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ABSTRACT

This thesis describes the procedure followed to represent the nonlinear modal interaction of a power
system dynamic based on the modal series method. The method is based on the multidimensional
Laplace transform and theorems of association of variables. Through this systematic procedure it is
possible to represent the nonlinear modal interaction of a nonlinear system. Furthermore, the method is

capable of identifying nonlinear forced oscillations due to an arbitrary excitation function.

The procedure allows the computation of analytical approximate functions, which are independent
of any resonance condition. In addition, the method is capable for representing nonlinear transfer
functions, since the solution of the method is based on an uncoupled nonlinear system solved through

Laplace transform.

The modal expansion procedure is extended to the case of higher order multidimensional nonlinear
systems described by nonlinear differential equations. A detailed description about the analytical steps
needed to form the method is exemplified by a third order nonlinear model. The proposed method is
experimented with a synchronous machine-infinite busbar power system which allows a detailed

description on the application of the higher order modal series method.

The method is studied through the 3 machines-9 buses and the New England 10 machines-39 buses
test power systems, where the accuracy of the approach is verified through comparison with respect to
the direct integration of the nonlinear dynamic system. The main nonlinear modal interactions are

remarked, which clarify the behavior of the nonlinear oscillations

The study of the system when a UPFC is connected is analyzed. The closed form solution of the set
of algebraic-differential equations is obtained by the modal series method. The nonlinear contribution
and the modal interaction are considered through the analysis of nonlinear indices, and linear and

nonlinear participation factors in a SMIB-UPFC test system.



THIS PAGE IS INTENTIONALLY LEFT BLANK



CONTENT

ACKNOWIEAGIMENLS.....ccccuieiiieeeiieecieeetee e et e et e e te e et eesteeessaeeesbee s sseeessaeesseasasseesssessssesasseessssennn i
F e 03 1 - Lot AR OO U TR SSTRRR v
(0] 31 7<) 1 S USSR vit
List of Symbols and ACTONYIMS .......ccecverieeiieeieesieseestesteereesseesseeseessaessesssesssesssesssessssesssesssesnees xi
LISt OF FIGUIES ..eeuvieetieeeiieieeieecieerteeseeseestte s teete e teesteessaessteesseesseessaessaesssesssesssesssaesaesseesssesssennseenses Paiil
LISt Of TaDIES.....ueiieieieiieeeiee ettt et e et e et e e e te e e tee e e ebe e e baeesabee e saeessseesasaeansseesnseeesseesnsasansseens Xvii
LSt Of PUDLICALIONS ..ecuvieeiiiieiiieciieeciee ettt et ee e e teeeeveeebee e aeeeavae e aaeesasaessseesnseesnsaeesssaennseeans Xix
1. INTRODUCTION
00 LY (0 1 A7 1 (o) o USSPt 1
1.2 Overview Of the State Of ATt ......ccceiiiieieiieeeeeeeeeee ettt et eneas 2
1.2.1 Main Contributions on Normal Forms Method ............cccceeeiiieiiiniiieeciieeieeee, 3
1.2.2 Earlier Proposition of Modal Series Method ..........ccceeevveeieecieiiinieciecieceeien, 6
1.2.3 Discussion on the Necessity for Including Higher Order Terms...........cccccocuneee. 7
1.3 General ODJECHIVE......cccuiiecieecieecie ettt rree e te e e e e st e e s ae e e reeessseesseeennseesnsens 8
1.4  Aims of this Doctoral ReSEarch ............ccceeeeueeeiiiieiieeieeceeecetee ettt e eevee e 9
1.5  Main CONTIDULIONS ...eccuviieiieeeiieciie ettt ettt e e rete e te e evee e re e e be e e saeesarae e saeenaseeenseas 09
1.6 ThesSis OULLNE ......uviiiiiiiee ettt ettt e ettt e e e e tte e e eette e e eebeeeeesseseeenseseeensaneanns 10

2. TOOLS FOR THE ANALYSIS OF NONLINEAR DYNAMIC SYSTEMS

2.1  Background on Nonlinear Methods ........c..cceceerierienieniieniieeieceseesee et 11
2.2 Linearization PTOCESS .....ccccceoerriirriirienteneenee ettt eeite st ste st et eseesseeseesmeesneeneens 12
RGN o)y b= 1 W @F: 12T} ) CaF: 1B 2Yo) o .4 PSPPSR 13
2.4 Normal Forms. Theoretical Background.............ccccoeveiiieiiiieiieneeeccieeseeeeeeeee e 14
2.4.1 Nonlinear Coordinates Transformation ...........cecceeeeereerieerieerieersuessesseeseeseennns 14
2.4.2 Approximate Solution of the Normal FOrm.........cccccevvervenieiciieieeneeseesieenenns 16
2.4.3 Determination of Initial Conditions for the Normal Forms Method................... 18
2.4.4 Nonlinearity INAEXES.......cccvverveerieeriieriierriernieneenstesseeesseesseesseesseeseesssesssesssesssasnns 19
2.4.5 Participation FaCOLS ......ccocuiiiiiiirieniiieceeeee ettt s 20
2.5 The Initial Modal Series Method ..........cccecervuerrierrernernienienieesieesieeseeeseeseesnesssessseens 21
2.5.1 Taylor Series Expansion and Jordan Canonical Form.........cc..ccoceeviriiinennncnne. 21
2.5.2 MOdal SOIULIONS ....cecvieuieieriirienienteteee ettt sttt ettt et sbe et sbesaeeee b 22
2.5.3 Initial Conditions in the Modal Series Method............ccocevvieriierienniennerneeneenne 24
2.6  Principal Differences Between Normal Forms and Modal Series Methodes.................. 25

Vil



2.6.1 INormal FOIrmS SOIULION ....uuuuueeeiiiiieeiieiiieieieieitieeteeeaaeassaasasssssaesesssessasseaeaaaaaea———. 25

2.6.2  Modal Series SOIULION ......cccuiirieriiiierieeetetee ettt 26
2.6.3 Summary of Main Differences Between Normal Forms and
Modal Series MethOods.........cocuteeiiriiniinieeieeiteteeeeete ettt 26
2.7 Case Study. Fourth Order Benchmark Nonlinear System...........cccceeeeveerienerseenenennnns 28
2.7.1  Nonlinear Model CharacCteriStiCS.......covverrvirrverrrerrreereerieerieersresssesssesssessseeseennns 27
2.7.2  EXperiment DeSigN.......cccoceiiiiriieniieeieeeeeee et emee e s 28
2.7.3  Simulation ReSUILS.........ccceririieririieienieteeeteer ettt 30
2.7.4 Change on Initial CONAitionS.........cccceeeveeeriereieeecieerieeeseeeeee e s e e eseeeeeeeeeeeeas 35
2.8 DISCUSSION «..uetiueieiierieeiieeteeteeete ettt ettt e sieesae st sebe s bt e bt e s e e s et s et e et emeesmeesmeesanens 41

THE MODAL SERIES METHOD BASED ON THE MULTIDIMENSIONAL
LAPLACE TRANSFORM

1 788 S oY 0 1 L ) 1 USSR 43
3.2 Background of the Modal Series Method...........cccceecievieniiniiniececeee e 44
3.3 The Modal Series Revisited: Mathematical Model............cccccevverrernieeniierniernienieennennes 45
3.3.1 The Modal Series Free System ReSPONSE ........cceeeeverrrvereieereieeeieeeseeeeeeeseeeens 46
3.3.2 Multidimensional Laplace Transform..........ccecceveeerreenenennienennieseneniesenceeens 47
3.3.3 Association oOf Variables ..........ccceecverieriieniennieineeneeneeeiesieesieeseeseesseseesssesnes 48
3.4 Modal Series Closed FOIrm SOIULION .......ccccueieiiiiieieieiieecieceieeecee e eee e veeeenee e 49
3.5 Modal Series Closed Form Solution Under Resonance Condition ..........c..cceeeeeveenennne. 51
3.6  Higher Order Approximations on the Modal Series Method...........ccccecvvvreiirecieerenennns 52
3.7  Power System Modeling by Higher Order Modal Series.........ccccecceverernienennienenennens 56
3.7.1 Case 1: Classical Model.........cccceeeuerrieinienierienieniesieesieeseeseeeeeseesseesseesseesaees 57
3.7.2 Case 2: Flux Decay Model.........ccceeeeiiiiiiieiieecieeeieeeseeesteeeiee e ssaeeesveeseaeeens 63
3.8 DISCUSSION ..ottt ettt st st st e e et e e e st e s et e et e st e st e saeesanesasesaneseneeneenne 75

MULTIMACHINE POWER SYSTEMS MODELLING FOR NONLINEAR
OSCILLATIONS STUDIES

4.1  Synchronous Machine Generators Modeling..........ccceecvverriieeieeecieenseesseeesieeeeeeseeens 79
4.2 Transmission Network Modeling..........ccceeveervierciersiinnieiniienienteneeeeeseesseeeseeeseeesaeesnnens 80
4.3 Coordinate Transformation to a Common Reference Framework .........c.ccccccecvevuenuennen. 82
4.4 Initial Conditions Calculation for Dynamic Analysis of Multimachine System........... 85
4.5 Application Example. 9 Buses, 3 Generators Test Power System..........cccceccveeevveeennenn. 89
4.6 DISCUSSION c..uevieitieritieetee ettt sttt sree et e st e st e e s et e sbeeesmeeesaseeeemeeesaseesneeesnneesanens 89

FORCED OSCILLATIONS FROM THE MODAL SERIES METHOD

5.1 INITOAUCLION ccvvviiiieiiieeieieee ettt et e ceere e e e eeareeeeenabeeeeensneeesensseeeeenssnsesensreeas 91
5.2 Modal Series Background............ccccoueeeieiiiiiiiiiieieecieccee et 91
5.3 FOrced OSCIIAtiONS. ......coovuviiieereieeeereee et ceetee e eeetreeeeeetreeeeesseeeeensneeesesseseeesreeas 092



5.4  SynthetiC EXaAmMPIe.....c.ciiciiiiiiiieieeeiieeceeecee ettt e ettt e et e esveeeste e s vaessaeeeseeessseeeseenas 95

5.5 The Transfer Function in Nonlinear SYStemS...........cccecvereereereenviessieeieeseesreeseesnennns 98
5.5.1  INTOUCHION ....eeiitirieiieitetertteteste ettt ettt ettt st e b st e e s bt eseesveeneen 98
5.5.2  Theoretical Basis of Nonlinear Transfer Function...........ccccceevveevveecveecieesveennen. 99
5.5.3  Volterra Functional EXPansion...........cccecereverrierrierneenieenieesisessienssessseeseeseennees 101
5.6 Nonlinear Transfer Function Based on Modal Series Analysis ........cccoccevvvererernreeneenne 105
ST 5 ¢: 111 0] 13U 108
5.7.1  SMIB Classical MOdel ........cccceeeirriiniirierierieirieenieeneeseesreseesseeseesseesseesans 108
5.7.2  Step INPUt RESPONSE ...cevuuviieiiiiiiieeiiteeeette sttt e s sbee e s s bee e s s asaeesas 114
5.7.3 3 SM, 9 Buses Test POWEI SYSteIM........ccoceerrueeriieeriiernieenieennieesieesseeesiseenns 117
5.7.4  NUmMETICal ANALYSIS .ccvirviirriiiriiirierieniesierteereereeseeetesteesre e e e asessaeseesssesnnes 126
5.8 DISCUSSION ..eeiiuiiieiieiiietieiitee ettt s eeteesseiteessetteeessateeesesbteesssssaaesssssnaessssseassssssnessnssseens 133

6. CASE STUDIES: APPLICATION OF MODAL SERIES TO THE ANALYSIS OF
NONLINEAR OSCILLATIONS

6.1, INTOAUCTION ...ttt ettt et s e st s e e bt e s bt e st e st e e aee e b enas 135
6.2. Case Study 1: 3 Synchronous Machines, 9 Buses Test Power System..........cc.cccceeveeuenee. 135
6.2.1. Small Signal ANALYSIS ....ceeeecvereciiieiieeiieeeiee ettt sree e e ereeesae e sreeesreeeeneees 138
6.2.2. Approximate Time-Domain Solutions to System Motion............ccccceeeeuveernnenn. 139
6.2.3. Nonlinear Modal Interaction Through Nonlinear Indices.........cccccecervueruennenee. 143
6.2.4. AlgebraiC Variables.........ccceceeeciiieiieciieceieeecee et etee et e e s sraeeeaes 150
6.2.5. Frequency Analysis of Linear and Nonlinear Contributions.........c..ccccccveeuee.e. 151
6.2.6. Comparisons with Other Approaches...........ccecceeeieercieeeciereieeeseeeseee e 153
6.3. Case Study 2:New England Test Power System (10 SM, 39 BUSES)........ccccceevveeeueeenee. 154
6.3.1. Small Signal ANALYSIS ..cccceevverrirrierienieriieieeeestestesresrestessreesreesaeesseesssesnne 155
6.3.2. Nonlinear Model...........cooiiriiriiiieiieeeteteete ettt 155
6.3.3. Time Domain Validation.........coceereerierrirrienienienieneesieneneesiesre et ee e 159
6.3.4. Nonlinear Oscillation ANALYSIS ......ccceevverrvirrierrieerierieneereerieesieesreeseesseeseennns 164
6.3.5. Critical Fault Clearance............cocceeceeeieniinnienieeeeetesee ettt 169
6.4. Unstable Study Case of the New England Test Power System ..........ccccceceeveereerneeneenennee. 172
6.5, SUIMMIATY ....eviiiieiiiieieiit ettt et e s ettt e s s bet e s s s be e s s s bbeessssseaaesssssaassnsseassssssnens 176

7. INCORPORATION OF FACTS DEVICES: REFERENCE TO THE UPFC

MODELLING

/2% TR 1Y X T 11 i o) s N U U U U USRS PSR 177

7.2, UPFC MOEING.....cccueeoieiiiieiieiieieeiteieestestestestestesstessseesssesssesssesssesssesssasssnesseessnesssens 177

7.3. The UPFC. General CharaCteriStiCS......ccoureiieiiieeeeiiieeeeiiieeeecieeeeecteeeeeeceteeeeesreeesesseeeeenns 178

7.4. Detailed Model of UPFC ........ooouiiiiiicieeeeeteee ettt ette e e s rae e s ae e ba e e saeeeaneas 180
7.4.1. Steady State 0f UPFC......ccoviiiieiieieeeceeeereesee et ete et ve e ae et esse s 180
7.4.2. UPFC POWET FIOW ....viiiiiiiiieciieeeeeeette ettt ere e te e veeesveesevaeesaveessaeenneenn 180
7.4.3. Dynamic Model of UPFC ........ccccoviriiiiiiiiieneeneenieeieeiessieesieeseeseessessesnees 181
7.4.4. UPFC Algebraic MOdel.........ccccieeeiiieiiieieeeieeeeeesie e eeeeve e veesereesaeeeveeens 184



AR T 8 2 SO @00)1a o) B 2111 3Tl 10) s - 187

7.6. UPFC Damping Applications. SMIB POWer SYStem.........ccccvuvirieiereereeeenieeeeeseieeeveens 189
7.7. Second Order Solutions of the SMIB-UPFC .........cccecvrviiriiiriirriienieieeneeneeseesseesssessaeens 193
7.8. Nonlinear Oscillations ANALYSIS .....ccueeecvereriereiiieeiieeriereeeeseeesreeeseeseeeeesreeesseeseeeessveeas 195
7.9, SUIMIMATY coooiiieiieiiieerieeete et e e st e e st e st eesabeesbaessabeesabaesssbeesasaesssseesasaesssessnseesnees 201

8. CONCLUSIONS AND FUTURE RESEARCH

8.1. Concluding REMATKS........ceoiiiuieieieeteeee ettt ettt ettt 203
8.2. Future CONtIIDULIONS .....cc.tevtireirieieniteieeieeteteet ettt ettt ettt e sbe st be b ee b 205
APPENDIX A
MULTIDIMENSIONAL LAPLACE TRANSFORM AND
ASSOCIATION OF VARIABLES THEOREMS ......ccuttiiiitieeecrteeecrteeeevee e ivee s e vvee s e aaee s 207
APPENDIX B
MODAL SERIES HIGHER ORDER DEDUCTION ......cccccottiieiiieeeeciieececeeeeeereeeseseveesseseveeeeenns 209
APPENDIX C
TEST POWER SYSTEMS DATA ...ttt ettt esctte e e e svaeessssaeessssaaesssnssaassnssanesssnsenens 217
APPENDIX D
POWER SYSTEMS INITIAL CALCULATIONS EXAMPLE......cccootiiiirieeeteeneeteeeeeene 221
REFERENCGES .........cooiittiieetetete sttt ettt ettt st s ae sttt ettt b st sb et et et et e e e s s ee 225



LIST OF SYMBOLS AND ACRONYMS

Nonlinear state variables vector

Initial conditions of the nonlinear state variables vector
Stable equilibrium point
Right eigenvectors

Left eigenvectors

Jordan canonical state variables vector

Normal forms nonlinear state variable

Eigenvalue

Nonlinear resonant coefficients

Nonlinear constant of the Dobson's nonlinear benchmark system

Nonlinear second order coefficients

Nonlinear third order coefficients

Multidimensional Laplace transform function

State matrix (Jacobian matrix)

Hessian matrix (third order partial differential matrix)
Rotor angle

Rotor speed

Mechanical power
Damping coefficient

Inertia constant
Direct axis

Quadrature axis

Quadature transient voltage

T T o 8

H © o

0~

2kl

Xi



Direct axis current and voltage

Field voltage
Quadrature axis current and voltage

Reduced admittance matrix

Modulation coefficient and angle of VSC shunt of the UPFC
Modulation coefficient and angle of VSC series of the UPFC
Reactance of the VSC shunt

Reactance of the VSC series

Voltage of VSC shunt

Voltage of VSC series

Stable equilibrium point
Unified power flow controller
Normal Forms method

Modal Series method
Automatic voltage regulator

Voltage source converter

VSERIES

SEP
UPFC
NF
MS
AVR
VSC

Xt



LIST OF FIGURES

Figure

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

2.11
212
213

2.14

2.15

2.16

2.17

2.18

3.1
3.2

Description

Flow chart showing the steps followed for the Normal Forms method ........cc.ccccecveveeieicninenencne

Time response comparison of NF and MS methods respect of Numerical solution for dynamic

system, when the initial condition is snapshoted from ¢ = 0 in time instant t =0 SeC .......c.........

Time response comparison of NF and MS methods respect of Numerical solution for dynamic

system, when the initial condition is snapshoted from ¢ = 0 in time instant t = 0.5 sec ..............

Time response comparison of NF and MS methods respect of Numerical solution for dynamic

system, when the initial condition is snapshoted from ¢ = 0 in time instant t =1.0 sec ..............

Time response comparison of NF and MS methods respect of Numerical solution for dynamic

system, when the initial condition is snapshoted from ¢ =0 in time instant t =1.5 sec ..............

Time response comparison of NF and MS methods respect of Numerical solution for dynamic

system, when the initial condition is snapshoted from ¢ = 0 in time instant t = 2.5 sec ..............

Time response comparison of NF and MS methods respect of Numerical solution for dynamic

system, when the initial condition is snapshoted from t = O in time instant t = 3.5 sec ..............

Time response comparison of NF and MS methods respect of Numerical solution for dynamic

system, when the initial condition is snapshoted from ¢ = 0 in time instant t = 4.0 sec ..............

Time response comparison of NF and MS methods respect of Numerical solution for dynamic

system, when the initial condition is snapshoted from ¢ = 0 in time instant t = 4.5 sec ..............

Time response comparison of NF and MS methods respect of Numerical solution for dynamic

system, when the initial condition is snapshoted from ¢ =0 in time instant 5.0 S€C .......c.ccccccueuuee
State variables response upon initial condition x, = [0.45 04 04 0.4] over time t = 0sec........

State variables response upon initial condition x, = [0.45 0.2 0.2 0.2] over time t =0sec........

State variables for the case of parameters ¢ = 2.5, 1 =0.3250 in the fourth order nonlinear

DENCHMATK SYSTEIML.....coutiiiietirtiniirtetet ettt sttt ettt et sttt se b e b sttt sae s e saesbesneen

State variables for the case of parameters ¢ = 4.5, = 0.65 in the fourth order nonlinear

DENCRMATK SYSTEIML.....eeuiiiiiiieiieieeiteettet ettt sttt ettt e bt e bt et e e s abesaeesbeenbeebeemtesaeesneens

State variables for the case of parameters ¢ =4.5, 1 =0.3250 in the fourth order nonlinear

DENCHMATK SYSTEIML.....coutiieiiiirtiniereeitetet ettt ettt ettt be e b s bt et see s e saesbesneen

State variables for the case of parameters ¢ =4.5, 4 =0.065 in the fourth order nonlinear

DENCRMATK SYSIEIM.....eetiiieeieiieeieritet ettt sttt et st s e st et e et e et esstesseesseessesnsesnsesnnessnenseenseens

State variables for the case of parameters ¢ =6.5, 1£=0.065 in the fourth order nonlinear

DENCRMATK SYSEIML.....eetiiiiiiiiieeitettet ettt ettt ettt et e et s st e s bt e bt e sbeebesatesaeesbeenbeeneeans

State variables for the case of parameters ¢ =8.5, ¢ =0.0065 in the fourth order nonlinear

DENCHMATK SYSTEIML...c..cuiiuiitiieierteniert ettt ettt ettt sbe et ettt e b st e b sae et e e ensennens
Synchronous machine-infinite busbar pOwer SyStem.......cc.coceeirvieiieiienenenenieeccceene e

Rotor angle and speed deviations comparison for a load condition of P,,=0.9 p.u. y 46=30° .........

29

30

31

32

32

33

33

34

35
36
36

37

38

38

39

40

40
56
60



3.3

3.4

3.5

3.6
3.7
3.8
3.9
3.10
4.1
4.2
4.3
4.4
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

5.11
5.12

5.13

5.14

5.15

5.16

5.17

5.18
6.1

Rotor angle and speed deviations phase plane comparison for a load condition of P,,=0.9 p.u. y

AGZB0° .o 61
Rotor angle and speed deviations comparison for a load condition of P,,=1.12 p.u. and 46=30° ........ 62
Rotor angle and speed deviations comparison for a load condition of P,,=1.12 p.u. and 46=30° in a

three dimensional view that shown the differences between full solution and modal series 63
ET@JECEOTIES . ...eteeeueteeeeutteeeetteeeetteeeesatteeesuateeseabteeesubeeesaasteesaasteeesasbaeeeasteesaabteeesssbaeeeansaeeeasbaeeanssaeesanneans
Rotor angle and speed deviations comparison for a load condition of P,,=1.12 p.u. and 46=10° ........ 70
Rotor angle and speed deviations comparison for a load condition of P,,=1.15 p.u. and 46=10° ........ 71
Rotor angle and speed deviations comparison for a load condition of P,,=1.15 p.u. and 46=30° ........ 73
Phase plane comparison for a load condition of P,=1.5 p.u. and 45=30° .......cc.ccceeverruerrerenenrererenncns 74
Flow chart of the proposed method and its relationship with other approaches............c.cccceeeveeverueennen. 77
Schematic diagram of power system MOdeling ...........ccoceeeeiriiiiinierieninere ettt 80
Transmission system reduced to the internal generator NOAes ...........cocceeeereeniersienrienieneeneeeeee e 81
Reference relationship between dg and DQ variables ............ccccceevierviereereesiecie e 83
Generator EQUIVAIENT CIICUIL .......ecveeeieeieriieriereereerie et eteetessee st e stessessteseesaeesseesseeneesneesseesseensesnsesnses 87
Block diagram for the generalized functional representation ..........c.ccccceeeerererneenienenenreneneeeeeeeene 102
Functional expansion of the nonlinear system represented by(5.53) .....ccceevereevienenenenenienenieeeieeene 103
(t,t,) plane for the Case Of £, =, LINE.....cvcuriuriurierieriiriiriireierceeie ettt 104
Schematic representation of transfer function for the nonlinear System ............cccceccevenenenenienncnncenene 106
Schematic representation of individual transfer functions for the nonlinear system..........c..ccccecceceeueene 107
Bode graphics of first and second order transfer functions for the case of SMIB power system.......... 111
Nyquist plots for the linear and transfer functions of A@/AP, ......ccccovrrieieiececcinrrreeeeeeenee 113
Detailed zoom of Nyquist plot of the second order transfer function ..........c..cccceeevevenenrcnenneneniennne 114
Time evolution after a unit step function applied to the transfer functions.........c..cccceeeveveneneneneenee. 116
Time evolution after a unit step function applied to the transfer functions varying the damping 117
COBTEICIBIIE ..
Multivariable transfer function () ....cceeeeeerererereerieieeeees e see s 119
Bode and Nyquist diagrams from the linear transfer functions of the 3SM-9 Buses test power 128
SYSERIIL c.venteutteteaeetent ettt et ettt et eb et et e st b e st b et s bbbt e b e Rt h bRt b e bbb e bt b et be b e se b e e s ne
Bode and Nyquist diagrams for the second order transfer function Q(zlyz) (sl, sz) for the case study

of the test power system 3SM-OBUSES ........cccceiiirirrieriieieeieeteseesreeseeestestesaeesseesseeseesesnsesssesseenses 129
Residues spectrum for the nonlinear transfer function Q(zlyz) (s;,s,) for the case study of the test

power System 3SIM-OBUSES ........ooiiiitieee ettt ettt et s e st e st e s baesreeseneesnees 130
Poles spectrum for the nonlinear transfer function Q(ZLZ) (s,,s,) for the case study of the test

power System 3SIM-OBUSES ...ttt e st e e st e e s abe e e s sabe e e e saeeseanneeas 130
Frequency spectrum of the nonlinear transfer function Q(ZLZ) (sl, 52) for the case study of the test

power System 3SIM-OBUSES ...ttt st s s s s s 131
Pole spectrum of the reduced nonlinear transfer function for the case study of the test power 131
SYStEIM 3SIM-OBUSES ...ttt sttt et e e e e sae e saeeas
Bode and Nyquist graphics of nonlinear transfer functions..........c..coccecereeveeneenenenenenencneeeeeeene 133
Nine-bus, three-machine test POWET SYSLEIM......cc.coueriririririerierientenene ettt st eeseesesaens 136

XV



6.2
6.3
6.4
6.5
6.6
6.7

6.8

6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16

6.17
6.18

6.19

6.20

6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
7.1
7.2
7.3
7.4
7.5
7.6

Jacobian MALTIX SITUCLUIE ...c.cevvertirrireierietetetenteete sttt ettt et e be st e bt sae et e e e sese e besaeese et emtenneseeenesaeenes
Hessian MatrixX SIIUCLUTE ......cc.eiivuiiiiiiiiiiiiiieiiiciite ettt ra e e an e sna e e sas e sbaesnne e
Linear partiCipation fACLOTS .......cviiuierieiieeiectestese et et e et e e et eesteetesaesreesreesseesseessesssasssassaesseansensees
Time domain validation of the 3 SM, 9 buses test POWET SYStEIM .....c..ceeeuerueeirrierierienienienieeceeeeeeenees
Time domain validation of 3SM 9 buses test power system under different perturbation conditions ..

Comparison of linear and nonlinear apProXimation...........ccceeceecueerieeieesveesieeneesseeseeseesseesseessesssesssessees

Second order coefficients max <|h2il |) .................................................................................................

Nonlinear indices I1, I2, I3 ANA T4 ..........ooeeeueeeeeeeee e e et eeeeeeeeeeeeeeereeeeeaeeeeeraneeeensreeeennneeennneeeens
Nonlinear participations factors for the 3SM-9 BUses POWET SYSLEIM .......cc.ceueetereereerieneenereneeeeneeneens
Algebraic variables comparison between full solution and modal series method............c.cccccecerenncnncn.
Nonlinear contribution associated to the speed deviations in the time domain...........ccecceeveueerireerineennns
Spectral analysis by FFT of the nonlinear contribution of the speed deviations..........c.ccccceceeererenunee
New England teSt DPOWET SYSLEII .......ceueeteruerterertieerteitetetenrestessessteseestestesessesseseeesesseeneensesessessessessens
Relative rotor angle graphics of selected angles...........cocceeeierierienineninineeceeeee e

Absolute rotor angle graphics of generators in the study case of the New England test power
SYSLBIIL ...ttt ettt ettt ettt et a e a e e a et b et a e ne e ne
Voltage E;; graphics of generators in the study case of the New England test power system .............

Rotor Speed graphics of generators 3 and 5 in the study case of the New England test power
SYSEEIIL c.venteutteteatetertet ettt et ettt et bttt e bttt e bbbt bbbt b et Rt h bRt b et et b bt be b et be b e be e e s e
Voltages E}, Ej, graphics of generators 2, 5 and 7 in the study case of the New England test

POWEE SYSLEIIL ....vinrinirrineentereeeneeteseesestese et e se e et e se et sae s e et s s e e st s b e e emesae e emesae e se s b e e e e sae e nesaeseenesneaeneane
Three-dimensional comparison of modal series solution with respect to linear approximation and

full NUMETICAL SOIULION .....vveeiiveeeeeieee ettt et eere et e eeaee e e e areeeeeaneeeeenaneeeesseeeennnneeennneeeeans

C/; Coefficients for different damping constant CONAItioNS............vureeererererenreseessreeessessesesseesesssenes
max |h2’ k1| Coefficients for different damping constant conditions.............ccccevveiviniiinincinncininienne,
Nonlinear indices for the study case of the New England test power system..........ccccceevverererneeeenene
Linear and nonlinear participation factors of the New England test power SyStem ...........cccceceeveeeeneene
Time domain nonlinear CONtIIDULIONS ..........cceoiiiiririiiiiiicieeceeee e
Nonlinear time domain simulation for different time clearing fault ............cccoceiiiiiiniiinnieee
Relative rotor angles in the unstable case of the New England power system ........c..ccocceveverenienceeene
Absolute Rotor Angles the unstable case of the New England power system..........ccccceceveverereenenee.
Generator selected variables in the unstable case of the New England power system..........c..cecceueeuee
Basic operation Of the UPFC ........c.cociiiiiiiiiiertereeeeieete ettt ste st e ste st e saeesseetesneeeneesseesseesesnses
Operating prinCiple Of UPFC SEIIES PATT.......cccecvereerierrierieeienttenieesieestesteseesseesseessessesssesseesseessesssesses
Operating principle of the UPFC ShUnt Part ........cccecceterieiierienineneeieeteteieee et
UPFC diagram in sinusoidal steady state CONAitioN.........ceeueevueerierienieneeneeieete ettt naees
UPFC linked t0 the DOWEL SYSTEIM........cciuiiriirtiriienieenteeteeteeitesttenie et eteste st saeesbee bt eteeneesmeesbaenbeebesanes

Diagram of UPFC connected to an infinite-busbar.............ccereiirininiiiiieeeeeeece e

145

146
149
152
152
153
154
160

164
161

162

163

164
165
165
166
167
168
171
173
174
175
178
179
179
180
181
182

XU



7.7

7.8

7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
717

Single line of UPFC connected in a synchronous machine infinite busbar power system.................... 183

One line diagram of UPFC. Equivalent circuit in steady State..........ccccererrererrerneeneeneneneneneeeeeeeene 185
UPFC Control functions: Power flow controller, AC voltage and DC voltage controller.................... 188
Control Diagram of a UPFC Connected t0 @ POWET SYSIEM......cc.coiruerireririeienienieniesieeeeeeteeeeeneens 189
UPFC connected to a SMIB test power system for damping 0scillations.............cccceverenenienicnncenienene 190
Steady state diagram of the UPFC connected to the SMIB study Case ........cccceeeerterienienieneneneeieene 191
Rotor angles for different PI controller parameters in the case study of SMIB-UPFC...............c......... 196
Case study of SMIB-UPFC (Rotor speed variables)...........ccceeuererenenirenienieieneneneneeeeeeeeeesneneens 197
Case study of SMIB-UPFC (voltages v, for each constraint of PI controllers)............cceeevininunncns 198
Nonlinear indices for the different PI controller parameters...........ccecvuereereesueereeseeseessessseesseseeseenees 199
Linear and nonlinear participation factors bar graphs for the case of SMIB-UPFC ..........ccccecceceeieneene 200

XUl



LIST OF TABLES

Table

3.1
3.2
5.1
6.1
6.2
6.3
6.4
6.5
7.1
7.2
7.3
7.4

Description Page
Modal analysis of SMIB with one flux model...........cccceoeiieiirinininireeeeeeeeeeee e 69
Comparison between the modeling capacities of the proposed approach with other formulations ..... 75
Residues, poles and frequency properties of transfer functions..........c..coceeecevievienenenenininieeeeee 112
Modal analysis of 3SM, 9 buses teSt POWET SYSEITI......ccceruerueruerrerersirtetertereesiestesreseentesteneessessessesneas 138
Most dominant participation fACLOTS .........c.eccveeiereeriieieceeeeese e ete e te e sreeseeeteeaesreesreessaeseenseeneas 138
Computational times COMPATISOMN........eecuerrueriereereerieeieeteetesrtesteesseessestesaesseesseessesssesssesssessesssesssesses 153
Small Signal Analysis of the 10 unit,39 bus New England test pOWer SYStem ............cceeeververeerueenunnns 156
Small signal analysis of unstable StUAY CASE........cccecuerereririririecerterer et 172
Transfer Functions PT Controllers 0f UPFC........c.ccociiiiiiiiiiieienienceeetete ettt s 189
Eigenvalues and damping ratio for the case study of SMIB-UPFC..........ccccecteiiinenenenineneeieieieene 191
Controller parameters variation and Eigenvalues for the case study of SMIB-UPFC..........c.ccecceceeuene 192
Linear and nonlinear participation factors for the SMIB-UPFC pOWer SYSteIm ........cccceerverueruereneennne 200

Pl



THIS PAGE IS INTENTIONALLY LEFT BLANK



LIST OF PUBLICATIONS

Conference Proceedings Papers

Osvaldo Rodriguez, Aurelio Medina, "Nonlinear Transfer Function Based on Forced Response
Modal Series Analysis", accepted for presentation at the 2011 North American Power Symposium
NAPS 2011, Boston, Massachusetts, August 4-6, 2011

Rodriguez, Osvaldo; Medina, Aurelio; , "Stressed power systems analysis by using higher order
Modal Series method: A basic study," Transmission and Distribution Conference and Exposition,
2010 IEEE PES, pp.1-7, 19-22 April 2010

Osvaldo Rodriguez, Aurelio Medina, A. Roméan-Messina, Claudio R. Fuerte Esquivel, “The
Modal Series Method and Multi-Dimensional Laplace Transforms for the Analysis of Nonlinear
Effects in Power Systems Dynamics”, IEEE General Meeting 2009, Calgary, Alberta, Canada, July
2009

Osvaldo Rodriguez, C. R. Fuerte-Esquivel, Aurelio Medina, “A Comparative Analysis of
Methodologies for the Representation of Nonlinear Oscillations in Dynamic Systems”, IEEE

Power Tech 2007, July 2007, Lausanne, Switzerland

Journal Papers

Osvaldo Rodriguez, Aurelio Medina, “Stressed Power System Analysis by Using Higher Order
Modal Series Method”, submitted to the IEEE Transactions on Power Systems, February 2012
Osvaldo Rodriguez, Aurelio Medina, A. Roméan-Messina, Claudio R. Fuerte Esquivel, “A
Methodology Based on Modal Series and Multi-Dimensional Laplace Transform for the
Assessment of Nonlinear System Dynamics”, to be submitted to IEEE Transactions on Power
Systems, July 2012

Osvaldo Rodriguez, Aurelio Medina, “Analytical Method of Nonlinear Transfer Function Based
On Forced Response Modal Series Analysis”, to be submitted to Electric Power Systems

Research, July 2012

Xix



Osvaldo Rodriguez, Aurelio Medina, Géran Andersson, Claudio R. Fuerte Esquivel “Damping
Oscillations Analysis in Power Systems with UPFC’s by Using Modal Series Technique”, to be
submitted to Electric Power Systems Research, August 2012

Osvaldo Rodriguez, Aurelio Medina, A.Roman-Messina, Claudio R. Fuerte-Esquivel, “A
Systematic Procedure Based on Modal Series for the Assessment of Nonlinear Electric Circuits”,

to be submitted to the IEEE Transactions on Circuits and Systems Regular Papers, August 2012



INTRODUCTION

11 MOTIVATION

This doctoral research is focused on the application of a methodology, different than classical
modal analysis that allows the interpretation of dynamic operation in power systems when subjected to
small perturbations. The power systems present electromechanical oscillations principally due to
changes in their structural aspect, which become into a different network topology. Small signal
stability is based on small perturbations around a stable equilibrium point with short duration times
(just a few time cycles) which increase such oscillations presenting low frequency characteristics.
These oscillation effects are mainly due to power system commutations, load variations, switching
devices operating in power systems, etc.

The oscillations phenomena have been strongly studied using methodologies based on modal
analysis. However, the conventional modal analysis only incorporates the linear part in its analysis,
leaving out of scope the nonlinear contribution to the dynamics, which is a part of almost any physical
system such as power systems. The method of Normal Forms of vector fields (NF) and Modal Series
(MS) method have important characteristics contained in their mathematical fundamentals, which
identify them with respect to traditional modal analysis, due to the information of the so called
nonlinear interaction that can be obtained.

The Modal Series method, as it will be described along this investigation, represents a serious
alternative of solution for the analysis of nonlinear oscillations. It is based as in the same philosophy of
the Normal Forms method, i.e. on Taylor series expansion from the nonlinear system. Through
application of a linear transformation and Laplace theorems it is possible to determine an analytical
closed form solution, explicitly containing nonlinear characteristics. Throughout the document, the

mathematical fundaments in which the Modal Series method is based and the information concerning



on the nonlinear characteristics of the power system under study will be remarked. It is also important
to consider that the Modal Series method may be able to be used in analysis of different physical
systems with nonlinear features.

This doctoral research attempts to contribute to the analysis of nonlinear oscillations in power
systems extending the Modal Series method and its applicability by using multidimensional Laplace
transform, association of variables theorems, forced input response of the nonlinear system and

incorporation of FACTS devices to the nonlinear dynamic power system modeling and analysis.

1.2 OVERVIEW OF THE STATE OF ART

Nonlinear oscillations in power systems have been studied for several years. Power systems have
strong nonlinear characteristics which require the use of multiple analytical, numerical and
mathematical strategies for their study. Such nonlinearities are mainly produced due to the nonlinear
interaction between electrical and mechanical components of electric generators (which is studied
through the swing equation), excitation limits and magnetic saturation, just for mentioning some of
them. Electric loads may have high nonlinear characteristics; therefore representing a big source of
nonlinear contribution, mostly due to the switching operation conditions and nonlinear characteristics
of frequency and voltage.

An important problem addressed by the power systems industry is related to the low frequency
electromechanical oscillations. These oscillations are identified depending on the frequency range and
the existing devices in the system; e.g. oscillations associated with single generators are called local
modes or plant modes (normally classified between 0.7 to 2.0 Hz); oscillations presented over a group
of generators so called inter-area oscillations, in the range of 0.1 to 0.8 Hz [Klein et al. 1991].

The main analytical tool used for the analysis of low frequency phenomena in power systems has
been the modal analysis, based on eigenvalues characteristics of the dynamic system [Rogers 2000].
The system is linearized around at a stable equilibrium point, which represents a stable dynamic
operation situation. Under this analysis, the system operation is restricted to only consider the behavior
due to the linear part, leaving out of scope the nonlinear contribution.

Despite the consideration of only linear characteristics of the system under study, the information
obtained from modal analysis is of vital concern; e.g. frequency oscillations, damping rates and the
extension to participation factors and mode shapes are very important to determine the stability of the
power system and the nature of oscillations; taking place presented after a disturbance condition or any
other operating condition considered. An important development, called selective modal analysis
[Pérez-Arriaga et al. 1982] details the participation factors based on modal analysis, being one of the

most relevant contributions in the area of modal analysis based on linear techniques.



In the same way, modal analysis has been carried out to prove local mode oscillations, interarea
mode oscillations, detailed representation of large regions within interconnected power systems,
excitation systems, speed governors, tuning of PSS, HVDC modulation, FACTS controllers, load
characteristics, etc. [Kundur 1994] [Kundur and Wang 2002].

On the other side, since the modal analysis only assumes the linear contribution of a nonlinear
system transformed to a linear one through a linearization process, one question emerges from this
theory: how important may be the contribution of the nonlinear part to the nonlinear power system
analysis? This can be the philosophy of including different methodologies, which model the power
system adding the nonlinear part.

Working groups associated to the Task forces from IEEE and CIGRE have resumed main ideas in
order to consider nonlinear analysis of power systems. The method of Normal Forms of nonlinear
vector fields emerged as an important analytical tool to investigate the qualitative behavior of nonlinear
dynamical systems in a general point of view [Kahn and Zarmi 1998] [Guckenheimer and Holmes
1986] [Arrowsmith and Place 1994] [Nayfeh 1993], and subsequently developed by the group of the
University of Iowa for applications to power systems [Lin, et al. 1996] [Saha et al. 1997] [Jang et al.
1998] [Vittal et al. 1998]. More recently, other researchers have taken the Normal Forms as one of the
main methods applied to the analysis of nonlinear dynamic power systems with several applications
[Barocio and Messina 2003] [Barocio et al. 2004] [Liu, et al. 2005] [Betancourt et al. 2006]. Some
other contributions are based on Volterra series analysis [Schetzen 1980], bifurcations theory [Abed
and Varaiya 1984] [Ajjarapu and Lee 1992], and more recently through Hilbert transforms [Messina
and Vittal 2006] [Liu et al. 2004] and modal analysis using the theory of normal modes [Betancourt et
al. 2009] and bilinear systems [Arroyo et al. 2006].

In addition, in [Pariz et al. 2003] and [Schanechi, et al. 2003] the Modal Series method has been
proposed as an alternative to the nonlinear analysis of dynamic systems. It is based on transforming a
linearized system around a stable equilibrium point; a straightforward linear transformation allows to
obtain a linear approximation of a nonlinear system. In the method of Modal Series, the resonance

conditions are not of concern, so the system is solved for any set of eigenvalues.

