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Equation Chapter 1 Section  1 

AABBSSTTRRAACCTT  
 
 
 

 

 

This thesis describes the procedure followed to represent the nonlinear modal interaction of a power 

system dynamic based on the modal series method. The method is based on the multidimensional 

Laplace transform and theorems of association of variables. Through this systematic procedure it is 

possible to represent the nonlinear modal interaction of a nonlinear system. Furthermore, the method is 

capable of identifying nonlinear forced oscillations due to an arbitrary excitation function. 

The procedure allows the computation of analytical approximate functions, which are independent 

of any resonance condition. In addition, the method is capable for representing nonlinear transfer 

functions, since the solution of the method is based on an uncoupled nonlinear system solved through 

Laplace transform. 

The modal expansion procedure is extended to the case of higher order multidimensional nonlinear 

systems described by nonlinear differential equations. A detailed description about the analytical steps 

needed to form the method is exemplified by a third order nonlinear model. The proposed method is 

experimented with a synchronous machine-infinite busbar power system which allows a detailed 

description on the application of the higher order modal series method. 

The method is studied through the 3 machines-9 buses and the New England 10 machines-39 buses 

test power systems, where the accuracy of the approach is verified through comparison with respect to 

the direct integration of the nonlinear dynamic system. The main nonlinear modal interactions are 

remarked, which clarify the behavior of the nonlinear oscillations 

The study of the system when a UPFC is connected is analyzed. The closed form solution of the set 

of algebraic-differential equations is obtained by the modal series method. The nonlinear contribution 

and the modal interaction are considered through the analysis of nonlinear indices, and linear and 

nonlinear participation factors in a SMIB-UPFC test system. 
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1.1 MOTIVATION 

This doctoral research is focused on the application of a methodology, different than classical 

modal analysis that allows the interpretation of dynamic operation in power systems when subjected to 

small perturbations. The power systems present electromechanical oscillations principally due to 

changes in their structural aspect, which become into a different network topology. Small signal 

stability is based on small perturbations around a stable equilibrium point with short duration times 

(just a few time cycles) which increase such oscillations presenting low frequency characteristics. 

These oscillation effects are mainly due to power system commutations, load variations, switching 

devices operating in power systems, etc. 

The oscillations phenomena have been strongly studied using methodologies based on modal 

analysis. However, the conventional modal analysis only incorporates the linear part in its analysis, 

leaving out of scope the nonlinear contribution to the dynamics, which is a part of almost any physical 

system such as power systems. The method of Normal Forms of vector fields (NF) and Modal Series 

(MS) method have important characteristics contained in their mathematical fundamentals, which 

identify them with respect to traditional modal analysis, due to the information of the so called 

nonlinear interaction that can be obtained. 

The Modal Series method, as it will be described along this investigation, represents a serious 

alternative of solution for the analysis of nonlinear oscillations. It is based as in the same philosophy of 

the Normal Forms method, i.e. on Taylor series expansion from the nonlinear system. Through 

application of a linear transformation and Laplace theorems it is possible to determine an analytical 

closed form solution, explicitly containing nonlinear characteristics. Throughout the document, the 

mathematical fundaments in which the Modal Series method is based and the information concerning 
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on the nonlinear characteristics of the power system under study will be remarked. It is also important 

to consider that the Modal Series method may be able to be used in analysis of different physical 

systems with nonlinear features. 

This doctoral research attempts to contribute to the analysis of nonlinear oscillations in power 

systems extending the Modal Series method and its applicability by using multidimensional Laplace 

transform, association of variables theorems, forced input response of the nonlinear system and 

incorporation of FACTS devices to the nonlinear dynamic power system modeling and analysis. 

 

1.2 OVERVIEW OF THE STATE OF ART 

Nonlinear oscillations in power systems have been studied for several years. Power systems have 

strong nonlinear characteristics which require the use of multiple analytical, numerical and 

mathematical strategies for their study. Such nonlinearities are mainly produced due to the nonlinear 

interaction between electrical and mechanical components of electric generators (which is studied 

through the swing equation), excitation limits and magnetic saturation, just for mentioning some of 

them. Electric loads may have high nonlinear characteristics; therefore representing a big source of 

nonlinear contribution, mostly due to the switching operation conditions and nonlinear characteristics 

of frequency and voltage. 

An important problem addressed by the power systems industry is related to the low frequency 

electromechanical oscillations. These oscillations are identified depending on the frequency range and 

the existing devices in the system; e.g. oscillations associated with single generators are called local 

modes or plant modes (normally classified between 0.7 to 2.0 Hz); oscillations presented over a group 

of generators so called inter-area oscillations, in the range of 0.1 to 0.8 Hz [Klein et al. 1991].  

The main analytical tool used for the analysis of low frequency phenomena in power systems has 

been the modal analysis, based on eigenvalues characteristics of the dynamic system [Rogers 2000]. 

The system is linearized around at a stable equilibrium point, which represents a stable dynamic 

operation situation. Under this analysis, the system operation is restricted to only consider the behavior 

due to the linear part, leaving out of scope the nonlinear contribution.  

Despite the consideration of only linear characteristics of the system under study, the information 

obtained from modal analysis is of vital concern; e.g. frequency oscillations, damping rates and the 

extension to participation factors and mode shapes are very important to determine the stability of the 

power system and the nature of oscillations; taking place presented after a disturbance condition or any 

other operating condition considered. An important development, called selective modal analysis 

[Pérez-Arriaga et al. 1982] details the participation factors based on modal analysis, being one of the 

most relevant contributions in the area of modal analysis based on linear techniques. 
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In the same way, modal analysis has been carried out to prove local mode oscillations, interarea 

mode oscillations, detailed representation of large regions within interconnected power systems, 

excitation systems, speed governors, tuning of PSS, HVDC modulation, FACTS controllers, load 

characteristics, etc. [Kundur 1994] [Kundur and Wang 2002]. 

On the other side, since the modal analysis only assumes the linear contribution of a nonlinear 

system transformed to a linear one through a linearization process, one question emerges from this 

theory: how important may be the contribution of the nonlinear part to the nonlinear power system 

analysis? This can be the philosophy of including different methodologies, which model the power 

system adding the nonlinear part. 

Working groups associated to the Task forces from IEEE and CIGRE have resumed main ideas in 

order to consider nonlinear analysis of power systems. The method of Normal Forms of nonlinear 

vector fields emerged as an important analytical tool to investigate the qualitative behavior of nonlinear 

dynamical systems in a general point of view [Kahn and Zarmi 1998] [Guckenheimer and Holmes 

1986] [Arrowsmith and Place 1994] [Nayfeh 1993], and subsequently developed by the group of the 

University of Iowa for applications to power systems [Lin, et al. 1996] [Saha et al. 1997] [Jang et al. 

1998] [Vittal et al. 1998]. More recently, other researchers have taken the Normal Forms as one of the 

main methods applied to the analysis of nonlinear dynamic power systems with several applications 

[Barocio and Messina 2003] [Barocio et al. 2004] [Liu, et al. 2005] [Betancourt et al. 2006]. Some 

other contributions are based on Volterra series analysis [Schetzen 1980], bifurcations theory [Abed 

and Varaiya 1984] [Ajjarapu and Lee 1992], and more recently through Hilbert transforms [Messina 

and Vittal 2006] [Liu et al. 2004] and modal analysis using the theory of normal modes [Betancourt et 

al. 2009] and bilinear systems [Arroyo et al. 2006]. 

In addition, in [Pariz et al. 2003] and [Schanechi, et al. 2003] the Modal Series method has been 

proposed as an alternative to the nonlinear analysis of dynamic systems. It is based on transforming a 

linearized system around a stable equilibrium point; a straightforward linear transformation allows to 

obtain a linear approximation of a nonlinear system. In the method of Modal Series, the resonance 

conditions are not of concern, so the system is solved for any set of eigenvalues. 

 

1.2.1 Main Contributions on Normal Forms Method 

The method of Normal Forms of vector fields has been utilized in order to analyze nonlinear 

oscillations in power systems. The method is based on two transformations: beginning with a 

linearization process around a stable equilibrium point, obtained through Taylor series expansion. An 

application of the Normal Forms technique to the linearized system, keeping the nonlinear 

characteristics given by the eigenvalues, allows an approximate solution of the dynamic system in 
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terms of the transformed variable to be obtained. This method has the great advantage of obtaining the 

simplest form of a set of ordinary differential equations of sequential transformations [Nayfeh 1993]. 

However, it has the disadvantage of having an wrong dynamic performance when a resonance 

condition is present in the system dependent on eigenvalues [Arrowsmith and Place 1994]. 

The method of Normal Forms has been used to study nonlinear modal interactions in power systems 

as well. Different components in the power system model have been included, which has opened the 

path to several studies of modal interactions. Interpretation of results in Normal Forms is often a 

challenging problem. 

The methodology known as Normal Forms has been formalized by several authors [Chua and 

Kokubu, 1988] [Chua and Oka, 1988]. It was suggested as an alternative of solution for the nonlinear 

dynamic analysis problems. The normal form of a vector field is defined as the simplest member of an 

equivalent class of vector fields exhibiting the same qualitative behavior, where this family is obtained 

from a nonlinear transformation to a diagonalized system, with a set of different eigenvalues. It is 

possible to introduce a formal coordinate change (proposed by Poincaré), which may be stated as the 

Poincaré Normal Form Theorem, that is [Chua and Kokubu, 1988]: 

“A formal vector field ( )x v x=  (with nx∈C ) can be transformed into the Poincaré normal form 

( )y y w y= Λ + , ny∈C  by an appropriate formal coordinate transformation ( )x yψ= , where Λ  

denotes the Jacobian matrix of ( )v x  at the origin and each component of ( )1 2, , , nw w w w=   consists 

of all resonant monomial associated with the eigenvalue kλ of Λ ”.

