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Abstract

In this thesis an approach for the simulation of power system short-term and long-term
dynamics is developed. It combines the good characteristics of both Full-Time Scale
(accuracy) and Quasi Steady-State (efficiency) simulation in a unified simulation tool.
According to this approach, the short-term dynamics are computed with the Full-Time
Scale simulation while the long-term dynamics are calculated by the Quasi Steady-State
approximation. The singular perturbation and the two-time scale techniques are applied to
obtain a suitable criterion for switching from Full-Time Scale to Quasi Steady-State
simulation. The switching occurs automatically once the fast part of the dynamic variables
remains below a specified tolerance during a specified period of time.

The benefits and main characteristics of the proposed method are shown by numerical
simulations in both small and large power systems: 2-machine, 4-bus system; 3-machine,
9-bus Western System Coordinating Council (WSCC) system; 10-machine, 39-bus New
England system and 46-machine, 190-bus equivalent model of the Mexican system.
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Chapter 1

INTRODUCTION

1.1 Motivation and justification

Generally speaking, modern power systems are large-scale systems composed of the
interconnection of electric components whose dynamics are interacting at widely-varying
speeds [Chow, 1982]. Therefore, the power system stability problem is commonly studied
in different categories according to the time scale instead of a single problem. In the context
of power system analysis, the stability is defined as “the ability of a power system to
recover a state of operating equilibrium after being subjected to a disturbance from a given
initial operating condition, with most system variables bounded so that practically the entire

system remains intact” [Kundur et al. 2004], and it can be classified as shown in Figure 1.1.

Time scale

I |
Short—term Long_tem
|
| | | |

Rotor angle Voltage stabili Frequency -
Stablllty g ty Stabillty VOltage Stablllty

Frequency
stability

Figure 1.1: Power system stability classification.



Immediately after a power system has been subject to a disturbance, short-term
dynamics are excited first. The short-term time scale is mainly concerned with the rotor
angle, frequency and voltage transient stability involving the fast components, lasting
typically for a few seconds. Some dynamic components acting within this period of time
are considered fast: generators, Automatic Voltage Regulators (AVRS), turbines, governors,
induction motors, Static Var Compensators (SVCs), High Voltage Direct Current (HVDC),
etc. [Van Cutsem and Vournas, 1998].

Following the disturbance which does not cause short-term instability, the multi-time
scale dynamics can persist over periods of time spanning from several minutes to several
hours. This is called long-term dynamics. The focus of this slower time frame is to evaluate
the effects of wide excursions of voltage and frequency for prolonged periods of time.
Several dynamic components are acting in this time frame, such as boiler, load
self-restoration, secondary frequency and voltage control, switching of shunt compensation,
changes in generator set points, Load Tap Changers (LTCs), OvereXcitation Limiters
(OXLs), etc, [Van Cutsem and Vournas, 1998]. Consequently, long-term dynamic
simulations considering both fast and slow dynamics of the system must be performed to
accurately analyze the effects of large excursions of voltage, frequency and power flows
that may invoke the action of slow processes, controls and protections. This analysis
requires the step-by-step numerical integration of a large-scale nonlinear stiff set of
differential-algebraic equations (DAESs), where the time step is largely determined by fast
states associated with the very small time constants of generators and their controls, such
that long-term simulations may demand a huge computational effort if appropriate
techniques are not used.

There are two main numerical approaches based on time scales to reduce the
computational burden of long-term dynamic simulations: i) Full-Time Scale (FTS)
simulation techniques using a variable time step size of integration in conjunction with
explicit or implicit integration methods [Stubbe et al., 1989], [de Mello et al., 1992],
[Astic et al., 1994], [Sanchez-Gasca et al., 1995], [Yang and Ajjarapu, 2006]; and ii) model

reduction-simplification techniques in conjunction with implicit integration methods
2



[Chow, 1982], [Xu et al., 1998], [Peponides et al., 1982], being the Quasi Steady-State
(QSS) method widely used for its high efficiency [Van Cutsem et al., 2006], [Grenier et al.,
2005], [Loud et al., 2001].

This thesis proposes a two-time scale simulation approach for a unified solution of
both fast and slow dynamics combining FTS simulation and QSS simulation. The proposed
method is inspired of Singular Perturbation (SP) theory to model the interaction between
short- and long-term dynamics [Xu et al., 1998], [Peponides et al., 1982]. Based on this
interaction, a suitable criterion is proposed to accurately determine when the QSS model of
a power system can be considered as a uniform approximation of the FTS model, which
also determines the appropriate switching time between these models. The main
contributions of the proposed approach are the following: i) simulation efficiency is
achieved by both time step size adjustment and model reduction, which are implemented in
a single simulation tool instead of using only the former [Stubbe et al., 1989], [de Mello et
al., 1992], [Astic et al., 1994], [Sanchez-Gasca et al., 1995] or only the latter [Grenier et
al., 2005]; i) the proposed criterion to automatically switch from the FTS to QSS models
preserves a uniform approximation of state and algebraic variables, so that a process to
initialize variables for the QSS simulation is not necessary; and iii) finally, the proposed
switching criterion is easily computed from the FTS simulation by monitoring the rate of

change of the fast time-varying state variables.

1.2 State of the art

An interconnected power system is an extremely complex sizable dynamic system because
of its multi-time scale nature, as well as its large-scale and nonlinear characteristics, which
make numerical simulation over long time intervals very demanding. Approaches that
automatically adjust the time step of integration in accordance with the system’s dominant
transients used to study both short-term and long-term dynamic phenomena in integrated
simulation tools have been reported [Stubbe et al., 1989], [de Mello et al., 1992], [Astic et
al., 1994], [Sanchez-Gasca et al., 1995], [Yang and Ajjarapu, 2006]. The main idea behind
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these approaches is to automatically reduce the time step to capture fast transients. As fast
modes decay during the solutions process, the time step is gradually increased to reduce the
computation time required to capture slow transients. A predictor-corrector approach based
on the Gear-type Backward Differentiation Formula (BDF) is used in [Stubbe et al., 1989]
to solve the set of DAESs. The time step size (and possibly the order) of the integration
method are adjusted according to a local truncation error defined as the difference between
predicted and corrected solutions. A similar idea is applied in [de Mello et al., 1992], but
the full power system model is solved by a simplified time-domain simulation based on the
Backward Euler (BE) method and large time steps of integration to filter out the fast
dynamics. Simulation is performed by integrating the set of DAEs with a specified
maximum step size, which is automatically reduced when the Newton method used to solve
the set of nonlinear equations exhibits convergence difficulties. As the convergence of the
Newton method improves over successive time steps, the time step is increased until
reaching the maximum step time value. A drawback of these approaches is that an unstable
mode of oscillation can lie in the stability domain of the integration methods so that a real
unstable phenomenon will be simulated as a stable one. This problem can be avoided by
using the mixed Adams-BDF variable step size and variable order algorithm proposed in
[Astic et al., 1994]. The Adams method is applied to solve the set of ordinary differential
equations (ODEs) and to check the errors in dynamic variables, whilst the BDF method is
applied with the same purpose but to the algebraic equations and variables. The selection
of both step size length and order of the integration method is based on a global truncation
error, which depends on the weighted root mean square norm of all corrected values of
dynamic and algebraic variables. In the proposed implementation, the step size adjustment
can be done once it has been kept constant in at least the number of time steps that equals
the order of the mixed integration method [Astic et al., 1994]. A variable time step
integration based on the Theta (/) method is used in [Sanchez-Gasca et al., 1995] to solve
the set of DAEs representing the power system. This method is A-stable for values of
6<0.5, and a value for @ in the range of 0.47-0.49 avoids the following: i) the problem of

sustained numerical oscillations, which is often encountered following the occurrence of
4



switching events in simulations using the trapezoidal rule of integration [Yang and
Ajjarapu, 2006], and ii) the problem of hyper-stability presented in the numerical methods
used in [Stubbe et al., 1989], [Astic et al., 1994]. The time step adjustment is done based on
a local truncation error defined as a function of predicted and corrected values of both state
and algebraic variables. The time step is increased if the maximum norm of the local error
vector is below a specified tolerance for a number of time steps. On the other hand, if this
norm exceeds the tolerance, the time step is reduced to a fixed value for a number of time
steps before attempting to increase it. When a severe disturbance occurs, the simulation
algorithm temporary changes to an explicit integration method with the time step fixed to a
pre-specified minimum value. During this stage, the magnitude of the local error of
integration is monitored to return to the solution based on the § method. The integration
steps have to be further adjusted in order to fall on the time instants where discrete state
events (such as variables hitting their limits) take place. In case where the long-term
dynamics are driven by many discrete controls — such as the widely used Load Tap
Changers (LTCs) — this may prevent the step size from being increased to the extent
allowed by the slow continuous-time dynamics

Alternatively, the multiple time scales inherent to the dynamics of a power system
can be exploited to obtain reduced order models relevant to a particular time scale [Chow,
1982], [Cate et al., 1984], [Van Cutsem and Vournas, 1998] with the objective of
simulating those reduced models much more efficiently [Van Cutsem and Vournas, 1998],
[Xu et al., 1998]. A first step toward model simplification was proposed in [Frowd et al.
1982] with a unified approach to short- and long-term dynamic simulation using the
fixed-step trapezoidal integration method. The simulation mode is determined by the
integration step size, and the switching from one mode to the other is defined by the degree
of damping of synchronizing oscillations. An artificial damping term is included in the
rotor swing equations of each generator to allow synchronizing oscillations to be artificially
suppressed and to allow a larger integration time step when simulating the long-term mode.
Based on the idea of combining the advantages of implicit and explicit integration methods

to solve the set of DAEs representing the system under study [Astic et al., 1994], a
5



decoupled time-domain based on invariant subspace partition and fixed-step integration
simulation is proposed in [Yang and Ajjarapu, 2006]. The original set of nonlinear ordinary
ODE:s are grouped in two decoupled sets of stiff and nonstiff equations, respectively, based
on eigenvalue analysis of the linearized set of ODEs. The set of stiff ODEs is integrated by
those equations whose eigenvalues are located outside the stability domain of a selected
explicit method. These equations, together with the set of algebraic equations, are solved
using the trapezoidal integration method, and the forward Euler method is used to solve the
rest of the nonstiff ODEs.

An alternative to deal with the complexity of considering fast and slow phenomena in
long-term dynamic simulations consists on using the model simplification concept. In
recent years, the well-known Quasi Steady-State (QSS) approximation has been used for
long-term dynamic studies [Van Cutsem and Vournas, 1998], [Xu et al., 1998]. This
approximation relies on time-scale decomposition, which consists of decomposing the
dynamic state variables into a set of fast time-varying state variables and a set of slow
time-varying state variables. By assuming that the former set changes instantaneously with
variations of the slow state variables, the set of differential equations associated with the
fast (short-term) dynamics are represented by their equilibrium condition [Van Cutsem and
Vournas, 1998], significantly reducing the computational effort for long-term dynamic
simulation. However, when the power system is subjected to a severe contingency, the QSS
simulation has some limitations [Loud et al., 2001]: 1) The assumption that the short-term
dynamics can be replaced by their equilibrium equations is also based on the fact that these
dynamics are transiently stable. However, the system may lose stability in the short-term
and not even enter the long-term period. When this happens, the QSS simulation could
exhibit singularity problems [Van Cutsem and Vournas, 1998]; 2) A large disturbance may
trigger controls associated with discrete events with great impact on the system’s long-term
evolution. The sequence of controls depends on the system dynamics, and hence may not
be correctly identified from the simplified model.

An alternative to tackling these QSS limitations consists of combining the FTS

simulation for the short-term period and QSS approximation for the long-term time frame
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as proposed in [Loud et al., 2001] and [Van Cutsem et al., 2006]. The time to switch from
FTS to QSS simulation is chosen once the dynamics of rotor angles or frequency have died
out [Loud et al., 2001]. In this case, the QSS model is initialized by setting the continuous
long-term variables and the algebraic variables to the values computed by FTS simulation

at the switching time t,,. The short-term variables are initialized at the values associated
with the equilibrium point of the set of differential equations at t,,. Lastly, the operation

and waiting state of discrete events have to be considered to determine their initial

conditions at t, and to establish the sequence of discrete controls during the QSS

simulation with reasonable accuracy. The initialization process is avoided in [Van Cutsem
et al., 2006] by performing an off-line coupling of both approaches based on the discrete

events taking place during the detailed simulation. The FTS simulation is executed until the

switching time t, is detected as proposed in [Loud et al., 2001], and the sequence of

discrete events that have occurred over this interval are identified. The QSS simulation is
then implemented from the initial time with those discrete events imposed as external

disturbances, without allowing the discrete devices to act by themselves until the simulation

arrives at t,,. From there on, the study proceeds with the usual QSS approximation.

1.3  Objectives

The general goal of this work is to develop an accurate single unified program for
long-term dynamics analysis, which combines the accurate of FTS simulation and the
efficiency of QSS simulation without the necessity of initializing the QSS models at
switching time. The single program obtains the reliability of the FTS simulation when
dealing with the short-term dynamics and the efficiency of the QSS simulation when the
long-term dynamics is studied.

The general goal can be achieved if an appropriate switching criterion is developed.
Therefore, another goal is to develop a suitable criterion for switching from the FTS to the

QSS model. The correct switching time has to correspond to the time when the QSS model
7



is a uniform approximation of FTS model, such that a process to initialize variables for the

QSS simulation is not necessary. Also, the switching criterion has to be easily computed in

order to reduce the computational burden. For this purpose the singular perturbation

technique and the concept of boundary layer correction are used [Kokotovic et al. 1986].

1.4

Methodology

In order to reach the proposed objectives, this research work was developed according to

the following methodology:

1.5

Review of the state of the art of dynamic power system simulation (short-term and
long-term).

Review of the singular perturbation and the two-time scales theories.

Development of the switching criterion.

Development of the FTS model of a power system based on the power balance
formulation.

Computational implementation of the FTS model in a digital program.

Development of the QSS model of a power system based on the power balance
formulation.

Computational implementation of the QSS model in a digital program.
Computational implementation of the switching criterion in the digital program in
order to combine FTS and QSS models.

Development of experiments in order to validate the proposed approach.

Thesis outline

The rest of this thesis is organized as follows:



Chapter 2 presents the FTS models of the power system components to be considered in
this work. The solution process of the differential equations of the models is developed, and
the equations representing the dynamic behavior of large-scale power systems are described
based on the two frames of references.

Chapter 3 provides the QSS models of the power system components explored in this
work. The dynamic state variables are split up into fast and slow variables, and the
differential equations associated with the fast variables are replaced by their equilibrium
equations. The solution process of this new set of differential and algebraic equations is

then presented.

Chapter 4 presents the development of a suitable switching criterion between FTS and
QSS simulation by applying the singular perturbation and two-time scale techniques. The

proposed approach is then illustrated by studying a single power system.

Chapter 5 addresses the application of the proposed approach to illustrate its suitability for
the analysis of short-term and long-term dynamics in electric power systems. It combines
the FTS and the QSS models by using the switching criterion developed in Chapter 4. The
proposed approach is then tested on several systems: a simple system, the Western System
Coordinating Council (WSCC) system, the New England system, and a reduced

representation of the Mexican power system.

Chapter 6 gives the general conclusions of this research and presents suggestions for

future research work.



Chapter 2

FULL-TIME SCALE MODELLING OF
POWER SYSTEM

2.1 Introduction

The dynamic stability analysis of power system is an integral part in the design, planning
and operation of large interconnected power systems. The aim of dynamic simulations is
the monitoring of the power system and the planning of preventive or corrective control
action strategies suitable for mitigating the impact of several disturbances presented in the
system. Thus, the development of accurate digital programs and numerical methods for
dynamic analysis is very important for secure power grid expansion, and it significantly
impacts the future design and operation of large interconnected power systems [Khaitan et
al., 2008].

Power system dynamics and stability analyses require performing numerical
simulations of a large set of equations of devices, involving dynamic characteristics in a
wide range of time scales and nonlinear effects [Van Cutsem et al. 2006]. Therefore,
Full-Time Scale (FTS) models must be included in order to obtain more realistic results.

In the present Chapter, the FTS models of the fundamental elements (e.g. network,
generator, controls, loads, etc.) that form the power system are developed. Consequently,
the resulting differential and algebraic equations are transformed into pure algebraic
equations (AEs) using ether the Trapezoidal Rule or the Backward Euler integration
method. Thus, the Newton-Raphson algorithm can be used to solve the AEs under a single

frame of reference based on power flow formulation.
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2.2  Full-time scale formulation

In stability studies, the derivation of a general dynamic model of the power system is given
by the sets of differential-algebraic-discrete equations (2.1)-(2.3). Likewise, the numerical
integration of the whole set of equations is referred to as Full-Time Scale simulation [Van
Cutsem and Vournas, 1998]

x=f(x,Y,2) fiR™P SR xeX R (2.1)
0=9g(x,Y,2) g:R"P 5 RT yeY R (2.2)

Z(t) =h(xy,z(t)) h:R"™" 5>RP zeZcR°

t e[ty tog | 23)

where tp and tenq are the initial and final times, respectively, of the study time period.

The differential equations (2.1) involve two time scales of dynamic phenomena:
short-term dynamics of generators, turbines, governors, AVRs, induction motors, etc. and
long-term dynamics of boiler, load self-restoration, secondary frequency and voltage
control, etc.

The algebraic equations (2.2) consider the dynamic phenomena practically
instantaneous, such as electromagnetic and network transients, etc.

The discrete-time equations (2.3) represent the discrete controls and protections that
act on the system: switching of shunt compensation, changes in generator set points, LTCs,
OXLs, etc.

In the following Section, the mathematical full-time scale models of the principal
devices (generators, voltages regulators, governors, turbines, for example) that compose the
power system are developed. The appropriate procedure to solve the equations (2.1)-(2.3) is
also presented.

11



2.3  Generator modelling

The performance of synchronous machines (generators) plays an important role in power
system stability because they have to be rotating in synchronism. The generator model
commonly used in stability analysis is based on a two-axis formulation of the machine
equations as shown in Figure 2.1 [Sauer and Pai, 1998], [Van Cutsem and Vournas, 1998].
The stator (or armature) circuit is composed of three identical sinusoidally distributed

armature winding, displaced 120°, with voltages v,, Vv,, Vv, and currents i, iy, i

respectively. The rotor circuit consists of four windings with the field winding (denoted by
fd ) on the direct axis. Two windings (denoted by 1d and 1q) represent amortisseur (or
damper) bar effects. The 1d winding has the same magnetic axis as the field winding, while
the magnetic axis of the 1q winding (called the quadrature axis) is displaced 90° ahead of
the direct axis. Furthermore, eddy currents are represented by the second winding (denoted

by 2q) on the quadrature axis [Van Cutsem and Vournas, 1998], [Krause et al., 2002].

_>va a
Ve / Y,
i, + .
1d vfd_ lc/
'«
d
Rotor Stator or Armature

Figure 2.1: Schematic diagram of the synchronous machine.
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The stator and rotor equations are obtained by applying the fundamental Kirchhoff’s
and Faraday’s laws as well as the Park transformation [Sauer and Pai, 1998], [Krause et al.,
2002]:

2‘//
V, R, O 0 l4 @, a 1 d 2
Ve |==| 0 Ry O |lly|-] O _ZE Vi (2.4)
0 0 0 Ryjlla 0 ’ Ya
o , _
——Vd
Vq R, 0 0 |q » 1 d -V,
0|=—|0 qu 0 |ql + 0 ———| Vaq (2.5)
@, dt
0 0 0 qu qu 0 Va2
with the flux linkages per second expressed as
Yy =Xg Xpg Xpg I
Vi |=|~Xoa X Xpa || T (2.6)
Vi “Xog Xog Kiga || g
¥q _Xq qu qu Iq
l//lq ==X mq xlqlq X mq I 1q (2 : 7)
l//2q _qu qu X2q2q I2q

where @y is the synchronous speed, and o is the actual rotor speed. Xmg and Xmq are the d
and q magnetizing reactance, respectively, Rs is the stator resistance, Vy is the d winding
voltage, lq is the d winding currents and Xg is the d leakage reactance. Appropiate variables

are also associated with the g axis and the rotor circuit.
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According to the dynamic of interest in the present work, the generator model

considered in this work relied on the following assumptions [Van Cutsem and Vournas,
1998]:

e The transformer voltages are neglected (v, =y, =0).

e The usual speed deviations are small compared to the synchronous speed,

(0~ a,).

e The armature resistance (which is very small) is neglected.

e Magnetic saturation is neglected.

