represent the system’s stability 
limits into the TSC-OPF analysis, as displayed in Table 5.14. However, in order to 
importantly reduce the programming problem size and complexity, it is necessary to reduce 
the number of dynamic constraints to be considered into the TSC-OPF analysis. Approach I 
proposed in this work uses the OMIB equivalent to represent the system stability limits by 
only one single stability constraint. In addition, Approach I accurately assesses the length of 
the time integration interval to be considered into the TSC-OPF analysis by using SIME 
method, which substantially decreases the number of dynamic constraints, as displayed in 
Table 5.14. 

Despite the advantages of Approach I, the proposed Approach II considers the 
OMIB equivalent and the SIME sensitivity analysis to formulate one single stability 
constraint and reduce to zero the number of dynamic constraints to be considered into the 
TSC-OPF analysis. These advantages of Approach II in the reduction of the programming 
problem size and complexity, with respect to Approach I and the ones presented in [Gan et 
al., 2000; La Scala et al., 1998; Zárate-Miñano et al., 2010], are explicitly displayed in 
Table 5.14. This table performs a direct size comparison between the TSC-OPF models 
associated with the different approaches; for the purpose of generality a system with “Nb” 
buses and “Ng” generators is considered. 
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Table 5.14. Size comparison between the Approach II, Approach I and other approaches 

 Gan et al.,  
2000 

La Scala et al., 
1998 

Zárate-Miñano 
et al., 2010 Approach I Approach II 

Upper 
integration  
period tend 

Arbitrary 
tend 

Arbitrary 
tend 

Arbitrary 
tend 

Not arbitrary 
tu 

Not arbitrary 
t0 

Number of  
integration 
steps 

Arbitrary 
Nsa=(tend - t0)/ t 

Arbitrary 
Nsa=(tend - t0)/ t

Arbitrary 
Nsa=(tend - t0)/ t

Not arbitrary 
Nsb=(tu - t0)/ t 

Not arbitrary 
0 

Number of  
stability 
constraints 

*g saN N  saN  saN  1 1 

Number of 
dynamic 
constraints 

(2Nb+2Ng)*Nsa (2Nb+2Ng)*Nsa (2Nb+2Ng)*Nsa (2Nb+2Ng)*Nsb 0 

Heuristic 
stability 
criterion 

Yes No No No No 

 

5.6. TSC-OPF using SIME sensitivity analysis Results 
In order to illustrate numerically the prowess of this second proposed approach to control 
the transient stability, the 3-machine 9-bus IEEE system [Sauer and Pai, 1998] and the 10-
machine 39-bus New England system [Pai, 1989] already considered in Section 5.2 are 
newly focused in the further numerical examples, their corresponding system data 
parameters are given Appendix B and C, respectively. Additionally, this section presents a 
case study considering a reduced model of the Mexican power system. The system 
modeling details are as described in Section 5.2. It must be pointed out that some of the 
contingency scenarios given in that section are also considered here with the additional 
purpose of result comparisons.  

The design of the examples and the stability control results applying this are given 
below. 

5.6.1. Approach II: Three-Machine Nine-Bus system Results 
The 3-machine 9-bus system is analyzed in this section to illustrate in detail how the multi-
swing stabilization process is assessed by the proposed approach, by adjusting the 
generator’s output power while satisfying the demand in the most economical manner. 
Generators are represented by the classical model and all loads by the constant impedance 
model. The transient period of simulation lasts from the time of fault inception t0 to the 
time to instability tu determined by the SIME method, with an integration time step of 0.01 
s. For this study, the steady state voltage magnitude limits for all nodes are set to 0.95  Vg 

 1.05 pu. The cost functions for generators and their ratings are given in Table 5.10. 
Taking into account these parameters and system data of Appendix B, the first initial steady 
state operating point IP0 is computed by a conventional OPF study (Step 1), which gives 
the active power dispatch and generation cost reported in column 2 of Table 5.15. 
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A single credible contingency scenario with a critical clearing time CCT=291 ms is 
defined by a solid three-phase fault to ground at bus 7 applied at t=0, which is cleared by 
tripping line 7-5 at tcl=350 ms, as reported in [Nguyen and Pai, 2003; Cai et al., 2008]. 

For this fault scenario and initial IP0, a SIME simulation is performed (Step 2), 
which determines that the system is first-swing unstable with the critical generators 
connected at nodes 2 and 3, and the non-critical generator connected at node 1. The 
identification of this decomposition pattern of generators allows for representing the multi-
machine system through a first-swing unstable OMIB equivalent, whose unstable margin 
and the rotor angle initial condition are u -0.637pu-rad and 0t

UT 7.21°, respectively.  

In order to obtain the sensitivity of the stability margin with respect to changes in 
the rotor angle, the rotor initial condition 0t

UT  is decreased according with (5.22) by 10% 
(Step 3), which yields the scheduled value of sh 6.40°. Row 1 of Table 5.16 summarizes 
the results of these initial steps. 