This Poincaré transformation had established the basis to develop under the same platform the 

Normal Forms applications. More specific details on Normal Forms definitions and some other 

relevant implications are described in [Kahn and Zarmi 1998] and [Nayfeh 1993]. 

Now focusing on Normal Forms method applied to the power systems analysis, it results necessary 

to make a quick look to the proposal of [Vittal et al. 1991] where inclusion of higher order terms to 

identify interarea oscillations was considered. A stressed power system is analyzed using higher order 

expansion of the modal solution to detect modal interactions that contributes to the interarea mode 

phenomenon. However, the methodology described in the paper does not have the capacity to consider 

the modal interactions, mostly due to nonlinear contributions. 

In the work [Lin et al. 1996] modal interaction in power systems under stress conditions and 

excitation controls is evaluated through Normal Forms. Emphasis on interarea oscillations was one of 

the main purposes of the paper. Thus, a new platform of analysis emerged, oriented to the analysis of 

nonlinear oscillations in power systems. For instance, [Thapar et al. 1997] applied Normal Forms to 

predict interarea separation due to large disturbances; indexes that identify and measure the modal 
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interaction were used. On the other side, stability boundary approximation over the postfault 

equilibrium point was suggested in [Saha et al. 1997] using Normal Forms. Unstable equilibrium 

points were determined over different scenarios of the power system. 

Referring to interaction modal studies and generation control in power systems, the Normal Forms 

method has been introduced for the analysis of larger power systems [Jang et al. 1998]. The 

information obtained by the Normal Forms analysis is used to set generation system controllers. Also, 

the island creation due to strong disturbances and high stress conditions has been considered [Vittal et 

al. 1998]. 

As it was mentioned earlier, the selective modal analysis introduced the concept of participation 

factors. An extension to nonlinear modal interaction has been proposed by the concept of nonlinear 

participation factor, based on second order nonlinear terms in the Normal Forms method [Starret y 

Fouad 1998]. Oscillation frequencies resulting from modal interaction are described in such 

contribution. 

The application of the method of Normal Forms to study modal interaction in power systems that 

includes static vars compensators has been developed [Barocio y Messina 2002]. In this contribution, it 

is demonstrated that the SVC connected to the system combined with an overload and stress constraint, 

takes influence on the nonlinear characteristic associated with the power system. Addition of FACTS 

devices to the electric system has been considered by other authors [Barocio and Messina 2002a], 

[Messina et al. 2003] y [Zou et al. 2005], where the modal interaction and interarea oscillations 

through Normal Forms, over systems with transmission controllers are analyzed. 

A classical analysis oriented to modal resonance in power systems is presented by [Yorino et al. 

1989]. In this interesting document, a generalized method to analize parametric resonance which can 

be reflected in the power system operation as a nonlinear oscillation is described in detail. 

The analysis of factors that affect interpretation of results in the Normal Forms method, relative to 

the estimation of initial conditions or modal interaction that modifies nonlinear coefficients have been 

studied. In the contribution [Barocio et al. 2004], a detailed analysis of factors affecting interpretation 

of Normal Forms method results has been made; the modal resonance effect acting over the method 

and the problematic involved in the determination of initial conditions with respect to z variables has 

been analyzed. Now, referring to the work proposed by [Kshatriya et al. 2005], a methodology to 

validate initial conditions is studied. The method tries to move these initial conditions in order to find a 

better initial operation constraints, which leads to a favorable response with the Normal Forms method. 

The method is based on the determination of indexes which quantify the feasibility of initial 

conditions. In the interesting work [Dobson and Barocio 2004] a quantification of factors affecting 

modal analysis in the Normal Forms method is made. The changes presented along with the calculation 
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of nonlinear coefficients and indexes are analyzed; in fact, since these changes come from the 

nonlinear transformation, they affect not only modal interaction associated to the system, but also 

represent a possible reason of modal resonance. 

Concerning modal resonance, several papers have dealt with this topic, which is a consequence of 

modal analysis. For instance, a classical analysis on modal resonance in power systems is represented 

in the paper proposed by [Yorino et al. 1989]. In this document, a detailed generalized method is 

described in order to analyze parametric resonance, which is reflected in the power system operation as 

a nonlinear oscillation. More recently, in [Betancourt et al. 2006] a study of modal resonance presented 

in the Normal Forms method has been considered. 

Viewing some other contributions over Normal Forms method, other applications can be found, e.g. 

[Liu et al. 2005] [Liu et al. 2006] that have incorporated the Normal Forms method to assess the PSS 

placement estimating the nonlinear modal interaction. Both papers exhibited the usefulness of 

including nonlinear interaction, in order to design the power systems controllers. [Martínez et al. 2007] 

have proposed the structure preserving approach applied to the Normal Forms method, which allows to 

deal with the power system model represented by a set of differential-algebraic equations as a unique 

set of dynamic state variables. 

From the extensive review of all works published, which deal with applications of the Normal 

Forms method to the analysis of nonlinear interaction in power systems, it can be concluded that the 

method has a strong mathematical background; it means a challenging issue and demanding from the 

computational point of view. Considering that the method of Normal Forms possesses a strong 

mathematical formalism and contributes with additional information of the nonlinear dynamic system 

behavior, not included with linear analysis, therefore it may be considered as a one of the main 

methods for the nonlinear analysis of power systems. 

 

1.2.2 Earlier Proposition of Modal Series Method 

Besides the widely described Normal Forms method, the Modal Series method proposed by [Pariz 

et al. 2003] and [Schanechi, et al. 2003] represents an alternative of the analysis of nonlinear 

oscillations oriented to the application in power systems. The authors in both contributions addressed 

in this method the inclusion of nonlinear modal interaction, thus obtaining a close form solution. 

According with the characteristics described by the original version of Modal Series proposal, using 

Modal Series it is possible to represent nonlinear dynamic systems, as well as stressed power systems; 

the method of solution has the great conceptual advantage of representing a nonlinear system as a 

rather straightforward generalization of the linear case, although it may be much more extended [Pariz 

et al. 2003]. 
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In the same way as the Normal Forms method, the method of Modal Series in its original version is 

restricted to the polynomial nonlinearity; therefore, Taylor series of other nonlinearity types are 

required. This reason adjusts the necessity of applying a linearization process in order to obtain a 

polynomial form of the nonlinear system. 

A second version of the Modal Series method proposed in [Schanechi, et al. 2003] states that the 

Modal Series method is introduced to represent the nonlinear system response and to obtain an 

approximated closed form expression for the zero input response of the nonlinear system. Also, the 

method extends the linear system theory concepts to facilitate the understanding and analysis of 

nonlinear systems. Both papers punctuate the possibility of obtaining a closed form solution, even 

under resonance conditions. Some indices that quantify the error introduced by modal interaction 

[Pariz et al. 2003] and proximity measure have been proposed [Schanechi, et al. 2003] as well. 

Almost every work based on the Modal Series method has been focused on comparisons against 

Normal Forms method [Wu et al. 2007] [Rodríguez et al. 2007] and to study the effects of fault 

location over interarea oscillations in stressed power systems [Naghshbandy et al. 2010]. 

 

1.2.3 Discussion on the Necessity for Including Higher Order Terms 

Taking into account the extensive work resumed by the Task Force on Assessing the Need to 

Include Higher Order Terms [Sanchez-Gasca et al. 2005] and all the work previously mentioned along 

this Chapter, based both in the Normal Forms and the Modal Series method; it results very convenient 

to introduce this discussion on why to include higher order terms. The modal analysis means the basis 

of nonlinear systems since their basic analysis is related to the small signal analysis for studying 

electromechanical oscillations resulting on a linear equivalent that is valuated in the neighborhood of a 

steady state operating point. The information obtained by modal analysis is so important, since it 

allows to get insight into the nature of the main characteristics concerning on oscillation frequency (i.e. 

complex eigenvalues) and damping ratio. Thus, modal interactions mainly defined by participation 

factors are obtained. However, what does it happen when these modal interactions are the result of 

combinations due to second and even higher order terms? These modes and their interactions have 

been called higher order modes and higher order modal interactions [Sanchez-Gasca et al. 2005].  

Hence, there are some topics that have to be followed to describe these higher order modal 

interactions, such as physical significance, indentifying when it is viable the higher order analysis, 

computational requirements, range of applicability of higher order terms, analytical tools to account for 

higher order terms. In the same way, it has been shown that some oscillations frequencies may appear 

in stressed power systems which are not predictable by linear modal analysis [Pariz et al. 2003]. 



8 

As it was described in Section 1.2.1, the Normal Forms method is one of the main methods used to 

establish a systematic procedure to include higher order terms. Nevertheless, different strategies have 

been explored. Modal Series method tries to compete with the Normal Forms method, taking into 

account some of the main characteristics of nonlinear analysis, incorporating its own mark of 

reference. When a power system becomes more stressed, nonlinear modal interaction may play an 

important role in the dynamic behavior of the power system. This will reduce the valid region of the 

linear modal method [Wu et al. 2007]. 

