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Abstract 

In this thesis an approach for the simulation of power system short-term and long-term 

dynamics is developed. It combines the good characteristics of both Full-Time Scale 

(accuracy) and Quasi Steady-State (efficiency) simulation in a unified simulation tool.  

According to this approach, the short-term dynamics are computed with the Full-Time 

Scale simulation while the long-term dynamics are calculated by the Quasi Steady-State 

approximation. The singular perturbation and the two-time scale techniques are applied to 

obtain a suitable criterion for switching from Full-Time Scale to Quasi Steady-State 

simulation. The switching occurs automatically once the fast part of the dynamic variables 

remains below a specified tolerance during a specified period of time.  

The benefits and main characteristics of the proposed method are shown by numerical 

simulations in both small and large power systems: 2-machine, 4-bus system; 3-machine,  

9-bus Western System Coordinating Council (WSCC) system; 10-machine, 39-bus New 

England system and 46-machine, 190-bus equivalent model of the Mexican system. 
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Chapter 1  
 
 
INTRODUCTION 

1.1 Motivation and justification 

Generally speaking, modern power systems are large-scale systems composed of the 

interconnection of electric components whose dynamics are interacting at widely-varying 

speeds [Chow, 1982]. Therefore, the power system stability problem is commonly studied 

in different categories according to the time scale instead of a single problem. In the context 

of power system analysis, the stability is defined as “the ability of a power system to 

recover a state of operating equilibrium after being subjected to a disturbance from a given 

initial operating condition, with most system variables bounded so that practically the entire 

system remains intact” [Kundur et al. 2004], and it can be classified as shown in Figure 1.1. 

 

 

Figure 1.1: Power system stability classification. 
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Immediately after a power system has been subject to a disturbance, short-term 

dynamics are excited first. The short-term time scale is mainly concerned with the rotor 

angle, frequency and voltage transient stability involving the fast components, lasting 

typically for a few seconds. Some dynamic components acting within this period of time 

are considered fast: generators, Automatic Voltage Regulators (AVRs), turbines, governors, 

induction motors, Static Var Compensators (SVCs), High Voltage Direct Current (HVDC), 

etc. [Van Cutsem and Vournas, 1998]. 

Following the disturbance which does not cause short-term instability, the multi-time 

scale dynamics can persist over periods of time spanning from several minutes to several 

hours. This is called long-term dynamics. The focus of this slower time frame is to evaluate 

the effects of wide excursions of voltage and frequency for prolonged periods of time. 

Several dynamic components are acting in this time frame, such as boiler, load               

self-restoration, secondary frequency and voltage control, switching of shunt compensation, 

changes in generator set points, Load Tap Changers (LTCs), OvereXcitation Limiters 

(OXLs), etc, [Van Cutsem and Vournas, 1998]. Consequently, long-term dynamic 

simulations considering both fast and slow dynamics of the system must be performed to 

accurately analyze the effects of large excursions of voltage, frequency and power flows 

that may invoke the action of slow processes, controls and protections. This analysis 

requires the step-by-step numerical integration of a large-scale nonlinear stiff set of 

differential-algebraic equations (DAEs), where the time step is largely determined by fast 

states associated with the very small time constants of generators and their controls, such 

that long-term simulations may demand a huge computational effort if appropriate 

techniques are not used. 

There are two main numerical approaches based on time scales to reduce the 

computational burden of long-term dynamic simulations: i) Full-Time Scale (FTS) 

simulation techniques using a variable time step size of integration in conjunction with 

explicit or implicit integration methods [Stubbe et al., 1989], [de Mello et al., 1992],   

[Astic et al., 1994], [Sanchez-Gasca et al., 1995], [Yang and Ajjarapu, 2006]; and ii) model 

reduction-simplification techniques in conjunction with implicit integration methods 
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[Chow, 1982], [Xu et al., 1998], [Peponides et al., 1982], being the Quasi Steady-State 

(QSS) method widely used for its high efficiency [Van Cutsem et al., 2006], [Grenier et al., 

2005], [Loud et al., 2001]. 

This thesis proposes a two-time scale simulation approach for a unified solution of 

both fast and slow dynamics combining FTS simulation and QSS simulation. The proposed 

method is inspired of Singular Perturbation (SP) theory to model the interaction between 

short- and long-term dynamics [Xu et al., 1998], [Peponides et al., 1982]. Based on this 

interaction, a suitable criterion is proposed to accurately determine when the QSS model of 

a power system can be considered as a uniform approximation of the FTS model, which 

also determines the appropriate switching time between these models. The main 

contributions of the proposed approach are the following: i) simulation efficiency is 

achieved by both time step size adjustment and model reduction, which are implemented in 

a single simulation tool instead of using only the former [Stubbe et al., 1989], [de Mello et 

al., 1992],   [Astic et al., 1994], [Sanchez-Gasca et al., 1995] or only the latter [Grenier et 

al., 2005]; ii) the proposed criterion to automatically switch from the FTS to QSS models 

preserves a uniform approximation of state and algebraic variables, so that a process to 

initialize variables for the QSS simulation is not necessary; and iii) finally, the proposed 

switching criterion is easily computed from the FTS simulation by monitoring the rate of 

change of the fast time-varying state variables. 

 

1.2 State of the art 

An interconnected power system is an extremely complex sizable dynamic system because 

of its multi-time scale nature, as well as its large-scale and nonlinear characteristics, which 

make numerical simulation over long time intervals very demanding. Approaches that 

automatically adjust the time step of integration in accordance with the system’s dominant 

transients used to study both short-term and long-term dynamic phenomena in integrated 

simulation tools have been reported [Stubbe et al., 1989], [de Mello et al., 1992], [Astic et 

al., 1994],  [Sanchez-Gasca et al., 1995], [Yang and Ajjarapu, 2006]. The main idea behind 



4 
 

these approaches is to automatically reduce the time step to capture fast transients. As fast 

modes decay during the solutions process, the time step is gradually increased to reduce the 

computation time required to capture slow transients. A predictor-corrector approach based 

on the Gear-type Backward Differentiation Formula (BDF) is used in [Stubbe et al., 1989] 

to solve the set of DAEs. The time step size (and possibly the order) of the integration 

method are adjusted according to a local truncation error defined as the difference between 

predicted and corrected solutions. A similar idea is applied in [de Mello et al., 1992], but 

the full power system model is solved by a simplified time-domain simulation based on the 

Backward Euler (BE) method and large time steps of integration to filter out the fast 

dynamics. Simulation is performed by integrating the set of DAEs with a specified 

maximum step size, which is automatically reduced when the Newton method used to solve 

the set of nonlinear equations exhibits convergence difficulties. As the convergence of the 

Newton method improves over successive time steps, the time step is increased until 

reaching the maximum step time value. A drawback of these approaches is that an unstable 

mode of oscillation can lie in the stability domain of the integration methods so that a real 

unstable phenomenon will be simulated as a stable one. This problem can be avoided by 

using the mixed Adams-BDF variable step size and variable order algorithm proposed in 

[Astic et al., 1994]. The Adams method is applied to solve the set of ordinary differential 

equations (ODEs) and to check the errors in dynamic variables, whilst the BDF method is 

applied with the same purpose but to the algebraic equations and variables.  The selection 

of both step size length and order of the integration method is based on a global truncation 

error, which depends on the weighted root mean square norm of all corrected values of 

dynamic and algebraic variables. In the proposed implementation, the step size adjustment 

can be done once it has been kept constant in at least the number of time steps that equals 

the order of the mixed integration method [Astic et al., 1994]. A variable time step 

integration based on the Theta (θ) method is used in [Sanchez-Gasca et al., 1995] to solve 

the set of DAEs representing the power system. This method is A-stable for values of 

θ≤0.5, and a value for θ in the range of 0.47-0.49 avoids the following: i) the problem of 

sustained numerical oscillations, which is often encountered following the occurrence of 
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switching events in simulations using the trapezoidal rule of integration [Yang and 

Ajjarapu, 2006], and ii) the problem of hyper-stability presented in the numerical methods 

used in [Stubbe et al., 1989], [Astic et al., 1994]. The time step adjustment is done based on 

a local truncation error defined as a function of predicted and corrected values of both state 

and algebraic variables. The time step is increased if the maximum norm of the local error 

vector is below a specified tolerance for a number of time steps. On the other hand, if this 

norm exceeds the tolerance, the time step is reduced to a fixed value for a number of time 

steps before attempting to increase it. When a severe disturbance occurs, the simulation 

algorithm temporary changes to an explicit integration method with the time step fixed to a 

pre-specified minimum value. During this stage, the magnitude of the local error of 

integration is monitored to return to the solution based on the θ method. The integration 

steps have to be further adjusted in order to fall on the time instants where discrete state 

events (such as variables hitting their limits) take place. In case where the long-term 

dynamics are driven by many discrete controls – such as the widely used Load Tap 

Changers (LTCs) – this may prevent the step size from being increased to the extent 

allowed by the slow continuous-time dynamics 

Alternatively, the multiple time scales inherent to the dynamics of a power system  

can be exploited to obtain reduced order models relevant to a particular time scale [Chow, 

1982], [Cate et al., 1984], [Van Cutsem and Vournas, 1998] with the objective of 

simulating those reduced models much more efficiently [Van Cutsem and Vournas, 1998], 

[Xu et al., 1998]. A first step toward model simplification was proposed in [Frowd et al. 

1982] with a unified approach to short- and long-term dynamic simulation using the    

fixed-step trapezoidal integration method. The simulation mode is determined by the 

integration step size, and the switching from one mode to the other is defined by the degree 

of damping of synchronizing oscillations. An artificial damping term is included in the 

rotor swing equations of each generator to allow synchronizing oscillations to be artificially 

suppressed and to allow a larger integration time step when simulating the long-term mode. 

Based on the idea of combining the advantages of implicit and explicit integration methods 

to solve the set of DAEs representing the system under study [Astic et al., 1994], a 
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decoupled time-domain based on invariant subspace partition and fixed-step integration 

simulation is proposed in [Yang and Ajjarapu, 2006]. The original set of nonlinear ordinary 

ODEs are grouped in two decoupled sets of stiff and nonstiff equations, respectively,  based 

on eigenvalue analysis of the linearized set of ODEs. The set of stiff ODEs is integrated by 

those equations whose eigenvalues are located outside the stability domain of a selected 

explicit method. These equations, together with the set of algebraic equations, are solved 

using the trapezoidal integration method, and the forward Euler method is used to solve the 

rest of the nonstiff ODEs. 

An alternative to deal with the complexity of considering fast and slow phenomena in 

long-term dynamic simulations consists on using the model simplification concept. In 

recent years, the well-known Quasi Steady-State (QSS) approximation has been used for 

long-term dynamic studies [Van Cutsem and Vournas, 1998], [Xu et al., 1998]. This 

approximation relies on time-scale decomposition, which consists of decomposing the 

dynamic state variables into a set of fast time-varying state variables and a set of slow  

time-varying state variables. By assuming that the former set changes instantaneously with 

variations of the slow state variables, the set of differential equations associated with the 

fast (short-term) dynamics are represented by their equilibrium condition [Van Cutsem and 

Vournas, 1998], significantly reducing the computational effort for long-term dynamic 

simulation. However, when the power system is subjected to a severe contingency, the QSS 

simulation has some limitations [Loud et al., 2001]: 1) The assumption that the short-term 

dynamics can be replaced by their equilibrium equations is also based on the fact that these 

dynamics are transiently stable. However, the system may lose stability in the short-term 

and not even enter the long-term period. When this happens, the QSS simulation could 

exhibit singularity problems [Van Cutsem and Vournas, 1998]; 2) A large disturbance may 

trigger controls associated with discrete events with great impact on the system’s long-term 

evolution. The sequence of controls depends on the system dynamics, and hence may not 

be correctly identified from the simplified model. 

An alternative to tackling these QSS limitations consists of combining the FTS 

simulation for the short-term period and QSS approximation for the long-term time frame 
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as proposed in [Loud et al., 2001] and [Van Cutsem et al., 2006]. The time to switch from 

FTS to QSS simulation is chosen once the dynamics of rotor angles or frequency have died 

out [Loud et al., 2001]. In this case, the QSS model is initialized by setting the continuous 

long-term variables and the algebraic variables to the values computed by FTS simulation 

at the switching time swt . The short-term variables are initialized at the values associated 

with the equilibrium point of the set of differential equations at swt . Lastly, the operation 

and waiting state of discrete events have to be considered to determine their initial 

conditions at swt  and to establish the sequence of discrete controls during the QSS 

simulation with reasonable accuracy. The initialization process is avoided in [Van Cutsem 

et al., 2006] by performing an off-line coupling of both approaches based on the discrete 

events taking place during the detailed simulation. The FTS simulation is executed until the 

switching time swt  is detected as proposed in [Loud et al., 2001], and the sequence of 

discrete events that have occurred over this interval are identified. The QSS simulation is 

then implemented from the initial time with those discrete events imposed as external 

disturbances, without allowing the discrete devices to act by themselves until the simulation 

arrives at swt . From there on, the study proceeds with the usual QSS approximation.   

 

1.3 Objectives 

The general goal of this work is to develop an accurate single unified program for        

long-term dynamics analysis, which combines the accurate of FTS simulation and the 

efficiency of QSS simulation without the necessity of initializing the QSS models at 

switching time. The single program obtains the reliability of the FTS simulation when 

dealing with the short-term dynamics and the efficiency of the QSS simulation when the 

long-term dynamics is studied. 

The general goal can be achieved if an appropriate switching criterion is developed. 

Therefore, another goal is to develop a suitable criterion for switching from the FTS to the 

QSS model. The correct switching time has to correspond to the time when the QSS model 
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is a uniform approximation of FTS model, such that a process to initialize variables for the 

QSS simulation is not necessary. Also, the switching criterion has to be easily computed in 

order to reduce the computational burden. For this purpose the singular perturbation 

technique and the concept of boundary layer correction are used [Kokotovic et al. 1986].  

 

1.4 Methodology 

In order to reach the proposed objectives, this research work was developed according to 

the following methodology: 

 

 Review of the state of the art of dynamic power system simulation (short-term and 

long-term). 

 Review of the singular perturbation and the two-time scales theories. 

 Development of the switching criterion. 

 Development of the FTS model of a power system based on the power balance 

formulation. 

 Computational implementation of the FTS model in a digital program. 

 Development of the QSS model of a power system based on the power balance 

formulation. 

 Computational implementation of the QSS model in a digital program. 

 Computational implementation of the switching criterion in the digital program in 

order to combine FTS and QSS models. 

 Development of experiments in order to validate the proposed approach. 

 

1.5 Thesis outline 

The rest of this thesis is organized as follows: 
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Chapter 2 presents the FTS models of the power system components to be considered in 

this work. The solution process of the differential equations of the models is developed, and 

the equations representing the dynamic behavior of large-scale power systems are described 

based on the two frames of references. 

 

Chapter 3 provides the QSS models of the power system components explored in this 

work. The dynamic state variables are split up into fast and slow variables, and the 

differential equations associated with the fast variables are replaced by their equilibrium 

equations. The solution process of this new set of differential and algebraic equations is 

then presented. 

 

Chapter 4 presents the development of a suitable switching criterion between FTS and 

QSS simulation by applying the singular perturbation and two-time scale techniques. The 

proposed approach is then illustrated by studying a single power system. 

 

Chapter 5 addresses the application of the proposed approach to illustrate its suitability for 

the analysis of short-term and long-term dynamics in electric power systems. It combines 

the FTS and the QSS models by using the switching criterion developed in Chapter 4.  The 

proposed approach is then tested on several systems: a simple system, the Western System 

Coordinating Council (WSCC) system, the New England system, and a reduced 

representation of the Mexican power system.  

 

Chapter 6 gives the general conclusions of this research and presents suggestions for 

future research work. 
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Chapter 2  
 
 
FULL-TIME SCALE MODELLING OF 
POWER SYSTEM  

2.1 Introduction 

The dynamic stability analysis of power system is an integral part in the design, planning 

and operation of large interconnected power systems. The aim of dynamic simulations is 

the monitoring of the power system and the planning of preventive or corrective control 

action strategies suitable for mitigating the impact of several disturbances presented in the 

system. Thus, the development of accurate digital programs and numerical methods for 

dynamic analysis is very important for secure power grid expansion, and it significantly 

impacts the future design and operation of large interconnected power systems [Khaitan et 

al., 2008]. 

Power system dynamics and stability analyses require performing numerical 

simulations of a large set of equations of devices, involving dynamic characteristics in a 

wide range of time scales and nonlinear effects [Van Cutsem et al. 2006]. Therefore,     

Full-Time Scale (FTS) models must be included in order to obtain more realistic results.  

In the present Chapter, the FTS models of the fundamental elements (e.g. network, 

generator, controls, loads, etc.) that form the power system are developed. Consequently, 

the resulting differential and algebraic equations are transformed into pure algebraic 

equations (AEs) using ether the Trapezoidal Rule or the Backward Euler integration 

method. Thus, the Newton-Raphson algorithm can be used to solve the AEs under a single 

frame of reference based on power flow formulation. 



11 
 

2.2 Full-time scale formulation 

In stability studies, the derivation of a general dynamic model of the power system is given 

by the sets of differential-algebraic-discrete equations (2.1)-(2.3). Likewise, the numerical 

integration of the whole set of equations is referred to as Full-Time Scale simulation [Van 

Cutsem and Vournas, 1998] 

 

 ( , , )     :  n m p n nx f x y z f x X       (2.1) 

 0 ( , , )   : n m p m mg x y z g y Y       (2.2) 

 
 0

( ) ( , , ( )) :  

                                                                     ,

n m p p p
k k

end

z t h x y z t h z Z

t t t

       


 (2.3) 

 

where t0 and tend are the initial and final times, respectively, of the study time period. 

The differential equations (2.1) involve two time scales of dynamic phenomena: 

short-term dynamics of generators, turbines, governors, AVRs, induction motors, etc. and 

long-term dynamics of boiler, load self-restoration, secondary frequency and voltage 

control, etc.  

The algebraic equations (2.2) consider the dynamic phenomena practically 

instantaneous, such as electromagnetic and network transients, etc. 

The discrete-time equations (2.3) represent the discrete controls and protections that 

act on the system: switching of shunt compensation, changes in generator set points, LTCs, 

OXLs, etc. 

In the following Section, the mathematical full-time scale models of the principal 

devices (generators, voltages regulators, governors, turbines, for example) that compose the 

power system are developed. The appropriate procedure to solve the equations (2.1)-(2.3) is 

also presented. 
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2.3 Generator modelling 

The performance of synchronous machines (generators) plays an important role in power 

system stability because they have to be rotating in synchronism. The generator model 

commonly used in stability analysis is based on a two-axis formulation of the machine 

equations as shown in Figure 2.1 [Sauer and Pai, 1998], [Van Cutsem and Vournas, 1998]. 

The stator (or armature) circuit is composed of three identical sinusoidally distributed 

armature winding, displaced 120°, with voltages av , bv , cv  and currents ai , bi , ci  

respectively. The rotor circuit consists of four windings with the field winding (denoted by

fd ) on the direct axis. Two windings (denoted by 1d and 1q) represent amortisseur (or 

damper) bar effects. The 1d winding has the same magnetic axis as the field winding, while 

the magnetic axis of the 1q winding (called the quadrature axis) is displaced 90° ahead of 

the direct axis. Furthermore, eddy currents are represented by the second winding (denoted 

by 2q) on the quadrature axis [Van Cutsem and Vournas, 1998], [Krause et al., 2002]. 

 

 

Figure 2.1: Schematic diagram of the synchronous machine. 
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The stator and rotor equations are obtained by applying the fundamental Kirchhoff’s 

and Faraday’s laws as well as the Park transformation [Sauer and Pai, 1998], [Krause et al., 

2002]: 
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with the flux linkages per second expressed as 
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 (2.7) 

 

where ω0 is the synchronous speed, and ω is the actual rotor speed. Xmd and Xmq are the d 

and q magnetizing reactance, respectively, Rs is the stator resistance, Vd is the d winding 

voltage, Id is the d winding currents and Xd is the d leakage reactance. Appropiate variables 

are also associated with the q axis and the rotor circuit. 



14 
 

According to the dynamic of interest in the present work, the generator model 

considered in this work relied on the following assumptions [Van Cutsem and Vournas, 

1998]: 
 
 The transformer voltages are neglected ( 0)d q    . 