1.2.1 Main Contributions on Normal Forms Method

The method of Normal Forms of vector fields has been utilized in order to analyze nonlinear
oscillations in power systems. The method is based on two transformations: beginning with a
linearization process around a stable equilibrium point, obtained through Taylor series expansion. An
application of the Normal Forms technique to the linearized system, keeping the nonlinear

characteristics given by the eigenvalues, allows an approximate solution of the dynamic system in



terms of the transformed variable to be obtained. This method has the great advantage of obtaining the
simplest form of a set of ordinary differential equations of sequential transformations [Nayfeh 1993].
However, it has the disadvantage of having an wrong dynamic performance when a resonance
condition is present in the system dependent on eigenvalues [Arrowsmith and Place 1994].

The method of Normal Forms has been used to study nonlinear modal interactions in power systems
as well. Different components in the power system model have been included, which has opened the
path to several studies of modal interactions. Interpretation of results in Normal Forms is often a
challenging problem.

The methodology known as Normal Forms has been formalized by several authors [Chua and
Kokubu, 1988] [Chua and Oka, 1988]. It was suggested as an alternative of solution for the nonlinear
dynamic analysis problems. The normal form of a vector field is defined as the simplest member of an
equivalent class of vector fields exhibiting the same qualitative behavior, where this family is obtained
from a nonlinear transformation to a diagonalized system, with a set of different eigenvalues. It is
possible to introduce a formal coordinate change (proposed by Poincaré), which may be stated as the

Poincaré Normal Form Theorem, that is [Chua and Kokubu, 1988]:

“A formal vector field x =v(x) (with x € C") can be transformed into the Poincaré normal form
ysz+w(y), yeC" by an appropriate formal coordinate transformation x=1//(y), where A

denotes the Jacobian matrix of v(x) at the origin and each component of w = (Wl,Wz,...,W

n

) consists

of all resonant monomial associated with the eigenvalue 4, of A ”.

This Poincaré transformation had established the basis to develop under the same platform the
Normal Forms applications. More specific details on Normal Forms definitions and some other
relevant implications are described in [Kahn and Zarmi 1998] and [Nayfeh 1993].

Now focusing on Normal Forms method applied to the power systems analysis, it results necessary
to make a quick look to the proposal of [Vittal et al. 1991] where inclusion of higher order terms to
identify interarea oscillations was considered. A stressed power system is analyzed using higher order
expansion of the modal solution to detect modal interactions that contributes to the interarea mode
phenomenon. However, the methodology described in the paper does not have the capacity to consider
the modal interactions, mostly due to nonlinear contributions.

In the work [Lin et al. 1996] modal interaction in power systems under stress conditions and
excitation controls is evaluated through Normal Forms. Emphasis on interarea oscillations was one of
the main purposes of the paper. Thus, a new platform of analysis emerged, oriented to the analysis of
nonlinear oscillations in power systems. For instance, [Thapar et al. 1997] applied Normal Forms to

predict interarea separation due to large disturbances; indexes that identify and measure the modal



interaction were used. On the other side, stability boundary approximation over the postfault
equilibrium point was suggested in [Saha et al. 1997] using Normal Forms. Unstable equilibrium
points were determined over different scenarios of the power system.

Referring to interaction modal studies and generation control in power systems, the Normal Forms
method has been introduced for the analysis of larger power systems [Jang et al. 1998]. The
information obtained by the Normal Forms analysis is used to set generation system controllers. Also,
the island creation due to strong disturbances and high stress conditions has been considered [Vittal et
al. 1998].

As it was mentioned earlier, the selective modal analysis introduced the concept of participation
factors. An extension to nonlinear modal interaction has been proposed by the concept of nonlinear
participation factor, based on second order nonlinear terms in the Normal Forms method [Starret y
Fouad 1998]. Oscillation frequencies resulting from modal interaction are described in such
contribution.

The application of the method of Normal Forms to study modal interaction in power systems that
includes static vars compensators has been developed [Barocio y Messina 2002]. In this contribution, it
is demonstrated that the SVC connected to the system combined with an overload and stress constraint,
takes influence on the nonlinear characteristic associated with the power system. Addition of FACTS
devices to the electric system has been considered by other authors [Barocio and Messina 2002a],
[Messina et al. 2003] y [Zou et al. 2005], where the modal interaction and interarea oscillations
through Normal Forms, over systems with transmission controllers are analyzed.

A classical analysis oriented to modal resonance in power systems is presented by [Yorino et al.
1989]. In this interesting document, a generalized method to analize parametric resonance which can
be reflected in the power system operation as a nonlinear oscillation is described in detail.

The analysis of factors that affect interpretation of results in the Normal Forms method, relative to
the estimation of initial conditions or modal interaction that modifies nonlinear coefficients have been
studied. In the contribution [Barocio et al. 2004], a detailed analysis of factors affecting interpretation
of Normal Forms method results has been made; the modal resonance effect acting over the method
and the problematic involved in the determination of initial conditions with respect to z variables has
been analyzed. Now, referring to the work proposed by [Kshatriya et al. 2005], a methodology to
validate initial conditions is studied. The method tries to move these initial conditions in order to find a
better initial operation constraints, which leads to a favorable response with the Normal Forms method.
The method is based on the determination of indexes which quantify the feasibility of initial
conditions. In the interesting work [Dobson and Barocio 2004] a quantification of factors affecting

modal analysis in the Normal Forms method is made. The changes presented along with the calculation



of nonlinear coefficients and indexes are analyzed; in fact, since these changes come from the
nonlinear transformation, they affect not only modal interaction associated to the system, but also
represent a possible reason of modal resonance.

Concerning modal resonance, several papers have dealt with this topic, which is a consequence of
modal analysis. For instance, a classical analysis on modal resonance in power systems is represented
in the paper proposed by [Yorino et al. 1989]. In this document, a detailed generalized method is
described in order to analyze parametric resonance, which is reflected in the power system operation as
a nonlinear oscillation. More recently, in [Betancourt et al. 2006] a study of modal resonance presented
in the Normal Forms method has been considered.

Viewing some other contributions over Normal Forms method, other applications can be found, e.g.
[Liu et al. 2005] [Liu et al. 2006] that have incorporated the Normal Forms method to assess the PSS
placement estimating the nonlinear modal interaction. Both papers exhibited the usefulness of
including nonlinear interaction, in order to design the power systems controllers. [Martinez et al. 2007]
have proposed the structure preserving approach applied to the Normal Forms method, which allows to
deal with the power system model represented by a set of differential-algebraic equations as a unique
set of dynamic state variables.

From the extensive review of all works published, which deal with applications of the Normal
Forms method to the analysis of nonlinear interaction in power systems, it can be concluded that the
method has a strong mathematical background; it means a challenging issue and demanding from the
computational point of view. Considering that the method of Normal Forms possesses a strong
mathematical formalism and contributes with additional information of the nonlinear dynamic system
behavior, not included with linear analysis, therefore it may be considered as a one of the main

methods for the nonlinear analysis of power systems.

1.2.2 Earlier Proposition of Modal Series Method

Besides the widely described Normal Forms method, the Modal Series method proposed by [Pariz
et al. 2003] and [Schanechi, et al. 2003] represents an alternative of the analysis of nonlinear
oscillations oriented to the application in power systems. The authors in both contributions addressed
in this method the inclusion of nonlinear modal interaction, thus obtaining a close form solution.
According with the characteristics described by the original version of Modal Series proposal, using
Modal Series it is possible to represent nonlinear dynamic systems, as well as stressed power systems;
the method of solution has the great conceptual advantage of representing a nonlinear system as a
rather straightforward generalization of the linear case, although it may be much more extended [Pariz

et al. 2003].



In the same way as the Normal Forms method, the method of Modal Series in its original version is
restricted to the polynomial nonlinearity; therefore, Taylor series of other nonlinearity types are
required. This reason adjusts the necessity of applying a linearization process in order to obtain a
polynomial form of the nonlinear system.

A second version of the Modal Series method proposed in [Schanechi, et al. 2003] states that the
Modal Series method is introduced to represent the nonlinear system response and to obtain an
approximated closed form expression for the zero input response of the nonlinear system. Also, the
method extends the linear system theory concepts to facilitate the understanding and analysis of
nonlinear systems. Both papers punctuate the possibility of obtaining a closed form solution, even
under resonance conditions. Some indices that quantify the error introduced by modal interaction
[Pariz et al. 2003] and proximity measure have been proposed [Schanechi, et al. 2003] as well.

Almost every work based on the Modal Series method has been focused on comparisons against
Normal Forms method [Wu et al. 2007] [Rodriguez et al. 2007] and to study the effects of fault

location over interarea oscillations in stressed power systems [Naghshbandy et al. 2010].

1.2.3 Discussion on the Necessity for Including Higher Order Terms

Taking into account the extensive work resumed by the Task Force on Assessing the Need to
Include Higher Order Terms [Sanchez-Gasca et al. 2005] and all the work previously mentioned along
this Chapter, based both in the Normal Forms and the Modal Series method; it results very convenient
to introduce this discussion on why to include higher order terms. The modal analysis means the basis
of nonlinear systems since their basic analysis is related to the small signal analysis for studying
electromechanical oscillations resulting on a linear equivalent that is valuated in the neighborhood of a
steady state operating point. The information obtained by modal analysis is so important, since it
allows to get insight into the nature of the main characteristics concerning on oscillation frequency (i.e.
complex eigenvalues) and damping ratio. Thus, modal interactions mainly defined by participation
factors are obtained. However, what does it happen when these modal interactions are the result of
combinations due to second and even higher order terms? These modes and their interactions have
been called higher order modes and higher order modal interactions [Sanchez-Gasca et al. 2005].

Hence, there are some topics that have to be followed to describe these higher order modal
interactions, such as physical significance, indentifying when it is viable the higher order analysis,
computational requirements, range of applicability of higher order terms, analytical tools to account for
higher order terms. In the same way, it has been shown that some oscillations frequencies may appear

in stressed power systems which are not predictable by linear modal analysis [Pariz et al. 2003].



As it was described in Section 1.2.1, the Normal Forms method is one of the main methods used to
establish a systematic procedure to include higher order terms. Nevertheless, different strategies have
been explored. Modal Series method tries to compete with the Normal Forms method, taking into
account some of the main characteristics of nonlinear analysis, incorporating its own mark of
reference. When a power system becomes more stressed, nonlinear modal interaction may play an
important role in the dynamic behavior of the power system. This will reduce the valid region of the
linear modal method [Wu et al. 2007].

It must be remarked the contribution that under some constraints may represent the interaction of
switching devices such as FACTS devices, which are ruled by the extension of nonconventional energy
sources linked by VSC converters (i.e. UPFC’S, STATCOMS, VSC-HVDC links, etc.). Nonlinear
effect of electromechanical devices interacting with commutation devices results in nonlinear
interactions [Barocio 2003] following stressed conditions.

In conclusion, methodologies that qualitatively and quantitatively can measure the nonlinear
contributions of a stressed power systems are necessary. So far, to incorporate such contributions
Normal Forms have been more extensively used; few works based on the Modal Series method have
been developed. Both alternatives provide closed forms solutions and nonlinear interaction indices,
with their own particularities, advantages and disadvantages.

This research is mainly focused on an in depth description and formulation of the Modal Series
method and its feasibility of application in power systems that operate under stressed conditions. Also,
the forced response function in a nonlinear system is considered through Modal Series thus introducing
the concept of nonlinear transfer function in power systems. Finally, the power system operation with a

FACTS device (oriented to the UPFC analysis) is described.

1.3 GENERAL OBJECTIVE

This thesis has as a principal objective to characterize the nonlinear contribution to the power
systems oscillations under small disturbances using the modal series method. For that purpose, the
modal series method is deduced through the use of the multidimensional Laplace transform and
association of variables theorems, that allow to determine an analytical solution to the dynamic power

system model under analysis.
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1.5

AIMS OF THIS DOCTORAL RESEARCH
To describe in detail the step by step procedure followed to apply the Modal Series method to the
study of nonlinear oscillations in power systems.
To establish a comparison of Modal Series method against other methodologies, specifically with
respect to the Normal Forms method to allows to make a judgment concerning the identification
of advantages and disadvantages of the new proposal.
To develop a formal mathematical description of the Modal Series method, emphasizing on its
mathematical fundaments and institute its extension to incorporate the closed form solution when
a system with forced oscillations is assumed.
To incorporate the Multidimensional Laplace theorems and association of variables to get the
closed form solutions on which the Modal Series approach is based. Also, Volterra series theory is
incorporated due to interrelationship and applications oriented to nonlinear dynamic systems
analysis.
To apply the Modal Series method to define the transfer functions based on the nonlinear terms
when are subjected to an input function.
To extend applications of the Modal Series method to networks containing FACTS devices such
as the UPFC. It is of concern the nature of nonlinear oscillations when FACTS devices interact

with the power system.

MAIN CONTRIBUTIONS

The main contributions of this doctoral research are,
Incorporation of multidimensional Laplace transform and association of variable theorems to the
Modal Series method.
The extension of the Modal Series method to the inclusion of higher order terms in the closed
form analytical solution
The incorporation of the control input function (forced nonlinear response) to the Modal Series
method
The introduction of the definition of nonlinear transfer function to the power systems analysis,
which is derived from the higher order terms of the Modal Series when the nonlinear system is
subject to a forced input (control function) response.
The study of nature of power systems oscillations using the Modal Series method when the power
system experiments a short time duration disturbance.
The study of power systems that incorporate the UPFC device, analyzed by the Modal Series

method and the assessment of nonlinear oscillations contributions.



1.6

THESIS OUTLINE

This doctoral thesis is organized as follows:
In this Chapter and extensive description of the state of art related to the Normal Forms and Modal
Series methods contributions has been given. Justification of this doctoral research has been
remarked, as well as the main goals and contributions followed in this research.
In the Chapter 2, the Normal Forms method is briefly reviewed, in addition to the revisit of the
Modal Series method. Both methods are simulated and exemplified by a nonlinear benchmark
system, for which the validation of initial conditions is tested. The main differences, advantages
and disadvantages of both methods are emphasized.
In the Chapter 3, the Modal Series method is redefined when the multidimensional Laplace
transform and associations of variables are applied to get the closed form solution of a nonlinear
dynamic system, for the case of an unforced response. The method is exemplified through the
application to a simple power system (synchronous machine-infinite busbar); the procedure
followed to incorporate the higher order terms in the Modal Series are described as well.
The Chapter 4 is focused on the development of Modal Series method for the case of forced
oscillations response incorporating the nonlinear transfer function definition. An analytical
nonlinear system and a couple of low scale power system are utilized to exemplify the ability of
the proposed extension.
In the Chapter 5 the multimachine power system modeling used along the thesis is described in
detail.
The Chapter 6 is oriented to the detailed analysis of numerical applications of the Modal Series
method to the study of two known test power systems. Emphasis is given on the contributions of
nonlinear terms to the modal analysis and frequency contributions to power system oscillations.
Chapter 7, incorporates the study of the UPFC, in which the usefulness of the Modal Series
method for the assessment of nonlinear oscillations is described.

Finally, in the Chapter 8 conclusions remarks and suggestions for future research work are given.
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TOOLS FOR THE ANALYSIS OF
NONLINEAR DYNAMIC SYSTEMS

The dynamic of nonlinear systems has been determined by different strategic tools of analysis.
Based on the main characteristics provided by the modal analysis, other alternatives can be described,
such as Normal Forms and Modal Series methods. This chapter describes in detail both methods,
including the characteristics given by modal analysis. Nonlinear interaction, participation factors,
nonlinear interaction indices are familiar concepts related with the scope of modal analysis and

extended to the nonlinear analysis.

2.1 BACKGROUND ON NONLINEAR METHODS

The main idea followed by the methods which assume nonlinear contributions in nonlinear systems
is based on considering such nonlinearities through either linear or nonlinear transformations from the
original system. The underlying idea of Normal Forms theory is to find an analytical change of
coordinates with the fixed point shifted to the origin such that the vector fields becomes simpler to
study in terms of new variables [Arroyo 2007].

Dynamic formulation in power systems has been carried-out by sets of nonlinear differential
equations, which are in general, autonomous systems. Consider the set of nonlinear differential

equations, where n is the number of state variables, that is,
ijfj(xl, Xps ooer X, ) j=12,...,n (2.1

Using matrix notation, (2.1) can be written as,

x=f(x) (2.2)
The equilibrium points for Equation (2.2) must satisfy the equilibrium condition [Kundur 1994],

f(x,)=0 (2.3)
where X, is the state vector located at the equilibrium point
If functions f; (i=1, 2, ..., n) are linear, then the system is linear itself. A linear system has just one

equilibrium point (conditioned to the existence of a non-singular state matrix). For nonlinear systems,
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more than one equilibrium points exist which describe the behavior of the system dynamics and

therefore provides important information concerning the system stability.

2.2 LINEARIZATION PROCESS

Due to the difficulty involved on estimating the nature of nonlinear power systems represented by a
set of nonlinear differential equations of the form given by Equation (2.2), it is common to simplify the
nonlinear system through the Taylor series expansion.

Being x,, an stable equilibrium point, so that according to the condition previously established by

(2.3), the general form of Taylor series expansion from a n state variables function

x=[x, x,,..., x.]' for a small deviation or perturbation Ax,, Ax,, ..., Ax, of the system described

by (2.1) is
Xi = Xisep + AXi = fi(xsep + AX)
= f,.(xse )+ o Ax, + o Ax2+...+%Axn
Pl ox, OX, X,
°f °f °f 2.4
+l of, AxlelJrl of, Axlesz...+l of, AXx, (24)
2! Ox,0x, 2! Ox,0x, 2! Ox,0x,
2 2 2
+l i X,Ax, l O Ax,Ax, +...+l 0" Ax,Ax,
2! 0x,0x, 2! 0x,0x, 2! 0x,0x,
2 2
| AX Ax, +3%AXHAXH +OQAx\3)
2! 0x,0x, , 2! 0x,0x,
Expressing in matrix form, Equation (2.4) takes the form,
. | - 3
X; =Aix+5x HX+O(|X| ) (2.5)
O(|x|3) represents the residual terms of third order and higher.
With i=1,2,...,n, and
—afl(x) 8f1(x) 8f1(x)_
ox, x,  0x,
A () ()
A=| 0x ox,  0x, Jacobian Matrix (2.6)

oA,00 A(x) A
ox, x,  0x,

12



[of (x)  of (x) of, (x) ]

ox0x, Ox0x,  Ox0X,
ofi(x) ofi(x)  ahi(x)
H' =| 0x,0x, 0x,0x,  0Ox,0%, Hessian Matrix (2.7)

ofi(x) o(x)  fi(x)
| Ox,0x,  Ox,0X, T ox,0x, i

X%y

So far the system is linearized around a steady state equilibrium point. If a higher complex system is
considered, it implies the addition of terms corresponding to third and higher order terms. Thus, the
complexity of the model increases. In this research, the Taylor series is considered up to third order

terms.

2.3 JORDAN CANONICAL FORM
The Taylor series expansion of the system given by (2.5) is still of nonlinear nature and
cumbersome to analyze. For small signal stability analysis in power systems, it may be assumed that
the network is located in the vicinity of an equilibrium steady state point. As a result of state variables
coupling, it is difficult to separate those parameters with a significant influence on motion [Kundur
1994]. To eliminate this coupling, consider the linear transformation,
x = Uy (2.8)
Being  (4,4,,...,4,)  distinct  eigenvalues of the state matrix A  and

U= (Ul,Uz,...,Un ), V= (Vsz,u-:Vn) the corresponding right and left eigenvectors, respectively, are

normalized in such a way that VU =1. Substituting (2.8) in (2.5), the system is converted to its Jordan

Canonical form, which is located around a steady state equilibrium point. Thus,
Uy = AUy + U"y"HUY + (O|x|3)
y = U"AUy + U'U"y"HUy + (O|x|3)

Assuming,

A=U"AU=VTAU = diag[ 4, 4,,..., 4, |

yay Foy( )+l [) 2.9)

where,
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y'U'H'Uy

1. ,|y"U'HU
F, (y)=5U 1Y : Y (2.10)
y 'U'H"Uy
Or [Thapar et al. 1997],
V=AY, + 2.2 .Gy, j=12,...n (2.11)
k=1 I=1
where
o1& .
=3V, [uarul=[c; ] (2.12)
also,
. 1 n n n
CkJI = EzzzvjiHrﬁoUmkal (213)
p=1 m=1 o=1

Referring to Equation (2.11), the first term is linearly coupled, however, the second term is coupled
as well. Coefficients C;, determine the size of contribution from mode k and I to the dynamic equation

that governs the behavior of mode j [Barocio et al. 2004].

24 NORMAL FORMS. THEORETICAL BACKGROUND

2.4.1 Nonlinear Coordinates Transformation

According to Poincaré’s Theorem, a power series, like that shown by (2.11), can be reduced to its
linear form around at steady state equilibrium point applying a nonlinear transformation: If the
eigenvalues obtained from the state matrix are non-resonant [Kshatriya et al. 2005], the normal

transformation is given by [Thapar et al. 19971,

y= z+h2(z) (2.14)
which can be expressed as,
Yi=2 +Zzh2lj<lzkzl (2.15)
k=1 I=1

where h, is a function valuated on a complex vector, whose components are second order

homogeneous polynomials with coefficients obtained in such a way that the system given by (2.15) is
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as simple as possible. Vector z € C" denotes the new coordinate system, so called Normal Form
system [Barocio et al. 2004].
Substituting (2.15) in (2.11) yields,

y =2+ Dh,(z)z =[I + Dh,(z)]2
[I + th(z)]z = A{z +h, (z)}+ F, (z + hZ(z))

2=[1+Dh,(2)] Az + Ay (2)+ (2 + hy(2))+ Ol ) 2.16)
where OQZ‘3) is an expression that contains residual terms of third and higher order. Furthermore,
(o) onfe) | one)]
0z, 0z, 0z,
ohy(z) oh,(2) ohy(z)
Dh(z)=| oz, o, oz, (2.17)
6hn:(z) ahn:(z) 6hn.(z)
e 0z, oz, |
Considering that,
(I+Dh,(z))" =~ I - Dh,(z) (2.18)

The Normal Form system is described as,

2= Az+ Ahy(z)- Dhy(2)Az+ E, (z+ hy(2)) +O(2/') (2.19)

Normal Forms theory indicates that resonant terms may be always eliminated from the Normal

Form [Barocio et al. 2004]. The linear transformation coefficients are given by,
j Ci

h, =—"—— 2.20
A+ A - A (2:20)

If A i = A, +A;, it means that a modal resonance is presented and the corresponding nonlinear

terms can not be eliminated.

Thus, the system (2.19) can be represented in the form,
3
2, =2z, +oﬂz\ ) (2.21)
If higher order terms are not considered, the time evolution of state variables in Normal Forms may

be expressed as,

At
z;,=17;e (2.22)

where z,, is the initial condition of variable z; in Normal Form.
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The Normal Forms approximation (2.22) results in a simplified representation of the original
system, where the answer is still a function of eigenvalues from the original system, and where it is
possible to point out that the final solution is obtained as a minimal system (Normal Form). A critical
aspect in the determination of Normal Forms transformation coefficients and thus in the system

linearization is the resonance condition given by,
A+ A —ﬂj =0 (2.23)

If this resonance condition is met, it may be said that the system is involved on a modal resonance
problem; therefore, it cannot be diagonalized. That means, it is not possible to determine a Normal
Form from the original system. Factors that influence the modal resonance have been of special interest

and previously analyzed [Dobson 2001].

2.4.2 Approximate Solution of the Normal Forms

Results may be expressed in their original domain by using the inverse transformations of the

Normal Forms. Hence substituting y = z+h, (z) and x =Uy in (2.15), results in,

Y, (O=z2,0e" + 33 by 202,06 " j=12..n (2.24)

k=1 I=1
x(6)= 2 U, 2™ +ZUU{ZZhzizzkozloeww)t} i=12,..,n  (2.25)

j=1 j=1 k=1 I=1
where initial conditions on spaces y and z are obtained solving the set of nonlinear algebraic equations,
f(zy)=yy—2y—h,(2,)=U"x,—2,—h,(2,)=0 (2.26)

It is important to note from Equations (2.24) and (2.25) that second order nonlinear coefficients

hj,, and initial conditions z,,,7,, are very important to determine the total response of the nonlinear

systems for a particular state. The product hzilzkoz,O is a measure of the extension for which the

system is acting as a nonlinear one. Interpreting solutions in the Normal Forms method, emphasis is
necessary to be given to the next constraints [Barocio et al. 2004]:
i) A simpler Normal Form is obtained removing elements from a finite series; inverse of a
truncated series may result in an error on the initial conditions from the new truncated system.

ii) The system expressed by (2.26) may exhibit multiple solutions.
An exact prediction of the system response to a given perturbation requires of precise initial

conditions calculation for each framework of the system. This implies that behavior prediction of the

nonlinear system may be a hard and challenging work.
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Some other important observations based on the expressions (2.24) and (2.25) are next resumed
[Thapar et al. 1997],
e The solutions are obtained in terms of initial conditions previously fixed in the system, and
they characterize the time domain evolution in terms of coefficients h, and the modal
structure.

e Higher order terms are independent of mode combinations (A, +4,), and the size of

coefficients h, with initial conditions zy, zj, determine the effect of modal combination of the

final solution
e  Product hzilzkoz,0 referred as coefficient interaction, determines the effect of higher order

terms in the solution.

The method of Normal Forms is schematically illustrated in Figure 2.1, which shows the steps
needed in order to transform the original nonlinear system through the linear and nonlinear
transformations to the final Normal Form.

It is well known that the application of the method to obtain the initial conditions of the Normal
Forms method may be cumbersome and sensitive to convergence problems, since it is based on a
numerical solution of a set of nonlinear algebraic equations (Newton methods based on optimization
process are preferable); the nonlinear transformation may have multiple solutions of z, for a given y,

and the convergence value will depend on the assumed initial condition [Barocio et al. 2004].

Differential Equations
x=f(x

v

Taylor series expansion

[Original System Nonlinear )

z,, Calculation h(z
X;=AiX+%xTH‘x+oqx\3) ’ 2( )

Jordan Canonical Normal Form
Form system
x =Uy 2, = /1 z
‘ v

Jordan Transformed System
y=Ay+F,(y) Noninear Transformati
UNNU onlinear Transformation
y,:/ljyj_'—;;ckllykyl y:z+h2(23

o 13 virau)-[e)

Figure 2.1 Flow chart showing the steps followed for the Normal Forms method
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2.4.3 Determination of Initial Conditions for the Normal Forms Method

Due to importance of accurate determination of initial conditions in the method of Normal forms,
which involves the calculation of state variables depending on whether linear and nonlinear
transformation x, y and z are to be used, several strategies have been developed in order to calculate
and validate the initial conditions under different constraints [Thapar et al. 1998], [Barocio et al.
2004], [Kshatriya et al. 2005]. One of the main difficulties related to the determination of such initial
conditions is the combination of linear and nonlinear trnasformations. A critical aspect for the
calculation of approximate analytical solutions closer to system behavior depends on z, initial
conditions. Such initial conditions determination requires of the numerical solution of a set of
nonlinear algebraic equations with complex coefficients [Barocio et al. 2004]. Conventional Newton
methods commonly utilized to solve nonlinear equations have fast convergence speed properties but
they require an initial point as nearest as possible to the solution point. Otherwise, a case of non-
convergence problems is presented with these methods. Besides, the system may present multiple
solutions that make difficult to interpret the final solution.

A methodology proposed by [Thapar et al. 1998] to obtain z initial conditions is based on the
following procedure: close form solutions represent the evolution in the time domain of Jordan form
variables and state variables at the postfault period. To obtain these solutions, initial conditions in
terms of z variables must to calculated.

1. Updated variables X, are obtained at the end of the disturbance.

2. Stable equilibrium point at postfault conditions is obtained with X

3. Initial conditions in terms of state variables with respect to the equilibrium point are

determined as X, =X, - X,

4. These initial conditions are transformed, in order to get the initial conditions in Jordan form
variables, that is, Y, =U "X,
5. The nonlinear equations
f(zy)=2,+h,(z,)-Y, =0
are numerically solved to obtain initial conditions for z,,. This is one of the most important

steps in the application of the Normal Forms method when it is applied to power systems.

It is well known that sometimes this method to obtain initial conditions is not feasible and it is

prompt to convergence problems since the nonlinear transformation has multiple solutions of z,for a
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given y,, and this convergence calculated value depends on the z, initial assumption [Barocio et al.

2004].

2.4.4 Nonlinearity Indexes
The rate of the transformed system nonlinearity has been proposed by [Thapar et al. 1997]. It is
based on comparing the linear term obtained from linear equations solution against the approximate

solutions obtained when second order terms are included. The interaction coefficient is defined as,
hy 4z 0240 (2.27)
which quantifies the effects on the dynamic solution when second order terms are included.
In order to consider the nonlinear effect, according to the proposal by [Thapar et al. 1997], a

comparison of the linear term from (2.22) and the linear term calculated from the Jordan canonical

form is calculated. Difference between both solutions is given by,

(v,(0)-2,(0))"

This term represents the difference between the linear part of the approximate solution with respect

(2.28)

to the linear solution. Thus, in Equation (2.25) second order terms are added in order to include effects
due to nonlinearities or difference between terms, where this linearity is introduced for the expression
described by the Equation (2.28). This result in,

(yj (0) —Z (0))&1[ + iihﬂilzkozloew%)t

k=1 I1=1

(2.29)

According to Equation (2.29) two approximations may be performed [Thapar et al. 1997]:
a) The largest magnitude term is considered and it is assumed that all other terms are small compared

to the largest one.

b) Itis also noted that hy,, islargeif 4, +4, = 4;.

Hence, the nonlinear interaction index I1 for the mode j is given by,

11(j) =, (0) -z, (0) + max(hy 2,2, ) (2.30)

where H}(E}X(hzilzkollo) is complex when n%eilx‘h2£,zkoz,0‘ is presented; y;(0) and z{0) are the Jordan

canonical form and Normal Forms variables respectively, valuated at time t=0". Index I1 provides a
rate of the effect of nonlinear terms to the solution, comparing the nonlinear solution with respect to
the second order solution [Vittal et al. 1998]. A normalized index of nonlinear interaction is given by

[Barocio 2003] which relates the index I1 to mode j, hence,
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x, in the i"

[v;(0)-z,(0)]+

J
Irll(E}X(thlszZm )

()=

‘Zj (0)‘
Nonlinear interaction index I2 for mode j has been defined as,
max(h,} z,,z

P ( 2Kk “K0 10)

20" )

(2.31)

(2.32)

Index I2 determines either nonlinear effects due to second order terms, which indicate a strong

modal interaction, or second order terms that affects initial solution in variables z, that indicate the

dominant fundamental mode [Vittal et al. 1998]. Another index of nonlinearity I3 has been proposed

based on the theory of nonlinear distortion interference criteria in communications systems [Barocio

2003], that is,

(hzklzkozlo)

‘Zj (O)‘

13(1)J

2.4.5 Participation Factors

If the k" state variable is excited whose magnitude is unity, X, = [0,.

y(6)=U"x(t)

Yi (O) =VieX, (O)

- yi(0)=Vi
That is,

zleuyj (0)e
=
ZUU lkT g

t) = Zn‘, Pkieilt
=

..,0,1,0,...

, 0] yields

(2.33)

(2.34)

(2.35)

Element p,, =U,V, is called participation factor. This is a size of relative participation of the k"

state variable in the i mode and viceversa [Pérez-Arriaga et al. 1982]. Since U,, measures activity of

measures the complete participation.

In matrix form, participation factors matrix is given as,

mode and V, considers the contribution to this activity to the mode, the product p,,
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Ul 1‘/111- U12V2€ e Uann€

U,Vi, U,y oo UV,

P (2.36)

UV UV o UV,

2.5 THE INITIAL MODAL SERIES METHOD
Nonlinear modal analysis has been extensively used to study system dynamic behavior in a variety
of nonlinear systems events. In this section, the Modal Series method will be summarized and the main
results obtained on modal analysis reported. Their advantages as well as shortcomings are discussed,
parting from the work reported in [Pariz et al. 2003] and [Schanechi, et al. 2003], where the concept of
Modal Series analysis for the stressed and nonlinear power systems was introduced. The main
objective of this section is to revisit the basic concepts on this field, since they represent the basis of

further developments, carried out in this doctoral research.

2.5.1 Taylor Series Expansion and Jordan Canonical Form

Let us assume a nonlinear power system that can be modeled by a set on nonlinear ordinary
differential equations of the form,

x =f(x) (2.37)

where x is an n-dimensional vector of system states, and f:R" — R" is a smooth vector field. The

system is linearized expanding (2.37) in Taylor series around the initial equilibrium point, X

sep

resulting in,

n

Xi :AiX +%ZiH£1kal +%Zn:iip1jqrxpqur toe (2'38)

k=1 I=1 p=1q=1 r=1
. ,-_82:7

sep

where A; is the i" row of the Jacobian matrix, being A=(8%X ) is the

Hessian matrix, P' = 83’7
’ ox* )|

{4 4, --- A,} with associated right and left eigenvectors U and V = U™, respectively. Then, the

Xsep

and so on. Also, the system has n distinct eigenvalues denoted as

sep

linear change of coordinates x = Uy transforms the system in Equation (2.38) into the equivalent set of

differential equations of the form,

Vi =AY+ 22 Cavd + 2220 Doy Y, VoY +-o (2.39)

k=1 I1=1 p=1g=1 r=1
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with j=1,..,n, and

Ci = %iv; [UH*U] (2.40)
p=1

Dl =g D RV, @41
6 5o o

where VpP is the pth element of the Pth left eigenvector [Schanechi, et al. 2003].

2.5.2 Modal Solutions

Several techniques to obtain closed form analytical solutions have been proposed in the literature,
such as the whole contributions earlier described in detail in Chapter 1. This section is focused on the
approach observed by [Pariz et al. 2003] and [Schanechi, et al. 2003].

Hence, following the Modal Series approach some considerations are necessary. Let the solution of
(2.39) for initial condition Y, assume that the system solution to (2.39) can be expressed in the form
[Schanechi, et al. 2003],

y ()= fi(O)+f7(6)+ f(t)+... (2.42)
with initial conditions,
fl(o):[ﬁ(o), f,(0), ..., fy (o)f =Y, and f/(0)=0 for each je{1,2,..,N} and k>1,
where
fi=A4f

fJ‘Z :/Ij fj2 +ZZCkJI fk1 fll
k=1 =1 (2.43)

e Y G (F £ )+ DL f L,

k=1 1=1 p=1q=1 r=1

Now, the method conveniently takes the procedure obtained by the method of small parameters.

That is, the system is expanded considering a convenient scalar parameter ¢ such that €Y, € ¢, with
$=vNny, y denotes the convergence of Maclaurin expansion of y;, (Yo,t) and v c C". All these

variables represent the constraints involved on the necessary linear mapping to solve the system (2.39).
From this approach, it may be said that Modal Series Method could be used as a formal method in
circumstances that the convergence conditions are not met [Schanechi, et al. 2003], where the

conditions are defined when the small parameter is small enough.
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Equations (2.43) can be conveniently manipulated using the Laplace transform. Taking a two-

dimensional Laplace transform of (2.43) we have

10 fjl(o) _ Jio
' (5)‘<s—a,->‘<s—«-> @4
2 (s155,) ZZ ; fi(s) £ (s,) (2.45)
k=1 I=1 (1+ ) — J)

where 7, are the eigenvalues of the Jordan matrix.

These solutions are then transformed back to the original coordinates using the inverse Laplace

transform. Taking the inverse Laplace transform on (2.44), it yields

f1 ()=} (0)e =y, (2.46)
and from (2.45),
0= 3 3C 01054 (0
or
= an:,IZn]‘,Ck’}ykoymSk’} (t) (2.47)
where,
Si(t)= pRv Ry Jj -~ (e =€) for (kL j)e R

S} (t)=te™ for (k,1,j)eR,

Solving (2.39) for y, (t) up to order two leads to,

}’j(t): fjl(t)"' sz (t)
y; (t) = yjoel"t + anznlckaﬂo.)’losl{l (t)

k=t =1
Y (t)= [yjoeij[ - kzn;lznllhzjkzyko)’z()}ew + gghzjkzykoymew”’ ) (2.48)
Then we have
)= Szt 4 33 e @49
=1 171

where,

=S S

k=1 I=1
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n n
modal __ Jj
Sy = Zzuithkl.kayIO

k=1 I=1

In the latter expression, the second-order nonlinear coefficients h2], are defined as,

h)y = G (2.50)
b+ =4,

While these methods can be extended to multidimensional systems, numerical procedures may be
difficult to apply. Moreover, the extension to higher-dimensional, forced oscillations is not
immediately obvious. As a result, the method can be cumbersome and difficult to apply to general
nonlinear systems with arbitrary excitations.

In what follows, we extend and generalize this approach to deal with multidimensional systems,
considering the case of forced system responses. Emphasis is given to the rigorous determination of
analytical closed form approximations to represent the system behavior.

In the notation above the upper number indicates the order associated to the term; i.e. at the ylj,

number 1 means the first order terms of y; variable, whilst in the ij number 2 equals to the second

order terms of y; variable, and so on.

2.5.3 Initial Conditions in the Modal Series Method

One of the main advantages observed by the Modal Series method with respect to the Normal
Forms method is that it does not need any nonlinear transformation for the calculation of the closed
form solution of the nonlinear system.

This situation is reflected on the determination of the initial conditions over the different references
in both methods. For instance, the Normal Forms method requires the procedure detailed earlier in

Section 2.4.3. Initial conditions established in the original coordinates x, are transformed to the Jordan
canonical variables y, and thus, the nonlinear variables z, are calculated according to the numerical

procedure above described.
Thus, the initial conditions in the Modal Series method are only defined by the linear transformation
given by (2.8) as,
y, =U"x, (2.51)
which clearly shows that there is no need any numerical procedure to determine the initial state
variables in the new referenced system. That means that the initial conditions only depends on the right

eigenvectors characteristics.

24



2.6 PRINCIPAL DIFFERENCES BETWEEN NORMAL FORMS AND
MODAL SERIES METHODS
Some differences between Normal Forms and Modal Series methods are of concern. These
differences will be pointed-out here using an example based on a second order nonlinear system.

Consider the second order nonlinear system given by,

).(1 = fl(xl’XZ)

) (2.52)
X, = fz (XI’XZ)
with stable equilibrium points defined as,
fi (xlo’xzo) =0
(2.53)

0 0
f, (Xl » %) ) =0
which is the general representation of the nonlinear system that will be developed over the next

sections applying the Normal Forms and the Modal Series methods.

2.6.1 Normal Forms Solution
Based on equation (2.39) which links the relationship between the transformed variables with
Jordan canonical form, the system (2.52) is linearized around stable equilibrium point defined by

(2.53), resulting on,
yay f+y( ) (2.54)

where,

n n Cl
1U71 [(UY)T H;Uy] 1 ;lz WYY

1
(Uy)' H2Uy

D> Can,
k=1 I=1

: (2.55)

here C is given by(2.40).
Applying the Normal Forms transformation given by (2.54) to the special case of a second order

nonlinear system, with z = [z1 zZ, ]T and h, (z) defined as a complex polynomial vector, it gives,

Zzh;klzkzl

h(z)=| ™ (2.56)
Zzhzzklzkzl
k=1 1=1

At this step, the calculation of z is achieved with the approach described by (2.55). Finally, the

Normal Forms solution is obtained as,
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| V2 (t)_ 2 Zthklzkzl (A2 )t

k=1 I=1

% (t) ] _ 'Aa(t)} {un Z:j{yl(f)} (2.59)

(0] 80()] |, 0 ()

2.6.2 Modal Series Solution
In order to solve the nonlinear system by the Modal Series method, the Jordan canonical form

transformed system is applied, e.g. from (2.54) we obtain,
y; ()= f;(0)+ £/ (1) (2.60)

The full solution obtained for the second order nonlinear system is given by,

Ol B -
ot S ]

where this time domain solution is carried-out with a function of the Jordan variables; that is,
N 5 N N /1 /1
t K+ z
Zthkayle zthklykyl
2.6.3 Summary of Main Differences Between Normal Forms and Modal Series Methods

uN
uN
uN

(2.62)

N N N
‘y (t) y o Zthlykyl Zzhzkl}’k}’I G
1 1 k=
B2 (f)} {yﬁ 4
1= k=1 I=1

T

=~
I

e Both methods are based on representing a nonlinear system as a linear one, through Taylor
series expansion around a stable equilibrium point.

e  The Normal Forms method needs a pair of transformations: from original variables x, applying
(2.8) the coordinates y are obtained, and then the nonlinear transformation given by (2.14)
generates the uncoupled and minimal system, in terms of z variables. The Modal Series method
only needs the transformation of x variables into the y variables. This step considerably reduces

the computational effort.
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e The Modal Series method is a potential alternative to the system solution even when a modal
resonance is presented in the system [Schanechi, et al. 2003].

e The approach for obtaining a solution of the z variables (2.14) is not necessary in the Modal
Series method. This represents a significant reduction in the numerical calculations since a set

of nonlinear algebraic equations is usually a hard problem to solve.

2.7 CASE STUDY. FOURTH ORDER BENCHMARK NONLINEAR SYSTEM
2.7.1 Nonlinear Model Characteristics

The test system proposed in [Dobson 2001] is used to carry-out a linear iterative study of the results
obtained through the application of both methods, i.e. Normal Forms and Modal Series respectively.

The system consists of four nonlinear differential equations, which have the nonlinear condition

handled by the & constant.

X, -1 1 1 0 ||x 0
X -1 0 1]|x Lex!
2| # 2l (2.64)
X, -1 0 -1 1/||x, 0
X, 0 -1 u -1||x, 0
The Hessian Matrix is,
H, =0 except H}, =¢ (2.65)
and the eigenvalues are
Ao=—l+Ju+i, A =—1+Ju-i (2.67)

The eigenvalues have a strong resonance in —1+i when g=0 [Dobson 2001]. Therefore, the
parameter 4 is assumed 4 # 0 to diagonalize the state matrix A of (2.64).