It must be remarked the contribution that under some constraints may represent the interaction of 

switching devices such as FACTS devices, which are ruled by the extension of nonconventional energy 

sources linked by VSC converters (i.e. UPFC’S, STATCOMS, VSC-HVDC links, etc.). Nonlinear 

effect of electromechanical devices interacting with commutation devices results in nonlinear 

interactions [Barocio 2003] following stressed conditions. 

In conclusion, methodologies that qualitatively and quantitatively can measure the nonlinear 

contributions of a stressed power systems are necessary. So far, to incorporate such contributions 

Normal Forms have been more extensively used; few works based on the Modal Series method have 

been developed. Both alternatives provide closed forms solutions and nonlinear interaction indices, 

with their own particularities, advantages and disadvantages. 

This research is mainly focused on an in depth description and formulation of the Modal Series 

method and its feasibility of application in power systems that operate under stressed conditions. Also, 

the forced response function in a nonlinear system is considered through Modal Series thus introducing 

the concept of nonlinear transfer function in power systems. Finally, the power system operation with a 

FACTS device (oriented to the UPFC analysis) is described. 

 

 

1.3 GENERAL OBJECTIVE 

This thesis has as a principal objective to characterize the nonlinear contribution to the power 

systems oscillations under small disturbances using the modal series method. For that purpose, the 

modal series method is deduced through the use of the multidimensional Laplace transform and 

association of variables theorems, that allow to determine an analytical solution to the dynamic power 

system model under analysis. 
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1.4 AIMS OF THIS DOCTORAL RESEARCH 

• To describe in detail the step by step procedure followed to apply the Modal Series method to the 

study of nonlinear oscillations in power systems. 

• To establish a comparison of Modal Series method against other methodologies, specifically with 

respect to the Normal Forms method to allows to make a judgment concerning the identification 

of advantages and disadvantages of the new proposal. 

• To develop a formal mathematical description of the Modal Series method, emphasizing on its 

mathematical fundaments and institute its extension to incorporate the closed form solution when

a system with forced oscillations is assumed. 

• To incorporate the Multidimensional Laplace theorems and association of variables to get the 

closed form solutions on which the Modal Series approach is based. Also, Volterra series theory is 

incorporated due to interrelationship and applications oriented to nonlinear dynamic systems 

analysis. 

• To apply the Modal Series method to define the transfer functions based on the nonlinear terms 

when are subjected to an input function. 

• To extend applications of the Modal Series method to networks containing FACTS devices such 

as the UPFC. It is of concern the nature of nonlinear oscillations when FACTS devices interact 

with the power system. 

 

1.5 MAIN CONTRIBUTIONS 

The main contributions of this doctoral research are, 

• Incorporation of multidimensional Laplace transform and association of variable theorems to the 

Modal Series method. 

• The extension of the Modal Series method to the inclusion of higher order terms in the closed 

form analytical solution 

• The incorporation of the control input function (forced nonlinear response) to the Modal Series 

method 

• The introduction of the definition of nonlinear transfer function to the power systems analysis, 

which is derived from the higher order terms of the Modal Series when the nonlinear system is 

subject to a forced input (control function) response. 

• The study of nature of power systems oscillations using the Modal Series method when the power 

system experiments a short time duration disturbance. 

• The study of power systems that incorporate the UPFC device, analyzed by the Modal Series 

method and the assessment of nonlinear oscillations contributions. 
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1.6 THESIS OUTLINE 

This doctoral thesis is organized as follows: 

• In this Chapter and extensive description of the state of art related to the Normal Forms and Modal 

Series methods contributions has been given. Justification of this doctoral research has been 

remarked, as well as the main goals and contributions followed in this research. 

• In the Chapter 2, the Normal Forms method is briefly reviewed, in addition to the revisit of the 

Modal Series method. Both methods are simulated and exemplified by a nonlinear benchmark 

system, for which the validation of initial conditions is tested. The main differences, advantages 

and disadvantages of both methods are emphasized. 

• In the Chapter 3, the Modal Series method is redefined when the multidimensional Laplace 

transform and associations of variables are applied to get the closed form solution of a nonlinear

dynamic system, for the case of an unforced response. The method is exemplified through the 

application to a simple power system (synchronous machine-infinite busbar); the procedure 

followed to incorporate the higher order terms in the Modal Series are described as well. 

• The Chapter 4 is focused on the development of Modal Series method for the case of forced 

oscillations response incorporating the nonlinear transfer function definition. An analytical 

nonlinear system and a couple of low scale power system are utilized to exemplify the ability of 

the proposed extension. 

• In the Chapter 5 the multimachine power system modeling used along the thesis is described in 

detail. 

• The Chapter 6 is oriented to the detailed analysis of numerical applications of the Modal Series 

method to the study of two known test power systems. Emphasis is given on the contributions of 

nonlinear terms to the modal analysis and frequency contributions to power system oscillations. 

• Chapter 7, incorporates the study of the UPFC, in which the usefulness of the Modal Series 

method for the assessment of nonlinear oscillations is described. 

• Finally, in the Chapter 8 conclusions remarks and suggestions for future research work are given. 
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Equation Chapter 2 Section 2 

22  
TTOOOOLLSS  FFOORR  TTHHEE  AANNAALLYYSSIISS  OOFF  

NNOONNLLIINNEEAARR  DDYYNNAAMMIICC  SSYYSSTTEEMMSS  
 
 

The dynamic of nonlinear systems has been determined by different strategic tools of analysis. 

Based on the main characteristics provided by the modal analysis, other alternatives can be described, 

such as Normal Forms and Modal Series methods. This chapter describes in detail both methods, 

including the characteristics given by modal analysis. Nonlinear interaction, participation factors, 

nonlinear interaction indices are familiar concepts related with the scope of modal analysis and 

extended to the nonlinear analysis. 

 

 

2.1 BACKGROUND ON NONLINEAR METHODS 

The main idea followed by the methods which assume nonlinear contributions in nonlinear systems 

is based on considering such nonlinearities through either linear or nonlinear transformations from the 

original system. The underlying idea of Normal Forms theory is to find an analytical change of 

coordinates with the fixed point shifted to the origin such that the vector fields becomes simpler to 

study in terms of new variables [Arroyo 2007]. 

Dynamic formulation in power systems has been carried-out by sets of nonlinear differential 

equations, which are in general, autonomous systems. Consider the set of nonlinear differential 

equations, where n is the number of state variables, that is, 

   ( )1 2, , ,j j nx f x x x=    1, 2, ,j n=         (2.1) 

Using matrix notation, (2.1) can be written as, 

     ( )=x f x          (2.2) 

The equilibrium points for Equation (2.2) must satisfy the equilibrium condition [Kundur 1994], 

     ( )0 0=f x          (2.3) 

where x0 is the state vector located at the equilibrium point 

If functions fi ( 1, 2, ,i n=  ) are linear, then the system is linear itself. A linear system has just one 

equilibrium point (conditioned to the existence of a non-singular state matrix). For nonlinear systems, 
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more than one equilibrium points exist which describe the behavior of the system dynamics and 

therefore provides important information concerning the system stability. 

 

 

2.2 LINEARIZATION PROCESS 

Due to the difficulty involved on estimating the nature of nonlinear power systems represented by a 

set of nonlinear differential equations of the form given by Equation (2.2), it is common to simplify the 

nonlinear system through the Taylor series expansion. 

Being xsep an stable equilibrium point, so that according to the condition previously established by 

(2.3), the general form of Taylor series expansion from a n state variables function 

[ ]T
nxxxx ′′′= ,,, 21   for a small deviation or perturbation 1 2, , , nx x x∆ ∆ ∆  of the system described 

by (2.1) is 
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     (2.4) 

Expressing in matrix form, Equation (2.4) takes the form, 

   ( )1

2i O= + + 3T i
ix A x x H x x          (2.5) 

( )O
3

x  represents the residual terms of third order and higher. 

With 1, 2, ,i n=  , and 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1
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2 2

1 2

1 2
sep

n

n

n

n n n

n

f f f

x x x

f f f

x x x

f f f

x x x
=

 ∂ ∂ ∂
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 ∂ ∂ ∂
 

= ∂ ∂ ∂ 
 
 
 ∂ ∂ ∂
 
∂ ∂ ∂  x x

x x x

x x x

A

x x x





   



 Jacobian Matrix       (2.6) 
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( ) ( ) ( )

1 1 1 2 1

2 1 2 2 2

1 2
sep

j

i i i

n

i i i
j

n

i i i

n n n n

f f f

x x x x x x

f f f

x x x x x x

f f f

x x x x x x
=

 ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂
 

= ∂ ∂ ∂ ∂ ∂ ∂ 
 
 
 ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂ ∂  x x

x x x

x x x

H

x x x


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   



 Hessian Matrix        (2.7) 

So far the system is linearized around a steady state equilibrium point. If a higher complex system is 

considered, it implies the addition of terms corresponding to third and higher order terms. Thus, the 

complexity of the model increases. In this research, the Taylor series is considered up to third order 

terms. 