 The usual speed deviations are small compared to the synchronous speed, 

0( )  . 

 The armature resistance (which is very small) is neglected. 

 Magnetic saturation is neglected. 
 

Therefore, under these assumptions and through algebraic manipulation (see 

Appendix A), the FTS synchronous machine model of order VI can be expressed only in 

terms of meaningful bus variables: 
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where jK  are constants associated to the generator’s reactances, fdE  is the voltage 

proportional to the field voltage determined by exciters or it can be considered as constant 

and δ is the generator’s rotor angle relative to a certain rotating reference with respect to the 

quadrature axis. The voltage magnitudes behind transient q- and d-axis reactances are qE  

and dE . Flux linkages per second related to damping windings are given by 1d  and 2q . 

doT  , qoT   and doT  , qoT   are the q-, d-axis transient and subtransient open-circuit time 

constant, respectively.  H is the moment of inertia, D is the damping constant, Pm is the 

turbine mechanical power injection and Pg is the generator’s electrical power output. 

Lastly, V and θ are the magnitude and phase angle of the voltage measured at bus terminal. 

 

2.3.1 Initial condition for the synchronous generator 

In power system dynamic analysis, computing the initial value of all the dynamic 

states ( 1 2,  ,  ,  ,  ,  q d d qE E      ) is necessary, as well as the fixed inputs ( ,  fd mE P ). These 

values are normally obtained from a base study power flow solution. After the power flow 

study has been solved, the initial condition is computed by solving the steady-state 

synchronous generator model represented by the steady-state equivalent circuit of Figure 

2.2 [Sauer and Pai, 1998]. 

 

 

Figure 2.2: Equivalent circuit for steady-state operation of synchronous generator. 
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Application of Kirchhoff’s voltage law to Figure 2.2 yields the stator equation in 

steady-state 

 
 j j

qE Ve jX Ie    (2.13) 

 
where jVe   and jIe   are the terminal voltage and current, respectively; E  represents a 

voltage behind reactance Xq. 

  Thus, the initial condition for the generator model is normally carried out by the 

following steps: 

 
 The terminal current is found as 

 

 g gj
j

P jQ
Ie

Ve





 . (2.14) 

 
 E  is computed by (2.13), and the internal angle of generator is obtained from 

 
 angle of E  . (2.15) 

 
 From Figure 2.2 and the result of the previous step, qE  is computed as 

 
  q q d dE E X X I     (2.16) 

 

where cos( 2)dI I      . 

 
 Since the derivatives are zero, the rest of the state variables are given by 
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 0  . (2.18) 
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 While the fixed inputs are computed as 

 
   1 2 1 3 cosfd q dE K E K K V        (2.19) 

 m gP P . (2.20) 

 

2.4 Automatic voltage regulators 

The generators are normally operated at constant terminal voltage through an automatic 

voltage regulator (AVR) that controls the amount of current supplied to the generator field 

winding by the exciter. The general functional block diagram of the automatic voltage 

regulator system is shown in Figure 2.3 [Machowski et al., 2008].  

 

 

Figure 2.3: Block diagram of the AVR system. 

The AVR system includes several subsystems which work together for the correct 

operation of the voltage control loop. These subsystems are presented in the following 

Sections. 
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2.4.1 Excitation modelling 

The principal function of the electric field exciter is to control the terminal voltage 

magnitude at a reference value by changing the machine excitation, fdE . Figure 2.4 shows 

a detailed dynamic model of the electric field exciter used in this work, which corresponds 

to the IEEE Type 1 without saturation representation [Anderson and Fouad, 1994], [Rafian 

et al. 1988]. 

 

 

Figure 2.4: Electric field exciter. 

From the block diagram of the model, the differential equation of the exciter can be 

expressed as 
 

   (min) (max)
fd

E E ref fd fd fd fd

dE
T G V V E E E E

dt
      (2.21) 

 

where ET  is the exciter time constant, and EG  is the open-loop steady-state gain of 

excitation. The voltage reference ( refV ) is calculated as [Rafian et al., 1988], 

 

 
0

0fd
ref

E

E
V V

G
   (2.22) 

 
where 0

fdE  and 0V are the initial excitation and terminal voltages of the generator whose 

values are obtained with the generator initialization procedure. 
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2.4.2 Feedback compensation 

The excitation control system stabilization (comprised of a feedback compensation) is used 

to improve the dynamic performance of the control system. The most commonly used form 

of compensation is a derivative feedback (DF), as shown in Figure 2.5. The effect of the 

compensation is to minimize the phase shift introduced by the time delays over a selected 

frequency range [Kundur, 1994]. 

 

 

Figure 2.5: Derivative feedback compensation. 

The mathematical model of DF compensation is obtained using Figure 2.5 as 

 

 f fd

dD
T E D

dt
   (2.23) 

  f
fd

f

K
C E D

T
   (2.24) 

 
where fT  is the time constant, and fK  is the gain of the DF compensation system. The 

initial condition of D must be equal to 0
fdE , since the initial compensation has to be zero, i.e. 

0 0C  . 
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2.4.3 Power system stabilizer 

The power system stabilizer (PSS) adds damping to the generator rotor oscillations by 

controlling its excitation using an auxiliary stabilizing signal. This device is employed to 

improve the damping of rotor oscillations over a range of frequencies, rather than a single 

frequency. Normally, the frequency range of interest is 0.1 to 2.0 Hz [Kundur, 1994]. 

The functional block diagram of the PSS system is shown in Figure 2.6 [Kundur, 

1994]. It consists of three blocks: a phase compensation block (lead-lag), a signal washout 

block and a gain block. The compensation block provides the appropriate      phase-lead 

characteristic to compensate for the phase lag between the exciter input and the generator 

electrical (air-gap) torque. The PSS responds only to changes in rotor speed due to the 

signal washout block operation. This block operates as a high-pass filter with the time 

constant Tw high enough to allow signals associated with oscillations in ω to pass 

unchanged. The stabilizer gain KS determines the amount of damping introduced by the 

PSS [Kundur, 1994], [Xu et al., 1998].  

 

 

Figure 2.6: Power system stabilizer. 

From Figure 2.6, the mathematical model of the PSS represented by first order 

differential equations cannot be directly obtained. However, this is reached by subdividing 

each block in an appropriate form, as shown Figure 2.7 (see Appendix B).  

 



21 
 

 

Figure 2.7: Block diagram of the PSS. 

Using the block diagram of Figure 2.7, the mathematical model of the PSS takes the 

following form: 

 w S

dW
T K W

dt



    (2.25) 

  2 1

'
S

dP
T c K W P

dt
       (2.26) 

  4 2 3

'
S

dV
T c K W c P V

dt
         (2.27) 

 
where W  , P  and V  are the state variables associated with the washout block, phase and 

lead, respectively. wT  and iT are the time constants related to each block, while the gain  

1c , 2c  and 3c  are given by 

 3 1 31 1
1 2 3

2 4 2 2 4

1 , 1 ,
T TTT T

c c c
T T T T T

      . (2.28) 

 
The compensation Vs of the PSS, which is incorporated in the exciter, can be 

expressed as 

  4 5s sV c K W c P V         (2.29) 

 
where the gain 4c  and 5c  are given by 

 

 1 3 3
4 5

2 4 4

,
TT T

c c
T T T

  . (2.30) 
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The initial condition of the state variables 'W , 'P  and 'V  are equal to zero in order to 

start simulation without PSS compensation. 

 

2.4.4 OvereXcitation limiters 

The OvereXcitation Limiter (OXL) of synchronous generators plays an important role in 

the voltage stability of power systems. It modifies the reference voltage of automatic 

voltage regulators to protect the field winding of the synchronous generator from 

overheating [Van Cutsem and Vournas, 1998]. For the generator model presented in 

Section 2.3, the field current is given by the following expression:  

 
  1 2 1 3 cosfd q dI K E K K V        (2.31) 

 
where 1K , 2K  and 3K  are constants associated to the generator reactances; these are given 

in Appendix A.  

This device is generally inactive, unless the field current is greater than its thermal 

limit, lim
fdI , as shown in Figure 2.8 [Van Cutsem and Vournas, 1998].  

 

 
Figure 2.8: Block diagram of the OXL model. 

Block 1 corresponds to a two-slope gain whose output depends on the value of 1x : 
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 2 1 1 1

2 2 1 1

       if  0

       if  0

x S x x

x S x x

 
 

 (2.32) 

 
where lim

1 fd fdx i i   and 1 2,S S  are constants bigger than zero. The output of the first limited 

integrator (block 2) is initially at its lower bound, 1tx B  , and hereafter it is expressed as 

 
 

 
   2 1

2

0    if    and 0  or  and 0

  otherwise
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

. (2.33) 

 
When fdi  becomes larger than lim

fdi , the output of block 2 starts increasing. As soon as 

tx  becomes positive, block 3 switches its input as indicated in Figure 2.8.  

The output of the second limited integrator (block 4) must be initialized at zero, 

0OXLx  . Right after block 3 has switched, the output OXLx  increases according to the 

following expression [Van Cutsem and Vournas, 1998]: 

 

 
   3

3

0    if    and 0  or 0 and 0

  otherwise
OXL OXL OXL OXL OXL

OXL i

x x B x x x

x c x

    



  


. (2.34) 

 
Therefore, the field current decreases as a result of subtracting the output signal OXLx  

from the AVR inputs as shown in Figure 2.8. 

 

2.5 Automatic generation control 

The role of an Automatic Generation Control (AGC) is to maintain the power plant 

frequency close to its nominal values by controlling the generation of active power. This 

control is applied at two levels, designed for primary and secondary frequency control 

[Elgerd and van der Puije, 1998]. The AGC control loops are shown in Figure 2.9. 
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Figure 2.9: Automatic generation control. 

The primary frequency control performs the initial adjustment of the frequency. This 

control responds relatively quickly to a measured sign of frequency. For "quickly" we mean 

the changes that happen in some seconds. Through the speed governor this control loop 

regulates active power output to match the fluctuations in the load [Elgerd and van der 

Puije, 1998]. 

The secondary control loop performs the fine tuning of the frequency. To achieve 

this, the load-frequency control adjusts the speed changer according to some convenient 

control strategy. The secondary control loop is a support of the governor, which allows 

lessening the frequency deviation to an acceptable value and keeps the interchanged power 

between neighboring electric areas at the scheduled value. 

For the purposes of the present investigation, only the primary frequency control of 

the steam plants is considered. This loop control acts according to the speed governor and 

the steam turbine, as detailed in the next Sections.  
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2.5.1 Speed governor  

The governor adjusts the steam input to the turbine through the valve position, GVP . This is 

shown in the block diagram of Figure 2.10 [IEEE Committee Report, 1973].  
 

 

Figure 2.10: General models for speed governor systems. 

The valve position is proportional to the changes of both the power reference, refP , 

and the deviation of angular speed, 0     . The power reference is fixed by the  

Load-Frequency Control (LFC) on the AGC secondary control. Therefore, the 

mathematical expression that represents the changes of the valve position takes on the 

following form: 
 

 
 0

0

1GV
GV ref GV

dP
T P P

dt R

 



    (2.35) 

 
where R is the speed droop characteristic and represents the regulation ability of the 

generator against the changes in the power system. This regulation is given in terms of the 

generated frequency and active power, 

 

 
g

f
R

P


 


. (2.36) 
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The value of GVP  and its derivative should be constrained by the limit on the valve 

position and rate limits, respectively [IEEE Committee Report, 1973], [Sauer and Pai, 

1998]: 
 

 (max)0 GV GVP P   (2.37) 

 
min max

GV GV GVdP dP dP

dt dt dt
  . (2.38) 

 
The output of the governor is initially at the power reference value. This is 

determined by the LFC at the steady-state as follows: 
 

 
0

g
ref nom

g

P
P

P
  (2.39) 

 
where 0

gP  and nom
gP  are the initial and the rated active power generation, respectively. 

 

2.5.2 Steam turbine 

The steam turbine adjusts the mechanical power according to the steam flow, which is 

regulated by the valve position. The valve position is then the input signal to the turbine. 

The mathematical model that represents this relation varies according to the type of turbine 

employed in the generation plant: nonreheat, single reheat, double reheat. 

For power system dynamic stability studies, a turbine of single reheat with multiple 

sections of pressure is commonly used [Kundur, 1994]. Hence, this type of turbine is 

adopted in the present work, and it is called tandem-compound steam turbine [IEEE 

Committee Report 1973].  

The tandem-compound turbine is integrated by three sections: the high (HP), 

intermediate (IP) and low (LP) pressure turbines, respectively. All sections are mounted on 

the same shaft as shown in Figure 2.11a [IEEE Committee Report 1973]. Moreover, the 



27 
 

block diagram that corresponds to a linear approximation of this turbine is shown in Figure 

2.11b [IEEE Committee Report, 1973], [Kundur, 1994].  

 

 

Figure 2.11: Steam turbine: (a) Tandem compound, single reheat; (b) Block diagram. 

The mathematical equations that represent the steam turbine are [Rafian et al. 1988] 

 

 GV HPHP

CH

P PdP

dt T


  (2.40) 

 IP HP IP

RH

dP P P

dt T


  (2.41) 

 LP IP LP

CO

dP P P

dt T


  (2.42) 

 
with a mechanical power injected to the generator given by 

 

 m HP HP IP IP LP LPP P F P F P F    (2.43) 
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where TCH, TRH and TCO are the time constants which represent delays at the steam chest 

and inlet piping, reheaters and crossover piping, respectively. FHP, FIP and FLP represent a 

portion of the total turbine power developed in the different stages [Sauer and Pai, 1998]. 

Furthermore, these fractions have to satisfy 1HP IP LPF F F   .  

The initial condition of each stage, PHP, PIP and PLP is equal to the value of the output 

of governor PGV. 

 

2.6 Loads 

In power system stability analysis, the impact of the loads in the system must be suitably 

characterized. However, the load demanded depends on a large number of devices that are 

continuously changing, which makes the accurate modelling the load composition in a 

power system very difficult and impractical. Therefore, a simplified load modelling is 

commonly used in power system studies. 

In general, load modelling in a power system is split up into two categories. One is 

the steady-state load (also called static load) model, and the other is the dynamic load 

model.  

In this Section, the widely used exponential and polynomial static loads are 

described. Additionally, the dynamic loads are presented from the viewpoint of load power 

restoration, which allows the introduction of the load tap changers. The characteristics and 

modelling of the induction motors are also discussed. 

 

2.6.1 Static load models 

A static load model represents the load at any instant of time t as an algebraic function of 

the bus voltage magnitude and frequency [Kundur, 1994]. Nonetheless, the frequency 

dependence of loads is not addressed in this work, which is a common practice in stability 

analysis [Van Cutsem and Vournas, 1998].  
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The voltage dependency of a load commonly used is the well-known exponential 

model, which has the general form 
 

 0
0

t

L P

V
P z P

V


 

  
 

 (2.44) 

 0
0

t

L Q

V
Q z Q

V


 

  
 

 (2.45) 

 
where zP and zQ are dimensionless demand variables, and P and Q are active and reactive 

components of the load when the bus voltage magnitude is V. The superscript 0 represents 

the values of the respective variable at the initial operation condition. The exponents αt and 

βt depend on the type of load (motor, heating, lighting, etc.).  

When the exponents take integer values such as 2, 1, or 0, the model represents 

constant impedance load (often noted Z), constant current load (often noted I) or constant 

power load (often noted P), respectively. Thus, an alternative model which has been widely 

used to represent the voltage dependency of loads is the polynomial model [IEEE Task 

Force, 1993]. This model is commonly referred to as the ZIP model, as it is made up of 

three components: constant impedance, constant current and constant power. The active 

and reactive characteristic of this model is given by the following quadratic equations: 

 

 

2

0
0 0L P P P P

V V
P z P a b c

V V

  
    
   

 (2.46) 

 

2

0
0 0Q Q Q Q

V V
Q z Q a b c

V V

  
    
   

 (2.47) 

 
where the coefficients aP, bP, cP, aQ, bQ and cQ define the proportion of each component. 

These coefficients should satisfy 1P P P Q Q Qa b c a b c      . 
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2.6.2 Load restoration dynamics 

After a disturbance occurs in a power system, a deviation of load power is presented, which 

causes that various load components and control mechanisms act to restore the load power 

at its initial value. This process is known as load restoration and can be captured by the   

so-called generic models of self-restoring load [Van Cutsem and Vournas, 1998]. In this 

work, the multiplicative model of the generic load models are adopted. It is presented using 

an exponential static load model, but it can be applicable to a polynomial or any other type 

of static load models. 

At any time the power consumed by the multiplicative generic load model is given by 

(2.44) and (2.45), which is called the transient load characteristic. While the steady-state 

load characteristic is represented by the following algebraic equations:  

 

 0
0

s

s

V
P P

V


 

  
 

 (2.48) 

 0
0

s

s

V
Q Q

V


 

  
 

 (2.49) 

 
where αs and βs are the steady-state load exponents. Generally, the transient load 

characteristic is more sensitive to voltage than the steady-state load characteristic, so that 

the transient load exponents αt, βt have larger values than the steady-state ones αs, βs     

[Van Cutsem and Vournas, 1998].  

The multiplicative model leads the transient load characteristics towards the     

steady-state load characteristics by adjusting the value of zP and zQ. Thus, zP and zQ are 

considered new state variables and their value is opposite to the deviation of load; e.g., 

when the transient load characteristic suffers a drop, the variables zP and zQ will start to 

increase, and according to (2.44)-(2.45), both active and reactive power loads are forced 

towards to go to their steady-state characteristics. The behavior of the state variables zP, zQ 

is given by the following differential equations: 
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0 0

s t
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P P

dz V V
T z
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 
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s t

Q
Q Q
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T z
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 
   

    
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 (2.51) 

 
where TP and TQ are time constants associated with the active and reactive power load, 

respectively. 

Before any disturbance, the load power is equal to its steady-state characteristic and, 

therefore, the initial condition of the state variables zP and zQ are equal to one. 

 

2.6.3 Load tap changer modelling 

The basic function of a Load Tap Changer (LTC) is to control the voltage magnitude at a 

specified value, despite of variations in the input voltage by changing the transformer ratio 

r. For this reason, the LTC indirectly manipulates the process of load restoration when it 

restores the voltage magnitude to its reference value; the load power is also restored 

because in general depends on the bus voltage magnitude. Normally, the variable tap is on 

the high voltage side because on this side the current is lower and there are more turns, 

which makes commutation easier and more precise [Van Cutsem and Vournas, 1998]. 

To illustrate the LTC discrete model, the single-phase transformer is considered in 

Figure 2.12 with a constant leakage reactance and a negligible magnetizing branch. 

 

 

Figure 2.12: Equivalent circuit of a two-winding transformer. 
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The LTC raises or decreases the transformer ratio by one tap step, r , at discrete 

time instants. This process is shown in Figure 2.13.  

 

 

Figure 2.13: Block diagram of process operation for LTC. 

The deviation of voltage magnitude ΔV is monitored by a measuring element. It 

produces an error signal based on the following rules: 
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 (2.52) 

 
where db represents the deadband. The LTC does not act with typical values for North 

American (NA), and for European practice are 0.625% and 1-2% voltage tap steps, 

respectively [IEEE Task Force, 1995], [Van Cutsem and Vournas, 1998].  

The voltage error is the input signal of time delay element which produces an output 

according to (2.53) 
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where Td is the maximum initial time delay; typical values for NA and European practice 

are 30-120 and 25-140 seconds, respectively. 

Finally, the tap is changed by the tap changer mechanism according to the following 

rules: 
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 (2.54) 

 
where rmax,  rmin are the upper and lower tap limits, and Tm is the mechanical time necessary 

to perform the tap change. Typical values of the mechanical time for NA and European 

practice are 5-10 and 5 seconds, respectively. Besides, typical values of the lower limit are 

0.85-0.90 p.u. and the upper limit at 1.10-1.15 p.u. [IEEE Task Force, 1995], [Van Cutsem 

and Vournas, 1998]. 

Once the process discussed above has finished, the admittance matrix of the 

transformer associated with the LTC must be updated. The admittance matrix of the 

transformer models adopted in this work is developed in Section 2.7.2.  

 

2.6.4 Induction motor modelling 

The induction motors are approximately 60% to 70% of the total system load [Kundur, 

1994]. Therefore, one needs a model that represents the dynamic characteristics of the 

power consumed by the motors in the power system. 