The computed OMIB’s unstable structure and scheduled value sh are used to 
formulate the stability constraint (5.21), which is included in the TSC-OPF model to 
enforce the initial condition of the OMIB rotor angle to be the scheduled value sh  (Step 
4). The solution of the TSC-OPF model yields the new operating point IP1, whose active 
power dispatch and generation cost are given in column 3 of Table 5.15.  

 

Table 5.15. Active power dispatches and generation costs for first swing stability control 

Node Active Power Dispatch (MW) 
IP0 IP1 IP2 IP3 IP4 

1 105.93 109.97 115.48 116.41 117.07 
2 113.05 110.50 107.05 106.50 106.10 
3 99.24 97.65 95.60 95.29 95.08 

Cost ($/hr) 1132.18 1132.37 1133.50 1134.03 1134.36 
 

Table 5.16. Summary of the 9-bus system stabilization process 

Iteration Computation 
of IP’s 

OMIB’s 
parameters Assessment

of sh  
sh

(deg) 
Cost 
($/hr)  

(pu-rad)
0t  

(deg)

1 IP0 (OPF) -0.637 7.21 Eq. (5.22) 6.40 1132.18 
IP1 (TSC-OPF) -0.423 6.40 Eq. (5.20) 4.79 1132.37 

2 IP2 (TSC-OPF) -0.099 4.79 Eq. (5.20) 4.20 1133.50 
3 IP3 (TSC-OPF) -0.033 4.20 Eq. (5.20) 3.90 1134.03 
4 IP4 (TSC-OPF) -0.004 3.90 Eq. (5.20) 3.80 1134.36 

5 IP5 (TSC-OPF) -3.106 3.80 Eq. (5.22) 3.61 1134.48 
IP6 (TSC-OPF) +0.024 3.61 ENDS 1134.71 

 

The stability of the system operating at the new point IP1 is assessed by SIME 
method (Step 5), which revels that the previous first-swing unstable OMIB remains, but 
now the corresponding unstable margin is 1 -0.423pu-rad and the rotor angle initial 
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condition is 0
1
t 6.40°. In this case unstable condition (5.13) described in Section 5.5.3 is 

satisfied. 

Accordingly, the algorithm follows computing the pairs ( 0t
UT , u ) and ( 0

1
t , 1 ), 

which correspond to the same first-swing OMIB’s unstable structure. This makes it possible 
to use (5.20) in order to find, by extrapolation, the first schedule value sh  that might be 
associated with a positive margin (Step 6). This extrapolation calculates a value of sh

=4.79° as given in row 2 of Table 5.16. After updating the pair ( 0t
UT , u ) with the values of 

( 0
1
t , 1 ) (Step 7), the algorithm proceeds to the second iteration, starting at Step 4 as 

indicated in Section 5.5.3. 
The active power dispatch and system generation cost corresponding to IP2 

computed by the TSC-OPF at this second iteration, as well as those related to the IPs 
computed at the third and fourth iterations, are reported in columns 4, 5, and 6 of Table 
5.15, respectively. For all iterations, the same first-swing OMIB’s unstable structure is 
obtained by using the SIME method. Similarly, the OMIB’s stability properties and margin 
extrapolation parameters for the second, third and fourth iterations are reported in rows 3, 
4, and 5 of Table 5.16, respectively. 

At the fifth iteration, the last scheduled value sh =3.80° is included in the stability 
constraint (5.21) of the TSC-OPF model to compute the operating point IP5, whose power 
dispatch and generation cost are given in column 2 of Table 5.17. The SIME method is 
newly applied to assess system stability of point IP5, and it is determined that the OMIB 
equivalent system has the same structure considered in all four previous iterations, but now 
the OMIB’s instability condition is satisfied at the second-swing instead of the first-swing, 
as reported in [Zárate-Miñano et al., 2010].  

 

Table 5.17. Multi-swing phenomena active power dispatches and generation costs  

Node Active Power Dispatch (MW)
IP5 IP6 

1 117.38 117.62 
2 105.91 105.78 
3 96.96 94.90 

Cost ($/hr) 1134.48 1134.71 
 

The unstable margin at this second-swing instability is 4 -3.106pu-rad and the 

initial rotor angle condition is 0
5
t =3.80°. Clearly, the pairs ( 0

4
t , 4 ) and ( 0

5
t , 5 ) do not 

correspond to the same m-swing instability, and therefore they can not be compared nor be 
extrapolated to calculate the next scheduled value sh . However, this problem is not 
unsolvable because of the proposed algorithm is also valid for multi-swing instabilities.  