Therefore, under these assumptions and through algebraic manipulation (see

Appendix A), the FTS synchronous machine model of order VI can be expressed only in
terms of meaningful bus variables:

KoK oo 1K o]
Td,o Td’o Td’o Td’o
%"éﬁd o '/él,“ + ® o ||Veos(s-o)|  (@8)
‘ 0 0 5 )0 0 ZFvsin(5-0)
V/Zq a0 qo ‘//Zq a0
0 0 & ﬁ 0 0 &
i To T | i Teo |
ds
—=0-0 2.9
ot 3 (2.9)
do o,
—=—(P -P,-D(0-q 2.10
dt 2H(m ) (2.10)
with
P, = K ;EqV cos (85— 0)+ Kyw,V cos(5-6)+ K EV sin(5-0) 211
+ KygpaV sin (8- 0) + K,V sin(2(5-9)) '
Q, = K EVsin(5-0)- K,V sin(5-0)+KE\V cos(5-0)
(2.12)

+KyggV €08(5—0) V7 Ky 008(6 =) + Ky sin(5-0)°)
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where K, are constants associated to the generator’s reactances, E is the voltage
proportional to the field voltage determined by exciters or it can be considered as constant
and ¢ is the generator’s rotor angle relative to a certain rotating reference with respect to the

quadrature axis. The voltage magnitudes behind transient - and d-axis reactances are E(;
and E;. Flux linkages per second related to damping windings are given by v, and Waq -
T, Ty and Tg, To are the g-, d-axis transient and subtransient open-circuit time

constant, respectively. H is the moment of inertia, D is the damping constant, P, is the
turbine mechanical power injection and Py is the generator’s electrical power output.

Lastly, V and @ are the magnitude and phase angle of the voltage measured at bus terminal.

2.3.1 Initial condition for the synchronous generator

In power system dynamic analysis, computing the initial value of all the dynamic

states (E;, B}, iy, W,y O, @) is necessary, as well as the fixed inputs (Eg, P, ). These

values are normally obtained from a base study power flow solution. After the power flow
study has been solved, the initial condition is computed by solving the steady-state
synchronous generator model represented by the steady-state equivalent circuit of Figure
2.2 [Sauer and Pai, 1998].

Ie" =(1,+jI,)e ™

s
JX ¥

q

[(Xq _X:i)ld +E;j|ej8 Veﬁ :(I/d +jl—/q)ej(8—4t/2)

®
Figure 2.2: Equivalent circuit for steady-state operation of synchronous generator.
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Application of Kirchhoff’s voltage law to Figure 2.2 yields the stator equation in

steady-state
E=Ve” +jX,le” (2.13)

where Ve and le"” are the terminal voltage and current, respectively; E represents a
voltage behind reactance Xq.
Thus, the initial condition for the generator model is normally carried out by the

following steps:

e The terminal current is found as

JVZPQJF—J-QG,

le Vel

(2.14)

e E is computed by (2.13), and the internal angle of generator is obtained from

S =angle of E . (2.15)

e From Figure 2.2 and the result of the previous step, E; is computed as
E; =|E|- (X, - Xi)1, (2.16)

where I, =1cos(y—5+7/2).

e Since the derivatives are zero, the rest of the state variables are given by

-1

Vg Ki 0 07K, K, 0 E!
E/ |=-| 0 K, K, 0 0 K,|[Vcos(6-6) (2.17)
W 0 K, Ky| [0 0 K,]||Vsin(6-0)

W= 0q,. (2.18)
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¢ While the fixed inputs are computed as

Er = —(K.E + Ky + KV cos(5-9)) (2.19)

P,=P,. (2.20)

2.4  Automatic voltage regulators

The generators are normally operated at constant terminal voltage through an automatic
voltage regulator (AVR) that controls the amount of current supplied to the generator field
winding by the exciter. The general functional block diagram of the automatic voltage

regulator system is shown in Figure 2.3 [Machowski et al., 2008].

Ve
£ [taiters Jo
£ limiters |« |
| 2] |
|7} =) o
cel  |2B| |53 | E
Vo 3 < g 52| |58 S
—>|Tmparator amplifier exciter p 0D > %é > 0T —> E
7 “E| 23] 5 LB
§< SICI T e
g 9 g
_________________________ P
w
| f
PSS

Figure 2.3: Block diagram of the AVR system.

The AVR system includes several subsystems which work together for the correct
operation of the voltage control loop. These subsystems are presented in the following

Sections.
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2.4.1 Excitation modelling

The principal function of the electric field exciter is to control the terminal voltage
magnitude at a reference value by changing the machine excitation, E, . Figure 2.4 shows
a detailed dynamic model of the electric field exciter used in this work, which corresponds

to the IEEE Type 1 without saturation representation [Anderson and Fouad, 1994], [Rafian
et al. 1988].

\ 4

s %+ G, E,
- 1+sT;

Efa’ (min)

Figure 2.4: Electric field exciter.

From the block diagram of the model, the differential equation of the exciter can be

expressed as

dE
T fd
£t

= GE (V _V)_ Efd Efd(min) < Efd < Efd(max) (2-21)

ref

where T. is the exciter time constant, and G is the open-loop steady-state gain of

excitation. The voltage reference (V. ) is calculated as [Rafian et al., 1988],

ref

EO
Vi =——+V° (2.22)
Ge

where E2, and V°are the initial excitation and terminal voltages of the generator whose

values are obtained with the generator initialization procedure.

18



2.4.2 Feedback compensation

The excitation control system stabilization (comprised of a feedback compensation) is used
to improve the dynamic performance of the control system. The most commonly used form
of compensation is a derivative feedback (DF), as shown in Figure 2.5. The effect of the
compensation is to minimize the phase shift introduced by the time delays over a selected
frequency range [Kundur, 1994].

\ 4

Exciter
+ N and AVR

T - | T™T

Figure 2.5: Derivative feedback compensation.

The mathematical model of DF compensation is obtained using Figure 2.5 as

f E = Efd - D (223)
K

C =T—f(Efd -D) (2.24)
f

where T, is the time constant, and K, is the gain of the DF compensation system. The

initial condition of D must be equal to E{, , since the initial compensation has to be zero, i.e.

C’=0.
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2.4.3 Power system stabilizer

The power system stabilizer (PSS) adds damping to the generator rotor oscillations by
controlling its excitation using an auxiliary stabilizing signal. This device is employed to
improve the damping of rotor oscillations over a range of frequencies, rather than a single
frequency. Normally, the frequency range of interest is 0.1 to 2.0 Hz [Kundur, 1994].

The functional block diagram of the PSS system is shown in Figure 2.6 [Kundur,
1994]. It consists of three blocks: a phase compensation block (lead-lag), a signal washout
block and a gain block. The compensation block provides the appropriate phase-lead
characteristic to compensate for the phase lag between the exciter input and the generator
electrical (air-gap) torque. The PSS responds only to changes in rotor speed due to the
signal washout block operation. This block operates as a high-pass filter with the time
constant T,, high enough to allow signals associated with oscillations in @ to pass
unchanged. The stabilizer gain Ks determines the amount of damping introduced by the
PSS [Kundur, 1994], [Xu et al., 1998].

E
v Exciter #
+N\g7 and AVR
Washout Phase Lead V ima
Aw sT, 1+sT, 1+sT,
— K —> —> —>)
1+sT, 1+sT, 1+s7,

7

s(min)
Figure 2.6: Power system stabilizer.

From Figure 2.6, the mathematical model of the PSS represented by first order
differential equations cannot be directly obtained. However, this is reached by subdividing
each block in an appropriate form, as shown Figure 2.7 (see Appendix B).
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Figure 2.7: Block diagram of the PSS.

Using the block diagram of Figure 2.7, the mathematical model of the PSS takes the
following form:
dw'’

T, —— =K Ao-W' (2.25)
dt
T, Z—Ft) = ¢, (KsAw-W') P’ (2.26)
dV' !’ ’ ’
T =G (Kedo-W')—cp'-V (2.27)

where W', P’ and V' are the state variables associated with the washout block, phase and

lead, respectively. T, and T. are the time constants related to each block, while the gain

C,, C, and ¢, are given by

c=1--+%, czzl—L, cS:L—l. (2.28)
T, T, T, T,T,

The compensation V, of the PSS, which is incorporated in the exciter, can be
expressed as

V, =¢,(KA@—-W')+¢,P' +V' (2.29)

S

where the gain ¢, and C; are given by

C,=—2, C. ==, (2.30)
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The initial condition of the state variables W', P' and V' are equal to zero in order to

start simulation without PSS compensation.

2.4.4 OvereXcitation limiters

The OvereXcitation Limiter (OXL) of synchronous generators plays an important role in
the voltage stability of power systems. It modifies the reference voltage of automatic
voltage regulators to protect the field winding of the synchronous generator from
overheating [Van Cutsem and Vournas, 1998]. For the generator model presented in

Section 2.3, the field current is given by the following expression:

= —KE! = K,pyy — KV cos(5-0) (2.31)

where K , K, and K, are constants associated to the generator reactances; these are given
in Appendix A.
This device is generally inactive, unless the field current is greater than its thermal

limit, 17", as shown in Figure 2.8 [Van Cutsem and Vournas, 1998].

av

Exciter
1@. and AVR
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A

B, -B 0

r

Figure 2.8: Block diagram of the OXL model.

A 4

Block 1 corresponds to a two-slope gain whose output depends on the value of X, :
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X, =S, X if x,>0

2.32
X, = S,% if x <0 (2.32)

where x, =i, —ip" and S,,S, are constants bigger than zero. The output of the first limited

integrator (block 2) is initially at its lower bound, X, =—B,, and hereafter it is expressed as

x =0 if (xt-: B, and X, >0) or (x, =—B, and)'(t<0)' (2.33)
X, = X, otherwise

When i, becomes larger than i}" , the output of block 2 starts increasing. As soon as

X, becomes positive, block 3 switches its input as indicated in Figure 2.8.

The output of the second limited integrator (block 4) must be initialized at zero,

Xox. =0. Right after block 3 has switched, the output X, increases according to the

following expression [Van Cutsem and Vournas, 1998]:

Xox. =0 if  (Xox =By and Xoy > 0) or (X, =0 and Xy, <0) (2.34)
Xox. =CiX; otherwise

Therefore, the field current decreases as a result of subtracting the output signal X,

from the AVR inputs as shown in Figure 2.8.

2.5 Automatic generation control

The role of an Automatic Generation Control (AGC) is to maintain the power plant
frequency close to its nominal values by controlling the generation of active power. This
control is applied at two levels, designed for primary and secondary frequency control
[Elgerd and van der Puije, 1998]. The AGC control loops are shown in Figure 2.9.

23



. Secondary frequency control

Interchange power

Load-frequency
control

A A

A 4

|speed changer|

TN

P '

: A 4 : Pm
. LIWIA—CO>| valve/gate control |—>| turbine |—>

A

(transducer)
INETWORK]

SYNCHRONOUS
GENERATOR
measuring element

e

Primary frequency control

Figure 2.9: Automatic generation control.

The primary frequency control performs the initial adjustment of the frequency. This
control responds relatively quickly to a measured sign of frequency. For "quickly" we mean
the changes that happen in some seconds. Through the speed governor this control loop
regulates active power output to match the fluctuations in the load [Elgerd and van der
Puije, 1998].

The secondary control loop performs the fine tuning of the frequency. To achieve
this, the load-frequency control adjusts the speed changer according to some convenient
control strategy. The secondary control loop is a support of the governor, which allows
lessening the frequency deviation to an acceptable value and keeps the interchanged power
between neighboring electric areas at the scheduled value.

For the purposes of the present investigation, only the primary frequency control of
the steam plants is considered. This loop control acts according to the speed governor and

the steam turbine, as detailed in the next Sections.
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2.5.1 Speed governor

The governor adjusts the steam input to the turbine through the valve position, P, . This is

shown in the block diagram of Figure 2.10 [IEEE Committee Report, 1973].

,( ) R 1 .
+ 1+sT,, g

P GV(min)

1
@,R

Figure 2.10: General models for speed governor systems.

A

Aw

The valve position is proportional to the changes of both the power reference, P,

ref 1
and the deviation of angular speed, Aw=w—a®,. The power reference is fixed by the

Load-Frequency Control (LFC) on the AGC secondary control. Therefore, the
mathematical expression that represents the changes of the valve position takes on the

following form:

oy _p 1
d ™ R

Tay - Py (2.35)

where R is the speed droop characteristic and represents the regulation ability of the
generator against the changes in the power system. This regulation is given in terms of the

generated frequency and active power,

R=——0| (2.36)
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The value of B,, and its derivative should be constrained by the limit on the valve

position and rate limits, respectively [IEEE Committee Report, 1973], [Sauer and Pai,
1998]:

0<Py, <Py m (2.37)
dr,, ™ _dR,, _dR, ™ (2.38)
dt  dt  dt

The output of the governor is initially at the power reference value. This is
determined by the LFC at the steady-state as follows:
PO

P,=— 2.39
ef Pgnom ( )

where Pg0 and Pgnom are the initial and the rated active power generation, respectively.

2.5.2 Steam turbine

The steam turbine adjusts the mechanical power according to the steam flow, which is
regulated by the valve position. The valve position is then the input signal to the turbine.
The mathematical model that represents this relation varies according to the type of turbine
employed in the generation plant: nonreheat, single reheat, double reheat.

For power system dynamic stability studies, a turbine of single reheat with multiple
sections of pressure is commonly used [Kundur, 1994]. Hence, this type of turbine is
adopted in the present work, and it is called tandem-compound steam turbine [IEEE
Committee Report 1973].

The tandem-compound turbine is integrated by three sections: the high (HP),
intermediate (IP) and low (LP) pressure turbines, respectively. All sections are mounted on
the same shaft as shown in Figure 2.11a [IEEE Committee Report 1973]. Moreover, the
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block diagram that corresponds to a linear approximation of this turbine is shown in Figure
2.11b [IEEE Committee Report, 1973], [Kundur, 1994].

\Reheater\ \ Crossover \
Val Control
alve valves,
pOSition Hsteam 4@ IP 7777777 »Q 777777777777777 Shaft
chest
to condenser
@
P
+ + m
M) M
T/+ +
F HP F IP F'LP
1 1 1
—’ » »l
P, |1+5Tw| B, |1+5Tw| P, |1+sTe| B,
(®)

Figure 2.11: Steam turbine: (a) Tandem compound, single reheat; (b) Block diagram.

The mathematical equations that represent the steam turbine are [Rafian et al. 1988]

dPHP PGV — PHP

= 2.40
dt Ten (2.40)
dPIP — PHP — PIP (2_41)

dt Tan
dPLP _ Pe — P (2.42)

dt Teo

with a mechanical power injected to the generator given by

Py =PeFue +PeFp + RoFip (2.43)
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where Tcy, Try and Tco are the time constants which represent delays at the steam chest
and inlet piping, reheaters and crossover piping, respectively. Fyp, Fip and F_p represent a

portion of the total turbine power developed in the different stages [Sauer and Pai, 1998].

Furthermore, these fractions have to satisfy F, +F, +F, =1.

The initial condition of each stage, Pyp, Pip and Pyp is equal to the value of the output

of governor Pgy.

2.6 Loads

In power system stability analysis, the impact of the loads in the system must be suitably
characterized. However, the load demanded depends on a large number of devices that are
continuously changing, which makes the accurate modelling the load composition in a
power system very difficult and impractical. Therefore, a simplified load modelling is
commonly used in power system studies.

In general, load modelling in a power system is split up into two categories. One is
the steady-state load (also called static load) model, and the other is the dynamic load
model.

In this Section, the widely used exponential and polynomial static loads are
described. Additionally, the dynamic loads are presented from the viewpoint of load power
restoration, which allows the introduction of the load tap changers. The characteristics and

modelling of the induction motors are also discussed.

2.6.1 Static load models

A static load model represents the load at any instant of time t as an algebraic function of
the bus voltage magnitude and frequency [Kundur, 1994]. Nonetheless, the frequency
dependence of loads is not addressed in this work, which is a common practice in stability

analysis [Van Cutsem and Vournas, 1998].
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The voltage dependency of a load commonly used is the well-known exponential

model, which has the general form

o V)
P =27P [VOJ (2.44)
A
ol V
QL = ZQQ [Wj (245)

where zp and zq are dimensionless demand variables, and P and Q are active and reactive
components of the load when the bus voltage magnitude is V. The superscript O represents
the values of the respective variable at the initial operation condition. The exponents o, and
[ depend on the type of load (motor, heating, lighting, etc.).

When the exponents take integer values such as 2, 1, or 0, the model represents
constant impedance load (often noted Z), constant current load (often noted I) or constant
power load (often noted P), respectively. Thus, an alternative model which has been widely
used to represent the voltage dependency of loads is the polynomial model [IEEE Task
Force, 1993]. This model is commonly referred to as the ZIP model, as it is made up of
three components: constant impedance, constant current and constant power. The active

and reactive characteristic of this model is given by the following quadratic equations:

2
V V
P =2z,P° {ap (_VOJ 0y gt (2.46)

Q=2,Q° [aQ (\\//—OJ +h, \%Jch (2.47)

where the coefficients ap, bp, Cp, ag, bg and cq define the proportion of each component.

These coefficients should satisfy a, +b, +¢, =a, +hb, +¢, =1.
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2.6.2 Load restoration dynamics

After a disturbance occurs in a power system, a deviation of load power is presented, which
causes that various load components and control mechanisms act to restore the load power
at its initial value. This process is known as load restoration and can be captured by the
so-called generic models of self-restoring load [Van Cutsem and Vournas, 1998]. In this
work, the multiplicative model of the generic load models are adopted. It is presented using
an exponential static load model, but it can be applicable to a polynomial or any other type
of static load models.

At any time the power consumed by the multiplicative generic load model is given by
(2.44) and (2.45), which is called the transient load characteristic. While the steady-state

load characteristic is represented by the following algebraic equations:

o[ V)"
P=P (Wj (2.48)
Bs
of V
Q=0Q [V—J (2.49)

where as and fs are the steady-state load exponents. Generally, the transient load
characteristic is more sensitive to voltage than the steady-state load characteristic, so that
the transient load exponents a;, f: have larger values than the steady-state ones os, Ss
[Van Cutsem and Vournas, 1998].

The multiplicative model leads the transient load characteristics towards the
steady-state load characteristics by adjusting the value of zp and zq. Thus, zp and zq are
considered new state variables and their value is opposite to the deviation of load; e.g.,
when the transient load characteristic suffers a drop, the variables zp and zq will start to
increase, and according to (2.44)-(2.45), both active and reactive power loads are forced
towards to go to their steady-state characteristics. The behavior of the state variables zp, zg

is given by the following differential equations:
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dz v )* v )
T 9% _ |V VL 2.50
Podt Lv(’] ZP[VOJ (250)
dz v Bs v B
T, d_tQ = [V_Oj — 7, [V—Oj (2.51)

where Tp and Tq are time constants associated with the active and reactive power load,
respectively.
Before any disturbance, the load power is equal to its steady-state characteristic and,

therefore, the initial condition of the state variables zp and zq are equal to one.

2.6.3 Load tap changer modelling

The basic function of a Load Tap Changer (LTC) is to control the voltage magnitude at a
specified value, despite of variations in the input voltage by changing the transformer ratio
r. For this reason, the LTC indirectly manipulates the process of load restoration when it
restores the voltage magnitude to its reference value; the load power is also restored
because in general depends on the bus voltage magnitude. Normally, the variable tap is on
the high voltage side because on this side the current is lower and there are more turns,
which makes commutation easier and more precise [Van Cutsem and Vournas, 1998].

To illustrate the LTC discrete model, the single-phase transformer is considered in

Figure 2.12 with a constant leakage reactance and a negligible magnetizing branch.

Ve ideal Valr . 4
transformer X,

A

SL =B +jQL

Figure 2.12: Equivalent circuit of a two-winding transformer.
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The LTC raises or decreases the transformer ratio by one tap step, Ar, at discrete

time instants. This process is shown in Figure 2.13.

Measuring Time delay Tap changer  Current
element element mechanism tap

jdr]
o,

i f E trz + %5
Td_)i Tm_)i

Figure 2.13: Block diagram of process operation for LTC.
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The deviation of voltage magnitude 4V is monitored by a measuring element. It

produces an error signal based on the following rules:

0 if —db<AV <+db
e=<+1 if AV >db (2.52)
-1 if AV <-db

where db represents the deadband. The LTC does not act with typical values for North
American (NA), and for European practice are 0.625% and 1-2% voltage tap steps,
respectively [IEEE Task Force, 1995], [Van Cutsem and Vournas, 1998].