A three-phase induction motor carries alternating current in both the stator and rotor 

windings. The rotor windings are either internally short-circuited (called squirrel-cage 

rotor) or connected through a slip ring to a passive external circuit (called wound rotor). 

Figure 2.14 shows the winding arrangement for a 2-pole, 3-phase ( av , bv , cv ), symmetrical 

induction motor. The stator and rotor windings are identical sinusoidally distributed 
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winding, displaced 120°, respectively. This representation can be employed for both the 

squirrel-cage rotor and the wound rotor. 

 

Figure 2.14: Schematic diagram of the induction machine. 

The stator and rotor equations in terms of d, q variables are obtained applying the 

fundamental Kirchhoff’s and Faraday’s laws as well as the Park transformation  [Krause et 

al., 2002], [Kundur, 1994]: 
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 (2.56) 

 
with the flux-current relations [Lesieutre et al., 1995], 
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where ωr is the actual rotor speed, and ωe represents the speed of a rotating reference 

frame. Xs and Xr are the stator and rotor leakage reactances, whereas Xm is the magnetizing 

reactance. Rs is the stator resistance, d sV and qsV  are the d and q stator voltage, d sI and q sI  

are the d and q stator currents, d s and q s  are the d and q stator flux linkage and similarly 

for the rotor circuit.  

Based on the dynamics of interest in the present work, the motor model relies on the 

following assumptions: 

 
 The transformer voltages are neglected ( 0)d s q s    . 

 The reference frame is rotating at synchronous speed, 0( )e  . 

 The rotor is assumed to be a squirrel-cage, ( 0)d r qrV V  . 

 Magnetic saturation is neglected. 

 

Hence, an induction motor model of order III is obtained through some algebraic 

manipulations of (2.55)-(2.58), taking into account the assumptions of Appendix C 
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with 
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where jM  are constants associated to the motor reactances, and 0T  is the transient       

open-circuit time constants; V and θ are the magnitude and phase terminal voltage; qe  and 

de  are the e.m.f. behind transient reactance; Hm is the moment of inertia, Te and Tm are the 

electromagnetic and the mechanical load torque, respectively; T0, T1 and T2 are constants 

whose values are calculated as discussed in the next Section; PLm and QLm represent the 

active and reactive power consumed by the induction motor. Lastly, the rotor angular 

speed, ωr, is in p.u. of the base value of ω0. 

 

2.6.4.1 Initial condition for the induction motor 

The initial condition of the state variables for the induction motor model is similar to that of 

a synchronous machine described in Section 2.3.1. Once the power flow study is carried 

out, the initial condition is then computed by solving the steady-state induction motor 

model, as detailed hereafter. 

The induction motor can be represented by the well-known steady-state equivalent 

circuit of Figure 2.15 [Van Cutsem and Vournas, 1998], [Ruiz-Vega et al., 2002], [Ruiz et 

al., 1999]. 



37 
 

The motor slip is defined as 

 
 1 rs    (2.65) 

 
where ωr is given in per unit. 

 

 

Figure 2.15: Equivalent circuit for steady-state operation of induction motor. 

The equivalent impedance ee eZ R jX   added to the stator impedance depends on s 

and is given by 
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and the stator current can be obtained as 
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0
0

s e s e

V
I

R R j X X


  
. (2.67) 

 
Using (2.67) and Figure 2.15, the active and reactive power absorbed by the induction 

motor at the steady-state are given by 
 

 
  
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 (2.68) 
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  

   

20

2 2

s e

L m

s e s e

X X V
Q

R R X X




  
. (2.69) 

 
As the active power at steady-state is considered independent of voltage variations, 

(2.68) can be rewritten by the following quadratic expressions [Ruiz-Vega et al., 2002]: 

 

 
2

0r rR R
A B C

s s
        
   

 (2.70) 

 
with  

    22 2 0
L m s ss sA P R X V R                (2.71) 

      202 L m s X s ss rr X ss rrB P R K R X X V K X X     (2.72) 

    22 2 2 0 2
L m X s rr s rrC P K R X V R X    (2.73) 

 2
X m ss rrK X X X   (2.74) 

 ss s mK X X   (2.75) 

 rr r mK X X   (2.76) 

 0
Lm p LP f P    (2.77) 

where fp is a constant that defines the portion of the total active load power ( 0
LP ) consumed 

by the induction motor.  

The initialization process is then normally carried out as follows: 

 
 Equation (2.70) is solved, and two values of rR s  are obtained. The larger value 

(represented by Xroot) is selected because it is in the stable region of the active 

power-slip curve of the motor [Ruiz-Vega et al., 2002]. 

 
 The initial value of the motor slip is given by 
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 r

root

R
s

X
 . (2.78) 

 
 The rotor speed is computed from (2.65) 

 
 1r s   . (2.79) 

 
 The actual induction motor reactive power LmQ  is given by (2.69). However, a 

difference between LmQ  and the initial reactive power (a portion of the total reactive 

load QL at bus) is presented. Hence, a compensation Qc must be placed at the bus 

where the motor is connected, which is given by 

 
 c Lm Q LQ Q f Q    (2.80) 

 
where fQ is a constant that represents the portion of the total reactive load power 0

LQ  

consumed by the induction motor. 

 

 Since the derivatives are zero, the state variables are given by 
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. (2.81) 

 
 The electromagnetic torque is computed by (2.61).  

 The initial mechanical load torque is equal to Te in steady-state, while the constant 

associated with (2.62) is computed by 
 

 0 2
1 21

e

T r T r

T
T

C C 


 
 (2.82) 
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where CT1 and CT2 are the linear and quadratic mechanical torque coefficients, 

respectively. The value of these coefficients are given by the characteristic of the 

induction motor 
 

 1 2
1 2

0 0

    and    T T

T T
C C

T T
  . (2.83) 

 
Therefore the constants T1 and T2 are obtained from (2.83) 

 
 1 0 1 2 0 2    and    T TT T C T T C  . (2.84) 

 

2.7 Network modelling 

The network response is commonly considered instantaneous in power system stability 

analysis [Van Cutsem y Vournas 1998]. Thus, the network model can be represented by a 

set of algebraic equations that describes the power flow balance at all buses of the system at 

any time. Hence, the network model is given by the following constrains [Acha et al., 

2004]: 

 0 1, ,i

sys
g i inj i L iP P P P i n        (2.85) 

 0 1, ,sys
i g i inj i L iQ Q Q Q i n        (2.86) 

 
with 

 
gensys

g i g i
sys

S
P P

S
  (2.87) 

 
gensys

g i g i
sys

S
Q Q

S
  (2.88) 

 
where n is the number of buses in the system. g iP  and g iQ  are the active and reactive 

electric output power of the generator (see Section 2.3), respectively. Ssys and Sgen are the 

system and generator nominal power, respectively. L iP  and L iQ  are the active and reactive 
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power demanded by the load (see Section 2.6), respectively. inj iP  and inj iQ  are the active 

and reactive power flows injected at the i-th bus through the transmission elements and are 

computed from [Acha et al., 2004]: 

 

     2

1

cos sin
n

inj i ii i j ij i j ij i j
j

P V G V V G B   


      (2.89) 

     2

1

sin cos
n

inj i ii i j ij i j ij i j
j

Q V B V V G B   


       (2.90) 

 
where Gij and Bij are the equivalent conductance and susceptance of the transmission 

element (lines, transformer, etc.) connected between nodes i and j, respectively. Their 

values for several transmission elements are given in the following Sections. 

 

2.7.1 Transmission line 

The transmission line is represented by a pi-equivalent circuit with a series ijy  and a shunt 

sh
ijy  admittance, as shown in Figure 2.16. This transmission line representation is 

symmetric: ij jiy y  and sh sh
ij jiy y . 

By applying Kirchhoff’s current law at buses i and j, the injected complex currents at 

buses may be expressed as follows: 
 
 

   sh
i ij i j i iI y V V y V    (2.91) 

   sh
j ji j i j jI y V V y V   . (2.92) 
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Figure 2.16: Pi-equivalent of transmission line. 

The above equations can be written in a matrix form as 

 

 
sh

i iij i ij
sh

j jji ji j

I Vy y y

I Vy y y

     
           

 (2.93) 

 
or simply 
 

 i ii ij i

j ji jj j

I Y Y V

I Y Y V

     
     

     
 (2.94) 

where  
 sh

ii ij i ii iiY y y G jB     (2.95) 

 ij ij ij ijY y G jB     (2.96) 

 ji ji ji jiY y G jB     (2.97) 

 sh
ji ji j jj jjY y y G jB    . (2.98) 

 

2.7.2 Transformer 

The conventional transformer (implemented in this work) was modelled with complex taps 

on both primary and secondary windings. Its magnetizing branch is also considered in the 
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model to account for the core losses. The schematic equivalent circuit of the transformer 

model is shown in Figure 2.17 [Fuerte-Esquivel, 1997]. 

 

 

Figure 2.17: Equivalent circuit of a two-winding transformer. 

The primary winding is represented as an ideal transformer having complex tap ratios 

:1vT  and :1iT  in series with the impedance Zp where *
v i v tvT T T    . The * denotes the 

conjugate operation. The secondary winding is also represented as an ideal transformer 

having complex tap ratios :1vU  and :1iU  in series with the impedance Zs where 

*
v i v tvU U U    . 

The transfer admittance matrix relating the primary voltage Vp and current Ip to the 

secondary voltage Vs  and current Is  in the two-winding transformer is determined by 

considering the current I1 across the impedances Zp  and the current I2 across the impedance 

Zs [Fuerte-Esquivel, 1997] 
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. (2.99) 

 
where  
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 0 0 0Y G jB   (2.100) 

 
Equation (2.99) can be expressed as 

 

 
p pp ps pp ps p

s sp ss sp ss s

I G G B B V
j

I G G B B V

        
         

        
 (2.101) 

 
where 
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21 4 2( 3)
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 
  (2.105) 
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    2cos 1 1sin 1

2
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T U F F
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 
  (2.107) 

 
    1cos 2 2sin 2

2
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TU F F
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A

  
  (2.108) 

 
    2cos 2 1sin 2

2
v v

sp

T U F F
B

A

 
  (2.109) 

 2 2
11 v s v p eqF T R U R R    (2.110) 

 2 2
12 v s v p eqF T X U X X    (2.111) 

 2 22 1 2A F F   (2.112) 

    1eq p s p s o p s s p oR R R X X G R X R X B     (2.113) 
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    1eq p s p s o p s s p oX R R X X B R X R X G     (2.114) 

 1 s o s oR R G X B   (2.115) 

 2 s o s oR R B X G   (2.116) 

 3 p o p oR R G X B   (2.117) 

 4 p o p oR R B X G   (2.118) 

 1 tv uv     (2.119) 

 2 uv tv    . (2.120) 

 
By changing the subscript (p=i and s=j), the active and reactive power injection 

equations of a two-winding transformer are equal to (2.89) and (2.90), respectively. 

 

2.7.3 Bus types 

The active and reactive power balance at each bus is given by (2.85)-(2.86), where both the 

generated and consumed power are computed according to the power system models 

presented in the previous Section, while the power flow injected at each bus only depends 

on the network variables (Vi, θi). Therefore, the power balance equations are consistent, and 

a unique solution can be found. Nevertheless, a bus classification is implemented according 

to the element embedded at bus and the reference frame used to perform the simulation. 

 

 Load bus: no generator is connected to the bus, hence the active and reactive powers 

injected at bus are zero  0g i g iP Q  . Furthermore, the active and reactive power 

drawn by the load L iP  and L iQ  are known as explained in Section 2.6. 

 Generator bus: a generator is connected to the bus, and the active g iP  and reactive 

g iQ  power are computed with the generator model detailed in Section 2.3. 

Moreover, if there is a load embedded at the bus, the active and reactive power 
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demanded are computed as explained in Section 2.6; otherwise they are zero 

 0L i L iP Q  . 

 Infinite bus: one can represent a remote system by setting Vi and θi in a specified 

value. There is only one infinite bus in the power system, and it is not considered in 

the network’s solution. Therefore, the number of network equations is 2(n-1) if 

there is an infinite bus. 

 Fault bus: if a short-circuit or fault disturbance is applied at bus, the magnitude and 

angle voltage are then set to zero  0i iV   . Furthermore, this bus is considered 

an infinite bus during the time of perturbation because the nodal voltage is known. 

 

2.8 Full-time scale reference frame 

In a power system composed of m synchronous machines, it is convenient for analysis 

purposes referring the rotor position r  of each machine (see Figure 2.1) to a common 

frame of reference. Normally, the synchronous speed is used as a frame of reference, and 

the rotor position is expressed as [Van Cutsem and Vournas, 1998] 

 
 0

0ri rit     (2.121) 

 
where 1,2, ,i m   and 0

ri  is the value of ri  at 0t  . 

The rotor angle δ of each machine is then defined as the electrical angle between the 

machine quadrature axis and a synchronous rotating reference (see Figure 2.18) [Van 

Cutsem and Vournas, 1998]: 
 

  0i ri t C     . (2.122) 
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Figure 2.18: Phasor diagram of the stator variables of the i-th machine. 

Since C is an arbitrary constant, the time derivative of rotor angle is given by (2.9), 

which is reproduced here: 
 

 0
i

i

d

dt

    . (2.123) 

 
FTS simulation (with the synchronous reference frame) is carried out for a 

disturbance that affects the power balance in the system. After a period of time, the system 

settles at a new equilibrium point (assuming a short-term and long-term stability) with the 

phase angles referring at a new angular frequency. Therefore, the i  variable linearly 

increases with time although the new equilibrium point is stable. This nonlinear behavior 

consumes unnecessary computational effort [Fabozzi and Van Cutsem, 2011].   

The above difficulty can be solved by a change of the rotating reference frame. In 

transient stability analysis the Center-of-Inertia (COI) reference frame is commonly used 

[Sauer and Pai, 1998]. The COI angle and its time derivative are defined, respectively, as 

 

 
1

1 m

COI i i
iT

M K
M

 


   (2.124) 
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where MT  is the total inertia, 02i iM H   and K is an arbitrary constant. The rotor angle 

and its time derivative of the i-th generator are then given by [Fabozzi and Van Cutsem, 

2011]: 

 i i COI     (2.126) 

 i
i COI

d

dt

    . (2.127) 

 
Therefore, (2.9) is replaced by (2.127) at the ωCOI rotating frame. Thus, (2.125) is 

added to the set of algebraic equations (2.2). 

 

2.9 Full-time scale solution 

Full-time scale dynamic studies consist of solving the DAE’s mathematical model 

described by (2.1)-(2.3) during an interval of time  0 , endt t t . This can be achieved using 

either a Simultaneous Implicit (SI) or a Partitioned Explicit (PE) method [Van Cutsem and 

Vournas, 1998]. 

The SI method can handle stiff equations with no numerical problems and is more 

stable than the PE method [Sauer and Pai, 1998]. The SI method is widely used on 

commercial programs, where the DAE’s system is solved in a unified frame work. In order 

to achieve this, the differential set (2.1) is transformed (algebraized) into a set of difference 

equations by using either the implicit Backward Euler (BE) method or the implicit 

Trapezoidal Rule (TR). The resulting equations are then added to the set of network 

algebraic equations (2.2), and both nonlinear algebraic sets are solved in a unified reference 

frame by using the Newton’s method.  

The SI method is used in the present work for the above-mentioned advantages. 

While both the BE and TR integration methods are adopted to solve the FTS model 

considering the structure preserving model of the power system, as explained in the 

following Sections. 
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2.9.1 Discretization of the differential equations 

Numerical integration consists of discretizing the differential equation (2.1) by the 

following algebraized relationship [Van Cutsem and Vournas, 1998]: 

 
  1 1

0 1
k k k kx x h f f      (2.128) 

 
where βi is a constant whose value depends on the integration method (see Table 2.1), and h 

is the integration time step ( 1k kh t t  ). The superscript k is an index for the time instant 

tk at which variables and functions are evaluated:  k
kx x t  and  ,k k kf f x y . The 

dynamic state variables compose the vector x, while the vector y is composed of algebraic 

variables. 

Equation (2.128) can be rewritten as 

 
  1 1

0 1 0k k k kx x h f f      . (2.129) 

 
Table 2.1: Fixed-step integration methods 

Integration method Formula 

Backward Euler 1 1
0 11, 0k k kx x h f        

Trapezoidal Rule  1 1
0 1 0.5

2
k k k kh

x x f f         

 

2.9.2 Application of Newton-Raphson method to the FTS model 

The set of algebraized equations (2.129) is added to the set of network algebraic equations 

(2.2). Thus, the set of DAEs are expressed as a set of algebraic-difference equations 

 

  1 1
1 0 1( ) 0k k k kF x x h f f         (2.130) 

   1
2 0kF g    . (2.131) 
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Both nonlinear algebraic sets (2.130) and (2.131) can be solved in a unified reference 

frame by using Newton’s method to linearize with respect to 1kx   and 1ky   such that at the  

i-th iteration the following linear system is solved: 
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 (2.132) 

 
where J is called the Jacobian matrix, and its submatrices are the partial derivative of 

,  1,2iF i  , with respect to 1kx   and 1ky   
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. (2.133) 

 

For given values 
Tk kx y   , the method starts from an initial guess 

1 1
0 0

Tk k k kx x y y      and updates the solution at each iteration i by (2.134), until a 

convergence criterion is satisfied. The process is repeated until 1k
endt t   

 

 
1

1

i i ik k k

k k k

x x x

y y y





     
           

. (2.134) 

 
For a power system composed by n buses (without infinite bus), m synchronous 

machines, e exciters, f feedback components, ps power system stabilizer, o OvereXcitation 

limiters, r governor-turbines, d load restoration dynamics and a induction motors, the FTS 

model at the synchronous rotating frame then has the following vectors of algebraic and 

state variables: 
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. (2.136) 

 
On the other hand, the algebraic vector is increased if the ωCOI rotating frame is used: 
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

 . (2.137) 

 

2.10 Conclusions 

This Chapter has presented the mathematical models of the power system components to be 

considered in this work. All models are developed (with the minimum of variables) based 

on the power-flow formulation.  

Differential equations of the models have been algebraically represented using the BE 

or TR integration method. A set of nonlinear equations for the network elements and the 

generating plant components (e.g. generator, AVR, AGC, etc.) have been assembled in a 

unified frame of reference to study the dynamic behavior of large-scale power systems at 

the synchronous or ωCOI rotating frame. 
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Chapter 3  
 
 
QUASI STEADY-STATE 
APPROXIMATION  

3.1  Introduction 

Despite that power system stability analysis using FTS simulation accomplishes results 

very close to the actual behavior of the power system during short-term (several seconds) 

and long-term (from minutes to hours) time frame, executing a FTS simulation is 

impractical when the long-term is the period of interest because the detailed models of 

electric power system components involve a very high computational effort due to the fast 

dynamic phenomena existing in the short-term. Therefore, a reduced model of the power 

system is more desirable, since it performs the long-term dynamic simulations more 

efficiently from a computational effort viewpoint. 

The wide range of time scales inherent to the dynamics of a power system makes 

using the Quasi Steady-State (QSS) approximation possible to obtain reduced order models 

relevant to a particular time scale with the objective of simulating those reduced models 

much more efficiently. Herewith, the long-term dynamic simulation can be carried out 

using large time steps during numerical integration to capture slow transients. 

In the present Chapter, the QSS models of the fundamental elements (shown in the 

previous Chapter) of the power system are exposed. The dynamic state variables are split 

up into fast and slow variables. Thus, the differential equations associated with fast 

variables are replaced by their equilibrium equations, and the resulting algebraic equations 

are added to the network equations. The new set of differential and algebraic equations 
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(DAEs) is then transformed to algebraic equations (AEs) using the TR or the BE 

integration method. Finally, the Newton-Raphson algorithm is used to solve the algebraized 

sets of equations in a single frame of reference. 