In cases like these, where instability conditions of the last two iterations are satisfied 
in different swing numbers (in this case first and second-swing instabilities), the 
stabilization process must be only restarted at Step 3, starting from the last computed 
OMIB’s structure and its stability information, and then the algorithm follows as described 
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in Section 5.5.3. Hence, the algorithm sets the pair ( 0t
UT , u ) as ( 0

5
t , 5 ) at the fifth 

iteration, and then goes to Step 3 to compute the new scheduled value as sh =3.80-(0.05)( 
3.80)=3.61° by evaluating (5.22), as reported in row 6 of Table 5.16. Then, the new 
equilibrium point IP6 is computed by the TSC-OPF approach, which has the active power 
dispatch and generation cost reported in column 3 of Table 5.17. Lastly, the SIME method 
is applied to compute the transient stability margin of the system operating at IP6, which 
results in a stable behavior with a margin of 6 0.024pu-rad, as given in row 7 of Table 
5.16. Hence, the system operating at point IP6 is now secure from a transient stability 
viewpoint for the defined contingency scenario.  

5.6.2. Approach II: New England system Results 
Data of this system, generator ratings and quadratic generation cost curves are given in 
Appendix C. The steady state voltage magnitude limits in pu for generation and load nodes 
are 0.95 1.09gV  and 0.95 1.07lV . In this case study, the credible contingency 
scenario is defined by a solid three phase to ground fault at bus 29 applied at t=0ms, and 
cleared by tripping line 26-29 at tcl=100 ms. Considering these system parameters, the 
proposed approach using conventional OPF firstly determines the Initial operating Point IP0 
(Step 1), whose complex power dispatch is shown in Table 5.18. According to SIME 
analysis (Step 2), the system operating at IP and subjected to the defined contingency 
scenario becomes unstable, where the machine at node 38 is the single critical machine CM 
whilst the remainder machines are non critical NM. The unstable OMIB equivalent is 
characterized by a rotor angle initial condition and an unstable margin of 0t

UT 29.92° and 

u -0.552 pu-rad, respectively, as shown in row1 of Table 5.19.  

Table 5.18. Initial operating point IP0 of the New England system 
Node IPmP (MW) 

IPgQ (MVAR) Node IPmP (MW)
IPgQ (MVAR) 

30 242.00 -77.15 35 650.44 159.06 
31 566.31 426.53 36 558.38 116.11 
32 642.23 194.01 37 534.89 38.54 
33 629.71 106.28 38 830.12 16.68 
34 508.00 135.67 39 975.95 48.93 

Total Generation Cost 60,892.3 ($/hr) 
 

Table 5.19. Stabilization process resume of the New England system 

Iteration  Computation 
of IP’s 

OMIB’s 
parameters Assessment 

of sh  
sh

(deg) 
Cost 
($/hr)  

(pu-rad) 
0t

(deg) 

1 IP0 (OPF) -0.552 29.92 Eq. (5.22) 28.42 60,892.3 
IP1 (TSC-OPF) -0.229 28.42 Eq. (5.20) 27.36 60,896.6 

2 IP2 (TSC-OPF) +0.021 27.36 ENDS 60,906.7 
 

In order to determine the margin sensitivity of the previous OMIB w.r.t. its 
equivalent initial angular deviation 0t

UT  (Step 3), the schedule value is set as  
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sh 29.92-(0.05)(29.92)=28.42° (according to (5.22)), as given in row 1 of Table 5.19. 
Considering the unstable OMIB equivalent structure and the actual value of sh , the 
stability constraint is formulated and included into the TSC-OPF analysis (Step 4). This 
analysis yields the operating point IP1 whose complex dispatch is given in Table 5.20.  

 

Table 5.20. Operating point IP1 of the New England system 
Node IPmP (MW) 

IPgQ (MVAR) Node IPmP (MW)
IPgQ (MVAR) 

30 242.68 -82.06 35 651.94 161.17 
31 568.51 429.97 36 559.73 116.36 
32 644.43 200.66 37 535.96 38.05 
33 631.19 111.34 38 809.18 15.44 
34 509.27 132.51 39 984.31 38.23 

Total Generation Cost 60,896.6 ($/hr) 
 

Based on this point IP1 a second SIME analysis determines the system as unstable 
for the given contingency scenario (Step 5). For this case, the structure of the assessed 
unstable OMIB equivalent remains, the enforced rotor angle initial condition and the 
unstable margin are now 0

1
t =28.42° and 1 -0.229 pu-rad, respectively. Following with 

this first algorithm iteration, the extrapolation of the above computed pairs ( 0t
UT , u ) and  

( 0
1
t , 1 ) gives the OMIB initial rotor deviation that might make the system stable  

sh 27.36° (Step 6), given in row 2 of Table 5.19. Once computed sh  the algorithm goes 
to the second iteration (Step 7). 