 

2.3 JORDAN CANONICAL FORM 

The Taylor series expansion of the system given by (2.5) is still of nonlinear nature and 

cumbersome to analyze. For small signal stability analysis in power systems, it may be assumed that 

the network is located in the vicinity of an equilibrium steady state point. As a result of state variables 

coupling, it is difficult to separate those parameters with a significant influence on motion [Kundur 

1994]. To eliminate this coupling, consider the linear transformation, 

     =x Uy           (2.8) 

Being ( )1 2, , , nλ λ λ  distinct eigenvalues of the state matrix A and 

( ) ( )1 2 1 2,, , , , , ,n nU U U V V V= =U V   the corresponding right and left eigenvectors, respectively, are 

normalized in such a way that =VU I . Substituting (2.8) in (2.5), the system is converted to its Jordan 

Canonical form, which is located around a steady state equilibrium point. Thus, 

   ( )3
O= + +T TUy AUy U y HUY x  

   ( )O= + 3-1 -1 T Ty U AUy + U U y HUy x    

Assuming, 

[ ]1 2, , , ndiag λ λ λ−= = =1 TΛ U AU V AU     

   ( ) ( )3

2 O= + +yΛy F y y          (2.9) 

where, 
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    ( )
2

1
2

1

2
n

y −

 
 
 =
 
 
  

T T 1

T T

T T

y U H Uy

y U H Uy
F U

y U H Uy


      (2.10) 

Or [Thapar et al. 1997], 

    ∑∑
= =

+=
n

k

n

l
lk

j
kljjj yyCyy

1 1

λ   1,2, ,j n=     (2.11) 

where

    [ ] [ ]∑
=

==
n

p

j
kl

T
jp

j CVC
12

1
UHU PT      (2.12) 

also, 

    ∑∑∑
= = =

=
n

p

n

m

n

o
olmk

p
mo

T
jp

j
kl UUHVC

1 1 12

1
     (2.13) 

 

Referring to Equation (2.11), the first term is linearly coupled, however, the second term is coupled 

as well. Coefficients j
klC determine the size of contribution from mode k and l to the dynamic equation 

that governs the behavior of mode j [Barocio et al. 2004]. 

 

 

2.4 NORMAL FORMS. THEORETICAL BACKGROUND 

 

2.4.1 Nonlinear Coordinates Transformation 

According to Poincaré’s Theorem, a power series, like that shown by (2.11), can be reduced to its 

linear form around at steady state equilibrium point applying a nonlinear transformation: If the 

eigenvalues obtained from the state matrix are non-resonant [Kshatriya et al. 2005], the normal 

transformation is given by [Thapar et al. 1997], 

    ( )zhzy 2+=         (2.14) 

which can be expressed as, 

    ∑∑
= =

+=
n

k

n

l
lk

j

kljj zzhzy
1 1

2       (2.15) 

where 2h  is a function valuated on a complex vector, whose components are second order 

homogeneous polynomials with coefficients obtained in such a way that the system given by (2.15) is 
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as simple as possible. Vector nCz∈  denotes the new coordinate system, so called Normal Form 

system [Barocio et al. 2004]. 

Substituting (2.15) in (2.11) yields, 

   ( ) ( )[ ]zzDhIzzDhzy  22 +=+=  

   ( )[ ] ( ){ } ( )( )zhzFzhzzzDhI 2222 +++Λ=+   

   ( )[ ] ( ) ( )( ) ( ){ }3

222
1

2 zOzhzFzhzzDhIz +++Λ+Λ+= −
 (2.16)

where ( )3
zO

 
is an expression that contains residual terms of third and higher order. Furthermore, 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )


























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

n

nnn

n

n

z

zh

z

zh

z

zh

z

zh

z

zh

z

zh
z

zh

z

zh

z

zh

zDh








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2

2

2

1

2

1

2

1

1

1

2       (2.17) 

Considering that, 

    ( )( ) ( )zDhIzDhI 2
1

2 −≈+ −
      (2.18) 

The Normal Form system is described as, 

  ( ) ( ) ( )( ) ( )3

2222 zOzhzFzzDhzhzz +++Λ−Λ+Λ=      (2.19) 

Normal Forms theory indicates that resonant terms may be always eliminated from the Normal 

Form [Barocio et al. 2004]. The linear transformation coefficients are given by, 

    
jlk

j
klj

kl

C
h

λλλ −+
=2        (2.20) 

If ikj λλλ += , it means that a modal resonance is presented and the corresponding nonlinear 

terms can not be eliminated. 

Thus, the system (2.19) can be represented in the form, 

    ( )3
zOzz jjj += λ        (2.21) 

If higher order terms are not considered, the time evolution of state variables in Normal Forms may 

be expressed as, 

t
jj

jezz λ
0=         (2.22) 

where 0jz  is the initial condition of variable jz  in Normal Form. 
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The Normal Forms approximation (2.22) results in a simplified representation of the original 

system, where the answer is still a function of eigenvalues from the original system, and where it is 

possible to point out that the final solution is obtained as a minimal system (Normal Form). A critical 

aspect in the determination of Normal Forms transformation coefficients and thus in the system 

linearization is the resonance condition given by, 

0=−+ jik λλλ        (2.23) 

If this resonance condition is met, it may be said that the system is involved on a modal resonance 

problem; therefore, it cannot be diagonalized. That means, it is not possible to determine a Normal 

Form from the original system. Factors that influence the modal resonance have been of special interest 

and previously analyzed [Dobson 2001]. 

 

2.4.2 Approximate Solution of the Normal Forms 

Results may be expressed in their original domain by using the inverse transformations of the 

Normal Forms. Hence substituting ( )2y z h z= +  and x Uy=  in (2.15), results in, 

  ( ) ( )∑∑
= =

++=
n

k

n

l

t
lk

j

kl

t
jj

lkj ezzhezty
1 1

0020
λλλ

 
  1,2, ,j n=    (2.24) 

  ( ) ( )∑ ∑∑∑
= = =

+

=








+=

n

j

n

k

n

l

t
lk

j

klij

n

j

t
jiji

lkj ezzhUezUtx
1 1 1

002
1

0
λλλ

  1,2, ,i n=    (2.25) 

where initial conditions on spaces y and z are obtained solving the set of nonlinear algebraic equations, 

  ( ) ( ) ( )1
0 0 0 2 0 0 0 2 0 0f z y z h z U x z h z−= − − = − − =      (2.26) 

It is important to note from Equations (2.24) and (2.25) that second order nonlinear coefficients 

j
klh2  and initial conditions 0 0,k lz z  are very important to determine the total response of the nonlinear 

systems for a particular state. The product 002 lk
j

kl zzh  is a measure of the extension for which the 

system is acting as a nonlinear one. Interpreting solutions in the Normal Forms method, emphasis is 

necessary to be given to the next constraints [Barocio et al. 2004]: 

i) A simpler Normal Form is obtained removing elements from a finite series; inverse of a 

truncated series may result in an error on the initial conditions from the new truncated system. 

ii) The system expressed by (2.26) may exhibit multiple solutions. 

 

An exact prediction of the system response to a given perturbation requires of precise initial 

conditions calculation for each framework of the system. This implies that behavior prediction of the 

nonlinear system may be a hard and challenging work. 
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Some other important observations based on the expressions (2.24) and (2.25) are next resumed 

[Thapar et al. 1997], 

• The solutions are obtained in terms of initial conditions previously fixed in the system, and 

they characterize the time domain evolution in terms of coefficients 2h  and the modal 

structure. 

• Higher order terms are independent of mode combinations ( lk λλ + ), and the size of 

coefficients 2h  with initial conditions zk0, zl0, determine the effect of modal combination of the 

final solution 

• Product 002 lk
j

kl zzh  referred as coefficient interaction, determines the effect of higher order 

terms in the solution. 

The method of Normal Forms is schematically illustrated in Figure 2.1, which shows the steps 

needed in order to transform the original nonlinear system through the linear and nonlinear 

transformations to the final Normal Form. 

It is well known that the application of the method to obtain the initial conditions of the Normal 

Forms method may be cumbersome and sensitive to convergence problems, since it is based on a 

numerical solution of a set of nonlinear algebraic equations (Newton methods based on optimization 

process are preferable); the nonlinear transformation may have multiple solutions of z0 for a given y0 

and the convergence value will depend on the assumed initial condition [Barocio et al. 2004]. 

 

 

Figure 2.1 Flow chart showing the steps followed for the Normal Forms method 

 

Original System Nonlinear 
Differential Equations

Taylor series expansion 

J ordan Canonical 
Form 

J ordan Transformed System 

Nonlinear Transformation 

Normal Form 
system 

0z  Calculation ( )2h z

( )xfx =

( )3iT
i xxHxxAx Oi ++=

2
1



Uyx =

( )yFΛyy 2+=

∑∑
= =

+=
n

k

n

l
lk

j
kljjj yyCyy

1 1

λ

[ ] [ ]∑
=

==
n

p

j
kl

PTT
jp

j CUHUVC
12

1

jjj zz λ=

( )zhzy 2+=
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2.4.3 Determination of Initial Conditions for the Normal Forms Method 

Due to importance of accurate determination of initial conditions in the method of Normal forms, 

which involves the calculation of state variables depending on whether linear and nonlinear 

transformation x, y and z are to be used, several strategies have been developed in order to calculate 

and validate the initial conditions under different constraints [Thapar et al. 1998], [Barocio et al. 