The voltage error is the input signal of time delay element which produces an output
according to (2.53)

t,=0 if e=0

t =t +At otherwise

T, =Ty for first tap (2.53)
Ty =Ty for subsequent taps

-1 g>T,,e=-1
b=3+1 if t>T,, e=+1
0 otherwise
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where T4 is the maximum initial time delay; typical values for NA and European practice
are 30-120 and 25-140 seconds, respectively.
Finally, the tap is changed by the tap changer mechanism according to the following
rules:
t,=0 if b=0
t,=t,+h otherwise (2.54)
r.+Ar if t,>T ,b=landr <r™
o= —-Ar if t,>T , b=-landr <r™
I otherwise

where r™ r™" are the upper and lower tap limits, and Ty, is the mechanical time necessary
to perform the tap change. Typical values of the mechanical time for NA and European
practice are 5-10 and 5 seconds, respectively. Besides, typical values of the lower limit are
0.85-0.90 p.u. and the upper limit at 1.10-1.15 p.u. [IEEE Task Force, 1995], [Van Cutsem
and Vournas, 1998].

Once the process discussed above has finished, the admittance matrix of the
transformer associated with the LTC must be updated. The admittance matrix of the

transformer models adopted in this work is developed in Section 2.7.2.

2.6.4 Induction motor modelling

The induction motors are approximately 60% to 70% of the total system load [Kundur,
1994]. Therefore, one needs a model that represents the dynamic characteristics of the
power consumed by the motors in the power system.

A three-phase induction motor carries alternating current in both the stator and rotor
windings. The rotor windings are either internally short-circuited (called squirrel-cage
rotor) or connected through a slip ring to a passive external circuit (called wound rotor).

Figure 2.14 shows the winding arrangement for a 2-pole, 3-phase (v, , V,, V), sSymmetrical
induction motor. The stator and rotor windings are identical sinusoidally distributed
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winding, displaced 120°, respectively. This representation can be employed for both the

squirrel-cage rotor and the wound rotor.

3

Rotor

Figure 2.14: Schematic diagram of the induction machine.

Stator or Armature

The stator and rotor equations in terms of d, q variables are obtained applying the

fundamental Kirchhoff’s and Faraday’s laws as well as the Park transformation [Krause et

al., 2002], [Kundur, 1994]:

with the flux-current relations [Lesieutre et al., 1995],

(2.55)

(2.56)
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1 X +X X M
V/ds _ S m m ds (257)
l//dr_ L Xm Xr+Xm_ Idr

X +X X M.
N AL AL e (2.58)
lr//qr_ L Xm Xr+Xm__|qf

where o, is the actual rotor speed, and w. represents the speed of a rotating reference
frame. X and X; are the stator and rotor leakage reactances, whereas X, is the magnetizing

reactance. R; is the stator resistance, V,,and V,, are the d and q stator voltage, I,,and I,

are the d and g stator currents, v, and y are the d and g stator flux linkage and similarly

for the rotor circuit.
Based on the dynamics of interest in the present work, the motor model relies on the

following assumptions:

e The transformer voltages are neglected (v, =y, =0).
e The reference frame is rotating at synchronous speed, (@, = @) .
e The rotor is assumed to be a squirrel-cage, (V,, =V,, =0).

e Magnetic saturation is neglected.

Hence, an induction motor model of order Il is obtained through some algebraic

manipulations of (2.55)-(2.58), taking into account the assumptions of Appendix C

M, M, +M,(1-o,) -M, M,
d {eﬂ: T, T, {eé}r T, T Vc9s(<9) (2.59)
dt e || -M,+M,(1-a,) M, &) | M, M, |[Vsin(0)
T, T, T, T
do 1
L=——(T, -T 2.60
dt 2Hm(e ") (2.60)
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with

T, =—M.e,V cos &+ MgV sin @ —MelV cos(0) —MeV sin g

2 e (2.61)
M ()" +(e)'|
T =Ty +T0, +T,0; (2.62)
P.=MeV cos-¢9+ Mﬁegvzsin 0 —Mge,V cosd (263)
+MgeVsingd-MV
Q. =—Mge,V cosd+MgeyV sind—MgeV cosd
(2.64)

—~MeVsind+MyV?

where M, are constants associated to the motor reactances, and T is the transient
open-circuit time constants; V and ¢ are the magnitude and phase terminal voltage; €; and

ey are the e.m.f. behind transient reactance; Hn is the moment of inertia, T and Ty, are the

electromagnetic and the mechanical load torque, respectively; To, T; and T, are constants
whose values are calculated as discussed in the next Section; P, and Q.n represent the
active and reactive power consumed by the induction motor. Lastly, the rotor angular
speed, wy, is in p.u. of the base value of wy.

2.6.4.1 Initial condition for the induction motor

The initial condition of the state variables for the induction motor model is similar to that of
a synchronous machine described in Section 2.3.1. Once the power flow study is carried
out, the initial condition is then computed by solving the steady-state induction motor
model, as detailed hereafter.

The induction motor can be represented by the well-known steady-state equivalent
circuit of Figure 2.15 [Van Cutsem and Vournas, 1998], [Ruiz-Vega et al., 2002], [Ruiz et
al., 1999].

36



The motor slip is defined as

s=1-w (2.65)
where wy Is given in per unit.
R, X, X,
* T —
I, =1Ie" I
V,=ve" X, R
S

Figure 2.15: Equivalent circuit for steady-state operation of induction motor.

The equivalent impedance Z, =R, + JX, added to the stator impedance depends on s

and is given by

iR, |
Z,=R +jX, = S

R , (2.66)
?f+ (X, +X,)

and the stator current can be obtained as
. v,
°(R+R)+ (X +X,)

(2.67)

Using (2.67) and Figure 2.15, the active and reactive power absorbed by the induction
motor at the steady-state are given by
(R +R,)(V)

_ i . (2.68)
(Ry+R,) +(X,+X,)

Lm
s
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(Xo+%,)(VO)

i . (2.69)
(R+R.) +(X,+X,)

Qun =

S

As the active power at steady-state is considered independent of voltage variations,

(2.68) can be rewritten by the following quadratic expressions [Ruiz-Vega et al., 2002]:

A(&jz + B(&J+C =0 (2.70)

S S
with

A=P, (RE+X2)-(V*)'R, 2.71)

B =2P,, (RK, +R.X X, )~ (V°) (Ky + XX, 2.72)

C=PR, (K2 +R2X2)~(V°) RX2 (2.73)

K, =X2=X/X,, (2.74)

K, =X, +X_ (2.75)

K. =X +X_ (2.76)

Pn=f,xP’ (2.77)

where f, is a constant that defines the portion of the total active load power (PL°) consumed

by the induction motor.

The initialization process is then normally carried out as follows:

e Equation (2.70) is solved, and two values of R,/s are obtained. The larger value

(represented by Xoot) IS Selected because it is in the stable region of the active

power-slip curve of the motor [Ruiz-Vega et al., 2002].

¢ The initial value of the motor slip is given by
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s=—T (2.78)

¢ The rotor speed is computed from (2.65)

@ =1-s. (2.79)

r

e The actual induction motor reactive power Q. is given by (2.69). However, a
difference between Q. and the initial reactive power (a portion of the total reactive

load Q. at bus) is presented. Hence, a compensation Q. must be placed at the bus

where the motor is connected, which is given by

Q. =Qun— foxQ (2.80)

where fq is a constant that represents the portion of the total reactive load power QE

consumed by the induction motor.

e Since the derivatives are zero, the state variables are given by

M, M, +M,(1-0,) ] T-M, M,
&l T, T, T, T, ||Vcos(6) (2.81)
&) | M, M, (1-0) M, M, M, ([Vsin(6)]
T, T, T, T

¢ The electromagnetic torque is computed by (2.61).
¢ The initial mechanical load torque is equal to T, in steady-state, while the constant

associated with (2.62) is computed by

T
T, = = 5 (2.82)
1+C o, +C 0
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where Cr; and Cr, are the linear and quadratic mechanical torque coefficients,
respectively. The value of these coefficients are given by the characteristic of the

induction motor

T, T.
Cleﬁ and CTZ:ﬁ. (2.83)

Therefore the constants T, and T, are obtained from (2.83)

T,=T,C, and T,=T,C,,. (2.84)

2.7 Network modelling

The network response is commonly considered instantaneous in power system stability
analysis [Van Cutsem y Vournas 1998]. Thus, the network model can be represented by a
set of algebraic equations that describes the power flow balance at all buses of the system at
any time. Hence, the network model is given by the following constrains [Acha et al.,
2004]:

AI:).=F)gs?ls_|:)inji_|:)u:O i=1---,n (2.85)
AQi:Q;yis_Qinji_QLizo i=1--n (2.86)
with
Psys _ Sgen P

gi S gi (287)

sys

sys Sgen
Qgi = S Qgi (288)

sys

where n is the number of buses in the system. P,; and Q,; are the active and reactive

electric output power of the generator (see Section 2.3), respectively. Sgs and Sgen are the

system and generator nominal power, respectively. P, and Q,, are the active and reactive
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power demanded by the load (see Section 2.6), respectively. P.. and Q... are the active

inji inji

and reactive power flows injected at the i-th bus through the transmission elements and are
computed from [Acha et al., 2004]:

R, =V7G, +V, Zn:vj (G cos(6,—6,)+B;sin(6,-6;)) (2.89)
Q, =-V’B, +VZV (Gysin(6,-6,)-B; cos(6-6,)) (2.90)

=

where Gj; and Bj; are the equivalent conductance and susceptance of the transmission
element (lines, transformer, etc.) connected between nodes i and j, respectively. Their

values for several transmission elements are given in the following Sections.

2.7.1 Transmission line

The transmission line is represented by a pi-equivalent circuit with a series Y; and a shunt
7”?“ admittance, as shown in Figure 2.16. This transmission line representation is
symmetric: y; =y, and yIJ —yJI :

By applying Kirchhoff’s current law at buses i and j, the injected complex currents at

buses may be expressed as follows:

T =7, (V7)) 52, (291)

U= (Vi -V + 77V, (2.92)
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~ ,l Tm

Figure 2.16: Pi-equivalent of transmission line.

The above equations can be written in a matrix form as

l; Vi VitV LY

or simply
i Vi YillVi
where
Y_li =Y +7i5h _Gii + jBii
Yy ==Y, =Gy + i,

2.7.2 Transformer

(2.93)

(2.94)

(2.95)
(2.96)
(2.97)

(2.98)

The conventional transformer (implemented in this work) was modelled with complex taps

on both primary and secondary windings. Its magnetizing branch is also considered in the
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model to account for the core losses. The schematic equivalent circuit of the transformer

model is shown in Figure 2.17 [Fuerte-Esquivel, 1997].

Vp
Zp ¢tv " , (I)uv Zs Vs
14 v, r; Vo r, v, I, l
ip s
OO
I
Tv:1 0 1:Uv
1:Ui
[0} Bo

Ti:1
G

Figure 2.17: Equivalent circuit of a two-winding transformer.

The primary winding is represented as an ideal transformer having complex tap ratios
T,:1 and T, :1 in series with the impedance Z, where T, =T, =T,Zd, . The * denotes the
conjugate operation. The secondary winding is also represented as an ideal transformer
having complex tap ratios U, :1 and U, :1 in series with the impedance Zs where
U,=U =U 24, .

The transfer admittance matrix relating the primary voltage V, and current I, to the
secondary voltage Vs and current Is in the two-winding transformer is determined by

considering the current I, across the impedances Z, and the current I, across the impedance
Zs [Fuerte-Esquivel, 1997]

| 1 uz+zy, -Tu; |[[V
p|_ v s vy P, (2.99)
I, | TPZ,+U2Z, +Z.2Y,| -TU, T +Z)Y, |V

S

where
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Yo :Go"' jBo

Equation (2.99) can be expressed as

Ip _ Gpp GDS n . Bpp BPS Vp
Is Gsp Gss J Bsp Bss Vs

where
F1(U? +R1) + F2R2
Gpp = A2
FIR2-F2(U? +R1)
By, = A2
c _ FUT/+R3)+F2R4
ss A2
g _ FIR4—F2(T}+R3)
ss A2
~TU, (Ficos(¢1)+F2sin(g1))
B = A2
TU, (F2cos (41)—Fisin(41))
o = A2
_ —TU, (Flcos(¢42)+F2sin(42))
P A2
TU, (F2cos(¢2) - Flsin(¢2))
P A2

FL=TR, +UZR +R,,
2 2
F2=T X, +UZX, + X,
A2 =F12 +F2?

:(RpRs - prs)Go —(Rst * RSXF’)B"

eql

(2.100)

(2.101)

(2.102)

(2.103)

(2.104)

(2.105)

(2.106)

(2.107)

(2.108)

(2.109)

(2.110)
(2.111)

(2.112)
(2.113)
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Xeq = (RyRy = X, X ) B, +(R, X, + R, X, )G, (2.114)

R1=RG, - X,B, (2.115)
R2=RB, +X.G, (2.116)
R3=R,G, - X,B, (2.117)
R4=R,B, +X,G, (2.118)
A=¢, 4, (2.119)
92= 4,4, (2.120)

By changing the subscript (p=i and s=j), the active and reactive power injection

equations of a two-winding transformer are equal to (2.89) and (2.90), respectively.

2.7.3 Bus types

The active and reactive power balance at each bus is given by (2.85)-(2.86), where both the
generated and consumed power are computed according to the power system models
presented in the previous Section, while the power flow injected at each bus only depends
on the network variables (V;, ;). Therefore, the power balance equations are consistent, and
a unique solution can be found. Nevertheless, a bus classification is implemented according

to the element embedded at bus and the reference frame used to perform the simulation.

e Load bus: no generator is connected to the bus, hence the active and reactive powers

injected at bus are zero (P

i =Q, = 0). Furthermore, the active and reactive power

drawn by the load P,; and Q, ; are known as explained in Section 2.6.
e Generator bus: a generator is connected to the bus, and the active P ; and reactive
Q,i power are computed with the generator model detailed in Section 2.3.

Moreover, if there is a load embedded at the bus, the active and reactive power
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demanded are computed as explained in Section 2.6; otherwise they are zero
(Pi=Q. =0).

¢ Infinite bus: one can represent a remote system by setting V; and 6; in a specified
value. There is only one infinite bus in the power system, and it is not considered in
the network’s solution. Therefore, the number of network equations is 2(n-1) if
there is an infinite bus.

e Fault bus: if a short-circuit or fault disturbance is applied at bus, the magnitude and

angle voltage are then set to zero (vi =0, = o) . Furthermore, this bus is considered

an infinite bus during the time of perturbation because the nodal voltage is known.

2.8  Full-time scale reference frame

In a power system composed of m synchronous machines, it is convenient for analysis

purposes referring the rotor position 6, of each machine (see Figure 2.1) to a common

frame of reference. Normally, the synchronous speed is used as a frame of reference, and
the rotor position is expressed as [Van Cutsem and Vournas, 1998]

0. =at+6° (2.121)

where i=1,2,---,m and & is the value of §, at t=0.

The rotor angle ¢ of each machine is then defined as the electrical angle between the
machine quadrature axis and a synchronous rotating reference (see Figure 2.18) [Van
Cutsem and Vournas, 1998]:

0, =0,

1 r

i—(a)ot+C). (2.122)
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synchronous reference

Figure 2.18: Phasor diagram of the stator variables of the i-th machine.
Since C is an arbitrary constant, the time derivative of rotor angle is given by (2.9),
which is reproduced here:
do,
— = —-a,. 2.123
dt I 0 ( )
FTS simulation (with the synchronous reference frame) is carried out for a

disturbance that affects the power balance in the system. After a period of time, the system

settles at a new equilibrium point (assuming a short-term and long-term stability) with the

phase angles referring at a new angular frequency. Therefore, the o, variable linearly

.
increases with time although the new equilibrium point is stable. This nonlinear behavior
consumes unnecessary computational effort [Fabozzi and Van Cutsem, 2011].

The above difficulty can be solved by a change of the rotating reference frame. In
transient stability analysis the Center-of-Inertia (COIl) reference frame is commonly used

[Sauer and Pai, 1998]. The COI angle and its time derivative are defined, respectively, as

1 m
Oor =—— > MG +K (2.124)
MT i=1
1 m
Oco) = M zMia)l (2.125)
T i=1
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where My is the total inertia, M, =2H, /e, and K is an arbitrary constant. The rotor angle

and its time derivative of the i-th generator are then given by [Fabozzi and Van Cutsem,
2011]:

6, =6 — Oy (2.126)
do.
d_tl =0 — g - (2.127)

Therefore, (2.9) is replaced by (2.127) at the wco, rotating frame. Thus, (2.125) is
added to the set of algebraic equations (2.2).

2.9 Full-time scale solution

Full-time scale dynamic studies consist of solving the DAE’s mathematical model

described by (2.1)-(2.3) during an interval of time telt,t,,]. This can be achieved using

either a Simultaneous Implicit (SI) or a Partitioned Explicit (PE) method [Van Cutsem and
Vournas, 1998].

The SI method can handle stiff equations with no numerical problems and is more
stable than the PE method [Sauer and Pai, 1998]. The SI method is widely used on
commercial programs, where the DAE’s system is solved in a unified frame work. In order
to achieve this, the differential set (2.1) is transformed (algebraized) into a set of difference
equations by using either the implicit Backward Euler (BE) method or the implicit
Trapezoidal Rule (TR). The resulting equations are then added to the set of network
algebraic equations (2.2), and both nonlinear algebraic sets are solved in a unified reference
frame by using the Newton’s method.

The SI method is used in the present work for the above-mentioned advantages.
While both the BE and TR integration methods are adopted to solve the FTS model
considering the structure preserving model of the power system, as explained in the

following Sections.
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2.9.1 Discretization of the differential equations

Numerical integration consists of discretizing the differential equation (2.1) by the
following algebraized relationship [Van Cutsem and VVournas, 1998]:

Xk+l:Xk+h(ﬂ0fk+1+ﬂlfk) (2.128)

where f; is a constant whose value depends on the integration method (see Table 2.1), and h
is the integration time step (h =t“" —t*). The superscript k is an index for the time instant
t at which variables and functions are evaluated: x“=x(t,) and f*=f(x*,y*). The
dynamic state variables compose the vector x, while the vector y is composed of algebraic

variables.

Equation (2.128) can be rewritten as

Xk+1_Xk_h(ﬁofk+l+ﬁlfk):0. (2129)
Table 2.1: Fixed-step integration methods
Integration method Formula
Backward Euler XT=x"+hf"" B =14=0

h
Trapezoidal Rule | X“* =x" +§( ftef) B =p=05

2.9.2 Application of Newton-Raphson method to the FTS model

The set of algebraized equations (2.129) is added to the set of network algebraic equations

(2.2). Thus, the set of DAES are expressed as a set of algebraic-difference equations

Fl('):Xk”—Xk—h(ﬂofk”wLﬂlfk):O (2.130)

F()=g""=0. (2.131)
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Both nonlinear algebraic sets (2.130) and (2.131) can be solved in a unified reference
frame by using Newton’s method to linearize with respect to X" and y*** such that at the

i-th iteration the following linear system is solved:

I —hz, ka+l —hg, fykﬂ}i {Axk ] :_|: R ()] (2.132)

g)l:+l g§+l Ayk

where J is called the Jacobian matrix, and its submatrices are the partial derivative of

F, i=12, with respect to x“** and y**

o _ 6f k+1 f - _ af k+1
X an+l y 8yk+l
w  OF, w OF,

f

(2.133)

gX 6Xk+l gy ayk+l

For given values [x* y"T, the method starts from an initial guess

[xgt=x ygt= yk]T and updates the solution at each iteration i by (2.134), until a

convergence criterion is satisfied. The process is repeated until t“* >t_,

ket T kTl K
X X AX
[} { H } (2.134)
y y Ay
For a power system composed by n buses (without infinite bus), m synchronous
machines, e exciters, f feedback components, ps power system stabilizer, o OvereXcitation
limiters, r governor-turbines, d load restoration dynamics and a induction motors, the FTS

model at the synchronous rotating frame then has the following vectors of algebraic and

state variables:
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y= [[91"'6” ]T] (2.135)

[Vl"'Vn]

I:Ec;l’lﬂldl’Ec,il'Wqu’é‘l’a)l E(;m’l//ldm’Eém’Wqu’§m7wm:|T
I:Efdl Efde]T
[Dl Df]T

(W, PV, W PV |

X = - . (2.136)
[th’XOXLl"“'XIO’XOXLO:I

T
[Pevp Pep1r Per Fler s Py oo Pp s PLPr:I
T
[ZPUZQI’“"ZPI’ZQI]

!