At the beginning of the second iteration, the algorithm updates the stability 
constraint with sh 27.36° and the last unstable OMIB equivalent structure (Step 4). The 
updated constraint is included into the TSC-OPF model, whose solution yields the 
operating point IP2 with an economic power dispatch as given in Table 5.21. The SIME 
method is then used to assess the transient stability of the system operating at IP2 and 
subjected to the defined credible contingency (Step 5). This analysis indicates that the 
system is stable for these operating conditions with a margin of 1=+0.021pu-rad, which is 
less than the maximum threshold defined as 0.1 pu-rad and therefore the algorithm ends at 
only two iterations, as shown in row 3 of Table 5.19. The steady state operating point IP2 
satisfies steady state operation and economic requirements, whilst system subjected to the 
contingency scenario remains transiently stable. The resulting stable swing curves w.r.t. 
COI are shown in Fig. 5.12, where the machine at node 38 remains the most advanced one 
due to the small positive stability margin of the system. 

 

Table 5.21. Operating point IP2 of the New England system 
Node IPmP (MW) 

IPgQ (MVAR) Node IPmP (MW)
IPgQ (MVAR) 

30 243.24 -73.17 35 653.15 163.66 
31 570.24 429.4 36 560.84 116.81 
32 646.14 197.11 37 536.88 40.81 
33 632.38 116.41 38 792.43 10.63 
34 510.29 129.89 39 991.00 28.49 

Total Generation Cost 60,906.7($/hr) 
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190 buses, 46 generators, 90 loads and 265 transmission lines operating at voltage levels 
ranging from 400 kV to 115 kV. The study scope consists of computing a transiently stable 
optimal equilibrium point associated to the considered credible contingency scenario 
defined by a three-phase solid fault at bus 182, incepted at t=0ms and cleared at tcl=150ms 
by tripping the line connecting nodes 182 and 186. 

The analysis starts following the proposed approach, such that a conventional OPF 
analysis is carried out to assess the steady state system conditions (Step 1). This analysis 
yields an optimum steady state equilibrium point IP0 with total generation cost of 
21120.7$/hr, as shown in first row of Table 5.22.  

 

Table 5.22. Stabilization process of the Mexican system with the Proposed Approach II 

Iteration Computation 
of IP’s 

OMIB’s 
parameters Assessment 

of sh  
sh

(deg)
Cost 
($/hr)  

(pu-rad)
0t

(deg)

1 IP0 (OPF) -1.044 43.44 (5.22) 39.00 21,120.7 
IP1 (TSC-OPF) -0.426 39.00 (5.20) 35.90 21,122.2 

2 IP2 (TSC-OPF) -0.069 35.90 (5.20) 35.30 21,123.6 
3 IP3 (TSC-OPF) +0.057 35.30 ENDS 21,122.7 

 

The steady state voltage profile and the active power dispatch corresponding to IP0 
are depicted in Fig. 5.14 (a) and (b), respectively. In order to assess the system transient 
stability at the operating point IP0 with the defined contingency scenario, SIME analysis is 
executed (Step 2). This analysis determines that the system is transiently unstable, and 
therefore unsecure under that credible contingency. In this case, there are 16 critical 
machines producing the lost of synchronism and 30 noncritical-machines, as illustrated in 
Fig. 5.15. These two groups of machines compose the unstable OMIB equivalent assessed 
by SIME, whose initial angular deviation at t0 is 0t

UT 43.44° and the unstable margin is 

u -1.044 pu-rad, as reported in row 1 of Table 5.22. 

 
a) Voltage profile 

 
b) Active power dispatch 

Fig. 5.14. Initial steady state equilibrium point IP0 of the Mexican system. 
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Fig. 5.15. Unstable angular trajectories for the Mexican system initially operating at IP0. 

 
 

In order to determine the OMIB equivalent margin sensitivity versus its angular 
deviation at t0 (Step 3), the initial angular deviation 0t

UT  is used to compute sh  according 
to (5.22)  as sh 43.44-(0.10)( 43.44)=39.00°, which is also reported in row 1 of Table 
5.22. 

The Algorithm uses this computed value of sh  and the last computed unstable 
OMIB structure to assemble the stability constraint (Step 4). This constraint is considered 
in the TSC-OPF model, which is solved to compute the new steady state equilibrium point 
IP1. This equilibrium point is considered into the next SIME analysis, where the OMIB 
equivalent satisfies the unstable condition (Step 5). In this case the unstable margin is  

1 -0.426pu-rad and the corresponding initial angular deviation is 0
1
t 39.00°, as 

reported in row 2 of Table 5.22. 