Hence, the right and left eigenvectors are,
i —i 1 1
vo L |k e e u (2.68)
\/51 /1+,u -1 -1 i —i
Vi @ ifa -ifm
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RN, 1+ pu \/; \/;
V=U =—¢= _ (2.69)
2\/5 1 L —j L
NN
1 i
1l — i —
NN
Applying Jordan canonical form to the system (2.64) this is transformed into,
V| | AN 1
Y, _ 4y, +g(y1+y2+y3+y4)2 -1 (2.70)
Y3 Ay, 8\/5\/;\/1"'/1 1
Va4 1Y, -1
. ) g(_ 1)i+1
with Cc, = (2.71)
g2 \/; NIEY7,
i+1
&(-1) (2.72)

h,' =
P8 2(a, + A — A W1+

Equations (2.68)-(2.72) are easily obtained using symbolic applications. For this case, Matlab®

symbolic toolbox was used, and it is extensively applied in further case studies tested along this work.

2.7.2 Experiment Design

The main goal of this experiment is to demonstrate that the selected initial condition for the analysis
may affect the final response. This constraint of initial conditions has been studied in detail in
[Kshatriya 2003] and [Kshatriya et al. 2005] through determining error indexes defined under some
validation criteria when the Normal Forms method is used. Our research only recalls the main idea
from those mentioned works without emphasizing on these indexes. Based on the initial condition
given by (2.73) and following the procedure described in Section 2.4.3, initial conditions for Jordan

variables y, and therefore, for z variables are obtained.

Before applying Normal Forms and Modal Series, an arbitrary initial condition is selected

[Kshatriya 2003],
x=[09 09 09 09] (2.73)

with parameters x# =0.65 and ¢ =2.5.
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A comparison between Normal Forms, Modal Series and the so called direct numerical simulation

is performed. This direct numerical simulation is conducted through the numerical solution of the set of

nonlinear differential equations given by (2.64), solved by 4th order Runge-Kutta method.

The experiment is designed as follows:

x(1)

x@3)

The system starts its simulation at instant ¢=0seconds, with initial conditions given for x,

according to (2.73).

The first step is at the time instant t = 0.5seconds. The state variables are calculated in this time

instant and valuated, so obtaining the new initial conditions that will be used by the Normal

Forms and the Modal Series methods.

The second step is performed at ¢t =1.0 second, again the state variables are calculated and used

as the initial conditions of the Normal Forms and the Modal Series methods. This imply that the

simulation with the nonlinear methods starts in the time instant snapshoted ( 0.5,1.0,1.5, ..., 5

seconds).

The subsequent time increments are valuated every 0.5 seconds up to 5 seconds, saving their

values at each instant.

==== Normal Form
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------- Numerical Full Solution

b

10 15 20
Time sec

25

v

==== Normal Form
== \odal Series

------- Numerical Full Solution
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Time sec

25
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x(4)

==== Normal Form
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Numerical Full Solution

15 20
sec

25

------- Numerical Full Solution |

==== Normal Form
== Modal Series

10
Time

15 20
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25

Figure 2.2. Time response comparison of NF and MS methods respect of Numerical solution for dynamic system, when
the initial condition is snapshoted from t = 0 in time instant t =0 sec
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2.7.3 Simulation Results

Every figure is showing the four state variables involved in the experiment, i.e.
x(1), x(2), x(3) and x(4), which have different dynamic. Thus, different initial conditions are

presented when the simulation is evolving with time, observed when Normal Forms and Modal Series

method are applied.

2 T T 3 T T
"""" Numerical Full Solution ===~ Numerical Full Solution
==== Normal Form I ==== Normal Form

.
== Modal Series b 2r '. == Modal Series 1
=3 Pl ST Yy g H b
-2
0 5 10 15 20 25 20 25
Time sec
1 1
bt - 0
)
& ! 5
£ i ] x 1 ]
L]
i
¥ N EESE Numerical Full Solution 1 2F Y N I s Numerical Full Solution b
‘-‘j‘ ==== Normal Form "—,;‘ ==== Normal Form
iy == Modal Series == Modal Series
3 T T 3 T T
0 5 10 15 20 25 0 5 10 15 20 25
Time sec Time sec

Figure 2.3. Time response comparison of NF and MS methods respect of Numerical solution for dynamic system, when
the initial condition is snapshoted from t = 0 in time instant ¢t = 0.5 sec

Figures 2.2 to 2.10 describe in detail this effect. The evolution of each state variable according to
the process above described is shown. The experiment starts at t =0 sec ; the state variables calculated
by Normal Forms and Modal Series are compared against those obtained from the full numerical
solution. Differences in both amplitude and phase angles are observed; nevertheless, the waveforms
obtained through Normal Forms show the worse approximation, being their estimation the highest
damping for all state variables (Figure 2.2). A quite similar behavior is observed in Figure 2.3 where
the snapshot is at t =0.5 sec. There are no important changes in the approximation of Normal Forms
and Modal Series with respect to the direct numerical solution.

Now the experiment continues to the next snapshots at t =1.0 sec and ¢t =1.5 sec. This is shown

in Figures 2.4 and 2.5, where a good agreement can be observed between the Normal Forms and Modal
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Series solutions, but still denoting differences in amplitude and phase angle with respect to the direct

numerical approximation. Over the instant time snapshot t=1.5 sec the Modal Series solution is

closer to the numerical full solution leaving with more notorious differences in amplitude and phase
angle to the solution obtained with the Normal Forms method. This situation is presented for the four
state variables of the nonlinear system.

At instant t=2.5 sec (Figure 2.6) the state variables obtained with Modal Series is nearer to the

direct numerical solution. At t=2.5 sec a large peak is obtained for the state variables using the

Normal Forms method. After that, the time evolution is again closer to the rest of variables.

"""" Numerical Full Solution ==== Numerical Full Solution
==== Normal Form ==== Normal Form
== Modal Series b == Modal Series b

e T

15 20 25
sec

15 20 25
Time sec

"""" Numerical Full Solution |1 4 =+=='= Numerical Full Solution
==== Normal Form ] ==== Normal Form
== Modal Series == Modal Series

0 5 10 15 20 25 0 5 10 15 20 25
Time sec Time sec

-3

Figure 2.4. Time response comparison of NF and MS methods respect of Numerical solution for dynamic system, when
the initial condition is snapshoted from t = O in time instant t =1.0 sec
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Figure 2.5. Time response comparison of NF and MS methods respect of Numerical solution for dynamic system, when
the initial condition is snapshoted from t = 0 in time instant t =1.5 sec
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Figure 2.6. Time response comparison of NF and MS methods respect of Numerical solution for dynamic system, when
the initial condition is snapshoted from t = 0 in time instant t = 2.5 sec
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Figure 2.7. Time response comparison of NF and MS methods respect of Numerical solution for dynamic system, when
the initial condition is snapshoted from t = 0 in time instant t = 3.5 sec
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Figure 2.8. Time response comparison of NF and MS methods respect of Numerical solution for dynamic system, when
the initial condition is snapshoted from t = O in time instant t = 4.0 sec
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obtain the new approximation.

These sudden increases are mainly due to the numerical calculation of the new approximation of z
variables in the Normal Forms nonlinear variables, once a Newton method has been applied in order to

The experiment continues for the next time instants snapshots, e.g. t=3.5 sec and t=4.0 sec. A
closer agreement between the Modal Series solution and the full numerical solution is observed, in
both, amplitude and phase angle; mainly for the state variables x(1), x(3) and x(4). The Normal
Forms approximation is significantly deviated from the rest of trajectories, showing higher amplitude
and completely different phase angle. These graphics can be observed from Figures 2.7 and 2.8.

After tr=4.5sec, Figure 2.9 shows that the response of the three methods tends to be identical.

until this is reached at t =10 sec.

They eventually reach the same trajectory, when the time is closer to t = 5 sec, as noticed from Figure
2.10. This fact is due to the state variables approach the vicinity of the equilibrium point condition,

Once the experiment was conducted through the time snapshots given by moving forward the initial
approximation, it can be concluded that the Normal Forms method is more sensitive to changes in its

initial approximation, to properly estimate a precise solution of the nonlinear dynamic system.
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Figure 2.9. Time response comparison of NF and MS methods respect of Numerical solution for dynamic system, when
the initial condition is snapshoted from t = O in time instant t = 4.5 sec
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Figure 2.10. Time response comparison of NF and MS methods respect of Numerical solution for dynamic
system, when the initial condition is snapshoted from t = 0 in time instant 5.0 seconds

The experiment demonstrated that Modal Series is less sensitive to the changes in initial conditions;

the solution is better approximated.

however, it is important to establish a precise operating point, since the method is linearized around an
equilibrium point. That means that while the initial estimation is closer to the stable equilibrium point,

2.7.4 Change on Initial Conditions

Selecting a different initial condition, for instance, x, = [0.45 0.4 04 0.4] , may be considered a

better option. Figure 2.11 shows the evolution of state variables under this constraint, where quite

significant similitude between the responses using Normal Forms, Modal Series and direct numerical

the same phase shifting.

solution can be inferred. Nevertheless, it can be noticed that there are still considerable differences
waveforms obtained for each state variable. Basically the differences are only in amplitude, keeping
Different

between Normal Forms waveforms, with respect to Modal Series and direct numerical solution
initial conditions

for the same

experiment may be proposed. Assuming
X, :[0.45 0.2 0.2 0.2] a better approximation of the three methods are obtained and shown in
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Figure 2.12, where it is clearly observed that all the state variables obtained with the three different

methods follow identical trajectories with a negligible difference.
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Hence, it can be said that these initial conditions mean the best starting point under the constraints

previously defined for this experiment. Some other conditions may be analyzed varying the parameters

associated to the nonlinear system.

Figures 2.13 through 2.18 show waveforms of state variables when variations on parameters & and

4 are made. Some important comments about this change can be drawn:

e In Figure 2.13, the nonlinear system parameters & =2.5, ¢ =0.3250 are varied, which represents

a reduction on parameter g, related to the real part of eigenvalues. An increment on the

amplitude of the waveforms followed by the Modal Series method is observed.

e However, by keeping unchanged ,x and increasing ¢, the Modal Series approximation is closer

to the direct numerical approximation than the Normal Forms response, as shown by Figure 2.14.

Thus, it can be inferred that increasing the nonlinear characteristic, the Modal Series method

approximates more closely the state variables behavior. The same result is observed in Figure

2.15, where an increase in the nonlinear parameter & is combined with a decrease of 1.
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x(3)

Figure 2.13. State variables for the case of parameters & = 2.5,
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4 =0.3250 in the fourth order nonlinear benchmark
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Figure 2.14. State variables for the case of parameters & = 4.5, g =0.65 in the fourth order nonlinear benchmark
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Figure 2.15. State variables for the case of parameters & = 4.5, ¢ =0.3250 in the fourth order nonlinear benchmark
system
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Figure 2.16 shows the state variables for &= 4.5, higher than the initial value, with x reduced to
41 =0.065. The Modal Series and the Normal Forms approximation, do not closely follow the

time evolution of the direct numerical approximation. A similar situation is presented for the case
denoted by Figure 2.17 where, although ¢ is even more larger (& =6.5), neither the Modal Series
method nor Normal Forms method can closely follow the trajectory of the direct numerical
approximation for the assumed range of study.

Finally, a substantial increase on ¢ to ¢ =8.5 combined with a remarkable reduction on x to
1 =0.0065, significantly improves the agreement of Modal Series to direct numerical
approximation, being the Normal Forms approximation the worse alternative for this case. The
experiment is shown in Figure 2.18.

It can be observed, that under the same selected conditions for the application of the three
methods, over the range of changes on nonlinear system parameters analyzed through Figures 2.14
to 2.18, the Normal Forms method gave the worse approximation for all the cases here described,

when the parameters & and u are varied as: & =4.5, ©=0.065 (Figure 2.16); ¢ =6.5, u=0.065
(Figure 2.17); £=8.5, £ =0.0065 (Figure 2.18).
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Figure 2.16. State variables for the case of parameters ¢ =4.5, ¢ =0.065 in the fourth order nonlinear benchmark system
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Figure 2.17. State variables for the case of parameters ¢ =6.5, ¢ =0.065 in the fourth order nonlinear benchmark system
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2.8 DISCUSSION

A comparison study of the Normal Forms and Modal Series methods has been studied in this
Chapter. The main mathematical fundaments and analytical characteristics have been described. It can
be inferred that both methods in their own fundations have some similarities but each of them keep
their own characteristics, basically on the linear and nonlinear transformations needed. Normal Forms
must perform a nonlinear transformation, while Modal Series only needs a linear transformation. Even
when the Normal Forms method has been successfully used for a wide range of applications in power
systems, the method of Modal Series may present an important advantage also guided by the absence
of numerical solution determination of its initial conditions, being this fact a big disadvantage of the
Normal Forms method. The numerical solution of nonlinear algebraic systems is cuambersome and can
present convergence problems.

The application of both methods to the solution of a nonlinear fourth order benchmark system has
shown remarkable differences along the study, when the initial conditions of both methods were
changed; also, parameter variations may result in some notorious differences with respect to the
validation solution obtained by the direct numerical simulation of the nonlinear set of differential

equations.
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THE MODAL SERIES METHOD
BASED ON THE MULTIDIMENSIONAL
LAPLACE TRANSFORM

The method of modal series described in the previous Chapter is revisited here. Some important
additions on its analytical basis, mainly described by the re-formulation applying the multidimensional
Laplace Transform and association of variables approach are described in detail. The extension to
include higher order terms in a systematical way is proposed. Advantages and disadvantages observed
in the modal series method are pointed out. A detailed application of the methodology to a simple

synchronous machine-infinite busbar power system is performed.

3.1 INTRODUCTION

The identification of the nonlinear system behavior is an increasingly important area of research,
with applications in many areas of power system analysis and control. Various methods based on
modal expansion procedures and perturbation theory have been explored to represent the power system
nonlinear dynamics following small perturbations. Normal form theory and modal series analysis
methods have been developed and applied to investigate various aspects of the system dynamic
response. These methods allow the definition of nonlinear modal coupling indices in terms of the
structural parameters and can be used to express the system response as a superposition of modal
responses. A proper estimate of nonlinear modal interaction is essential to accurately predict dominant
modes and the location and design of system controllers.

In [Pariz et al. 2003] and [Schanechi et al. 2003], a technique based on modal analysis of the
perturbation model of the power system was used to investigate nonlinear effects in power system
dynamics. The main advantage of this method is its simplicity, while some drawbacks arise from the
need to generalize the method to more complex system representations.

In this chapter, some aspects behind the underlying theory of modal series methods are critically

examined. Using an extended modal analysis method and concepts from Volterra series theory, a

43



systematic technique to derive closed-form approximate solutions of a perturbation model of the power
system is developed. Then, a general procedure based on the multi-dimensional Laplace transform is

proposed to derive closed form modal series.

3.2 BACKGROUND OF THE MODAL SERIES METHOD

Nonlinear modal analysis has been extensively used to study the system dynamic behavior in a
variety of nonlinear system events. In this section, we summarize the modal series analysis method and
the main results obtained from modal analysis.

Considering an n-dimensional dynamical system model described by n first-order nonlinear
differential equations of the form,

x =f(x,u) 3.1

where x is an n-dimensional vector of system states, and f : R" — R" is a smooth vector field; u e R"
is the control vector. The vector function f(x,u) and its partial derivatives with respect to x and u are
assumed to be continuously differentiable functions of x and u.

Expanding f(x,u) in Taylor series (as it was described in Section 2.2) about the initial equilibrium

point, X, yields,

X=Ax+F,(x)+...+F,_ (x)+O(|x[ ) + Bu (3.2)
where A contains the linear part of the vector field, and the terms F,, k > 2 contain nonlinear terms; r is
the order of the approximation.

Equation (3.2) can be rewritten as
X = Ax+lZn:Zn:F;k,xkx, +lZn:Zn:Zn:F3ipqrxpqur +...+buy, (3.3)
25D 60—

where ,

A;is the i" row of the Jacobian matrix, A = (Z—f‘j of f(x)
X

sep

. . o' f
F,,, is the kI second-order term associated with the i state, F,’ :(8 I
X
kM

or Hessian of f(x)

Xsep

. . . . . ; o’ f.
E;,,. isthe pqr™ third-order term associated with the ith state, F, = _Of
P ox,0x,0x
p—q T Xeep
and so on.
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The above modal expansion procedure has been used by several authors to carry-out modal analysis
of complex power system models [Vittal et al. 1991]. At the core of this framework is the
identification of the nonlinear modal interaction arising from a stressed power system behavior and the

computation of closed-form analytical expressions assuming the modal series as the analysis platform.

Let the state matrix A=Df(x,,) have an eigenvalue set {4, 4, --- A4,} with associated

sep
eigenvectors U and reciprocal eigenvectors V =U"". Then, the linear change of coordinates x = Uy

(known as a Jordan canonical form transformation) linearly transforms the system in Equation (3.3)

into its decoupled form,

IELAIED D NCTAIED IPIPW A AR 1) 34)

k=1 I=1 p=1q=1 r=1

with j=1,...,n

with initial conditions, yj-’ = Y jo» where terms above third-order are assumed to be negligible, and

c) =%anvj§ [UTH,"U] (3.5)
D,, =%ZHZZHZZHZH§VPPV5\CR (3.6)

p=1q=1 r=1

By analogy to the second order coefficients definition, the Dy, represent the contribution of modes

p, g and r to the mode j in the dynamic behavior of the Jordan coordinates system represented by (3.4)
[Barocio 2003].

In situations where truncation is sufficient to approximate the system behavior, low-dimensional
representations can be used. Efforts to extend this approach to the higher-dimensional case have been
limited and have concentrated on normal form analysis [Martinez 2006] [Martinez et al. 2004a] and

bilinear analysis techniques [Arroyo 2007].

3.3 THE MODAL SERIES REVISITED: MATHEMATICAL MODEL

The modal series method revisited in this section incorporates the multidimensional Laplace
transform as a versatile way of solution for the still coupled dynamic system given by (3.4). Indeed,
this system is solved not only for the already uncoupled linear part of (3.4), but in addition the second,
third, etc. order terms have to be determined. Laplace transform means a very practical way to solve
this system; besides, it is possible to obtain transfer functions of these terms as it will treated in the

next Chapter.
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Hence, referring to the basis of modal series from [Pariz et al. 2003] and [Schanechi et al. 2003] a
systematic determination of modal response, including the assessment of the extent to which specific

modes contribute to the system response is developed [Rodriguez and Medina 2010].

3.3.1 The Modal Series Free System Response
Assuming the natural response of the nonlinear system, that is, u =0, the system response can be
expressed in the general form following the definition from Volterra series, which expressed the output

of a nonlinear system [Rugh 1981] in the form,

y(0)=2_¢"y, (t) 3.7)
n=1
and its derivate terms,
t)=>&"y,(t) (3.8)
n=1

Substituting Equations (3.7) and (3.8) in Equation (3.4) and equating the coefficients of &
(variational approach) [Rugh 1981], results in
£y (0)+ e () + £ (1) +... =
A (gy; (t)+g2y]2, (t)+g3yj.’(t)+...)+

(3.9)
> > Ce (0 (0)+ €5 (O (O + ey, (0)F (0)+
k=1 I=1
ey (O)y (O)+eyi(O)yi )+ y (O)y, (t)+..]
Carrying out the indicated operations yields
¥ (6)=2,y,(1) (3.10)
AGEYAAGEDIAAAGIAG (3.11)
k=1 I=1
H(O=451 0+ X 3G OO0+ 30 (0% O]+ X3 DL (v Oy (@) (312
k=1 1=1 p=1q=1 r=1

Transforming the equations (3.10)-(3.12) using Laplace transform, a system defined in terms of
Laplace domain is obtained. In this step, the higher order terms may be either included or neglected,

depending on the accuracy required for the dynamic analysis. Hence, the transformed system has the

form,
51 (5)-Y(0)= A7) 613)
(5,+5,)Y7 (51,5,) = A4,Y} (5,8, ) + CY,! (s)Y'(s,) (3.14)

k=1 1=1
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(5,45, +5,)Y)(5,,8,,8,) =4,V (s,5,,8,) + D, > .C} [Ykz (51,8,)Y (s5)+ Y (s))Y? (52,53)]

k=1 I=1

YYD [X(s)Y, (5.)Y (s,)]

p=1g=1 r=1

(3.15)

Please observe that the transformed system is given in the multidimensional Laplace domain, being
S,,5,,S;,... the first, second, third, etc. order terms associated to the same order coupled terms. The
generalization to the multidimensional case is rather cumbersome and difficult to apply. To circumvent
these limitations, an efficient approach based on the application of multidimensional Laplace transform

is suggested.

3.3.2 Multidimensional Laplace Transform

For an assumed multivariate function or kernel f(t,¢t,,...,t,) of n variables ¢,t,,...,t , the direct

Laplace transform of fis defined by [Shmaliy 2007],

F (81,558, ) =Lf (t;,t,..0t,)

F(558,5058,)= [ oo [ Ftitynnnt, e dt, .. dt, (3.16)

Now, being F(s,,s,,...,s,) a Laplace Transform of f(t,t,,...t,), the inverse of the multi-

dimensional Laplace transform can be written as [Debnath 1989],

f(ttyseasty) =L F (585008, )itistysnt, | (3.17)
or,
1 oy +io o, +io [isjth
f(t,t,....t,)= . I e JF(s,,S,,...,S,)ds, ds,...ds, (3.18)

(2”1)” oy —io a, —io
where f(t,t,,...,t,) are real-valued functions of ¢, and t, and the transform is a function of n

variables.

If there two or more multivariate functions of the same class with different number of variables are
presented, there are some useful properties of the Laplace transform that can be applied [Shmaliy
2007].

Distributivity

Given f,; the distributivity property is expressed as,

LY fi(tutyeont,) =D Lf (t,ty,..0t,) (3.19)
i=1 i=1
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Product Transform
Assuming a function f(¢,t,,....,t,) that is represented by the product of two subfunctions
[ttt )= [ttty ) [t 15t ns--st, ). I subfunctions are given by different variables non-

overlaped in time, the transform of fis given by,

F (81,5558, ) = F, (51,55, ) Fy (Sias Siase 55, ) (3.20)
In case of the same variables

[ty t,) = it Gsens ) (650008,
The transform is represented by the convolution

1 o+ joo
)= ) I E (8= V1,8, =Vyseeis S, =V, ) By (Vi VooV, ) dVidy, ..dv,  (3.21)
o— joo

F(s,S,,...,S

>%n

Convolution Transform

If a function f is represented by the convolution, two special cases are presented. When

ft,t,,-t)=1, (tl)* f,(t,t,,....,t,) the transform produces,

F(s,Sy...,8,)=E (s, +8,+...+5,)F, (5,,5,,--.,5,) (3.22)

For the case of n-fold convolution, f(t,t,,...t,)= f,(t;,t;,....t,)* f,(t,t,,....t,), the transform is

similar to the single variable case, that is,

F (51,555, ) = F(5,,8,5-.,8, ) F, (51,5,,-.,8,) (3.23)

3.3.3 Association of variables
In practice, however, it is desirable to find the inverse of the n-dimensional Laplace transform by

specifying the inverse image at a single variable. That is,
g(t)= flt,ty,..., tn}[:ﬁ:tz:m:tn:t (3.24)
Among the classical treatments, a method based on the idea of computing the Laplace Transform of
the function Y(S) directly from F (51: 82,...,Sn) is adopted, where a single variable inverse Laplace

transform is only required to find y(t); this enables the evaluation of complicated integrals in a
straightforward manner.

In this approach, a n-dimension transformed function is first evaluated at a single transformed
variable and then a single dimensional inverse Laplace transform is taken. The procedure to find Y(S)

from F(s,,s,,...,s,) is known as the association of variables [Rugh 1981].
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The following sections introduce several theorems that will be especially important in the analysis
of complex systems, which allows the direct determination of the function Y(S) without solving

integral equations, rather than working in a direct way an algebraic system.
Very useful theorems developed to the treatment of multidimensional Laplace kernels may be taken
in order to solve some of the characteristic kernels derived from the modal series deduction. These

theorems are detailed in Appendix A.

3.4 MODAL SERIES CLOSED FORM SOLUTION
We can now conveniently apply Theorem 1 to derive the two-dimensional Laplace transform of the

system (3.13)-(3.15) as follows.

Y (S ): J (325)
S (s1 - AJ)

Therefore,

y;(t)=y,;(0)e™ (3.26)
Then, from (3.14), solving for Yj2 (sl,sz) we have,

(5;1 +5,— )Y2 (s8,) = ZZC,{,Yl (s)Y'(s,)

k=1 I=1
n n 1 .
sz(sl,sz)zzz Ck],Y,f(sl)Y,l(sz) (3.27)

k=1 I=1 (51 +5S, —/1j)

Applying association of variables to the second order terms a single variable Laplace transform is

obtained, which is easily solved through the direct application of common inverse Laplace transform

transformations. A detailed description, step by step, of the procedure followed to carry out the closed

form solution of modal series second order terms is described in Appendix B. Hence, performing the
inversion with respect to x, the closed-form solutions are obtained

1 (A+a)e At
)= 3¢l (0) —( v ;,j)[e e | (3.28)

k=1 1=1

Upon rearranging terms, one has

yj (t):(yj (0)_Zzh2klyk ]e +Zzh2k1yk (Akhll)t (329)

k=1 I1=1 k=1 I1=1

and
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j=1 k=1 1=1 =1 k=1 1=1
where i=1..,n
A C)
B —— S (3.31)
At A=A

which, for the case when u =0, reduces to (3.30). This agrees with the results obtained in [Schanechi
et al. 2003].

A useful variant of the modal series solution for the conveyed system in its physical variables is
based on writing the final result in the Laplace domain. Some characteristics of the transfer functions
may be accommodated in order to analyze the oscillations in dynamic systems with respect to a sample
frequency range. According to Equation (3.2) and using the linearity properties of the Laplace

transform, the complete solution for the nonlinear system can be written as,

Y, (s)=F!(s)+ F2(s)+ F*(s)+... (332)

J
Also, assuming the relationship,
X(s)=UY(s)
where U is the right eigenvectors matrix, then,

X;(s)=U[F/(s)+F}(s)+F}(s)+...] (3.33)

where F jl (s), F jz (s), F j3 (S), ... are the first, second, third, etc. order functions expressed in the single

Laplace domain.
Substituting the first and second order terms (Equations (3.25) and (3.27)) obtained for the modal

series analysis, it yields,

i iyt 1 1 1 1
g (S—ﬂj) +k=1 I=1 [UUCHY;( (O)Yl (O)</1k +ﬂ, —11) ‘[(S_ﬂk _/11) ) (S_ﬂ“j)]]}

x()Z{ EpioR {ugcm<o>w<o>(;)-a<s>}} (23

s—A. k=1 I=1 ﬂ“k +ﬂ’1_lj

e
—~
%]
~
I
M-
f_/_\
<
-~
—~
o
~—
=
=
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These equations can be conveniently analyzed using the proposed framework. Straightforward
application of the Laplace transforms means a systematic procedure, which allows the analytical

solution of the nonlinear system, assuming uncoupled each term (linear and nonlinear terms).

3.5 MODAL SERIES CLOSED FORM SOLUTION UNDER RESONANCE
CONDITION
Recalling the nonlinear coefficients h, defined by Equation (3.31), the resonance condition is

established as,

At+h=4,=0 (3.35)
or,
A+ h =4
Thus, the Laplace transform kernels considering the resonance assumption are obtained as,
1
i

)=2 2

CY!'(s, )Y}
k= 111(51+S2 /1j) . k(SI) : (SZ)

. _ 1
Y2(s,s,)=3 > Civ (0)Y' (0
f (S1 52) apa K k( ) ! ( )(51+52—/lj)(51—/1k)(52_ﬂ“l)

According to the resonance condition constraint, the kernel is defined as,

3

1
) C]Yl '
) DO O e 0%

which is associated in terms of Laplace domain as,
Y! (0
ijl (S) — J ( )
(s,— 4 —4)
Obtaining a time domain solution through inverse Laplace leads to,

yh(£)=y! (0)e (3.37)

or
At
yj(t)=y;(0)e”

The second order kernel,

1
(si+5,—A—4) (s —4)(s,— 4)

H,(s,s,)=
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is associated following the rule of association of variables detailed in Appendix A as,
1 B 1
(s=A-A)(s=4-4) (S_ﬂ‘k_ﬁ‘l)z

H,(s)= 1 (3.38)

(5_’11')2

from which the time domain solution solving the inverse Laplace is,

H,(s)=

h(¢)=te™

Thus, the complete closed form solution when a modal resonance condition is presented is,

¥, ()=, (0)e" + 373 Cly, (0), (0)te™ (3.39)

k=1 I=1

x (t)= ui’jyj )e M4 ZZul JCk,yk (0)y, (O)te}”ft (3.40)

k=1 I=1

3.6 HIGHER ORDER APPROXIMATIONS OF THE MODAL SERIES METHOD
It is possible to extend the modal series method in order to incorporate higher order terms in the

expansion of Taylor series from the original nonlinear system. Consider again the Taylor series

expansion about a fixed stable equilibrium point X, , that is,

109 1) 5 s s, ) [—[a@i"@)]] )

sep sep

(3.41)
1 T T 0 X
—(x-x X —X
TR AT .
for i=12,...,n
Rewriting the Taylor series expansion, it yields,
x=fi(x)+ f,(x)+ f5(x)+ f,(x)+... (3.42)
where:
o of . Oh]
ox, Ox, 0Ox,
oh o . %
f,(x)=Ax, and, A=Df(0)=|dx 0x, ox, (3.43)
| Ox, Ox, 0ox,

— X=Xsgp
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L o'f,  o'f o'f, |
- 0x,0x,  Ox,0x, 0x,0x,,
X X 2 2 2
1| x"H’x : j oL o, o1,
f, (x)z; : with  H’=| oxox, 0x,0x, OX,0x,
xTﬁ”x E E 5
o'f,  2f o' f
| Ox,0x,  0OX,0%, OX,0X, |
I x 0 0] |
xHy|0 x 0]|x 3 3 3
0 0 x o o1 o
- 0 0: 0x,0x,0x,  Ox,0x,0X, 0x,0x,0x,,
X
83 ) 63 . 63 )
1{x'H2|0 x 0|x , . f f —ff
fy (X):E 0 x with Hj =| ox,0x,0x, 0x,0x,0x, OX,0X,0X,
% 0 0] *f; *f o’ f;
TH' 0 x N | Ox,0x,0x,  OX,0X,0X, 0x,,0x,0X,, |
3
0 0 x
0 x * 0
x"H,
X [ ~4 4 4
L L0 0 x o'f, o'f, o*f,
{x 0} {0} ox;  ox 0, Ox, 0x,,
X
0 x 0 o'f.  O'f. o' f.
f(X)=l ~H, 0 x 0 with  Hj = axa;f 6x4] 6x36;<
4 4! |: :| |: :|X 4 1772 2 27"n
0 0 x : : :
: o'f,  o'f *f
_{x 0} {0} | Ox,0x] Ox,0x; ox?
X
0 x 0
x Hj
I To x 0
X
| L0 0 x| |

X=Xsgp

X=Xsgp

— X=Xsgp

(3.44)

(3.45)

(3.46)

Taking into account the result obtained in Section 3.2 through the variational approach, that is,

Yi=4Y,

V=AY + 2> Cly

k=1 I1=1

(3.47)

(3.48)
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n

Chlyiv +yy |+ 22> DLy yiy:
k=1 1=1

(3.49)
p=1q=1 r=1

E

yi=24y;(t)+

M’+Z;CH[WI Yy Yyt [+ 2 D Dl [ iyiya + i Ye + Viviys

Y Ya+ Vi Ye + Yivivn |
k=1 k=1 1=1 m=1

(3.50)
SIS EL [y ]

m=1 p=1 g=1 r=1

From the first order term, it is possible to determine the second and higher order terms. Being,
Y (0
Yi(s)=r—"75 © (3.51)
(s:-4)
and the second order terms obtained in Section 3.4, given by Equation (3.27)
n n . 1
s,)=2.>.CiY, (0)Y,(0) (3.52)
k=1 -1 (51+Sz—ﬂ,j)(sl—/1k)(sz—/11)

the third order terms are obtained from the substitution of (3.51) and (3.52) in (3.15), that is
Y] (s,5,,8,) =

ik 1
;;;;C Cradp (0)7 (0 (O)(s1 +5,+5, —xlj)(s1 +5, —Ak)(s1 —xip)(SZ —Aq)(s3 -2)
RN R 1
+;§;;Cldcp 75 (@)24(0), (0)(51 +5, +s, —Aj)(s2 +5,-4)(s, —/‘L,)(s2 —xlp)(s3 —/lq)
233D, :

Pt (sl+sz+s3—/1j)(sl—/1p)(sz—xiq)(s3—l,)

(3.53)
Step by step deduction procedure of expressions in Equation (3.53) is described in Appendix B. The

inverse of the multidimensional Laplace transform in (3.52) and (3.53) can be obtained by the method
of association of variables as discussed above, i.e
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Cick ¥' (0)Y! (0)Y; (0)-
e o e ]
k=1 I=1 p:1q:1(/1j “A, -2, _ﬂl) (lj ) _}I’k)(s_//l’j) (),p +4, —ﬂk) (s—lp — 4 _ﬂvz)
CLCL (0)¥) (0)¥! (0) 29
2% VS SN T T,
( )

S Ay = ay = 2= (A + 2= )

s=4) (s=4, -4, -4

"inDéqus(O)Y;(o)Yf(O)( : {( W : }

A=Ay =2 =2 )| (s=2) (s=4,-4,-4)

Higher order terms are obtained in identical manner. The key point to be emphasized is that closed-
form solutions can be obtained by inverse Laplace transformation of (3.54).
Performing the inversion with respect to s, the closed-form solutions are obtained as,
yi ()=
CiCh¥, (0%, (0)Y/(0):
2222, 1 1 L Gy
k“l“q%4—@—&,wgh@—4—4) (4, + 4 %) }+
., CiCLY (0)¥, (0)¥; (0): (559
2222 1 1 [ea,z _ } +

et -2, -24) (24, + 2, 4)

iiiD;qu;(o)Y;(o)Yf(o)( 1 )[e(z,)c _e(/lp+/1q+,1r)t:|

Pl A=Ay =2, =2,

which after some manipulations gives,

Y5 (0)= 22 3 bl v (0)53 (0)y2 (0) € e

p=1g=1 r=1

333 O et h e

k=1 I=1 p=1 q=1 (ﬂj -4, -4, —/11) 2pa

anzn:izn:hl C] yli (O)y; (O)yzly (0) |:e).j( _e(lp+lq+lk)t:|

k=1 I=1 p=1 q-1 2pail (ﬁj -4, -4 —/1,()

and
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Z Z Z uu h3pqryp

p=1g=1 r=1

Y (0
Z”:zzz u, )yq (O)

(%) _e(/lp+lq+/l,)t:|+
e’
k=L I=1 p=1q-1 (i -4, -4

j ).t 1
2kl —h

2pq

)1 (0) e
(?[h

y
A’I
\ XZZ th,,qC’ yi (0)y! (O)yq(o)[ew_e(wqw)r}

e (A=A =2 —A)

u+aw»}+ i=12,...n  (3.56)

In the above, the second and third-order nonlinear coefficients h3;,q, are defined by

Ck
= — 2 — 3.57
(A 42—y (57
A C’
hyjy=—H2 (3.58)
(A 4)
. D/,
hyl, = b (3.59)

(A=A, -2, -4,)

The procedure can be indefinitely continued to determine higher-order nonlinear expressions in
terms of the lower-order modal expansions. For the sake of simplicity only terms up to third are

obtained.

3.7 POWER SYSTEM MODELING BY HIGHER ORDER MODAL SERIES
The application of the modal series method including higher order terms is demonstrated through

the application to the synchronous machine-infinite busbar power system as illustrated in Figure 3.1

E

B

E JX; JX NN

Figure 3.1. Synchronous machine-infinite busbar power system

Two different cases are conducted in order to remark the main advantages of utilizing the modal
series method. As a first case, the power system of Figure 3.1 is modeled with the classical model of
the synchronous machine; as a second one, the model is switched to the one flux modeling, which
includes the dynamics of a simplified stator equivalence included in the q axis winding. Both cases of
study are modeled using higher order modal series, taking into account up to third order terms. Higher
order terms have not been considered yet by the author, leaving their development for future

contributions.
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3.7.1 Case 1: Classical Model
The set of differential equations that represent the model of the synchronous machine connected to
the infinite busbar are given by [Kundur 1994],
%: w, ‘;—Ct" :ﬁ(Pm -P, sind—D,o) (3.60)
with, P = ,E#
Xy + X, + X,
where J represents the rotor angular position in electric radians with reference to the infinite busbar, w
is the rotor angular velocity in rad/s, Py, is the mechanical power input which comprises the primotor
mechanical system in p.u., D, is referred as the damping coefficient of the generator in torque
p.u./speed p.u., and H is the inertia constant in MWs/MVA. Simulation data used during the
experiment are taken and adapted to our study case from [Kundur 1994],
H-= 3.5MW/MVA, D=10pu.,x, =03 pu., x, =0.15 p.u., x, =0.8 p.u.
The nonlinear system is described by,

x=[x1 xz]T:[é' a)]T (3.61)

The movement equation is described by the nonlinear system [Martinez et al. 2004],
@
X, X
x=f(x)= hlxx))_ 1 . (3.62)
f,(x,%,) E(Pm —P,. siné—D,o)

with equilibrium point is defined as,

[ o(e ) T
X, =6, ] :{sm [Pmaxj 0} (3.63)

Expanding the system (3.62) in Taylor series, a perturbed system is deduced, that is,

Ao | | -2t cosSAS ——"Aw | 21| % gin A5 | 3! 2% cos5,AS>
2H 2H 2H 2H

+0(4) (3.64)

where O(4) represents the terms of fourth order and higher order which are truncated during the
linearization process. Applying the definitions associated to vector fields, which specify that a system
can be described by a decomposition of first-second-... etc. order terms, the linearized system can be

described as,
x~f, (x)+1,(x)+£,(x) (3.65)

where each function is defined follows,
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e First order terms:

f(x)=Ax

of,(8,0)  of,(5,0)

A = Df (Xo): 00 ow

of, (8,0)  of, (5,)

00 ow

e Second order terms:

2! XTHix

THI 0 ]
£,x) l{x X _Lp,
7| ™ sin 5,
2H

[0'f,(5,0) *f,(5,)
05" 030w
*f,(S6,0) *f, (5, )
0w o’

L X=Xg,

[0*f,(5,0) &*f,(5,@)
05 080w
o*f,(8,0) f,(6,0)
0wdS o’

L X=Xp

e Third order terms:

o o)

0

x 0 0
x'H;|0 x 0|x
1 0 0 x
f(x)=— - -
5(x) 6 x 00
x'H;[0 x 0]x
i _0 0 x| |
C o, o, of  &f,
H' = 06° 0020w 00wdS 00w’
N &f,  &f
| 0w0d? O0wOdw O0w*ds 0w’
Cof, &, o’f, o'f,
H? = 00° 0020w 00wdS 00w’
T8 & o'f,  2f,
| 0w0S? 0wddow Ow’ds ow’

The system eigenvalues are obtained from the state matrix A, being for this case given by,

0

X=Xsgp

X=Xsgp

max

z[

0 1
P D,
——%c0s9, ——=
2H 2H Iy,
sin o,
0
0 00O
0 00O
P
—2%coso, 0
2H
00 0

X=XsEp

(3.66)

(3.67)
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P
2 +_21; s % _g (3.68)
2
D 1| D P_ coso,
= Pn D Pn | 4 Fmax €OSO 3.69
A 4H 2\/[2H) [ 2H j (3:69)

Hence the eigenvalues are calculated; it is possible to determine the right and left eigenvectors and

therefore, the coefficients C}, hJ,,, hJ, using (3.5) and (3.31).

3.7.1.1 Linear approximation
From the linearized system and considering only the linear part of Equation (3.64), an approximate
solution is obtained based on the modal analysis of the original system. Recalling the right and left

eigenvectors,

u u V. V.
11 12 ! 11 12
U= { } and vV=U'= { }
u21 u22 v21 v22

The time domain solution based on the linear part of the nonlinear system is given by,

_A§(t) uy w, Cleﬂ,lt
_Aw(t)}{un uszzeﬂﬂ} (3.70)

where

3.7.1.2 Simulation Results

The experiment is conducted considering a perturbation on the rotor angle of A6 =30". For this
study case the solution obtained with the modal series technique is compared against the linear
approximation and the numerical full solution obtained by solving the nonlinear differential equations
that represent the dynamic system.

Figures 3.2 through 3.5 show the comparison of the oscillations presented after the perturbation on
the rotor angle obtained by the three different forms of solution described above, i.e. the full solution,
the linear approximations and the modal series solution. The waveforms in Figure 3.2 are the rotor
angle and speed deviations respectively; assuming a mechanical power input P, =0.9 p.u. Throughout
the simulation an agreement between trajectories on the obtained waveforms is observed with a lighter

difference on the waveform obtained with the linear approximation method.
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Figure 3.2. Rotor angle and speed deviations comparison for a load condition of P,,=0.9 p.u. y 46=30°

Figure 3.3 shows the phase plane of & vs w for this stable case study. It can be observed that the

oscillations in the state variables eventually reach a stable equilibrium point before a low frequency
transient period. Also it is of importance the agreement between the full numerical solution and modal

series approximation thus demonstrating the applicability of the method under low stress conditions.
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Figure 3.3. Rotor angle and speed deviations phase plane comparison for a load condition of P,,=0.9 p.u. y 40=30°

The next step of the experiment considers an increase on the input mechanical power, which
emulates an overload of the generator (stress condition). Under this load condition the system can
eventually become unstable. This point of loss of stability is reached when the electric power generated
is less than the mechanical power demanded to the generator, causing a lack of damping torque.