T
!
I:eql'edl’a)rl"”’eqas’ed as’a)ras]

On the other hand, the algebraic vector is increased if the wco, rotating frame is used:

[91...gn]T
y={[VV,T | (2.137)

Wco)

2.10 Conclusions

This Chapter has presented the mathematical models of the power system components to be
considered in this work. All models are developed (with the minimum of variables) based
on the power-flow formulation.

Differential equations of the models have been algebraically represented using the BE
or TR integration method. A set of nonlinear equations for the network elements and the
generating plant components (e.g. generator, AVR, AGC, etc.) have been assembled in a
unified frame of reference to study the dynamic behavior of large-scale power systems at

the synchronous or wco) rotating frame.
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Chapter 3

QUASI STEADY-STATE
APPROXIMATION

3.1 Introduction

Despite that power system stability analysis using FTS simulation accomplishes results
very close to the actual behavior of the power system during short-term (several seconds)
and long-term (from minutes to hours) time frame, executing a FTS simulation is
impractical when the long-term is the period of interest because the detailed models of
electric power system components involve a very high computational effort due to the fast
dynamic phenomena existing in the short-term. Therefore, a reduced model of the power
system is more desirable, since it performs the long-term dynamic simulations more
efficiently from a computational effort viewpoint.

The wide range of time scales inherent to the dynamics of a power system makes
using the Quasi Steady-State (QSS) approximation possible to obtain reduced order models
relevant to a particular time scale with the objective of simulating those reduced models
much more efficiently. Herewith, the long-term dynamic simulation can be carried out
using large time steps during numerical integration to capture slow transients.

In the present Chapter, the QSS models of the fundamental elements (shown in the
previous Chapter) of the power system are exposed. The dynamic state variables are split
up into fast and slow variables. Thus, the differential equations associated with fast
variables are replaced by their equilibrium equations, and the resulting algebraic equations
are added to the network equations. The new set of differential and algebraic equations
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(DAEs) is then transformed to algebraic equations (AEs) using the TR or the BE
integration method. Finally, the Newton-Raphson algorithm is used to solve the algebraized

sets of equations in a single frame of reference.

3.2 Quasi steady-state formulation

Opposite to the approaches where the original set of DAEs is handled throughout the whole
simulation, the QSS approximation of the long-term dynamics handles a reduced and
simplified set of equations. The latter is obtained by considering a time scale
decomposition of the dynamic state variables into fast and slow time-varying variables,
respectively and by assuming that the former set of variables changes instantaneously with
respect to variations of slow-state variables, replacing the corresponding differential
equations by their equilibrium conditions. The set of differential equations (2.1) can then be
decomposed according to the time scales of the state dynamics. In particular, in a two-time
scale system, the simplified model can be expressed as [Van Cutsem and Mailhot, 1997]

Xsd = fsd (Xsd ' de ! y’ Z) fsd : mn3d+m+p - mnSd (31)
0=fy(XyrXegr¥2) fg i R™P 5 RM™ (3.2)
0= 09X Xgg, ¥, 2) g RMTTP 5 g (3.3)

2(6) = (X Xgg, V. 2(5)) R0 s g -

XgeX CR™ X, eX cR™ telt,t,] '
where Xsg IS a ngg-dimensional vector with predominantly slow dynamics and initial
conditions X (t,) =X5,, while xi is a ng-dimensional vector of states that have fast
dynamics superimposed on slow varying quasi steady-state responses with initial

conditions X, (t,) = X5, .

53



In the following Sections the mathematical FTS models presented in Chapter 2 are
transformed into QSS models. Note that according to the QSS formulation only the
components represented by differential equations may be transformed while those
represented by algebraic equations are kept without changes. The appropriate procedure to
solve the equations associated with the simplified model, (3.1)-(3.4), is also developed.

3.3 Generator QSS modelling

In practically all well-designed two-axis single synchronous machine (presented in Section

2.3), the subtransient T

-+ T4 and transient T open-circuit time constants are quite small

as shown in Table 3.1 [Kundur, 1994].

Table 3.1: Typical values of synchronous machine time constants

Open-circuit time | Salient-point machine | Round-rotor machine
constant (Hydraulic plant) (Thermal plant)
Tho 15-9s 3-10s
T |  —=———- 05-2s
Too 0.01-0.05s 0.02-0.05s
Teo 0.01-0.09s 0.02-0.05s

Since the time constants associated with the damper winding at the d- and g-axis

typically are small values (see Table 3.1), their corresponding flux linkages (v, , ¥,,) and
the voltage magnitude behind transient d-axis reactance ( E;) can be considered fast-state
variables. The voltage E; is then treated as a slow state variable. Therefore, the QSS

generator model can be found by splitting (2.8) as

dE; _ KiEq+Kopyy + KV cos(5—-0)+E

3.5
dt Ta (3.5)
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0] [K, K, 0 0 1K, O
Wiy V cos(5-0)

0[=[0 0 K, K,||'|+[0 K. " . (3.6)
E; Vsin(6-6)

0 0 0 K, K; 0 K,
l//Zq

Since the electromechanical oscillation is slower than the electrical dynamics, the
rotor angle and the rotor speed can be assumed to be slow-state variables. Hence, the swing

equation is
do
E:C{)—a)o (37)
do o
w T zn (PR Plema) =

where the active and reactive power generated by the synchronous machine are only

expressed in terms of the fast- and slow-state variables:

P, = K EQV cos(86 - 0)+ K,V cos(5 - 6)+ K EV sin(5-0)

) ) (3.9)
+KygyyV sin (8- 0)+ K,V ?sin(2(5-6))

Q, =—K3EgVsin(6-0)—- K,V sin(5-0)+KE\V cos(5-6)
: 3.10

+ Ky V €08(8-0) -V Ky 0s(6 - 0)° + Kygsin (8- 6)°) (310
Finally, the initial condition of all state variables (E;, Ej, v, ¥, 0, @) and the

fixed input (E,,, P,) are computed as detailed in Section 2.3.1.

3.4  Automatic voltage regulator QSS modelling

As mentioned in Section 2.4, the AVR control loop is composed of several devices acting

at two-time scale. The feedback compensation and OvereXcitation limiter are considered
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slow components, because their dynamic behavior is dominant during the slow transients
[Van Cutsem and Vournas, 1998], [Kundur, 1994]. On the other hand, the exciter and the
PSS are viewed as fast devices [Xu et al., 1998]. Therefore, the QSS models of the slow
devices are those given for the FTS model, while the QSS models of the fast devices are

developed in the following Sections.

3.4.1 Exciter QSS modelling

The electric field exciter control is generally fast, with a small time constant (0.01 — 0.05
seconds) in order to respond immediately when the terminal voltage is perturbed; this small
time constant is one reason to use small integration time steps in FTS simulations. The QSS

exciter model can then be represented by its steady-state response as shown in Figure 3.1.

Efd (max)
v, /
T+ E,
|4 G, mm—m——»
Efd (min)

Figure 3.1: Block diagram of exciter steady-state.

From the block diagram of the model, the equilibrium equation of the exciter can be
expressed as
0=G (Vv

_V)_ Ew Eu (min) SEy < Efd( (3-11)

ref max)

where the voltage reference and the initial condition are calculated as in Section 2.4.1.
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3.4.2 Power system stabilizer QSS modelling

Based on the time constants associated with the PSS, its dynamic can be split up into
two-time scales. The phase-lead network has a fast response because of its small time

constants T; and T4, while the washout block acts slowly because its time constant is long

enough (1<T,6<20) to pass signals associated with oscillations at the frequency of

unchanged interest [Xu et al., 1998], [Kundur, 1994].
Based on the mentioned above, the differential equations of the fast blocks can be

replaced by their equilibrium equations, as shown in Figure 3.2.
Lead
Phase ‘|T3| Votnr

Washout |£| ¢ ¥ Vv T
) P T4 s(min)

+

A 4
~
|

<

Figure 3.2: Block diagram of simplified model of PSS.

Thus, the QSS model of PSS is obtained from the block diagram as

T, W _ KsAw—W' (3.12)

dt
0=c (KsAo-W")~P' (3.13)
0=c,(K,Aw-W')—c,P' -V’ (3.14)

The compensation (Vs) of the PSS that is incorporated in the exciter is still given by

(2.29), which is reproduced here:
V, =c,(K,Awo—-W')+c,P'+V’ (3.15)

where all gain ¢, and the initial value of all variables are given in Section 2.4.3.
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3.5 Speed governor and turbine QSS modelling

The AGC operation is more important in long-term simulations than in short-term
simulations. However, some time constants of the governor and turbine may be relatively
fast (see Table 3.2), and replacing the differential equations associated with these fast
control elements by algebraic equations may be possible to produce a reduced order model
for long-term simulations [IEEE Committee Report, 1973].

Table 3.2: Typical time constants of governor and turbine

Control device | Time constants | Typical value
Speed governor Tev 0.1-03s
Tch 0.1-04s
Turbine TrH 4-11s
Tco 03-05s

According to the typical time constants given in Table 3.2, the states associated with
valve position (Pgy), as well as high (Pyp) and low (P.p) pressure turbines, could be taken
as relatively fast variables. The QSS model of speed governor and turbine is then obtained
by transforming their differential equations into algebraic equations as follows:

0= Pref _i(a);)—w())_ PGV 0< Pev < Pev (max) (3-16)
0

0=P,, —P, (3.17)

0=P,-P,. (3.18)

The intermediate (P\p) pressure turbine is considered slow state variable, and its

dynamic is given by

dPIP — PHP — PIP .
dt Tan

(3.19)
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All state variables are initialized with the value of Pgt, which is given by (2.39) in
Section 2.5. Moreover, the QSS model of these controls can be represented by the block
diagram shown in Figure 3.3. Note that the mechanical power injected to the generator Py,

is still represented by (2.43).

AN + %
A (> >
200 1 | + +
w,R
FHP FH’ ‘FLP
P GV(max)
v 1
+ Py B, g 1+ 5T, ru| Pp P,
PGV(min)

Figure 3.3: QSS model of the speed governor and steam turbine.

3.6 Load QSS modelling

The dynamic loads can be split up into two-time scales by examining the time constants
associated with each differential equation. The response of a self-restoring load (see
Section 2.6.2) is relatively slow due to its large active (Tp) and reactive (Tg) time constants,
such that its generic model is still given by (2.50)-(2.51), and its transient response has
more effect during the long-term dynamics.

On the other hand, the induction motor rotor transients (see Section 2.6.4) are faster

than the electromechanical transients associated with synchronous machines. Hence, the

QSS model of the induction motor can be obtained by neglecting the rotor dynamics (T, is

very small):

R i o P M|
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The rotor motion is still given by (2.60), which is repeated here for the sake of
completeness:
do 1

dtr :F(Te _Tm) (321)

where the T, and Ty, are represented by (2.61) and (2.62), respectively. The active and
reactive power consumed by the QSS model of the induction motor are also given by (2.63)
and (2.64), respectively. Finally, this model is initialized based on the same process
described for the FTS model in Section 2.6.4.1.

3.7 QSS reference frame

A reference bus axis rotating at a synchronous speed is also adopted as a frame of reference
to express the machine rotor dynamic in the QSS simulation. These equations are given by

(3.22)-(3.23) so that each generator conserves its own rotating speed:

do,

G#ZQ_% (3.22)
do o
t =2|:(Pmi_P9i_Di(a)i_")0))' (3.23)

On the other hand, the limitation of the synchronous rotating reference (described in

Section 2.8) is also avoided by changing to a @, rotating reference in the QSS simulation

as [Fabozzi and Van Cutsem, 2011]:

do,

—dt' =@, — Wpg, (324)
do. o
5 =2 (PP~ Di(@— ) (3.25)
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where (3.22) is replaced by (3.24) at the wco, rotating frame. Thus, (2.125) is added to the

set of algebraic equations (3.3).

Nevertheless, the QSS approximation is mainly used in long-term stability studies

where the dynamics of interest consists of synchronous machine rotor oscillations with a
large period of the order of 25 s [Van Cutsem et al., 2006], [Grenier et al., 2005], such that

perfect coherency between all synchronous machines can be assumed for QSS simulation.

Note that this assumption requires neglecting the oscillations between machines, which is

valid only for long-term studies [Van Cutsem et al., 2006], [Grenier et al., 2005].

Under this assumptions and using wco as the rotating reference, the system can be

represented by the block diagram of Figure 3.4 [Van Cutsem et al., 2006], [Grenier et al.,

2005)].

lPsetI

Governor

A 4

PGVI

l Psetm

Governor

A 4

P GVm

A 4

Turbine

Turbine

P

gm

Generator 1

gl

Generator m

1

M,s

A 4

Figure 3.4: Common frequency model of the system.

o cor

Since all generators are rotating at «.,, the swing equation of the i-th generator

takes the following form:
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0= — g, (3.26)

M ==L =P _P . j=1..m 3.27
i dt mi gi ( )

where (3.27) is obtained by substituting (3.26) into (3.25). Note that the mechanical
damping D cannot be considered under this common frequency reference frame.

A common differential equation of a., for all generators is obtained by summing

(3.27) over all them [Van Cutsem et al., 2006], [Grenier et al., 2005)]

m m

2M dwco' ZPmi —ipgi (3.28)

i=1 i=

or

darg,

=y (3.29)

and » represents the total imbalance of mechanical and electrical

where M; ZM

i=1
powers given by

1= R~ R, (330
i=1 i=1

Another limitation lies in that the rotor angle cannot be determined using (3.26)
because this equation has to be removed from the generator model. In order to solve this
problem, (3.27) and (3.29) are combined to obtain

P =P ——Lp (3.31)

where P,; is given by (3.9) which involves the rotor angle ;. Based on (3.9) the active

power can be expressed as
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K:EqV cos (8 —0)+ K,V cos(5—0)+ K EV sin(5-0)
. 3.32
* KigigV Sin(5_0)+K17V23in(2(5_9)):Pmi_%ﬂ (3.32)

T

Therefore, (3.26) is replaced by (3.32) and 7 is established as a new algebraic

variable common to all generators; however, finding a unique solution is not possible
because there are more variables than equations. This difficulty is solved by defining a new
type of bus (called a reference bus), where the voltage phase angle should be kept as

constant at y, and the common algebraic variable 7 takes the place of 6 [Van Cutsem et

al., 2006], [Grenier et al., 2005]. Furthermore, the reference bus should have a connected
generator.

Finally, another difference between the individual rotor speed and the common
frequency reference frame appears when the network equations are solved. At this point,

the active power F,; injected by the i-th generator is given by (3.9) for the individual rotor

speed reference frame and by (3.31) for the common frequency reference frame. The rest of
the formulation presented in Section 2.7 continues without changes for both reference

frames.

3.8 QSS solution

The QSS simulation consists of solving the power system reduced model represented by
(3.1)-(3.4) for a specified period of time. To this purpose, the set of differential equations
associated with the slow variables is algebraized by using one of the well-known
integration formulas. In this work, the BE or the TR (as in FTS simulation) is used to
transform (3.1) into the difference equation

Xt =xly +h(B 5™ + B 1) (3.33)
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where constant £; is given in Table 2.1, and its value depends on the integration formula, h

k+1

is the integration time step (h=t*"—t*) and the superscript k is an index for the time

instant t, at which variables and functions are evaluated: Xy =X (t,) and
f = f (X, %}y, y*). The slow-state variables compose the vector xs, while the vectors

Xsg and y represent the algebraic variables. The resultant set of difference equations is added
to the set of algebraic equations (3.2)-(3.3), and all nonlinear algebraic equations are solved

in an integrated way by using the Newton’s method.
3.8.1 Application of Newton-Raphson method to the QSS model

The set of DAEs is easily rewritten as a set of algebraic-difference equations:

RO = x5 =X —h(B e + A 5)=0 (3.34)
F,()=fu =0 (3.35)
F()=9""=0 (3.36)

The above nonlinear algebraic equations (3.34)-(3.36) are solved by using the

Newton’s method to linearize with respect to x5, x* and y**, such that the linear

system (3.37) is solved at the i-th iteration:

| -hp, A" -hp B —hpC i Axg, | Fl(') |
Dk+1 Ek+1 Fk+l Axi;d —_ F2 () (337)
Lk+l M k+1 N k+1 Ayk F3 ()

J

where J is called the Jacobian matrix, and its submatrices are given by
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k+l _ afs—l;—l k+l _ afsl((j+1 K+l _ 6f52+1
oxE oxkrt oy«
e - S (,fy'fil - (3.38)
Xsg Xid
Lk+1 — aFS kil _ aFS N kel _ a|:3
6Xk+l anJrl 6yk+l
sd fd

... R T
The method starts from an initial guess point [ X" =x%  x'=x}, y**=y°] and

updates the solution at each iteration i by

k1] k' k

sd Xsd AXsd

k+1 k k

fd - de + Ade (339)

where the correct solution is obtained until a convergence criterion is satisfied. This process

is repeated until t**' >t

— end *
Lastly, assuming that a power system is composed by n buses (without an infinite
bus), m synchronous machines, e exciters, f feedback components, ps power system
stabilizer, o OvereXcitation limiters, r governor-turbines, d load restoration dynamics and a

induction motors, the QSS model at the synchronous rotating frame has the following
variables vectors:

(3.40)
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' ' U
[l/lldl’ Edl'l/Iqu"“’Wldm’ Ed m’Wqu}

I:Efdli'”’ Efde:IT
Xy = A A (3.41)

T
I:PGVl’ P Fen Fove B PLPJ

T
! ! ! ’
[eql’edl’“"eqas’edas]

[Ec;1'51'w11"” émlé‘m’a)m]T

[Dl,n-,Df]T
[Wl',...,wp's]T

Xt = [th’XOXLl""’Xto’XOXLo:IT : (3.42)
[Plplr'wp.pr]T

T
I:ZPI’ZQl"“’ZPUZQI}

T
I:a)rll'“’a)ras:l

On the other hand, the network algebraic vector is increased if the wco rotating frame
is used:

y=|[M-v, ] | (3.43)

Lastly, the dynamic and algebraic vectors take the following form when a perfect

coherency between all generators and the ., rotating frame are considered:
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[6,- gnfl]T
y= " (3.44)
[Vl -V ]T

! ! T
I:l/lldl’ i1 Vaqu O Wi Edm’l//qu15m:|

[Efdl"“'EfdeJT

)
Xig = [PV PV, (3.45)

T
[PGVI’PHPl’ Pew - Fovrs PHPr'PLPr}
T

! ! ’ !
I:eql’edl"“’eqas’edas:l

T

! !
[qu'...' qm]

[Dl"”’Df ]T

[ng W ]T

I:tha Xoxt1r™* "1 Ko XOXLO]T (3.46)
[lei"'!RPr]T

T
[ZPl’ZQl"“’ZPUZQI:I

T
[a)rl""’a)ras]

Do

Xsd =

where the n-th bus is assumed to be a reference bus, which implies that ¢, is constant. The
rotor angle ¢ is included in the x¢ vector and a global variable wco) is added to Xg. In this

case, the rotor speed of each generator is given by

O, = W i=1.--m. (3.47)
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3.9 Conclusions

This Chapter has presented the mathematical formulation of the Quasi Steady-State
approximation taking into account the rotor speed as dynamic variable. To this purpose two
approaches were reported: i) Each generator conserves its own rotating speed by
considering ether the synchronous speed or the wco Speed as rotating reference; ii) In the
second approach, a perfect coherency is considered in all generators by neglecting the
oscillations between them, and the wco, Speed is used as the frame of reference.

Moreover, the set of DAES that represents the QSS approximation is transformed into
a set of algebraic-difference equations by using the BE or TR integration method. Lastly,
the resulting set of algebraized equations is solved with the Newton-Raphson method to

study the long-term dynamic stability of large-scale power systems.
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Chapter 4

COMBINING SHORT- AND LONG-TERM
MODELLING AND SIMULATION

4.1 Introduction

In this Chapter, the idea of combining FTS and QSS models is used to develop a single
unified program for long-term dynamic simulation. An accurate criterion to determine the
appropriate switching time between these models, preserving a uniform approximation of
state and algebraic variables, is proposed based on the singular perturbation and two-time
scale techniques. The main contributions of the proposed approach are: i) The time step
size of integration is adjusted based on the direct monitoring of the damping associated
with fast time-varying state variables instead of the truncation error of all state and
algebraic variables; ii) The simulation efficiency is achieved with both, the time step size
adjustment and the reduction of the power system model instead of by using only the
former; and iii) Finally, the proposed criterion to automatically switch from FTS to QSS
simulation allows the initialization of the state variables of the slow reduced model from

the final system state provided by the full simulation.