The values ( 0t
UT , u ) and ( 0

1
t , 1 ) computed at Steps 2 and  5 are linearly 

extrapolated to determine the scheduled value that should make the system stable, which 
yields sh 35.90°, as reported in row 2 of Table 5.22 (Step 6). The algorithm goes to the 
second iteration, where the stability constraint is updated with the last computed value of 

sh=35.90°, and solves the TSC-OPF model. The solution of this model yields the 
equilibrium point IP2, where the system is newly assessed as unstable, with its unstable 
margin of 2 -0.069 pu-rad and an angular deviation of 0

2
t 35.90°, as reported in row 3 

of Table 5.22. Similarly, the algorithm goes on according to that reported in the proposed 
stabilization approach, until reaching the steady state equilibrium point IP3. The results are 
reported in row 3 of Table 5.22. The system operating in this IP3 is now transiently stable 
since the system’s OMIB equivalent satisfies the stable condition (5.15) with a positive 
stable margin of st=+0.057pu-rad, such that the algorithm ends at 3 iterations. The voltage 
profile and active power dispatch associated to this IP3 are shown in Fig. 5.16 (a) and (b), 
respectively. It must be pointed out that the computed steady state point IP3 is close to the 
initial operating point IP0, as corroborated by comparing Fig. 5.14 and Fig. 5.16 and their 
corresponding generation costs given in Table 5.22.  
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a) Voltage profile 

 
b) Active power dispatch 

Fig. 5.16. Transiently stable steady state equilibrium point IP3 of the Mexican system. 
 

The stable condition of this system is twofold corroborated by observing the 
machines’s rotor dynamics w.r.t. COI as illustrated in Fig. 5.17. Where the most advanced 
machines are the same to those declared as critical machines at the beginning of the 
stabilization process. 

 
Fig. 5.17. Stable angular trajectories for the Mexican system initially operating at IP3. 

 

5.7. Approach II: Comparison to other approaches 
This section presents numerical comparisons of the results of the proposed approaches with 
the ones of approaches reported by other authors considering the systems analyzed in the 
last sections. 

5.7.1. Approach II: Three-Machine, Nine-Bus system results comparison 
In this section the final results obtained by the proposed Approach II are compared to those 
obtained using Approach I and different Global TSC-OPF methods reported in the 
literature. These comparisons are performed based on the results shown in Table 5.23. The 
results related to the proposed approaches I and II correspond to those obtained in sections 
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5.4.1 and 5.6.1, respectively. The most economic dispatch corresponds to the one obtained 
by applying a conventional OPF to the base case, but for this economic operative condition 
the system is not transiently secure for the specified contingency scenario. All approaches 
reported in this table consider this power dispatch as base case to compute a new transiently 
stable equilibrium point. In [Nguyen and Pai, 2003], the secure operating point is computed 
using a conventional OPF and generation rescheduling based on a trajectory sensitivity 
method, which yields the less economic secure power dispatch. In [Cai et al., 2008] a 
differential evolution global search algorithm is used, but due to the selected transient 
stability constraint, the contingency scenario is over-stabilized at the computed transiently 
stable equilibrium point. 

 

Table 5.23. Comparison of power dispatches of the 9-bus system using Approach II 

Node 
OPF Dispatch (MVA) 

Base  
OPF 

Approach 
I 

Approach 
II 

Zárate-Miñano 
et al., 2010 

Nguyen and 
Pai, 2003 

Cai et al., 
2008 

1 105.93 121.55 117.62 117.85 170.20 130.94 
2 113.05 99.79 105.78 103.50 48.94 94.46 
3 99.24 96.57 94.89 96.66 98.74 93.09 

Cost ($/hr) 1, 132.18 1, 135.2  1, 134.71 1, 134.01 1, 191.56 1, 140.06 
   

The TSC-OPF approach already proposed in [Zárate-Miñano et al., 2010] and 
proposed approaches I and II use the transient stability index based on an OMIB equivalent 
rotor angle limit in a different way, but calculate a similar active power dispatch and 
generation cost.  

The results obtained by our proposed Approach II compare well with those obtained 
by Approach I and the reported in [Zárate-Miñano et al., 2010]. But in addition, it is very 
important to point out that the proposed Approach II has a paramount important advantage 
with respect to all the other Global TSC-OPF approaches mentioned in Table 5.23: its  
TSC-OPF model dimension is much smaller and comparable to that of a conventional OPF 
approach since the optimization model is mainly composed of steady state constraints. On 
the other hand, the stability constraint (5.19) and (5.21) considered in proposed approaches 
I and II, respectively, are only specified in terms of machine angles, which makes these 
approaches applicable to a system with any degree of modeling detail.  

5.7.2. Approach II: New England system results comparison 
In this section the New England system is considered to carry out the comparison of results 
obtained by the proposed Approach II,  Approach I and the one reported in [Layden and 
Jeyasurya, 2004]. The final results obtained by approaches I and II in the study cases of 
sections 5.4.2 and 5.6.2, respectively, are summarized in Table 5.24 together with those 
reported in [Layden and Jeyasurya, 2004]. 