The Figure 3.4 shows the new condition mentioned above when an increase on the mechanical

power is presented; e.g. to P, =1.12 p.u. That means a stress condition of operation for the generator.

It is important to point-out that under this condition the modal series method shows a significant
difference with respect to the full numerical solution.

The reason of this effect is that when the system is operated under strong stress conditions,
intermodulation frequencies of second and higher order are presented [Martinez et al. 2004]. This
phenomenon can be easily verified using Fourier analysis. Also, the inclusion of higher order terms in
the modal series solution is very useful to get insight into the nature of the nonlinear oscillations

presented, due to nonlinearities in the dynamic systems operating under such stress conditions.
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Figure 3.4. Rotor angle and speed deviations comparison for a load condition of P,,=1.12 p.u. and 46=30°

As an intent to show in a different way the behavior of the state variables, a three dimensional
graphic is depicted in Figure 3.5, showing the transient of state variables but noting the differences in
the trajectory for this case of increasing stress conditions. Even though the solution is stable, during the
transient, there are differences observed in the trajectories followed by full numerical solution and
modal series approximation due to the reasons pointed out above.

The experiment has demonstrated that the exactitude of the modal series technique depends on the
magnitude of the initial perturbation and the stress level of the system operation, such as it has been
observed in Figures 3.2 to 3.5. Perhaps it can be said for further applications, that one of the main
handicaps of methods based on linearization through Taylor series expansion, is that the approximated

solution is not valid at all when strong perturbations are presented (high stresses constraints).
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dimensional view that shown the differences between full solution and modal series trajectories.

Hence for the cases near to transient stability approximations based on modal analysis and their
modal combinations, the dynamics could not be followed due to the farawayness with respect to the

equilibrium point, a condition that has to be previously met as a part of the linearization approach.

3.7.2 Case 2: Flux Decay Model

A third order generator model is assumed, which incorporates the dynamic of the electromechanical
system. This system is interesting and adds to the previous case of classical model the inclusion of
algebraic equations, thus commuting the model into a combination of differential-algebraic modeling.

The differential equations are [Sauer and Pai 1998],

dE, ——[L][E; +(x,=x)) I, —Ey =,

d 1)
%:w_% _ 1 (3.71)
‘2—‘;’ = (;)—I:[j[TM {1, +(x, =X ) 1,1, - D(0-a, )}] =,
Furthermore, eliminating the stator resistance effects, the algebraic equations are,
~(x, +x +x)I,+V,sin6 =0 (3.72)
(X +x +x)I; —E! +V,cos6 =0 (3.73)
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Linearizing the system at a stable equilibrium point, it has the form,
X = fl(x)+ f, (x)+ f3(x)+...
with
T ' T
x=[x x x] =[Eq o a)]
where each term is defined as,

fl(xl’xz’x3)
x=f(x)=| f,(x,%,,%)|= -,
f3 (X0 %5, % o ' '
( ) (;—HJ[TM —{Equ +(xq —xd)Iqu —D(a)—a)o)}}

This dynamic system has the equilibrium point,

on[Eéo 9, wo]T

X, =[Vb cos(8, =0, )+ (x, +x +x;)1, angle(VbemS + j(xq + X, +xl)IGe”) a)o}T

(3.74)

(3.75)

(3.76)

The linear and nonlinear functions defined by (3.74) for which it is necessary to determine their

closed form solutions are obtained next, that is:

e Tirst order terms,

of o of
OB, 05 oo
fi(x)=Ax, with, A= o, o, of,
OE! 35 oo
o, of o
OE! 35 oo

= —IX=Xspp

(3.77)

Applied to the case of the third order power system under study, the state matrix has the form,

L[K1 -1] Ti,[Klvb sind]

’
Td() do

w, | KGEV, cosd + K,V sin® & +

DKV, sind+KV,sind]
2H 2H KB(E; -V, COS5)Vb coso

where,

2H

— X=Xsgp
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K, = p
Xy +X,
1
K,=-
X, T X,
!
X —X
_ q d
K,=- p
(% + %, ) (% +%,)
xepzxt+x1

e The second order terms are,

ZZHilxkxl
<"H'x k=1 1=1
f,(x) _1 x'H’x _1 ZZH,f,xkx, (3.78)
XTHBX k=1 I=1
ZZHkslxkxl
| k=1 1=1 |

of,  &f, &f,
OE\OE, OE\0S OE.0w
. . o f. O f.
With, H' = ! f) f) which has the form,
OOOE' 0006 060w

*f  &f,  f
0wOE, 0005 owow

= —IX=Xspp

0 0 0|0 O0O0|] 0 H
010 0 0[Hy,, Hy

0o 0 0j0 0 0] O 0 O

2]

H g = ﬁ(—KZVb cosd + K,V, cos S)
1 ) o,
Hp, o= _EKM’ CosJ ; H,, —E(KZVI, cos & + K.V, cos &)
= a)r ! 1 2 G ' .
(28) —E{—KZEqu sind +3K.,V, sindcoso + K, (Eq -V, cos 5)Vb sin 5}
K - X, = X,

4 '
(54—, ) (%, + %)

e The third order terms of the linearization are,
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1
]

x 0 0
x'H,[0 x 0|x ) .
10 0 x| ZZH;klmxkxlxm
x 0 0] k=1 I=1 m=1
f3(x):l xH2|0 x 0|x _1 DD H XXX, (3.79)
6 6| S =
10 0 x| .
[x 0 0] ZHsklkaXle
| k=1 I=1 m=1 _
xXH}[0 x 0|x
| 10 0 x| |
where the third order matrix is defined by
o, of, of, of, of, of, of, of, of,
OE  OE05  OE0w OE)0XE, OE\05° OE.00w OE\0adE, OE0w005 OE|00*
W | O e en e 2 2 2 @ 2f
P 00E  OXE.08 OME.0w  06°0E,  08°  05°0w  O0S@E, 0Rw@0S 00w’
of,  o'f, o*f, o*f, af,  &f, o'f, of,  of,
0O  O0OE)05 O@E 0w O@OXE, 0wds’ 00d®w 000, 0005 0w’ |
(3.80)
Fitting to this case study, HJ has the next elements,
00 0/0 0 0]|0 00O
H;:OOOOHEZ,S)OOOO
0 0oo0f0o o o0f0o0 0]
H; = zeros(3x9) (3.81)
0 0 0l 0 H 0/000
H;=|0 H}, O0|H,, H,, 00 0 0
0 0 0 0 0 0]0 0 O )
1 1 :
H(Z,S) = _T_'Kl‘/b sino
do
o, . .
H, = E(_KZVI’ sind — K.V, sin§)
H(32,4)=;)—I;(—K2\ﬁ,sin5—K3%sin5) (3.82)

Hj = ;)—IQI(—KZVZ, sind — K.V, sin 8

__ %

Hi, = o {KZVb cos S + 3K,V cos’ § + 4K,V sin’ 5 + K, (E; —V, cos 5)Vb cos 5}

Based on equation which links the relationship between the transformed variables with Jordan

canonical form, the system (3.74) is then transformed, resulting in,
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yay f+y( f+y( ) (3.83)
where,
(Uy)" H,Uy
U'| (Uy) H2Uy (3.84)
(Uy)" H;Uy

M=

C;kayl

Il
iR

Cayiy, (3.85)

Il
iR

[M= 1= M-
M= 1M

CoYiYi

=
Il
iR
Il

JEN

and,

Uy 0
(Uy) H,| 0 Uy o0 |Uy
0 0 Uy
Uy 0

f,(x)=—U"|(Uy) H2| 0 Uy 0 |Uy (3.86)
0 0 Uy
Uy 0

(Uy) H:| 0 Uy 0 |Uy
0 0 Uy

M=
M=

CaamYi Y1V

=~

S

1

s |l

1

1
£(¥)= 5| 22 2 ClunbiiYn (3.87)

1 I=1 m=1

1

3
S

=~

S

sl

n

CaimYi V1Y

k=1 I=1 m=1

where C/ and Cj,,, are defined in (3.57) to (3.59).

Once the nonlinear dynamic system has been transformed to the Jordan canonical form, the Laplace
transformation has to be carried-out. The system expressed in the Laplace domain represents the
contributions of linear and nonlinear higher order terms, which have to be solved by association of
variables theorems such as described above.

Finally, after the inverse Laplace transform has been applied, the time domain solution is expressed

as,
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y;(O)= £ (O)+ f7(6)+ £/ (1) (3.88)
The full solution obtained for the nonlinear system is given by,
(@ | [ K@ | 2] | £()
ya(t) |=| £ (0) [+] £ () |[+] £'(t) (3.89)
ys()] @] [ [£)

where this time domain solution is presented as a function of the Jordan variables; that is,

_NN1 0.0 __NNl oo(A‘M)r_

zthklyk.yleﬂit ZZthlyk.yle o
v, (t yOeﬂ,lt k=1 I=1 k=1 I=1
1() _ 1)22[ _ S th 0.0 At = th 0.0 (A+A)t (390)
Y2(t) =| ¥.€ ZZ huYiYire ™ |+ ZZ b YY1 € :
y3(t) yé)eze[ k=1 I=1 k=1 1=1

SRy h3 040 Aat by h3 00 (A+4)t

ZZ hiaYi Y € ZZ b YY1 €

L k=1 I=1 1 Lk=t =1 i

Transforming to the original state variables, the time domain final solution has the form,
X (t) AE; (t) Uy, Up U .V1(t)
X (t) = A5(t) T Uy Uy Uy (| ) (t)
X, (1) Ao(t) | |uy uy ug || ys(2) (3.91)
Equation (3.91) provides closed form solutions to the state in terms of the initial conditions in the
Jordan state variables. Also, the dynamic information given by the modal analysis is maintained at this
part of the final solution. In a identical manner to the study case with the machine classical model, the
linear approximation is obtained according to (3.70), extended for this case to three state variables and

the algebraic equations.

3.7.2.1 Simulation Results

The experiment is conducted assuming a perturbation in the rotor angle. The solution obtained with
the modal series technique is compared against the linear approximation and the numerical full solution
obtained from the nonlinear differential equations that represent the dynamic system. The model of the
system consists on stator dynamics represented by the state variable of voltage along the g axis,
neglecting d axis effects (one axis flux decay model ((3.71))). The perturbation is initially applied
assuming an increment in input torque (mechanical power in the generator); afterwards, a larger
increment in the same power joint with another increase in the rotor angle perturbation is reflected as a
stress condition.

The modal analysis is resumed in Table 3.1. Two oscillatory modes are present, due to the

electromechanical oscillations and a real mode, mainly due to the stator variable E; The experiment is
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performed to compare the solution obtained by modal series against the linear approximation and the

direct solution of the nonlinear set of differential equations basically described by ((3.71)).

Table 3.1 Modal analysis of SMIB with one flux model

Eigenvalue

Frequency (Hz)

Damping Ratio

A, =-0.032786337262722

A, 5 =—0.478749 £ 5.137238i

0.817616863444186

0.092789977022137

Figure 3.6 through 3.9 show the oscillations of the state variables &, @ and E, when a rotor angle

perturbation conditions are applied. Figure 3.6 is showing the oscillations followed to a perturbation in

the rotor angle of A9 =10" followed by an increase on the power demand to P, =1.12p.u.. The full

transient followed by state variables can be observed. Qualitative differences are noticed between

modal series approximation with respect to the linear approximation in the waveform of the voltage

E;, that presents an offset. Eventually since the system is stable, even in the presence of perturbation

conditions, it eventually reaches a steady state point after a transient period, being larger for the case of

voltage E é . Also, Figure 3.6 shows the transient behavior of selected state variables.
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Figure 3.6. Rotor angle and speed deviations comparison for a load condition of P,,=1.12 p.u. and 40=10°
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The Figure has been conveniently zoomed to illustrate the differences between solutions in more
detail.

The phase planes shown in Figures 3.7 demonstrate that the system is stable after the oscillations
followed due to the disturbance conditions. Both the rotor angle and speed rotor approaches to a stable
equilibrium point, which is clearly observable in the phase plane of Figure 3.7 a).

Figure 3.7 b) denotes a tridimensional phase plane that involves the three state variables where the
final solution goes to a fixed steady state operating point in the same form as in the two dimensional
phase plane. It is important to point out that the solution obtained by modal series is in close agreement
to the solution obtained directly from numerical full approximation.
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Figure 3.7. Rotor angle and speed deviations comparison for a load condition of P,,=1.15 p.u. and 40=10°

The oscillatory behavior in the generator after the change in the initial angle conditions. There is a

deceleration in the synchronous machine, so noted by the decrement in the rotor speed which is
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accompanied by a decrement in the rotor angle and the magnitude on the voltage E‘; The system keeps

oscillating until it reaches the new equilibrium point, which is different in comparison with the initial
operation conditions.

Hence, it can be said that the method of modal series has a good accuracy in presence of low
perturbation or low stress conditions, since the operation point is near to the initial equilibrium point
defined for the linearization of the nonlinear system.

Now the experiment is continued selecting different conditions of perturbation. The system is
stressed by a step change of the demanded power of the synchronous machine moving it to
P =1.15p.u. together with a perturbation increment of A6 =30°. Figure 3.8 shows the oscillation due

to this constraint where it can be observed a clear difference between the three methods utilized (full

solution, modal series and linear approximation). With respect to the voltage E; (Figure 7.8a) the

offset is clearly observable from the linear approximation; there is an appreciable difference between
the modal series and full solution waveform; such differences are remarkable in amplitude and phase
angle. The same result is noted in Figures 3.8(b) and 3.8(c) for the rotor angle and rotor speed. Again,
the waveforms have been conveniently zoomed to detail the initial oscillatory periods following the

transient until reach the new steady state condition.
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From this oscillatory condition, it is clear that the system is still stable despite the stress conditions
previously established for the analysis (see zoomed Figures 3.8(b) and 3.8(c)). This situation can be
denoted in the phase planes of Figures 3.9. The two dimensional phase plane of Figure 3.9(a) is
showing the behavior of rotor angle versus speed rotor, where a different trajectory is followed by the
modal series solution and the full numerical solution, although at the end both solutions find the same
steady state point.

Figure 3.9b shows a three dimensional trajectory followed by the two compared methods, where a
different body of solution can be noticed, but similarly to the two dimensional phase plane case, both

solutions eventually find the same final operating point.
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Thus, this experiment demonstrates that the modal series method approximation could fail when the
stress conditions are increased in such a way that the operating point is moved away from the steady
state conditions. It can be concluded that a stressed power system tends to change the apparent linear

behavior, moving the system to oscillate near the edge of unstable conditions

3.8 DISCUSSION

Compared to other approaches, the main theoretical advantage of the revisited modal series lies in
its ability to derive higher-order modal solutions, associated modal quantities and the computation of
second and higher-order terms, which can be extended as it will be demonstrated in the Chapter 5 to
obtain nonlinear transfer functions.

Some limitations arise, however, associated with modeling assumptions as discussed below. The
inclusion of detailed machine and control models is under development and will be discussed in future
developments. The core of the experiments performed along this Chapter tried to demonstrate the
advantages and limitations that can be found when the method of modal series is used to analyze a
stressed system, in addition to the conclusions given early in the same tone, in the Chapter 2 (when the
method was compared with Normal Forms method).

Furthermore, a comparison of the modal series method with other methods including the previouly
proposed modal series [Schanechi, et al. 2003] is detailed in Table 3.2. The comparison is focused on

the modeling detail, analysis capacity and future developments so related with the other approaches.

Table 3.2 Comparison between the modeling capacities of the proposed approach with other formulations

Modeling Detail and Analysis NF Method Conventional Modal Series Proposed Modal Series
Capability Methods Technique
Higher order transfer o
function x Currently limited to second Available
. order
computation
Detailed system
modeling/FACTS Available Not reported Under development
controllers
Sparsny. Available Not reported X
representation
Higher order nonlinear Available (third- Second-order Higher-order
solutions order)” approximation approximation”
Bifurcation analysis Available X Under Development

" Theoretically possible up to arbitrary order

On the other side, modal series analysis methods are based on the first steps of the normal forms

formulation and use similar interaction coefficients and nonlinearity indexes. In the former method,
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however, the computation of higher-order initial conditions in the normal form space needs to solve the
nonlinear algebraic homological equations while the modal series method does not need any numerical
algorithm. Thus, the nonlinear indexes are computed in a more straightforward manner.

Modal analysis methods are still evolving to address theoretical and numerical problems and need
further evaluation, particularly in regard to the study of various dynamic issues.

The application of these methods to the study of power system separation mechanisms, stability
boundaries, and the analysis and design of system controllers warrant further investigation.

Finally, the flow chart diagram of Figure 3.10 illustrates the steps followed by the modal series
method compared with the Normal Forms method and linear approximation. It is important to remark
the accuracy of application based on multidimensional Laplace transform, which makes possible to
obtain a closed form analytical solution. The Chapter 5 details its extension to the inclusion of a forced

input response.
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Figure. 3.10. Flow chart of the proposed method and its relationship with other approaches
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MULTIMACHINE POWER SYSTEMS MODELLING
FOR NONLINEAR OSCILLATIONS STUDIES

A power system having ng generators interacting with the rest of the system is analyzed. The core the
modeling of multimachine power system here described is based on the combination of the
synchronous machine reference framework with the rest of the network. The load modeling considered
in this research is based on static constant impedances; however, it is possible to extend the analysis to
incorporate dynamic nonlinear loads, since the modeling platforms allow the inclusion of dynamic and
time varying devices. In the sections to follow, the multimachine power system modeling used for the
experiments that will be analyzed in the studies case exemplified in Chapters 5 and 6 is described in

detail.

4.1. SYNCHRONOUS MACHINE GENERATORS MODELLING

Synchronous generators in power systems are modeled according to two axis theory [Sauer and Pai
1998] [Anderson and Fouad 2003]. Magnetic saturation effects and saliency are not considered. A
simple automatic voltage regulator is included to control the synchronous machine field excitation.

The equations that describe the generator model taken from [Sauer and Pai 1998] are,

%=Flok(’5m ~(x% -~ )1, -, ) (4.1

dsfk :i(_% +(x, =x,)1,) (4.2)
%Z“"“’O (4.3)
d(;t)k :Mik(P”'k ~(E41, +E, 1, )-Doy) (4.4)

e Excitation system

dE

% :L(_Efdk + Kexck (Vrefk _V‘e"ck )) (45)

excy,
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Viexck z\/(Etlfk +XI:qu )2 +(Ec'1k an )2 (4.6)

4.2. TRANSMISSION NETWORK MODELING

The transmission network is represented by nodal admittance equations, modified in order to
incorporate internal generators buses; that is, the system is referenced to the internal generator nodes.
Each synchronous machine is represented as an emf behind its reactance. Figure 4.1 shows the

schematic of power system representation.

g Jx, v
v I
1 I ng+nc+1 LOADI
\]I ng+2 -
T TRANSMISSION I 1
SYSTEM ﬁw@z
rng jX,,g \/I ng+nc
l
I
ng vlN

LOAD,.

ng number of generators
nc number of loads
— N total number of buses in the network

A

Figure 4.1 Schematic diagram of power system modeling

The equation that represents the network is given by,

Ig _ Ygg Ygl Vg
{0} Y, Y, {V} @7

where, Y, Y, Y, and Y, are reduced admittance submatrices. Moreover,
. . . T
L=[Tp 4l Tpp+ilgs o Tppg+ Jlon | (4.8)
' ol ’ ol ’ Jp— T
V, =[Ep, + jEy Ep,+JEy, ... Epy+jEl, | (4.9)
. . . T
\/l = I:VDng+l + JIQng+1 VDng+2 + JVQng+2 VDng+nc + JVQng+nC:| (4'10)
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The power system shown in Figure 4.1 is reduced to the network shown in Figure 4.2. Referring to
this network, nodal currents and voltages, such as described in Equations (4.8)-(4.10) are expressed

using phasor notation as,

I, 1
|
V> I
( 1 2 |2
1 TRANSMISSION
SYSTEM

_‘__

Figure 4.2 Transmission system reduced to the internal generator nodes

Indeed, the network is described by,

I=YV (4.11)
where
Y Admittance matrix reduced to internal generators
I Nodal current injections vector
\" Nodal voltages vector

The reduction approach of admittances matrix is described according to the following steps [Sauer

and Pai 1994]:
e Obtain Y, matrix by inspection, not considering the matrices associated to generators and loads

e Add the nodes corresponding to the generators.

e Conform the augmented admittance matrix, according to:
YA YB
A o

81



That is,

[YI ]ngxng |:_[YI ]”QX”Q ‘ [O]ngx(n—ng) :|ng><n
Yoo =|| ~[¥i ] @1
AUG _L 1 ngxng [[YBUS]+[YLOAD]+[YI ]:'

[0](n—ng)xng neng o

L (n+ng)x(n+ng)

L

where
Y, =diag [Ygi ]; Y,, generator admittance i
Y, . load admittance matrix corresponding to the bus where the load is connected

Finally, the admittance matrix is reduced as,

Y., =Y, - Y, Y'Y, (4.14)

RED

where

YA

[YI ]ngxng YB |:_[YI ]ngxng ‘ [O]ngx(nfng):|

T
Ye |:_[Yl]ng><ng ‘ [O]ngx(n—ng):| Y, =[Yous + Yoo + Y],

4.3. COORDINATE TRANSFORMATION TO A COMMON REFERENCE FRAMEWORK

The formulated power network has been expressed in the coordinate system DQO, in such a way
that it is necessary to transform the transmission system to a common coordinate reference framework
or simply a common reference. The conversion process is graphically illustrated by Figure 4.3. This
figure represents the dq0 and DQO axes framework. It is important to point out that the angle o,
relates the angular difference between both frameworks (that is, network reference and synchronous
rotating reference frame).

From Figure, it is possible to obtain the expressions that relate both frames dq and DQ . Hence,

I, =1,siné; +1,coso, (4.15)

I, =—1I,cos0, +1,sing, (4.16)

Q

Conveying all network currents in matrix form, it yields,

I+ jly, coso, + jsing, Iy +jl,
I, + jly, _ C0sJ, + jsing, Iy, + 1, 4.17)
I, + jl,, coso, + jsino, || I, + i,
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In compact form

o =TI

dq

Reference (Synchronous
speed velocity)

Figure 4.3 Reference relationship between dq and DQ variables

where the transformation matrix T is defined as,

T = diag ([e"‘sl el .. ej‘y"])
with
ID1+jIQ1 Id1+qu1
ID2+jIQZ Id2+j1q2
Iy, = : dg = :
IDn+jIQn Idn+j1qn

Same definitions may be applied to voltage transformation, that is,

V=TV
where,
Vo + iV Vi +iVa
o vy, +‘ij2 Ve Vi ijqz
Von + 7Von Vin + 1Vn

(4.18)

(4.19)

(4.20)

The transformation matrix described by Equation (4.19) is a kind of orthogonal matrix, which

satisfies with,

T'=T

Therefore, applying the transformation matrix (4.19) to the network of Figure 4.2, results in,

(4.21)
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I,=1I,,=TI, (4.22)
V,=K,,=T , (4.23)
Substituting I, and V, in Equation (4.7) yields,

IL=Y,V,+Y,V,

(4.24)
0 =Y,V,+Y,V,
T, =Y, TE, +Y,V, 425
0 = YIgTEdq +Y,V,
Doing over some simplifications, a final definition is obtained as,
I, =T'Y,TE, (4.26)
where,
Yne[ = Ygg - YlelleIg (427)
which in turn has the form,
i Ynej‘911 leef‘912 1)ngej91vny
Y, el Y e ...y /%
Y. = . 2 2 (4.28)
J0ng 1 J0ng 2 J6ng ng
_Yvng,le 1fng,Ze Y;g,nge i

It is possible to obtain an explicit solution for I, , which represents the injection current in the same
dq0 frame of reference. That means that both, transmission network and generators, are represented in
the same framework just shifted by angle ¢,. According to Equations (4.19) and (4.28), the product

T'Y,, T is given by,

Y, e/ Yelld) Ly R
j(621-9. ) j(922) j(gzmg’a‘&ng)
Y, @0 on Y, e - Y e
TW T= 21 b2 2,ng (4.29)
net . . . . M
J(6ng1=5ng.1) (0ng.2=0ng.2) (Ongung )
_Y;lg,le Yng,Ze Yng,nge i

Simplifying and defining,
Y,,e'% %) = (G, cos8,, +B,,sind,, )+ j(B,cosd,, —G,,sind,,) (4.30)
as well as,

F;,5(6) = G, €088y, + By, sing,, (4.31)
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Fy ¢ (64) = By, €088, — Gy, sin (4.32)

Consequently,
ng
Lo+ e =D Vi (Ejn + JEq) (433)
m=1
ng
Idk + quk = Z(FG+B (§km ))E;m + j(FG+B (5km ))Ecrlm + j(FB—G (5km ))Ez;m - (FB—G (5km ))Et;m (434)
m=1
ng
Idk :Z(FG+B (5km ))E;m _(FB—G (5km))Ec,1m (435)
m=1
ng
L =D (Fous (6in)) B + (Fag (6n)) Ed (4.36)
m=1

The dq0 currents expressed in matrix form, are obtained as,

Gy Fo.p (512) o Fop (51,n

. )| E,
It.12 _ FG+B (521) Gzz FG+B (52,n ) Ef;Z _
o LFous (Gs) Fos(Guz) = Gung | o (4.37)
B, Fy ¢ (512) o Fy g (51,n g) [ E(’71 ]
Fy g (521) B, o Fyg (52,;1 g) E'éz
_FB—G (5n g) FB—G (§ng,2) Bng,ng i _Et;ng -
. I Gy, Fo.p (512) o Fop (51,n 5)_ ;1 1
IL']Z _ FG+B (621) Gzz FG+B (52,n ) E'c'12 n
- :FG+B (01) Foun(du2) = Gum - e (4.38)
B, Fy (512) - Fyg (51,n g) E(;l
Fy o (521) B,, o Fyg (62,n g) E'C,IZ
_Fch (5:1 g) Fy (éng,Z) By ng i E;ng

4.4. INITIAL CONDITIONS CALCULATION FOR DYNAMIC ANALYSIS OF
MULTIMACHINE SYSTEMS

Before proceeding with the dynamic analysis, the initial conditions for the state and algebraic

variables are obtained carrying out the procedure proposed by [Sauer and Pai 1998]. The process is
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based, at a first stage, on performing a power flow solution followed by an algebraic substitution

procedure of differential equations valuated under steady state conditions (zero dynamics constraint).

Through this simple procedure, it is possible to determine the equilibrium point of the nonlinear
power system dynamics, in such a way that it allows the evaluation of the linearized system of the
nonlinear system. In power system dynamic analysis, the fixed points and initial conditions are
normally obtained from a base case load flow solution. The values are computed for each generator
state variables of the whole system.

The power flow equations are given by,

B +jQ = VY,

k=1

- SLACK BUS (4.39)
Q =2 VVY,sin(6 -6, ~a,)
k=1
P =) VV\Y, cos(6, -6, —a,) PV BUSES (4.40)
k=1
0=-P, + 2 VV.Y, Cos(ei _ek _aik)
= PQ BUSES (4.41)

0=-Q, + > VV.Y,sin(6 -6, ~a,)
k=1

Remembering that the power system equilibrium values are obtained by numerically computing the
nonlinear algebraic system, the magnitudes and angles of voltages for each busbar of the power system
are determined. Thus, a step by step approach is followed for the calculation of the rest of variables of

the power system dynamic model. The procedure is as follows,

o Stepl
Considering that P,, =P - P, y Q. =Q, - Q,,
Iciem = (R. — B ) N j(Q,- —Qy )/V,.e’jg"
Ige” = (Po = Py)/V/ (4.42)
Generator currents are set over the same network. They have the form,
I e = (1, + jI,) e (4.43)
Under steady state condition, all derivatives are zero valued. Therefore, it is possible to obtain an

equivalent that represents both the state variables and network variables over the same equivalent

circuit. This is based on,
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T, = Ej + (x;=x,)I, =0 (4.44)
Indeed,
E, = (x,—x,) 1, (4.45)

PXai (1 + j,)e" 7

(Vdi v, ) o(67%)

Figure 4.4 Generator Equivalent Circuit

Analyzing the equivalent circuit shown by Figure 4.4, an explicit equation for calculating voltage
angle ¢, is found. Applying KVL,
0=V +(R, + jx, ) (I + jI,, )" 7 - [E;i +(xt, = X}, ) I, + JEL, ]ef("'f% (4.46)
Substituting E/; in Equation (4.46), results in,
0= Vl.ejg' +(R51. + jx;i)(ldi + jlqi)ej(ﬁ"*%) —[(xqi —x;i)Iqi +(X:ﬁ —x;l_)Iqi + jE(;i]ej(a"*%)
Rearranging some terms and additionally considering that I, e’ = (I a Tl ql.) /"7 it yields
Viel 4 (Ry o+ ey ) I € =[ (= i) Iy + By |e” (4.47)
with i=12,...,m
The right hand side of Equation (4.47) represents the voltage behind the impedance (Rsi + jqu,) and

it has an angle o, The voltage has a magnitude [(xqi—x;i)l di+E‘;i} and angle

5 = angle[Vi e’ + (Rsi + jix, )IGi e”"] [Sauer and Pai 1998].

e Step?2

Calculate 6; from,

0, = angle[Vi el +(R5i + jxqi)IGl. e”i] (4.48)
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Step 3
Calculate 1, I, V,,V,

di> “qi’

j(ri-6i+7%)

(1, +Jj1,,)

(Vd,. + qui) =V CRRA)

I e

Step 4

Determine E, from,

Ey =Vu + R, —x,1,
Also,

E, = (xqi — X )Iq,.
Step 5

Calculate E (’ﬂ.

’ ’
E, =Vi+Ryl, + X5,

Step 6

Also, calculate E’fdi from,

dE, _ 1

dt Tl (Efdi - (Xdi - Xy )Idi - Eclli): 0

Eqy = (Xdi — Xy )Idi +E,,
Step 7

With E 'fdi earlier known, obtain V

ref i

from (4.5),

dE, 1
d_tfd:_(_Efdi + Kopoi (Vi _‘/rexci)) =0

exci

Efdi = Kexci (\/;efi _‘/texci )

Hence,
Vrefi =Viewi + h
Finally, from the swing equation,
% =w-w,=0
% - i(Pmi ~(E4l, +Eyl,)-D,)=0

1

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)
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And, with this, it is obtained,

0=, (Depends on system reference) (4.61)

P, =(E‘;ildi +Ec'lilqi)+Dia),. (4.62)

4.5. APPLICATION EXAMPLE. 9 BUSES, 3 GENERATORS TEST POWER SYSTEM

The procedure described along this Chapter is carried out to exemplify its application to the test
power system of 3 synchronous machine, 9 buses [Anderson and Fouad 2003] which it will be
experimented in the cases studies of Chapters 5 and 6. The parameters of this system are shown in
Appendix C.

The example tried to follow numerically almost every calculation needed before executing the
dynamic process of the multimachine power system, that are the initial conditions of the nonlinear
system.

The numerical calculations are detailed in Appendix D following the procedure previously

described along this Chapter.

4.6. DISCUSSION

This Chapter has described in detail the modeling of the multimachine power systems, to be applied
in nonlinear oscillation studies. Although there are other different forms of modeling the same system,
the approach followed here represents an alternative of wide application even when some other
components of the power system (such as time variant loads, FACTS devices, etc.) are included in the
model.

It is important to mention that the requirements of detailed modeling in some cases have to be
extended, thus resulting necessary to incorporate the model of global elements around the generators
(PSS, AVR, turbine-governors models, etc.) or some other components (transformers, transmission
lines, etc.) resulting in an increment on complexity of the power system modeling that allows a more
rigorous study.

In the same form, the approach before described is centered on the dynamic analysis of the
synchronous machine and power network considering their nonlinear characteristics. Thus, the main
goal is to apply the modal series approach to the multimachine modeling, resulting necessary the
linearization of the power system model in order to take the properties of the linear and nonlinear

contributions to the system behavior.
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Also important to mention to the reader is the reason for the inclusion of this chapter. Even when
the procedure followed before the application of a dynamic study is based on systematic and somehow
trivial procedure, it is sometimes critical the time spent for these calculations. Hence, the chapter tries
to clarify each step followed before starting the transient or dynamic study; the numerical tables can be

easily reproduced by other author.
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FORCED OSCILLATIONS FROM
THE MODAL SERIES METHOD

A systematic procedure to consider higher order terms of the linearized dynamic system applying the
modal series method is described. This addition represents one of the main contributions of this thesis.
Also, an extension that incorporates the concept of nonlinear transfer function is described

representing the basis of future research work to be developed in further contributions.

5.1 INTRODUCTION

The modal series method detailed in chapters 2 and 3 is based on the closed form solution of a
homogeneous nonlinear dynamic system; the forced contribution is not considered so far. Nevertheless,
it is possible to assume an arbitrary input signal to the dynamic system following the same systematic
procedure, thus obtaining a closed form solution that incorporates control variables.

Why is it important to consider the control variables in the dynamic behavior of a nonlinear system?
This is a question that can be answered mainly over the extensive work developed to analyze
controlled systems in many areas, including power systems. However, with respect to the nonlinear
power system modeling, it has been detected a lack of work in this field, focused only in the analysis of
linear contributions. This chapter will try to introduce an application of the multidimensional Laplace
transform described above, which expresses the contribution of both linear and nonlinear terms through
Laplace domain kernels, thus leading in a direct way to the inclusion of higher order terms, following
the same rules of a linear transfer functions. Also, taking advantage of the residue theorems,
multidimensional Laplace kernels are expressed in the form of a partial fraction expansions, where

their residues are directly available. This affirmation will be extended along this chapter.

5.2 MODAL SERIES BACKGROUNG

The equations of motion are assumed to be of the form

x=f(xu) (5.1)
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where x € R" is the state vector and u € R"™ is the control vector. The vector function f(x,u) and its

partial derivatives with respect to x and u are assumed to be continuously differentiable functions of x
and u.

To solve this model approximately, we expand (5.1) into a finite Taylor series as
1 .
Xx=Ax+ EXTHIX + OQX‘S) + Bu (5.2)

where, A and H are defined as in (3.3) and B = (OG/ 8u)

Equation (5.2) in its Jordan canonical form and considering the third order terms as well, can be
written as
yj:/ijjJrZZCklyky, +ZZZngrypyqyr+...+Zbﬁui ji=L...,n (5.3)
k=1 I1=1 p=1q=1r=1 i=1

The last term of Equation (5.3) associated to r represents the control variables. This term is
reduced to b,u;, when a single input-single output (SISO) system is under study; on the other side, the

term is the summatory assuming a multiple input-multiple output (MIMO) system of number r . Thus,
(5.3) is written for the general case.
The case of forced system response is represented manipulating and solving Equation (5.3) in

the same form as the unforced case obtained in Chapter 3.

5.3 FORCED OSCILLATIONS

The above approach can be easily generalized to the case of forced oscillations resulting from
arbitrary excitations. Agreeing with the procedure detailed in Section 3.3, considering the system
(3.10)-(3.12), assuming a single input-single output system, and following a line of reasoning similar to

the unforced case, we have

Y =4y, +bu; (5.4)

Vi =y + 2.2 Gy (5.5)
k=1 I=1

V=AY Y Gy vt [+ XYY Dl vy (5.6)

k=1 I=1 p=1g=1 r=1

from which it follows that

(5.7)
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Y7 (51:52): —CkJIYkl(Sl)Yll(Sz) (5.8)

where
b Y} (0)
Y (s)=—"—U(s,)—— 5.9
¢ (s) s =4 (s1) Ay (5.9)
b Y (0
(5= 2 u(s) o) G.10)
2 1 2 1

To illustrate the proposed method, consider the case of an impulse function. If u; (t) is an impulse
function, then,
u;(t)=0(t) (5.11)
U(s)=1 (5.12)
Transforming to Laplace domain the Jordan system including the input function, it is obtained,

SY, ()= 4, (5) +5U (5) ¥, (0)

Y; (S)(S_’Ij)ZBjU(S)_Yj (0)

A~

b, Y, (0)
Y, (s)=—=U(s)- (5.13)
J (s-4) (s-4)
Since U (s) is an impulse function,
b, Y, (0
Y (s)=—L=—-+— (0) (5.14)
(s=4) (s-4)
Applying inverse Laplace Transform, it yields,
Y (t)z(l;j _YJ(O))eijt (5.15)
which represents the time domain solution of the first order terms in the Jordan system.
In a similar manner, the second-order terms are given by
n n 1 .
Y(s,s, )= — —  _CIY!(s,)Y'(s
j ( 1 2) ;;(81_1_82_/1]) K k( 1) i ( 2)
with,
A -
Y (s)= b _ %(0) (5.16)

(Sl_ﬂ’k) (Sl_ﬂ’k)
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b Y'(0)
(s:=4) (5.-4)

Rearranging some terms,

Y (s,)= (5.17)

n

YJZ(SPSZ):ZZH:CIJI{ . : )[BkAz - AkYIl(0)_b1Yk1(0)_Yk1(0)Y11(0):|} (5.18)

(51 +5, _ﬂ’j) (51 _/Ik)(sz —4

k=1 1=1
Considering,
1 1
N,(s,,s,)= (5.19)
S (51+52_/1j)(51_/1k)(52_/11)
and using Theorem 1 from Appendix A to convert N, (s,,s,) into N, (s) it yields,
(s, =2)(s: =4 )N, (50,8, )51, (s1 +s, —Z].)(s2 ~ )N, (51,8, )]s =44,
N,(s)= 4 2=k (5.20)
(=4 —4) (s-4)
Therefore,
1 1 1
N,(s)= - (5.21)
? (ﬂ’k+ﬂ'l_lj)|:(s_lk_ﬂ’l) ( _ﬂj)}
Having obtained the coefficients, the second order terms can be written in the form
n n . 1 A A ~ A~
Y (515,) = 224 Ch | bib =B,% (0)=bY; (0) - ¥, (0)¥ (0) |
GE " (Ara-4)
(5.22)

[(5_11—/1,)_(5—1%)”

The time domain solution obtained by inverse Laplace Transform applied to the second order terms
is,
(=33 c ! b, —b.Y; (0)-bY!(0)-Y} (0)Y} (0
yj(t)_ . v %Y kl() lk() k()l()

(5.23)

It can be observed that Equation (5.23) expresses the closed form time domain solution of the
second order nonlinear term, when an impulse function is applied to the dynamic system. In the
following sections, the dependence of modal combination in this solution will be detailed. Thinking in
a short analysis of the given solution, it is evident its dependence to the resonant condition, mostly due
to the eigenvalues combination; also, there is a combination of modal solution and a dependence on the

initial conditions. Finally, the solution of (5.1) for the case of an impulse function can be expressed as,
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> 31 Gl ———[ b5 -5 (0)-b¥, (0)- ¥ (0¥ (0)] [eww o) J} (5.24)
k=1 I=1 (ﬂk +4 —/1j)
and
£0=3[w o5 0)]-E 5w [-500)-650)- L O @] ¢+
j=1 k=1 I1=1
(5.25)
2 [h [8.6,-5,Y(0)-6Y, (0)-¥, (0)¥/(0)] “””j

with i=1,...,n

5.4 SYNTHETIC EXAMPLE
To illustrate the application of the method, let us assume a synthetic example taken from [Zhu et al.

1995]. A first order nonlinear differential equation of the form,

ty+y+py’ =u(t) (5.26)
is solved when the input function u(t) is an impulse function, as a first step, and afterwards, a step
function is also studied; both using the modal series method.

The differential equation has first and third order elements, which are considered in the final

solution. Thus, assuming an impulse function, the equation takes the form,

y=—2y-Lyilp (5.27)
N 4 T
Being,
1 .
A =——(eigenvalue)
T
Cc=0
bt
T
1
u(t)=—F&(t)
T
with, b=£
T

The first order term is calculated as,

(5.28)
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with y(0)=0

o F 1
Y(SW—T(S_A) (5.29)

Applying inverse Laplace transform,

F e—t/r

y(t)=—

T

(5.30)

This system does not particularly have second order terms. Hence, the third order terms are
expressed by,

1
S, +S,+5,—

P lsosos) = P06 (55 (5)] (531)

where,

y%%):sél j=123 (5.32)
J

Substituting the first order terms into the third order expression (5.31), yields,

1 {Dw 1 1 1
S, +5,+5,—A) (s,=2) (s, =2) (s, - 1)

y%%%sg=( (5.33)

Applying the Theorem 2 given in Appendix A, the equation (5.33) is associated to the single

variable equation with the form,

o 11 11
V)= o 2 (5 an)

(5.34)

The full solution to the differential equation (5.26) for an input impulse function has the form,
F -t/ ﬂF3 —t/ -3t/
t)=—e """ ———e"" —e " )+... 5.35
y( ) r 2T3 ( ) ( )

The time domain solution expressed in the Equation (5.35) is similar to that described in [Zhu et al.
1995] for the same conditions. This sample has demonstrated the viability of the extension of the
modal series method to the inclusion of a forced input signal.