2004], [Kshatriya et al. 2005]. One of the main difficulties related to the determination of such initial 

conditions is the combination of linear and nonlinear trnasformations. A critical aspect for the 

calculation of approximate analytical solutions closer to system behavior depends on z0 initial 

conditions. Such initial conditions determination requires of the numerical solution of a set of 

nonlinear algebraic equations with complex coefficients [Barocio et al. 2004]. Conventional Newton 

methods commonly utilized to solve nonlinear equations have fast convergence speed properties but 

they require an initial point as nearest as possible to the solution point. Otherwise, a case of non-

convergence problems is presented with these methods. Besides, the system may present multiple 

solutions that make difficult to interpret the final solution. 

A methodology proposed by [Thapar et al. 1998] to obtain z initial conditions is based on the 

following procedure: close form solutions represent the evolution in the time domain of Jordan form 

variables and state variables at the postfault period. To obtain these solutions, initial conditions in 

terms of z variables must to calculated. 

1. Updated variables clX are obtained at the end of the disturbance.

2. Stable equilibrium point at postfault conditions is obtained with sepX  

3. Initial conditions in terms of state variables with respect to the equilibrium point are 

determined as 0 cl sepX X X= −  

4. These initial conditions are transformed, in order to get the initial conditions in Jordan form 

variables, that is, 1
0 0Y U X−=  

5. The nonlinear equations 

( ) ( )0 0 2 0 0 0f z z h z Y= + − =  

are numerically solved to obtain initial conditions for 0jz . This is one of the most important 

steps in the application of the Normal Forms method when it is applied to power systems. 

 

It is well known that sometimes this method to obtain initial conditions is not feasible and it is 

prompt to convergence problems since the nonlinear transformation has multiple solutions of 0z for a 
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given 0y , and this convergence calculated value depends on the 0z  initial assumption [Barocio et al. 

2004]. 

 

2.4.4 Nonlinearity Indexes 

The rate of the transformed system nonlinearity has been proposed by [Thapar et al. 1997]. It is 

based on comparing the linear term obtained from linear equations solution against the approximate 

solutions obtained when second order terms are included. The interaction coefficient is defined as, 

    002 kj
i

jk zzh         (2.27) 

which quantifies the effects on the dynamic solution when second order terms are included. 

In order to consider the nonlinear effect, according to the proposal by [Thapar et al. 1997], a 

comparison of the linear term from (2.22) and the linear term calculated from the Jordan canonical 

form is calculated. Difference between both solutions is given by, 

    ( ) ( )( )0 0 j t
j jy z eλ−        (2.28) 

This term represents the difference between the linear part of the approximate solution with respect 

to the linear solution. Thus, in Equation (2.25) second order terms are added in order to include effects 

due to nonlinearities or difference between terms, where this linearity is introduced for the expression 

described by the Equation (2.28). This result in, 

   ( ) ( )( ) ( )
2 0 0

1 1

0 0 j k l

n n
t tj

j j kl k l
k l

y z e h z z eλ λ λ+

= =

− +∑∑      (2.29) 

According to Equation (2.29) two approximations may be performed [Thapar et al. 1997]: 

a) The largest magnitude term is considered and it is assumed that all other terms are small compared 

to the largest one. 

b) It is also noted that j
klh2  is large if jik λλλ ≈+ . 

Hence, the nonlinear interaction index 1I for the mode j is given by, 

   ( ) ( ) ( ) ( )2 0 0
,

1 0 0 max j
j j kl k l

k l
I j y z h z z= − +      (2.30) 

where ( )2 0 0
,

max j
kl k l

k l
h z z  is complex when 2 0 0

,
max j

kl k l
k l

h z z  is presented; yj(0) and zj(0) are the Jordan 

canonical form and Normal Forms variables respectively, valuated at time 0t += . Index 1I  provides a 

rate of the effect of nonlinear terms to the solution, comparing the nonlinear solution with respect to 

the second order solution [Vittal et al. 1998]. A normalized index of nonlinear interaction is given by 

[Barocio 2003] which relates the index 1I  to mode j, hence, 
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    ( )
( ) ( ) ( )

( )
2 0 0

,
0 0 max

1
0

j
j j kl k l

k l

j

y z h z z
I j

z

− +
=     (2.31) 

Nonlinear interaction index 2I  for mode j has been defined as, 

    ( )
( )

( )
2 0 0

,
max

2
0

j
kl k l

k l

j

h z z
I j

z
=       (2.32) 

Index I2 determines either nonlinear effects due to second order terms, which indicate a strong 

modal interaction, or second order terms that affects initial solution in variables z, that indicate the 

dominant fundamental mode [Vittal et al. 1998]. Another index of nonlinearity 3I  has been proposed 

based on the theory of nonlinear distortion interference criteria in communications systems [Barocio 

2003], that is,  

    ( )
( )

( )

2

2 0 0
13

0

n n
j
kl k l

k l k

j

h z z

I j
z

= ==
∑∑

     (2.33) 

2.4.5 Participation Factors 

If the kth state variable is excited whose magnitude is unity, [ ]0,,0,1,0,,00 =x  yields 

    

( ) ( )
( ) ( )

( )

1

0 0

0

T
i ik i

T
i ik

t t

y V x

y V

−=

=

∴ =

y U x

 

That is, 

    ( ) ( )
1

0 j

n
t

i ij j
j

x t U y eλ

=

=∑  

    ( )
1

j

n
tT

i ij ik
j

x t U V eλ

=

=∑        (2.34) 

or, 

    ( )
1

j

n
t

i ki
j

x t p eλ

=

=∑        (2.35) 

Element T
ki ki ikp U V=  is called participation factor. This is a size of relative participation of the kth 

state variable in the ith mode and viceversa [Pérez-Arriaga et al. 1982]. Since kiU measures activity of 

xk in the ith mode and ikV  considers the contribution to this activity to the mode, the product kip  

measures the complete participation. 

In matrix form, participation factors matrix is given as, 
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11 11 12 21 1 1

21 12 22 22 2 2

1 1 2 2

T T T
n n

T T T
n n

T T T
n n n n nn nn

U V U V U V

U V U V U V

U V U V U V

 
 
 =
 
 
  

P





   



     (2.36) 

 

2.5 THE INITIAL MODAL SERIES METHOD 

Nonlinear modal analysis has been extensively used to study system dynamic behavior in a variety 

of nonlinear systems events. In this section, the Modal Series method will be summarized and the main 

results obtained on modal analysis reported. Their advantages as well as shortcomings are discussed, 

parting from the work reported in [Pariz et al. 2003] and [Schanechi, et al. 2003], where the concept of 

Modal Series analysis for the stressed and nonlinear power systems was introduced. The main 

objective of this section is to revisit the basic concepts on this field, since they represent the basis of 

further developments, carried out in this doctoral research. 

 

2.5.1 Taylor Series Expansion and Jordan Canonical Form 

Let us assume a nonlinear power system that can be modeled by a set on nonlinear ordinary 

differential equations of the form, 

     ( )=x f x                           (2.37) 

where x is an n-dimensional vector of system states, and : n nR R→f  is a smooth vector field. The 

system is linearized expanding (2.37) in Taylor series around the initial equilibrium point, sepX , 

resulting in,  

   1 1 1 1 1

1 1

2 6

n n n n n
i i

i i kl k l pqr p q r
k l p q r

x A X H x x P x x x
= = = = =

= + + +∑∑ ∑∑∑      (2.38) 

where  Ai is the ith row of the Jacobian matrix, being ( )
sepX

f
X

∂= ∂A ; 
2

2

sep

i i

X

fH
X

 ∂=  ∂ 
is the 

Hessian matrix, 
3

3

sep

i i

X

fP
X

 ∂=  ∂ 
 and so on. Also, the system has n distinct eigenvalues denoted as 

1 2{ }nλ λ λ  with associated right and left eigenvectors U and 1−=V U , respectively. Then, the 

linear change of coordinates =x Uy  transforms the system in Equation (2.38) into the equivalent set of 

differential equations of the form, 

1 1 1 1 1

n n n n n
j j

j j j kl k l pqr p q r
k l p q r

y y C y y D y y yλ
= = = = =

= + + +∑∑ ∑∑∑  (2.39)
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with 1,...,j n= , and

    
1

1

2

n
j T T P

kl jp
p

C V U H U
=

 =  ∑       (2.40) 

    
1 1 1

1

6

n n n
j j P Q R
pqr pqr p q r

P Q R

D P V V V
= = =

= ∑∑∑       (2.41) 

where P
pV  is the pth element of the Pth left eigenvector [Schanechi, et al. 2003]. 

 

 

2.5.2 Modal Solutions 

Several techniques to obtain closed form analytical solutions have been proposed in the literature, 

such as the whole contributions earlier described in detail in Chapter 1. This section is focused on the 

approach observed by [Pariz et al. 2003] and [Schanechi, et al. 2003]. 

Hence, following the Modal Series approach some considerations are necessary. Let the solution of 

(2.39) for initial condition 0Y  assume that the system solution to (2.39) can be expressed in the form 

[Schanechi, et al. 2003], 

   ( ) ( ) ( ) ( )1 2 3
j j j jy t f t f t f t= + + +      (2.42) 

with initial conditions, 

( ) ( ) ( ) ( )1 1 1 1
1 2 00 0 , 0 , , 0

T

Nf f f f Y = =   and ( )0 0k
jf =  for each { }1, 2, ,j N∈   and 1k > , 

where 

  

( )

1 1

2 2 1 1

1 1

3 3 1 2 2 1 1 1 1

1 1 1 1 1

j j j

n n
j

j j j kl k l
k l

n n n n n
j j

j j j kl k l k l pqr p q r
k l p q r

f f

f f C f f

f f C f f f f D f f f

λ

λ

λ

= =

= = = = =

=

= +

= + + +

∑∑

∑∑ ∑∑∑









(2.43)

Now, the method conveniently takes the procedure obtained by the method of small parameters. 