4.2  Singular perturbation and two-time scale

Power system dynamics can be described by a mixed set of parameter-dependent

differential and algebraic equations, as given by the FTS model

x=f(xy,2) f:R"™MP SR (4.1)
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0=9(x,Y,2) g:RTMP 5 RT 4.2)
2(t7) =h(x, y, z(t,)) h: R™™P 5 RP 43

xeXcR" yeYcR" zeZcRP teft)t,,]
where to and teng are the initial and final times, respectively, of the study time period. x is a
n-dimensional vector of dynamic state variables with initial conditions x(t,)=X,, y is a
m-dimensional vector of instantaneous state (algebraic) variables with initial conditions

y(t,)=Y, and z is a set of p discrete states which undergoes step changes from z(t,) to

z(t,) at some instant t, [ Van Cutsem and Vournas, 1998]. Because transmission network

dynamics are much faster than dynamics of the equipment or loads, the variables y are
understood to change instantaneously with variations of the x states under the
quasi-sinusoidal (or phasor) approximation. Hence, only the dynamics of the equipment,
e.g. generators, controls and loads at buses, are explicitly modelled by the set of nonlinear
ordinary differential equations (4.1). The set of nonlinear algebraic equations (4.2)
represents the stator algebraic equations and mismatch power flow equations at each node.
Lastly, the set of discrete-time equations (4.3) capture the discrete controls and protections
acting on the system.

The set of differential equations (4.1) can be partitioned according to the time scales

of the state dynamics. In particular, in a two-time scale system [Kokotovic et al., 1986],

Xy = Foy (Xegs Xig0 Y5 2) f iR R (4.4)

Xig = Frg (Xgs Xgg1 Y1 2) Fi TR R (4.5)

where Xsg IS a ngg-dimensional vector with predominantly slow dynamics and initial

conditions x (t,) = Xg, , while x4 is a ng-dimensional vector of states that has fast dynamics
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superimposed on slow varying quasi steady-state responses with initial conditions
X (to) = X(de '
Since the dynamics of the states xiy are faster than those of xq, that is X, is larger

than X, , Fra must be scaled by introducing a scaling factor ¢ [Peponides et al., 1982],

[Kokotovic et al., 1986]:
fq =€Fy (4.6)

where ¢ represents the ratio of time scales associated with xsg and Xg4: ratios of small and
large time constants, subtransient and transient inductances or weak and strong connections
[Xu et al., 1998].

Hence, when functions are scaled to have the same order of magnitude the FTS
model (4.1)-(4.3) can be expressed as a standard form (also called the explicit form) of the
singular perturbation problem [Peponides et al., 1982], [Kokotovic et al., 1986]:

Xy = fy Xy Xigr ¥, 2) f i ReTmP 5 R 4.7)
Xy = Ty (Xegr Xig» ¥ 2) fg iR 5 R (4.8)
0=9g(Xys Xeg» Y»2) g RMTTP g (4.9)

Z(t;):h(xsd’xfd1yaz(t|:)) h:SRnsdJrnfderer _)SRp

) (4.10)
Xg €X CR™ Xy e X aR™ tetyty]

One simple technique to reduce the order of the FTS model, thereby reducing the

stiffness of the system, is to formally set ¢=0. In this case, dynamics of x; become

infinitely faster than xsg and instantaneously reach their equilibrium f, (X, X, Y,2)=0,

such that the system approaches the solution of the ngg-dimensional slow-reduced model if
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the Jacobian of () /0x,, is nonsingular [Kokotovic et al., 1986]. This model is often

referred to as the Quasi Steady-State (QSS) model and is expressed by

Xa = T (X4 X, ¥, 2) (4.11)
0= f, (x5 X5, Y,2) (4.12)
0=9(xg.xq¥.2) (4.13)
2(t) = h(xg' Xy, ¥, 2(t)) - (4.14)

In this case, the solution X '(t) represents an approximation to the actual slow
subsystem dynamics X (t), and X (t) represents an approximation of the slow modes
(hence the upperscript sm) of the fast subsystem dynamics X, (t). This approximation is

accurate for te[t,,t, ] where ty is the time instant at which switching from the FTS

model to the QSS model is appropriate. The values of algebraic variables associated with
the slow dynamics are represented by y .
A discrepancy between the responses computed by the QSS model and from the FTS

model takes place during the interval [t,,t,,] and is due to the fast dynamic response.

However, the equivalence between both responses can be established by investigating the
dynamics of the fast-reduced model, which can be derived from (4.7)-(4.10) by considering
the so-called boundary layer correction [Kokotovic et al., 1986], [Peponides et al., 1982] in

the fast time scale 7

X (£) = %G () + x4 (7) (4.15)

Xgq (£) = X3 () + X (2) (4.16)

where x[I'(r)and x/™(z) are fast modes, and z is given by [Kokotovic et al., 1986]
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=L (4.17)
&

Applying the chain rule derivative to (4.15) and (4.16) yields

dx (1) _ X' (1) | X' (7) d

4.18

dt dt dr dt ( )

Oxo(t) _ OGO X (@) dr (4.19)
dt dt dr dt

Taking the derivative of = with respect to time and substituting into (4.18) and (4.19)

sm fm
S () x| xd'(7) (4.20)
dt dt dr
) dE0O e @) @.21)
dt dt dr

Moreover, substituting (4.7) into (4.20) and (4.8) into (4.21), the differential

equations can be rewritten as

sm fm
1 O )+ X5 (X O+ X (2),y,2) = ZE O Xa (O (4.22)
T
dxsm t Xfm
f OO + X (@) X0 O + X0 (0), ,7) = ¢ g‘t( ), d @ (4.23)
T

Finally, the fast reduced model is then obtained by letting ¢ - 0:

fm
P _g (4.24)
dr
def(rin _ sm sm fm
ar fa(Xg Xig +Xigr ¥ 2) (4.25)
T
0=g(x7 X +Xg,Y,2) (4.26)
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z(t)) =h(x, X3 +Xg Y, 2(t)). (4.27)

The equation (4.24) implies that x[' is frozen at its initial value xJ'(t,).
Furthermore, as X, is predominantly slow, the quasi steady-state x; can be constrained to
start from the prescribed initial condition Xx'(t,) =X (t,) =Xy, which implies that
x.'(t,) =0. Based on this assumption, the approximation of x,, by xS is uniform for all
teft,t,q] with errors on the order of ¢, i.e. X, =X +0(g), and xg()=0 for all
t e[ty t,, ] [Peponides et al., 1982] , [Kokotovic et al., 1986].

The fast modes x/;' of x,, are the states of the fast reduced model (4.25) which will
damp out to their equilibrium x/"(z =t ) =0 if they are asymptotically stable. In this case,
a uniform approximation of the fast dynamics is given by x. =X +x/" +O(g) over
teftyt,], and once the fast modes become small enough, x3j(t) is a uniform
approximation of X (t), x4 =Xj +O(¢), for teft,, t.q].

Based on the theory described above, Tikhonov’s theorem [Kokotovic et al., 1986]
guarantees that the solution given by the QSS model (4.11)-(4.14) uniformly approximates

the true solution computed from the FTS model (4.1)-(4.3) after a time interval t [to,tsw

has elapsed.

4.3  Switching criterion

An appropriate criterion to determine when the fast modes x;" are small enough, which is

the necessary condition to switch from the FTS model to the QSS model, can be

determined using the singular perturbation technique as detailed hereafter.
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The sets of ODEs in (4.7)-(4.10) associated with the dynamic models of power

system components can be represented in their linearized form such that the singular

perturbation model can be reformulated by considering x{i' ~0 as

Xeg = Ay (X5 + X[ )+ ApX + Ay +Byu (4.28)
EXy = All(xigq + xff;”)+ ALXS + ALy +Bu (4.29)
0=g(xs X + X, Y,2) (4.30)

Z(t)) = h(x3, x5+ x My, z(t)) (4.31)

where u; is a vector with input variables. A; and B; are constant matrices of appropriate

dimensions.

Similarity, the QSS model (4.11)-(4.14) consists of neglecting x;T while setting

& =0 which yields

X5 = A Xg + ALXS + AsY +Byu (4.32)
0=A X5 +AXy +AY+Bu (4.33)
0=9(xy, X5, Y,2) (4.34)

z(t) =h(xg, x5, ¥, 2(t,)) . (4.35)

Thus, x3; can be obtained from (4.33):

=—A; (AXS + ALY+ Bu), (4.36)

and the resulting expression can be substituted into (4.29) to obtain (4.37) that permits the

computation of the fast modes
Xig = Afll(gxfd _A13(y_y))' (4.37)
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Since the change of x,, will lag far behind the instantaneous change of algebraic

variables, and considering that the difference (y—Yy) tends to zero faster than X, as
numerically shown in Section 4.4.1, one can assume that a good approximation to compute

X1 can be obtained by

Xgg = Alexy (4.38)

where X, is computed by the integration of the full model at each time step. Therefore,

(4.38) can be evaluated without additional computational cost.

Since the dynamics of x[ are associated with different fast-state variables, the

normalized value of each component of x;' must be considered:
nor _ Xfgi P 4.39
Xigi =—— I=1...,ngy (4.39)

Therefore, the time of switching t,, from the full model to the slow reduced model is

nor

determined when the maximum absolute value of Xg' is smaller than a specified tolerance

TOLsw, max|x"|<TOL,, continually for a fixed number of time steps h;,, , which is
given by
Py =10 (4.40)

where t,, is a prespecified period of time which must be large enough to guarantee the

correct determination of t ,, but small enough to preserve computational efficiency.

4.4  Proposed approach for long-term stability analysis in power system

The proposed approach to tackle the complexity of long-term dynamic simulations consists

of using the FTS model to simulate the dynamics associated with the short-time period
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following a disturbance with a small step size, and once the fast dynamics are small
enough, switching to the QSS model to perform the long-term simulation with a larger step
size as shown in Figure 4.1. Owing to the fact that at the switching time there exists a
uniform approximation between models, the state and algebraic variables of the slow
reduced model are automatically initialized from the final system state provided by the full
simulation. Lastly, the information required to determine the evolution of the discrete states
z is directly transferred from the FTS simulation to the QSS model. This proposed

procedure for long-term dynamic analysis using the switching criterion is as follows:

» Step 1.- Select the fast- and slow-state variables, x = (x,,, X,;), to ensure that the

system is state separable.

» Step 2.- Solve the FTS model (4.1)-(4.3) with a small time step of integration.
For instance, the Backward Euler or Trapezoidal Rule can be applied to
transform the differential equations into algebraic equations. The
Newton-Raphson method is then applied to solve the set of algebraic-difference
equations as explained in Section 2.9. A possible short-term instability associated
with the loss of synchronism or voltage instability is checked, and if it occurs the
simulation stops.

» Step 3.- The switching criterion is checked at each time instant ty to determine
the switching time. When this criterion is satisfied continuously during t., , the
algorithm proceeds with Step 4; otherwise, Step 2 and 3 are repeated.

» Step 4.- The simulation switches to the QSS model (4.11)-(4.14), which is solved
as explained in Section 3.8 with a larger time step of integration. At the

sm sm

switching time, initial conditions of QSS variables X, X;; and y are set to

values X%, x and y*™, respectively.
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Figure 4.1: Combined FTS-QSS simulation algorithm.
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4.4.1 Application of the switching criterion

In this section the well-known one-machine infinite-bus system is used to illustrate the
application of the proposed methodology. The system is shown with single-line diagram in

Figure 4.2. The transmission lines and generator data are given in Appendix D.1.

1 2
G
e
V20 V.0

Figure 4.2: One-machine infinite-bus system.

The generator is represented by a two-axis model, as explained in Section 2.3, with

the following set of equations [Pai, 1989]:

T'wE'y = K.E', + Ky + KV cos(5—0)+E,, (4.41)
T" oW = KE', + Ky + KoV cos(5-0) (4.42)
T' By = K,E'y + Kgppg + KV sin (5 - 0) (4.43)
T" oW2q = KigWig + Ko + KV sin (8- 6) (4.44)
S=w—-o, (4.45)
a):z“’H [P,-P,-D(0-,)] (4.46)

The network equations are written in terms of active and reactive power mismatch
equations [Sauer and Pai, 1998]:

0=P, —[V?G,, +VV, (G,, cos(0)+B,,sin(0))] (4.47)

g

0=Q, —[V’B, +VV, (G,,sin(0)-B,, cos(0))] (4.48)
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where

P, = Kj,EqV cos(6—0)+ K,V cos(5—0)+ K ENV sin(5-6)

15™=q

(4.49)
+ KygpryyV sin (6 - 0) + K,V sin (2(5 - 6))

Q, =—K,EVsin(6-6)- K,V sin(5-0)+KEV cos(5-0)
. 4.50
+ KoV c0s (85— 0)-V? (K18 c0s(8 —0)° + Ky, sin (5—9)2) (4:50)

The time constants Tj, T, and T are generally small as explained in Section 3.3.
Hence, v, , E; and w,, can be considered fast time-varying variables, while E;, s and

@ can be assumed to be slow time-varying variables. Therefore, the FTS model has the

following state vectors using the synchronous speed rotating reference:

y=[6 V] (4.51)

sm fm [ T
Xig = Xig T Xg :[‘//m E, l//2q:| (4.52)
x,=[E, & o] (4.53)

while the slow-reduced model is represented by

y=[@ V] (4.54)
xo=[va EF v (4.55)
7 =[E, 6 o (4.56)

nor

The proposed switching criterion relies on computing X;;' given by

fd

. ) - . T
xmor _ T"do ﬂ 1 [ KllT qu d l_ KSqu Vaq ] 1 {_KlOT qu ¢t K7qu Vaq ] (457)
Ke e KuK; =K Kq = KiuK; =Ky Kg U
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such that the switching time is obtained when the condition max <TOL,, has been

nor
de

satisfied continuously for a fixed number of time steps h;,, which is computed by (4.40)
for a prespecified t;y, .

In order to numerically validate the proposed switching criterion, a single
contingency scenario is defined by removing one transmission line at time t=1s. Following
the disturbance, a FTS simulation and a QSS simulation are performed with an integration
time step of h=0.01s. Figure 4.3 shows the evolution of the voltage magnitude V and flux

linkage w,, as a function of time computed by both simulations. Note that flux linkage v,

is proportional to E; (see Appendix A).

1|:|? T T T T T T T T T T T T
= 106}
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105+ .
1 1 1 1 1 1 1 1 1 1 1 1
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I:II:IB T T T T T T T T T T T T
| T
= 009} | ——-
= |
o |
=01t : — — — QST simulation
I FTS zitrlation
! | |
1

1 | | | |

1.2 14 16 18 2 22 24 2B
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Figure 4.3: Terminal voltages and flux linkage at bus 1.
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At the instant of the disturbance application both active and reactive power flows

from bus 1 to bus 2 are reduced instantaneously, thus that the terminal voltage magnitude V
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is increased. The generation of both active and reactive powers is also reduced in order to
satisfy the power balance. After this instant, the generator variables are changing until the
active generated power achieves the mechanical power.

A comparison of these evolutions shows that the existing difference of the algebraic

variable’s value V computed by both FTS and QSS simulations, [V -V |, is much smaller

than the difference between the values of the fast-state variable v, ,[qu - Wf;"] , computed

by each simulation. Therefore, the proposed criterion can be considered a suitable method
to determine the switching time. The system survives the short-term period, and the

switching criterion is satisfied at t=2.2 s with TOL,, =0.1 and tyo.=0.1 s. At this instant of

time tqy, the values of state and algebraic variables computed by FTS and QSS simulations
are very close to each other, indicating that fast dynamics have died out and long-term
responses can be assessed by the simpler QSS model.

4.5 Methodology to applying disturbance

In order to perform short-term and long-term dynamic simulation, a digital program has to
be able to compute the disturbance and post-disturbance condition of the algebraic system
variables. At the instant of either application (ty) or clearing (tg) of a disturbance, the
dynamic variables cannot change instantaneously, as shown in Figure 4.4. Therefore, at
these two instants of time such variables keep constant and their corresponding changes
with respect to time are considered zero, while the algebraic variables suddenly change
with respect to the dynamics. This phenomena can be numerically represented by setting
the step size of integration to zero (h =0), such that the set of algebraic equations must be

solved considering the dynamic variables as fixed input at the instant of a disturbance.
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Figure 4.4: Representation of discontinuity condition.

In case of the FTS simulation, the set of algebraic equations (2.131) is linearized with
respect to y by using the Newton method, such that at i-th iteration the following linear
system is solved

{a':gy(')] [ay] =-[F, ()] (4.58)

J

By starting with a initial value of y, the method updates the solution at each iteration
y=Yy+Ay until a convergence criterion is satisfied. The initial value of y is obtained

previously by the normal solution (see Section 2.9.2).

On the other hand, the network variables y and the fast variables x,, have to be

computed in the case of the QSS simulation. Therefore, the set of algebraic equations

(3.35)-(3.36) are linearized with respect to x,, and y as

ok OF |

Xy Oy | [Ax, ':_ K () '. (459
R  OR || A R ()

OXy Oy

%/—/

J
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The method starts from an initial value of y and x,, and updates the solution at each

iteration i by
HEFEE a0
y y Ay

where the correct solution is obtained until a convergence criterion is satisfied. The initial

value of y and x,, are obtained previously by the normal solution (see Section 3.8.1).

4.6 Conclusions

A new and simple criterion to accurately determine when a QSS model of a power system
can be considered as a uniform approximation of the system FTS model, has been proposed
in this work, inspired of singular perturbation and two-time scale theories.

On the basis of the suitability of this criterion, an integrated simulation method that
combines the reliability of FTS simulation and the efficiency of the QSS simulation has
been proposed to speed up the long-term dynamical analysis of power systems considering
the presence of discrete events. The method is capable of assessing instability problems
during the short-term period through the FTS simulation. If the fast modes are damped out,
a model reduction is automatically carried out to analyze the long-term dynamics by the
QSS simulation with larger integration time step sizes.
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Chapter 5

STUDY CASES

5.1 Introduction

A combination of the FTS simulation in the short-term period and QSS approximation for
the long-term time frame was proposed in [Loud et al., 2001] and [Van Cutsem et al.,
2006]. Each mode of simulation is carried out by different programs which are coupled
through load flow and dynamic data files, as well as the initial conditions for the QSS
simulation. The time to switch from FTS to QSS simulation is chosen once the dynamics of
frequency are below a specified value [Loud et al., 2001]. In this case, the QSS model is
initialized by setting the continuous long-term variables and the algebraic variables to the
values computed by FTS simulation at the switching time ts,. The short-term variables are
initialized at the values associated with the equilibrium point of the set of differential
equations at ty,. Lastly, the operation and waiting state of discrete events have to be
considered to determine their initial conditions at ty, and to establish the sequence of
discrete controls during the QSS simulation with reasonable accuracy. The initialization
process is avoided in [Van Cutsem et al., 2006] by performing an off-line coupling of both
approaches based on the discrete events taking place during the detailed simulation. The
FTS simulation is executed until the switching time ty, is detected as proposed in [Loud et
al., 2001], and the sequence of discrete events that have occurred over this interval are
identified. The QSS simulation is then performed from the initial time with those discrete
events imposed as external disturbances, without allowing the discrete devices to act by
themselves until the simulation arrives at tsy. From there on, the study proceeds with the

usual QSS approximation.
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In this Chapter, the exposed idea of combine FTS and QSS models in a single
unified program for long-term dynamic simulation is tested on several systems: a simple
system, the WSCC system, the New England system and an equivalent model of the
Mexican power system. All the simulations are run on a laptop with the following
characteristics: Intel processor dual cores at 1.728 GHz, total RAM Memory of 2.00 GB

and operating system Windows XP.

5.2 2-machine, 4-bus system

This system is composed of one load embedded at bus 3 whose demanded power is
supplied through a LTC transformer, thus the LTC keeps the voltage magnitude at 1 p.u.
with a half-deadband of + 0.01 p.u. A remote system (bus 1) supplies most of the power
through a long double-circuit transmission line, while the rest of the power is provided by
the generator connected to bus 2. The system single-line diagram is presented in Figure 5.1
[Van Cutsem and Vournas, 1998], [Vournas et al, 2004].