Similarly to the previous case, a step input function is analyzed now for the same nonlinear
differential equation. This differential equation takes a similar form to (5.26); however, the first order
terms, which include the step function have the form,

F 1 1
= (5.36)
with y(0)=0

Therefore,
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+F= (5.37)
Executing the inverse Laplace transform,
y'(t)=F(1-¢") (5.38)

The third order terms are those of (5.31), but for the step function take the form,

1 Db? 1
S, +S,+8,— 1) (s,=A)s,(s,—4)s,(s;—4)s,

y3(sl,sz,sg)=( (5.39)

This equation may be solved using the theorems of association of variables on multidimensional

Laplace transform, described in [Chen and Chiu 1973]

e Real Convolution Theorem

If a given function F (sl,sz,...,sn) has the following structure:

F(s,,S;5..,8,)=H (s, 45, +...+5,)F(5,,5,,...,5,)

and
F (8,,55.-4,8,)—2>G,(s)
the real convolution theorem states that
F(s,,8;,...,8,)—2>—>G(s)=H(s)G,(s)
Then, with

1

H(s,,s,,s)=————
s,+s,+s,+a

1
(51 - /1)51(52 - /1)52 (53 - /1)53
From [Chen and Chiu 1973] a kernel of the form,
K

TT(s +a)(s, +b)

i=1

F1(S1’52’53): Db’

is associated into,

K ( 1 1 j
(a—b)3 s+3b s+2a+b s+a+2b s+3a

Therefore,
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1 (1 3 3 1
Fil58,8) =2 Gi(s) = Db (—/1)3 (;_ s—24 ! s—A4 _S—B/Ij

and

1 1 (1 3 3 1
F b b :Db3 i —
(51:5,-5;) (_,1)35—,1[5 s—21 s-A 5—3,J

Finally the third order terms in the time domain solution have the form,

y3 (t) = —F3ﬂ{1— (g_étjet/r + 3efzt/r + %e3¢/r:|

T

with the full solution,

y(O)=y'()+y*(t)+...
y(t)= F(l—e‘/’)—F?’ﬂ[l—(;—;tjef” 3¢ +%e3’/’}+... (5.40)

(5.40) agrees with that obtained in [Zhu et al. 1995] for the case of a step input signal. The analytical
example has demonstrated the application of modal series which is based on multidimensional Laplace

compared to the solution obtained by a different technique such as the Laplace-Borel transform.

5.5 THE TRANSFER FUNCTION IN NONLINEAR SYSTEMS
5.5.1 Introduction
The transfer function concept has been deeply analyzed as a powerful tool for either time or time
varying linear systems with solid applications to control systems. The concept of transfer function
itself attends the behavior between inputs and outputs of the dynamic system.
With respect to the application of transfer function concepts to power systems, it may be observed
the following [Smith et al. 1993]:
e The order of any transfer function is as large as the number of state variables included in the
model
e  Most of poles or eigenvalues of the transfer function cannot be observed from any signal in the
system; therefore, it is possible to identify the effective transfer function between two points in
the system.
e An input signal applied to a power system will usually excite many modes which will be
reflected in different output signals and locations in the system.
e It is important to point out that a transfer function is usually written as a ratio of polynomials;

nevertheless it can be also expressed as a sum of residues over a first order pole.
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e  Transfer function analysis assumes that initial condition effects have died away and that the

output is a function of the input only.

Several applications and definitions have been introduced into the analysis of power systems based
on issues associated to the transfer functions. One important concept quite addressed by some authors
is the computation of dominant poles of power system transfer functions. The concept arises over the
consideration of a transfer function in which the poles and zeros are known. So, it is of concern to
determine the main modes that are taking part in the frequency response to the oscillations in the power
system. An algorithm based on Rayleigh iterations has been proposed, which exploits its characteristics
of numerical properties of global cubic convergence [Martins et al. 1996]. The participation factors and
the applications of such algorithm are remarked when a large scale power system is studied. An earlier
work proposed the use of Prony analysis to determine the residues and with them, to obtain the transfer
functions for the design of PSS applied to a multimachine power system [Trudnowski et al. 1991]. In
this work the usefulness of transfer function concept arises in its determination of frequencies

presented during oscillations in the power system and eventually damped by PSS design.

5.5.2 Theoretical Basis of Nonlinear Transfer Function
Transfer functions of nonlinear systems satisfy many properties that are expected from transfer
functions [Halas et al. 2008]; i.e.
e They characterize a nonlinear system uniquely. This means that each nonlinear system has a
unique transfer function, no matter what state space realization one starts with.
e They provide an input-output description of the nonlinear system.
e They allow the use of transfer function algebra, to combine systems in series, parallel or feedback
connection.
Assuming a transfer function defined for a linear system, we have,
6(s)=218)
u(s)

The time response of Y(s) to an impulse disturbance applied in the input function U is equal to the

(5.41)

inverse Laplace transform of G (s) considering zero initial conditions in all system states [Gomes Jr. et
al. 2000]. Thus,
y=> Re™ (5.42)

where,
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A, are the poles of G(s)
R the associated residues
The time response of G(s) can be directly obtained by integrating in the time domain the impulse

response of G(s), that is,
R/ .
y= Zj(eﬂf —1) (5.43)

This case is very illustrative since the time response contains two parts due to the generic
disturbance [Rugh 1981]:
e The first part is called forced response which consists of the steady state part.
e The second one, so called natural response, consists of the transient part which is formed by a sum
of exponentials, whose values depend on the applied disturbance.

The natural characteristic response depends on the location of the system poles in the complex
plane [Gomes Jr. et al. 2000]. Therefore, it is important to point out that modal analysis consists on the
computation of these poles and on the determination of their nature and sensitivities [Martins et al.
1996].

For instance, the transfer function of a single input-single output (SISO) system has the form
[Rommes and Martins 2006],

z(t)=Az(t)+Bu(t) (5.44)
y(t) = CTz(t) + Du(t)

whose transfer function is,
H(s)=C"(sI-A) 'B+D (5.45)
Being the eigenvalues the poles of A and the corresponding right and left eigenvectors given by

(ij,x iV ) , the transfer function can be expressed as a sum of residues R ; over first order poles, that

is,
H(s) Z K, (5.46)
s)= .
j:1 S - /,lj
where the residues R; are,
R, =(xC)(v;B) (5.47)

A pole 4, that corresponds to a residue R; with large ‘Rj‘ / Re(ﬂ,j) is called a dominant pole,

which is observable and controllable in the transfer function [Rommes and Martins 2006]. Several

efforts oriented to research the dominant poles in large power systems have been focused over the
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transfer function concepts. Almost every approach developed is based on numerical algorithms that
allow the determination of poles that have the biggest participation in power systems oscillations
[Martins et al. 1996], [Martins and Quintao 2003], [Rommes and Martins 2006], [Rommes and Martins
2006a], [Gomes Jr. et al. 2009]. Their extension to frequency analysis is straightforward, since
functional kernels expressed in Laplace domain are easily swifted to frequency domain. Both SISO and
MIMO systems are described by each contribution following the properties of linear transfer functions.
More recently, dominant zeros in computation of feedback transfer functions have been considered as
well [Martins et al. 2007].

The calculation of dominant poles will not be addressed in this thesis. For now, only the theoretical

basis of nonlinear transfer function is of concern, leaving for future developments this research topic.

5.5.3 Volterra Functional Expansion
The input-output behavior of a dynamic system of the form,
x = Ax +Bu

5.48
y=Cx ( )
may be represented by means of a generalized convolution integrals series [Isidori 1989]. A general

convolution integral of order k is defined as follows: let (ik,...,il) be a multiindex of length k with

I,...,I, of the set {1,...,m} and if u,,...,u,, are real valued continuous functions defined on [O,T] ; the

generalized convolutions integral with kernel o, is defined as [Isidori 1989],

AAAAA i

Jj"’jwik ,,,,, i (tﬂ'k,---,z'l)...bli1 (z’l)dz'l...drk (5.49)
00 0

for 0<t<T

After some manipulations, it can be demonstrated that the series written as,
) m L7 7
y(t)=a,(t)+> > _“I"'J‘a’fkw--,fl (6705, (7)., (7,)d7, .. dT, (5.50)
k=1i,...=1¢0 0o 0
is absolutely and uniformly convergent, and is called a Volterra series expansion [Isidori 1989],
[Schetzen 1980].

The original application of the Volterra functional to the analysis of nonlinear circuits is due to

Wiener [Bussgang et al. 1974]. Wiener established that an output function y(t) of a nonlinear system

is some functional of its input u(t) and that the two functions can be related by a functional series.

The first few terms (up to order three) of the functional expansion are,
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0

y(t)z.[Ohl(r)u(t—z')dz'+zzh2 (7,7, )u(t—7,)u(t—1,)drdr,

(5.51)

0 00

+ J I Ih3(1'1,72,1'3)u(t—rl)u(t—fz)u(t—13)d71d72d1'3 +...

The n™ order kernel of (5.51) h, (z’l,rz,. . .,Tn) can be called a nonlinear impulse response of order n
[Bussgang et al. 1974].

Its Fourier transform can be called the nonlinear transfer function of order n. Hence considering the

input-output relation (5.51) and writing in the form

in which,
v, (t)= I I h(z,....7,)u(t-7,)...u(t-7,)dr,...dr, (5.52)

is the output component of order n [Bussgang et al. 1974].

Therefore, Equation (5.51) can be rewritten as [George 1959],
y=H,[u]+H,[u]+...+ H,[u] (5.53)
That is, the system H has been broken into a parallel combination of systems H, as shown in Figure

5.1. The interpretation of such Figure can be resumed as [George 1959],

\ 4

HN

3 H, | OUTPUT
X

> H

INPUT

Figure 5.1 Block diagram for the generalized functional representation

e The generalized functional representation shows a nonlinear system as a parallel bank of

systems H; that are n" order nonlinear systems.

e They have an impulse-response function h, (tl,. . .,tn) associated with them.

Following the same reasoning, a nonlinear system of the form,
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f(y(t),5(2),5(t),...)=x(t) (5.54)
can be splitted-up into a sequence of components connected in parallel by the method of Volterra

functional expansion [Schetzen 1980]. The process is illustrated by Figure 5.2. For this case, the first

component is linear [Karmakar 1979], that is,
f,(t)=[h(z)x(t=7,)dx, (5.55)

Here, the procedure based on multidimensional Laplace transform described in Chapter 3, Section
3.3.2 can be used. In this way the linear case can be transformed as,

F (s)=H,(s)U(s) (5.56)

2 h (vaz)

> y(t)
>
hn (Tl’TZ’ ’Tn) Yn (t)
Figure 5.2. Functional expansion of the nonlinear system represented by (5.54)
The second component is of quadratic nature, i.e.
f,(t)= .”hZ (z,,7,)x(t—17,)x(t -7, )drdz, (5.57)

In order to use the theory of multidimensional Laplace transform, it is necessary to artificially

introduce ¢, and t,, i.e.

f, (t) = jjhz (rl,rz)x(t1 —rl)x(t2 —Tz)drldr2

and then,

F,(s,s,)=H,(s,,s,)U(s,)U(s,) (5.58)
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Formally, at least F,(s;,s,) can be inverted to obtain f,(t,t,) for which f,(t) is the desired
output [George 1959]. Graphically, this can be illustrated in Figure 5.3. f, (tl,tz) can be plotted by

contours on the (t,,t,) plane but we are interested only in the 45°line where t, =t, =t .

A
t2

4

Figure 5.3. (t,,t,) plane for the case of t, =t, line

The method generalizes to higher order cases, hence the third is a cubic component; its output is,

f,(t) =jjjh3(11,12,13)x(t—rl)x(t—rz)x(t -17,)dr,dr,dz, (5.59)

which in Laplace transform domain is,
F,(s,,5,,8,) =H, (5,,,,8,)U(s5,)U (5,)U(s,) (5.60)
The procedure of taking a number of variables ¢,t,,...,t. as equal is called association of variables,

as it was described in Chapter 3.
The great value of making the associations in the transform domain lies on the fact that these
associations can be made by inspection; being this application a class of problem adapted to this

theory. Hence, the total system output is given by,
y(0)=21(1) (5.61)
i=1

assuming a finite number of terms represented as an n" order nonlinear approximation. It is to be
pointed out that terms associated to Volterra representation are denominated impulse response Volterra
kernels [Rugh 1981]. Such kernels can be compared with those obtained by the modal series method in
Equations (5.14) and (5.22).

Following the same reasoning, it is possible to represent a forced nonlinear system decomposed by
the modal series method, in the same way as the Volterra framework. By comparing each kernel,
similarities from a qualitative point of view for both kernels sets can be observed. Also, it is important
to mention that one of the main applications of multidimensional Laplace transforms centers on the

closed form solution of Volterra kernels. A detailed description of such procedure can be found in the
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references [Rugh 1981] and [Mohler 1991], where an extension to the analysis is made to include

bilinear systems.

5.6 NONLINEAR TRANSFER FUNCTION BASED ON MODAL SERIES ANALYSIS

Based on the modal series approach developed above, and considering the definition of the transfer
function, this section is focused to obtain the analytical expressions which define the nonlinear transfer
functions for the first, second and third order terms of the modal series closed form solution. Recalling

the first and second order terms obtained previously, we have,

Y (s)= Sf”@j U(s) (562)

Vi (5,5)=3 Iil(slTl_mcmsl)wsz) (563)
where

Y, (s,)= ; lik/lk U(s,) (5.64)

Y'(s,)= Sﬁ T U(s,) (5.65)

Thus, substituting (5.64) and (5.65) in (5.63), the second order terms are,

5)=Y 3 {Bké, ( ! 1 - )U(sl)u(SQ )} (5.66)

k=1 =1 Sl+sz—ij)(sl—ik)(sz—

An identical process can be applied to obtain third order terms, that is,

(51,,,5;) ZZZDPQ{BPBQ&( ! ! U(SI)U(S2)U(S3):I

p=lg=lr=1 51"'52+53_ﬂ'j)(51_/1p)(52_ﬂq)(ss_/lr)

(5.67)
Now, it is possible to follow the association of variables procedure, which will express in a single

Laplace variable the terms referred to second and third orders, that is,

Y/ (s)=—-U(s) (5.68)

Y2 (s)= ckf',{BkB, L L U(s)} (5.69)
1 (5— i M )
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A A A

Vi(s) =X 32D ' U (s) (570)

r=r=r=lN I r(s_/q'j)(s_/lp_ﬂ'q_ir)

where,
U (s1 )U (52 ) Associated as U (S)
UEIU(s)U(s) e,y (s)

Equations (5.68)-(5.70) express the transfer functions of the nonlinear system, once the
multidimensional Laplace domain kernels have been associated to a single Laplace variable. Here,
(5.68) represents the linear case of the transfer functions, where the residues are defined; the rest of
Equations are clearly representing the nonlinear contributions based on modal interactions to the total
transfer function of the nonlinear system, that it was decomposed through the modal series method.

The same reasoning is extended to higher order terms, which are easily generated. It can be
observed that the poles of a first order transfer function are given by the eigenvalues obtained from the
state matrix Taylor series expansion of the nonlinear system. However, second and third order terms
poles, besides the poles due to eigenvalues, are due to the combination of two and three eigenvalues

respectively. In a schematic way, the transfer function can be represented by Figure 5.4.

—_—> NONLINEAR SYSTEM —>

—— | F(s)=F(s)+F,(s)+...+F,(s)... p—>

U (s) NONLINEAR SYSTEM G(s)
E F(s)

Figure 5.4 Schematic representation of transfer function for the nonlinear system
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Assuming a transfer function,

ot

For the linear part, the time response of f to an impulse disturbance applied in u (t) is equal to

the inverse Laplace transform of F (s) considering zero initial conditions in all system states [Gomes

Jr. et al. 2000]. This is shown in Figure 5.5, where the decomposition of transfer function in individual
kernels of first, second, third orders are denoted. Thus, the global output is dependent of the nonlinear

contributions given by the modal combination included in the poles of the nonlinear transfer function.

A 4 Pvl(s)
3 E(s)
U(s) G(s)
> Z >
—
1 F.(s)
b,
A Fl(s): S_Jﬂ)
j
F,(s)=Y S bbb L !
U(S) 2 L 2 I(S—ﬂj)(S—lk—Az) G(
n n n A A A 1
F — j
(o) SEE T (=4 (s= 4,4, - A)

Figure 5.5 Schematic representation of individual transfer functions for the nonlinear system
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5.7 EXAMPLE
5.7.1 SMIB Classical model

For the sake of exemplification, a simple power system consisting of a synchronous machine-
infinite busbar power system is studied. The system is based on a classical model [Kundur 1994], with

extended representation up to third order and assuming a single input-single output. The system has the

form,
(|20 Aw A " A " +0(4)+ X AP,
X = = _— —_
Aw| ™| = o coséOAcs—D'" Aw| 2! @sinéomsz 3! ﬁcoscsoAf N
2H 2H 2H 2H 2H (5.71)
AS
=(0 1
v [ ]{Aa)}
which includes only one transfer function given by,
Ao(s)
F(s)= 5.72
(5)=%% ) (5.72)
Applying modal series, it yields,
e First order terms:
Axl(s)zzn: b i=12
! j=1 S - 2/]
or
b,
AS _
{ ?(S)}z A ap,
Ad(s) b,
s—4
Being, C=CU,
Ad(s) . b . b
(5) = L +¢,—2 (5.73)

AP, (s) s—4 s—A4,
e Second order terms:
The second order transfer function is expressed as a function of linear transfer functions.
According to the theory above detailed, the kernels are function of the two-dimensional Laplace
transform, which is associated to single variable kernels, that is,

n n A 1
AXJZ‘(SPSZ):ZZCIfzbka

j=1,2
k=1 1=1 (51 +5, _/1;)(51 _ﬂ’k)(s2 _}“1)

which is associated into,
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I 1 1
AXJZ'(S): hzjklbkbl{ Y (o } (5.74)

[, 1 1 ~ 1 1 |
h; 11b12 - h; 1,2 b1b2 -
{(s—zm (s—%>}+ {(s—&—ﬂq) (s—ﬂq)}+
o 1 1 ~ 1 1
h; 21b2b1 - hézzbzbz -
{AS%Q}_ “ {@—4—%) @—%Jﬁ'(” {@—2@) @—AJ}AP
A"’Z - R A m
(0] (5) h;(l)l)blz{(s_lzﬂi)_(S_lﬂﬂz)}—i_hzz(l’z)blbz{(S—Zj—ﬂ,z)_(5_1 )}+

, An 1 1 A 1 1
hZ(z’Dbzbl{(s—lz—21)_(5—/12)}+h2(2’2)b2{(S—Z%)_(S— )}

)z"_hl 52{ 1 - 1 }hl BB{ ! - - }
A =7y ey ML (rern e

B
Kavl

(5.75)

~ 2 2 1 1 2 hb. ! L
{”‘b {<s-zm‘(s- )}+h2‘1’””1b2{<s—&—ﬂz)_<s-%>}+

, R 1 1 2 L2 1 1
hz(z,l)bzbl{(s—ﬂg _/11) ) (5—/17)}4-}]2(2’2)1)2 {(5_212) ) (S_/q‘?)}:|

It can be observed from (5.75) that the transfer function residues are function of the nonlinear

~

interaction matrix hzj , the elements of the transformed input matrix B and the combination of

eigenvalues.

e Third order terms:

Executing the same procedure described for the second order nonlinear transfer function, the

third order is represented as,

n n n A 1
A (s)=2 D D h, j=1,2

p=1 g=1 r=1 M r(S—Aj)(S—ﬂp—ﬂq—ﬂr)

or in a single Laplace domain,

n n n X AN A A 1 1
Ax(s)=2.> > h,bbpb, i) (5.76)

Pt ) (s=4,-4,-4)

Thus,
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R e R [ e ]
Mo 2y Gz e ;{(s—lm_(s—ﬂf—%J
N e e [ o]
[A53(s)}= e (5_1 )_(S‘/%l—%)-+h31(222)b23[(s_1 )_(5_13/12)} AP
A& (s) hi(l,l,l)l;f[( 1/12)_(s_13/11)};,;(1’112)555{(5_1 )—(S_Zi_ﬂz)}
B2, (S_l )_(5_2/11—/12)_+h32(1“)5152{(5—1 )_(5—%1—2%)}
B2 020, (S_l )—(5_2;1_12) +h§(212)l§1?{(5_1 )_(5—41—2/12)}
O [ ey | M Ls—l n (5_1342)} o
whose transfer function is expressed as, _
B L ) et [ el
M| 2y oy | e {(s—lm‘w—ﬂll—%)}
) 2y Gz | {(s—lm‘@— 1—2@}
B0 DB} (5_1 )_(5_41—24) +h;(”’2)52{(5—1/11)_(5—13%)}}
éz{h;““)gf{(s—l@)_(s—lzﬂl>}h§““)5ﬁ{(s—lﬂﬁ_(S—”lf%)}
R s | R [ N ]
Kenbh) (e e ey )
hiz’l”gff{(s—l@‘(s— 1_%)}*’15&2,»55{(5_1@—(s_l%)ﬂ 678)
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This process can be repeatedly applied up to the terms suitable to be considered. For this case,
terms up to third order have been solved, hence the transfer function is represented by linear and
second and third nonlinear terms. Figures 5.6 show the bode graphs for the transfer functions (5.73),
(5.75) and (5.78) corresponding to the first, second and third order respectively, so related to the test
power system considered in this experiment. Bode analysis has been performed by using Matlab®
control toolbox, assuming individual transfer functions. The frequency contributions of second and

third order terms can be observed in the gain of the transfer function.

Bode Diagram
—_

N

40

N
o
T

Magnitude (dB)
: o
T

n
o
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o
T
|

-180 = Ll r
10™ 10° 10"

Frequency (Hz)

Bode Diagram
80 T T T T T
f=1.11 H-—>
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20~
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-2 -1 0 1 2
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Frequency (Hz)

Figure 5.6 Bode graphics of first and second order transfer functions for the case of SMIB power system

The Bode graphs of Figure 5.6 show the frequency contributions of both linear and nonlinear
transfer functions. Of course, the linear frequency transfer function is due to the poles of the oscillatory

eigenvalues, with frequency f =1.1096 Hz, such as it is described in Table 5.1. Furthermore, the

frequencies due to the second order transfer functions are due to the combination of oscillatory modes,

resulting in two main frequencies contributions, also detailed in Table 5.1.
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The same Table 5.1 is specifying the residue, pole, frequency and damping ratio associated to each
mode for the case of the first order transfer function, and the resulting of modal combination for the
case of the second order transfer function. A frequency of 2.2191 Hz (which can be observed in the
Bode graph of Figure 5.6) is the resultant of modal combination (5.75). Also to be noted is the
substantial increase on residue values of the second order transfer function, that are dependent of

nonlinear coefficients.

Table 5.1 Residues, poles and frequency properties of transfer functions

RESIDUES POLES FREQUENCY DAMPING
RATIO
Tmi :);Ztr(lzzcji’;ion 27.0380i 03571+ 6.9715i 1.1096 0.0512
22324370479 —11.4365329i ~0.7143 +13.9430i 2.2191 0.0512
~223.24370479 +11.4365329i ~0.3571 + 6.9715i 1.1096 0.0512
22324370479 —11.4365329i ~0.7143 - -
~223.24370479 +11.4365329i ~0.3571 + 6.9715i 1.1096 0.0512
223.24370479 —11.4365329i ~0.7143 - ]
~223.24370479 +11.4365329i ~0.3571 + 6.9715i 1.1096 0.0512
~74.58811208 — 1.27368937i ~0.7143 —13.9430i 2.2191 0.0512
Second Order 74.58811208 + 1.27368937i ~0.3571 + 6.9715i 1.1096 0.0512
Transfer Function | _74.58811208 — 1.27368937i ~0.7143 +13.9430i 22191 0.0512
7458811208 + 1.27368937i ~0.3571 - 6.9715i 1.1096 0.0512
22324370479 —11.4365329i ~0.7143 - -
~223.24370479 +11.4365329i ~0.3571 - 6.9715i 1.1096 0.0512
223.24370479 —11.4365329i ~0.7143 - ]
~223.24370479 +11.4365329i ~0.3571 - 6.9715i 1.1096 0.0512
223.24370479 —11.4365329i ~0.7143 —13.9430i 2.2191 0.0512
~223.24370479 +11.4365329i ~0.3571 - 6.9715i 1.1096 0.0512

Another schematic form to express the frequency response of the linear and nonlinear transfer
functions is the application of the Nyquist plots or polar plots shown in Figure 5.7.

In this case study, the mechanical power input, as it was mentioned before, is applied as the input
signal to the transfer function. Figure 5.7a shows the polar plot for the linear transfer function.
According to the theory of Nyquist diagrams, the frequency evolution is demonstrating that the system
is stable for the a defined perturbation, since the polar diagram is not circling the axis in—1 [Lazaro-

Castillo 2008]. The analysis is made considering transfer functions in open loop.
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Nyquist Diagram
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a)  Linear transfer function

Nyquist Diagram
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b)  Second order transfer function

Figure 5.7 Nyquist plots for the linear and transfer functions of A%P

Also, the same reasoning is used for the second order transfer function. A zoomed vision of the
diagram of Figure 5.7 is shown in Figure 5.8, where the frequency of 2.2 Hz which is contributed by
second order modal terms is observed. In the same way as the linear case, referring to Figures 5.7b and

5.8, the trajectory obtained by the Nyquist plot is not closing the x axis point —1 thus demonstrating

that the system is stable for the transfer function performed under the parameter conditions given.
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Nyquist Diagram
250 T y T 9

200~
150~

[ System sys
100 Real: -0.0186

Imag: 127

Frequency (radisec): -2.23

50

Imaginary Axis
o

50
System sys
Real: -0.0186

e
~—

-100~ xﬁu;fy (rad/sec): 2.23
-150 -
-200
-250 | | | | | | | |
-350 -300 -250 -200 -150 -100 -50 0 50 100 150
Real Axis

Figure 5.8 Detailed zoom of Nyquist plot of the second order transfer function

5.7.2  Step Input Response
The transfer functions previously defined are subjected to the application of a unit step function of
the form [Ogata 1997],
f(t)=0 for t<0
f(r)=1 for t>0

The unit step function is undefined at ¢t = 0. In the Laplace domain it is defined as,
© 1
3[1|=|e*dt ==
(1= fervar=
Taking the transfer functions (5.73) and (5.75) defined for linear and second order respectively, and

applying the input unit step function, the closed form expressions in the Laplace domain are,

rd(s)=¢ -2 1ig b2 1 (5.79)

's—A's Zs—ﬂqg
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2(2,1)

bb

h? B{

At

|

=

1 1

|

1
24,

1
4

1

2(2,2)72

|

1

(s-%) s

:

1

(5—4) 1}
(s—a)_ﬂ}+

(5.80)

|

Now, applying the inverse Laplace transform, the closed form solutions in time domain are obtained

as follows,

A~

A@l(t)zél%[e*ﬂ -1]+é

N

_h;m)bz{m[ o] e 1]}
R

h;ml;l;{/lliﬂ [ewaﬁ_l]_%[ew_l]}

b | e 1)1 e )

(5.81)

1

hzz(l 1)b2 {_

1

[t 1]-L[e _1]}+

24 4,
2 o 1 + t
h; 1,)bib, {ﬂj‘F%[ N :| [eﬂq _1]}
h22(21)b b {ﬂ—l -i/lz |:€u“+ﬂ7)[ —1]—%[612{ —l]}+

hzz(z,Z)Bz2 {%[ - J__[e%t _1]}

(5.82)

Performing simulations through the time domain expressions (5.81) and (5.82) and according to the

assumed parameter conditions for this case study, the waveforms of Figure 5.9 are obtained for the

case of input step function response.
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Figure 5.9 Time evolution after a unit step function applied to the transfer functions

Low frequency oscillations are observed in this Figure, where the second order evolution is
considered. The graphs also show that the system keeps stable under this input signal, thus oscillating
to eventually disappear. An additional exercise can be performed in this case study, now assuming
various damping coefficients, resulting in different oscillation conditions. Figures 5.10a and 5.10b
show this experiment for the linear and nonlinear transfer function, respectively, where the damping
constant is varied from 0 to 5 and increased to the hypothetic values of 10 and 20 (over-damped
conditions). Observe that the oscillations vary only in amplitude, keeping unchanged the frequency; as
it was expected. For the higher values of damping conditions, oscillations disappear more rapidly than

low damping constants.
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Figure 5.10 Time evolution after a unit step function applied to the transfer functions varying the damping coefficient

5.7.3 3 SM, 9 BUSES Test Power System

The application of the proposed method is illustrated on a 3 machines, 9 bus test power system. The
generation and network parameters, load data and the system operating conditions are taken from
[Anderson and Fouad 2003] and given in Appendix C. The power system is represented by a fourth-
order model including the AVR representation. In Chapter 4 the model of this power system is
detailed.

Expanding the nonlinear model into a truncated series, up to order 2, one has
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X=AX+F2(X)+Bu=Ax+%xTHix+O(|x|3) + Bu (5.83)

Once the nonlinear representation has been obtained, modal solutions can be calculated.

Nonlinear Transfer Functions

Taking into account the modeling of a multimachine power system, and considering the fourth
order power system previously described in Chapter 4, the system is linearized considering the state
variables of each generator and the input variables associated to the power system as the mechanical

power inputs and the reference voltages of the automatic voltage regulator, that is,

Ax:[[M1 AS, AS)[Aw, Aw, Ae)[AE, AE], AE,

(5.84)
[AE;, AEj, AEjJ[AEu AE., AB]]
Au:[[APml AF,, APms][AVrefl AV,pa AVrefsﬂT (5.85)

Hence, the complete model including for the power system under study has the form (in a similar

way to the linearized system described by (3.41)),
x=F,(x)+F,(x)+F,(x)+...+ BAu (5.86)

where, F,(x), F,(x) and F,(x) are defined by (3.43), (3.44) and (3.45), respectively. The input

matrix B has the form,

oh o O
ou, ou,  du,
A oA O
B=|ou du,  odu, (5.87)
U O O
| Ou, Ou, ou, |

which for the assumed power system is a (15x 6) order matrix.

For this case study, the transfer functions can be described choosing the rotor speed deviations as
the set of output variables, resulting in a multivariable transfer function with 6 inputs-3 outputs, in the
form shown by Figure 5.11. Since the system under study has multiple inputs-multiple outputs (MIMO
system) it is necessary to incorporate the concept of superposition. Although this is a concept only
valid for linear systems, it can be assumed the linearity of inputs and the nature of each kernel

represented in terms of the multidimensional Laplace domain. For the sake of simplicity, each transfer
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function will be calculated as a single input-single output system thus considering only the effect on

the output variable due to a single input variable.

v

v

P, >

sz

P, > Q,(s)+
Q,(s,,s,)+

Veai Q,(s,,s,,8,) +

Vs >

Vs

Figure 5.11 Multivariable transfer function Q(s)

Applying the modal series method, detailed transfer functions including second and third order

terms can be described. Following the modal series reasoning, the complete system can be modeled

according to linear rules, that is,
x= Ax+%xTHix+ o(|x’)+Bu
y=Cx
which in its own can be expressed according to Jordan canonical form, i.e.,

XAX*F K FF K ¥...+U Bu
y = CUx

and then transformed into its Laplace transform domain as,
X(s)=X,(s)+X,(s)+X,(s)+...+BU(s)
¥(s) = EX(s)

Calculating B=U"B,

(5.88)

(5.89)

(5.90)
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Pml Pm2 Pm3 | vvrefl ‘/refZ ‘/refB
0 0 0 0 0 0 s I¢ ~ ~ ~ ~ ~ ]
0 0 0 0 0 0 1 b11 b12 b13 b14 b15 b16
0 0 0 0 0 0 52 21 22 23 24 25 26
@, 53 31 32 33 b34 b35 36
2, 0 0 0 0 0 K K K _ _ K
(2]
0 o, 0 0 0 0 41 42 43 44 45 46
2H, ~ ~ ~ ~ ~ ~
w b
o, 2 51 52 53 54 55 56
0 0 5 H 0 0 0 o ~ ~ ~ ~ ~ ~
3 61 62 63 64 65 66
0 0 0 0 0 0 = = = = ~ ~ =
B= 0 0 O 0 0 0 ql 71 72 73 74 75 76
- ~ A ~ ~ ~ ~
0 0 0 0 0 0 B= qu 81 82 83 84 85 36
, ~ ~ ~ ~ ~ ~
0 O 0 0 0 0 E; by, by, by | by by by
; = = = = = =
0 0 0 0 0 0 E, 101 Y02 Y03 | Poa Pos Yo
0 0 0 0 0 0 ' N N N N N N
E;, by, by, b11,3 by, bys by
KBXC ~ ~ ~ ~ ~ ~
0 0 0 T—l 0 0 E
wxct a3 121 P2 Y3 [Pos Yos Piog
Kech - N N N N N N
0 0 0 0 Tocs 0 E a1 | P31 Yo b13,3 bys bys b13,€.
0 0 0 0 0 % Ede 14,1 14,2 14,3 14,4 14,5 14,6
exc3 ~ A~ A~ A~ ~ A~
Ede | Y150 Y152 Uiss | Yisge Uiss Vise |
(5.91)
’ ’ ’ ’ ’ ’
6 S, J, 2} @, o, E, E, E, E, E;, E; E; Eg Eg
C o, [O 0 0 0 0 0 0 0 0 0 0 0]
e, [0 0 0 1 o 0 0 0 0 0]
@, [0 0 0 0 0 0 0 0 0 0]
Or,
11 1,2 13 1,4 1,5 16 1,7 18 1,9 1,10 1,11 1,12 1,13 1,14 115
C. C, C. C. C. C. C. C. C. C. C. C, C C. C.
C= 1 G G Gy G5 G Gy Gy Cg Cyy Gy G G CGu o G
31 3,2 33 3,4 35 3,6 37 Cag 39 G0 G G Gz G Ggs

From (5.90) it is possible to separate the terms corresponding to first, second, etc. order resulting in

the next transfer functions that are expressed as a Multi Input-Multi Output system.

e First order transfer functions:

n n BU

M(s)-33

=1 j=1 S~ ﬂ,j
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s—4 s— s—4 5— 5— s—
21 by by by bys bys
s, s— s=4, 5=, s=1, s=4,
[ 5 (s) | by b 8 b,
0G) |3 S S 2
2 ( s ) by by by by, bys byg
1N (S) 5—Ay S—Ay 5=y 5=y 5=y 5=y
3 ~ ~
= ( S ) bs, bsy bsy bsy bss bsg
il s— s— s— 5— s— s—
2. (s b b b b b b
2(0) |8 A A R
5 (5) by B By | Bu b By
El (S) sy = s— s— s—A s—
ql . .
= by by by by by
Eq’2 (S) = s—/li8 s—2 5—3 s—_4 s—;,s s—6
q'3 ( S ) 1 by, by by by byg
=~ (S) s— s— s— s— s— s—
~d1 by I;m,z Bos 1;10,4 by 5 bio 6
E(;2 (S) s=Ag s—Aio s=Ao s=Ag s=Ayg s=Ayg
E~' s 1;11,1 511,2 511.3 ’;11,4 511,5 1;11,6
~d3 ( ) 5= s=hy s=Ay s=h s=h s=A
Efdl (S) by 512 2 512,3 biya b, 512,6
E~' (S) 5= s=Ap s=A s—Ap 5= 5=
d2 =
~f b3, bz, b3 5 bz 4 b3 s bz 6
Efd3 (S) s—Ay3 s—Ay3 s=Ay3 s—A3 s—As s—As

514,1 514,2 514,3 514,4 514,5 514,6
sy s—/is s—/iy s—iy 5=y s—Ay

515,1 515,2 515,3 515,4 515,5 515,6

The transfer function matrix has the form,

~ ~

~1 C A A~ A~
_ Aa)l (s) _ bl,lcl,l b2,1C1,2 3,1C1,3 .

L s—s s=hs s=hs s=hs s=hs s=hs |

b15,1C1,15

Q.(s)= AR(s) s—4 s-2, +s—ﬂg

~ 1 " A PN AN
Aw, (5) b1,1C2,1 b2,1C2,2 b3,1C2,3

Qz,l(s): = + + +-o+

S=A s=A s=4

~

(s)
:A(Z)31(5) 51,163,1 52,163,2 b3,163,3
(s)

+ + +
s—A, s— s—4,

5_215

b15,1C2,15

b15,1C3,15

.+—
5_115

S_/lls

(5.92)

(5.93)
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le(s)_ A~1l(s) — Alzé\ll +B2 2"1,2 +B32613 +
’ AP, (s) s-— s— s—
QZ 5 (S) — Ad)zl (S) — 51,262,1 + BZ 262 2 + 53 262 3
’ AP, (s) s- s—A, s-—
Q (S) — A ~31 (S) _ 51,263,1 52,263,2 53,263,3
U ARL(s) s=h s—h 5=k
ANll(s) A13A11 A23A12 B 61

b15,2 Ciis

5_}‘15

b15,2C2,15

5_215

~

b

1527315 2C3 15
s

~
~

b15,3C1,15

AP, (s) s- s— 13 s— A
O (S) _ A ~21 (S) _ "1 5Cyy 4 A2,3 C, 5 B A2 515,362,15
23 AP, (s) s-— s— 13 S— A
0 (S)— A~31(S) _ A13631 + A2,3A32 + A33A33 + ”_'_515,363,15
3,3 AP, (s) s— s— S— §— Ay
Q (5) Ad)l (S) = 31’461 1 32 410 53 4 Al 3 515,461,15
b AV, (s) s- s—A, s- s— s
Q (S) — ACDZI (S) — 51,462,1 52,462,2 A3,462,3 515,462,15
24 AV, (s) s- s— s—A, S— A
Q (5) = Ad; (s) _ 511463 1 AZ 4G 53,463,3 515,463,15
3.4 AV, (s) s=4 s-— s—A, s— A,

A~

. (S) _ A(’Z)ll (S) — 51,5611 + 2 5"1 2 + b3 561 3 -t b15,561,15
AV, (s) s-— s— s— s— s
( _ A(bzl(s) 61,5621 525’\22 A35A23 515,562,15
25 5) = — + — —
AV(s) 54 sk s s
.5 (S) _ A@BI (S) — 51,5631 + BZ 5’\3 2 + A3 5A3 3 . 515,563,15
AV,(s) - S— 5— S =i
g (S) Aa)ll (5) _ 51,6611 + Bz 6612 N A36A13 - A15,661,15
Avref3(s) S— S— S— § =g
26(5): Ad)zl(S) _ A16621 + Az,sAzz 4 A36A23 +515’662’15
AV,.5(s) s- s— s— s— A
AaN)SI (S) Al 663 1 AZ 6 A3 2 A3 6 A3 3 515,663,15

5_215
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In general, the linear transfer functions are,

n b, &
Q(s)=2 " (5.94)
’ o S— A,
with i=1...,0 o = 3 =number of output variables
j=1...,r r = 6 =number of input variables

n =15 = number of state variables

e Second order transfer functions
To formulate the second order transfer function, it is necessary to consider the system as a Single

Input-Single Output in order to form the transfer function matrix, that is,

5~12(5) Gi(s) Gn(s) Guh(s) | Gi(s) Gis(s) Gils)
532 (s) Goi(s) Gu(s) Gual(s) | Guuls) Gis(s) Gag(s)
s (s) Gii(s) Gia(s) Gis(s) | Goa(s) Gis(s) Gis(s)
@ (s) | | Gi(s) Gia(s) Gis(s) | Giu(s) Gis(s) Gigl(s)
56) | | GAls) GL(s) Ghls) | GLls) G Gals) |y (-
() | | Gils) GLls) Gi(9)|Ghls) Gnls) cilo)| )
B | [646) 600 6009 |69 Gl Guls) | o)
52 (5) |2 Gai(s)  Gials)  Gaals) | Gaals) Gas(s) Gas(s) || 5 ) (5.95)
EG(s) | | Goa(s) Gsa(s) Gas(s) | Guals) Gos(s) Gae(s) Vmﬂ(s)
N(ﬁ (S) G120,1 (S) G120,2 (S) Glz(),3 (S) G120,4 (S) G120,5 (S) G120,6 (S) Vref2 (S)
22 (s) || Gli(s) Gia(s) Gia(s) [Ghals) Gisls) Giels) |- ™
]::;23 (s) Gia(s) Gia(s) Goal(s) | Ghals) Gis(s) Ghels)
%"?dl (s) G123,1 (S) G123,2 (S) G123,3 (S) G123,4 (s) G123,5 (S) G123,6 (S)
Ef2(s)| | Giaa(s) Giaa(s) Guas(s) | Giia(s) Guas(s) Giue(s)
_E§d3 (s)_ |Gisi(5) Gio(s) Gis(s) | Girals) Gis(s) Gie(s)]
; nonon 1 1
where qu(s)—;k:“:lhz,d " q'{(s—/lk—i,)_(s—/lj)} with  p=12,..,n n=15

From here, (5.95) is developed considering the selected output variables, which in this case study
are the rotor speed deviations (®,, @,, @,), to obtain individual transfer functions that are grouped to

form the transfer function matrix. For instance, the first transfer function is formed as,
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R e IS o s
hi(“s)gl’lgl'“{(s —ﬂj—ﬂqs) (s - A)}+ hzl‘”)gl’zgl'l{(s —ﬁi -2) (s - ﬂq)} :
ol 2>51’2’5“{<s—i —a)(s—1m}*“'*"*z’lsflﬂ’;l’“{(s—ﬂj—as)(s—lm}“'* '
ool ) e e T
_”i(lvaS)Blvls’;lﬁls{(s—ﬂi—zﬁ)‘<s—1m} _
e N et L e o
bl )}”’5‘”)51'251’1{<s—ﬂi—ﬂi>‘(s—1m}+
”5“2)51’212{@—5 —m‘(s—12»}*'“*h*&“)’;l’zgl’“{(s—zj—zw)‘<s—1a>}+"‘*
L (e o L v M
_"5<15’15>51’155m{<s—ﬁi—as)‘<s—lm} _
'13“”"“'5“{@—ﬂi—ﬂi)_(s—1 )}”’1‘] >Bl'1’;1’2{(s—ﬂql—ﬂ»z)_(s—lﬂi)}+ :
“21““)51'151'“{<s—qu—ﬂﬁ)‘(sfzq)}*”*z’”&ﬂ’;l’l{<s—i—m‘<s—1a>}* (5.96)
";“'“’51’2’;1'2{<s—£ —m‘(s—1m}*“'*h3<2’15)’;1’2115{(s—£ —215)_(5—121)}+"'+
L (e s L v e M
R e ) |

In the same way, the rest of transfer functions are defined and then grouped in matrix form in order

to complete the transfer function matrix as,

P (s)
6)1(5) QZU(S) Qzlz(s) Qzl,S(S) QZM(S) QZIS(S) QZlG(S) lsngz;
6,(6) || 2(5) (8] D(5) ©(s) ©uls) Do) TS| 697
@(s)] [9u(s) @%(s) 9(9) Dule) @als) o))y ()
| Vira(s) |

where
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S R e el e P o e
|

~2 n_ n
o (s)=_20) _e ht b.b L hubb T
(1‘4)(5) Avrell(S) G k=1 I=1 2T (S—/lk —ﬂl) (5— 4) G ;121: A (S_ﬂ'k _ﬂ") (S_ﬂ"‘)

~2 n_n
o (s5)=—2%6) _z RS ubysh L hy o
9= 50, | 2R 5y )| B e

In the general case,

Q(211)( ) ~i2(5): n aip i " thkll;ijlj L - ! (5.98)
j FRN sy (S—/lk—il) (S—ﬂj)

with  i=1...,0 0=3

j=L...,r r=6

That is, the input signal is chosen as the input mechanical torque, for which it is possible to
determine the transfer function of any state variable. Upon rearranging terms, we obtain the transfer

functions defined by Equation (5.98). These equations are amenable to multidimensional Laplace
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analysis using the detailed theory of Chapter 3. We emphasize that, unlike previous approaches, the
above formulations allows the study of the system behavior in both, the time and frequency domains.