That is, the system is expanded considering a convenient scalar parameter ε such that 0Yε ϑ∈ , with 

ϑ υ ψ= ∩ , ψ  denotes the convergence of Maclaurin expansion of ( )0 ,jy Y t  and NCυ ⊆ . All these 

variables represent the constraints involved on the necessary linear mapping to solve the system (2.39). 

From this approach, it may be said that Modal Series Method could be used as a formal method in

circumstances that the convergence conditions are not met [Schanechi, et al. 2003], where the 

conditions are defined when the small parameter is small enough. 
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Equations (2.43) can be conveniently manipulated using the Laplace transform. Taking a two-

dimensional Laplace transform of (2.43) we have 

  ( ) ( )
( ) ( )

1
01 0j j

j

j j

f y
f s

s sλ λ
= =

− −
         (2.44) 

  ( ) ( ) ( ) ( )2 1 1
1 2 1 2

1 1 1 2

1
,

n n
j

j kl k l
k l j

f s s C f s f s
s s λ= =

=
+ −

∑∑      (2.45) 

where jλ are the eigenvalues of the Jordan matrix. 

These solutions are then transformed back to the original coordinates using the inverse Laplace 

transform. Taking the inverse Laplace transform on (2.44), it yields 

( ) ( )1 1
00 j jt t

j j jf t f e y eλ λ= =        (2.46) 

and from (2.45), 

( ) ( ) ( ) ( )2 1 1

1 1

0 0
n n

j j
j kl k l kl

k l

f t C f f S t
= =

=∑∑  

or 

   ( ) ( )2
0 0

1 1

n n
j j

j kl k l kl
k l

f t C y y S t
= =

=∑∑        (2.47) 

where, 

( ) ( )( )1
jk l ttj

kl
k l j

S t e eλλ λ

λ λ λ
+= −

+ −
  for ( ) 2, ,k l j R∉  

( ) j tj
klS t teλ=  for ( ) 2, ,k l j R∈  

Solving (2.39) for ( )jy t up to order two leads to, 

   ( ) ( ) ( )1 2
j j jy t f t f t= +  

   ( ) ( )0 0 0
1 1

j

n n
t j j

j j kl k l kl
k l

y t y e C y y S tλ

= =

= +∑∑  

   ( ) ( )
0 2 0 0 2 0 0

1 1 1 1

j j k l

n n n n
t t tj j

j j kl k l kl k l
k l k l

y t y e h y y e h y y eλ λ λ λ+

= = = =

 
= − + 
 

∑∑ ∑∑    (2.48) 

Then we have 

   ( ) ( )modal modal
, ,

1 1 1

j k l

n n n
t t

i i j i kl
j k l

x t L e S eλ λ λ+

= = =

= +∑ ∑∑       (2.49) 

where, 

   modal
, 0 2 0 0

1 1

n n
j

i j ij j ij kl k l
k l

L u y u h y y
= =

 
= − 
 

∑∑   
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   modal
, 2 0 0

1 1

n n
j

i kl ij kl k l
k l

S u h y y
= =

=∑∑  

In the latter expression, the second-order nonlinear coefficients 2 j
klh  are defined as, 

    2

j
j kl
kl

k l j

C
h

λ λ λ
=

+ −
       (2.50) 

While these methods can be extended to multidimensional systems, numerical procedures may be 

difficult to apply. Moreover, the extension to higher-dimensional, forced oscillations is not 

immediately obvious. As a result, the method can be cumbersome and difficult to apply to general 

nonlinear systems with arbitrary excitations. 

In what follows, we extend and generalize this approach to deal with multidimensional systems, 

considering the case of forced system responses. Emphasis is given to the rigorous determination of 

analytical closed form approximations to represent the system behavior. 

In the notation above the upper number indicates the order associated to the term; i.e. at the y1
j, 

number 1 means the first order terms of yj variable, whilst in the y2
j number 2 equals to the second 

order terms of yj variable, and so on. 

 

2.5.3 Initial Conditions in the Modal Series Method 

One of the main advantages observed by the Modal Series method with respect to the Normal 

Forms method is that it does not need any nonlinear transformation for the calculation of the closed 

form solution of the nonlinear system. 

This situation is reflected on the determination of the initial conditions over the different references 

in both methods. For instance, the Normal Forms method requires the procedure detailed earlier in 

Section 2.4.3. Initial conditions established in the original coordinates 0x are transformed to the Jordan 

canonical variables 0y  and thus, the nonlinear variables 0z  are calculated according to the numerical 

procedure above described. 

Thus, the initial conditions in the Modal Series method are only defined by the linear transformation 

given by (2.8) as, 

    1
0 0

−=y U x         (2.51) 

which clearly shows that there is no need any numerical procedure to determine the initial state 

variables in the new referenced system. That means that the initial conditions only depends on the right 

eigenvectors characteristics. 
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2.6 PRINCIPAL DIFFERENCES BETWEEN NORMAL FORMS AND 

MODAL SERIES METHODS 

Some differences between Normal Forms and Modal Series methods are of concern. These 

differences will be pointed-out here using an example based on a second order nonlinear system. 

Consider the second order nonlinear system given by, 

     
( )
( )

1 1 1 2

2 2 1 2

,

,

x f x x

x f x x

=

=




        (2.52) 

with stable equilibrium points defined as, 

     
( )
( )

0 0
1 1 2

0 0
2 1 2

, 0

, 0

f x x

f x x

=

=
        (2.53) 

which is the general representation of the nonlinear system that will be developed over the next 

sections applying the Normal Forms and the Modal Series methods. 

 

2.6.1 Normal Forms Solution 

Based on equation (2.39) which links the relationship between the transformed variables with 

Jordan canonical form, the system (2.52) is linearized around stable equilibrium point defined by 

(2.53), resulting on, 

    ( )= + 2yΛy f y         (2.54) 

where, 
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here j
klC  is given by(2.40). 

Applying the Normal Forms transformation given by (2.54) to the special case of a second order 

nonlinear system, with [ ]1 2

T
z z z=  and ( )2h z  defined as a complex polynomial vector, it gives, 
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At this step, the calculation of z is achieved with the approach described by (2.55). Finally, the 

Normal Forms solution is obtained as, 
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2.6.2 Modal Series Solution 

In order to solve the nonlinear system by the Modal Series method, the Jordan canonical form 

transformed system is applied, e.g. from (2.54) we obtain, 

   ( ) ( ) ( )1 2
j j jy t f t f t= +         (2.60) 

The full solution obtained for the second order nonlinear system is given by, 
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where this time domain solution is carried-out with a function of the Jordan variables; that is, 
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        (2.63) 

 

2.6.3 Summary of Main Differences Between Normal Forms and Modal Series Methods 

• Both methods are based on representing a nonlinear system as a linear one, through Taylor 

series expansion around a stable equilibrium point. 

• The Normal Forms method needs a pair of transformations: from original variables x, applying 

(2.8) the coordinates y are obtained, and then the nonlinear transformation given by (2.14) 

generates the uncoupled and minimal system, in terms of z variables. The Modal Series method 

only needs the transformation of x variables into the y variables. This step considerably reduces 

the computational effort. 
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• The Modal Series method is a potential alternative to the system solution even when a modal 

resonance is presented in the system [Schanechi, et al. 2003]. 

• The approach for obtaining a solution of the z variables (2.14) is not necessary in the Modal 

Series method. This represents a significant reduction in the numerical calculations since a set 

of nonlinear algebraic equations is usually a hard problem to solve. 

 

 

2.7 CASE STUDY. FOURTH ORDER BENCHMARK NONLINEAR SYSTEM 

2.7.1 Nonlinear Model Characteristics 

The test system proposed in [Dobson 2001] is used to carry-out a linear iterative study of the results 

obtained through the application of both methods, i.e. Normal Forms and Modal Series respectively. 

The system consists of four nonlinear differential equations, which have the nonlinear condition 

handled by the ε constant. 
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     (2.64) 

The Hessian Matrix is, 
0i

jkH =  except 2
11H ε=        (2.65) 

and the eigenvalues are 

   1 21 , 1i iλ µ λ µ= − − + = − − −      (2.66) 

   3 41 , 1i iλ µ λ µ= − + + = − + −       (2.67) 

The eigenvalues have a strong resonance in 1 i− +  when 0µ =  [Dobson 2001]. Therefore, the 

parameter μ is assumed 0µ ≠  to diagonalize the state matrix A of (2.64). 

Hence, the right and left eigenvectors are, 

1 1

1
1 12 1

i i

i i

i i

i i

µ µ µ µ

µ
µ µ µ µ

− 
 
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U       (2.68) 
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Applying Jordan canonical form to the system (2.64) this is transformed into, 
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with    
( )

µµ
ε
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1 1i
i
jkC        (2.71) 

   
( )

( ) µµλλλ
ε

+−+
−

=
+

128

1 1

2

ikj

i
i

jkh       (2.72) 

Equations (2.68)-(2.72) are easily obtained using symbolic applications. For this case, Matlab® 

symbolic toolbox was used, and it is extensively applied in further case studies tested along this work. 