 

3.2 Quasi steady-state formulation  

Opposite to the approaches where the original set of DAEs is handled throughout the whole 

simulation, the QSS approximation of the long-term dynamics handles a reduced and 

simplified set of equations. The latter is obtained by considering a time scale 

decomposition of the dynamic state variables into fast and slow time-varying variables, 

respectively and by assuming that the former set of variables changes instantaneously with 

respect to variations of slow-state variables, replacing the corresponding differential 

equations by their equilibrium conditions. The set of differential equations (2.1) can then be 

decomposed according to the time scales of the state dynamics. In particular, in a two-time 

scale system, the simplified model can be expressed as [Van Cutsem and Mailhot, 1997] 

 

 ( , , , ) : sd sdn m p n
sd sd sd fd sdx f x x y z f      (3.1) 

 0 ( , , , ) : fd fdn m p n

fd sd fd fdf x x y z f      (3.2) 

 0 ( , , , )   : sd fdn n m p m
sd fdg x x y z g       (3.3) 

 
 0

( ) ( , , , ( )) :

,

sd fd

fdsd

n n m p p
k sd fd k

nn
sd fd end

z t h x x y z t h

x X x X t t t

     

    
 (3.4) 

 

where xsd is a nsd-dimensional vector with predominantly slow dynamics and  initial 

conditions 0
0( )sd sdx t x , while xfd is a nfd-dimensional vector of states that have fast 

dynamics superimposed on slow varying quasi steady-state responses with initial 

conditions 0
0( )fd fdx t x . 
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In the following Sections the mathematical FTS models presented in Chapter 2 are 

transformed into QSS models. Note that according to the QSS formulation only the 

components represented by differential equations may be transformed while those 

represented by algebraic equations are kept without changes. The appropriate procedure to 

solve the equations associated with the simplified model, (3.1)-(3.4), is also developed.  

 

3.3 Generator QSS modelling 

In practically all well-designed two-axis single synchronous machine (presented in Section 

2.3), the subtransient qoT  , doT   and transient qoT 
 
open-circuit time constants are quite small 

as shown in Table 3.1 [Kundur, 1994]. 

 
Table 3.1: Typical values of synchronous machine time constants 

Open-circuit time 
constant 

Salient-point machine 
(Hydraulic plant) 

Round-rotor machine 
(Thermal plant) 

doT   1.5 – 9 s 3 – 10 s 

qoT  – – – – – 0.5 – 2 s 

doT   0.01 – 0.05 s 0.02 – 0.05 s 

qoT   0.01 – 0.09 s 0.02 – 0.05 s 

 

Since the time constants associated with the damper winding at the d- and q-axis 

typically are small values (see Table 3.1), their corresponding flux linkages ( 1d ,
 2q ) and 

the voltage magnitude behind transient d-axis reactance ( dE ) can be considered fast-state 

variables. The voltage qE   is then treated as a slow state variable. Therefore, the QSS 

generator model can be found by splitting (2.8) as 

 

 
 1 2 1 3 cos

     
q q d fd

do

dE K E K K V E

dt T

       



 (3.5) 
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  

. (3.6) 

 
Since the electromechanical oscillation is slower than the electrical dynamics, the 

rotor angle and the rotor speed can be assumed to be slow-state variables. Hence, the swing 

equation is  

 

 0

d

dt

     (3.7) 

   0
02 m g

d
P P D

dt H

       (3.8) 

 

where the active and reactive power generated by the synchronous machine are only 

expressed in terms of the fast- and slow-state variables: 

 

 
     
    

13 14 2 15

2
16 1 17

cos cos sin

sin sin 2

g d q q

d
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      

    

      

   
 (3.9) 

 
     
      
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2 22
16 1 18 19

sin sin cos

cos cos sin
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d
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K V V K K

      

      

       

     
. (3.10) 

 
Finally, the initial condition of all state variables ( ,  ,q dE E  1 2,  ,  ,  d q    ) and the 

fixed input ( ,  fd mE P ) are computed as detailed in Section 2.3.1. 

 

3.4 Automatic voltage regulator QSS modelling 

As mentioned in Section 2.4, the AVR control loop is composed of several devices acting 

at two-time scale. The feedback compensation and OvereXcitation limiter are considered 
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slow components, because their dynamic behavior is dominant during the slow transients 

[Van Cutsem and Vournas, 1998], [Kundur, 1994]. On the other hand, the exciter and the 

PSS are viewed as fast devices [Xu et al., 1998]. Therefore, the QSS models of the slow 

devices are those given for the FTS model, while the QSS models of the fast devices are 

developed in the following Sections. 

 

3.4.1 Exciter QSS modelling 

The electric field exciter control is generally fast, with a small time constant (0.01 – 0.05 

seconds) in order to respond immediately when the terminal voltage is perturbed; this small 

time constant is one reason to use small integration time steps in FTS simulations. The QSS 

exciter model can then be represented by its steady-state response as shown in Figure 3.1. 

 

 

Figure 3.1: Block diagram of exciter steady-state. 

From the block diagram of the model, the equilibrium equation of the exciter can be 

expressed as 

 

   (min) (max)0 E ref fd fd fd fdG V V E E E E      (3.11) 

 

where the voltage reference and the initial condition are calculated as in Section 2.4.1. 
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3.4.2 Power system stabilizer QSS modelling 

Based on the time constants associated with the PSS, its dynamic can be split up into          

two-time scales. The phase-lead network has a fast response because of its small time 

constants T1 and T4, while the washout block acts slowly because its time constant is long 

enough (1 20)wT   to pass signals associated with oscillations at the frequency of 

unchanged interest [Xu et al., 1998], [Kundur, 1994]. 

Based on the mentioned above, the differential equations of the fast blocks can be 

replaced by their equilibrium equations, as shown in Figure 3.2. 

 

Figure 3.2: Block diagram of simplified model of PSS. 

Thus, the QSS model of PSS is obtained from the block diagram as 

 

 w S

dW
T K W

dt



    (3.12) 

  10 Sc K W P       (3.13) 

  2 30 Sc K W c P V         (3.14) 

 
The compensation (Vs) of the PSS that is incorporated in the exciter is still given by 

(2.29), which is reproduced here: 

 
  4 5s sV c K W c P V         (3.15) 

 
where all gain ic  and the initial value of all variables are given in Section 2.4.3. 
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3.5 Speed governor and turbine QSS modelling 

The AGC operation is more important in long-term simulations than in short-term 

simulations. However, some time constants of the governor and turbine may be relatively 

fast (see Table 3.2), and replacing the differential equations associated with these fast 

control elements by algebraic equations may be possible to produce a reduced order model 

for long-term simulations [IEEE Committee Report, 1973]. 

 
Table 3.2: Typical time constants of governor and turbine 

Control device Time constants Typical value  

Speed governor TGV 0.1 – 0.3 s 

Turbine 

TCH  0.1 – 0.4 s 

TRH  4 – 11 s 

TCO 0.3 – 0.5 s 

 

According to the typical time constants given in Table 3.2, the states associated with 

valve position (PGV), as well as high (PHP) and low (PLP) pressure turbines, could be taken 

as relatively fast variables. The QSS model of speed governor and turbine is then obtained 

by transforming their differential equations into algebraic equations as follows: 

 

 
 0

(max)
0

1
0              0ref GV GV GVP P P P

R

 



      (3.16) 

 0 GV HPP P   (3.17) 

 0 IP LPP P  . (3.18) 

 
The intermediate (PIP) pressure turbine is considered slow state variable, and its 

dynamic is given by 

 

 IP HP IP

RH

dP P P

dt T


 . (3.19) 
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All state variables are initialized with the value of Pset, which is given by (2.39) in 

Section 2.5. Moreover, the QSS model of these controls can be represented by the block 

diagram shown in Figure 3.3. Note that the mechanical power injected to the generator Pm 

is still represented by (2.43). 

 

 
Figure 3.3: QSS model of the speed governor and steam turbine. 

 

3.6 Load QSS modelling 

The dynamic loads can be split up into two-time scales by examining the time constants 

associated with each differential equation. The response of a self-restoring load (see 

Section 2.6.2) is relatively slow due to its large active (TP) and reactive (TQ) time constants, 

such that its generic model is still given by (2.50)-(2.51), and its transient response has 

more effect during the long-term dynamics. 

On the other hand, the induction motor rotor transients (see Section 2.6.4) are faster 

than the electromechanical transients associated with synchronous machines. Hence, the 

QSS model of the induction motor can be obtained by neglecting the rotor dynamics ( oT is 

very small): 
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. (3.20) 



60 
 

The rotor motion is still given by (2.60), which is repeated here for the sake of 

completeness: 

 

  1

2
r

e m
m

d
T T

dt H


   (3.21) 

 
where the Te and Tm are represented by (2.61) and (2.62), respectively.  The active and 

reactive power consumed by the QSS model of the induction motor are also given by (2.63) 

and (2.64), respectively. Finally, this model is initialized based on the same process 

described for the FTS model in Section 2.6.4.1. 

 

3.7 QSS reference frame 

A reference bus axis rotating at a synchronous speed is also adopted as a frame of reference 

to express the machine rotor dynamic in the QSS simulation. These equations are given by 

(3.22)-(3.23) so that each generator conserves its own rotating speed: 

 

 0
i

i

d

dt

     (3.22) 

   0
02

i
m i g i i i

d
P P D

dt H

       . (3.23) 

 
On the other hand, the limitation of the synchronous rotating reference (described in 

Section 2.8) is also avoided by changing to a COI  rotating reference in the QSS simulation 

as [Fabozzi and Van Cutsem, 2011]: 

 

 i
i COI

d

dt

     (3.24) 

   0

2
i

m i g i i i COI

d
P P D

dt H

        (3.25) 
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where (3.22) is replaced by (3.24) at the ωCOI rotating frame. Thus, (2.125) is added to the 

set of algebraic equations (3.3). 

Nevertheless, the QSS approximation is mainly used in long-term stability studies 

where the dynamics of interest consists of synchronous machine rotor oscillations with a 

large period of the order of 25 s [Van Cutsem et al., 2006], [Grenier et al., 2005], such that 

perfect coherency between all synchronous machines can be assumed for QSS simulation. 

Note that this assumption requires neglecting the oscillations between machines, which is 

valid only for long-term studies [Van Cutsem et al., 2006], [Grenier et al., 2005]. 

Under this assumptions and using ωCOI as the rotating reference, the system can be 

represented by the block diagram of Figure 3.4 [Van Cutsem et al., 2006], [Grenier et al., 

2005)]. 

 

 

Figure 3.4: Common frequency model of the system. 

Since all generators are rotating at COI , the swing equation of the i-th generator 

takes the following form: 
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 0 i COI    (3.26) 

 ,    1, ,COI
i m i g i

d
M P P i m

dt


     (3.27) 

 
where (3.27) is obtained by substituting (3.26) into (3.25). Note that the mechanical 

damping D cannot be considered under this common frequency reference frame. 

A common differential equation of COI  for all generators is obtained by summing 

(3.27) over all them [Van Cutsem et al., 2006], [Grenier et al., 2005)] 

 

 
1 1 1

m m m
COI

i m i g i
i i i

d
M P P

dt


  

     (3.28) 

 
or  

 
d

dt
COI

TM
   (3.29) 

 

where 
1

m

T i
i

M M


 , and   represents the total imbalance of mechanical and electrical 

powers given by 
 

 
1 1

m m

m i g i
i i

P P
 

   . (3.30) 

 
Another limitation lies in that the rotor angle cannot be determined using (3.26) 

because this equation has to be removed from the generator model. In order to solve this 

problem, (3.27) and (3.29) are combined to obtain 

 

 i
g i m i

T

M
P P

M
   (3.31) 

 
where g iP  is given by (3.9) which involves the rotor angle δi. Based on (3.9) the active 

power can be expressed as 
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. (3.32) 

 
Therefore, (3.26) is replaced by (3.32) and   is established as a new algebraic 

variable common to all generators; however, finding a unique solution is not possible 

because there are more variables than equations. This difficulty is solved by defining a new 

type of bus (called a reference bus), where the voltage phase angle should be kept as 

constant at θref, and the common algebraic variable   takes the place of θref [Van Cutsem et 

al., 2006], [Grenier et al., 2005]. Furthermore, the reference bus should have a connected 

generator. 

Finally, another difference between the individual rotor speed and the common 

frequency reference frame appears when the network equations are solved.  At this point, 

the active power g iP
 
injected by the i-th generator is given by (3.9) for the individual rotor 

speed reference frame and by (3.31) for the common frequency reference frame. The rest of 

the formulation presented in Section 2.7 continues without changes for both reference 

frames.  

 

3.8 QSS solution 

The QSS simulation consists of solving the power system reduced model represented by 

(3.1)-(3.4) for a specified period of time. To this purpose, the set of differential equations 

associated with the slow variables is algebraized by using one of the well-known 

integration formulas. In this work, the BE or the TR (as in FTS simulation) is used to 

transform (3.1) into the difference equation 

 
  1 1

0 1
k k k k
sd sd sd sdx x h f f      (3.33) 
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where constant βi is given in Table 2.1, and its value depends on the integration formula, h 

is the integration time step ( 1k kh t t  ) and the superscript k is an index for the time 

instant tk at which variables and functions are evaluated:  k
sd sd kx x t  and 

 , ,k k k k
sd sd sd fdf f x x y . The slow-state variables compose the vector xsd, while the vectors 

xfd and y represent the algebraic variables. The resultant set of difference equations is added 

to the set of algebraic equations (3.2)-(3.3), and all nonlinear algebraic equations are solved 

in an integrated way by using the Newton’s method. 

 

3.8.1 Application of Newton-Raphson method to the QSS model 

 
The set of DAEs is easily rewritten as a set of algebraic-difference equations: 
 
  1 1

1 0 1( ) 0k k k k
sd sd sd sdF x x h f f         (3.34) 

   1
2 0k

fdF f     (3.35) 

   1
3 0kF g     (3.36) 

 
The above nonlinear algebraic equations (3.34)-(3.36) are solved by using the 

Newton´s method to linearize with respect to 1k
sdx  , 1k

fdx   and 1ky  , such that the linear 

system (3.37) is solved at the i-th iteration: 
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        
            
          

 (3.37) 

 
where J is called the Jacobian matrix, and its submatrices are given by  
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The method starts from an initial guess point 1 0 1 0 1 0 Tk k k
sd sd fd fdx x x x y y        and 

updates the solution at each iteration i by 
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 (3.39) 

 
where the correct solution is obtained until a convergence criterion is satisfied. This process 

is repeated until 1k
endt t  .  

Lastly, assuming that a power system is composed by n buses (without an infinite 

bus), m synchronous machines, e exciters, f feedback components, ps power system 

stabilizer, o OvereXcitation limiters, r governor-turbines, d load restoration dynamics and a 

induction motors, the QSS model at the synchronous rotating frame has the following 

variables vectors: 

 

 
 
 

1

1

T

n

T

n

y
V V

  
 
  




 (3.40) 
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On the other hand, the network algebraic vector is increased if the ωCOI rotating frame 

is used: 

 

 

 
 

1

1

T

n

T

n

COI

y V V

 



 
 
 
 
  



 . (3.43) 

 
Lastly, the dynamic and algebraic vectors take the following form when a perfect 

coherency between all generators and the COI  rotating frame are considered: 
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where the n-th bus is assumed to be a reference bus, which implies that θn is constant. The 

rotor angle δ is included in the xfd vector and a global variable ωCOI is added to xsd. In this 

case, the rotor speed of each generator is given by 

 
 1i COI i m    . (3.47) 
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3.9 Conclusions 

This Chapter has presented the mathematical formulation of the Quasi Steady-State 

approximation taking into account the rotor speed as dynamic variable. To this purpose two 

approaches were reported: i) Each generator conserves its own rotating speed by 

considering ether the synchronous speed or the ωCOI speed as rotating reference;  ii) In the 

second approach, a perfect coherency is considered in all generators by neglecting the 

oscillations between them, and the ωCOI speed is used as the frame of reference. 

Moreover, the set of DAEs that represents the QSS approximation is transformed into 

a set of algebraic-difference equations by using the BE or TR integration method. Lastly, 

the resulting set of algebraized equations is solved with the Newton-Raphson method to 

study the long-term dynamic stability of large-scale power systems.  
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Chapter 4  
 
 
COMBINING SHORT- AND LONG-TERM 
MODELLING AND SIMULATION 

4.1 Introduction 

In this Chapter, the idea of combining FTS and QSS models is used to develop a single 

unified program for long-term dynamic simulation. An accurate criterion to determine the 

appropriate switching time between these models, preserving a uniform approximation of 

state and algebraic variables, is proposed based on the singular perturbation and two-time 

scale techniques. The main contributions of the proposed approach are: i) The time step 

size of integration is adjusted based on the direct monitoring of the damping associated 

with fast time-varying state variables instead of the truncation error of all state and 

algebraic variables; ii) The simulation efficiency is achieved with both, the time step size 

adjustment and the reduction of the power system model instead of by using only the 

former; and iii) Finally, the proposed criterion to automatically switch from FTS to QSS 

simulation allows the initialization of the state variables of the slow reduced model from 

the final system state provided by the full simulation. 

 

4.2 Singular perturbation and two-time scale 

Power system dynamics can be described by a mixed set of parameter-dependent 

differential and algebraic equations, as given by the FTS model 

 

 ( , , ) : n m p nx f x y z f      (4.1) 
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 0 ( , , ) : n m p mg x y z g      (4.2) 

 
 0

( ) ( , , ( )) :

,

n m p p
k k

n m p
end

z t h x y z t h

x X y Y z Z t t t

     

      
 (4.3) 

 

where t0 and tend are the initial and final times, respectively, of the study time period. x is a 

n-dimensional vector of dynamic state variables with initial conditions 0 0( )x t x , y is a    

m-dimensional vector of instantaneous state (algebraic) variables with initial conditions 

0 0( )y t y  and z is a set of p discrete states which undergoes step changes from ( )kz t  to 

( )kz t  at some instant tk [ Van Cutsem and Vournas, 1998]. Because transmission network 

dynamics are much faster than dynamics of the equipment or loads, the variables y are 

understood to change instantaneously with variations of the x states under the              

quasi-sinusoidal (or phasor) approximation. Hence, only the dynamics of the equipment, 

e.g. generators, controls and loads at buses, are explicitly modelled by the set of nonlinear 

ordinary differential equations (4.1). The set of nonlinear algebraic equations (4.2) 

represents the stator algebraic equations and mismatch power flow equations at each node. 

Lastly, the set of discrete-time equations (4.3) capture the discrete controls and protections 

acting on the system. 

The set of differential equations (4.1) can be partitioned according to the time scales 

of the state dynamics. In particular, in a two-time scale system [Kokotovic et al., 1986], 

 

 ( , , , ) : sd sdn m p n
sd sd sd fd sdx f x x y z f      (4.4) 

 ( , , , ) : fd fdn m p n

fd fd sd fd fdx F x x y z F      (4.5) 

 
where xsd is a nsd-dimensional vector with predominantly slow dynamics and initial 

conditions 0
0( )sd sdx t x , while xfd is a nfd-dimensional vector of states that has fast dynamics 
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superimposed on slow varying quasi steady-state responses with initial conditions 

0
0( )fd fdx t x . 

Since the dynamics of the states xfd  are faster than those of xsd, that is fdx  is larger 

than sdx , Ffd must be scaled by introducing a scaling factor ε [Peponides et al., 1982], 

[Kokotovic et al., 1986]: 

 
 fd fdf F  (4.6) 

 
where ε represents the ratio of time scales associated with xsd and xfd: ratios of small and 

large time constants, subtransient and transient inductances or weak and strong connections 

[Xu et al., 1998]. 

Hence, when functions are scaled to have the same order of magnitude the FTS 

model (4.1)-(4.3) can be expressed as a standard form (also called the explicit form) of the 

singular perturbation problem [Peponides et al., 1982], [Kokotovic et al., 1986]: 

 

 ( , , , ) : sd sdn m p n
sd sd sd fd sdx f x x y z f      (4.7) 

 ( , , , ) : fd fdn m p n

fd fd sd fd fdx f x x y z f      (4.8) 

 0 ( , , , ) : sd fdn n m p m
sd fdg x x y z g        (4.9) 

 
 0

( ) ( , , , ( )) :

,

sd fd

fdsd

n n m p p
k sd fd k

nn
sd fd end

z t h x x y z t h

x X x X t t t

     

    
. (4.10) 

 
One simple technique to reduce the order of the FTS model, thereby reducing the 

stiffness of the system, is to formally set 0  . In this case, dynamics of xfd become 

infinitely faster than xsd and instantaneously reach their equilibrium ( , , , ) 0fd sd fdf x x y z  , 

such that the system approaches the solution of the nsd-dimensional slow-reduced model if 
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the Jacobian ( )fd fdf x    is nonsingular [Kokotovic et al., 1986]. This model is often 

referred to as the Quasi Steady-State (QSS) model and is expressed by 

 

 ( , , , )sm sm sm
sd sd sd fdx f x x y z  (4.11) 

 0 ( , , , )sm sm
fd sd fdf x x y z  (4.12) 

 0 ( , , , )sm sm
sd fdg x x y z  (4.13) 

 ( ) ( , , , ( ))sm sm
k sd fd kz t h x x y z t  . (4.14) 

 

In this case, the solution ( )sm
sdx t  represents an approximation to the actual slow 

subsystem dynamics ( )sdx t , and ( )sm
fdx t  represents an approximation of the slow modes 

(hence the upperscript sm) of the fast subsystem dynamics ( )fdx t . This approximation is 

accurate for  ,sw endt t t  where tsw is the time instant at which switching from the FTS 

model to the QSS model is appropriate. The values of algebraic variables associated with 

the slow dynamics are represented by y . 