Finally, the complete transfer function for this MIMO system is expressed in matrix form as,

[ Aw(s) ] Ay (s) +Aa)12(s)+Aa)13(s)+
AP, (5) AP, (s) AP,(s) AP,(s)
Aw,(s) A, () +Aa)22(s) ACUZS(S)J“
AP, (s) AP, (s) AP,(s) AP, (s)
Aw,(s) Aay(s) | Aa)32(s)+Aa)33(s)+”
Q(s) _|ABa(s) |_| ABa(s) ARs(s) ARys(s) (5.99)
AU(S) | _Aa® || adle) | Awl(s) | Ae'(s) |
AV, (s) AV, (s)  AVi(s) AV (s)
_Aay(s) Ai(s)  Aw’(s)  Aw,’(s
AV,15(s) Avm((z) ’ AVrefz((s)) ' Avmfz((s)) "
% L), b (s) Ae’(s)
- 1 [AVis(s) AVigs(s) AVis(s)

5.7.4 Numerical Analysis
The example is conducted following the theory of nonlinear transfer functions through modal series
described above. In this study case, the linear transfer functions were defined by (5.93) which are

expressed in partial fractions as a result of the modal series expansion.

5.7.4.1 Linear transfer functions

The form of the transfer function is as follows (in this case, only the first transfer function QEM) (s)

is shown as a sake of exemplification) once the parameters of the test power system are substituted in

the analytical expressions and the eigenvalues obtained. Hence,

Ol (s)o—_Q04S3-00066 _  0.0453+0.0066 _,  11701+00154i 11701-00154i 00173
' s—(~1.0618+13.0572i) = s—(~1.0618-13.0572i) s—(-0.3744+8.5858i) s—(-0.3744-8.5858i) s+ 5.8688
00516-0.0885 0.0516+0.0885 03588 0.0864-0.0465  0.0864+0.0465i
s—(~1.5421+2.4311i) s—(-1.5421-2.4311i) s+3.4589 s—(-3.2841+0.1123i) s+ (3.2841+0.1123i)
0.0403 — 0.0549i 0.0403+0.0549 55573 0.0051

5—(~1.8002+12864i) s+ (18002+1.28641) s+ 0.1401 5+ 0.9943
(5.100)
This transfer function is of 15" order, being the individual poles the linear combination of original
eigenvalues. Similar expressions are obtained for the rest of transfer functions that complete the

transfer function matrix in (5.93). In order to obtain the frequency characteristics of the transfer
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functions, a Bode analysis is performed using the tools for these purposes developed in Matlab®

platform. The Matlab® Control Toolbox possesses well defined routines of Bode and Nyquist analysis

that are exploited in this case study. Figure 5.12 shows the Bode and Nyquist graphics for the linear

transfer functions Q. (s), Q5 (5), Q5 (), Q) (s) and Q(s) selected due to they present

the highest contributions (highest residues).
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Figure 5.12 Bode and Nyquist diagrams from the linear transfer functions of the 3SM-9 Buses test power system

The frequency combinations observed in this Figure are 2.0781 Hz and 1.3665 Hz. Regarding the

details observed in the Figure 5.12, it can be denoted that transfer functions Q(Ll)(s) and Q(Lz)(s)
have predominant frequency contribution of 1.3665 Hz while transfer functions €, (s), Q. (s)

and 9(3’3) (s) have resonant contributions of both frequencies 2.0781 Hz and 1.3665 Hz

5.7.4.2 Nonlinear transfer functions

Now, the nonlinear transfer functions are analyzed. Please observe the Figure 5.13, which denotes

the Bode and Nyquist graphics for the transfer function Q(zl,z)(sl,s2). It is important to notice the

several frequency contributions that the Bode graph is showing. This transfer function is an element of
the nonlinear transfer function matrix obtained above and detailed in (5.97) for the MIMO system
under analysis. Also, there is a fact that the system may be of a huge size since the partial fractions of
the transfer functions obtained by modal series are the result of combination of all the possible second

order modal combinations. Considering these modal combinations, the poles can originate a transfer
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function of almost 6750 order in the system under study. Of course, a higher number is very
complicate to handle by a Bode and Nyquist routine.
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Figure 5.13 Bode and Nyquist diagrams for the second order transfer function Q(21,2) (sl,sz) for the case study of the
test power system 3SM-9BUSES

In order to obtain an easier expression, a simple analysis based on the highest residues is applied to
the nonlinear terms. Figure 5.14 shows the residues location in the complex plane. Thus, due to the
excessive number of residues and therefore, the same number of poles, only those with highest

absolute magnitude are considered to characterize the nonlinear transfer function. The zoomed Figure

5.14 details the residues that are out of bounds, that is, residues whose magnitude are |r1| <0.1.

Agreeing to the reasoning of residues, the corresponding poles (modal combination) referred to the
resultant residues are shown in Figure 5.15. This analysis can be compared with the proposal of
dominant poles calculation [Martins et al. 1996], [Rommes and Martins 2006] where the main residues
and their corresponding poles are obtained using an iterative process.

With respect to the complete poles of the transfer functions, the main frequencies detected in the
wide range spectrum are 4.16Hz, 3.44 Hz, 2.73 Hz, 2.47, 2.28, 2.1, 2.08, 1.87, 1.75, 1.69, 1.57 and
0.98 Hz.
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Figure 5.15 Poles spectrum for the nonlinear transfer function Q(21,2) (sl,sz) for the case study of the

test power system 3SM-9BUSES

A spectrum characteristic of the nonlinear transfer function is obtained, as shown in Figure 5.16.
The Figure shows the full frequency content of the nonlinear transfer function of order 6750™. A
zoomed window denotes the content of some of the terms, i.e. through order 300. It is clear that there is
a predominant frequency detected in the spectrum (2.08 Hz) which is a low frequency due to the

electromechanical modes of the power system.
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Frequency (Hz)

Figure 5.16 Frequency spectrum of the nonlinear transfer function 9(21,2) (sl,sz) for the case study of the

test power system 3SM-9BUSES

Once the reduction in the nonlinear transfer function order is performed, an approximate frequency
content is obtained; please see Figure 5.17. From this Figure, the similarity on frequency content with
respect to the full spectrum already commented with reference to the Figure 5.16 is observed. In such
case, it can be said that the reduced model keeps almost the same frequency characteristics of the full

system.
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Figure 5.17 Pole spectrum of the reduced nonlinear transfer function for the case study of the
test power system 3SM-9BUSES

Finally, the Figure 5.18 shows the Bode and Nyquist graphs of some of the main nonlinear transfer

functions, where the frequency content of each of them can be observed. In some cases, for instance
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Figure 5.18 Bode and Nyquist graphics of nonlinear transfer functions

5.8 DISCUSSION

This chapter has described in detail the theory related to the linear transfer functions concepts
and its extension to the nonlinear transfer function through the application of the modal series method,
as the basis of nonlinear system expansion, assuming an input force response. The method has the great
advantage of analyzing in both time and frequency domains, in a numerical and analytical way, the
transfer functions of nonlinear systems. Application of the multidimensional Laplace transform and
association of variables techniques are the core of modal series technique, which allows a closed form
analytical solution of the nonlinear system, being the extension of including the control forced
response. The examples were focused on applications to simple power systems, however, it is possible
following the same definitions, to extend it easily in a straightforward manner to the analysis of large
scale power systems. It is clear that dealing with bigger systems, the complexity of analysis is
increased, being necessary the inclusion of sparsity techniques, effective algorithms of eigenvalues
determination, etc. Future developments based on this contribution will take this problem adding the

determination of dominant poles and the analysis of large scale power systems.
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CASE STUDIES:
APPLICATION OF MODAL SERIES TO THE
ANALYSIS OF NONLINEAR OSCILLATIONS

This chapter consolidates with the theory detailed along this research. To exemplify it, two test power
systems are considered, i.e. the 9 buses, 3 generators [Anderson and Fouad 2003] and the version of
New England test power system with 10 generators, 39 buses [Pai 1989]. Experiments with both
methods are conducted using the modal series method, analyzing the linear and nonlinear
contributions to the closed form solution through numerical simulations and linear and nonlinear

participation factors and interaction modal indices on the test systems.

6.1 INTRODUCTION

The theory of modal series method described along this thesis is exemplified in this Chapter
through the study of two test power systems. The first one was already analyzed in Chapter 5, where
the concept of nonlinear transfer function was introduced; the main goal of the experiment with the
same test power system is to clarify the application of the modal series method, the modal analysis, the
nonlinear modal interaction, the frequency contribution of nonlinear terms considered in the study and
also the analysis of nonlinearity when a time disturbance clearance is changed.

On the second part, a larger power system based on the WSCC test power system of 10 machines,
39 buses is exemplified; the nature of linear and nonlinear oscillations are clarified, following a similar
procedure of the previous case study, in fact, modal analysis and nonlinear modal interaction are of
concern. Also, the system is simulated when the modal analysis results in unstable working conditions.
One of the main advantages of the modal series method is its facility of application even under modal

resonance conditions.

6.2 CASE STUDY 1: 3 SYNCHRONOUS MACHINES, 9 BUSES TEST POWER SYSTEM

The first study case is oriented to the study of the 9-bus test power system shown in Figure 6.1
[Anderson and Fouad 2003]. The generation and network parameters, load data and the system
operating conditions are given in Appendix A. For the purposes of analysis, the power system is

represented by a fourth-order model including the AVR representation such as it was described in
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Chapter 4. The network is represented by a quasi-stationary model; loads are treated as constant

impedances and the generator impedances are included in the augmented network admittance matrix.

G, Ts BUS 7 LOAD C Ts G3
N A
S =1
BUS 2 BUS 8 BUS 3

BUS 9
BUS 5 L - BUS 6
LOAD A-l_ LOAD B
BUS 4
NMNWT;
—t BUS 1

@5

Figure 6.1. Nine-bus, three-machine test power system

The state variables vector in that represent the nonlinear power system model are defined as

x(t)=[xs x, Xp  Xg xEM]T,where,

X()‘:[é‘l 0, 53]T
X(u:[a)l @, a)3]T

T
x, =|E, Ep Eg]

q

XE;:[E;1 Ec;Z E¢;3]T

T
. —
XE' = Efdl Ede Efd3

The state matrix obtained by the linearization process detailed in Section 2.2, Chapter 2, is

evaluated to obtain the Jacobian equation which has the form,

J=
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
241837 | 135322 | 10.6514 | -0.0997 0 0 9.6542 7.0316 225939 | -8.6678 | -7.7655 0 0 0
443537 | -77.584 | 33.2302 0 0.2 0 92.879 | 135713 | -42.4814 | 16.6473 | -31.4914 0 0 0
783229 | 739174 | -152.2403 0 0 0.3 423338 | -150.9938 | -74.7438 | -56.5049 | 67.1463 0 0 0
0.0014 -0.0014 0 0 0 0 0.01 0.0089 -0.008 0.0107 0.0077 0.1116 0 0
0.1972 0.3222 0.125 0 0 0 -0.519 0.1363 -0.185 00543 | -0.0444 0 0.1667 0
0.2219 0.1595 -0.3814 0 0 0 0.2124 0.6246 | -02073 | -0.0153 | -0.0532 0 0 0.1698
0.3347 01875 | -0.1473 0 0 0 01307 | -0.0947 | -3.5738 0.1228 0.1095 0 0 0
-0.7905 1.5983 -0.8077 0 0 0 0.5846 0.4782 0.794 -5.6607 1.4672 0 0 0
11223 | -1.4642 2.5865 0 0 0 0.1432 0.497 1.1068 1.9839 -5.9155 0 0 0
-1.274 0.9783 0.2957 0 0 0 -3.8051 -3.4385 0.008 -4.5919 -3.371 -3.1847 0 0
-3.786 4.865 -1.079 0 0 0 29.0439 | -7.0326 33255 | -31.7483 | -4.7018 0 -3.1847 0
-3.1797 0.9322 2.2475 0 0 0 8.9983 | -26.0508 | 2.6864 91065 | -25.5488 0 0 -3.1847
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with the sparsity structure shown in Figure 6.2. The coupling existing between the main state variables

can be observed.

5 P 7 s s
nz=120

Figure 6.2 Jacobian matrix structure

In the same way, the second order partial derivatives of the power system model are represented by
the Hessian matrix whose sparse structure has the form illustrated by Figure 6.3. The Hessian is a
sparse matrix, requieres of an efficient technique for matrices storage mostly in cases where the system
explodes in dimension, for instance, large scale power systems. In particular for this study case the

Hessian matrix has size of 15x 225 elements.
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Figure 6.3 Hessian matrix structure

The sparsity structure of the Jacobian and Hessian matrices is illustrated for visual and qualitative
evaluation objectives. Both matrices in computational implementation are obtained in a symbolic way:
the original set of differential equations is linearized obtaining the first and second order partial
derivatives using the symbolic properties of Matlab®. It is very important to remark the importance of
using symbolic applications. Powerful tools as Mathematica® can be very useful in order to obtain the
analytical expressions, since the modal series method is based on analytical solutions instead on
numerical calculations. Despite the Symbolic Toolbox of Matlab® is not the best option to write a
symbolic math program, the developed software for the case studies reported in this thesis includes
routines written using the symbolic toolbox. Further developments consider the extension of some

other routines, thought to be used with a better analytical platform, such as Mathematica®.

137



6.2.1

Small Signal Analysis

The small signal analysis in the case study is resumed in the Table 6.1.

Table 6.1 Modal analysis of 3SM, 9 buses test power system

Mode Eigenvalue Damping Ratio Frequency
1,2 —1.0618+13.0572i - 0.081 2.0781
3,4 —0.3744 £ 8.5858i 0.0436 1.3665

5 -5.8688 1 0
6,7 —1.5421+2.4311i 0.5357 0.3869

8 -3.4589 1 0
9,10 —3.2841+0.1123i 0.9994 0.0179

11,12 —1.8002 £1.2864i 0.8136 0.2047
13 0 1 0
14 -0.1401 1 0
15 -0.9943 1 0

From Table 6.1 we can observe that there are 10 oscillatory modes, being the electromechanical

modes 1,2 and 3,4 of main importance. With respect to the analysis of participation factors, the bar
diagrams illustrated in Figure 6.4 show the variables with the highest participation factors, only for the

oscillatory modes. For this case study, the set of highest participation factors are resumed in Table 6.2.

Table 6.2 Most dominant participation factors

Mode Participation State
Factor Variables
1,2 0.3823 5, @,
3.4 0.3011 0y, 0,
5 0.5195 E),
6,7 0.2437 EyEq
8 0.4209 El,
9,10 0.4367 Es
11,12 0.2186 E,,
13 0.4971 S,
14 0.4944 o,
15 0.4601 E,
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Figure 6.4 Linear Participation Factors

The participation factors listed in Table 6.2 denotes that the oscillatory modes 1,2 with frequency
2.0781 Hz are associated to rotor angle and speed of generators 2 and 3, acting as local modes, while
the modes 3,4 with frequencies 1.3665 Hz are with generator 2. The rest are modes due to control
interactions between field and stator windings. In this particular case, there are no any inter-area modes
presented. The modal analysis establishes the main characteristics of frequency, damping ratio and
participation factors, which interact in the analysis of the nonlinear system when modal combination is

present.

6.2.2 Approximate Time-Domain Solutions to System Motion
To test the accuracy of the method, a three-phase fault is applied at bus 8 cleared in 6 cycles
followed by 10 MW load rejection. The state variables perturbation constraint is,

disturb=
[0.0036 0.2384 0.1384 0.0958 4.7531 2.6458 0.0031 -0.0049 -0.0043 -0.0019 -0.4258 -0.2308 10502 3.9079 2.4613]"

The time domain validation of the nonlinear power system is performed by comparing the time
domain solution obtained with the modal series method with the full non-linear system behavior
obtained through numerical integration. Also the linear approximation is studied and compared.
Figures 6.5 a) to f) provide a comparison of the full system solution for selected states with the solution

obtained from the modal series approach for the already described conditions.

139



70

N 2] IS a @
S) S S <} <)
T T T T

Relative Rotor Angles DEG
=
<

* Full Numerical Solution
== Modal Series
Linear Approx.

3
Time sec

a) Relative rotor angles J,, and 0,,

2
3
T

@
3

Absolute Rotor Angle d1 DEG
PR
F—F

N
S
T

e,
e,

e

10

001~

Absolute Rotor Angle d2 DEG
=

7oF s Full Numerical Solution
== Modal Series
. . . ! = Linear Approx.
0 2 3 4 5 6 % 3
Time  sec Time  sec
it T
120
o 110F
&
a
B 1001
2
2
< oor
5
3
&
e gol
2 80
2
g
3
< 70
601 § Ul Numerical Solution
£ odal Series
Linear Approx.
| | |
% T 2 3 5 6
Time  sec
b)  Absolute rotor angles of J,, &, and &,
1
F”"d"““’“‘f"ca‘ Solution Full Numerical Solution
37951 Modal Sefies Modal Series
Linear Approx. 1.085F Linear Approx.
3791 108
2 3785F 10751
2 3
a
g o8- o 107
= 2
§ s
53775+ £ 1.0651
] s
° >
& 377] .06
37651 1.085F
3761 105
Il Il L Il I " I I
375% 2 3 4 5 1045 2 3 5 6
Time  sec Time  sec

)

Rotor Speed o,

d) Voltage E},

140



0. wen Full Numerical Solution
== Modal Series
1al Linear Approx.

Voltage Efd1 p.u

Voltage E'd2 p.u

went Full Numerical Solution
== Modal Series
Linear Approx.

I I I L L L L L L
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Time  sec Time  sec

e) Voltage E, f) Voltage E

Figure 6.5 Time domain validation of the 3 SM, 9 buses test power system

Figure 6.5a) is related to the relative rotor angles, it does not reflect almost any considerable
difference between solutions; the angles &,, and J,, follow similar trajectories for the three methods

during the transient. A slight difference with respect the linear approximation is observed in the rotor

angle ¢,, although it is not of concern. However, the absolute rotor angles shown in Figures 6.5b) have

the largest differences with respect to the linear approximation. The modal series response closely
follows the full numerical solution during the transient and eventually reaches an identical steady state
solution, not shown, which is considerably different to that obtained by the linear approximation
approach. The reason is based on the angles are the variable with the highest nonlinear characteristic of
the model that is clearly appreciable.

The transient evolution of the rest of variables present differences with respect to the linear
approximation but closely agree in steady state. For instance, referring to Figures 6.5d) e) and f), there
is a noticeable difference between linear approximation with respect to modal series and full numerical
solution, but it practically follows the same trajectory just before the steady state solution is reached. A
smaller difference is observed for the rotor speed in Figure 6.5 c).

It can be concluded that for all the cases here described, the modal series solution is always closer
to the time domain response described by the full numerical solution, while linear approximation may
fail for the cases where the nonlinear characteristic is presented.

A new condition of operation is considered in this case study, when the fault duration is increased to
10 cycles, accompanied with the absence of damping conditions (damping factor D=0) for each
generator. The simulation is shown throughout Figure 6.6. The variables exhibit higher differences
between modal series and linear approximation.

The solution obtained by the modal series method, detailed for the variables of rotor angle ¢,, rotor

speed o, and voltage E; are described; significative differences are observed, when compared against

141



the linear approximation for the case of rotor angle variables, since the linear approximation follows a

different direction of solution with respect to modal series and the full numerical solution.
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Figure 6.6 Time domain validation of 3SM 9 buses test power system under different perturbation conditions

6.2.3 Nonlinear Modal Interaction Through Nonlinear Indices

To analyze the nonlinear contribution of the modal series terms, several nonlinear indices are taken
into account as follows:
a) The first nonlinear index is defined by,

Il=max|h2,{,yk (0)y, (0)| (6.1)

which provides the maximum measure of the nonlinearity to the closed form solution. Also, it can
be the contribution of modes k, [ to the jth mode.

b) Other nonlinear index is defined as,
‘mké}x‘h21{1 ¥ (0)y, (O)H

I12=|—
‘ Y (0) ‘

which determines the second order nonlinear effects, indicating a strong modal interaction

[Barocio 2003].

¢) A new coefficient of nonlinearity taken from [Barocio 2003] that is defined from the theory of

(6.2)

nonlinear distorsion interference criteria, has been applied to estimate the nonlinear interaction in
terms of normal forms variables. The same index is adapted in terms of Jordan canonical variables,

resulting in,
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B3ty 00
I3= =1 1=1
‘y, (0)‘ \/

d) Finally, a fundamental mode nonlinearity index provides a measure of the effect of modal

(6.3)

interactions on the fundamental mode in the original coordinates [Chen et al. 2010], that is,

|:yj (O) - ZH:ZH:hZI{I}’k (0)}/1 (0)}
14(j)= = ’yl © (6.4)

To demonstrate the contribution of the nonlinear part to the system dynamics, the experiment is

conducted applying a three phase fault at bus 8 during 15 cycles (0.25s), clearing the fault without any
change on network topology. The Figure 6.7 shows a comparison between the nonlinear solution
(closed form solution by modal series method) and the linear approximation for the rotor angle and

rotor speed of generator 1.
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Figure 6.7 Comparison of linear and nonlinear approximation
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A qualitative clear difference between linear and nonlinear solutions is observed from Figure 6.7.
After the fault, the rotor angle 1 increases trying to maintain the synchronism of the power system.
This causes an acceleration of the rotor speed, which starts an oscillation that eventually disappears.
However, apparently the linear solution estimates a very low damped oscillation in rotor angle, quickly
finding the steady state solution. A large difference between linear and nonlinear solution, mostly for
the particular case of rotor angle is observed. In the case of rotor speed, Figure 6.7b), the linear
solution closely follows to the nonlinear solution, with the solution difference being kept over the first

5 cycles of oscillation.
With respect to the nonlinear indices, the nonlinear coefficients h2), can be analyzed. For this case,

the largest coefficient for each mode is considered. The Figure 6.8 shows a bar diagram of coefficients
magnitude. For this particular case, the main contribution is due to the modes 11 and 12, which are

control modes of the test power system
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Figure 6.8 Second order coefficients max(‘hZi,‘)
The four nonlinear indices given by (6.1) to (6.4) are now taken into account. Calculating the
indices magnitude in the same way as the nonlinear coefficients, the graphs shown in Figure 6.9
denotes the absolute value of each index. From this Figure, it can be commented that:
e The main contribution index is I1, which means that the modes 5, 8, 9 and 10 are the modes that
have major contributions to the closed form solution.
e The indices which show less contribution are I3 and I4. This may imply that there is no strong
modal interaction on the fundamental modes. Their values are quite small compared with

indices I1 and I2, as it can be noticed from Figure 6.9
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e The index I2 has its largest value in the mode 5. Thus, there is a strong modal interaction due to

the mode 5 with the rest of modes.
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Figure 6.9 Nonlinear indices I1, I2, I3 and I4

6.2.3.1 Nonlinear participation factors

The participation factors are applied to the analysis of nonlinear power system assuming the linear
definition and introducing the nonlinear definition. The linear participation factors are used as a
measure of mode-machine interactions [Pérez-Arriaga et al. 1982]. The participation factor represents

a measure of the participation of the k™ machine state trajectory of the i"" mode, and it is defined as,
D = Uy Vi (6.5)
With reference to the normal forms method, the nonlinear participation factors are defined based on

the second order solution given by,
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x(©=>"uz,(0)e" +> Y u,,z,(0)z,(0)e™ " (6.6)
=1

k=1 1=1

where u; is an element of the i" right-eigenvector and,
Uypg = Zuyhzil (6.7)
j=1

and h2), is the second order normal form transformation coefficient of the kI product in the j"

equation [Starret, S. K. 1994].
From (6.6) the next statements can be observed:

* u,, performs the same function for the second order mode 4, +4, as u; does for the linear

mode j.
e Right-eigenvectors terms (linear and second order) indicate how the modal oscillations are
translated to the machine states.
Following the same reasoning than the normal forms method, it is possible to determine the
nonlinear participation factors derived for the closed form solution of the modal series method. Since
there are similarities between both methods, the deduction can be made in a direct way.

Recalling that the modal series method has the closed form solution represented as,
n

x,(t) = |:iuijyj (O) _Zzn:uzikIYk (O)YI (O)} e + zn:Zn:UZikIYk (0)}’1 (O)ew% , (6.8)

k=1 1=1 k=1 I=1

or, it can be written as,

x,(t) =ul; e +u2, e (6.9
where,
U1U = |:Zuijy1 (0) - Uy Y (O)YI (0)i| (6.10)
=t k=1 1=1
u2y, :zzuzikz)’k (O)YI(O) (6.11)

k=1 I=1
Some observations can be made from this simple algebraic step:
e From a comparative point of view, the modal series solution has the same form as the normal

forms solution, that is, linear terms are associated to the right eigenvectors, while the second

order coefficients are associated to the modal combination (4, +4,).
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e However, with respect to the linear mode, the linear coefficient ulij is also function of

nonlinear coefficients h2J,. This means that the linear terms are influenced by the action of
nonlinear modal combination, since h2}, is a function of modal combination (ﬂk +4 - /1].)

Equation (6.8) describes the linear and nonlinear combination of the solution, however, it is
necessary to re-define it, in order to obtain the nonlinear participation factors oriented to the closed
form solution obtained through the modal series method. The deduction can be made considering that
the initial condition vector is x, =e,, which implies that the Jordan form initial condition can be
expressed as,

Yio =Vik (6.12)
It is important to remark the meaning of (6.12): the participation factors are due to the excitation of one
mode at the time, by which it is possible to apply superposition procedure. If in the initial condition
only one mode is considered, the initial condition in Jordan variables is a column corresponding to the
left eigenvectors.

Thus, the solution for the k" machine state variable (with x,, =0 forall i =k ),

X; (t) = zn:{uijvﬁ - S Zn:uith,{l vkiv,i}eﬂ’[ + Zn:znlzn:uith,{l vkl.vh.e(ﬂ”l’)’ (6.13)
j=1

k=1 I1=1 j=1 k=1 I=1

or,
x (t)= Y[ B, - P2} |e” + > P2j ) (6.14)
j=1 j=t
where,
By =uyv;
PZI{Z = Zzuqhziz ViiVii
k=1 I1=1
Also,
x ()= Pl e +> p2j e (6.15)
j=1 j=1
where,

Pllil :Py‘ _PZil
There is a very important result in the expression (6.14): the linear participation factors are due to

two terms, the linear definition of participation factors given by (6.5) and a correction term given by

the contribution of nonlinear coefficients. PZ,f, represents the second order participation of the j"
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machine to the modal combination obtained from (4, +4) which also has influence on the

participation of linear modes 4. Figure 6.10 shows the nonlinear participation factors, basically

focusing on factors P2),.
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Figure 6.10 Nonlinear participations factors for the 3SM-9 Buses power system
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Each bar diagram corresponds to the contribution of the modal combination with each mode. The

modes with higher contributions due to modal combination are the 5, 8, 9, 10 and 13.

6.2.4 Algebraic Variables

The dynamic analysis in this section is oriented to the algebraic variables, e.g., currents, active and

reactive powers and generator voltages. Once the dynamic behavior of state variables has been

obtained, it is straightforward to obtain the adequate conditions for algebraic variables. Basically, the

solution is obtained solving the algebraic set of equations (4.37), (4.38) and (4.62) of Chapter 4. That

is,

and,

Iy G, Fo.p (512) Fo.p (513)
Iy, |=| Foin (521) Gy Fg.p (523)
Iys Fo.p (531) Fo.p (532) G,

FB—G (521) BZZ FB—G (523)
FB—G (531) FB—G (532) B33

521) G22 FG+B (523)
Iq3 _FG+B (531) FG+B (532) G33

FB—G (521 ) B22 FB—G (523 )
FB—G (531) FB—G (532) B33

Pml Idl
P, :[Eél Eéz E(;s] Iy, +|:E¢;1 Eéz
_Pm3 Id3
Qu Iy
Qua :[Eé{l Eq'2 Eés Iy, _[Eéu Eéz
| Qns Iy
2
Iy
_[X(’il X}, X:is] Iy, _[X;[l X;z
Iy

B11 Fch (512) Fch (513 )_
1 B

FG+B (512 ) FG+B (513 )—

JL e8|

11 FB—G (512) FB—G (513)_

’
Edl
'
EdZ
'
EdS
o
E,
’
E,

E,
E,
El
]

dl

El

d2

’
B _Ed3_

E;
E
"

%]

I,

3] Iq2

I

I,

;3] IqZ

I,
I,
I,
I

(6.16)

(6.17)

(6.18)

(6.19)

The comparison is made considering the solution of (6.16) and (6.17) using the modal series

solution and the full numerical solution of the nonlinear set of differential equations. The results are

shown in Figure 6.11. According to the constraints defined in Section 6.6.2, the solutions obtained
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using the modal series state variables is nearly identical to those obtained by the full numerical solution
for each algebraic variables.

Low frequency oscillations are presented in the variables, which are the result of modal behavior of
the original state variables, combined with their algebraic relationships. It is observed the transient
presented after the fault, for which both trajectories are in very similar form. Thus, through this
numerical proof, it can be concluded that even in the case of algebraic equations, that depend on state

variables solution, the modal series approximation is giving good results.

6.2.5 Frequency analysis of linear and nonlinear contributions
In order to further assess the method ability to accurately capture the essential system behavior, the
nonlinear contributions to the system response were computed by extracting the nonlinear part from the
closed form solution obtained by the modal series method (Equation (3.30), Chapter 3), that is,
N N N
X, v ( Z;(u (0)- ;Z‘ul 70 (0)y) (O)Je“ (6.20)
= =

and

N N N
XiNONLINEAR(t)zzzzux ka (O)ew%)t (6.21)

j=1 k=1 I=1

Currents Id p.u
Currents Ig p.u.

Tlrﬂe3 sec Time  sec
d axis currents q axis currents
a) Stator Currents
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Figure 6.11 Algebraic variables comparison between full solution and modal series method

d) Terminal Voltages V,

This is shown in Figure 6.12 where the speed deviations at each synchronous machine are shown.

These waveforms result from the consideration of the second order terms in the modal series method,

and represent the nonlinear contribution to the total oscillation given by (6.21).

Rotor Speed Deviations rad/s

Generator 1
Generator 2
Generator 3

Figure 6.12 Nonlinear contribution associated to the speed deviations in the time domain

0.8 1 12 14 1.6
Time sec

18 2

For comparison, using the Fast Fourier Transform (FFT) the rotor angle deviations for the nonlinear

linear part were computed and plotted in Figure 6.13. Analysis of the peaks in the FFT of Figure 6.13

shows a good correlation with the system electromechanical modes of the state matrix A in Table 6.1.
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Figure 6.13 Spectral analysis by FFT of the nonlinear contribution of the speed deviations

As shown in Figure 6.14, the linear and nonlinear contributions to the speed deviations identify the
presence of the electromechanical modes 3 and 4. The nonlinear contribution shows resonant

frequencies at 1.3665 and 2.0781 Hz.

6.2.6 Comparisons with other Approaches
The proposed method generalizes modal analysis to high-dimensional systems and allows the

computation of nonlinear input-output functions, which has been absent in previous work.

Table 6.3 Computational times comparison*

.. Full Linear . .

5 L7 Numerical Solution Approximation TR S AU B
Initialization 2.992638 2.992638 2.992638
State Matrix - 0.121824 0.121824
Eigenvalues - 0.001278 0.001278
Eigenvectors
Hessian Matrix - - 0.967034
Clus oy - - 0.025406
Full Solution 0.193144 -
Linear - 0.246577 -
Approximation
Modal Series _ _ 4.059203
Formula

Total 3.185782 3.362317 8.167383 10.3429

*All times are expressed in seconds

An insight into the involved computational effort can be resumed from the study of CPU time

required for the analysis of the test system using various approaches. Table 6.3 summarizes the CPU
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times required for analysis of the above test system using linear solution and the modal series method.
The software is executed using a PC/2.30 GHz; the code is written in MATLAB. All CPU times are in
seconds.

In this study, the CPU time required to compute the linearized system (basically state matrix and its
parameter obtained from symbolic analysis of the overall power system model) representation is about
0.121824 seconds, whereas the time spent to compute the Hessian matrix is 0.967034 s. The total time
required to compute higher-order modal solutions is about 4.059203 seconds, compared to 0.246577
seconds needed for the linear approximation, and 0.193144 seconds for the full numerical solution. As
suggested in this Table, the cost of nonlinear modal analysis drastically increases with the number of

states, which requires the application of efficient sparsity-based techniques.

6.3 CASE STUDY 2: NEW ENGLAND TEST POWER SYSTEM (10 SM, 39 BUSES)

The 10 machines 39 buses New England test power system is considered in this case study. This
system is a reduced equivalent of the WSCC power system, first introduced by [Pai 1989] and shown
in Figure 6.14. The data of such system are given in Appendix C. The system is modeled according to
the power system model previously described in Chapter 4, that is, a fourth order model for each
synchronous machine combined with an AVR. The constraints of operation followed in this case study

dare:

21

|25 26 | | 29
28
7
27 24
30 T
18
T 17
39 16
®
37 s 9
@1 3 4 21 22
1| 34
33 12 19 23
8
B, 11 20
13
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35 @ |10

Figure 6.14 New England test power system
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e A three phase fault is applied at the bus 31 during 0.083 seconds, and removed without any line
switched.

e A three phase fault is applied at bus 26, leaving out of operation the transmission line 26-29. The
fault is sustained during 5 cycles.

Also, the case study is structured as follows:

a) The small signal analysis is performed in order to obtain the linear characteristics of the system
through the eigenvalues, eigenvectors and participation factors.

b) The nonlinear characteristics are obtained through the time domain simulation of the nonlinear
power system operating under the constraints above described. The system is evaluated with
respect to the numerical solution of the nonlinear model and with the linear approximation.

¢) The fault clearance time is changed in the simulation, and analyzed with respect to the accuracy of
the modal series method. In this case, the fault is sustained during 5, 8, 10 and 15 cycles and
observed the dynamic of the nonlinear model.

d) Unstable conditions are also considered varying the system parameters (decreasing the time

constant T, up to 0.7, together with adding a damping coefficient D, =3.5) and removing the

fault at bus 31 by opening the line 31-14.

6.3.1 Small Signal Analysis

The modal analysis is performed on the power system under study. Table 6.4 describes the modes
that are obtained from small signal analysis; 13 of them are oscillatory modes, and the rest are real
eigenvalues.

Considering the participation factors analysis, dominant machines are obtained. In this case, only
participation factors greater larger in magnitude than 0.09 have been considered. After the modal
analysis, the system is exhibiting dominant modes that are related to local and control modes.
However, a single interarea mode is observed (highlighted in Table 6.4), which represents an

oscillation between machines 5 and 7.

6.3.2 Nonlinear model

To perform the study of nonlinear characteristics of the power system under study, the modal series
approach is incorporated into the modeling. The set of nonlinear differential equations are treated once
the linearization process and Jordan canonical form transformation are performed, resulting in the new
set of equations, which is processed by the modal series approach. In the same way as the earlier case

study, it is important to remark that the closed form analytical solution obtained by modal series is not
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Table 6.4 Small Signal Analysis of the 10 unit,39 bus New England test power system

Mode | mgeae | ey | b | Asedwed [ P
1 -49.7818 0 1 E4 0.9789
2 -49.5617 0 1 Eu 0.9825
3 -47.6599 0 1 Eu 0.9246
4 -46.8122 0 1 Ey, 0.8976
5 -19.7051 0 1 Ey 0.9827
6 -16.3053 0 1 E s Erano 0.5367, 0.4373
7 -16.3721 0 1 E e Erano 0.4395, 0.5397
8,9 -0.3980 =+ 9.4390i 1.5023 0.0421 3,,0, ,, @, 0.2225,0.2418
10,11 -0.4927 + 9.4525i 1.5044 0.0521 8,6, w,, 0.2759, 0.1363
12,13 -0.4941 + 9.0491i 1.4402 0.0545 3, @ 0.3397, 0.3397
14,15 -0.2228 + 7.8150i 1.2438 0.0285 3,,8,, w,, 0, 0.1936, 0.1896
16,17 -0.2877 + 7.8529i 1.2498 0.0366 8,,8,0, ,, @y 0.2244,0.2518
18 -8.0753 0 1 E). 0.8586
19,20 -0.2251 + 6.8802i 1.095 0.0327 3y, 8y, @y, 0, 0.0939, 0.2052
21,22 -0.1098 + 6.1822i 0.9839 0.0178 34, 8,,8,9, @y @5,y 0.1192, 0.1723, 0.1203
23,24 -0.0431 + 5.6759i 0.9033 0.0076 3.,0,, s, @, 0.2393, 0.1701
25 -6.8386 0 1 E.,, E} 0.3197, 0.4557
26 -6.3624 0 1 E.,, E}q 0.5312, 0.2064
27,28 -0.0455 + 3.0717i 0.4889 0.0148 8, o, 0.1483, 0.1370
29 -4.5902 0 1 E, Egy 0.6603
30,31 -2.6975 + 2.0940i 0.3333 0.7899 E, Eys 0.3560, 0.3543
32,33 -2.9332 + 1.2846i 0.2044 0.916 E Epy Eps 0.3095, 0.1311, 0.3868
34,35 -1.0443 + 1.7357i 0.2762 0.5155 E.,, Ey, 0.4144, 0.4318
36 -2.6254 0 1 E, Eggs E s 0.1429, 0.5947, 0.1366
37 -2.4591 0 1 ®, El\, Elyy Ep, 0.1028, %_‘(‘)‘;86% 0.1064,
38 -1.9331 0 1 E},, Eby 0.3003, 0.5692
39 -1.7251 0 1 El., Eby 0.4790, 0.2519
40 0 0 -1 S 1.0000
4 -1.3269 0 1 Ey, Eyy, Egy 0.1219, 0.1031, 0.6707
42 -1.2462 0 1 E, Ep Eg 0.1910, 0.5810, 0.1045
43,44 -1.0162 + 0.0312i 0.005 0.9995 w, E), 0.2656, 0.3096
45 -0.725 0 1 E), 0.9826
46 -0.6357 0 1 E,, E;, 0.5996, 0.1972
47 -0.5268 0 1 E.., Eng 0.3144, 0.3726
48 -0.4051 0 1 Ey, Ey 0.8194, 0.0929
49 -0.4499 0 1 Ej, 0.8758
50 -0.4341 0 1 E.., En 0.4771, 0.3943

156




affected by the estimation of the initial conditions, since they are calculated based on the perturbation

conditions; therefore, their calculation do not need any numerical process.

Writing the set of differential equations for this case study and according to the modal series

process, it can be represented in the Laplace domain as,

1 1 1
ci (0 -
,+;; e (0)n € )(/1k+/1,/1j){s—/1k—/1, s—zj}r

k=1 1=1 p=1g=1

M-

k 1 1 1 1 1
IR HRLCAAC Y(O)Y(O)(z -2, 2, z){(al—ﬂ,—Ak)(s—zj)_(ﬂpmq—zk)(s—/l —/lq—l,)}r

k=1 1=1 p=1g=1

Y( 1 1 1 1
Zzzull par p (O)Yr (0)(% —lp—lq—l,)|:(s—/7.j)(S—ﬂ.p—/lq—ﬂ.,):|

e 1 1 1 1 1 1
XD CCR O, W‘”m—M—a)(aw;z,{(s—a,)(sl—zp—zq—nk)}

p=1q=1r=1
1 1 !
o _
+zz a2, (0) i ( )(ﬂk+ﬂ,—ﬂj)[5—ﬂ«k—/11 ﬂ.]]+

I k=1 1=1

x,((s§ $ ;;;;UZJC“J’CP"Y: J (O (0 )(/1 -2, 1/1 ﬂ)l:(ﬂ.j—/1,—lk)(s—lli)_(ip+;q—ﬂ.k)(s—/1 —1/1 —/1,)}+
_| %S —| &
o Xj;S) ) ;;;;u”qc %@ Yl(o)Y;(O)(}t/—lpilq—/1,()(/11,+iq—ﬁl){(s_11j)_(sl—ﬂ, 11 lk)}—
;;;”“D‘j’””y’i I(O)Y:(O)(zj—zpizq—/1,){(5—1/1].)_(s—;,p—lzq_z,)}
o :j—((/)lj)Jr; ,Zlckcu"’“Vk(O)y’(O)(/lk J, ﬂj)(s—ﬂi—l, _s—lﬂj}r
¢ knl,nzlpnlqnl“”fci}cﬁqyi(o)yql(o)y'l(o)(4_apizq_a,){(z,._zl,_;.k)(s_laj)‘(ﬂpmlq_ak)(s_ap_laq_z,)}
: kil ,:1 ,,"1qnlu"’ckj’q’qul(O)Y‘:(O)Y;(O)(ﬂj—/1pizq—/lk)(/lﬁiq—z,){(s—lzj)( ) 1/1 —Ak)}+
,; q; , Doty (0)Y, (O)Y’I(O)(z, -2, i/lq —A,){(s —1/11) (s-4, —1/1q —Ar)}
’ (6.22)
where,

s):[él(s) o 0y(s) @ (s) ... oy(s) E'(s) ... E'y(s) E'(s)

Upon rearranging terms, we obtain,

Eldm(s) Efdl(s)

E o (S)T
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. u, Fj (s)+ Gy, (0)y, (0)F (s)+ CiCrati;Y, (0)Y; (0)Y (0) F (s) +
Z k=1 I=1 k=1 I=1 p=1 q=1
" ;;22%@ .7, (0) 1<o)y;<o>Ff<s>+zlzlzlbsqrul,ys<o)y;<o>xl<o>F:<s)
p=lq p=1q=1r=
. +ZZCZI (01 (0)F; (s) ++ 3 CiChu, Y (0)X: () (0)E} (s)+
k=1 I1=1 k=1 1=1 p=1 q=1
6.23
X(s)=| F < o 0 n o o (6.23)
ZC ot ¥ (O, (O, (O)F (5) 3,3 Dy, 1, (0)7, (0 (O)F: (5
k=1 1=1 p=1q=1 p=lq=1r
yj (0) Sy ik 1 1 3
U, + Ck,unjyk(O) ++ZZZZC Cru,Y, (0)Y, (0)Y; (0)F>(s)+
u S—ﬂ«j k=1 I= k=1 =1 p=1 q=1
TIEY S > Clcku, K (0)Y; (00, (0)F (5)+ X 3 Dy, (0)) (0)! (0) 2 ()
L k=1 I=1 p=1 q=1 p=1g=1 r=1 B

where,

3 ! 1
E (S):(zj-zp-zq—zr){ﬂ (s)‘(s_gp_aq—z,)}

These equations are amenable to multidimensional Laplace analysis using the theory of Chapter 3
and 5. We emphasize that, unlike other approaches (such as normal forms), the above formulations
allows the study of system behavior in both, time and frequency domains. To allow a comparison with
full nonlinear results, the following study is constrained to time-domain solution. The closed form time

evolutions of the linear and nonlinear parts of x,(t) with second-order accuracy are, respectively:

N

1LINEAR Z(O-llil) a
j=1
. N ) n n n
oly =UUY§(0)—ZZUU%’M (0)y,(0)+ uy hapqryp( )yé (0)y,;(0)
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n n n n

3y uivl 2(0)5,(0)y1(0) ) -3 S U C) ; %(9),(0)5,(0)
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and
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6.3.3 Time Domain Validation

The experiment in this section is conducted to validate the nonlinear approximation with respect to
the linear approximation and the full numerical solution of the nonlinear set of differential equations.
The first study shows the results obtained for the relative rotor angles (Figure 6.15) according to the
constraints defined previously, that is, a three phase stub at bus 31 maintained over 5 cycles and
liberated without network change. The waveforms show identical responses between modal series and
full numerical solution. More noticeable differences between the solution obtained by modal series and

linear approximation are observed for the selected variables.