 

2.7.2 Experiment Design 

The main goal of this experiment is to demonstrate that the selected initial condition for the analysis 

may affect the final response. This constraint of initial conditions has been studied in detail in 

[Kshatriya 2003] and [Kshatriya et al. 2005] through determining error indexes defined under some 

validation criteria when the Normal Forms method is used. Our research only recalls the main idea 

from those mentioned works without emphasizing on these indexes. Based on the initial condition 

given by (2.73) and following the procedure described in Section 2.4.3, initial conditions for Jordan 

variables 0y  and therefore, for z variables are obtained. 

Before applying Normal Forms and Modal Series, an arbitrary initial condition is selected 

[Kshatriya 2003], 

    [ ]T9.09.09.09.0=x       (2.73) 

with parameters 0.65µ =  and 2.5ε = . 
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A comparison between Normal Forms, Modal Series and the so called direct numerical simulation 

is performed. This direct numerical simulation is conducted through the numerical solution of the set of 

nonlinear differential equations given by (2.64), solved by 4th order Runge-Kutta method. 

The experiment is designed as follows: 

• The system starts its simulation at instant 0t = seconds, with initial conditions given for x0 

according to (2.73). 

• The first step is at the time instant 0.5t = seconds. The state variables are calculated in this time 

instant and valuated, so obtaining the new initial conditions that will be used by the Normal 

Forms and the Modal Series methods.  

• The second step is performed at 1.0t =  second, again the state variables are calculated and used 

as the initial conditions of the Normal Forms and the Modal Series methods. This imply that the 

simulation with the nonlinear methods starts in the time instant snapshoted ( 0.5, 1.0, 1.5, , 5  

seconds). 

• The subsequent time increments are valuated every 0.5 seconds up to 5 seconds, saving their 

values at each instant. 

 

 
Figure 2.2. Time response comparison of NF and MS methods respect of Numerical solution for dynamic system, when 

the initial condition is snapshoted from 0t =  in time instant 0 sect =  
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2.7.3 Simulation Results 

Every figure is showing the four state variables involved in the experiment, i.e. 

( ) ( ) ( ) ( )1 , 2 , 3 and 4x x x x , which have different dynamic. Thus, different initial conditions are 

presented when the simulation is evolving with time, observed when Normal Forms and Modal Series 

method are applied. 

 

 
Figure 2.3. Time response comparison of NF and MS methods respect of Numerical solution for dynamic system, when 

the initial condition is snapshoted from 0t =  in time instant 0.5 sect =  
 
 
Figures 2.2 to 2.10 describe in detail this effect. The evolution of each state variable according to 

the process above described is shown. The experiment starts at 0 sect = ; the state variables calculated 

by Normal Forms and Modal Series are compared against those obtained from the full numerical 

solution. Differences in both amplitude and phase angles are observed; nevertheless, the waveforms 

obtained through Normal Forms show the worse approximation, being their estimation the highest 

damping for all state variables (Figure 2.2). A quite similar behavior is observed in Figure 2.3 where 

the snapshot is at 0.5 sect = . There are no important changes in the approximation of Normal Forms 

and Modal Series with respect to the direct numerical solution. 

Now the experiment continues to the next snapshots at 1.0 sect =  and 1.5 sect = . This is shown 

in Figures 2.4 and 2.5, where a good agreement can be observed between the Normal Forms and Modal 
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Series solutions, but still denoting differences in amplitude and phase angle with respect to the direct 

numerical approximation. Over the instant time snapshot 1.5 sect =  the Modal Series solution is 

closer to the numerical full solution leaving with more notorious differences in amplitude and phase 

angle to the solution obtained with the Normal Forms method. This situation is presented for the four 

state variables of the nonlinear system. 

At instant 2.5 sect =  (Figure 2.6) the state variables obtained with Modal Series is nearer to the 

direct numerical solution. At 2.5 sect =  a large peak is obtained for the state variables using the 

Normal Forms method. After that, the time evolution is again closer to the rest of variables.  

 

 
Figure 2.4. Time response comparison of NF and MS methods respect of Numerical solution for dynamic system, when 

the initial condition is snapshoted from 0t = in time instant 1.0 sect =  
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Figure 2.5. Time response comparison of NF and MS methods respect of Numerical solution for dynamic system, when 

the initial condition is snapshoted from 0t =  in time instant 1.5 sect =  
 

 
Figure 2.6. Time response comparison of NF and MS methods respect of Numerical solution for dynamic system, when 

the initial condition is snapshoted from 0t =  in time instant 2.5 sect =  
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Figure 2.7. Time response comparison of NF and MS methods respect of Numerical solution for dynamic system, when 

the initial condition is snapshoted from 0t =  in time instant 3.5 sect =  
 

 

 
Figure 2.8. Time response comparison of NF and MS methods respect of Numerical solution for dynamic system, when 

the initial condition is snapshoted from 0t =  in time instant 4.0 sect =  
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These sudden increases are mainly due to the numerical calculation of the new approximation of z 

variables in the Normal Forms nonlinear variables, once a Newton method has been applied in order to 

obtain the new approximation. 

The experiment continues for the next time instants snapshots, e.g. 3.5 sect =  and 4.0 sect = . A 

closer agreement between the Modal Series solution and the full numerical solution is observed, in 

both, amplitude and phase angle; mainly for the state variables ( )1x , ( )3x  and ( )4x . The Normal 

Forms approximation is significantly deviated from the rest of trajectories, showing higher amplitude 

and completely different phase angle. These graphics can be observed from Figures 2.7 and 2.8. 

After 4.5t = sec, Figure 2.9 shows that the response of the three methods tends to be identical. 

They eventually reach the same trajectory, when the time is closer to 5=t sec, as noticed from Figure 

2.10. This fact is due to the state variables approach the vicinity of the equilibrium point condition, 

until this is reached at 10t = sec. 

Once the experiment was conducted through the time snapshots given by moving forward the initial 

approximation, it can be concluded that the Normal Forms method is more sensitive to changes in its 

initial approximation, to properly estimate a precise solution of the nonlinear dynamic system.  

 

 
Figure 2.9. Time response comparison of NF and MS methods respect of Numerical solution for dynamic system, when 

the initial condition is snapshoted from 0t =  in time instant 4.5 sect =  
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Figure 2.10. Time response comparison of NF and MS methods respect of Numerical solution for dynamic 
system, when the initial condition is snapshoted from 0t =  in time instant 5.0 seconds 

 
The experiment demonstrated that Modal Series is less sensitive to the changes in initial conditions; 

however, it is important to establish a precise operating point, since the method is linearized around an 

equilibrium point. That means that while the initial estimation is closer to the stable equilibrium point, 

the solution is better approximated. 

 

2.7.4 Change on Initial Conditions 

Selecting a different initial condition, for instance, [ ]0 0.45 0.4 0.4 0.4x = , may be considered a 

better option. Figure 2.11 shows the evolution of state variables under this constraint, where quite 

significant similitude between the responses using Normal Forms, Modal Series and direct numerical 

solution can be inferred. Nevertheless, it can be noticed that there are still considerable differences 

between Normal Forms waveforms, with respect to Modal Series and direct numerical solution 

waveforms obtained for each state variable. Basically the differences are only in amplitude, keeping 

the same phase shifting. 

Different initial conditions for the same experiment may be proposed. Assuming 
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Figure 2.12, where it is clearly observed that all the state variables obtained with the three different 

methods follow identical trajectories with a negligible difference.  

Figure 2.11. State variables response upon initial condition [ ]0 0.45 0.4 0.4 0.4x =  

over time 0t = sec 

 

Figure 2.12. State variables response upon initial condition [ ]0 0.45 0.2 0.2 0.2x =   

over time 0t = sec 
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Hence, it can be said that these initial conditions mean the best starting point under the constraints 

previously defined for this experiment. Some other conditions may be analyzed varying the parameters 

associated to the nonlinear system. 

Figures 2.13 through 2.18 show waveforms of state variables when variations on parameters ε and

µ  are made. Some important comments about this change can be drawn: 

• In Figure 2.13, the nonlinear system parameters 2.5, 0.3250ε µ= =  are varied, which represents 

a reduction on parameter µ , related to the real part of eigenvalues. An increment on the 

amplitude of the waveforms followed by the Modal Series method is observed. 

• However, by keeping unchanged µ  and increasing ε , the Modal Series approximation is closer 

to the direct numerical approximation than the Normal Forms response, as shown by Figure 2.14. 

Thus, it can be inferred that increasing the nonlinear characteristic, the Modal Series method 

approximates more closely the state variables behavior. The same result is observed in Figure 

2.15, where an increase in the nonlinear parameter ε  is combined with a decrease of µ . 

 

 
Figure 2.13. State variables for the case of parameters 2.5, 0.3250ε µ= =  in the fourth order nonlinear benchmark 

system 
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Figure 2.14. State variables for the case of parameters 4.5, 0.65ε µ= =  in the fourth order nonlinear benchmark 

system 
 

 
Figure 2.15. State variables for the case of parameters 4.5, 0.3250ε µ= =  in the fourth order nonlinear benchmark 

system 
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• Figure 2.16 shows the state variables for 4.5ε = , higher than the initial value, with µ  reduced to 

0.065µ = . The Modal Series and the Normal Forms approximation, do not closely follow the 

time evolution of the direct numerical approximation. A similar situation is presented for the case 

denoted by Figure 2.17 where, although ε  is even more larger ( 6.5ε = ), neither the Modal Series 

method nor Normal Forms method can closely follow the trajectory of the direct numerical 

approximation for the assumed range of study. 