1 4 3
remote ‘ load
system

2
G

Figure 5.1: Simple electric system.

The system connected at bus 1 is considered as slack generator. Each transmission
line is regarded as ideal with a serial reactance of X, =0.055 p.u. Similarly, each
transformer is modelled by its reactance in series with an ideal on-nominal transformer,
X; =0.016 p.u. Each generator is equipped with an exciter and a governor-turbine system.
The load is composed of a generic self-restoring load and an induction motor that consumes
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40% of the total demanded power with a constant mechanical torque. All system data are
given in Appendix D.2.

Even though this is a simple system, the motivation of its analysis is supported by the
dynamics presented at both short-term and long-term simulations [Van Cutsem and
Vournas, 1998]. In order to perform the simulation by the proposed approach, the

parameters for the switching criterion are TOLg,=0.1 and t,,, =0.1s.

5.2.1 Casel

To illustrate the dynamic behavior in short-term, the system load is represented by the

generic models of self-restoring load and an induction motor whose initial demand is

P°=6 p.u.and Q) =1.5 p.u. The generator at bus 2 produces an initial generation equal
0 0 ; ; ; F
to P/ =4 p.u.and Q, =-0.708 p.u. Prior to any perturbation the system is operating in the

steady-state equilibrium point reported in Table 5.1.

Table 5.1: Nodal complex voltages of system (Case 1)
System buses
Bl | B2 B3 B4
V (p.u.) 105 1 1 0.974
0 (degree) 0 |0.539 | -4.448 | -3.082

Complex voltages

Generator 1 is tripped at time t=1S, and the system is supplied completely for

generator 2. The system dynamics are assessed by using FTS, FTS-QSS and QSS
simulations. The former two simulations are performed with each generator having its own
rotor speed and ws as the rotating frame, while perfect coherency is assumed for the latter
simulation. All simulations are performed for a time period of 15 s with an integration step
size of 0.01 s. The perturbation causes a short-term instability such that the QSS simulation
cannot accomplish the convergence to a solution because the Jacobian matrix becomes
singular. In contrast, the FTS-QSS simulation obtains the same results given by the FTS
simulation because the switching criterion is never satisfied, and therefore the whole

simulation is carried out with the detailed model.
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Figure 5.2 shows the voltage magnitude behavior at bus 3, which decays for a few

seconds, but it is recovered by the fast action of the AVR control. This control is achieved

by increasing the generation of reactive power, as shown in Figure 5.3.
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Figure 5.2: Voltage evolution of bus 3 (Case 1).
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Figure 5.3: Reactive power generation (Case 1).
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On the other hand, the active power consumed by the load is almost restored at its
initial value 600 MW which is larger than the generator capacity of 450 MW. Thus, the
governor is unable to restore the frequency to its nominal value because the mechanical
power reaches its nominal value, and the generator cannot provide the demanded power.
Therefore, the rotor speed decays as shown in Figure 5.4, and the system presents

frequency instability of the short-term.

11 T T T T T T T

—-— - Combined FT3-Q835 sinulation
09 —F T3 simulation

E08F
=

07t

06+

DE 1 | | 1 1 1 |

0 2 4 B 8 10 12 14 15
Time (sec)
Figure 5.4: Rotor speed evolution (Case 1).

5.2.2 Case?2

The purpose of this case is to demonstrate the advantages of using both the QSS simulation
and the combined FTS-QSS simulation in long-term dynamic stability when the system

survives the short-term period. For this purpose, the active power demanded at bus 3 is
increased to P’=13.7 p.u. The steady-state initial equilibrium point is computed by a

conventional power flow and is given in Table 5.2.
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Table 5.2: Nodal complex voltages of system (Case 2
System buses
Bl B2 B3 B4
V (p.u.) 1.05 1 1 0.955
0 (degree) 0 |-11.73|-18.54 | -15.24

Complex voltages

The system is perturbed at time t=1S by a sudden change in the network topology:

one of the lines between buses 1 and 4 is tripped. The three types of simulations are carried
out with the following characteristics: i)The FTS simulation uses a step size of integration
of 0.01 s, and the ws is adopted as the rotating frame; ii) the QSS simulation is performed
with h=0.1 s, and a perfect coherency between all generators is assumed; and iii) The FTS-
QSS simulation uses ws as the rotating frame for the whole simulation, and the step size of
integration takes the value of the corresponding simulation. Hence, the combined FTS-QSS
simulation allows the increasing of the step size from 0.01 s to 0.1 s at the switching time.
The fast-state variables monitored to enable the switching from the FTS to QSS model are

those associated with the exciters (E, ), generators (v, , E;, v,,), turbines (P, Pp)
and the induction motor (e;, €;). Considering a TOLs=0.1 and t,, =0.1s, the fast

variables of generators, induction motor, exciters and turbines satisfy the switching

criterion at 1.1's, 1.23 s, 2.18 s and 4.17 s, respectively, such that the switching of models

occurs at t, =4.17 s.

The evolution of voltage magnitude at bus 3 is depicted in Figure 5.5. The short-term
dynamics remain stable because the fast transients are damped out. However, the voltage
magnitude at bus 3 decays from its schedule value, such that the LTC acts to restore the
voltage within the deadband. The control of the LTC starts after an initial time delay of 20
s; hereafter the tap changes every 10 s until the control target is achieved or until the tap
ratio limit is encountered, as shown in Figure 5.6. The LTC restores the voltage close to its
schedule after the perturbation, but the generator’s field current at bus 2 is increased during
this process such that the OXL is triggered at about t=180 s which causes the reduction of

the generation of reactive power. Therefore, the voltage at bus 3 decays at this time, and the
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LTC tries to restore the voltage again but without success. Finally, the voltage at bus 3

starts to collapse when the LTC reaches its lower limit tap ratio.
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Figure 5.5: Voltage evolution of bus 3 (Case 2).
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Figure 5.6: Tap ratio evolution of the LTC (Case 2).
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The field current of the generator connected at bus 2 reaches values larger than its

limit, (15" =2.825p.u.), as shown in Figure 5.7. This initiates the inverse time mechanism

X of the OXL, such that x; starts increasing from its lower value -20 and becomes positive
at t=180.77 s as depicted in Figure 5.8. Therefore, the OXL is triggered at t=180.77 s and

its output Xox. (see Figure 5.9) is subtracted from the AVR input which causes the

limitation of the field current. The OXL activation time computed for the three simulations

are reported in

Z 56l —-—-- Combined FTS-QSS simulation |
j? . — — — Q35 strlation
25} —FT% simulation ]
24} i
23} ]
22} ]
2.1 L 1 1 1 1
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Table 5.3.

Table 5.3: Activation of OXL control

Simulation Time (in seconds)
FTS 180.77
QSS 181.1
Combined FTS-QSS 181.3

Figure 5.7: Field current evolution of generator 2 (Case 2).
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Figure 5.8: Inverse time mechanism x; evolution (Case 2).
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Figure 5.9: xox_ evolution (Case 2).
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The curves show that the QSS and FTS-QSS simulation provide quite acceptable
results, but the LTC control and OXL control occur slightly later w.r.t those computed by
the FTS simulation. However, the computing time required by the FTS simulation is
14531 s while the QSS and the FTS-QSS simulation consume 1.438 s and 1.781 s,
respectively. This saves considerable computational time for the study under analysis.

On the other hand, there are no significant differences between the QSS and the

combined simulation. This is because the switching is given early at t, =4.17s since the

fast transient damped out very soon, but large differences may arise in a contrary case (see
Section 5.4).

5.3 3-machine, 9-bus WSCC system

One of the most important issues in the stability problem is the rotor angle stability; it is
frequently studied when the system is subjected to large disturbance (e.g. a solid
three-phase fault) [Kundur et al., 2004]. In order to apply the proposed approach in this
stability problem, the WSCC power system is considered in this case of study. The system
consists of 9 buses, 3 generators and 3 loads with the network shown in Figure 5.10. All

system data were taken from [Sauer and Pai, 1998] and are given in Appendix D.3.

: 2 7 L 9 3 8
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Figure 5.10: WSCC power system.
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A solid three-phase fault is applied at t = 0 s at bus 7, and it is cleared by opening the
transmission line between buses 5 and 7 at t = 0.135 s. The analysis is performed with both
FTS and FTS-QSS simulations. The former uses an integration step size of 0.001s, while
the proposed FTS-QSS simulation is performed with the same step size because the
switching criterion is never satisfied (as explained below) when considering a switching

tolerance of 0.1 and t,;, =0.1s. All simulations are carried out considering wcor as the

rotating frame of reference.

The disturbance lasts for 0.135 s, while the critical clearing time to preserve transient
stability is 0.131 s, such that generators 2 and 3 lose angular stability, as shown in Figure
5.11.
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Figure 5.11: Rotor angles of the WSCC power system.

The switching criterion is never satisfied, and the FTS simulation is always
performed because the fast modes never disappear. Similarly to Case 1 of Section 5.2.1, the

QSS simulation cannot be applied because the system is unstable in the short-term period.
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5.4 10-machine, 39-bus New England system

For the purpose of this test case the generators were selected to be steam power plants.
Generating plants were assumed to be equipped with an exciter, an automatic voltage
regulator, a speed governor and a steam turbine. All exciters include derivative feedback
compensation [Kundur, 1994]. Likewise, three LTCs were installed on transformers to keep
the voltage magnitudes at buses 12 and 20 at 1 p.u. with a half-deadband of + 0.01 p.u., as
shown in Figure 5.12. All loads are represented with the exponential model [Van Cutsem
and Vournas, 1998]. For the specified disturbance, long-term dynamics come from the
LTCs’ control actions [Van Cutsem and Vournas, 1998]. In this case, the LTCs’ delay is
20 s on the first tap change and 10 s on subsequent tap changes, resulting in a 0.01 p.u.
change of ratios for each. Additionally, steam turbines and governors act in the long-term
to avoid large excursions of frequency. The data of this system were taken from [Pai,
1989]; however, gains and time constants were adjusted to make rotor oscillations last
longer. All system data are given in Appendix D.4.

At time t=1s, the system is suddenly perturbed by completely disconnecting the

loads at buses 4, 20 and 29. A long-term simulation is performed with the full model, the
combined FTS-QSS model and the QSS model, respectively. The FTS simulation and
FTS-QSS simulation are performed considering ws as the rotating frame. On the other hand,
a perfect coherency between all generators is assumed in the QSS simulation [Grenier et al.,
2005]. Integration step sizes are defined according to the model being used in the analysis:
the FTS model is integrated using a time step of 0.01s, while the QSS simulation is
accomplished with an integration time step of 1s. Hence, the combined FTS-QSS
simulation allows the increasing of the step size from 0.01s to 1s at the switching time. The

fast-state variables monitored to perform the switching from the FTS to QSS model are

those associated with the exciters (E, ), generators (w4, E;, ¥,,) and turbines (R,

P.»). Considering a switching tolerance of 0.1 and tro.=0.1s, the fast variables of exciters,
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generators and turbines satisfy the switching criterion at 1.61s, 13.15s and 13.48s,

respectively, such that the switching of models occurs at t=13.48s.
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Figure 5.12: New England power system.

The electromechanical oscillations that follow the load shedding are damped out,
indicating stable short-term dynamics. Figure 5.13 shows the rotor speed associated with
the most critical generator, which is connected at node 34. Note that all the simulations tend
to the same equilibrium point after the fast dynamics have been damped out. This
demonstrates the suitability of the switching criterion, in the sense that the switching
between models is done once the short-term dynamics are small enough, as shown in
Figure 5.14, for the field voltage E; behavior of the generator at bus 34.
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Figure 5.13: Angular speed of the generator connected at bus 34.
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Figure 5.14: Field voltage of the generator connected at bus 34.
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As expected, the evolutions of w and Ej obtained by the FTS and FTS-QSS
simulations are overlapped during the short-term period and present small differences after
the switching of the simulation models takes place. The numerical Relative Error
Magnitude (REM) of the evolutions obtained by the FTS-QSS and QSS simulations with
respect to the evolution computed by the FTS simulation are shown in Figures 5.15 and

5.16 for the rotor angular speed and the field voltage of the generator connected at bus 34.
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Figure 5.15: REM of the generator’s angular speed connected at bus 34.

The REM of w is quite small for the FTS-QSS and QSS simulations during the whole
period of analysis because the disturbance does not cause large excursions of the
generator’s angular speed connected at bus 34 as shown in Figure 5.13. However, the REM
of the field voltage presents large values for the QSS simulation during the short-term but
for the long-term these values are small and progressively extinguishes. The peaks

presented during the long-term period are due to the changes on the tap ratio of each LTC.
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On the other hand, the REM of Ezy computed by the FTS-QSS simulation is zero until the
switching of the simulation models occurs at ts,, and starts with a small value after t, but
soon decays. Furthermore, the REM obtained by the FTS-QSS simulation can be
considered smaller than the REM computed by the QSS simulation during almost the whole
period of study.
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Figure 5.16: REM of the generator’s field voltage connected at bus 34.

The evolutions of voltage magnitudes at buses 12 and 20 over a longer time interval
are shown in Figures 5.17 and 5.18, respectively, and clearly demonstrate that the proposed
approach provides very similar results to those obtained by the FTS simulation. At the
instant of the disturbance, an unbalance of reactive power is presented with more
generation than that demanded in the system. Therefore, the voltage magnitudes at buses 12
and 20 are increased from their scheduled values. Since the LTC-controlled voltages are
deviated from scheduled values, the tap changers are activated with delays. Times at which
the LTCs’ control takes place are reported in Table 5.4 for each simulation. The control

actions occur almost at the same time for the FTS and FTS-QSS simulations. On the other
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hand, since the sequence of controls depends on the system dynamics, the LTCs’ responses
computed by the QSS simulation differ, given that the voltage oscillations at short-term are

not captured by this simulation.
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Figure 5.17: Voltage magnitude at bus 12.
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Figure 5.18: Voltage magnitude at bus 20.
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Table 5.4: Activation of LTCs control in New England system
LTCland LTC2 LTC3

FTS | QSS | Combined | FTS | QSS | Combined
26.79s | 23s | 26.79s |28.29s|22s| 28.29s
36.79s | 33s| 36.79s |38.29s|32s| 38.29s
100.80s| 96s | 102.29s |48.29s| 42s | 48.29s
58.29s| 52s | 58.29s
80.79s| 75s | 81.29s

Large voltage oscillations are presented during the short-term, causing the LTCs to be
initialized at t=6.79 s and t=8.29 s for the control at bus 12 and 20, respectively. This
discrete event is correctly captured by the FTS and FTS-QSS simulations while the QSS
approximation does not detect the voltage oscillations, and the LTCs are initialized very
early for the QSS simulation at t=3 sy t=2 s for the control at bus 12 and 20, respectively.
Therefore, the evolution of the voltage magnitudes presents large differences between the
results obtained by the QSS simulation and those given by the FTS and FTS-QSS
simulations. The numerical REM of the evolutions obtained by the FTS-QSS and QSS
simulations with respect to the evolution computed by the FTS simulation are shown in
Figures 5.19 and 5.20 for the voltage magnitudes at buses 12 and 20.

The REM of the voltage magnitudes at buses 12 and 20 present large values for the
QSS simulation during the short-term; however, for the long-term these values are
decreased while the FTS-QSS simulation computes small values of the REM at the
switching time. After this instant, the FTS-QSS simulation presents a quickly decay of the
REM. Note that the REM obtained by the proposed approach can be considered smaller
than the REM computed by the QSS simulation during almost the whole period of analysis,
which demonstrates the suitability of the FTS-QSS simulation.

102



REM of %

REM of %

|:||:|5 r T T T T T ]

godse Combined FTS-038% simulation |

0.04 — Q55 simulation

0.035 .
0.03 .
0.025 .
0.0z .

0.015

0.01

0.005

a 20 40 G0 8o 100 120
Time (=ec)

Figure 5.19: REM of voltage magnitude at bus 12.
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Figure 5.20: REM of voltage magnitude at bus 20.
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On the other hand, the angular speed wco, of the Center-of-Inertia is shown in Figure
5.21. As expected, the frequency transient behavior computed by the QSS model quickly
tends to the equilibrium value reached by the other two models. The resulting frequency
deviation after the perturbation is very small due to the fast operation of the speed governor
of each generator.
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Figure 5.21: Angular speed in COI coordinates.

Lastly, the evolution of the angular speed of all generators computed by the FTS,
FTS-QSS and QSS simulations are shown in Figures 5.22, 5.23 and 5.24, respectively.
Note that the FTS and FTS-QSS simulations are performed considering that each generator
conserves its own angular speed while a perfect coherence is assumed for the QSS

simulation. However, the equilibrium point achieved by the three simulations is very close.
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Figure 5.22: Individual angular speed computed by the FTS simulation.
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Figure 5.23: Individual angular speed computed by the FTS-QSS simulation.
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Figure 5.24: Individual angular speed computed by the QSS simulation.

5.5 46-machine, 190-bus Mexican power system

The proposed approach has been applied to a reduced model of the Mexican Interconnected
System including the northern, north-eastern, western, central and south-eastern areas, as
shown in Figure 5.25 [Gonzalez et al., 2009]. This equivalent consists of 190 buses, 46
generators, 90 loads and 265 transmission lines operating at voltage levels ranging from
400 kV to 115 kV. Voltage problems are acute and of prime importance due to the
longitudinal structure of the system, such that the loads connected at buses 182, 183 and
184 have been equipped with LTCs to maintain their voltage magnitude at 1 p.u. with a
half-deadband of + 0.01 p.u. The operation of the LTCs start after a first delay of 20 s, and
subsequently after each 10 s, until the voltage target or the tap ratio limit is achieved. All
system data are taken from [Messina and Vittal, 2005], while the LTCs data are given in
Appendix D.5.
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Figure 5.25: Schematic diagram of the Mexican power system.

The long-term study scope is to compute the system’s dynamic responses caused by
the following sequence of disturbances: i) a solid three-phase fault is applied at bus 185 at
1 s and cleared by tripping the line connecting the buses 185-159 at t = 1.12 s, and ii) the
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generator 18 is tripped at 6 s. The analysis is performed for the integration interval
T =[0,280]s with both FTS and FTS-QSS simulations considering ws as the rotating
frame of reference and assuming that each generator conserves its own rotating speed (i.e.
coherency between all generators is not assumed). The FTS simulation uses an integration
step size of 0.01 s, while the proposed FTS-QSS simulation permits the use of a time step

of 1 s after the switching time which is satisfied at t=13.36 s, considering a switching
tolerance of 0.1 and t,; =1s. At this time the fast modes xj; have died out, and the
system behavior is determined by the slow variables. The fast-state variables monitored to
carry out the switching from the FTS to the QSS model are those associated with the
exciters (E, ), generators (wy,, Ej, v,,) and turbines (P, P,), such that the fast
variables of generators, exciters and turbines satisfy the switching criterion at 3.96 s, 8.42 s
and 13.36 s, respectively.

As a result of the first perturbation, the angular speed a,, presents large oscillations
due to the existing unbalance of mechanical and electrical powers; however, the fault’s

clearing time allows the preserving of the short-term stability, and the system tries to find a

new state of operation. However, the second disturbance causes a large deviation of the
W from the nominal speed w,, such that the speed governors act to restore the
frequency close to its nominal value as shown in Figure 5.26. For clarity, the @,

evolution is plotted for a period of only 30 s; after this time the frequency is almost at its
new steady-state value. As expected, the evolution of the variables obtained by the FTS and
FTS-QSS simulations are overlapped before the switching of simulation takes place. After

this time, small differences are present during the long-term frame.
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Figure 5.26: Angular speed of the Mexican system.

On the other hand, the voltage magnitude at buses 182, 183 and 184 are kept inside of
their deadband after the first disturbance. However, at the instant of the application of the
second disturbance these voltage magnitudes decay from their scheduled values because of
the existing unbalance of generation and demand reactive powers, such that the LTCs
should act to restore the voltage magnitude at their respective bus within the deadband.

The LTC installed at bus 182 tries to restore the voltage magnitude but without
success because its tap lower limit of 0.8 p.u. is reached as shown in Figure 5.27.
Therefore, the voltage magnitude at bus 182 cannot be controlled after the second
perturbation as depicted in Figure 5.28. A similar evolution at bus 183 is presented due to
its LTC reaches also the tap lower limit of 0.8 p.u. (see Figure 5.29) and the voltage
magnitude cannot be restored as shown in Figure 5.30.