A discrepancy between the responses computed by the QSS model and from the FTS 

model takes place during the interval 0[ , ]swt t  and is due to the fast dynamic response. 

However, the equivalence between both responses can be established by investigating the 

dynamics of the fast-reduced model, which can be derived from (4.7)-(4.10) by considering 

the so-called boundary layer correction [Kokotovic et al., 1986], [Peponides et al., 1982] in 

the fast time scale τ 

 

 ( ) ( ) ( )sm fm
sd sd sdx t x t x    (4.15) 

 ( ) ( ) ( )sm fm
fd fd fdx t x t x    (4.16) 

 
where ( )fm

sdx  and ( )fm
fdx   are fast modes, and τ is given by [Kokotovic et al., 1986] 
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t


 . (4.17) 

 
Applying the chain rule derivative to (4.15) and (4.16) yields 

 

 
( ) ( ) ( )sm fm

sd sd sddx t dx t x d

dt dt d dt

 


   (4.18) 

 
( ) ( ) ( )sm fm

fd fd fddx t dx t x d

dt dt d dt

 


  . (4.19) 

 
Taking the derivative of τ with respect to time and substituting into (4.18) and (4.19) 

 

 
( ) ( ) ( )sm fm

sd sd sddx t dx t x

dt dt d

 


   (4.20) 

 
( ) ( ) ( )sm fm

fd fd fddx t dx t x

dt dt d


 


  . (4.21) 

 
Moreover, substituting (4.7) into (4.20) and (4.8) into (4.21), the differential 

equations can be rewritten as 

 

 
( ) ( )

( ( ) ( ), ( ) ( ), , )
sm fm

sm fm sm fm sd sd
sd sd sd fd fd

dx t x
f x t x x t x y z

dt d

   


     (4.22) 

 
( ) ( )

( ( ) ( ), ( ) ( ), , )
sm fm
fd fdsm fm sm fm

fd sd sd fd fd

dx t x
f x t x x t x y z

dt d


  


    . (4.23) 

 
Finally, the fast reduced model is then obtained by letting 0  : 

 

 0
fm

sddx

d
  (4.24) 

 ( , , , )
fm
fd sm sm fm

fd sd fd fd

dx
f x x x y z

d
   (4.25) 

 0 ( , , , )sm sm fm
sd fd fdg x x x y z   (4.26) 
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 ( ) ( , , , ( ))sm sm fm
k sd fd fd kz t h x x x y z t   . (4.27) 

 
The equation (4.24) implies that fm

sdx  is frozen at its initial value 0( )fm
sdx t . 

Furthermore, as sdx  is predominantly slow, the quasi steady-state sm
sdx  can be constrained to 

start from the prescribed initial condition 0
0 0( ) ( )sm

sd sd sdx t x t x  , which implies that 

0( ) 0fm
sdx t  . Based on this assumption, the approximation of sdx  by sm

sdx  is uniform for all 

 0 , endt t t  with errors on the order of ε, i.e. ( )sm
sd sdx x O   , and ( ) 0fm

sdx    for all 

 0 , swt t t  [Peponides et al., 1982] , [Kokotovic et al., 1986]. 

The fast modes fm
fdx  of fdx  are the states of the fast reduced model (4.25) which will 

damp out to their equilibrium ( ) 0fm
fd swx t    if they are asymptotically stable. In this case, 

a uniform approximation of the fast dynamics is given by ( )sm fm
fd fd fdx x x O     over 

 0 , swt t t , and once the fast modes become small enough, ( )sm
fdx t  is a uniform 

approximation of ( )fdx t , ( )sm
fd fdx x O   , for  ,sw endt t t . 

Based on the theory described above, Tikhonov’s theorem [Kokotovic et al., 1986] 

guarantees that the solution given by the QSS model (4.11)-(4.14) uniformly approximates 

the true solution computed from the FTS model (4.1)-(4.3) after a time interval  0 , swt t t  

has elapsed.  

 

4.3 Switching criterion 

An appropriate criterion to determine when the fast modes fm
fdx   are small enough, which is 

the necessary condition to switch from the FTS model to the QSS model, can be 

determined using the singular perturbation technique as detailed hereafter. 
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The sets of ODEs in (4.7)-(4.10) associated with the dynamic models of power 

system components can be represented in their linearized form such that the singular 

perturbation model can be reformulated by considering 0fm
sdx   as 

 
  21 22 23 2

sm fm sm
sd fd fd sdx A x x A x A y B u      (4.28) 

  11 12 13 1
sm fm sm

fd fd fd sdx A x x A x A y B u       (4.29) 

 0 ( , , , )sm sm fm
sd fd fdg x x x y z   (4.30) 

 ( ) ( , , , ( ))sm sm fm
k sd fd fd kz t h x x x y z t    (4.31) 

 
where ui is a vector with input variables. Aij and Bi are constant matrices of appropriate 

dimensions.  

Similarity, the QSS model (4.11)-(4.14) consists of neglecting fm
fdx  while setting 

0   which yields 
 
 21 22 23 2

sm sm sm
sd fd sdx A x A x A y B u     (4.32) 

 11 12 13 10 sm sm
fd sdA x A x A y B u     (4.33) 

 0 ( , , , )sm sm
sd fdg x x y z  (4.34) 

 ( ) ( , , , ( ))sm sm
k sd fd kz t h x x y z t  . (4.35) 

 
Thus, sm

fdx  can be obtained from (4.33): 

 
  1

11 12 13 1
sm sm
fd sdx A A x A y B u    , (4.36) 

 
and the resulting expression can be substituted into (4.29) to obtain (4.37) that permits the 

computation of the fast modes 
 
   1

11 13
fm
fd fdx A x A y y   . (4.37) 
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Since the change of fdx  will lag far behind the instantaneous change of algebraic 

variables, and considering that the difference  y y  tends to zero faster than fdx , as 

numerically shown in Section 4.4.1, one can assume that a good approximation to compute 

fm
fdx  can be obtained by 

 1
11

fm
fd fdx A x   (4.38) 

 
where fdx  is computed by the integration of the full model at each time step. Therefore, 

(4.38) can be evaluated without additional computational cost. 

Since the dynamics of fm
fdx  are associated with different fast-state variables, the 

normalized value of each component of fm
fdx  must be considered: 

 

          1, ,
fm
fd inor

fd i fd
fd i

x
x i n

x
    (4.39) 

 
Therefore, the time of switching swt  from the full model to the slow reduced model is 

determined when the maximum absolute value of nor
fdx  is smaller than a specified tolerance 

TOLsw, max nor
fd swx TOL  continually for a fixed number of time steps TOLh , which is 

given by 

 TOL
Tol

t
h

h
  (4.40) 

 
where TOLt  is a prespecified period of time which must be large enough to guarantee the 

correct determination of swt , but small enough to preserve computational efficiency. 

 

4.4 Proposed approach for long-term stability analysis in power system 

The proposed approach to tackle the complexity of long-term dynamic simulations consists 

of using the FTS model to simulate the dynamics associated with the short-time period 
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following a disturbance with a small step size, and once the fast dynamics are small 

enough, switching to the QSS model to perform the long-term simulation with a larger step 

size as shown in Figure 4.1. Owing to the fact that at the switching time there exists a 

uniform approximation between models, the state and algebraic variables of the slow 

reduced model are automatically initialized from the final system state provided by the full 

simulation. Lastly, the information required to determine the evolution of the discrete states 

z is directly transferred from the FTS simulation to the QSS model. This proposed 

procedure for long-term dynamic analysis using the switching criterion is as follows: 

 

 Step 1.- Select the fast- and slow-state variables, ( ,  )fd sdx x x , to ensure that the 

system is state separable. 

 Step 2.- Solve the FTS model (4.1)-(4.3) with a small time step of integration. 

For instance, the Backward Euler or Trapezoidal Rule can be applied to 

transform the differential equations into algebraic equations. The             

Newton-Raphson method is then applied to solve the set of algebraic-difference 

equations as explained in Section 2.9. A possible short-term instability associated 

with the loss of synchronism or voltage instability is checked, and if it occurs the 

simulation stops. 

 Step 3.- The switching criterion is checked at each time instant tk to determine 

the switching time. When this criterion is satisfied continuously during TOLt , the 

algorithm proceeds with  Step 4; otherwise,  Step 2 and 3 are repeated. 

 Step 4.- The simulation switches to the QSS model (4.11)-(4.14), which is solved 

as explained in Section 3.8 with a larger time step of integration. At the 

switching time, initial conditions of QSS variables ,sm sm
sd fdx x  and y  are set to 

values ,sw swt t
sd fdx x  and swty , respectively. 
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Figure 4.1: Combined FTS-QSS simulation algorithm. 
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4.4.1 Application of the switching criterion 

In this section the well-known one-machine infinite-bus system is used to illustrate the 

application of the proposed methodology. The system is shown with single-line diagram in 

Figure 4.2. The transmission lines and generator data are given in Appendix D.1. 

 

 

Figure 4.2: One-machine infinite-bus system. 

The generator is represented by a two-axis model, as explained in Section 2.3, with 

the following set of equations [Pai, 1989]: 

 

  1 2 1 3 cosdo q q d fdT' E' K E' K K V E        (4.41) 

  1 4 5 1 6 cosdo d q dT'' K E' K K V        (4.42) 

  7 8 2 9 sinqo d d qT' E' K E' K K V       (4.43) 

  2 10 1 11 2 12 sinqo q q qT'' K K K V         (4.44) 

 s     (4.45) 

  
2

s
g m sP P D

H

         (4.46) 

 
The network equations are written in terms of active and reactive power mismatch 

equations [Sauer and Pai, 1998]: 
 

     2
11 1 10 cos singP V G VV G B          (4.47) 

     2
11 1 10 sin cosgQ V B VV G B          (4.48) 
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where   
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 (4.49) 

 
     
      

13 14 2 15

2 22
16 1 18 19

sin sin cos

cos cos sin

g d q q

d

Q K E V K V K E V

K V V K K

      
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       

     
. (4.50) 

 
The time constants ,do qoT T   and qoT  are generally small as explained in Section 3.3. 

Hence, 1d  , dE  and 2q  can be considered fast time-varying variables, while ,qE   and 

  can be assumed to be slow time-varying variables. Therefore, the FTS model has the 

following state vectors using the synchronous speed rotating reference: 

 
  Ty V  (4.51) 

 1 2

Tsm fm
fd fd fd d d qx x x E'        (4.52) 

 
T

sd qx E'       (4.53) 

 
while the slow-reduced model is represented by 

 

 
T

y V     (4.54) 

 1 2

Tsm sm sm sm
fd d d qx E'      (4.55) 

 
Tsm

sd qx E'      . (4.56) 

 
The proposed switching criterion relies on computing nor

fdx  given by 
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              

  
(4.57) 
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such that the switching time is obtained when the condition max nor
fd swx TOL  has been 

satisfied continuously for a fixed number of time steps TOLh  which is computed by (4.40)

for a prespecified TOLt . 

In order to numerically validate the proposed switching criterion, a single 

contingency scenario is defined by removing one transmission line at time t=1s. Following 

the disturbance, a FTS simulation and a QSS simulation are performed with an integration 

time step of h=0.01s. Figure 4.3 shows the evolution of the voltage magnitude V and flux 

linkage 1q  as a function of time computed by both simulations. Note that flux linkage 1q  

is proportional to dE  (see Appendix A). 

 

 
Figure 4.3: Terminal voltages and flux linkage at bus 1. 

At the instant of the disturbance application both active and reactive power flows 

from bus 1 to bus 2 are reduced instantaneously, thus that the terminal voltage magnitude V 



82 
 

is increased. The generation of both active and reactive powers is also reduced in order to 

satisfy the power balance. After this instant, the generator variables are changing until the 

active generated power achieves the mechanical power.  

A comparison of these evolutions shows that the existing difference of the algebraic 

variable’s value V computed by both FTS and QSS simulations, V V   , is much smaller 

than the difference between the values of the fast-state variable 1q , 1 1
sm

q q    , computed 

by each simulation. Therefore, the proposed criterion can be considered a suitable method 

to determine the switching time. The system survives the short-term period, and the 

switching criterion is satisfied at t=2.2 s with 0.1swTOL   and tTOL=0.1 s. At this instant of 

time tsw, the values of state and algebraic variables computed by FTS and QSS simulations 

are very close to each other, indicating that fast dynamics have died out and long-term 

responses can be assessed by the simpler QSS model. 

 

4.5 Methodology to applying disturbance 

In order to perform short-term and long-term dynamic simulation, a digital program has to 

be able to compute the disturbance and post-disturbance condition of the algebraic system 

variables. At the instant of either application (tap) or clearing (tcl) of a disturbance, the 

dynamic variables cannot change instantaneously, as shown in Figure 4.4. Therefore, at 

these two instants of time such variables keep constant and their corresponding changes 

with respect to time are considered zero, while the algebraic variables suddenly change 

with respect to the dynamics. This phenomena can be numerically represented by setting 

the step size of integration to zero ( 0h  ), such that the set of algebraic equations must be 

solved considering the dynamic variables as fixed input at the instant of a disturbance. 
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Figure 4.4: Representation of discontinuity condition. 

In case of the FTS simulation, the set of algebraic equations (2.131) is linearized with 

respect to y by using the Newton method, such that at i-th iteration the following linear 

system is solved 
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  
       

. (4.58) 

 
By starting with a initial value of y, the method updates the solution at each iteration

y y y   until a convergence criterion is satisfied. The initial value of y is obtained 

previously by the normal solution (see Section 2.9.2). 

On the other hand, the network variables y and the fast variables fdx  have to be 

computed in the case of the QSS simulation. Therefore, the set of algebraic equations       

(3.35)-(3.36) are linearized with respect to fdx  and y  as  
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. (4.59) 



84 
 

The method starts from an initial value of y and fdx  and updates the solution at each 

iteration i by 
 

 
i i i

fd fd fdx x x

y y y

     
           

 (4.60) 

 
where the correct solution is obtained until a convergence criterion is satisfied. The initial 

value of y and fdx  are obtained previously by the normal solution (see Section 3.8.1). 

 

4.6 Conclusions 

A new and simple criterion to accurately determine when a QSS model of a power system 

can be considered as a uniform approximation of the system FTS model, has been proposed 

in this work, inspired of singular perturbation and two-time scale theories.  

On the basis of the suitability of this criterion, an integrated simulation method that 

combines the reliability of FTS simulation and the efficiency of the QSS simulation has 

been proposed to speed up the long-term dynamical analysis of power systems considering 

the presence of discrete events. The method is capable of assessing instability problems 

during the short-term period through the FTS simulation. If the fast modes are damped out, 

a model reduction is automatically carried out to analyze the long-term dynamics by the 

QSS simulation with larger integration time step sizes. 
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Chapter 5  
 
 
STUDY CASES 

5.1 Introduction 

A combination of the FTS simulation in the short-term period and QSS approximation for 

the long-term time frame was proposed in [Loud et al., 2001] and [Van Cutsem et al., 

2006]. Each mode of simulation is carried out by different programs which are coupled 

through load flow and dynamic data files, as well as the initial conditions for the QSS 

simulation. The time to switch from FTS to QSS simulation is chosen once the dynamics of 

frequency are below a specified value [Loud et al., 2001]. In this case, the QSS model is 

initialized by setting the continuous long-term variables and the algebraic variables to the 

values computed by FTS simulation at the switching time tsw. The short-term variables are 

initialized at the values associated with the equilibrium point of the set of differential 

equations at tsw. Lastly, the operation and waiting state of discrete events have to be 

considered to determine their initial conditions at tsw and to establish the sequence of 

discrete controls during the QSS simulation with reasonable accuracy. The initialization 

process is avoided in [Van Cutsem et al., 2006] by performing an off-line coupling of both 

approaches based on the discrete events taking place during the detailed simulation. The 

FTS simulation is executed until the switching time tsw is detected as proposed in [Loud et 

al., 2001], and the sequence of discrete events that have occurred over this interval are 

identified.  The QSS simulation is then performed from the initial time with those discrete 

events imposed as external disturbances, without allowing the discrete devices to act by 

themselves until the simulation arrives at tsw. From there on, the study proceeds with the 

usual QSS approximation.   
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 In this Chapter, the exposed idea of combine FTS and QSS models in a single 

unified program for long-term dynamic simulation is tested on several systems: a simple 

system, the WSCC system, the New England system and an equivalent model of the 

Mexican power system. All the simulations are run on a laptop with the following 

characteristics: Intel processor dual cores at 1.728 GHz, total RAM Memory of 2.00 GB 

and operating system Windows XP. 

 

5.2 2-machine, 4-bus system 

This system is composed of one load embedded at bus 3 whose demanded power is 

supplied through a LTC transformer, thus the LTC keeps the voltage magnitude at 1 p.u. 

with a half-deadband of ± 0.01 p.u. A remote system (bus 1) supplies most of the power 

through a long double-circuit transmission line, while the rest of the power is provided by 

the generator connected to bus 2. The system single-line diagram is presented in Figure 5.1 

[Van Cutsem and Vournas, 1998], [Vournas et al, 2004]. 

 

 

Figure 5.1: Simple electric system. 

The system connected at bus 1 is considered as slack generator. Each transmission 

line is regarded as ideal with a serial reactance of 0.055LX   p.u. Similarly, each 

transformer is modelled by its reactance in series with an ideal on-nominal transformer, 

0.016TX   p.u. Each generator is equipped with an exciter and a governor-turbine system. 

The load is composed of a generic self-restoring load and an induction motor that consumes 
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40% of the total demanded power with a constant mechanical torque. All system data are 

given in Appendix D.2.  

Even though this is a simple system, the motivation of its analysis is supported by the 

dynamics presented at both short-term and long-term simulations [Van Cutsem and 

Vournas, 1998]. In order to perform the simulation by the proposed approach, the 

parameters for the switching criterion are TOLsw=0.1 and 0.1TOLt s . 

 

5.2.1 Case 1 

To illustrate the dynamic behavior in short-term, the system load is represented by the 

generic models of self-restoring load and an induction motor whose initial demand is 

0 6LP   p.u. and 0 1.5LQ   p.u.  The generator at bus 2 produces an initial generation equal 

to 0 4gP   p.u. and 0 -0.708gQ   p.u.  Prior to any perturbation the system is operating in the 

steady-state equilibrium point reported in Table 5.1. 
 

Table 5.1: Nodal complex voltages of system (Case 1) 

Complex voltages
System buses 

B1 B2 B3 B4 
V (p.u.) 1.05 1 1 0.974 
θ (degree) 0 0.539 -4.448 -3.082 

 
Generator 1 is tripped at time 1t s , and the system is supplied completely for 

generator 2. The system dynamics are assessed by using FTS, FTS-QSS and QSS 

simulations. The former two simulations are performed with each generator having its own 

rotor speed and ωs as the rotating frame, while perfect coherency is assumed for the latter 

simulation. All simulations are performed for a time period of 15 s with an integration step 

size of 0.01 s. The perturbation causes a short-term instability such that the QSS simulation 

cannot accomplish the convergence to a solution because the Jacobian matrix becomes 

singular. In contrast, the FTS-QSS simulation obtains the same results given by the FTS 

simulation because the switching criterion is never satisfied, and therefore the whole 

simulation is carried out with the detailed model.  
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Figure 5.2 shows the voltage magnitude behavior at bus 3, which decays for a few 

seconds, but it is recovered by the fast action of the AVR control. This control is achieved 

by increasing the generation of reactive power, as shown in Figure 5.3. 

 
Figure 5.2: Voltage evolution of bus 3 (Case 1). 