10,

---- Full Numerical Solution
== Modal Series
v» Linear Approx.

w Fyll Numerical Solution
== \odal Series
vovLinear Approx.

& A
=] o

Relative Rotor Angle DEG
o . \
a

Relative Rotor Angle DEG

&
S

&
a

&
(=]

S
o
@
-
-
@
N

I E .
25 3 35 4 4.5 5 0 0.5 1 15 2 25 3 35 4 4.5 5
Time sec Time sec

a) Relative rotor angle J,, b) Relative rotor angle &,

159



10 T
----- Full Numerical Solution e Full Numerical Solution
== \odal Series == \Modal Series

25l Linear Approx. i nemLinear Approx.

[y
5}

i
Sy
Relative Rotor Angle DEG

Relative Rotor Angle DEG

o

=}

I I L I .15

I
0 0.5 1 15 2 25 3 35 4 4.5 5 0 05 1 15 2 2.5 3 35 4 4.5 5

Time sec Time  sec
c) Relative rotor angle o, d) Relative rotor angle J,,

Figure 6.15 Relative rotor angle graphics of selected angles

Now, continuing with the experiment, the same fault is applied extending the faulted time to 8
cycles (0.1333 seconds) and removing the fault by switching-off the line 37-31. The Figure 6.16 shows
the time domain evolution of rotor angle variables. In all cases, the modal series solution closely
follows the full numerical solution, while a large solution deviation results when the linear

approximation method is used.
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Figure 6.16 Absolute rotor angle graphics of generators in the study case of the New England test power system

Similar evolution is observed in the variables of E; voltages that are shown in Figure 6.17. Again,

the trajectories obtained by the linear approximation are with notorious differences with respect to

modal series and full numerical solution, respectively. The last two are in closed agreement.
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Figure 6.17 Voltage E,, graphics of generators in the study case of the New England test power system

The rest of state variables involved in the power system model, are exemplified. Let us consider the
Figure 6.18 that illustrates the rotor velocity @; and @s. The nonlinear contribution of such state
variables may seem to be less relevant than the rotor angles and g axis voltages, since the waveforms of
linear approximation, modal series and full numerical solution follow similar patterns. Small
differences in the trajectory of linear approximation are noticed in the two variables illustrated in this
Figure. Also, a graph of sixty seconds of simulation is shown in Figure 6.18 c), where it can be
observed that the solutions reproduce similar waveforms, but oscillate with differences in both, phase

angle and amplitude.
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Figure 6.19 Voltages E} Ef; graphics of generators 2, 5 and 7 in the study case of the New England test power system

With reference to the direct axis voltages Ej; and controlled field voltage E ,, there are also visible

differences in the simulations that are compared between linear approximation and modal series and
full numerical solution. Figures 6.19 a) and b) detail the experiment for the voltages E. and E,

where linear approximation maintains different trajectory than that followed by modal series and full
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numerical solution in both cases, while for the field voltages variables E, and E; shown in Figure

6.19 c¢) and d), these differences are smaller.

This behavior confirms the presence of nonlinear contribution to the full solution, which is not
considered when only the linear approximation is considered. Finally, Figure 6.20 shows a three-
dimensional graph to detail the differences in trajectories followed when the rotor angle, rotor speed
and q axis voltage are compared. In section 6.3.5 the nonlinear factors extend in a mathematical frame

the meaning of these differences here illustrated in a qualitative way.
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Figure 6.20 Three-dimensional comparison of modal series solution with respect to linear approximation and full
numerical solution

6.3.4 Nonlinear oscillation analysis

In the same way as in the previous case study, the nonlinear indexes given by (6.1)-(6.4) are
considered now. Recalling that such indexes establish some of the main nonlinear characteristics with
respect to the nonlinear modal interaction, they are used here to express the nonlinear contribution to

the closed form solution.

In the first instance, observing the nonlinear coefficients C;, and h/, that link the earlier nonlinear

frame; the Figure 6.21 shows the coefficient ij, under two different damping constraints: 6.21a) refers

to the damping coefficients of generators set to zero except in generator 1 where D, =3.5. In 6.21b) all

the damping coefficients are zero. This slight change results in a large difference: the values of
coefficients in 6.21b) are bigger that those obtained in the case of Figure 6.21a). The damping helps to

decrease the stress conditions, thus decreasing the nonlinear contributions.
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Figure 6.21 C}; Coefficients for different damping constant conditions

The same behavior is observed in Figure 6.22 where the coefficients hj, are shown. Again, the

case with zero damping (Figure 6.22a) exhibits much higher values of the coefficient magnitudes with
respect to that obtained assuming D, =3.5 (Figure 6.22b).
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Figure 6.22 max‘hzj k,‘ Coefficients for different damping constant conditions

The analysis of bar diagrams obtained for the nonlinear coefficients results in different
contributions. For instance, from Figure 6.21a), the most relevant generators are G1, G2 and G5,
although, the situation changes without damping conditions, being now the generators G6, G7 and G8
besides G1 and G2 the relevant ones (Figure 6.21b). Now, considering the nonlinear coefficients hj,,,
the most relevant contribution are the electromechanical modes of generators G9 and G10, followed by

G7 and G8 shown in Figure 6.22a. In turn, in the absence of damping conditions, the relevant generator

modes are G1-G4, according to the results observed in Figure 6.22b.
Now, the nonlinear indexes are calculated, assuming the operation condition with D, =3.5. This is

observed in the bar diagram of Figure 6.23. The analysis of nonlinear indices allows to determine the

different contributions of modal interactions. The index with highest value is I4 followed by index I3.

165



The index with lowest values is I1. Thus it can be concluded that there is a strong interaction on the

fundamental modes of the system, being highest for the modes 25, 40, 46 and 49 (generators G5, G10,

G6 and G9, respectively).
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Figure 6.23 Nonlinear indices for the study case of the New England test power system

Another parameter to characterize the modal interaction is through the nonlinear participation

factors. Figure 6.24 shows the participation factors of the system, according to (6.14)-(6.15). Each bar

diagram represents the magnitudes of the linear participation factor (| P,

), the first order participation

factor (|P1,{, |) and second order participation factors (|P2,{, |) for the modes with magnitude higher than

1.0. Some observations can be draw from these results:
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Figure 6.24 Linear and nonlinear participation factors of the New England test power system

e For all the modes, the linear participation factor has the lowest value, which means that the
linear participation factor represents the smallest contribution to modal interaction.

e The second order participation factors have the highest values associated to the modal
combination (43,6) (Figure 24h) and (49,9) (Figure 24j). This represents a modal combination
effect due to interaction between generators G3-G6 and G9.

Graphically, the nonlinear contributions of the mechanical state variables calculated by the modal
series method is illustrated in Figure 6.25. The absolute rotor angles of each generator are shown in
6.25a), with its zoomed graph. From this Figure the contributions of each variable to the total
oscillations presented in the power system can be noticed. In the same way, the contributions of rotor
speed deviations are shown in Figure 6.25b) and zoomed in its attached graph. Please observe that the
nonlinear oscillations associated to each variable are not the same, being the less oscillatory the rotor

speed @, and the largest @, and w..

Therefore, Figure 6.25 is illustrating the total contributions to the oscillation due to a small
perturbation of the nonlinear terms included in the closed form solutions obtained with the modal

series method.
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6.3.5 Ciritical Fault Clearance

This experiment is centered on moving the time over which a three phase stub is maintained. The
faulted bus is the 30 node, which directly affects to the machine 2. The expected result is that the
nonlinearity of the power system goes increasing due to the even longer time of fault application, that
is, disturbed and stressing conditions of the system have been assumed. Again, a comparison between
the modal series method (MS) with respect to linear approximation (LINA) and full numerical solution
(FNS) of the nonlinear system is carried-out. The comparison is established on the variables with
higher dynamics during the fault, which in a qualitative way are the rotor angles 6, and o, together
with @, and o, .

As it was studied in Chapter 3, the accuracy of the modal series depends on the stress conditions:
when the system is more stressed, the solution obtained by modal series tends to follows a different
trajectory with respect to the full numerical solution, which implies that the dynamic of the system

cannot be followed due to the stable equilibrium point is moving far away of the equilibrium

conditions.

The Figure 6.26 shows the time domain evolution of selected variables when the time clearing is
moving. The fault clearing times are: t =3Ts,t,=5Ts,t,=8Ts,t,=10Ts,t, =15Ts. Some
observations concerning on the experiment can be pointed out:

e  When the fault is liberated after ¢, =3T s (Figure 26a), the solutions exhibit identical solutions
between MS and FNS while the LINA tends to follow a different trajectory.

e The same situation is observed when t, =5T's (Figure 26b) although a small difference
between MS and FNS is presented.

e Now, for the time clearing t, =8Ts (Figure 26c) the difference between MS and FNS

solutions has increased, resulting more evident the differences between both solutions with

respect to LINA.
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Figure 6.26 Nonlinear time domain simulation for different time clearing fault
o The case of t,=10T s (Figure 26d) demonstrates that the MS and FNS responses tend to
separate but maintaining the same dynamics, while LINA is following different trajectories for
all the variables here illustrated.
[}

Finally, the condition of time clearing equal to t. =15T's (Figure 26e) exhibits dramatic

differences in all the variables: ¢, and @, have become unstable and not followed by MS and
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by MS and LINA.

The experiment conducts to the next conclusions:

the perturbation condition.

with respect to the full numerical solution.

LINA, while the dynamics of ¢, and @, calculated by FNS is not the same to that determined

While the time clearing is changed, the system is approximating to unstable conditions due to

The modal series method can be very accurate for low stress conditions, and under increased
stress tends to be more precise than linear approximation approach. The oscillations presented
during the transient state are accurately followed by the modal series solution.

Definitely, the linear approximation cannot reproduced the dynamic of the system. During

transient, the oscillations predicted by the linear approximation method are in considerable error

6.4 UNSTABLE CASE STUDY OF THE NEW ENGLAND TEST POWER SYSTEM

It is important to recall that the application of the modal series method is based on determining an

stable equilibrium point of the nonlinear power system. However, it is possible to operate the system

under instability conditions, which leads the system to eventually loss synchronism.

Table 6.5 Small signal analysis of unstable study case

MODE | FiGEWALUE | FREQ. | PAYIEING | ASSOCINIEDSIATE || PARTIGIEATION

1,2 -0.5557 + 9.4232i 1.4998 0.0589 0,,0;,0,,0, 0.2148, 0.2527

3,4 -0.6530 + 9.3381i 1.4862 0.0698 3y By Wy @, 0.2609, 0.1624

5,6 -0.4984 + 9.0567i 1.4414 0.0549 Oy, 0.3503

7.8 -0.3226 + 7.8551i 1.2502 0.041 34,00, @y, @ 0.2285, 0.2489

9,10 -0.2829 + 7.7129i 1.2275 0.0367 35,,0,,0,,0, 0.2018, 0.1817
11,12 -0.2350 + 6.7983i 1.082 0.0345 8,4y 8y, 0y, 0, 0y, @, 0.0704, 0.1004, 0.1779
13,14 -0.0337 + 5.9727i 0.9506 0.0056 84,05, 0,0, Wy, 05, @, 0.0864, 0.1913, 0.0868
15,16 0.3982 + 5.6952i 0.9064 0.0697 0;,0,,0,,@,,E;, E}, 10,0795, 0.2578, 0.0815, 0.0731
20,21 -3.2900 + 4.3688i 0.6953 0.6016 0,,0,,E ;, Ey, 0.0901, 0.0901, 0.3547, 0.3893
22,23 0.2483 + 3.0600i 0.487 0.0809 8,0, 0.1584, 0.1584
24,25 -2.9431 + 3.5629i 0.567 0.6369 Els E 0.3938, 0.4195
29,30 -2.5699 + 2.2984i 0.3658 0.7454 E,.Ey 0.3955, 0.3913
31,32 -2.6842 + 1.9144i 0.3047 0.8141 EEys 0.3757, 0.3744
34,35 -1.7205 + 0.3695i 0.0588 09777 | E sy Egys Efios E fgas E g 0.0988, 0‘27331’1(’éé293’ 0.3364,
36,37 -1.3700 + 0.3237i 0.0515 0.9732 El o Edgs E o 0.1121, 0.2353, 0.325
41,42 -1.0293 + 0.2047i 0.0326 0.9808 E! E E E E.. |009240.15190.142,0.0943,

q4> Fq10> Fa1> Bao & fa10

0.2052
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The main objective of this case study is to simulate the same power system earlier analyzed in
Section 6.3, but now operating under unstable conditions. Basically, the instability conditions are
obtained when the time constant in the generator 2 is reduced to 0.7, with an addition in the damping

speed parameter of generator 1to D, =3.5.

Table 6.5 details the oscillatory modes obtained in this case study, being the modes 15-16 and 22-23
the unstable ones. For the case of modes 15-16, the generators 5 and 7 are involved in the main

dynamics, while for the case of modes 22-23 the generator 1 is the most affected.
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6.27 Relative rotor angles in the unstable case of the New England power system

The dynamics of the system is illustrated in Figures 6.27 to 6.29. In the first place, Figure 6.27

shows the dynamics followed by the relative rotor angle for the selected angles J,,, 6, and & -

Over the first 3 seconds of simulation, the solutions obtained by the full numerical approach, modal
series and linear approximation, respectively, follow the same trajectory. However, while the time is

running up to 3 seconds, appreciable differences between linear approximation with the other solutions
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are observed, being more important in the angle J.,, (Figure 6.27b). In general, while the time of

simulation is increasing, the separation between linear approximation, modal series and full numerical
solution becomes larger, due to the instability condition and modal interaction.

Continuing the experiment, Figure 6.28 shows the absolute rotor angles of each machine of the
system under analysis. The comparison denotes appreciable differences between the angles determined
with the linear approximation, which are under and away of the solutions obtained by modal series, and
the full numerical solution. That is, the dynamics shown by the linear angles cannot follow the real
oscillation of the unstable system; even so, the modal series solution is more accurate since it is

maintained closer to the real angles.

400

....... Full Numerical Solution
=== \lodal Series
350 Linear Approx.

w
o
o

N
a
o

nN
o
o

=
a
o

Absolute Rotor Angle DEG
1)
o

50 ! ! ! | ! | ! ! !
0 0.5 1 15 2 25 3 3.5 4 4.5 5

Time sec

Figure 6.28 Absolute Rotor Angles the unstable case of the New England power system

Finally, the case study is concluded with the rest of state variables analysis. Figure 6.29 shows the

oscillatory behavior of the selected variables w;, @,, E.,, E,;, E 43, E 4, . Some comments are drawn

from the graphs:
% The comparison of the rotor speeds @, and @, describe slow oscillations being the linear
approximation solution detached from the trajectory described by modal series and the full
numerical solution.

% The oscillations followed by linear approximation, for the case of E,, E/,, E,; and E,,

have appreciable differences with respect to the solution obtained with modal series and full

numerical solution, respectively. In such case, the nonlinear terms have an important
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contribution to the oscillations of these variables, which are not taken into account when the

linear approximation is used.

The generator with the highest contribution to the oscillations is the generator 7. This situation

has been graphically observed along the study. Please observe Figures 6.29 d) and f), where

the corresponding variables to generator 7 E,, and E, show considerable differences to the

solution obtained with linear approximation with respect to the modal series and the full

numerical solution.
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Linear Approx.

Full Numerical Solution
Modal Series
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Figure 6.29 Generator selected variables in the unstable case of the New England power system
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6.5 DISCUSSION

The Chapter has been focused on the analysis of the two test power systems, i.e. the 3 generators-9
buses and the New England 10 generators-39 buses, when are subjected to perturbation and stress
conditions. The oscillations observed during the transient followed after the perturbations have been
graphically analyzed, and the effects observed on the global state variables involved in the modeling
described in detail. The analysis of nonlinear contributions using nonlinear indices and nonlinear
participation factors have been considered. The case study has demonstrated that the contribution to the
oscillations of nonlinear terms represented with the modal series method, is of great importance, in
order to represent and characterize the effects involved during perturbation conditions.

Beside from the visual study of the nonlinear oscillations, the importance of characterize the
nonlinear contribution to the nonlinear power system can be concluded. The information that is leaving
out of scope is when only the linear approximation is used. One of the most important characteristics
of the modal series method relies on the analytical closed form solution, which means a straight form
to incorporate nonlinear modal interactions to the nonlinear system analysis. It is of concern how to
detail and link this information with the nature of phenomena presented in a real operation of the power
system. To be developed further, is the application of the modal series method to large scale systems

and systems with more detailed models.
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INCORPORATION OF FACTS DEVICES:
REFERENCE TO THE UPFC MODELLING

7.1 INTRODUCTION

Modern power systems have to be able to operate under a wide range of constraints, new power
sources, dynamic loads continuously increasing on type and amount, which moved to the power system
to operate among different stability conditions. With respect to small disturbances, small signal models
are needed in order to efficiently incorporate, and as a predictive assessment, the new challenges of
operating conditions. Following this philosophy, several models have been proposed in the literature
concerning flexible AC transmission systems; created to make easier and more versatile the operating
conditions of the modern power systems. In parallel, FACTS technology has opened new opportunities
to control power and to enhance the usable capacity, thus to control the interrelated power systems
parameters that govern the operation of transmission systems, including series impedance, shunt
impedance, current, voltage, phase angle and the damping of oscillation at a various frequency levels
[Hingorani y Giugyi 2000].

The primary function of the FACTS devices is to control the transmission line power flows.
Secondary functions of the FACTS are related to the voltage control, transient stability improvement

and oscillation damping.

7.2 UPFC MODELING

The UPFC is a versatile element of the FACTS family that is able to simultaneously provide both
series and shunt compensation to a transmission line, providing separate control of the active and
reactive power on the transmission lines [Guo et al. 2009]. The UPFC here modeled is formed by two
VSC’s employed in combinations that are used for dynamic compensation and real time control of
voltage and power flow in transmission systems [Uzunovic 2001]. The DC terminals of both
converters are connected to a common capacitor. Basically, it can be affirmed that an UPFC is a

combination of STATCOM (shunt VSC compensator) and a SSSC (series compensator); acting
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together conform the UPFC, but each VSC complies with specific functions: STATCOM can absorb or
generate reactive power while the SSSC acts as a voltage source, injected in series to the transmission
line through the series transformer. Thus, the two branches of the UPFC can generate or absorb the

reactive power independent of each other [Uzunovic 2001].

7.3 THE UPFC. GENERAL CHARACTERISTICS
The UPFC is a very versatile controller which has many applications in order to improve power
system operation. The UPFC combines two controlled voltage sources that work together linked by a
direct current busbar. Figure 7.1 shows the basic structure and operation of the UPFC. Some important
operating characteristics of the UPFC that identifies it from other FACTS devices family are the
following,
e The series part is normally used to control the power flow over the transmission line, inserting
a series voltage source through a series transformer.
e The shunt part of UPFC is generally used to control the AC voltage. This function is achieved
by interchange of reactive power, and the direct current voltage control is obtained by

interchange of active power.
> s

VTl 7\ VT 2

DC Bus
<4+— r—)p
‘/shunt D./ L D‘/ \/serie
T

Shunt Series
Inverter Inverter

Figure 7.1 Basic operation of the UPFC

At its own part, the series inverter operates according to the diagram shown in Figure 7.2, where the
following is observed,
e A voltage can be sourced that it is adjustable on magnitude and phase angle.
o If the active power flow is modified over the transmission line, the series voltage is inserted in
such a way that it creates a voltage phase shifting.
e If it is desirable to modify the reactive power flow over the transmission line, the series voltage

is injected, in such a way that a change in voltage magnitude is added.
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The possible operating points are governed by two main constraints: the maximum magnitude

of series voltage and the minimal magnitude of voltage, in order to control the terminal voltage

Vi,

RN y

T 2max

‘/series \ V

series max

\%

T 2min

Possible
operating Vi
points

Figura 7.2 Operating principle of UPFC series part

On the other side, the series part performs the following functions:

Keeps the voltage constant over the direct current bus. This is done by interchanging active

power with the network and controlling the phase angle of the shunt converter generated

voltage.

Controls the voltage magnitude over the AC side, through interchange of reactive power with

the network, by controlling generated voltage magnitude of the shunt converter.

The diagram of Figure 7.3 illustrates these functions.

Action on
Reactive Power

Action on
Active Power

Figure 7.3 Operating principle of the UPFC shunt part
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7.4 DETAILED MODEL OF UPFC
In this section, the UPFC steady state and dynamic model is described. The model here selected is
one basically described and widely utilized by [Nabavi-Niaki & Iravani 1996] [Wang 1999], however,

some other alternative models have been explored as well [Dong et al. 2004].

7.4.1 Steady State of UPFC

The UPFC in steady state operation, and not considering converter losses, neither absorbs nor
injects active and reactive power to the power system. Physical insight of this operating conditions is
due to the fact that the voltage capacitor is maintained over a predetermined constant V.. [Nabavi-
Niaki & Iravani 1996]. Figure 7.4 shows this condition, where controlled voltage sources of the UPFC

dare FEPFESEHtEd as constant Voltage sources.

i,
A\ )—1

al

VE@@)A_

Figure 7.4 UPFC diagram in sinusoidal steady state condition

The constraint P, + P, =0 implies that no real power is exchanged between the UPFC and the

system; hence, the dc link remains constant and the two voltage sources V, and V, are mutually

dependent [Nabavi-Niaki 1996]

7.4.2 UPFC power flow

Consider the diagram shown in Figure 7.5 that illustrates the UPFC in parallel with the power
system represented as a black box. The UPFC is connected between buses E and B. Referring to the
diagram, please observe that the UPFC is mainly used to maintain a pre-specified power flow from the

E bus to the B bus and to regulate the B bus voltage at a pre-specified value [Nabavi-Niaki 1996].
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Figure 7.5 UPFC linked to the power system

It should be remarked that 6, and M, determine the active power P, and V, , respectively. In the

-
same way, M, and ¢, determine the reactive power Q, and the dc voltage at the capacitor link V,_,
respectively.

Taking into account the UPFC operation, the power flow analysis results are used in order to
determine the steady state condition of the UPFC through the control variables 6,, M,, J,, and M,

by solving [Nabavi-Niaki 1996],

fl(ME’gEyMB,gB)_PE[ =O

fz(ME’5E’MB’53)_QE[:O (7 1)
f3(ME’5E’MB’5B)_PB[:0 '
f4(ME’5E:MB:5B)_QB[ =O

where f, to f, are nonlinear functions of the UPFC steady state model. The solution of this set of

nonlinear algebraic equations may be obtained with the application of Newton methods (FACTS power

flows) [Acha et al. 2004].

7.4.3 Dynamic Model of UPFC

The dynamic UPFC is modeled according to [Navabi-Niaki and Iravani 1996], which is based on
assuming VSC’s without losses and interferences due to commutation effects of IGBT’s. The proposed
model is developed at fundamental frequency with each VSC (both series and shunt) dependent on
modulation indexes and phase angle of each constant voltage source.

Figure 7.6 shows the UPFC diagram connected to an infinite busbar, linked with a synchronous
machine and a tie transmission line. In this particular case, the UPFC is controlling the amount of
reactive power transmitted from generator to the infinite busbar and viceversa.

Following the model illustrated by Figure 7.6, m,,m,,5, and ¢, are the modulation indexes and
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phase angles, corresponding to the series converter and shunt converter, respectively. These variables

may be assumed as the input control variables of the UPFC controller, which rule the characteristics of

operation of UPFC connected to the power network. That is,

Furthermore,

_ mE vdc

L
=y
——

o

!

I

Figura 7.6 Diagram of UPFC connected to an infinite-busbar

= (cosd, + jsind, ) (7.2)
CERIES :%(cos@g + jsindy) (7.3)
Infinite
x Busbar
tB I
VSC VSC
Shunt Series

In order to obtain the model which will be eventually applied to the nonlinear analysis of the

dynamic power system, consider the single phase diagram shown in Figure 7.7, which again describes

the same UPFC connected between generator and the infinite busbar, but now shown as an equivalent

circuit. If the general Pulse Width Modulation (PWM) is adopted for the IGBT based VSC, the three

phase dynamic differential equations of the UPFC are [Song and Johns 1999],

di
dt

dt
di

Ea
di,,

Ec

L dt |

mg

vdc

cos(awt+6; )

Cos(a)t +0, —120°) +

cos(a)t +0, +120°)

0
vEta
0 || viw (7.4)
1 vEtc
I |
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diy, |
dt
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| dt |
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Figure 7.7 Single line of UPFC connected in a synchronous machine infinite busbar power system
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Applying Park’s transformation, the dynamic system for the UPFC in dq0 coordinates is,

[di,, |
dt
dig,
dt
di,,

| dt |

0
iEd m.v
0 iEq _ _E'dc
r iEO :
—E
IE

Cos O,
sind, |+
0

Lo
IE
0o L
IE
0 0

VBtu
vBtb (75)
vBtc
(7.6)
0
VEw
0 || Vi (7.7)
1 vEtO
I |
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[ dig, | _lr_E 0 0 ll 0 0
dt . .
gi 0 o 0 iy E ) gy Cos &, £ . Vo
d_?fq = —w ] 0 —li 0 || ig 2’3‘“ sind, [+| 0 T 0 || Vg (7.8)
di 0 gy : i ? 0 - Vaio
— B0 Ty 1
0 0o -= 0 0 —
| dt | i I | | I |
dv, 3m fa 3m in
dc __ E g : B i i
o _—4CdC [coss, sing, O] qu +FM[COS§B sind, 0] fsq (7.9)
iro Lgo

In order to study oscillations in power systems, transient effects due to transformers characteristics
and transmission line resistances can be neglected, so that the set of differential equations take the

form,

Wy _ 3m

. i 3m . id
="Elcoss,. sind. || X |+-—L[coss. sind. | ” 7.10
dt 4C [cosd; E]LEJ 4ch[ B B]Lq (7.10)

dc

7.4.4 UPFC Algebraic Model
Consider again the system shown in Figure 7.7 which represents the steady state equivalent circuit
of the UPFC connected to an infinite busbar. In this single phase diagram, the synchronous machine is

represented as a two order flux decay model. Hence,
E, =E)+(x,—x;)I, + JE, (7.11)

From power flow analysis, the voltage magnitudes and nodal angles are obtained, as well as active
power generated and generator terminal voltages. Thus, referring all values of the equivalent circuit to

the generator quantities, it yields,

I,+jI, = e 7 (7.12)
v, +jv,=ve 7 (7.13)

Considering the rest of constraints for the network, we have,

—j 5,77

V,|0, =V, = V.e (-73)

In a similar manner,

Vi = v,e 07 I =r1.e'7%) I = 1,e 07

i)

Vier = Vigre L= 1,e %) Vi ve 07 (7.14)
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Combining equations relationships according to the chosen reference, we have,

E, =V, -X], V,=E,+xI,

r ! :> ! r
E, =V, +xI, V,=E - X1,

(7.15)

For the sake of simplicity, only the UPFC part of the network is considered, in order to obtain the
main relationships of UPFC variables through the simple circuit shown in Figure 7.8, which is
basically the same circuit of Figure 7.7 but only showing the UPFC part. Hence,

V. = jxgI; +Vgy (7.16)

Ve = jXBIB +VSERIES (7-17)
@ I Jx, @
SRS W
L1, .
7

+ B VSIER busm
Ie ‘ JXe
Vi
Viu

Figure 7.8 One line diagram of UPFC. Equivalent circuit in steady state

From the branch belonging to the shunt converter, we have,

VE’ = jXEI;: +VS,H

or,
Vea * JVeg = 3% (g + Jigg )+ Vg (7.18)
Expanding Equation (7.18) and separating into real and imaginary parts, we obtain
Vea = —Xglgg T Vspg (7.19)
Vi, = Xplp, +VSHq (7.20)
with,
Veua = mE2v"“ cos S, y Veira =%Sin o

Now, taking the branch which contains the series converter and applying KLV gives,
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V= jxgly + Vi
Also,
Vo + JVag = J%p (ipg + Jigg )+ Vegr (7.21)
In a similar way for the shunt converter branch, substituting the series converter source given by

(7.21) and separating into real and imaginary parts, gives,

= —Xpigy + Vsgpg (7.22)

VBd

Vg = Xglpg +VSERq (7.23)

From Equations (7.19)-(7.20) and (7.22)-(7.23), the algebraic matrix representation of voltages and
currents for the UPFC is,

Ed E Ed
_ an (7.24)
LEJ LE 0 }LEJ MeVae gin s
L 2 ]
v 0 x| coss,
Bd —A4p Bd
_ an (7.25)
LBJ LB 0 }LBJ MsVae gin s
) 5

Now, incorporating these relationships to the transmission line current that is parallel with the

UPEFC, the line currents are obtained as,

I+ I, =(I,+1, + IL)e_j(a_%)

I+ I, = (igg +ing +isg)+ (g +ing +is)] e 07) (7.26)
Solving for voltages and currents that involve generator variables and not considering saliency

effects, the voltage at generator terminals can be expressed as,
V, + jV, =Ej+ JE, - jx; (I, + jI,)

Also,

By + (%, =X )T, + B, |+ (X x ) (1 + 1)+ (vig + jvK)e_j(g_%) =0 (7.27)

After some algebraic manipulations of (7.18) to (7.27) and solving for internal UPFC currents, the
algebraic equations expressed in matrix form for the UPFC connected to the synchronous machine-

infinite busbar power system are,
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- —--1 . 1 m.v
—(X) + x4 )~ E}sind +E, cos§ ———(x} + Xz )—=%cos 5
' Xline
i 1 (X} + Xz ) X; — X (X %) 1 m.v
: = _
l.—q =|x,, ¢ FF ——(x;+x[E)Vbc059—ET"Cc055E
Bq line
——X X, + X m,v m,v
E BB ——£4 cos 5, + —24cos S, —V, cos O
(7.28)
[(x T ——E’ cos§+E’sin5—L(x' +X )mEde sino ]
(xd +X[E)+ d q X d tE E
' line
i (X} + x5 ) Xp +X Ko T X 1 m.v
Ed — . .
= |=| x V¢ TEJTETE +—(X} + X )V, sinf ———%sin §
L tE b E
Ipg X; 2
—X —(x, +x myv, . myv, . .
E (X + Xy ) ——Esin S, +—24sins, +V, sinf
(7.29)

with,
Iy =lgy +igg +1py

Iq=lEq+qu+qu

7.5 UPFC CONTROL FUNCTIONS

The UPFC control function to be chosen depends on the functions it must perform. For instance, the
UPFC may have three control parameters: magnitude and angle of the injected voltage and shunt
reactive current. The active and reactive power flow control can be independently controlled by
injecting a series voltage with a specified magnitude and angle [Dong et al. 2004]. In the reference
[Guo et al. 2009] a different alternative of UPFC control is proposed, which is based on injecting a
series voltage into the line, so that the line powers satisfy certain desired active and reactive power,
with respect to the series controller. The shunt control is designated following the same functions as a
STATCOM controller, regulating the shunt bus voltage magnitude and maintaining the dc link
capacitor voltage.

The UPFC control scheme used in this thesis is basically the one proposed in the study of [Wang
2002]. Although control systems designed for UPFC functionality are more accurate and with solid
theoretical basis, the control here used tries to overcome the final goal of damping oscillations. Some
other control schemes have been developed such as [Mehraeen et al. 2010], [Uzunovic 2001], [Wang

1999] [Huang et al. 2000] [Caiiizares et al. 2004] and oriented to different applications, such as

187



employing ultracapacitors as a part of the UPFC configuration for controlling interarea oscillations
[Zarghami et al. 2010].

The UPFC is assigned to operate under basic control functions: power flow and AC voltage control.
In order to achieve this, three PI controllers are included, i.e. a PI power flow controller, a PI AC
voltage controller and a PI DC voltage controller; separately designed to try to ensure close loop
system stability and good control performance [Wang 2002]. The scheme of such controller is shown
in Figure 7.9. It is necessary to remark that one of the main contributions of this chapter is to
demonstrate the modal interaction presented even among control functions of the UPFC. [Wang 2002]
has stated that when the three PI controllers associated to the UPFC are in combined operation, poor
control performance and even the closed-loop system instability occurs due to existence of the dynamic
interactions among controllers. Obviously, when linear approximations are used, this interaction is
imputable to linear modes, however when a nonlinear interaction is considered, it gives insight into the

nature of control actions between controllers.

Ri|-

P + POWER FLOW U,
’ CONTROLLER "

Ve, - POWER

Vg 4 AN | ACVOLTAGE Uic | SYSTEM AND
"/ "|  CONTROLLER g UPFC

Vicret DC VOLTAGE Upc
+ CONTROLLER d

Figure 7.9 UPFC Control functions: Power flow controller, AC voltage and DC voltage controller

The selection of UPFC control is made following the suggested approach from [Wang 2002] which

uses two variant selection of output control signals, i.e. U, =my, U,. =m; and U, =6, or
U,=mg,U,.=my and Up. =0, . The first one is operated with power flow control function for the

series part and AC voltage support and DC voltage regulation in the link capacitor for the shunt part;
the second option takes the AC voltage controller in the series part, leaving the shunt part with power

flow control and DC voltage regulation.
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Despite the UPFC controls constitute a multi input-multi-output control (MIMO) problem, it is
decomposed into three single input-single output (SISO) problem [Navabi Niaki 1996]. The close loop
poles of the overall system are tested against a wide range of operating conditions of the system to
ensure the accuracy of the control tuning. Thus, a multivariable PI controller for the UPFC is used to

perform the three control functions, with the transfer functions [Wang 2002] given in Table 7.1:

Table 7.1 Transfer Functions PI Controllers of UPFC

OPTION 1 OPTION 2
PI power flow controller PI power flow controller
K K
mB :(KPJ'_%J(Rref _P[) mE :(KPJ'_%)(PU@[” _Pt)
PI DC voltage controller PI DC voltage controller
K K
Op = (KDCP + %Cl] (VDCref ~Vbe ) Op = (KDCP + %Cl] (VDCref ~Vie )
PI AC voltage controller PI AC voltage controller
K K
my = [KACP +%)<Vmgr _VE[) my = [KACP +%j(VEref _VEt)

7.6 UPFC DAMPING APPLICATIONS. SMIB POWER SYSTEM
The UPFC needs the DC voltage across the link capacitor to be kept constant. A generic diagram of
the UPFC can be illustrated in Figure 7.10. The block diagram refers to a FACTS device (such as the

UPFC or SVC) installed in a power system. Referring to the particular case of a UPFC, the reference

signal is the Vicre » being the output the variable v, [Wang et al. 1999],

Vieref + u(t) FACTS - Power Vae
Controller . > >
Device System
Plant

Figure 7.10 Control Diagram of a UPFC Connected to a Power System
To exemplify the behavior of a UPFC interacting with the power system, the experiment is designed
in order to describe the next statements:
e To analyze the small signal stability of the system

e To evaluate the nonlinear contributions of the UPFC interacting with the power system
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The system to be analyzed is shown in Figure 7.11.

: XrE

v,

B Infinite
Busbar

+
Vicref
DC Voltage

Regulator

UPFC

Figure 7.11 UPFC connected to a SMIB test power system for damping oscillations

The DC voltage regulator is basically a PI controller, with the transfer function taken from Table

7.1 with a slight addition,

1 K
5}5 (S) = 1+ ST (KP +TI)(vdcref _vdc) (7'30)

Manipulating (7.30) to obtain a state variable representation, a set of differential equations that

represents the voltage regulator is,

dé} =K, (VDCref _VDC)

di}z :%[KP (VDCref —VDC)+5é —5Ej|

Thus, the power system integrated with the UPFC and control actions is an eighth order dynamic

system. This system is linearized and then, the modal series method is applied such as it was described

in Chapter 3.
The steady state diagram in this case study is shown in Figure 7.12. The steady state values are

obtained from a power flow study with estimated initial conditions as [Acha et al. 2004] [Fuerte-

Esquivel and Acha 1997],
P
S, =tan"'| =
Cl.

VSCB
X
A [V_gJ IP? +CI?

Bt

(7.31)

where

V2 . 0 0
Cl.= [—X—Bf(VBO, ~Vy) if Ve # Vi,

B
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ClL.=Q if Vi =Vg

Infinite
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Figure 7.12 Steady state diagram of the UPFC connected to the SMIB study case

0 0 0 : 0
(Vm —Va )meE sin &y

VSCE S, =—sin™’

(7.32)

0y70
mEVEt XB

From power flow analysis, the system under study results in the following UPFC parameters of

modulation indices and angles for shunt (m,, §,) and series (m,, 6,) VSC's and internal voltage

machine (E, ) and rotor angle (), that is,

E |6 =1.16]40.0666 p.u.
mB@ =-0.11385|-174.949 p.u.

mE@ =0.979554|20.0086 p.u.

Table 7.2 Eigenvalues and damping ratio for the case study of SMIB-UPFC

Eigenvalues Damping Ratio
—49.831885231975711 1.00
—33.492328635278355 1.00

—16.673751838802978 + 3.740509054841034i 0.975748485361660
—2.838813683838964 1.00

—0.771881207091769 + 0.395341519956049i 0.890049105052969
—0.237839096373391 1.00

The small signal analysis is indicated in Table 7.2. There are four oscillatory modes that for the case

of the UPFC connected show high values of damping ratios.
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The eigenvalues are changing depending on the controller parameters. The list shown in Table 7.3
resumes the eigenvalues obtained for the given constraints.

Table 7.3 Controller parameters variation and Eigenvalues for the case study of SMIB-UPFC

CONTROLLER PARAMETERS EIGENVALUES
i —49.798007988217186 1
—31.775868883313439
—-33.368378715993721
-3.816071582811596
Kp:_l’ KI:_14 L=

—0.357354263976474 + 1.961087561753644i
—0.357354263976474 — 1.961087561753644i
-1.565026171201958
L —0.254070869765097

—49.798229591698757 ]
—33.479633864535877
—24.500358420498447
L —10.149186309011327
—2.135545061513665
—0.161309437325926 + 0.048081636278437i
—0.161309437325926 — 0.048081636278437i
L —0.906560617345859

—49.797999386311581 i
—-31.904580188031169
—33.356400692828117
—4.194528651744296

L= —1.685096756928323
—0.045378617710198 +1.0738131624956451
—0.045378617710198 —1.073813162495645i
L —0.262769827991752

K,=-10.5, K, =-1

K,=-05, K, =-5

—49.798027828957636
—-31.247817660898104
—-33.400468555660680
L —4.695880010721426
—1.790892209196046

—0.032587203635567 + 0.514287467647266i
—0.032587203635567 — 0.514287467647266i
L —0.284655543914654

K,=-15, K,=-15

—49.798305761437945
—33.488382215081415
—-16.854376998063390 + 2.1436676766399561
—16.854376998063390 — 2.1436676766399561

L= —2.065300049765778
—-0.988080406689826 + 0.606543283650125i
—-0.988080406689826 — 0.606543283650125i
L —0.255229903464238

K,=-15, K, =-15
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7.7 SECOND ORDER SMIB-UPFC SOLUTIONS

The SMIB-UPFC system is decomposed into its linear and nonlinear model using the modal

series method. The system is given by the next state variables vector,
!/ ’ T
X=[6 o E, E, E, v,] (7.33)

The order of the state vector depends on the control actions that are used in order to control de

VSC's of the UPFC. The stable equilibrium point of the system is given as,
! ! T
Xspp = [50 w, Ei Egj Ep VdcoJ (7.34)

The linearization and second order of the state variables 9, @, EC',, E; and E @@ have been detailed in

this thesis. Emphasis on the dc voltage at the VSC's of the UPFC is deduced in this section. The
differential equation that overcomes the dynamics of the dc link in the UPFC operation has
characteristics of highly nonlinear nature, since it is dependent on modulation indices and angles of
both series and shunt VSC's. Besides the quadrature and direct axis currents are involved, followed by
nonlinear interactions of the rotor angle. This may implies the presence of high nonlinear modal
interactions, which can be detailed using the modal series method.