 

Table 5.24. Comparison results for New England system using Approach II 

Proposal Generation Cost
($/hr) 

CCT 
(ms) 

 Approach I 60,916.8 107.1 
Approach II 60,906.7 100.5 

Layden and Jeyasurya, 2004 61, 148.0 159.0 
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The proposed Approach II obtains the lowest cost and guarantees system stability 
with a CCT value which is only 0.5% above of the CCT originally specified of 100ms. 
Approach I yields good results (7% above the specified clearing time), whilst approach in 
[Layden and Jeyasurya, 2004] achieves the less economic dispatch and the most 
conservative security constrained steady state operating point. On the other hand, if it is 
considered that the integration interval is given by T =[t0, tend], where tend is arbitrarily 
defined as 1.5s in [Layden and Jeyasurya, 2004],  whilst SIME finds the time to instability 
as tu=0.5s, such that tend = tu, then the number of dynamic plus stability constraints 
employed in [Layden and Jeyasurya, 2004], and in approaches I and II, for a time step 

t=0.01, are respectively 14850, 4901 and only 1.  
Despite Approach I reduces the computational burden of global TSC-OPF 

approaches, Approach II reduces the size of the programming problem to the minimum and 
importantly improves not only the practical applicability of the proposed Global TSC-OPF 
Approach II, but its numerical solution feasibility, by importantly reducing the number of 
constraints to be considered (and respected) and the complexity of the resulting nonlinear 
programming problem.  

5.8. Size of the TSC-OPF model derived by different approaches 
In order to numerically assess the size of the TSC-OPF model derived by different transient 
stability preventive control approaches, the number of dynamic plus stability constraints 
associated to the test systems considered in this chapter is computed in accordance with 
Table 5.14. To accomplish this objective, it is considered that the values of the upper 
integration interval tend and time to instability tu computed by SIME are 1.5s and 0.5s, 
respectively. The integration time step length is set as t=0.01. Taken into account these 
parameters, the number of dynamic plus stability constraints associated to the TSC-OPF 
model formulated for each one of the test systems by using different approaches is shown 
in Table 5.25. 

Table 5.25. Size of the TSC-OPF model. 

System 
Number of  stability plus dynamic constraints employed in,  

Gan et al.,
2000 

La Scala  
et al., 1998 

 Zárate-Miñano 
et al., 2010 

Approach  
I 

Approach 
II 

 3-machine 9-bus 4050 3750 3750 1201 1 
 10-machine 39-bus 16200 14850 14850 4901 1 
 46-machine 190-bus 79050 71850 71850 23601 1 

 

Table 5.25 shows that for any of the given test systems the proposed Approach I 
reduces the number of dynamic plus stability constraints by 70% w.r.t that reported in [Gan 
et al., 2000], and by 67% w.r.t. the proposals reported in [La Scala et al., 1998; Zárate-
Miñano et al., 2010]. On the other hand, it must be noted that the proposed Approach II 
reduces the number of dynamic plus stability constraints by almost 100% w.r.t. any of the 
other approaches. These results indicates that proposed approach I and II substantially 
reduce the size of the TSC-OPF problem, but without affecting the solution optimality, as 
indicated by the results comparisons given in sections 5.4 and 5.7. 
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5.9. Conclusions 
In this chapter two different novel SIME-based TSC-OPF approaches have been presented, 
they were proposed in order to reduce the huge computational burden associated with 
transient stability control global approaches. Both proposed approaches formulate their 
corresponding non-heuristic stability constraint based on the OMIB equivalent rotor angle 
equation derived by SIME method, which reduces to only one single constraint the number 
of constraints used to represent the system stability limits into TSC-OPF approaches. The 
main differences of Approach II w.r.t. Approach I are derived from the fact of that the later 
takes advantage of the quasi-linear relationship between the stability margin and the OMIB 
equivalent initial angular deviation. This advantage allows only considering into the  
TSC-OPF formulation a single stability constraint applied at the system steady state 
operating point, eliminating the (usually large) sets of dynamic and transient stability 
constraints required by other TSC-OPF formulations. The stabilization procedure is 
performed in the Euclidian space by means of an inter-(extra-)polation process, which 
yields a transiently stable steady state operating point that ensures the system’s stability for 
the defined contingency scenario. 

Comparisons between the proposed approaches and those presented by other 
authors are carried out in terms of programming problem size and complexity, as well as in 
numerical results accuracy. These comparisons clearly show the main advantages of the 
proposed approaches over those other proposals. SIME method stability assessment and 
sensitivity analysis make all advantages of the new global TSC-OPF approaches possible. 

For the sake of clarity, the prowess of the proposed approaches has been illustrated 
in detail by different numerical examples. It is important to point out that the proposed 
approaches have not limitation on the power plant components modeling detail or system 
size. 
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Chapter 6  

General Conclusions and Suggestions 

for Future Research Work 

6.1. General Conclusions 
The OPF tool has been widely accepted for assessing steady state and recommended 
control action for both off-line and on-line power system studies. Since its early stages the 
demand of this powerful tool has increased, such that many researchers have been 
investigating the way of solving the OPF problem in a more efficient and accurate way. 
Different techniques ranging from nonlinear programming to heuristic optimization 
techniques has been employed to deal with the complex problem that the conventional OPF 
represents. Despite that, modern power system are operating into a competitive and stressed 
environment, imposing more strict and complex requirements for solving in accurate and 
efficient way the OPF problem. As an example, modern power systems operate in a 
deregulated environment that seeks for economic benefits of supplying electric energy to 
the load centers or other interconnected power systems. Under this competitive 
environment the electric companies must provide to costumers a reliable product at 
competitive price. Reliability is composed of adequacy and security, this implies that 
economy and security requirements must be addressed in an integrated way for proper 
power system operation, despite both economy and security are opposed requirements.  