 
Figure 5.3: Reactive power generation (Case 1). 
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 On the other hand, the active power consumed by the load is almost restored at its 

initial value 600 MW which is larger than the generator capacity of 450 MW. Thus, the 

governor is unable to restore the frequency to its nominal value because the mechanical 

power reaches its nominal value, and the generator cannot provide the demanded power. 

Therefore, the rotor speed decays as shown in Figure 5.4, and the system presents 

frequency instability of the short-term. 

 

 

Figure 5.4: Rotor speed evolution (Case 1). 

 

5.2.2 Case 2 

The purpose of this case is to demonstrate the advantages of using both the QSS simulation 

and the combined FTS-QSS simulation in long-term dynamic stability when the system 

survives the short-term period. For this purpose, the active power demanded at bus 3 is 

increased to 0 13.7LP   p.u. The steady-state initial equilibrium point is computed by a 

conventional power flow and is given in Table 5.2. 



90 
 

Table 5.2: Nodal complex voltages of system (Case 2) 

Complex voltages
System buses 

B1 B2 B3 B4 
V (p.u.) 1.05 1 1 0.955 
θ (degree) 0 -11.73 -18.54 -15.24 

 
The system is perturbed at time 1t s  by a sudden change in the network topology: 

one of the lines between buses 1 and 4 is tripped. The three types of simulations are carried 

out with the following characteristics: i)The FTS simulation uses a step size of integration 

of 0.01 s, and the ωs is adopted as the rotating frame; ii) the QSS simulation is performed 

with h=0.1 s, and a perfect coherency between all generators is assumed; and iii) The FTS-

QSS simulation uses ωs as the rotating frame for the whole simulation, and the step size of 

integration takes the value of the corresponding simulation. Hence, the combined FTS-QSS 

simulation allows the increasing of the step size from 0.01 s to 0.1 s at the switching time. 

The fast-state variables monitored to enable the switching from the FTS to QSS model are 

those associated with the exciters ( fdE ), generators ( 1d , dE , 2q ), turbines ( HPP , LPP ) 

and the induction motor ( qe , de ). Considering a TOLsw=0.1 and 0.1TOLt s , the fast 

variables of generators, induction motor, exciters and turbines satisfy the switching 

criterion at 1.1 s, 1.23 s, 2.18 s and 4.17 s, respectively, such that the switching of models 

occurs at 4.17swt  s. 

The evolution of voltage magnitude at bus 3 is depicted in Figure 5.5. The short-term 

dynamics remain stable because the fast transients are damped out. However, the voltage 

magnitude at bus 3 decays from its schedule value, such that the LTC acts to restore the 

voltage within the deadband. The control of the LTC starts after an initial time delay of 20 

s; hereafter the tap changes every 10 s until the control target is achieved or until the tap 

ratio limit is encountered, as shown in Figure 5.6. The LTC restores the voltage close to its 

schedule after the perturbation, but the generator’s field current at bus 2 is increased during 

this process such that the OXL is triggered at about t=180 s which causes the reduction of 

the generation of reactive power. Therefore, the voltage at bus 3 decays at this time, and the 
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LTC tries to restore the voltage again but without success. Finally, the voltage at bus 3 

starts to collapse when the LTC reaches its lower limit tap ratio.  

 
Figure 5.5: Voltage evolution of bus 3 (Case 2). 

 
Figure 5.6: Tap ratio evolution of the LTC (Case 2). 
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The field current of the generator connected at bus 2 reaches values larger than its 

limit, ( lim 2.825fdI  p.u.), as shown in Figure 5.7. This initiates the inverse time mechanism 

xt of the OXL, such that xt starts increasing from its lower value -20 and becomes positive 

at t=180.77 s as depicted in Figure 5.8. Therefore, the OXL is triggered at t=180.77 s and 

its output xOXL (see Figure 5.9) is subtracted from the AVR input which causes the 

limitation of the field current. The OXL activation time computed for the three simulations 

are reported in    Table 5.3. 

  
Table 5.3: Activation of OXL control 

Simulation Time (in seconds)
FTS 180.77 
QSS 181.1 

Combined FTS-QSS 181.3 
 

 

Figure 5.7: Field current evolution of generator 2 (Case 2). 



93 
 

 

Figure 5.8: Inverse time mechanism xt evolution (Case 2). 

 

 
Figure 5.9: xOXL evolution (Case 2). 
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The curves show that the QSS and FTS-QSS simulation provide quite acceptable 

results, but the LTC control and OXL control occur slightly later w.r.t those computed by 

the FTS simulation.  However, the computing time required by the FTS simulation is 

14.531 s while the QSS and the FTS-QSS simulation consume 1.438 s and 1.781 s, 

respectively. This saves considerable computational time for the study under analysis. 

On the other hand, there are no significant differences between the QSS and the 

combined simulation. This is because the switching is given early at 4.17swt s  since the 

fast transient damped out very soon, but large differences may arise in a contrary case (see 

Section 5.4). 

 

5.3 3-machine, 9-bus WSCC system 

One of the most important issues in the stability problem is the rotor angle stability; it is 

frequently studied when the system is subjected to large disturbance (e.g. a solid          

three-phase fault) [Kundur et al., 2004]. In order to apply the proposed approach in this 

stability problem, the WSCC power system is considered in this case of study. The system 

consists of 9 buses, 3 generators and 3 loads with the network shown in Figure 5.10. All 

system data were taken from [Sauer and Pai, 1998] and are given in Appendix D.3. 

 

 
Figure 5.10: WSCC power system. 
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A solid three-phase fault is applied at t = 0 s at bus 7, and it is cleared by opening the 

transmission line between buses 5 and 7 at t = 0.135 s. The analysis is performed with both 

FTS and FTS-QSS simulations. The former uses an integration step size of 0.001s, while 

the proposed FTS-QSS simulation is performed with the same step size because the 

switching criterion is never satisfied (as explained below) when considering a switching 

tolerance of 0.1 and 0.1TOLt s . All simulations are carried out considering ωCOI as the 

rotating frame of reference.  

The disturbance lasts for 0.135 s, while the critical clearing time to preserve transient 

stability is 0.131 s, such that generators 2 and 3 lose angular stability, as shown in Figure 

5.11. 
 

 

Figure 5.11: Rotor angles of the WSCC power system. 

The switching criterion is never satisfied, and the FTS simulation is always 

performed because the fast modes never disappear. Similarly to Case 1 of Section 5.2.1, the 

QSS simulation cannot be applied because the system is unstable in the short-term period. 
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5.4 10-machine, 39-bus New England system 

For the purpose of this test case the generators were selected to be steam power plants. 

Generating plants were assumed to be equipped with an exciter, an automatic voltage 

regulator, a speed governor and a steam turbine. All exciters include derivative feedback 

compensation [Kundur, 1994]. Likewise, three LTCs were installed on transformers to keep 

the voltage magnitudes at buses 12 and 20 at 1 p.u. with a half-deadband of ± 0.01 p.u., as 

shown in Figure 5.12. All loads are represented with the exponential model [Van Cutsem 

and Vournas, 1998]. For the specified disturbance, long-term dynamics come from the 

LTCs’ control actions [Van Cutsem and Vournas, 1998]. In this case, the LTCs’ delay is  

20 s on the first tap change and 10 s on subsequent tap changes, resulting in a 0.01 p.u. 

change of ratios for each. Additionally, steam turbines and governors act in the long-term 

to avoid large excursions of frequency. The data of this system were taken from [Pai, 

1989]; however, gains and time constants were adjusted to make rotor oscillations last 

longer. All system data are given in Appendix D.4. 

At time 1t s , the system is suddenly perturbed by completely disconnecting the 

loads at buses 4, 20 and 29. A long-term simulation is performed with the full model, the 

combined FTS-QSS model and the QSS model, respectively. The FTS simulation and  

FTS-QSS simulation are performed considering ωs as the rotating frame. On the other hand, 

a perfect coherency between all generators is assumed in the QSS simulation [Grenier et al., 

2005]. Integration step sizes are defined according to the model being used in the analysis: 

the FTS model is integrated using a time step of 0.01s, while the QSS simulation is 

accomplished with an integration time step of 1s. Hence, the combined FTS-QSS 

simulation allows the increasing of the step size from 0.01s to 1s at the switching time. The 

fast-state variables monitored to perform the switching from the FTS to QSS model are 

those associated with the exciters ( fdE ), generators ( 1d , dE , 2q ) and turbines ( HPP ,   

LPP ). Considering a switching tolerance of 0.1 and tTOL=0.1s, the fast variables of exciters, 
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generators and turbines satisfy the switching criterion at 1.61s, 13.15s and 13.48s, 

respectively, such that the switching of models occurs at t=13.48s. 

 

 

Figure 5.12: New England power system. 

The electromechanical oscillations that follow the load shedding are damped out, 

indicating stable short-term dynamics. Figure 5.13 shows the rotor speed associated with 

the most critical generator, which is connected at node 34. Note that all the simulations tend 

to the same equilibrium point after the fast dynamics have been damped out. This 

demonstrates the suitability of the switching criterion, in the sense that the switching 

between models is done once the short-term dynamics are small enough, as shown in 

Figure 5.14, for the field voltage Efd behavior of the generator at bus 34. 
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Figure 5.13: Angular speed of the generator connected at bus 34. 

 

Figure 5.14: Field voltage of the generator connected at bus 34. 
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As expected, the evolutions of ω and Efd obtained by the FTS and FTS-QSS 

simulations are overlapped during the short-term period and present small differences after 

the switching of the simulation models takes place. The numerical Relative Error 

Magnitude (REM) of the evolutions obtained by the FTS-QSS and QSS simulations with 

respect to the evolution computed by the FTS simulation are shown in Figures 5.15 and 

5.16 for the rotor angular speed and the field voltage of the generator connected at bus 34. 

 

 

Figure 5.15: REM of the generator’s angular speed connected at bus 34. 

The REM of ω is quite small for the FTS-QSS and QSS simulations during the whole 

period of analysis because the disturbance does not cause large excursions of the 

generator’s angular speed connected at bus 34 as shown in Figure 5.13. However, the REM 

of the field voltage presents large values for the QSS simulation during the short-term but 

for the long-term these values are small and progressively extinguishes. The peaks 

presented during the long-term period are due to the changes on the tap ratio of each LTC. 
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On the other hand, the REM of Efd computed by the FTS-QSS simulation is zero until the 

switching of the simulation models occurs at tsw, and starts with a small value after tsw but 

soon decays. Furthermore, the REM obtained by the FTS-QSS simulation can be 

considered smaller than the REM computed by the QSS simulation during almost the whole 

period of study. 

 

 

Figure 5.16: REM of the generator’s field voltage connected at bus 34. 

The evolutions of voltage magnitudes at buses 12 and 20 over a longer time interval 

are shown in Figures 5.17 and 5.18, respectively, and clearly demonstrate that the proposed 

approach provides very similar results to those obtained by the FTS simulation. At the 

instant of the disturbance, an unbalance of reactive power is presented with more 

generation than that demanded in the system. Therefore, the voltage magnitudes at buses 12 

and 20 are increased from their scheduled values. Since the LTC-controlled voltages are 

deviated from scheduled values, the tap changers are activated with delays. Times at which 

the LTCs’ control takes place are reported in Table 5.4 for each simulation. The control 

actions occur almost at the same time for the FTS and FTS-QSS simulations. On the other 
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hand, since the sequence of controls depends on the system dynamics, the LTCs’ responses 

computed by the QSS simulation differ, given that the voltage oscillations at short-term are 

not captured by this simulation. 
 

 
Figure 5.17: Voltage magnitude at bus 12. 

 
Figure 5.18: Voltage magnitude at bus 20. 
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Table 5.4: Activation of LTCs control in New England system 

LTC1 and LTC2 LTC3 
FTS QSS Combined FTS QSS Combined 

26.79 s 23 s 26.79 s 28.29 s 22 s 28.29 s 
36.79 s 33 s 36.79 s 38.29 s 32 s 38.29 s 
100.80 s 96 s 102.29 s 48.29 s 42 s 48.29 s 

   58.29 s 52 s 58.29 s 
   80.79 s 75 s 81.29 s 

 

Large voltage oscillations are presented during the short-term, causing the LTCs to be 

initialized at t=6.79 s and t=8.29 s for the control at bus 12 and 20, respectively. This 

discrete event is correctly captured by the FTS and FTS-QSS simulations while the QSS 

approximation does not detect the voltage oscillations, and the LTCs are initialized very 

early for the QSS simulation at t=3 s y t=2 s for the control at bus 12 and 20, respectively. 

Therefore, the evolution of the voltage magnitudes presents large differences between the 

results obtained by the QSS simulation and those given by the FTS and FTS-QSS 

simulations. The numerical REM of the evolutions obtained by the FTS-QSS and QSS 

simulations with respect to the evolution computed by the FTS simulation are shown in 

Figures 5.19 and 5.20 for the voltage magnitudes at buses 12 and 20.   

The REM of the voltage magnitudes at buses 12 and 20 present large values for the 

QSS simulation during the short-term; however, for the long-term these values are  

decreased while the FTS-QSS simulation computes small values of the REM at the 

switching time. After this instant, the FTS-QSS simulation presents a quickly decay of the 

REM. Note that the REM obtained by the proposed approach can be considered smaller 

than the REM computed by the QSS simulation during almost the whole period of analysis, 

which demonstrates the suitability of the FTS-QSS simulation. 
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Figure 5.19: REM of voltage magnitude at bus 12. 

 

 

Figure 5.20: REM of voltage magnitude at bus 20. 
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On the other hand, the angular speed ωCOI of the Center-of-Inertia is shown in Figure 

5.21. As expected, the frequency transient behavior computed by the QSS model quickly 

tends to the equilibrium value reached by the other two models. The resulting frequency 

deviation after the perturbation is very small due to the fast operation of the speed governor 

of each generator.  

 

 
Figure 5.21: Angular speed in COI coordinates. 

Lastly, the evolution of the angular speed of all generators computed by the FTS, 

FTS-QSS and QSS simulations are shown in Figures 5.22, 5.23 and 5.24, respectively. 

Note that the FTS and FTS-QSS simulations are performed considering that each generator 

conserves its own angular speed while a perfect coherence is assumed for the QSS 

simulation. However, the equilibrium point achieved by the three simulations is very close. 
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Figure 5.22: Individual angular speed computed by the FTS simulation.  

 

Figure 5.23: Individual angular speed computed by the FTS-QSS simulation. 
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Figure 5.24: Individual angular speed computed by the QSS simulation. 

 

5.5 46-machine, 190-bus Mexican power system 

The proposed approach has been applied to a reduced model of the Mexican Interconnected 

System including the northern, north-eastern, western, central and south-eastern areas, as 

shown in Figure 5.25 [González et al., 2009]. This equivalent consists of 190 buses, 46 

generators, 90 loads and 265 transmission lines operating at voltage levels ranging from 

400 kV to 115 kV. Voltage problems are acute and of prime importance due to the 

longitudinal structure of the system, such that the loads connected at buses 182, 183 and 

184 have been equipped with LTCs to maintain their voltage magnitude at 1 p.u. with a 

half-deadband of ± 0.01 p.u. The operation of the LTCs start after a first delay of 20 s, and 

subsequently after each 10 s, until the voltage target or the tap ratio limit is achieved. All 

system data are taken from [Messina and Vittal, 2005], while the LTCs data are given in    

Appendix D.5. 
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Figure 5.25: Schematic diagram of the Mexican power system. 

 

The long-term study scope is to compute the system’s dynamic responses caused by 

the following sequence of disturbances: i) a solid three-phase fault is applied at bus 185 at  

1 s and cleared by tripping the line connecting the buses 185-159 at t = 1.12 s, and ii) the 
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generator 18 is tripped at 6 s. The analysis is performed for the integration interval 

[0,280]T s  with both FTS and FTS-QSS simulations considering ωs as the rotating 

frame of reference and assuming that each generator conserves its own rotating speed (i.e. 

coherency between all generators is not assumed). The FTS simulation uses an integration 

step size of 0.01 s, while the proposed FTS-QSS simulation permits the use of a time step 

of 1 s after the switching time which is satisfied at t=13.36 s, considering a switching 

tolerance of 0.1 and 1TOLt s . At this time the fast modes sm
fdx  have died out, and the 

system behavior is determined by the slow variables. The fast-state variables monitored to 

carry out the switching from the FTS to the QSS model are those associated with the 

exciters ( fdE ), generators ( 1d , dE , 2q ) and turbines ( HPP , LPP ), such that the fast 

variables of generators, exciters and turbines satisfy the switching criterion at 3.96 s, 8.42 s 

and 13.36 s, respectively. 

As a result of the first perturbation, the angular speed COI  presents large oscillations 

due to the existing unbalance of mechanical and electrical powers; however, the fault’s 

clearing time allows the preserving of the short-term stability, and the system tries to find a 

new state of operation. However, the second disturbance causes a large deviation of the 

COI  from the nominal speed 0 , such that the speed governors act to restore the 

frequency close to its nominal value as shown in Figure 5.26. For clarity, the COI  

evolution is plotted for a period of only 30 s; after this time the frequency is almost at its 

new steady-state value. As expected, the evolution of the variables obtained by the FTS and 

FTS-QSS simulations are overlapped before the switching of simulation takes place. After 

this time, small differences are present during the long-term frame. 
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Figure 5.26: Angular speed of the Mexican system. 

 
On the other hand, the voltage magnitude at buses 182, 183 and 184 are kept inside of 

their deadband after the first disturbance. However, at the instant of the application of the 

second disturbance these voltage magnitudes decay from their scheduled values because of 

the existing unbalance of generation and demand reactive powers, such that the LTCs 

should act to restore the voltage magnitude at their respective bus within the deadband.  

The LTC installed at bus 182 tries to restore the voltage magnitude but without 

success because its tap lower limit of 0.8 p.u. is reached as shown in Figure 5.27. 

Therefore, the voltage magnitude at bus 182 cannot be controlled after the second 

perturbation as depicted in Figure 5.28. A similar evolution at bus 183 is presented due to 

its LTC reaches also the tap lower limit of 0.8 p.u. (see Figure 5.29) and the voltage 

magnitude cannot be restored as shown in Figure 5.30.   

The operation of the LTCs installed at buses 182 and 184 is contrary to the control of 

the LTC installed at bus 184 because the voltage magnitude at bus 184 is returned to its 

schedule value, but the changes of the other LTCs causes a degradation on the voltage. 

Therefore, the LTC installed at bus 184 keeps the voltage magnitude in the schedule value 
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until the other LTCs reach their tap lower limits. The evolution of the voltage magnitude at 

bus 184 is shown in Figure 5.31 while the changes on the tap ratio of its LTC are depicted 

in Figure 5.32. 

 
Figure 5.27: Tap ratio evolution of the LTC at bus 182. 

 

Figure 5.28: Voltage magnitude at bus 182. 
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Figure 5.29: Tap ratio evolution of the LTC at bus 183. 

 

Figure 5.30: Voltage magnitude at bus 183. 
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Figure 5.31: Voltage magnitude at bus 184. 

 

 
Figure 5.32: Tap ratio evolution of the LTC at bus 184. 



113 
 

The numerical REM of the evolution obtained by the FTS-QSS simulation with 

respect to the evolution computed by the FTS simulation are shown in Figure 5.33 for the 

voltage magnitude at bus 184 in order to illustrate the discrepancy between the FTS-QSS 

and FTS simulations. 

 

 
Figure 5.33: REM of voltage magnitude at bus 184. 

The REM of the voltage magnitude at bus 184 is quite small after the switching of 

simulations occurs while the peaks presented during the long-term are due to the changes 

on the tap ratio of each LTC.  As can be seen, the FTS-QSS evolution is a very good 

approximation of the FTS one, such that from a practical viewpoint the proposed method is 

suitable for the simulation of long-term dynamics including discrete events. Both FTS and 

combined FTS-QSS simulation tend to the same equilibrium point.  

Lastly, the computing times required by the FTS and FTS-QSS simulations were 

200.86 s and 17.937 s, respectively, being the proposed method 11.2 times faster than the 
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FTS simulation. For these cases, the number of iterations required by the Newton-Raphson 

method to reach the solution of the linearized set of equations at each time step of both 

types of dynamic simulations is shown in Figure 5.34. The convergence criterion was 10-6 

p.u. These results indicate that the algorithms retain the quadratic convergence of the full 

Newton-Raphson method and that after a switching takes place, the maximum number of 

iterations for both simulations is 3 after the perturbation. This clearly demonstrates the 

suitability of the proposed approach to perform long-term dynamic studies. 