Recalling the modal series procedure, applied into this particular case of the differential equation

for dc voltage V, , a closed form analytical solution can be found based on their linear and nonlinear
components; this is obtained with Equation (7.35). It results evident the division of this Taylor
expanded equation into linear and nonlinear terms; the variables that are not involved in the state
variable are not considered. In order to apply the modal series method, the Jacobian and Hessian
matrices of the global test power system have to be calculated, as well as eingenvalues and
eigenvectors. As it was pointed-out in the previous section above, the eigenvalues are function on the
system parameters, thus resulting necessary the determination of the steady state operation selected for
a given control action i.e., constant voltage condition at the VSC shunt, active and reactive power

controlled after the series VSC, etc.
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Although in the development of Taylor series expansion in Equation (7.35) the controller actions
are not included, the formulation tries to get insight into the nature of nonlinear contribution based on
the UPFC dynamic modeling.

One of the usefulness of the modal series method relies on its capacity to represent the linear and
nonlinear expansion in terms of multidimensional Laplace transform. Thus, a closed form solution is
given by (7.36), where the linear part (basically expressed in terms on single Laplace variable) and
second order terms (as a function of two variables Laplace domain) are easily identified. Please
observe in this detailed closed form solution, that there is an explicit relationship between state
variables (rotor angle & and quadrature axis voltage E;) with d and q current components given for
both voltage source converters, series and shunt. This represents a very interesting analytical result,
since the nonlinear dynamics of the UPFC can be explicitly incorporated using the algebraic and state

variables in the analysis.
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Finally, the closed form solution in the time domain of (7.36) is calculated applying association of

variables and inverse Laplace transform, resulting in,

Xi(f)=vdc(t)=i(uyyﬁ(o)—iiu, 201 (0) (0 je’+iiiu, JuYi (0)y] (0)et (7.37)

k=1 I=1 j=1 k=1 I=1

where,
a T
Y,=U [50 @, Ec',o Eg E 40 chcO]
The rest of time domain solutions obey the same reasoning. Also, in the nonlinear interaction

coefficients My are included in the relationships of terms associated to the internal parameters and

algebraic equations of the UPFC, as well as the modal characteristics and modal interaction through

second order modal combination.

7.8 NONLINEAR OSCILLATIONS ANALYSIS
The system is perturbed increasing the rotor angle from its initial value of 6 =71 to the value of

0 =81" followed by an step increase in the dc voltage reference. Due to the inclusion of the dc voltage
dynamics and its control, the UPFC-SMIB power system is highly nonlinear. The waveforms of the

experiment are shown in Figure 7.13, where the nonlinear oscillations of rotor angles and rotor speeds
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for each generator are shown. Through the analysis of the simulation, it can be resumed that the system
describe different oscillations depending on the controller setting parameters, which are reflected on
more content of nonlinear contributions. In the same form as the previous case study, the oscillations of
rotor angles are charted comparing their response obtained with the modal series method and the linear
approximation.

The experiment shows differences between both solutions in phase and amplitude mostly in the case

of oscillatory response. Each angle corresponds to the controller parameters according to the Table 7.3.
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Figure 7.13 Rotor angles for different PI controller parameters in the case study of SMIB-UPFC

It is clear that the correctness setting of the controller reflects into higher damped response after the

disturbance; hence, the better controllers are those with values K ,=-10.5, K, =-1 (Figure 7.13b)
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and K,=-15, K, =-15 (Figure 7.13e). The controllers designed with parameters
K,=-1, K, =-14 (Figure 7.13a), K,=-0.5, K, =-5 (Figure 7.13c) and K, =-0.5, K, =-5

(Figure 7.13d) show low frequency oscillations after the transient, which means that the controllers are
not able to damp the oscillations due to the disturbance in the power system.

The waveforms of Figure 7.14 complete the analysis of the electromechanical variables involved in
the model. In the same way as the rotor angles, the rotor speed also oscillates depending on the

controller parameters, reflecting that the most oscillatory cases are when K, =-1, K, =-14 and

K,=-0.5, K, =-5. These results are in clear agreement with the eigenvalues detailed in Table 7.3.
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Figure 7.14 Case study of SMIB-UPFC (Rotor speed variables)

Keeping the same subject followed in this case study, now it is important to analyze the Figure 7.15,
which shows the voltages presented in the dc link of the UPFC. Again, each graph corresponds to its
controller parameters according to the Table 7.3. It is evident the most oscillatory responses, which
agrees with Figures 7.13 and 7.14 for the rotor angle and speed rotor, respectively. However, it is also
important to describe the remarkable differences between the linear approximation and the modal
series solutions. The differences are observed in both, amplitude and phase shifting, being the worst
cases for the most oscillatory responses.

Then, it can be inferred from Figure 7.15 that there is an important nonlinear contribution in the

total response related to the modal interaction, which is not included in the linear approximation
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method. The dynamic during transient cannot be followed in the same way applying only a linear

solution, being relevant the inclusion of a nonlinear method such as the modal series.
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Figure 7.15 Case study of SMIB-UPFC (voltages v, for each constraint of PI controllers)
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The nonlinear contribution described above is remarked through the nonlinear indices analysis
shown in the graph diagrams of Figure 7.16. The calculated indices are the same used in Chapter 6,
described by Equations (6.1)-(6.4), applied now to this case study. Basically, the bar diagrams indicate
the value of each index for the given controller parameters. From this Figure 7.16, the following
comments are resumed:

¢ The case with the higher values for all indices is when the controller parameters have values

with KP =-15, KI =-15 (Figure 7.16e) whose highest index is 14, which denotes considerable

modal interaction.
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Figure 7.16 Nonlinear indices for the different PI controller parameters
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Table 7.4 Linear and nonlinear participation factors for the SMIB-UPFC power system

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
MODE
max‘Pljk,‘ k max‘P2l.k,‘ k max‘Pllk,‘ k max‘PZI.k,‘ k max‘Pllk,‘ k maX‘Pij,‘ k max‘Pll.k,‘ k max‘Pij,‘ k max‘Pll.k,‘ k max‘Pij,‘ k
1 1.0056 5 0.0027 3 1.0055 5 0.0165 6 1.0056 5 0.0027 3 1.0056 5 0.0027 3 1.0055 5 0.002 3
2 0.8436 2 0.0643 1 1.4182 1 1.3988 1 0.9044 2 0.091 1 0.7022 2 0.2582 6 146.428 8 | 146.2738 | 8
3 0.6822 8 0.3719 1| 115.8674 | 6 | 1154191 | 6 0.8676 8 0.0294 1 0.6347 8 0.0274 1 1,853.7 6 1,854.80 6
4 2.1103 4 0.9816 4| 109.5481 | 6 | 110.5128 | 6 1.9963 4 1.089 4 1.7871 4 1.0464 4 1,853.7 6 1,854.80 6
5 15.0041 6 15.1588 6 1.7939 6 1.9153 6 1.0413 1 0.3292 1 1.1561 3 0.8856 3 3.2744 5 3.4503 1
6 15.0041 6 15.1588 6 2.6414 6 2.7934 6 7.6002 6 7.7544 6 4.3887 6 4.669 6 8.1927 6 8.516 6
7 2.5018 1 2.0532 6 10.9072 3 2.7934 6 7.6002 6 7.7544 6 4.3887 6 4.669 6 8.1927 6 8.516 6
8 0.6555 3 0.2569 7 10.9072 3 10.3575 3 0.5776 1 0.4552 7 0.4117 3 0.3049 3 0.629 3 0.1183 6
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Figure 7.17 Linear and nonlinear participation factors bar graphs for the case of SMIB-UPFC
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« The case with the less modal interaction is when the controller parameters are
KP =-1.5, KI =-1.5 (Figure 7.16d) since all the indices have small values.
% The case of KP=-10.5, KI=-1.0 (Figure 7.16b) has the highest index associated to I4.

Again, the dynamic of the system under such constraints has an important modal interaction

presented in the original state variables.

The case study is completed with the analysis of linear and nonlinear participation factors described
in Table 7.4. Here, the maximum linear and nonlinear participation factors as well as the interacting
modes are indicated. The most dominant modal interaction is presented when the parameters are

KP =-15, KI =—-15, which agrees with Figure 7.15e) for the nonlinear indices. Please observe the

annexed bar diagram of Figure 7.17, which visually denotes the modal contribution measured by the
participation factors. Here, the linear participation factor defined by Equation (6.5) has the lowest
contribution, then being the most important participation those due to the nonlinear interaction

coefficients given by (6.15).

7.9 SUMMARY

The conclusion of the case study can be decomposed into two issues: the first one is the damping
scenario introduced by the correct setting of controller parameters. As it was mentioned in Section 7.5
above, extensive work has been proposed to determine the correct setting of controller parameters for
the UPFC and in general, for any FACTS device. In second place, the case study was focused to get
insight into the nature the modal interaction when the UPFC is presented.

It is clear that the idea of including FACTs devices such as the UPFC in the power system open a
great variety of work that can be done in future contributions: the setting of controller parameters, the
inclusion of one or more UPFC’s into multimachine and large scale power networks, which opens a

plenty of research related to the nature of linear and nonlinear modal interactions.
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CONCLUSIONS AND
FUTURE RESEARCH

8.1 CONCLUDING REMARKS

The modal series method studied along this thesis is a systematic procedure that allows the study of
a nonlinear system, obtaining decomposed terms, which specify separately the first, second, third, etc.
order terms of the nonlinear system.

As it was mentioned, mainly in Chapter 2, the modal analysis represents a very important tool to
characterize the oscillation characteristics of a linear system subjected to a small perturbation.
However, under a more general set of operating conditions and perturbations, the linear approximation
given by the modal analysis may not be enough to determine the nature of nonlinear contributions
neither of modal interaction.

Some analytical methods have been developed and tested to get insight into these nonlinear
oscillations, i.e. the method of Normal Forms of Vector Fields and the method of Modal Series, both
studied and compared in this thesis. Each of them have their own properties, although the core the
methods are strictly the same, that is, the linearization of the nonlinear system around a stable
equilibrium point applying Taylor series expansion and then, the Jordan canonical form. Finally, an
analytical closed form solution is obtained, after a nonlinear transformation (for the case of the Normal
Forms method) and application of the multidimensional Laplace transform and association of variables
theorems (for the case of the Modal Series method).

In chronological order of appearance along the thesis, the next statements draw the main
conclusions of this research, based on the study of nonlinear oscillations:

e In this thesis, an analytical methodology based on the modal series technique has been
presented. Based on the modal series previously proposed by [Schanechi, et al. 2003] [Pariz et
al. 2003], an extension of the method has been achieved, which consists on generalizing the
method using the theorems of multidimensional Laplace transform and the theorems of

association of variables, to solve the dynamic nonlinear system as an algebraic problem.
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The application of multidimensional Laplace transform was applied so far only to nonlinear
systems using the Volterra series expansion; some kernels in terms of multidimensional Laplace
variables are solved to characterize the nonlinear system. In the method of Modal Series, a set
of kernels expressed in terms of multidimensional Laplace transform are solved by the
association of variables theorems, thus obtaining a single Laplace domain set of kernels.

A comparison with other methods such as linear approximation has been presented, remarking
the main advantages of the method here proposed.

An application of the Normal Forms (NF) and the Modal Series (MS) methods to nonlinear
dynamic systems has been illustrated. When the solution of both methods is compared with
respect to the direct numerical integration of differential equations, it is shown that it strongly
depends on the initial conditions and parameters of the original system. Selected conditions to
start the simulation in both NF and MS, becomes in remarkable differences with respect to the
closed form analytic solution for the two methods, reflecting more drastic differences in the NF
method.

The main contribution of the comparative analysis between NF and MS has demonstrated the
viability of the application of the modal series method, as an easier and less complex alternative
to analyze dynamic systems, rather than Normal Forms, and shown how the initialization of the
system also modifies the final solution.

The application of the multidimensional Laplace transform and association of variables
techniques are the core of the Modal Series technique, which allows a closed form analytical
solution of the nonlinear system; being the extension of including the control forced response,
one of the main contributions of this thesis.

The solutions obtained with the Modal Series method have been compared with the full
numerical solution of the nonlinear set differential equations, in order to establish the numerical
validations of the results obtained. For each case study the accuracy of responses has been
detailed.

The forced response solution by the Modal Series technique has been obtained. The analytical
solution includes the main characteristics between the nonlinear terms and the input signal
function. The basic case is when an impulse function is used as the input signal of the transfer
function, however it is possible to apply any input function. The case with the unit step function
has been tested as well.

The method has been successfully simulated through a 9-bus, 3-machines and the New England
10 generators, 39 buses test systems, presenting the results on the principal state variables in the

time domain and remarking the main contributions of oscillatory modes. Emphasis is given to
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8.2

the nonlinear contributions using the Fast Fourier Transform on machines speed deviations,
modal analysis, nonlinear interaction indices and nonlinear participation factors.

A detailed description of the higher order modal series terms have been exemplified with a
synchronous machine infinite busbar power system, through the classic model and the one flux
dynamic model.

The nonlinear oscillations produced by a perturbation in the third order model of the
synchronous machine have been analyzed

The detailed theory related to the linear transfer function concepts and its extension to the
nonlinear transfer function through the application of the modal series method, as the basis of
nonlinear system expansion, and assuming an input force response, have been described

The method has the great advantage to analyze in both time and frequency domain, in
numerical and analytical ways, the transfer functions of nonlinear system

The examples of application of the nonlinear transfer function definition was focused on
applications to simple power systems, such as the SMIB and the 3 machines-9 buses test
systems. However, following the same definitions, it is possible to extend the concepts in a
straightforward manner to the analysis of large scale power systems. It is clear that dealing with
larger-scale systems, the complexity of analysis is increased, thus resulting necessary the
inclusion of sparsity techniques, effective algorithms of eigenvalues determination, etc.

The incorporation of UPFC to the nonlinear power system model has been analyzed. The steady
state and dynamic model of the UPFC have been included in the study, detailing their main
equations that link its dynamic behavior.

The modal analysis and the nonlinear contributions to the damping oscillations of the power
system operating together with the UPFC have been analyzed. The correct set of UPFC control

actions over the damping performance and nonlinear interaction have been performed.

FUTURE CONTRIBUTIONS

The next issues can be included as some ideas to be developed in a near future based on this

research. Most of them are focused on the nonlinear systems analysis, FACTS devices and other

analytical and numerical topics.

Incorporation of algorithms to determine dominant poles in the nonlinear transfer functions.
The nonlinear transfer functions concept introduced in this thesis, needs to determine what are
the most important poles that originate the modal interaction. Hence, it is proposed to use the
techniques developed to determine the most dominant poles [Martins et al. 1996] in the

nonlinear transfer function concept.
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Power damping devices sintonization applying nonlinear transfer functions and frequency
analysis for the nonlinear interactions. Since the modal series method allows the definition of
nonlinear transfer function, and the frequency and system stability calculation, it is very useful
to determine the damping devices that help to damp the oscillations presented during
disturbances.

Reference [Pagola et al. 1989] deals with eigenvalue sensitivities analysis. An extension of this
interesting work can be done now assuming the interaction between modes and determining
their sensitivities.

Regarding the study of near resonance conditions presented when modal series method is
applied. Despite the demonstrated fact that the modal series method can obtain a closed form
solution under resonance condition, there is a lack of work concerning on how to determine the
near to resonance conditions. [Zhu et al. 2001] describe an approach that incorporates a
procedure to determine resonance and near-resonance conditions in the Normal Forms method.
Similar procedure can be analyzed in order to find a systematic procedure to be applied in the
modal series method.

A method to establish the relationship between stability zones obtained with bifurcation theory
and continuation techniques, can be included in the modal series method to identify the zones
where the application of the method is valid.

Other linearization procedures, such as Carleman linearization can be explored to avoid Taylor
series expansion. In the reference [Arroyo 2007], the author proposed the Carleman
linearization that modifies the analytical response and analysis obtained with the Normal
Forms method. A similar procedure can be followed to determine different characteristics of
the closed form solutions obtained with the Modal Series method.

In the same way as the UPFC was modeled and analyzed in this thesis, other FACTS devices
can be easily explored, in order to determine their nonlinear modal interaction when are
connected to the power system.

The linear and nonlinear dynamic analysis of the VSC-HVDC represents an interesting
application of the Modal Series method. The topic involves calculation of steady state
conditions, dynamic analysis of the control actions and applications to the links of non-

conventional energy sources.
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APPENDIX A

MULTIDIMENSIONAL LAPLACE TRANSFORM AND ASSOCIATION
OF VARIABLES THEOREMS

A.1 Theorem 1 [Crum & Heinen 1974]

The reduction and expansion of a realizable two dimensional Laplace Transform kernel of the form,

Z,(s,,5,)= . NZ(Sl’SZ) (A1)

H(51+52 +ai)ﬁ(sl+ﬂj)ﬁ(52 +7k)

i=1 j=1

where N, (sl, 52) is a polynomial in s; and s», yields,

2,(5)= Ji‘,% [(51 + By sy + 7k )22(51,52]?2_:1;2}

J=1K=1 (5+7/K +ﬂ])

(A.2)

KK

il > {(51 +S o )(52 + 7k )22(51’ 52 151:7K*0‘r }

XL $2=-7k
=

(s+a;)

The function Z, (sl, sz) represents the second order Laplace term whose variables would be
associated to the function Z, (S) that is defined as a single variable problem. Applied to our case, the

second order term Yzj (sl,sz)given by equation (A.2) will be converted into a one dimensional

expression Y/ (s) , as it is explained below.

A.2 Theorem 2 [Crum & Heinen 1974]

The complete reduction and expansion of a realizable n-dimensional kernel of the form,

Nn(sl,s2,...,sn)

Zn(sl’SZ""’Sn)z K 11 :
1_[(sl+s2 +ets, +xk)H(sl+ajl)
k=1 ji=1 (A.3)
1
J22 Jnn
H(Sz +13j2)"' H(sn +“’jn)
j2=1 jn=1
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where, N (sl, Spseees Sy ) is a polynomial in n variables.

The generalization to the n-dimensional case is straightforward [10]:

Zn(s): Zl 121'”121

(5,+5y+--+5, +xx)

J11 J22 Jnn

DI

J1=1J2=1 Jn=1

J22 Jnn
‘(52 +ﬂ12)"'(5n T O s\ =—xx1+ 8,
oot
-Z,(51,5,...,5,) szz,ﬂnw]"
| Sp="0j _
(s+xx)
(51 +0‘11)(52 +ﬂ12)"' S

(Sn +CUJn)'Zn(Sl,SZ,...,Sn 52=.7/3]2

(A.4)
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APPENDIX B
MODAL SERIES HIGHER ORDER DEDUCTION

B1. SECOND ORDER TERMS

With the terms obtained in Chapter 3, but defining them on terms of s, and s, yields,

Y. (0) Y’ (0)
Y (s,) = d Y(s,)=——~ B.1
k (sl) (Sl _ﬂ/k) an 1 (52) (52 _ﬂ,l) ( )
Then,
1 1 - Y (0) Y'(0)
Y(s,s, )= Cc) X L
](1 2) k:11:1(51+52—/1]) kl(51_/1k)(52_}”1)

which can be also expressed as

*(s1,8,) Zchf,Yl 1 (B.2)

k=1 I=1 (51"'52_1;)(51_)“1()(52_/11)

We can now apply Theorem 1 to associate the variables of the function ¥/ (s,,s,) to Y(s). Let

1
N, (s;,s,)=
2(1 2) (Sl_i_sz—ﬂj)(sl_ﬂ’k)(SZ_ll)
(51 _ﬂfk)(sz _AI)N (51,5 ) 5= (51 +5, _ﬂ“j)(s2 _%)NS (SI’SZ) S At
W, (5)- =

(=4-4) (%)

1 1 !
Ns)= (/1,( + —ij){(s_ik _11)_(5_11)}

Therefore, the second order-term becomes

-SEfaror o= i) 7

Higher order terms could be obtained in like manner.
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B2. THIRD ORDER TERMS

Recalling,
(5,+5,+5,)Y(5,,5,,5,) =4,Y(5,,5,,5, ZZC [ (53)+Yk1(sl)YIZ(sz,s3)]
k=1 1=1
+ZZZDPW|: Y, (s Z)le(ss)]
p=1g=1r=1
And also,
Y0 n 1
le(sl)_ ]( ) ;

- d Y, s = —CJ'Y1 Yl
m " ! (Sl 52) k=1 I=1 (Sl+sz—/1j) M7k (Sl) I (52)

New indexes are defined in order to conform third order terms. That is,

PR 1) PR 1 ()
e B
) ;_(i)) ) 1_(3)) e

In the same way, second order terms are re-indexed as,

ZZ 2) CpoY, (5))Y; (s,)

p=1q=1 51+52

ZZ /1) zlanpl( )Y, (s3)

p= lq 1 S +S -
Substituting,

(5,+5,+5,)Y(5,,5,,5,) =

Y (51:5,,55)

ZZc[ 1 L %0 Y0 ¥

S+, — A ) pq(sl—ﬂp)(sz—iq)(%—l,)

R 10) Y;(o)}
(s;—A) S (s, +s,—4) pq(sz—/lp)(s3—/1q)
ST {(Yfi(o) Y, (0) zl(o)}

s A ) (s, =4, ) (85— 4)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)
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(5,+5,+5,)Y(5,,5,,5,) =
2. (5,,5,,5,)
1 Y,(0) Y, (0) Y'(0)
+ c'ck . < ’ +
;;;; K +52—/lk)(sl—lp)(sz—ﬂq)(s3—i,)
Y! Y!(0) Y'(0
ZZCI(]lCI k(O) 1 p( ) q( )
k=1 I=1 p=1 q=1 5 i)(SZ+SS_AI)(SZ_ﬂ’p)(s?)_/lq)

v,(0) ¥,(0) ¥'(0)

A e ey ey

p=Lq

(s +5,+5,)Y;

Y'(s,,s,,5,)

ey ol 1 |
;%;C“C’”Y" OO S 6 A6 A A

iFal 1 1 1
"Z;IZ;PZ;"Z;CHC (O (0)_(52 +8, =4 )(s, _/11()(52 _ﬂp)(ss -4 ) '

q .

(51,5,,8;) =

>3 Dl ¥i( )zl(o){( . }

p=1q=1r Sl—lp)(sz—/lq)(s3—/1r)
Hence,

1
(s +5,+8,; —l.)

Y (s1,5,,85) =

1

(51 +S, _ﬂk)(sl _ﬂp)(sz _/1‘1)(53 —4 )]+
(B.9)
;22@’@’ Y (0 0)1@1(0){ 1 2,)( )}

£55$aenonono)

p=lq

k=1 p=1q (524‘53_11)(51_11()(5 S, —A

> 53 D}, (0) >Y1<o){( : ]}

s sl—ﬁp)(sz—/lq)(%—ﬂr)

Or,
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Yj3(51’52’53):

icky ! !
ZZZZC Cpq p O)YI (O) )(Sl_/lp)(52 _ﬂ'Q)(S3_l’)]+

k=1 I=1 p=1 q=1 (Sl+52+s3—ﬂj)(sl+52—/1k

j ol 1 1 | 1
;;;;C 1 % (0%, (O)_(lers2 +s3—/11.)(52+53—ﬂ,)(sl—/lk)(sz—ﬂp)(sa—/l )]+

q

$5 S om0 1 }

p=1gq=1 r=1 Sl+52+S3—/1j)(sl—ﬂp)(sz—ﬂq)(s3—ﬂr)

(B.10)
Third order kernel can be re-defined as,
Y'(5,,5,,5,) = K\N, (5,,5,,8;) + K,N, (5,,5,,5,) + K;N;(5,,5,,5,) (B.11)
Where,
1
N, (s,,s,,8, )= B.12
1(5052:%,) (sl+s2+s3—/1j)(sl+sz—lk)(sl—lp)(SZ—Aq)(%—/I,) (B.12)
1
N ,S5,S, )= B.13
2 (51:2,5:) (sl+sz+s3—/1].)(52+s3—/1,)(sl—lk)(52—ﬂp)(s3—/1q) (B.13)
1
N,(s,,s,,8;) = (B.14)

(s1 +5,+8, -4 )(s, —/11,)(52 —ﬂq)(s3 -2)
B3. ASSOCIATION OF VARIABLES

In order to solve the kernels N,(s,,s,,s;) and N,(s,,s,,s,) it is posible to use the corollary

proposed by [Crum and Heinen 1974]. The corollary fits to (i—1)* reduction and expansion of a n-

dimensional kernels of the form,

G,(S1,S55---5S,)

Z,(51,855-5,) =153
(s +s,+...+5,+x,)

K1=1
1
K22 (B.15)
[T |si+s.+ s+ s, +x,
k2=K11+1 m>i
1
VEE! 722 Jii
H(Sl +0‘j1)H(52 + jZ)”'H(Si +’7ﬁ)
=1 =1 jin1
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where G, (sl, Syseees sn) is the ratio of a polynomial in n variables to a polynomial in the n—i variables
i+1,i+2,...,n—1 and n, yields

Z,(81,Si50-4:5,)

122.“ Jii (51+52 oot +Xk1)(52 +ﬂj2)...(5i +771i)

J2=1  Ji=l 'Zn (Sl,SZ,...,Sn)

==X+ Byt H 0y
$2==Pj2

_ Si==11ji

k1=1 (Sl + XKl)

(51 +a11)(52 +ﬂ12)"'(5i +771i)
Z,(51,5,---5S,)
J11 J22  Jii

S5y S (B.16)

J1=1J2=1  Ji=1 (51 o+ ﬂjz +"'+771i)

Si=-ay
S ==pB

Where,

Xt =D Su+ X  K11<kl1<K22

m>i

Hence, applying the corollary to kernels N, (s,,s,,s,) and N, (s,,s,,s,), it yields,

1 |
(sl+sz+s3—z,-)(s2—zq)(s3—A,)(sﬁsﬁss_ij)(sl+sz_gk)(sl_zp)(sz-zq)(sg—a,):33,,
Nl(SpSs): (Sl+53—/1j) —
1 |
(Sl—ﬂp)(sz _AQ)(S3_2')(51+52 +53—/1j)(51+52—lk)(sl—/lp)(sz—/1q)(53—/11) -
i (si=4,— 4 —4)
Making algebraic operations, the new kernel is,
1 1 1 1 1
N,(s,,s;)= -
S (A=A, A= A) | (A= A) (st s Ay) (A A —A) (si— A, =4 - 4)
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which is defined in terms of a single Laplace domain by association of variables theorems as,

1 1 1 1 1
N,(s)= - (B.17)
1“)(@—%—4—&)(@—4—4)@—4)(%+4—4)@—%—4—@)

! |

(sl +5,+5, —ﬂj)(% = 2,)(s, _ﬂ’q)(sl +5,+5, —/114)(52 +5,-4)(s, —ﬂk)<52 —/?,p)(s3 —ﬂq) 5
s1=Aj Ay =4
NZ(S]’%): (sl+s3—ij)
1 |
(s, _ﬂk)(sz _/1‘”)(53 _/Iq)(s1 +5,+5, —/1j)(s2 +5,-4)(s, —ﬂk)(s2 —/117)(53 —xiq) sk
s=}:

(=4 —2,-4)

N(ss): 1 1 1 1
T (A== A) (A, A - A)| (st s -4 (si—4, -4, - 4)

which is defined in terms of a single Laplace domain by association of variables theorems as,

1 1 1 1
" (51’53)_ (/11‘ —A, =4 _ﬂ“k) (ﬂp +4, _ﬂ“l){(s_/lj)_(sl_ip — 4 _Ak):l (B9

Finally, the kernel N, (sl, S5, 53) is reduced following the next approach:
Recalling (B.14),

1
(s1 +5, +5, —xlj)(sl —ﬂp)(sz —ﬂq)(s3 -1)

N,(s,,s,,5,) =

From [Lubbock and Bansal 1968],

k
(s,+a)(s,+a,)..(s, +a,)(s,+S, +...+5, + )

(B.19)

It is associated as,

k
(s+a)(s+a +a,+...+a,)

(B.20)

Therefore,
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1

N = B.21
3“)(ywﬂb—%—%—4) (21
Decomposing (B.21) in partial fractions expansion, results in,
1 1 1
N. = - B.22
) <>[<> <>] (32

Thus, the final solution of third order terms expressed as a single Laplace transform variable is,

Y'(s)=K/N,(s)+ K,N,(s)+ K,N,(s)

1 1 1 1 1
Y3(s)=K _
j(S) 1(21‘_11)_/1'4_]’1)[(]’1’_11_ﬂk)(s_/lf) (ip+ﬂ“q_/1k)(s_lp_ﬂq_ﬂ’l)}

K 1 1 1 1
z(lj—ﬂp—/‘tq—ﬂk)(ﬂerﬂq—/ll) (s—ij) (sl—ﬂp—/iq—/lk)

CLCLY (0)Y ()7} (0):

pPq—p q

=~
N
I
uN

=

1 1 1 1 1 +
:lq:1(/1j_}vp_/1q_ﬂﬂ) (/1]'_21_/7%)(5_/1]) (lp—i_ﬂ“q_;tk)(s_ﬂp_ﬂq_/%)
CLCLY: (0)¥ ()72 (0): (B2

1 1 1 1 +
=1 g=1 -
(A=A A) (At A=) (5=4,) (s-4, -4 -4)
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APPENDIX C
TEST POWER SYSTEMS DATA

C.1

Table C1. Line Bus Data

3 GENERATORS, 9 BUSES TEST POWER SYSTEM

Bos | s . | RESISTANCE | REACTANCE | gyckprance | RATIO
2 7 0 0.0625 0 1
7 8 0.0085 0.072 0.149 1
8 9 0.0119 0.1008 0.209 1
9 3 0 0.0586 0 1
9 6 0.039 0.17 0.358 1
6 4 0.017 0.092 0.158 1
4 5 0.01 0.085 0.176 1
Table C2. Machine Dynamic Data
MACHINE X, r, X, X, T;, X, X, T, H D
Gl 0.2 0 0.146 0.0608 8.96 0.0969 0.0608 0.31 23.64 0.0125
G2 0.2 0 0.8958 0.1198 6 0.8645 0.1198 0.535 6.4 0.0068
G3 0.2 0 1.3125 0.1813 5.89 1.2578 0.1813 0.6 3.01 0.0048
Table C3. Power Flow Data
BUS \4 0 P, Q P, Q
1 1.04 0 0.716 0.27 0 0
2 1.025 0.1623 1.63 0.067 0 0
3 1.025 0.082 0.85 -0.109 0 0
4 1.026 -0.0384 0 0 0 0
5 0.996 -0.0698 0 0 1.25 0.5
6 1.013 -0.0646 0 0 0.9 0.3
7 1.026 0.0646 0 0 0 0
8 1.016 0.0122 0 0 1 0.35
9 1.032 0.0349 0 0 0 0
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C.2

10 GENERATORS, 39 BUSES NEW ENGLAND TEST POWER SYSTEM

Table C4. Line Bus Data

“"Bus | "“pus | RESISTANCE | REACTANCE | gyscrprance | raTIO
39 30 0.0035 0.0411 0.6987 1
39 1 0.001 0.025 0.75 1
30 37 0.0013 0.0151 0.2572 1
30 25 0.007 0.0086 0.146 1
37 31 0.0013 0.0213 0.2214 1
37 18 0.0011 0.0133 0.2138 1
31 34 0.0008 0.0128 0.1342 1
31 14 0.0008 0.0129 0.1382 1
34 33 0.0002 0.0026 0.0434 1
34 36 0.0008 0.0112 0.1476 1
33 38 0.0006 0.0092 0.113 1
33 11 0.0007 0.0082 0.1389 1
38 36 0.0004 0.0046 0.078 1
36 35 0.0023 0.0363 0.3804 1
35 1 0.001 0.025 1.2 1
32 11 0.0004 0.0043 0.0729 1
32 13 0.0004 0.0043 0.0729 1
13 14 0.0009 0.0101 0.1723 1
14 15 0.0018 0.0217 0.366 1
15 16 0.0009 0.0094 0.171 1
16 17 0.0007 0.0089 0.1342 1
16 19 0.0016 0.0195 0.304 1
16 21 0.0008 0.0135 0.2548 1
16 24 0.0003 0.0059 0.068 1
17 18 0.0007 0.0082 0.1319 1
17 27 0.0013 0.0173 0.3216 1
21 22 0.0008 0.014 0.2565 1
22 23 0.0006 0.0096 0.1846 1
23 24 0.0022 0.035 0.361 1
25 26 0.0032 0.0323 0.513 1
26 27 0.0014 0.0147 0.2396 1
26 28 0.0043 0.0474 0.7802 1
26 29 0.0057 0.0625 1.029 1
28 29 0.0014 0.0151 0.249 1
12 11 0.0016 0.0435 0 1
12 13 0.0016 0.0435 0 1
33 4 0 0.025 0 1
32 10 0 0.02 0 1
19 6 0.0007 0.0142 0 1
20 5 0.0009 0.018 0 1
22 9 0 0.0143 0 1
23 8 0.0005 0.0272 0 1
25 3 0.0006 0.0232 0 1
30 2 0 0.0181 0 1
29 7 0.0008 0.0156 0 1
19 20 0.0007 0.0138 0 1

218



Table C6. Power Flow Data

BUS \4 0 P, Q P, Q,
1 1.03 -11.13 10 0.904 11.04 25
2 1.0475 -4.61 25 1.5114 0 0
3 1.0278 1.15 5.4 0.0773 0 0
4 0.982 0 5.7356 2.0889 0.092 0.046
5 1.0123 0.61 5.08 1.6827 0 0
6 0.9972 2.05 6.32 1.1171 0 0
7 1.0265 6.65 8.3 1.0451 0 0
8 1.0635 6.72 5.6 1.0221 0 0
9 1.0493 4.03 6.5 2.1423 0 0
10 0.9831 1.6 6.5 2.0786 0 0
11 1.0121 7.21 0 0 0 0
12 0.9995 -7.23 0 0 0.085 0.88
13 1.0137 7.11 0 0 0 0
14 1.011 -8.78 0 0 0 0
15 1.0147 9.2 0 0 3.2 1.53
16 1.0311 -7.79 0 0 6.29 1.323
17 1.032 -8.79 0 0 0 0
18 1.0296 -9.64 0 0 1.58 0.3
19 1.0496 -3.17 0 0 0 0

20 0.9907 -4.58 0 0 6.8 1.03
21 1.0313 -5.39 0 0 2.74 1.15
22 1.0495 -0.93 0 0 0 0
23 1.0445 -1.13 0 0 2.475 0.846
24 1.0367 -7.68 0 0 3.086 0.922
25 1.0559 -5.64 0 0 2.24 0.472
26 1.0464 -6.89 0 0 1.39 0.47
27 1.0339 -8.93 0 0 2.81 0.755
28 1.0389 33 0 0 2.06 0.276
29 1.0372 -0.47 0 0 2.835 1.269
30 1.0479 -7.03 0 0 0 0
31 1.003 -10.67 0 0 5 1.84
32 1.0166 -6.4 0 0 0 0
33 1.0069 -8.78 0 0 0 0
34 1.0045 -9.49 0 0 0 0
35 1.0279 -11.32 0 0 0 0
36 0.9953 -11.5 0 0 5.22 1.76
37 1.0292 -9.88 0 0 3.22 1.224
38 0.9962 -10.99 0 0 2.338 0.84
39 1.0471 -9.59 0 0 0 0
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Table C5. Machine Dynamic Data

MACHINE X, r, Xy X} T;, X, X, T, H D
Gl 0.003 0 0.02 0.06 7 0.019 0.06 0.7 500 0
G2 0.0125 0 0.1 0.031 10.2 0.069 0.031 1.5 42 0
G3 0.028 0 0.29 0.057 6.7 0.28 0.057 0.41 24.3 0
G4 0.035 0 0.295 0.0697 6.56 0.282 0.0697 1.5 30.3 0
G5 0.054 0 0.67 0.132 5.4 0.62 0.132 0.44 26 0
G6 0.0295 0 0.262 0.0436 5.69 0.258 0.0436 1.5 28.6 0
G7 0.0298 0 0.2106 0.057 4.79 0.205 0.057 1.96 34.5 0
G8 0.0322 0 0.295 0.049 5.66 0.292 0.049 1.5 26.4 0
G9 0.0224 0 0.254 0.05 7.3 0.241 0.05 0.4 34.8 0
G10 0.0304 0 0.2495 0.0531 5.7 0.237 0.0531 1.5 35.8 0

Table C7. Excitation System Data

Generator

No. T, K,
1 0.02 40
2 0.6 40
3 0.2 40
4 0.05 6.2
5 0.2 40
6 0.06 5
7 0.02 5
8 0.02 40
9 0.02 5
10 0.06 5
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APPENDIX D

INITIAL CONDITIONS CALCULATIONS
3 SM-9 BUSES TEST POWER SYSTEM

The admittance matrix Y, , and the intermediate matrix admittances are calculated among reduced

BUS

admittance matrix Y

red *

The numerical matrices obtained are,

Yous =
-17.3611i 0 0 17.3611i 0 0 0 0 0
0 -16.0000i 0 0 0 0 16.0000i 0 0
0 0 -17.0648i 0 0 0 0 0 0 +17.0648i
O O R - > B R
N O - O - O
e e e e [Em e [ . | Em
o [ | o [ o | o | am ]
o [ o [ o o | o e |
o [ o [ eww | o | o [ o || e

which is the admittance

lines). The matrices that complement the total matrix of the power system are the loads and internal

matrix conformed by the multimachine parameters (basically transmission

generators parameters, that is,

-16.4474i 0 0
=l o -8.3472i 0
0 0  -55157i
_ . .
0
0
0
Y, 0.0 =| 12610 - 0.5044i

0

0

0.8776 —0.2925i

0.9690 - 0.3391i




Hence, the complete admittance matrix that includes transmission line parameters, loads and

internal generators admittances is,

[YBUS + Y00 YG] =

-33.8085i 0 0 17.3611i 0 0 0 0 0
0 -24.3472i 0 0 0 0 16.0000i 0 0
0 0 -22.5806i 0 0 0 0 0 17.0648i
. 1 13652 1.9422
17.3611i 0 0 330743930891 [0 oyt 0 0 0
-1.3652 . 11876 +
0 0 0 Sileoay 38138 -17.8426i 0 S v 0 0
1.9422 ‘ 1.2820 +
0 0 0 gty 0 4.1018 -16.1335i 0 0 oo
A 11876 + 1 e
0 16.0000i 0 0 A 0 28047 -35.44561 oo 0
16171 1T 11551+
0 0 0 0 0 0 Seoger 374122364241 o0
0 0 17.0648i 0 0 éé%ég: 0 ;1758?‘; 2.4371 -32.1539
Following the augmented admittance matrix given by Equation (4.13) it yields,
Y6 =
-16.4474i 0 0 16.4474i 0 0 0 0 0 0 0 0
0 -8.3472i 0 0 8.3472i 0 0 0 0 0 0 0
0 0 -5.5157i 0 0 5.5157i 0 0 0 0 0 0
16.4474i 0 0 -33.8085i 0 0 17.3611i 0 0 0 0 0
0 8.3472i 0 0 -24.3472i 0 0 0 0 16.0000i 0 0
0 0 5.5157i 0 0 -22.5806i 0 0 0 0 0 17.0648i
. 3.3074 -1.3652 -1.9422
0 0 0 17.3611 0 0 -39.3089i +11.6041i +10.51071 0 0 0
-1.3652 3.8138 -1.1876 +
0 0 0 0 0 0 +11.6041i -17.8426i 0 5.9751i 0 0
-1.9422 4.1018 - -1.2820
0 0 0 0 0 0 +10.5107i 0 16.1335i 0 0 +5.58821
. -1.1876 2.8047 - -1.6171
0 0 0 0 16.0000i 0 0 +5.9751i 0 35.4456i +13.6980i 0
-1.6171 3.7412 -1.1551
0 0 0 0 0 0 0 0 0 +13.6980i -23.6424i +9.7843i
. -1.2820 -1.1551 2.4371
0 0 0 0 0 17.06481 0 0 +5.5882i 0 +9.7843i -32.1539i

with reduced admittance matrix agreeing with (4.14),

red

0.8455 - 2.9883i1

0.2871 + 1.5129i

0.2096 + 1.2256i

0.2871 + 1.5129i

0.4200 - 2.7239i1

0.2133 + 1.0879i

0.2096 + 1.2256i

0.2133 + 1.0879i

0.2770 - 2.3681i

After the calculations of the admittance matrix, steady state initial conditions are necessary before

the dynamic analysis. The next set of numerical calculations were obtained with the application of the

approach detailed in Section 4.4 (Equations (4.42)-(4.62)), thus resulting,

222



E!

do

fdo

ref 0

1.04

1.0116 + 0.16531

1.0216 + 0.08341

1.0652 + 0.06681

0.8453 + 1.5311i

0.8040 + 1.1121i

0.3026

1.2901

0.5615

0.065

0.8057

0.7791

0.0242

0.6941

0.6668

1.0821

1.7893

1.403

1.0941

1.1145

1.0951

0.2705

0.0665

-0.1086

S

EI

q0

texcO

mi

0.6889 - 0.26011

1.5799 + 0.1924i

0.8179 + 0.17301

3.5857

61.0984

54.1366

0.6712

0.932

0.6194

1.038

0.6336

0.6661

1.0564

0.7882

0.7679

1.04

1.025

1.025

0.7164

1.63

0.85

376.9911

376.9911

376.9911
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0.0626
1.0664
0.9449
376.9911
376.9911
376.9911
1.0564

X, = 0.7882

0.7679
0.0242
0.6941
0.6668
1.0821
1.7893
1.403

All quantities are expressed in per unit, except angles which are expressed in degrees and angular

speed in radians per second.
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