Conventional OPF, in some sense, can be readily applied to handle in an integrated 
way static security and economy requirements of power systems. However, the 
conventional OPF must be accurately adjusted to consider modern power components that 
affect the steady state operation of power systems, otherwise static security and 
recommended control actions could not be properly assessed. Due to its control capabilities, 
the VSC-HVDC systems represent an option to send considerable amounts of electric 
energy along large distances or between interconnected power systems. In this research 
work, the steady state constraints representing the physical laws and operative limits that 
govern the steady state operation of a VSC-HVDC system are included into the 
conventional OPF. This development allows exploiting the device’s capabilities whilst the 
given objective function is optimized under the considered static security and operative 
constraints.  

In addition to the competitive environment, the rate of growth of the electric energy 
demand is much higher than the power system’s supply capabilities. As result, the power 
systems are operated near their stability limits. The occurrence of instabilities that leave 
without electric energy the costumers of a part or the entire power system are the 
consequence of operating the power system in that stressed conditions. Contingency 
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scenarios of this kind might be preventively avoided in control centers by executing 
preventive control actions once a harmful credible contingency is declared.  

The abovementioned issue is clearly associated to the dynamic security of power 
systems, such that in this research work the transient stability is considered as a main factor 
for assessing preventive control actions. This research work conciliates both economical 
requirements and transient stability limits into a conventional OPF. The stability limits are 
represented through two different stability constraints based on the proposed OMIB 
equivalent rotor angle limit. In addition to the OMIB equivalent structure, SIME salient 
parameters are used to derive the two proposed general, non heuristic, efficient and 
accurate transient stability preventive control approaches. The new single stability 
constraint is only specified in terms of machine angles, which makes the proposed 
approaches applicable to a power system with any degree of modeling detail and size. The 
solution of the proposed TSC-OPF model yields an optimal operating point whose 
mechanical power dispatch ensures the system transient stability for a credible harmful 
contingency. Therefore, the transient stability preventive control actions can be designed 
based on this optimal steady state operating point.  

6.2. Suggestions for Future Research Work 
Interesting research work could be carried out taking as basis the proposals presented in this 
document. 

It could be interesting to consider detailed models of the synchronous machine and 
controls into the proposed approaches. This would allow computing more realistic results. 

 

The proposed approaches consider that there is only one credible harmful 
contingency scenario; it should be investigated the stabilization of multiples contingencies. 
This topic has been well investigated in transient stability sequential approaches, but very 
promising results have not been reported using global approaches. 

 

Available transfer capability is a very interesting problem in modern power systems 
operation. This problem could be readily solved taking as base the proposed transient 
stability control approaches. 

 

The approach II was more efficient than proposed approach I, however it could be 
even enhanced in terms of computational effort. It should be achieved by controlling the 
OMIB equivalent mechanical power, instead of controlling the OMIB equivalent rotor 
angle initial condition. 

 

The inclusion of modern power system devices, such as FACTS controllers, into the 
transient stability control procedures might be of interest. The effect on transient stability 
control has not been widely investigated by any research group. 

 



 

87 
 

Appendix A  Elements of the Hessian Matrix 
The elements of submatrices Wij (i,j=1,2,3,4,5,6) of (3.33) corresponding to the second 
partial derivatives of the VSC-HVDC Lagrangian function C

kmL  are given in this Appendix. 
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Appendix B Data of the 3-machine 9-bus system  
The 3-machine 9-bus system diagram and data were taken from [Sauer and Pai, 1998], in 
this appendix are given on a MVA base of 100MW as follows, 

 

 
Fig. B.1. One-line diagram of the IEEE 3-machine 9-bus test system. 

 
Table B.I. Number of nodes and plant components 

Number of components 
Nodes Transmission lines Transformers Generators Loads Slack node

9 6 3 3 3 1 
 
 

Table B.II. Network parameters 
Nodes R (pu) X (pu) B/2 (pu) 
4 5 0.0100 0.0850 0.0880 
5 7 0.0320 0.1610 0.1530 
7 8 0.0085 0.0720 0.0745 
8 9 0.0119 0.1008 0.1045 
9 6 0.0390 0.1700 0.1790 
6 4 0.0170 0.0920 0.0790 

Table B.III. Transformer parameters 

Nodes Rs 
(pu)

Xs 
(pu)

Tap Ratio
Tv Uv

1 4 0.0000 0.0576 1 1
2 7 0.0000 0.0625 1 1
3 9 0.0000 0.0586 1 1

 