 

 

 
Figure 5.34: Newton iterations for each integration time step. 

 

5.6 Conclusions  

In this Chapter the proposed approach to carry out the long-term dynamic simulation of 

power systems has been tested to demonstrate its suitability to reduce the huge 

computational burden associated with FTS simulation. 
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 Comparisons between the proposed approach, FTS and QSS methods clearly show 

the main advantages of the FTS-QSS simulation in terms of the accuracy of the results in 

both short-term and long-term periods and of the reduction of simulation time required to 

compute the long-term system dynamics.  
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Chapter 6  
 
 
GENERAL CONCLUSIONS AND 
SUGGESTIONS FOR FUTURE RESEARCH 
WORK 

6.1 General conclusions 

A new and simple criterion to accurately determine when a QSS model of a power system 

can be considered as a uniform approximation of the system’s FTS model has been 

proposed in this thesis based on the singular perturbation and the two-time scales theories. 

The proposed switching criterion is easily computed (with very low computational 

overhead) from the FTS simulation by monitoring the rate of change of the fast time-

varying state variables. 

On the basis of the suitability of this criterion, an integrated simulation method that 

combines the reliability of FTS simulation and the efficiency of the QSS simulation has 

been proposed to speed up the long-term stability analysis of power systems considering 

the presence of discrete events. The method is capable of assessing instability problems 

during the short-term period through the FTS simulation. If the fast modes of oscillation are 

damped out, a model reduction is automatically carried out to analyze the long-term 

dynamics by the QSS simulation with a larger time step size of integration. Therefore the 

proposed approach allows the long-term dynamic stability analysis of power system 

efficiently by both time step size adjustment and model reduction. In this context, initial 

conditions for the QSS simulation are given by the values of the state and algebraic 

variables provided by the FTS simulation at the switching time. 
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 The proposed approach avoids the following limitations associated with a pure QSS 

simulation: i) after a large disturbance, the system may lose stability in the short-term time 

frame in terms of the loss of synchronism or voltage instability. In this case, the QSS model 

meets a singularity. On the other hand, the switching criterion is never satisfied (i.e. the 

simulation stops) in the proposed approach, such that the switching from FTS to QSS 

simulation does not takes places; ii) the activation of control schemes (e.g. load tap 

changer, overextension limiters, shunt compensation switching, etc.), which have great 

impact on the system long-term evolution, depends on the system short-term dynamics. 

These dynamics are incorrectly identified from the simplified QSS model, producing an 

erroneous activation of discrete controllers during the long-term simulation. Hence, the 

long-term dynamics computed by a QSS simulation will be different with respect to the 

dynamic trajectories computed by the proposed approach; and iii) finally, the proposed 

approach allows to perform a dynamic simulation considering that each generator 

conserves its own rotating speed instead of assuming a perfect coherency between all 

generators, as considered in the pure QSS simulation.     

The effectiveness of the proposed method has been fully validated by a numerical 

example on the following: 2-machine, 4-bus system; 3-machine, 9-bus WSCC system; and 

10-machine, 39-bus New England system. Simulation results from a test on a reduced     

46-machine, 190-bus Mexican interconnected system have also shown the applicability of 

the proposal to efficiently analyze long-term dynamics of a real-life power system. 

 

6.2 Suggestions for future research work 

The proposed approach of power system simulation has demonstrated its correct operation. 

However, interesting suggestions for future research work can be derived from the work 

presented in this thesis in order to enhance and improve the computational efficiency of the 

long-term simulation: 
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 As already mentioned, FTS simulation should be performed with a small step size 

when the Trapezoidal Rule is used [Yang and Ajjarapu, 2006] while the Backward 

Euler method allows a significant increase in the step size, and it saves a lot of 

computational effort for the long-term dynamic simulation [Van Cutsem and 

Vournas,  1998]. However, the TR gives more accurate results w.r.t. the BE 

method. Therefore, the proposed approach can be used to combine both the TR 

and the BE integration method for long-term dynamic studies preserving the 

power system detailed model (i.e. FTS are solved during the whole simulation). 

 
 The Area Interchange Control (AIC) of an interconnected power system is very 

important in studies of long-term simulation. Thus, the methodology and digital 

program can be adjusted to include AIC. 

 

 Another interesting application is to modify the digital program in order to develop 

a variable step size integration method using the proposed switching criterion. 

 
 Singular perturbation technique can be used to develop reduced models that can 

replace the detailed models during the FTS simulation to save even more 

computational time to perform the long-term simulation. 

 
 It is necessary to find a switching criterion from the QSS simulation to the FTS 

simulation if the fast variables are excited during the long-term period. 

 
 It is important the inclusion of a static load model that considers frequency 

dependence into the digital program for long-term analysis. The bus frequency can 

be computed by taking the numerical derivative of the bus voltage angle since it is 

not an inherent variable in the dynamic simulation. 
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Appendix A  
                                                            
Synchronous machine model 

A.1 Generator model of order VI 

The generator model used in power system analysis is based on a two-axis formulation of 

the machine equations considered in Figure A.1. The stator circuit is composed of three 

identical sinusoidally distributed armature winding, displaced 120°. The rotor circuits 

comprise a field winding (denoted by fd) and three amortisseur windings (denoted by 1d, 

1q and 2q). The 1d winding has the same magnetic axis as the field winding, while the 

magnetic axis of the 1q winding (called the quadrature axis) is displaced 90° ahead of the 

direct axis. Furthermore, eddy currents are represented by the second winding (denoted by 

2q) on the quadrature axis [Van Cutsem, 2005], [Krause et al., 2002]. 

 
Figure A.1: Schematic diagram of the synchronous machine. 
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The stator and rotor voltage equations are obtained by applying the fundamental 

Kirchhoff’s and Faraday’s laws as well as the Park transformation [Sauer and Pai, 1998], 

[Krause et al., 2002], 
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in addition the flux linkages per second are expressed as 
 
 1d d d md fd md dX I X I X I       (A.7) 

 1 1q q q mq q mq qX I X I X I       (A.8) 

 1fd md d fd fd md dX I X I X I       (A.9) 

 1 1 1 1d md d md fd d d dX I X I X I       (A.10) 

 1 1 1 1 2q mq q q q q mq qX I X I X I       (A.11) 

 2 1 2 2 2q mq q mq q q q qX I X I X I       (A.12) 

 
where ω0 is the synchronous speed, and ω is the actual rotor speed. Xmd and Xmq are the d 

and q magnetizing reactances, respectively, Rs is the stator resistance, Vd is the d winding 
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voltage, Id 
is the d winding current and Xd is the d leakage reactance. Appropiate variables 

are also associated with the q axis and the rotor circuit.  

In accordance with dynamics of interest in the present work, the generator model 

considered in this work relies on the following assumption [Van Cutsem and Vournas, 

1998]: 

 
 The transformer voltages are neglected ( 0)d q    . 

 The usual speed deviations are small compared to synchronous speed, 0( )  . 

 The armature resistance (which is very small) is neglected. 

 Magnetic saturation is neglected for convenience in analysis. 

 

Therefore, under these assumptions the set of equations (A.1)-(A.5) take the 

following form: 

 d qV     (A.13) 
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The synchronous machine model can be obtained using the definition of standard 

synchronous reactances, new state variables and standard time constants [Krause et al., 

2002], [Sauer and Pai, 1998], then 

 
 d ls mdX X X    (A.19) 

 q ls mqX X X    (A.20) 
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 fd lfd mdX X X    (A.21) 

 1 1d l d mdX X X    (A.22) 

 1 1q l q mqX X X    (A.23) 

 2 2q l q mqX X X   (5.1) 
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1 1 1d ls

md lfd l d

X X

X X X

  
 

  (A.27) 

 

1 2

1
1 1 1q ls

mq l q l q

X X

X X X

  
 

  (A.28) 

 md
q fd

fd

X
E

X
    (A.29) 

 1
1

mq
d q

q

X
E

X
     (A.30) 

 md
fd fd

fd

X
E V

R
   (A.31) 

 fd
do

s fd

X
T

R
    (A.32) 

 1

1

q
qo

s d

X
T

R
    (A.33) 
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1

1 1
1 1do ls

s d

md lfd

T X
R

X X


 
 
   
  
 

  (A.34) 

 
2

1

1 1
1 1qo ls

s q

mq l q

T X
R

X X


 
 
   
  
 

  (A.35) 

 
where fdE  can be defined as voltage proportional to the field voltage determined by 

exciters or as a constant value. The voltage magnitudes behind synchronous q- and d-axis 

reactances are qE  and dE . Flux linkages per second related to the damping windings are 

given by 1d  and 2q . ,  and , qo do qo doT T T T   
 are the q-, d-axis transient and subtransient 

open-circuit time constant, respectively.   

Based on the definitions (A.15)-(A.30) into (A.9)-(A.12), the rotor currents are 

 

 1( )( )q d d d d
fd

md

E X X I I
I

X

   
   (A.36) 

 
  

 
1

1 2

( )d ls d q d d d

d

d ls

X X I E X X
I

X X

      


 
  (A.37) 

 2
1

( )( )d q q q q
q

mq

E X X I I
I

X

    
   (A.38) 

 
  

 
2

2 2

( )q ls q d q q q

q

q ls

X X I E X X
I

X X

      


 
. (A.39) 

 
On the other hand, the stator currents can be found by substituting the rotor currents 

equations into (A.7)-(A.8) and the resulting equation into (A.13)-(A.14): 

 



130 
 

 
 

1

( )

( ) ( )
d dd ls d

d q d
d d ls d d ls d

X XX X V
I E

X X X X X X X


     
     

  (A.40) 

 
 

2

( )

( ' ) ( )
q qq ls q

q d q
q q ls q q ls q

X XX X V
I E

X X X X X X X


  
   

    
.  (A.41) 

 
Moreover, the stator voltages can be represented in a complex form as [Sauer and Pai, 

1998], [Krause et al., 2002], 

   2
j

j
d qV jV e Ve




  
     (A.42) 

 
and manipulating (A.42) yields 

 
 
 

sin

cos

d

q

V V

V V

 

 

 

 
  (A.43) 

 
where V and θ are the magnitude and phase angle of the voltage measured at bus terminal. δ 

is the generator’s rotor angle relative to a certain rotating reference with respect to the 

quadrature axis, which is defined below. 

Therefore, the stator currents can be represented in terms of terminal voltage as 

 

 
   

1

cos( )

( ) ( )
d dd ls

d q d
d d ls d d ls d

X X VX X
I E

X X X X X X X

 


      
     

  (A.44) 

 
   

2

( ) sin

( ) ( )
q qq ls

q d q
q q ls q q ls q

X XX X V
I E

X X X X X X X

 


   
   

     
.  (A.45) 

 
Hence, the synchronous machine model can be expressed only in terms of meaningful 

variables and with the least number of equations by introducing the rotor and stator currents 

equations into (A.15)-(A.18): 

 

  1 2 1 3 cosq
do q d fdE

dE
T K E K K V

dt
  


        (A.46) 
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  1
4 5 1 6 cosd

do q d

d
T K E K K V

dt

          (A.47) 

  7 8 2 9 sind
qo d q

dE
T K E K K V

dt
  


       (A.48) 

  2
10 11 2 12 sinq

qo d q

d
T K E K K V

dt


         (A.49) 

 
where 

 
  

 
  

 

2

1 2 21 d d d d d d d ls

d ls d d ls

X X X X X X X X
K

X X X X X

       
   

   
  (A.50) 

 
  

 2 2
'

d d d d ls

d d ls

X X X X X
K

X X X

   


 
  (A.51) 

 
  

 3
d d d ls

d d ls

X X X X
K

X X X

  


  
  (A.52) 

 4
ls

d

X
K

X



  (A.53) 

 5
d

d

X
K

X


 


  (A.54) 

 6

-d ls

d

X X
K

X





  (A.55) 

 
  

 
  

 

2

7 2 21
q q q q q q q ls

q ls q q ls

X X X X X X X X
K

X X X X X

       
   

   
  (A.56) 

 
  

 8 2

q q q q ls

q q ls

X X X X X
K

X X X

   
 

  
  (A.57) 

 
  

 9

-q q q ls

q q ls

X X X X
K

X X X

 


  
  (A.58) 

 10
ls

q

X
K

X
 


  (A.59) 
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 11
q

q

X
K

X


 


  (A.60) 

 12
q ls

q

X X
K

X

 
 


.  (A.61) 

 
On the other hand, the effect of unbalance between the electromagnetic torque and 

the mechanical torque of the synchronous machine is obtained by applying the fundamental 

Newton’s law [Sauer and Pai, 1998], [Van Cutsem and Vournas, 1998]: 

 

 
0

2
m e

H
T T


    (A.62) 

 
where H is the moment of inertia and the electromechanical and mechanical torque are Te 

and Tm, respectively, which in per unit on the machine base Te is equal to the active power 

Pg generated while Tm is equal to the turbine mechanical power Pm. δ is the rotor angular 

position (in radians) with respect to the synchronous rotating reference given by [Kundur, 

1994]: 
 
 0 initialt t      . (A.63) 

 

Using (A.63), the second-order differential equation (A.62) (known as the swing 

equation) can be decomposed into two first-order differential equations: 

 

 0

d

dt

      (A.64) 

   0
02 m g

d
P P D

dt H

        (A.65) 

 
where D is the damping constant in (s/rad).  

The active and reactive power generated by the synchronous machine can be obtained 

as follows. The complex power (in per unit) produced is given by 
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 g g gS P jQ    VI   (A.66) 

 

where   2
j

d qV jV e
  

  V  and   2
j

d qI jI e
  

  I . Thus, using the definitions of V and 

I yields 

 +g d d q qP I V I V   (A.67) 

 g d q q dQ I V I V  . (A.68) 

 
Substituting (A.43)-(A.45) into (A.67)-(A.68) the active and reactive powers are 

expressed only in terms of meaningful variables: 

 

 
     
    

13 14 2 15

2
16 1 17

cos cos sin

sin sin 2

g d q q

d

P K E V K V K E V

K V K V

      

    

      

   
  (A.69) 

 
     
      

13 14 2 15

2 22
16 1 18 19

sin sin cos

cos cos sin

g d q q

d

Q K E V K V K E V

K V V K K

      

      

       

     
  (A.70) 

where 

 
 
 13

q ls

q q ls

X X
K

X X X

 
 

  
  (A.71) 

 
 
 14

q q

q q ls

X X
K

X X X

 


  
  (A.72) 

 
 
 15

d ls

d d ls

X X
K

X X X

 


  
  (A.73) 

 
 
 16

d d

d d ls

X X
K

X X X

 


  
  (A.74) 

 
 

17 2
q d

q d

X X
K

X X

 
 

 
  (A.75) 
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 18

1

d

K
X

 


  (A.76) 

 19

1

q

K
X

 


.  (A.77) 

 
Thus, the generator model of order VI is given by six differential equations      

(A.46)-(A.49), (A.64)-(A.65) and two algebraic equations (A.69)-(A.70). 

Finally, some generators can be equipped with an OvereXcitation Limiter and it 

necessary to compute the field current. Therefore, substituting (A.37), (A.44) and (A.45) 

into (4.36) yields 

 
  1 2 1 3 cosfd q dI K E K K V       . (A.78) 

 
 

A.2 Generator model of order IV 

A reduced-order synchronous machine model can be obtained (from the generator model of 

order IV) if the damper windings are neglected since the subtransient open-circuit time 

constants , qo doT T   are sufficiently small. Thus, the rotor circuit for this model is composed 

of the field winding and one amortisseur winding (denoted by 1q) [Sauer and Pai, 1998]. 

Therefore, the generator of order IV is represented by the following voltage equations: 

 
0 0

1 d
d a d q

d
V R I

dt

 
 

      (A.79) 

 
0 0

1 q
q a q d

d
V R I

dt

 
 

      (A.80) 

 
0

1 fd
fd fd fd

d
V R I

dt




    (A.81) 

 1
1 1

0

1
0 q

q q

d
R I

dt




    (A.82) 

 



135 
 

with the flux linkages per second as 

 
 d d d md fdX I X I      (A.83) 

 1q q q mq qX I X I      (A.84) 

 fd md d fd fdX I X I      (A.85) 

 1 1 1 1q mq q q q qX I X I    .  (A.86) 

 
Hence, the synchronous machine model of order IV can expressed only in terms of 

meaningful variables following the same procedure as Section A.1 and under the same 

assumption: 
 
 

  1 3

'
' ' cosq
do q fd

dE
ET K E K V

dt
       (A.87) 

  3 4

'
' ' sind
qo d

dE
T K E K V

dt
      (A.88) 

 0

d

dt

      (A.89) 

   0
02 m g

d
P P D

dt H

        (A.90) 

 
   
  

5 6

2
7

' cos ' sin

       sin 2

g d qP K E V K E V

K V

   

 

   

 
  (A.91) 

 
   
    

5 6

2 22
6 5

' sin ' cos

        cos sin

g d qQ K E V K E V

V K K

   

   

    

    
  (A.92) 

 
 
where 

 1
d

d

X
K

X
 


  (A.93) 

 2 1 d

d

X
K

X
  


  (A.94) 



136 
 

 3
q

q

X
K

X
 


  (A.95) 

 4 1 q

q

X
K

X
  


  (A.96) 

 5

1

q

K
X

 


  (A.97) 

 6

1

d

K
X




  (A.98) 

 7 2
d q

d q

X X
K

X X

 


 
, (A.99) 

 
and the field current is expressed as 

 

  1 2 cosfd qI K E K V      . (A.100) 

 

The synchronous machine model of order IV is often referred to as a two-axis model 

[Sauer and Pai, 1998]. 
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Appendix B  
 
 
Power system stabilizer model 

B.1 Transformation of the power system stabilizer 

The functional block diagram of the Power System Stabilizer (PSS) system is shown in 

Figure B.1 [Kundur, 1994].  

 

 

Figure B.1: Power system stabilizer. 

The PSS system consists of three blocks: a phase compensation block (phase and 

lead), a signal washout block and a gain block. Each block is represented by a transference 

function that involves two differential equations. However, the integration method used in 

the present work cannot solve this type of transference function. Therefore, the PSS model 

must be expressed by only one ODE, which can be obtained by dividing each transference 

function as follows: 

 

 
1

1
1 1

sTw

sTw sTw
 

 
 (B.1) 
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1

21 1

2 2 2

1
1

1 1

T

TsT T

sT T sT

 
 

   
 

 (B.2) 

 

3

43 3

4 4 4

1
1

1 1

T

TsT T

sT T sT

 
    

 
. (B.3) 

 
Using (B.1), (B.2) and (B.3) the functional block diagram of the PSS system can be 

represented as shown in Figure B.2.  

 

 
Figure B.2: Block diagram of the PSS. 

 
 By following the block diagram from Figure B.2, the model of the PSS can be 

expressed in terms of ODEs: 

 

 w S

dW
T K W

dt



    (B.4) 

  2 1

'
S

dP
T c K W P

dt
       (B.5) 

  4 2 3

'
S

dV
T c K W c P V

dt
         (B.6) 

 

with the compensation Vs of the PSS system given by 
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  4 5s sV c K W c P V         (B.7) 

 

where W  , P  and V are the new state variables associated with the washout block, phase 

and lead, respectively. Finally, the constants ci are given by 

  

 1
1

2

1
T

c
T

   (B.8) 

 3
2

4

1
T

c
T

   (B.9) 

 1 31
3

2 2 4

TTT
c

T T T
   (B.10) 

 1 3
4

2 4

TT
c

T T
  (B.11) 

 3
5

4

T
c

T
 . (B.12) 
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Appendix C  
                                                                           
Induction machine model 

C.1 Induction motor model of order III 

The induction motor model used in this work is derived with the same procedure 

described for the synchronous machine. Figure B.1 shows the winding arrangement for a  

2-pole, 3-phase ( av , bv , cv ), symmetrical induction machine. The stator and rotor windings 

are sinusoidally distributed winding, displaced 120°, respectively. This representation can 

be employed for both the squirrel-cage rotor and the wound rotor. 

 

Figure C.1: Schematic diagram of the induction machine. 