The operation of the LTCs installed at buses 182 and 184 is contrary to the control of
the LTC installed at bus 184 because the voltage magnitude at bus 184 is returned to its
schedule value, but the changes of the other LTCs causes a degradation on the voltage.

Therefore, the LTC installed at bus 184 keeps the voltage magnitude in the schedule value
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until the other LTCs reach their tap lower limits. The evolution of the voltage magnitude at

bus 184 is shown in Figure 5.31 while the changes on the tap ratio of its LTC are depicted

in Figure 5.32.
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Figure 5.27: Tap ratio evolution of the LTC at bus 182.
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Figure 5.28: Voltage magnitude at bus 182.
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Figure 5.30: Voltage magnitude at bus 183.
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Figure 5.31: Voltage magnitude at bus 184.
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Figure 5.32: Tap ratio evolution of the LTC at bus 184.
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The numerical REM of the evolution obtained by the FTS-QSS simulation with
respect to the evolution computed by the FTS simulation are shown in Figure 5.33 for the
voltage magnitude at bus 184 in order to illustrate the discrepancy between the FTS-QSS
and FTS simulations.
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Figure 5.33: REM of voltage magnitude at bus 184.

The REM of the voltage magnitude at bus 184 is quite small after the switching of
simulations occurs while the peaks presented during the long-term are due to the changes
on the tap ratio of each LTC. As can be seen, the FTS-QSS evolution is a very good
approximation of the FTS one, such that from a practical viewpoint the proposed method is
suitable for the simulation of long-term dynamics including discrete events. Both FTS and
combined FTS-QSS simulation tend to the same equilibrium point.

Lastly, the computing times required by the FTS and FTS-QSS simulations were
200.86 s and 17.937 s, respectively, being the proposed method 11.2 times faster than the
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FTS simulation. For these cases, the number of iterations required by the Newton-Raphson
method to reach the solution of the linearized set of equations at each time step of both
types of dynamic simulations is shown in Figure 5.34. The convergence criterion was 10°®
p.u. These results indicate that the algorithms retain the quadratic convergence of the full
Newton-Raphson method and that after a switching takes place, the maximum number of
iterations for both simulations is 3 after the perturbation. This clearly demonstrates the

suitability of the proposed approach to perform long-term dynamic studies.
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Figure 5.34: Newton iterations for each integration time step.

5.6 Conclusions

In this Chapter the proposed approach to carry out the long-term dynamic simulation of
power systems has been tested to demonstrate its suitability to reduce the huge

computational burden associated with FTS simulation.
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Comparisons between the proposed approach, FTS and QSS methods clearly show
the main advantages of the FTS-QSS simulation in terms of the accuracy of the results in
both short-term and long-term periods and of the reduction of simulation time required to

compute the long-term system dynamics.
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Chapter 6

GENERAL CONCLUSIONS AND
SUGGESTIONS FOR FUTURE RESEARCH
WORK

6.1 General conclusions

A new and simple criterion to accurately determine when a QSS model of a power system
can be considered as a uniform approximation of the system’s FTS model has been
proposed in this thesis based on the singular perturbation and the two-time scales theories.
The proposed switching criterion is easily computed (with very low computational
overhead) from the FTS simulation by monitoring the rate of change of the fast time-
varying state variables.

On the basis of the suitability of this criterion, an integrated simulation method that
combines the reliability of FTS simulation and the efficiency of the QSS simulation has
been proposed to speed up the long-term stability analysis of power systems considering
the presence of discrete events. The method is capable of assessing instability problems
during the short-term period through the FTS simulation. If the fast modes of oscillation are
damped out, a model reduction is automatically carried out to analyze the long-term
dynamics by the QSS simulation with a larger time step size of integration. Therefore the
proposed approach allows the long-term dynamic stability analysis of power system
efficiently by both time step size adjustment and model reduction. In this context, initial
conditions for the QSS simulation are given by the values of the state and algebraic

variables provided by the FTS simulation at the switching time.
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The proposed approach avoids the following limitations associated with a pure QSS
simulation: i) after a large disturbance, the system may lose stability in the short-term time
frame in terms of the loss of synchronism or voltage instability. In this case, the QSS model
meets a singularity. On the other hand, the switching criterion is never satisfied (i.e. the
simulation stops) in the proposed approach, such that the switching from FTS to QSS
simulation does not takes places; ii) the activation of control schemes (e.g. load tap
changer, overextension limiters, shunt compensation switching, etc.), which have great
impact on the system long-term evolution, depends on the system short-term dynamics.
These dynamics are incorrectly identified from the simplified QSS model, producing an
erroneous activation of discrete controllers during the long-term simulation. Hence, the
long-term dynamics computed by a QSS simulation will be different with respect to the
dynamic trajectories computed by the proposed approach; and iii) finally, the proposed
approach allows to perform a dynamic simulation considering that each generator
conserves its own rotating speed instead of assuming a perfect coherency between all
generators, as considered in the pure QSS simulation.

The effectiveness of the proposed method has been fully validated by a numerical
example on the following: 2-machine, 4-bus system; 3-machine, 9-bus WSCC system; and
10-machine, 39-bus New England system. Simulation results from a test on a reduced
46-machine, 190-bus Mexican interconnected system have also shown the applicability of

the proposal to efficiently analyze long-term dynamics of a real-life power system.

6.2  Suggestions for future research work

The proposed approach of power system simulation has demonstrated its correct operation.
However, interesting suggestions for future research work can be derived from the work
presented in this thesis in order to enhance and improve the computational efficiency of the
long-term simulation:
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As already mentioned, FTS simulation should be performed with a small step size
when the Trapezoidal Rule is used [Yang and Ajjarapu, 2006] while the Backward
Euler method allows a significant increase in the step size, and it saves a lot of
computational effort for the long-term dynamic simulation [Van Cutsem and
Vournas, 1998]. However, the TR gives more accurate results w.r.t. the BE
method. Therefore, the proposed approach can be used to combine both the TR
and the BE integration method for long-term dynamic studies preserving the

power system detailed model (i.e. FTS are solved during the whole simulation).

The Area Interchange Control (AIC) of an interconnected power system is very
important in studies of long-term simulation. Thus, the methodology and digital

program can be adjusted to include AIC.

Another interesting application is to modify the digital program in order to develop
a variable step size integration method using the proposed switching criterion.

Singular perturbation technique can be used to develop reduced models that can
replace the detailed models during the FTS simulation to save even more

computational time to perform the long-term simulation.

It is necessary to find a switching criterion from the QSS simulation to the FTS

simulation if the fast variables are excited during the long-term period.

It is important the inclusion of a static load model that considers frequency
dependence into the digital program for long-term analysis. The bus frequency can
be computed by taking the numerical derivative of the bus voltage angle since it is
not an inherent variable in the dynamic simulation.
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Appendix A

Synchronous machine model

A.1 Generator model of order VI

The generator model used in power system analysis is based on a two-axis formulation of
the machine equations considered in Figure A.l. The stator circuit is composed of three
identical sinusoidally distributed armature winding, displaced 120°. The rotor circuits
comprise a field winding (denoted by fd) and three amortisseur windings (denoted by 1d,
19 and 2q). The 1d winding has the same magnetic axis as the field winding, while the
magnetic axis of the 1qg winding (called the quadrature axis) is displaced 90° ahead of the
direct axis. Furthermore, eddy currents are represented by the second winding (denoted by
2q) on the quadrature axis [Van Cutsem, 2005], [Krause et al., 2002].
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Figure A.1: Schematic diagram of the synchronous machine.
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The stator and rotor voltage equations are obtained by applying the fundamental

Kirchhoff’s and Faraday’s laws as well as the Park transformation [Sauer and Pai, 1998],

[Krause et al., 2002],

vdz—Rgd_£%Wq+£;d£a

V, =R, +wﬂo% +wio%
vm=&gm+i@§“
0=Ry4l, +i0d'é/_tld
0=&Jm+i%d;“
0=R, |+ LW

in addition the flux linkages per second are expressed as
Wy =—Xglg+ Xoglg + Xing g
Wy ==Xl + X hy + Xiglig
Wig = Kngla ¥ Xiglg + Xglg

Wig = —Xoalg + Xoa g + Xigaa g

Vie = Xualo + Xigzglig + Xong]

191q "1q mq " 2q

Waq == Xmglg T Xinglig + Xag2q124

mg "1q

(A1)

(A2)

(A3)

(A.4)

(A.5)

(A.6)

(A7)
(A.8)
(A.9)

(A.10)

(A11)

(A.12)

where @y is the synchronous speed, and o is the actual rotor speed. Xmg and Xmq are the d

and g magnetizing reactances, respectively, Rs is the stator resistance, Vg is the d winding
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voltage, l4 is the d winding current and Xg is the d leakage reactance. Appropiate variables

are also associated with the g axis and the rotor circuit.

In accordance with dynamics of interest in the present work, the generator model

considered in this work relies on the following assumption [Van Cutsem and Vournas,

1998]:

The transformer voltages are neglected (v, =y, =0).

The armature resistance (which is very small) is neglected.

Magnetic saturation is neglected for convenience in analysis.

The usual speed deviations are small compared to synchronous speed, (o~ @) .

Therefore, under these assumptions the set of equations (A.1)-(A.5) take the

following form:

Ve =¥,
V, =4
1 dyy,
@, dt

= _Rfd I fd +Vfd
1 dyy,
— 7 __R |
o, dt Rig L1
d
i l//lq :_qullq
@, dt
d
iﬁ:_qubq_
@, dt

(A.13)
(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

The synchronous machine model can be obtained using the definition of standard

synchronous reactances, new state variables and standard time constants [Krause et al.,

2002], [Sauer and Pai, 1998], then

Xd = Xls + de
Xq =X, + qu

(A.19)

(A.20)
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X=X +—— =X, —

1 1 1

X Ifd X 11d

9= M T 1 1

X

12q

(A.21)
(A.22)
(A.23)

(5.1)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A31)

(A.32)

(A.33)
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S RV (A34)
oRyq 1,1
de Ifd
To = L X+ 1 ] (A.35)
a)SRZq — 4
qu XIlq

where E, can be defined as voltage proportional to the field voltage determined by

exciters or as a constant value. The voltage magnitudes behind synchronous g- and d-axis

reactances are E; and Ej. Flux linkages per second related to the damping windings are

T, and T

w T are the g-, d-axis transient and subtransient

given by y,, and w,,. T,

go’
open-circuit time constant, respectively.
Based on the definitions (A.15)-(A.30) into (A.9)-(A.12), the rotor currents are

_ Eé +(xd _X(;)(Id - Ild)

g X (A.36)
md
| Z((Xt;_Xls)ld_E(;)(X(;_X(;,)+Wld (A37)
¢ (Xé_xls)z
CE (X =X)L =1)
g =— s 2 (A.38)
mq
(4 X1 B (X3 X2) v o
2q = . .
’ (X=X, )

On the other hand, the stator currents can be found by substituting the rotor currents
equations into (A.7)-(A.8) and the resulting equation into (A.13)-(A.14):
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(X(;’_Xls) E' 4 (XQ—XC',') Vd

= " ’ " ' l// Ty (A4O)
’ Xd(xd_xls) ! Xd(xd_xls) . Xd
X! =X X, = X! V.
e Xe) g (,, T ) Vot (A41)
Xq(xq_xls) Xq(xq_xls) Xq

Moreover, the stator voltages can be represented in a complex form as [Sauer and Pali,
1998], [Krause et al., 2002],

4

(Vy + v, )ej{ 3 =Vel (A.42)

and manipulating (A.42) yields
Vy =Vsin(5-0)
(A.43)
V, =V cos(5-0)
where V and 6 are the magnitude and phase angle of the voltage measured at bus terminal. ¢
is the generator’s rotor angle relative to a certain rotating reference with respect to the
quadrature axis, which is defined below.

Therefore, the stator currents can be represented in terms of terminal voltage as

X" _ X X=X Vcos(o—-6
d— (n : i IS) Ec'] + (rr c ' d) l//ld - (Il ) (A44)
Xg(Xg=Xy) Xg(Xg=X) X4
X" — X Xo—= X! Vsin(o -6
Iq —_ (” q , |S) E[; + (” a - q) V/Zq + ( " ) . (A45)
Xq(Xg=X,) Xq(Xg=Xy) Xq

Hence, the synchronous machine model can be expressed only in terms of meaningful
variables and with the least number of equations by introducing the rotor and stator currents
equations into (A.15)-(A.18):

!

dE
T~ "= K + Ky + KV c0s(5-0) + E, (A.46)
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T dZ’tld = K,E! + Kgyyy + KV cos(5-6)

T' d; =K, E] + Kgypq + KV Sin(5—0)
T dZ’t = KB + Ky + KV sin (5 0)
where
Kl=_1_(xd_xé)(xé_Xg)_(xd_xé)(xg_xls)z
! 2 14 1 2
(Xd_xls) Xd(xd_xls)
_( Xé)( g)xls
, =
XJ (X' =X)
LX) )
XX x)
X
K, =2k
4 X(;,
X’
K —_ d
5 X(;,
K6:X(;_”Xls
Xd
14 ! /4 2
K __1_(Xq_XQ)(XQ_XQ)_(XQ_XQ)(XQ_XIS)
L=

(Xi-

(Xq=X)(X;=X7)X

X,) (X0 =X,

Is

8

9:

X!, —X|s)2

(Xa = Xa)(X4-X)

X (X -%,)

(A.47)
(A.48)

(A.49)

(A.50)

(A.51)

(A52)

(A.53)

(A.54)

(A.55)

(A.56)

(A.57)

(A.58)

(A.59)
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Ky=-—2 (A.60)
Xq
X, —X
Ky =- qX” = (A.61)
a

On the other hand, the effect of unbalance between the electromagnetic torque and
the mechanical torque of the synchronous machine is obtained by applying the fundamental
Newton’s law [Sauer and Pai, 1998], [Van Cutsem and VVournas, 1998]:

2H s T -T. (A.62)
Wy
where H is the moment of inertia and the electromechanical and mechanical torque are T
and T, respectively, which in per unit on the machine base T, is equal to the active power
Py generated while Ty, is equal to the turbine mechanical power Py. ¢ is the rotor angular
position (in radians) with respect to the synchronous rotating reference given by [Kundur,
1994]:

o =ot—at+0,

initial *

(A.63)

Using (A.63), the second-order differential equation (A.62) (known as the swing

equation) can be decomposed into two first-order differential equations:

Pl (A.64)
do o
E:ﬁ(Pm—Pg -D(0-a,)) (A.65)

where D is the damping constant in (s/rad).
The active and reactive power generated by the synchronous machine can be obtained
as follows. The complex power (in per unit) produced is given by
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S, =P, +iQ, =VI'

T - T

(A.66)

where V =(Vd + qu)ej(dZj and I = ( Iy + jlq)ej(OZJ. Thus, using the definitions of V and

I yields
P =1V,+,V,

Q, =1V, — 1.V,

(A.67)

(A.68)

Substituting (A.43)-(A.45) into (A.67)-(A.68) the active and reactive powers are

expressed only in terms of meaningful variables:

P, = KLE{V cos(6 - 0)+ K,V cos(5—0)+ K EV sin(5-0)
+ KygwygV sin (5 - 60)+ K,V sin (2(5 - 0))

Q, =—K,EVsin(6-0)- K, Vsin(5§-60)+KEV cos(5-0)

15—q

+ KV cos(5-6)-V? (K18 cos (6 -8)" + K, sin(§—0)2)

where
(X7=X,)
Xq(Xq=X,)

(Xs =)

q

X%

(X(; _Xls)

K =—"d %)
TOXI(X=X)

__(Xe=Xd)
XX = X)

(x:-x3)

(A.69)

(A.70)

(A.71)

(A.72)

(A.73)

(A.74)

(A.75)
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K =— X (A.76)
K =— ):'” . (A7)
q

Thus, the generator model of order VI is given by six differential equations
(A.46)-(A.49), (A.64)-(A.65) and two algebraic equations (A.69)-(A.70).

Finally, some generators can be equipped with an OvereXcitation Limiter and it
necessary to compute the field current. Therefore, substituting (A.37), (A.44) and (A.45)
into (4.36) yields

o =—K.E! — Koy — KV cos(5-6). (A.78)

A.2 Generator model of order IV

A reduced-order synchronous machine model can be obtained (from the generator model of
order V) if the damper windings are neglected since the subtransient open-circuit time

constants T

qo’

T4, are sufficiently small. Thus, the rotor circuit for this model is composed

of the field winding and one amortisseur winding (denoted by 1q) [Sauer and Pai, 1998].

Therefore, the generator of order IV is represented by the following voltage equations:

1d
Vd=—Ra|d—£wq+— Y (A.79)
@, @, dt
@ 1 dy,
V. =-RI, +—p, +—— A.80
q a’'q a)o l//d a)o dt ( )
1d
Vig =Ryl +— P (A.81)
@, dt
1 dy,
0=R, I, +——F A.82
Rabi+ 2 (A82)
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with the flux linkages per second as

Wa=—Xglg +Xal g

Wy ==X ly+ X

mq ' 1q
Wig == Knglg + Xggl g

Wiy = Xnglg + X

1919 '1q *

(A.83)
(A.84)
(A.85)

(A.86)

Hence, the synchronous machine model of order IV can expressed only in terms of

meaningful variables following the same procedure as Section A.1 and under the same

assumption:
dE',
Too—gr = K + K cos(5-0)+E,
T'qod'j—td: K,E's +K,Vsin(5-6)
do
E:a)—wo
OI—”":ﬁ(P ~P,~D(0-,))
d 2H'"™ ¢ °
P, = KE',V cos(5—0)+K,E',Vsin(5-6)
+K,VZsin(2(5-0))
Q, =—KsE',Vsin(5-0)+K,E',V cos(5-0)
~V?* (=K, cos(5-0)" +K,sin(s-0))
where
X
K =-24d
1 X(;
K, =—1+X—‘j
Xd

(A.87)
(A.88)

(A.89)

(A.90)

(A.91)

(A.92)

(A.93)

(A.94)
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K,=—— A.95
Y (A.95)
X
K,=-1+— (A.96)
q
Ks = —i' (A.97)
q
Ky =— (A.98)
Xd
Xi—X!
=8 (A.99)
2X 5 X,
and the field current is expressed as
Iy = —K,E; —KV cos(6—-0). (A.100)

The synchronous machine model of order 1V is often referred to as a two-axis model
[Sauer and Pai, 1998].
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Appendix B

Power system stabilizer model

B.1 Transformation of the power system stabilizer

The functional block diagram of the Power System Stabilizer (PSS) system is shown in
Figure B.1 [Kundur, 1994].

E
av Exciter #
+N\o7 and AVR
Washout Phase Lead V tma
Aw X sT, 1+sT, 1+s7,
—> . —») —») —»|
1+sT, 1+sT, 1+s7,
7

s(min)
Figure B.1: Power system stabilizer.

The PSS system consists of three blocks: a phase compensation block (phase and
lead), a signal washout block and a gain block. Each block is represented by a transference
function that involves two differential equations. However, the integration method used in
the present work cannot solve this type of transference function. Therefore, the PSS model
must be expressed by only one ODE, which can be obtained by dividing each transference

function as follows:

sTw 1 1

=1- (B.1)
1+sTw 1+sTw
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N_| r—\_|

1+sT, T, ( _] 62)

1+sT, T, 1+sT,

)

Using (B.1), (B.2) and (B.3) the functional block diagram of the PSS system can be

e

1_
1+sT, T,

1+sT, T, 1+sT,

(B.3)

represented as shown in Figure B.2.

e

By following the block diagram from Figure B.2, the model of the PSS can be

Figure B.2: Block diagram of the PSS.

expressed in terms of ODEs:

deﬂ: KiAw—-W' (B.4)
dt
dP' N o
TzE:Cl(KSAa)—W )—-P (B.5)
T4%:CZ(KSAa)—W’)—c3P’—V’ (B.6)

with the compensation Vs of the PSS system given by
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V, = ¢, (KA@-W')+¢,P +V’ (B.7)

where W', P’ and V' are the new state variables associated with the washout block, phase

and lead, respectively. Finally, the constants c; are given by

C, =1—_|-|_-—l (B.8)
2
T

C, = _T_3 (B.9)
4

=n Tl (8.10)

T, T,T,

q:ﬂﬁ (B.11)
T,T,

%z%. (B.12)

4
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Appendix C

Induction machine model

C.1 Induction motor model of order 111

The induction motor model used in this work is derived with the same procedure

described for the synchronous machine. Figure B.1 shows the winding arrangement for a
2-pole, 3-phase (v,, V,, V.), symmetrical induction machine. The stator and rotor windings

are sinusoidally distributed winding, displaced 120°, respectively. This representation can

be employed for both the squirrel-cage rotor and the wound rotor.