 
 

Table B.IV. Load parameters 
Node P (pu) Q (pu) 

1 1.25 0.50 
2 0.90 0.30 
3 1.00 0.35 

 

 

Table B.VI. Generator’s parameters 

Node
'
dx  

(pu) 
H  

(pu-sec) 
D  

(sec/rad) 
1 0.0608 23.64 0.0125 
2 0.1198 6.40 0.0068 
3 0.1813 3.01 0.0048 
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Appendix C Data of the New England system 
The data of this system were taken from [Pai, 1989], whilst the generator’s quadratic cost 
curves and ratings were taken from [Nguyen and Pai, 2003], they are given on a MVA base 
of 100MW. 

 

Table C.I. Number of nodes and plant components 
Number of components 

Nodes Transmission lines Transformers Generators Loads Slack node
39 34 12 10 19 39 

 
 
 

Table C.II. Network parameters 
Nodes R (pu) X (pu) B/2 (pu)
1 2 0.0035 0.0411 0.6987
1 39 0.001 0.025 0.75
2 3 0.0013 0.0151 0.2572
2 25 0.007 0.0086 0.146
3 4 0.0013 0.0213 0.2214
3 18 0.0011 0.0133 0.2138
4 5 0.0008 0.0128 0.1342
4 14 0.0008 0.0129 0.1382
5 6 0.0002 0.0026 0.0434
5 8 0.0008 0.0112 0.1476
6 7 0.0006 0.0092 0.113
6 11 0.0007 0.0082 0.1389
7 8 0.0004 0.0046 0.078
8 9 0.0023 0.0363 0.3804
9 39 0.001 0.025 1.2
10 11 0.0004 0.0043 0.0729
10 13 0.0004 0.0043 0.0729
13 14 0.0009 0.0101 0.1723
14 15 0.0018 0.0217 0.366
15 16 0.0009 0.0094 0.171
16 17 0.0007 0.0089 0.1342
16 19 0.0016 0.0195 0.304
16 21 0.0008 0.0135 0.2548
16 24 0.0003 0.0059 0.068
17 18 0.0007 0.0082 0.1319
17 27 0.0013 0.0173 0.3216
21 22 0.0008 0.014 0.2565
22 23 0.0006 0.0096 0.1845
23 24 0.0022 0.035 0.361
25 26 0.0032 0.0323 0.513
26 27 0.0014 0.0147 0.2396
26 28 0.0043 0.0474 0.7802
26 29 0.0057 0.0625 1.029
28 29 0.0014 0.0151 0.249

 

Table C.III. Transformer parameters 

Nodes Rs 
(pu)

Xs 
(pu)

Tap Ratio
Tv Uv

12 11 0.0016 0.0435 1.006 1
12 13 0.0016 0.0435 1.006 1
6 31 0 0.025 1.07 1
10 32 0 0.02 1.07 1
19 33 0.0007 0.0142 1.07 1
20 34 0.0009 0.018 1.009 1
22 35 0 0.0143 1.025 1
23 36 0.0005 0.0272 1 1
25 37 0.0006 0.0232 1.025 1
2 30 0 0.0181 1.025 1
29 38 0.0008 0.0156 1.025 1
19 20 0.0007 0.0138 1.06 1

 
 
 

Table C.IV. Load parameters 
Node P (pu) Q (pu) 

3 322 2.4 
4 500 184 
7 233.8 84 
8 522 176 
12 7.5 88 
15 320 153 
16 329 32.3 
18 158 30 
20 628 103 
21 274 115 
23 247.5 84.6 
24 308.6 -92.2 
25 224 47.2 
26 139 17 
27 281 75.5 
28 206 27.6 
29 283.5 26.9 
31 9.2 4.6 
39 1104 250 
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Table C.V. Generator’s parameters 

Node 
'
dx  

(pu) 
H  

(pu-sec) 
D  

(sec/rad) 
30 0.031 42 0 
31 0.0697 30.3 0 
32 0.053 35.8 0 
33 0.044 28.6 0 
34 0.132 26 0 
35 0.05 34.8 0 
36 0.049 26.4 0 
37 0.057 24.3 0 
38 0.057 34.5 0 
39 0.006 500 0 
 

 

Table C.VI. Generator’s cost curves and ratings 

Node A $
hr

B $
MWhr

 C 
2

$
MW hr

Rating
(MW) 

30 0 6.9 0.0193 350 
31 0 3.7 0.0111 650 
32 0 2.8 0.0104 800 
33 0 4.7 0.0088 750 
34 0 2.8 0.0128 650 
35 0 3.7 0.0094 750 
36 0 4.8 0.0099 750 
37 0 3.6 0.0113 700 
38 0 3.7 0.0071 900 
39 0 3.9 0.0064 1200 

 

  
Fig. C.1. One-line diagram of the New England test system. 
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