The stator and rotor equations expressed in terms of the dq0 frame reference are 

obtained by applying Kirchhoff's, Faraday's fundamental laws and the Park transformation 

[Krause et al., 2002], [Kundur, 1994]: 
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0 0

1 d se
ds s d s qs

d
V R I

dt

 
 

     (C.1) 

 
0 0

1 q se
q s s q s d s

d
V R I

dt

 
 

     (C.2) 

  
0

1
1dr r d r r qr d r

d
V R I

dt
  


      (C.3) 

  
0

1
1 qr

qr r qr r d r

d
V R I

dt


 


      (C.4) 

 
with the flux-current relations [Lesieutre et al., 1995] 

 
 d s ss d s m d rX I X I     (C.5) 

 qs ss qs m qrX I X I     (C.6) 

 d r m d s rr d rX I X I     (C.7) 

 qr m q s rr qrX I X I     (C.8) 

 ss s mX X X    (C.9) 

 rr r mX X X    (C.10) 

 
where ωr is the actual rotor speed, and ωe represents the speed of a rotating reference 

frame. Xs and Xr are the stator and rotor leakage reactances, whereas Xm is the magnetizing 

reactance. Rs is the stator resistance, d sV and q sV  are the d and q stator voltages, d sI and q sI  

are the d and q stator currents d s and q s  are the d and q stator flux linkages, and 

similarly for the rotor circuit. 

Based on the dynamics of interest in the present work, the induction motor model can 

be rely on the following assumptions: 

 The transformer voltages are neglected ( 0)d s q s    . 

 The reference frame is rotating at synchronous speed, 0( )e  . 
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 The rotor is assumed to be a squirrel-cage, ( 0)d r qrV V  . 

 Magnetic saturation is neglected. 

 
Based on the assumptions the motor equations (C.1)-(C.4) are expressed as 

 
 ds s ds qsV R I     (C.11) 

 qs s qs dsV R I     (C.12) 

 
0

1 dr
dr dr qr r qr

d
R I

dt

  


      (C.13) 

 
0

1 dr
qr qr dr r dr

d
R I

dt

  


    . (C.14) 

 
The induction motor model can be obtained using the following definition [Lesieutre 

et al., 1995], [Kundur, 1994]: 

 
2

ss rr m
s

rr

X X X
X

X

    (C.15) 

 m
q dr

rr

X
e

X
    (C.16) 

 m
d qr

rr

X
e

X
     (C.17) 

 
0

rr
o

r

X
T

R
    (C.18) 

 1 rs     (C.19) 

 
where qe  and de  are the voltage magnitudes behind transient impedances. oT  is the 

transient open-circuit time constant, and s is the slip speed in p.u. 

Hence, the rotor currents are obtained by substituting (C.15)-(C.17) into (C.7)-(C.8) 

 

 
( )q s ss ds

dr
m

e X X I
I

X

  
   (C.20) 
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( )d s ss qs

qr
m

e X X I
I

X

  
  .  (C.21) 

 
The stator currents are determined from (C.11)-(C.12) using the rotor currents 

equations and stator flow linkages (C.5)-(C.6): 

 

 
   s

2 2 2 2
s s

' qs qs ds d
ds

s s

X V eR V e
I

R X R X


 

  
  (C.22) 

 
   s
2 2 2 2

s s

's qs q ds d
qs

s s

R V e X V e
I

R X R X

 
 

  
.  (C.23) 

 
On the other hand, the stator voltages can be represented in a complex form 

[Lesieutre et al., 1995], [Kundur, 1994] 

 
   cos sinj

ds qsVe V jV V jV        (C.24) 

 
where V and θ are the magnitude and phase angle of the voltage measured at the load bus 

terminal.  

Using (C.24), the stator currents can be represented in terms of terminal voltage as 

 

 s s

2 2
s

cos sins d q s
ds

s

R e X e R V X V
I

R X

       



  (C.25) 

 s s

2 2
s

sin cosd s q s
qs

s

X e R e R V X V
I

R X

      



.  (C.26) 

 
Substituting the stator and rotor currents equations into (C.13)-(C.14), the induction 

motor model is expressed as 

 

  3 2 1 2 4

'
1 sinq

o q r d

de
T M e M M e M V cos M V

dt
              (C.27) 
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  2 1 3 4 21 sind
o r q d

de
T M M e M e M V cos M V

dt
  


             (C.28) 

 
where  
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rr
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X
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R
   (C.29) 
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s
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
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
.  (C.34) 

 
The rotor motion can be represented by the differential equation in terms of the rotor 

angular speed, ωr, in p.u. 

 

  1

2
r

e m
m

d
T T

dt H


    (C.35) 

 
where Hm is the moment of inertia, and Te is the electromagnetic generated torque, which is 

given by [Krause et al., 2002] 

 
 e qr dr dr qrT I I   . (C.36) 

 
Introducing (C.7)-(C.8) and the rotor and stator currents in (C.36) yields 
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 

   
5 6 6 5

22

5

cos sin cos sin

      

e d d q q

d q

T M e V M e V M e V M e V

M e e

          

     
. (C.37) 

 
Similarly, Tm is the mechanical load torque, and its model is composed of both the 

constant and the quadratic torque models. Thus, the composite mechanical load torque 

takes the following general form [Van Cutsem and Vournas, 1998], [Kundur, 1994]: 

 

 2
0 1 2m r rT T T T      (C.38) 

 
where T0, T1 and T2 are constants whose values are calculated with the initial condition as 

discussed in Section 2.6.4.1.  

The active and reactive power absorbed by the induction motor can be expressed only 

in terms of meaningful bus variables: 

 

5 6 6

2
5 5
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         sin

Lm d d q

q
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M e V M V
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  (C.39) 

6 6 5

2
6 6

cos sin cos

          sin

Lm d d q

q

Q M e V M e V M e V

M e V M V

  



     

 
. (C.40) 

 
Therefore, the induction motor model of order III is composed of three differential 

equations (C.27), (C.28), (C.35) and four algebraic equations (C.37)-(C.40). 
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Appendix D  
 
 
Electric power system data 

D.1 One-machine infinite-bus system data 

Table D.1: Transmission line parameters 
Buses R(p.u.) X(p.u.) B(p.u.) 
1 2 0 0.055 0 
1 2 0 0.055 0 

 
Table D.2: Synchronous machine parameters 

Bus Snom 

(MVA) 
Pnom 

(MW) 
Xls 

(p.u.) 
Xd 

(p.u.) 
X’d 

(p.u.) 
X’’d 

(p.u.) 
T’qo 

(s) 
T’’qo 

(s) 
Xq 

(p.u.) 
X’q 

(p.u.) 
X’’q 

(p.u.) 
T’do 

(s) 
T’’do 

(s) 
H 
(s) 

D 
(s/rad) 

1 1100 935 0.125 1 0.31 0.256 10.2 0.0245 0.69 0.356 0.08 0.6 0.054 4.2 5 

 

D.2 2-machine, 4-bus system data 

Table D.3: Transmission line parameters 
Buses R(p.u.) X(p.u.) B(p.u.) 
1 4 0 0.055 0 
1 4 0 0.055 0 

 
Table D.4: Transformer parameters 

Buses Rs(p.u.) Xs(p.u.) Tap: Tv Tap: Uv 
2 4 0 0.016 1.04 1.0 
3 4 0 0.004 1.0 1.0 

 
Table D.5: LTC parameters 

Buses Vcon(p.u.) rmax(p.u.) rmin(p.u.) Δr(p.u.) db(p.u.) Td0+Tm(s) Td1+Tm(s) 
3 4 1.0 1.1 0.8 0.01 0.01 20 10 

 
Table D.6: Static load parameters 

Bus PL(MW) QL(MVR’s) 
3 600 150 
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Table D.7: Load restoration parameters 
Bus TP(s) TQ(s) αt βt 

3 20 20 0.2 0.2 

 
Table D.8: Induction motor parameters 

Bus Snom 

(MVA) 
fPL fQL Rs 

(p.u.) 
Xs 

(p.u.) 
Xm 

(p.u.) 
Rr 

(p.u.) 
Xr 

(p.u.) 
H 
(s) 

T1/T0 T2/T0 

3 800 0.4 0.4 0.0 0.1 3.2 0.018 0.18 0.5 0 0 

 
Table D.9: Synchronous machine parameters 

Bus Snom 

(MVA) 
Pnom 

(MW) 
Xls 

(p.u.) 
Xd 

(p.u.) 
X’d 

(p.u.) 
X’’d 

(p.u.) 
T’qo 

(s) 
T’’qo 

(s) 
Xq 

(p.u.) 
X’q 

(p.u.) 
X’’q 

(p.u.) 
T’do 

(s) 
T’’do 

(s) 
H 
(s) 

D 
(s/rad) 

1 100000 100000 0.2 2.1 0.414 0.25 6.682 0.052 2.1 0.813 0.25 4.52 0.221 3.5 0 
2 500 450 0.2 2.1 0.414 0.25 6.682 0.052 2.1 0.813 0.25 4.52 0.221 3.5 0 

 
Table D.10: Exciter parameters 

Bus TE(s) GE Efd(max)(p.u.) Efd(min) (p.u.) 
1 0.1 50 5 0 
2 0.1 50 5 0 

 
Table D.11: OXL parameters 

Bus lim
fdI (p.u.) S1 S2 B1 B2 B3 Br ci 

2 2.825 1 2 20 0.1 1 1 0.1 

 
Table D.12: Governor and turbine parameters 

Bus R 
(p.u.) 

TGV 

(s) 
max

GVdP

dt
(p.u.) 

min
GVdP

dt
(p.u.) 

TCH 

(s) 
FHP TRH 

(s) 
FIP TCO 

(s) 

1 0.4 0.1 0.1 -0.1 0.2 0.4 4 0.3 0.3 
2 0.4 0.1 0.1 -0.1 0.2 0.4 4 0.3 0.3 

 

D.3 3-machine, 9-bus WSCC system data 

Table D.13: Transmission line parameters 
Buses R(p.u.) X(p.u.) B(p.u.)  Buses R(p.u.) X(p.u.) B(p.u.) 
4 5 0.0100 0.0850 0.176  8 9 0.0119 0.1008 0.209 
5 7 0.0320 0.1610 0.306  9 6 0.039 0.1700 0.358 
7 8 0.0085 0.0720 0.149  6 4 0.0170 0.9200 0.158 

 
Table D.14: Transformer parameters 

Buses Rs(p.u.) Xs(p.u.) Tap: Tv Tap: Uv 
1 4 0 0.0625 1.0 1.0 
2 7 0 0.0576 1.0 1.0 
3 9 0 0.0586 1.0 1.0 
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Table D.15: Static load parameters 
Bus PL(MW) QL(MVR’s) 

5 125 50 
6 90 30 
8 100 35 

 
Table D.16: Synchronous machine parameters 

Bus Snom 

(MVA) 
Xls 

(p.u.) 
Xd 

(p.u.) 
X’d 

(p.u.) 
T’qo 

(s) 
Xq 

(p.u.) 
X’q 

(p.u.) 
T’do 

(s) 
H 
(s) 

D 
(s/rad) 

1 100 0.0 0.146 0.0608 8.96 0.0969 0.0969 0.31 23.64 0.01254 
2 100 0.0 0.8958 0.1198 6.0 0.8645 0.1969 0.535 6.4 0.0068 
3 100 0.0 1.3125 0.1813 5.89 1.2578 0.25 0.6 3.01 0.0048 

 
 

Table D.17: Exciter parameters 
Bus TE(s) GE Efd(max)(p.u.) Efd(min) (p.u.) 

1 0.2 20 5 -5 
2 0.2 20 5 -5 
3 0.2 20 5 -5 

 
 

D.4 10-machine, 39-bus New England system data 

Table D.18: Transmission line parameters 
Buses R(p.u.) X(p.u.) B(p.u.)  Buses R(p.u.) X(p.u.) B(p.u.) 
1 2 0.00350 0.04110 0.69870  13 14 0.00090 0.01010 0.17250 

1 39 0.00100 0.02500 0.75000  14 15 0.00180 0.02170 0.36600 

2 3 0.00130 0.01510 0.25720  15 16 0.00090 0.00940 0.17100 

2 25 0.00700 0.00860 0.14600  16 17 0.00070 0.00890 0.13420 

3 4 0.00130 0.02130 0.22140  16 19 0.00160 0.01950 0.30400 

3 18 0.00110 0.01330 0.21380  16 21 0.00080 0.01350 0.25480 

4 5 0.00080 0.01280 0.13420  16 24 0.00030 0.00590 0.06800 

4 14 0.00080 0.01290 0.13820  17 18 0.00070 0.00820 0.13190 

5 6 0.00020 0.00260 0.04340  17 27 0.00130 0.01730 0.32160 

5 8 0.00080 0.01120 0.14760  21 22 0.00080 0.01400 0.25650 

6 7 0.00060 0.00920 0.11300  22 23 0.00060 0.00960 0.18450 

6 11 0.00070 0.00820 0.13895  23 24 0.00220 0.03500 0.36100 

7 8 0.00040 0.00460 0.07800  25 26 0.00320 0.03230 0.51300 

9 8 0.00230 0.03630 0.38040  26 27 0.00140 0.01470 0.23960 

9 39 0.00100 0.02500 1.20000  26 28 0.00430 0.04740 0.78020 

10 11 0.00040 0.00430 0.07290  26 29 0.00570 0.06250 1.02900 

10 13 0.00040 0.00430 0.07290  28 29 0.00140 0.01510 0.24900 
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Table D.19: Transformer parameters 
Buses Rs(p.u.) Xs(p.u.) Tap: Tv Tap: Uv  Buses Rs(p.u.) Xs(p.u.) Tap: Tv Tap: Uv 
2 30 0.0 0.01810 1.02500 1.0  22 35 0.0 0.01430 1.02500 1.0 
6 31 0.0 0.02500 1.07000 1.0  23 36 0.00050 0.02720 1.0 1.0 
10 32 0.0 0.02000 1.07000 1.0  25 37 0.00060 0.02320 1.02500 1.0 
12 13 0.00160 0.04350 1.00600 1.0  29 38 0.00080 0.01560 1.02500 1.0 
19 33 0.00070 0.01420 1.07000 1.0  12 11 0.00160 0.04350 1.00600 1.0 
20 34 0.00090 0.01800 1.00900 1.0  19 20 0.00070 0.01380 1.06000 1.0 

 
Table D.20: LTC parameters 

Buses Vcon(p.u.) rmax(p.u.) rmin(p.u.) Δr(p.u.) db(p.u.) Td0+Tm(s) Td1+Tm(s) 
12 13 1.0 1.1 0.8 0.01 0.01 20 10 
12 11 1.0 1.1 0.8 0.01 0.01 20 10 
20 19 1.0 1.1 0.8 0.01 0.01 20 10 

 
Table D.21: Static load parameters 

Bus PL(MW) QL(MVR’s)  Bus PL(MW) QL(MVR’s) 
3 322 2.4  23 247.5 84.6 
4 500 184  24 308.6 -92.2 
7 233 84  25 224 47.2 
8 522 176  26 139 17 

12 7.5 88  27 281 75.5 
15 320 153  28 206 27.6 
16 329 32.3  29 283.5 26.9 
18 158 30  39 1104 250 
20 628 103  31 9.2 4.6 
21 274 115     

 
Table D.22: Synchronous machine parameters 

Bus Snom 

(MVA) 
Pnom 

(MW) 
Xls 

(p.u.) 
Xd 

(p.u.) 
X’d 

(p.u.) 
X’’d 

(p.u.) 
T’qo 

(s) 
T’’qo 

(s) 
Xq 

(p.u.) 
X’q 

(p.u.) 
X’’q 

(p.u.) 
T’do 

(s) 
T’’do 

(s) 
H 
(s) 

D 
(s/rad) 

30 1100 935 0.125 1.0 0.31 0.256 10.2 0.0245 0.69 0.356 0.08 0.6 0.054 4.2 0 
31 750 675 0.262 2.212 0.523 0.327 6.56 0.034 2.115 1.275 0.327 1.5 0.038 4.04 0 
32 1000 850 0.304 2.495 0.531 0.424 5.7 0.039 2.37 0.876 0.424 1.5 0.053 3.58 0 
33 1000 850 0.295 2.63 0.436 0.348 5.69 0.040 2.58 1.66 0.348 1.5 0.051 2.86 0 
34 800 680 0.432 5.36 1.056 0.285 5.4 0.0345 4.96 1.328 0.285 0.44 0.023 3.25 0 
35 1000 850 0.224 2.54 0.5 0.31 7.3 0.0379 2.41 0.814 0.31 0.4 0.023 3.48 0 
36 800 680 0.257 2.36 0.392 0.314 5.66 0.04 2.336 1.488 0.314 1.5 0.038 3.3 0 
37 800 680 0.224 2.32 0.456 0.285 6.7 0.0345 2.24 0.729 0.285 0.41 0.023 3.04 0 
38 1000 850 0.298 2.106 0.57 0.356 4.79 0.0245 2.05 0.587 0.356 1.96 0.054 3.45 0 
39 10000 8500 0.3 2 0.6 0.375 7 0.0356 1.9 0.8 0.375 0.7 0.021 5 0 
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Table D.23: Exciter and derivative feedback parameters 
Bus TE(s) GE Efd(max)(p.u.) Efd(min) (p.u.) KF TF)(p.u.) 
30 0.1 5.0 5.0 -5.0 0.1 4 
31 0.95 6.2 5.0 -5.0 0.114 3 
32 0.1 5.0 5.0 -5.0 0.12 4 
33 0.1 5.0 5.0 -5.0 0.12 4 
34 0.07 40 5.0 -5.0 0.07 3 
35 0.07 5.0 5.0 -5.0 0.115 4 
36 0.07 40 5.0 -5.0 0.07 3 
37 0.07 5.0 5.0 -5.0 0.15 4 
38 0.07 40 5.0 -5.0 0.08 3 
39 0.08 6.2 5.0 -5.0 0.12 6 

 
Table D.24: Governor and turbine parameters 

Bus R 
(p.u.) 

TGV 

(s) 
max

GVdP

dt
(p.u.) 

min
GVdP

dt
(p.u.) 

TCH 

(s) 
FHP TRH 

(s) 
FIP TCO 

(s) 

30 0.4 0.1 0.1 -0.1 0.2 0.4 4 0.3 0.3 
31 0.4 0.1 0.1 -0.1 0.2 0.4 4 0.3 0.3 
32 0.4 0.1 0.1 -0.1 0.2 0.4 4 0.3 0.3 
33 0.4 0.1 0.1 -0.1 0.2 0.4 4 0.3 0.3 
34 0.4 0.1 0.1 -0.1 0.2 0.4 4 0.3 0.3 
35 0.4 0.1 0.1 -0.1 0.2 0.4 4 0.3 0.3 
36 0.4 0.1 0.1 -0.1 0.2 0.4 4 0.3 0.3 
37 0.4 0.1 0.1 -0.1 0.2 0.4 4 0.3 0.3 
38 0.4 0.1 0.1 -0.1 0.2 0.4 4 0.3 0.3 
39 0.4 0.1 0.1 -0.1 0.2 0.4 4 0.3 0.3 

 

D.5 46-machine, 190-bus Mexican power system data 

The system data are taken from [Messina and Vittal, 2005]. However, for this work all 

generators are equipped with a steam turbine. Furthermore, the parameter for all speed 

governors and steam turbine are equal and given in Table D.25.  
 

Table D.25: Governor and turbine parameters 
R 

(p.u.) 
TGV 

(s) 
max

GVdP

dt
(p.u.) 

min
GVdP

dt
(p.u.) 

TCH 

(s) 
FHP TRH 

(s) 
FIP TCO 

(s) 

0.4 0.1 0.1 -0.1 0.2 0.4 4 0.3 0.3 

 
Table D.26: LTC parameters 

Buses Rs 

(p.u.) 
Xs 

(p.u.) 
Tap: 
Tv 

Tap: 
Uv 

Vcon 

(p.u.) 
rmax 

(p.u.) 
rmin

(p.u.) 
Δr 

(p.u.) 
db 

(p.u.) 
Td0+Tm 

(s) 
Td1+Tm 

(s) 
182 182fa 0.0007 0.0138 1.0 1.0 1.0 1.1 0.8 0.01 0.01 20 10 
183 183fa 0.0007 0.0138 1.0 1.0 1.0 1.1 0.8 0.01 0.01 20 10 
184 184fa 0.0007 0.0138 1.0 1.0 1.0 1.1 0.8 0.01 0.01 20 10  