\
ib
~ \e
* T—-+-
i
VY, ¢
v
/
=
'}
72
it
Rotor Stator or Armature

Figure C.1: Schematic diagram of the induction machine.

The stator and rotor equations expressed in terms of the dgO frame reference are
obtained by applying Kirchhoff's, Faraday's fundamental laws and the Park transformation
[Krause et al., 2002], [Kundur, 1994]:
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Vds:Rslds__ s T
0 ! 0 dt
d
VQs:RSIQS+_e ds—i_i l//qs
X @, dt
1d
V, =R, —(1-0 )y, +——
dr r'dr ( r)l//qr 500 dthr
1 dyy

Vi =R 1, +(1-@, ) wy, M
0

with the flux-current relations [Lesieutre et al., 1995]

‘//ds = xsslds +Xm|dr

Voo = X lgs + Xl

ss ' gs

l//dr :Xmlds—i_>< I

rredr

qu’ = Xmlqs + erlqr

X=X+ X,

X, =X +X_

(C.1)

(C.2)

(C.3)

(C.4)

(C.5)
(C.6)
(C.7)
(C.8)
(C.9)
(C.10)

where w, is the actual rotor speed, and we represents the speed of a rotating reference

frame. X and X, are the stator and rotor leakage reactances, whereas X, is the magnetizing

reactance. R; is the stator resistance, V,; and V, are the d and g stator voltages, I, and I

are the d and q stator currents y,,and w, . are the d and g stator flux linkages, and

similarly for the rotor circuit.

Based on the dynamics of interest in the present work, the induction motor model can

be rely on the following assumptions:

e The transformer voltages are neglected (v, =y, =0).

e The reference frame is rotating at synchronous speed, (o, = @,).
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e The rotor is assumed to be a squirrel-cage, (V,, =V,, =0).

e Magnetic saturation is neglected.

Based on the assumptions the motor equations (C.1)-(C.4) are expressed as

Vo = Rl ~ ¥ (C.11)
Ve =Rl s + Wy (C.12)
1 dy,,
;od—td =Rala Vo —OYq (€13)
1 dyy
;Od—td:_Rquqr Yo TOYy, (C14)

The induction motor model can be obtained using the following definition [Lesieutre
et al., 1995], [Kundur, 1994]:

_y?2
X, _ XX = Xy (C.15)
X
& =X—rrl//dr (C.16)
Xy
€ :_x_rrl//qr (C17)
T, = X (C.18)
R,
s=1-w (C.19)

where e; and e, are the voltage magnitudes behind transient impedances. T, is the

transient open-circuit time constant, and s is the slip speed in p.u.
Hence, the rotor currents are obtained by substituting (C.15)-(C.17) into (C.7)-(C.8)

e (X=X,
dr X

m

(C.20)
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e(; +(Xs’ - Xss)lqs
l, =- . .

m

(C.21)

The stator currents are determined from (C.11)-(C.12) using the rotor currents
equations and stator flow linkages (C.5)-(C.6):

R (V,—€)) X' (Vg —6
o = R( ixs,;’)+ ng jxs,;*) (C.22)
RS (Vqs _e(’]) Xls (Vds _e(;)

o RZ+ X7 - RZL X2 (C.23)

On the other hand, the stator voltages can be represented in a complex form
[Lesieutre et al., 1995], [Kundur, 1994]

Vel” = (Vy + jV, ) =V cos @ + jV sin g (C.24)

where V and @ are the magnitude and phase angle of the voltage measured at the load bus
terminal.

Using (C.24), the stator currents can be represented in terms of terminal voltage as

—Re; — X, +RV cos@+ XV sing
ds — R2 + X72

(C.25)

Xe&; —Re; +RVsing— XV cosd
©= % - (C.26)
Substituting the stator and rotor currents equations into (C.13)-(C.14), the induction

motor model is expressed as

de
To'd—tqz M.e; +[M,+M, (1-w,)]e; — M,V cosd + M,V sing (C.27)
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1A
dey

T o [-M,+M, (1-w,) e, + M) + M,V cosd+ M,V sind (C.28)
where
X
M. =2 C.29
=R (C.29)
Rs (Xss - Xs,)
2 RZ + Xl 2 (CBO)
Rs2 + XSSXS'
M, = TRax (C.31)
Xs’ ( Xss - Xs')
M, =—RSz . XS’Z (C.32)
RS
M, = _—Rf X7 (C.33)
X,
M, = X7 (C.34)

The rotor motion can be represented by the differential equation in terms of the rotor
angular speed, wy, in p.u.
do 1

ro_ T-T C.35
dt 2Hm(e ) (C.3)

where Hy, is the moment of inertia, and T, is the electromagnetic generated torque, which is

given by [Krause et al., 2002]
T.=wly ol (C.36)

Introducing (C.7)-(C.8) and the rotor and stator currents in (C.36) yields
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T, =—M.eV cos @+ MgV sin@— MgV cos(0) - MgV siné

: /2 (C.37)
+ M{(ed ) +(e)) ]
Similarly, T, is the mechanical load torque, and its model is composed of both the
constant and the quadratic torque models. Thus, the composite mechanical load torque
takes the following general form [Van Cutsem and Vournas, 1998], [Kundur, 1994]:

T =T, +To, +T,&f (C.38)

where Ty, T1 and T, are constants whose values are calculated with the initial condition as
discussed in Section 2.6.4.1.
The active and reactive power absorbed by the induction motor can be expressed only

in terms of meaningful bus variables:

P =MV cosd+MgeyV sind—MeV cosd

_ ) (C.39)
+MgeVsingd—-MyV

QLn =—Mge,V cos&+ Mg,V sind—MgeV cosd

_ , (C.40)
-MgeVsing+MyV

Therefore, the induction motor model of order Il is composed of three differential
equations (C.27), (C.28), (C.35) and four algebraic equations (C.37)-(C.40).
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Appendix D

Electric power system data

D.1 One-machine infinite-bus system data

Bus Shom Prom Xis

Table D.1: Transmission line parameters

Buses | R(p.

u.) | X(p.u.)

B(p.u.)

1

2 0

0.055 0

1

2 0

0.055 0

X X’q

Table D.2: Synchronous machine parameters

(MVA) | (MW) | (p.u)
1 | 1100 | 935 | 0.125

(p.u) | (p.u.)
1 o031

X7s
(p.u)

Tw | T7
©) ©)

0 Xq
(p.u.)

Xy | X7
(p.u) | (p-u.)

T’do T ’do
G | 6

0.256 | 10.2

0.0245 | 0.69 | 0.356 | 0.08

0.6 | 0.054

(s) | (s/rad)
4.2 5

D.2 2-machine, 4-bus system data

Table D.3: Transmission line parameters

Buses

R(p.u.) | X(p.u.) | B(p.u.)

1|4 0

0.055

0

14 0

0.055

0

Table D.4: Transformer parameters

Buses | Ry(p.u.) | X

(p.u.) | Tap: T,

Tap: U,

2 |4

0 0

.016 1.04 1

.0

314

0 0

.004

1.0 1

0

Table D.5: LTC parameters

Buses | Veon(p.U.)

Mmax(P.U.)

rmm

(p.u.)

Ar(p.u.)

db(p.u.)

Tao+Tm(S)

34 1.0

11

0.8

0.01

0.01

20

T+ Tim(S)
10

Table D.6: Static load parameters

Bus

PL(MW) | QM

VR’s)

3

600

150
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Table D.7: Load restoration parameters
Th(s)

Table D.8: Induction motor parameters

Bus

To(s)

Ot

2

3 20

20 0.2

0.2

Bus | Swom |fPL|fQL| Rs Xs Xim R, Xo | H | TdTo | TofTo
(MVA) (pu) | (pu) | (pu) | (p.u) | (p.u.) | (5)
3 800 |[04/04]| 00 | 01 | 32 |0018] 018 [05] O 0
Table D.9: Synchronous machine parameters
Bus Shom Prom Xis X X4 X4 T T Xq X’q Xq Two | T w H D
(MVA) | MW) | (p.u) | (p.u) | (p.u) | (p.u) | () ) [ @u) | @u)|@u)l () | (5 |(s) | (srad)
1 100000 | 100000 0.2 2.1 0414 | 0.25 | 6.682 | 0.052 2.1 0813 | 0.25 | 452 | 0.221 | 35 0
2 500 450 0.2 2.1 0414 | 0.25 | 6.682 | 0.052 2.1 0.813 | 0.25 | 452 | 0.221 | 35 0
Table D.10: Exciter parameters
Bus | Te(s) | Ge | Esgmax(P-U.) | Etdamin (P-U.)
1 ] 01 |50 5 0
2 [ 01 ]50 5 0
Table D.11: OXL parameters
Bus | lfldm (pU) S11S,| By | B, | B3| B, Ci
2 2825 |1 ]2 ]20/01]1[1]01
Table D.12: Governor and turbine parameters
Bus| R | Tov P, ™ P, min Tew | Fup | Tru | Fip | Teo
(Pu) | &) | —— u)| —= (E.u)]| ©) () ()
dt dt
1 ] 04 |01 0.1 -0.1 0204 4 [03]03
2 | 04 |01 0.1 -0.1 0204 4 [03]03
D.3 3-machine, 9-bus WSCC system data
Table D.13: Transmission line parameters
Buses | R(p.u.) | X(p.u.) | B(p.u.) Buses | R(p.u.) | X(p.u.) | B(p.u.)
4|5 (0.0100 | 0.0850 | 0.176 8 (9 (00119 | 0.1008 | 0.209
5|7 ]0.0320 | 0.1610 | 0.306 9 (6| 0039 |0.1700 | 0.358
7 [ 8]0.0085 | 0.0720 | 0.149 6 | 4]0.0170 | 0.9200 | 0.158

Table D.14: Transformer parameters

Buses | Ry(p.u.) | Xs(p.u.) | Tap: T, | Tap: U,
114 0 0.0625 1.0 1.0
2|7 0 0.0576 1.0 1.0
319 0 0.0586 1.0 1.0
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Table D.15: Static load parameters

Bus | PL(MW) [ Q.(MVR’s)
5 125 50
6 90 30
8 100 35

Table D.16: Synchronous machine parameters

Bus |  Snom Xis Xq Xa | T | X Xg | Taw | H D
(MVA) | (p.u) | (pu) | (pu) | () | (p.u) | (p.u) | (9) (s) | (sfrad)
1 100 0.0 | 0.146 | 0.0608 | 8.96 | 0.0969 | 0.0969 | 0.31 | 23.64 | 0.01254
2 100 0.0 |0.8958 | 0.1198 | 6.0 | 0.8645 | 0.1969 | 0.535 | 6.4 | 0.0068
3 100 0.0 |1.3125]0.1813 | 589 |1.2578 | 025 | 0.6 | 3.01 | 0.0048
Table D.17: Exciter parameters
Bus | Te(s) | Ge | Efgmaa(P-U.) | Etdmin (0.U.)
1 0220 5 -5
2 | 02 |20 5 -5
3 ] 0220 5 -5
D.4 10-machine, 39-bus New England system data
Table D.18: Transmission line parameters
Buses | R(p.u.) | X(p.u.) | B(p.u.) Buses | R(p.u.) | X(p.u.) | B(p.u.)
1 2 | 0.00350 | 0.04110 | 0.69870 13 | 14 | 0.00090 | 0.01010 | 0.17250
1 | 39 | 0.00100 | 0.02500 | 0.75000 14 | 15 | 0.00180 | 0.02170 | 0.36600
2 3 | 0.00130 | 0.01510 | 0.25720 15 | 16 | 0.00090 | 0.00940 | 0.17100
2 | 25 | 0.00700 | 0.00860 | 0.14600 16 | 17 | 0.00070 | 0.00890 | 0.13420
3 4 | 0.00130 | 0.02130 | 0.22140 16 | 19 | 0.00160 | 0.01950 | 0.30400
3 | 18 | 0.00110 | 0.01330 | 0.21380 16 | 21 | 0.00080 | 0.01350 | 0.25480
4 5 0.00080 | 0.01280 | 0.13420 16 | 24 | 0.00030 | 0.00590 | 0.06800
4 | 14 | 0.00080 | 0.01290 | 0.13820 17 | 18 | 0.00070 | 0.00820 | 0.13190
5 0.00020 | 0.00260 | 0.04340 17 | 27 | 0.00130 | 0.01730 | 0.32160
5 0.00080 | 0.01120 | 0.14760 21 | 22 | 0.00080 | 0.01400 | 0.25650
6 0.00060 | 0.00920 | 0.11300 22 | 23 | 0.00060 | 0.00960 | 0.18450
6 | 11 | 0.00070 | 0.00820 | 0.13895 23 | 24 | 0.00220 | 0.03500 | 0.36100
7 8 0.00040 | 0.00460 | 0.07800 25 | 26 | 0.00320 | 0.03230 | 0.51300
9 8 0.00230 | 0.03630 | 0.38040 26 | 27 | 0.00140 | 0.01470 | 0.23960
9 | 39 | 0.00100 | 0.02500 | 1.20000 26 | 28 | 0.00430 | 0.04740 | 0.78020
10 | 11 | 0.00040 | 0.00430 | 0.07290 26 | 29 | 0.00570 | 0.06250 | 1.02900
10 | 13 | 0.00040 | 0.00430 | 0.07290 28 | 29 | 0.00140 | 0.01510 | 0.24900
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Table D.19: Transformer parameters

Buses | Ry(p.u.) | Xs(p.u.) | Tap: T, | Tap: U, Buses | Ry(p.u.) | Xs(p.u.) | Tap: T, | Tap: U,
2 | 30 0.0 0.01810 1.02500 1.0 22 | 35 0.0 0.01430 1.02500 1.0
6 | 31 0.0 0.02500 1.07000 1.0 23 | 36 | 0.00050 0.02720 1.0 1.0
10 | 32 0.0 0.02000 1.07000 1.0 25 | 37 | 0.00060 0.02320 1.02500 1.0
12 | 13 | 0.00160 0.04350 1.00600 1.0 29 | 38 | 0.00080 0.01560 1.02500 1.0
19 | 33 | 0.00070 0.01420 1.07000 1.0 12 | 11 | 0.00160 0.04350 1.00600 1.0
20 | 34 | 0.00090 0.01800 1.00900 1.0 19 | 20 | 0.00070 0.01380 1.06000 1.0
Table D.20: LTC parameters
Buses | Veon(p.U.) | rmax(@.U.) | r™(p.u.) | 4r(p.u.) | db(p.u.) | Tao+Tu(s) | Tar+Tm(s)
12 | 13 1.0 1.1 0.8 0.01 0.01 20 10
12|11 1.0 1.1 0.8 0.01 0.01 20 10
20 | 19 1.0 1.1 0.8 0.01 0.01 20 10
Table D.21: Static load parameters
Bus | P.(MW) | Q. (MVR’s) Bus | P.(MW) | Q. (MVR’s)
3 322 2.4 23 | 2475 84.6
4 500 184 24 | 3086 -92.2
7 233 84 25 224 47.2
8 522 176 26 139 17
12 7.5 88 27 281 755
15 320 153 28 206 27.6
16 329 32.3 29 | 2835 26.9
18 158 30 39 1104 250
20 628 103 31 9.2 4.6
21 274 115
Table D.22: Synchronous machine parameters
Bus Shom Prom Xis X X4 X4 T T Xq X’ Xy Two | T H D
(MVA) | MW) | (p.u) | (p.u) | (p.u) | (p.u) | (s) () (pu) | (pu) | (pu) | (8 ©) (s) | (s/rad)
30 1100 935 0.125 1.0 0.31 | 0.256 | 10.2 | 0.0245 | 0.69 | 0.356 | 0.08 0.6 | 0.054 | 4.2 0
31 750 675 0.262 | 2.212 | 0.523 | 0.327 | 6.56 | 0.034 | 2.115 | 1.275 | 0.327 | 15 | 0.038 | 4.04 0
32 1000 850 0.304 | 2495 | 0.531 | 0424 | 5.7 0.039 237 10876 | 0424 | 15 | 0.053 | 3.58 0
33 1000 850 0.295 | 2.63 | 0.436 | 0.348 | 5.69 | 0.040 2.58 166 | 0.348 | 15 | 0.051 | 2.86 0
34 800 680 0432 | 536 | 1.056 | 0.285 | 54 | 0.0345 | 4.96 | 1.328 | 0.285 | 0.44 | 0.023 | 3.25 0
35 1000 850 0.224 | 2.54 0.5 0.31 7.3 | 00379 | 241 | 0814 | 0.31 0.4 | 0.023 | 3.48 0
36 800 680 0.257 | 2.36 | 0.392 | 0.314 | 5.66 0.04 2.336 | 1488 | 0.314 | 15 | 0.038 | 3.3 0
37 800 680 0.224 | 232 | 0456 | 0.285 | 6.7 | 0.0345 | 2.24 | 0.729 | 0.285 | 0.41 | 0.023 | 3.04 0
38 1000 850 0.298 | 2.106 | 0.57 | 0.356 | 4.79 | 0.0245 | 2.05 | 0.587 | 0.356 | 1.96 | 0.054 | 3.45 0
39 10000 8500 0.3 2 0.6 0.375 7 0.0356 1.9 0.8 0.375 | 0.7 ] 0.021 5 0
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Table D.23: Exciter and derivative feedback parameters

Bus | Te(s) | Ge | Etaman(P-U.) | Eramim (P-U.) | Ke | Tr(p.u.)
30 0.1 |50 5.0 -5.0 0.1 4
31 | 095 |6.2 5.0 -5.0 0.114 3
32 0.1 |50 5.0 -5.0 0.12 4
33 0.1 |50 5.0 -5.0 0.12 4
34 |1 0.07 | 40 5.0 -5.0 0.07 3
35 | 007 | 5.0 5.0 -5.0 0.115 4
36 | 0.07 | 40 5.0 -5.0 0.07 3
37 | 007 | 5.0 5.0 -5.0 0.15 4
38 | 0.07 | 40 5.0 -5.0 0.08 3
39 | 0.08 | 6.2 5.0 -5.0 0.12 6
Table D.24: Governor and turbine parameters
Bus| R | Tev | gp. ™ p. min Ten | Frup | Tru | Fip | Teo
(Pu) | () | =~ Cu)| 5 Gu)| @ ) )
30 04 |01 0.1 -0.1 02104 4 103]0.3
31 04 |01 0.1 -0.1 02104 4 103]0.3
32 04 |01 0.1 -0.1 02104 4 103]0.3
33 04 | 0.1 0.1 -0.1 02104 4 103]0.3
34 04 | 0.1 0.1 -0.1 02104 4 103]0.3
35 04 | 0.1 0.1 -0.1 02104 4 103]0.3
36 04 | 0.1 0.1 -0.1 02104 4 103]0.3
37 04 | 0.1 0.1 -0.1 02104 4 103]0.3
38 04 | 0.1 0.1 -0.1 02104 4 103]0.3
39 04 |01 0.1 -0.1 0204 | 4 103]0.3

D.5 46-machine, 190-bus Mexican power system data

The system data are taken from [Messina and Vittal, 2005]. However, for this work all

generators are equipped with a steam turbine. Furthermore, the parameter for all speed

governors and steam turbine are equal and given in Table D.25.

Table D.25: Governor and turbine parameters

R Tov p. ™ p.m™ Tew | Frup | Tru | Fip | Teo

() | O | == u) | == ()| ©) (s (s

04 | 0.1 0.1 -0.1 02|04 4 03|03

Table D.26: LTC parameters

Buses Rs Xs Tap: Tap: Veon | Fmax | I Ar db | TaotTm | TertTm
(p.u) | (p.u) T U | (u) ]| (pu) ]| (@u)| (@u)|@Eu)| (8 (s)
182 | 182fa | 0.0007 | 0.0138 1.0 1.0 1.0 1.1 0.8 | 0.01 | 0.01 20 10
183 | 183fa | 0.0007 | 0.0138 1.0 1.0 1.0 1.1 0.8 | 0.01 | 0.01 20 10
184 | 184fa | 0.0007 | 0.0138 1.0 1.0 1.0 1.1 0.8 | 0.01 | 0.01 20 10
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