• Finally, a substantial increase on ε  to 8.5ε =  combined with a remarkable reduction on µ  to 

0.0065µ = , significantly improves the agreement of Modal Series to direct numerical 

approximation, being the Normal Forms approximation the worse alternative for this case. The 

experiment is shown in Figure 2.18. 

• It can be observed, that under the same selected conditions for the application of the three 

methods, over the range of changes on nonlinear system parameters analyzed through Figures 2.14 

to 2.18, the Normal Forms method gave the worse approximation for all the cases here described, 

when the parameters ε  and µ  are varied as: 4.5, 0.065ε µ= =  (Figure 2.16); 6.5, 0.065ε µ= =  

(Figure 2.17); 8.5, 0.0065ε µ= = (Figure 2.18). 

 

 
Figure 2.16. State variables for the case of parameters 4.5, 0.065ε µ= =  in the fourth order nonlinear benchmark system 
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Figure 2.17. State variables for the case of parameters 6.5, 0.065ε µ= =  in the fourth order nonlinear benchmark system 

 

 
Figure 2.18. State variables for the case of parameters 8.5, 0.0065ε µ= =  in the fourth order nonlinear benchmark 

system 
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2.8 DISCUSSION 

A comparison study of the Normal Forms and Modal Series methods has been studied in this 

Chapter. The main mathematical fundaments and analytical characteristics have been described. It can 

be inferred that both methods in their own fundations have some similarities but each of them keep 

their own characteristics, basically on the linear and nonlinear transformations needed. Normal Forms 

must perform a nonlinear transformation, while Modal Series only needs a linear transformation. Even 

when the Normal Forms method has been successfully used for a wide range of applications in power 

systems, the method of Modal Series may present an important advantage also guided by the absence 

of numerical solution determination of its initial conditions, being this fact a big disadvantage of the 

Normal Forms method. The numerical solution of nonlinear algebraic systems is cumbersome and can 

present convergence problems. 

The application of both methods to the solution of a nonlinear fourth order benchmark system has 

shown remarkable differences along the study, when the initial conditions of both methods were 

changed; also, parameter variations may result in some notorious differences with respect to the 

validation solution obtained by the direct numerical simulation of the nonlinear set of differential 

equations. 
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33  
TTHHEE  MMOODDAALL  SSEERRIIEESS  MMEETTHHOODD  

BBAASSEEDD  OONN  TTHHEE  MMUULLTTIIDDIIMMEENNSSIIOONNAALL  
LLAAPPLLAACCEE  TTRRAANNSSFFOORRMM  

 

 

The method of modal series described in the previous Chapter is revisited here. Some important 

additions on its analytical basis, mainly described by the re-formulation applying the multidimensional 

Laplace Transform and association of variables approach are described in detail. The extension to 

include higher order terms in a systematical way is proposed. Advantages and disadvantages observed 

in the modal series method are pointed out. A detailed application of the methodology to a simple 

synchronous machine-infinite busbar power system is performed. 

 

 

3.1 INTRODUCTION 

The identification of the nonlinear system behavior is an increasingly important area of research, 

with applications in many areas of power system analysis and control. Various methods based on 

modal expansion procedures and perturbation theory have been explored to represent the power system 

nonlinear dynamics following small perturbations. Normal form theory and modal series analysis 

methods have been developed and applied to investigate various aspects of the system dynamic 

response. These methods allow the definition of nonlinear modal coupling indices in terms of the 

structural parameters and can be used to express the system response as a superposition of modal 

responses. A proper estimate of nonlinear modal interaction is essential to accurately predict dominant 

modes and the location and design of system controllers.  

In [Pariz et al. 2003] and [Schanechi et al. 2003], a technique based on modal analysis of the 

perturbation model of the power system was used to investigate nonlinear effects in power system 

dynamics. The main advantage of this method is its simplicity, while some drawbacks arise from the 

need to generalize the method to more complex system representations. 

In this chapter, some aspects behind the underlying theory of modal series methods are critically 

examined. Using an extended modal analysis method and concepts from Volterra series theory, a 
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systematic technique to derive closed-form approximate solutions of a perturbation model of the power 

system is developed.  Then, a general procedure based on the multi-dimensional Laplace transform is 

proposed to derive closed form modal series. 

 

3.2 BACKGROUND OF THE MODAL SERIES METHOD 

Nonlinear modal analysis has been extensively used to study the system dynamic behavior in a 

variety of nonlinear system events. In this section, we summarize the modal series analysis method and 

the main results obtained from modal analysis.  

Considering an n-dimensional dynamical system model described by n first-order nonlinear 

differential equations of the form, 

     ( , )=x f x u                             (3.1) 

where x is an n-dimensional vector of system states, and : n nR R→f  is a smooth vector field; m∈ℜu  

is the control vector. The vector function ( , )f x u  and its partial derivatives with respect to x and u are 

assumed to be continuously differentiable functions of x and u. 

Expanding ( , )f x u  in Taylor series (as it was described in Section 2.2) about the initial equilibrium 

point, sepX  yields, 

2 1( ) ... ( ) ( )
r

r O−= + + + + +x Ax F x F x x Bu        (3.2) 

where A contains the linear part of the vector field, and the terms Fk, 2≥k contain nonlinear terms; r is 

the order of the approximation. 

Equation (3.2) can be rewritten as 

2 3
1 1 1 1 1

1 1

2 6

n n n n n
i i

i i kl k l pqr p q r i i
k l p q r

x A x F x x F x x x b u
= = = = =

= + + + +∑∑ ∑∑∑         (3.3) 

where ,  

Ai is the thi  row of the Jacobian matrix, 
sep

i
i

x

f
A

x

∂ =  ∂ 
of  

2
i
klF  is the thkl  second-order term associated with the thi  state, 

2

2

sep

i i
kl

k l x

f
F

x x

 ∂
=  ∂ ∂ 

 or Hessian of  

3
i
pqrF  is the thpqr  third-order term associated with the ith state,  

3

3

sep

i i
pqr

p q r
x

f
F

x x x

 ∂
=   ∂ ∂ ∂ 

   

and so on. 

)(xf

)(xf
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The above modal expansion procedure has been used by several authors to carry-out modal analysis 

of complex power system models [Vittal et al. 1991]. At the core of this framework is the 

identification of the nonlinear modal interaction arising from a stressed power system behavior and the 

computation of closed-form analytical expressions assuming the modal series as the analysis platform. 

Let the state matrix ( )sepDf x=A
 

have an eigenvalue set 1 2{ }nλ λ λ  with associated 

eigenvectors U and reciprocal eigenvectors 1−=V U . Then, the linear change of coordinates =x Uy  

(known as a Jordan canonical form transformation) linearly transforms the system in Equation (3.3) 

into its decoupled form, 

1 1 1 1 1

ˆ
n n n n n

j j
j j j kl k l pqr p q r i i

k l p q r

y y C y y D y y y b uλ
= = = = =

= + + + +∑∑ ∑∑∑        (3.4) 

with 1,...,j n=  

with initial conditions, jo
o
j yy = , where terms above third-order are assumed to be negligible, and 

2
1

1

2

n
j T T P

kl jp
p

C V U H U
=

 =  ∑           (3.5) 

3
1 1 1

1

6

n n n
j j P Q R
pqr p q r

p q r

D H V V V
= = =

= ∑∑∑           (3.6) 

  

By analogy to the second order coefficients definition, the 
j
pqrD represent the contribution of modes 

p, q and r to the mode j in the dynamic behavior of the Jordan coordinates system represented by (3.4) 

[Barocio 2003].  

In situations where truncation is sufficient to approximate the system behavior, low-dimensional 

representations can be used. Efforts to extend this approach to the higher-dimensional case have been 

limited and have concentrated on normal form analysis [Martínez 2006] [Martinez et al. 2004a] and 

bilinear analysis techniques [Arroyo 2007].

 

 

3.3 THE MODAL SERIES REVISITED: MATHEMATICAL MODEL 

The modal series method revisited in this section incorporates the multidimensional Laplace 

transform as a versatile way of solution for the still coupled dynamic system given by (3.4). Indeed, 

this system is solved not only for the already uncoupled linear part of (3.4), but in addition the second, 

third, etc. order terms have to be determined. Laplace transform means a very practical way to solve 

this system; besides, it is possible to obtain transfer functions of these terms as it will treated in the 

next Chapter. 
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Hence, referring to the basis of modal series from [Pariz et al. 2003] and [Schanechi et al. 2003] a 

systematic determination of modal response, including the assessment of the extent to which specific 

modes contribute to the system response is developed [Rodríguez and Medina 2010]. 

 

3.3.1 The Modal Series Free System Response 

Assuming the natural response of the nonlinear system, that is, 0u = , the system response can be 

expressed in the general form following the definition from Volterra series, which expressed the output 

of a nonlinear system [Rugh 1981] in the form, 

    ( ) ( )
1

n
n

n

y t y tε
∞

=

=∑           (3.7) 

and its derivate terms, 

    ( ) ( )
1

n
n

n

y t y tε
∞

=

=∑            (3.8) 

Substituting Equations (3.7) and (3.8) in Equation (3.4) and equating the coefficients of ε 

(variational approach) [Rugh 1981], results in 

 

( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ]

1 2 2 3 3

1 2 2 3 3

2 3 2 3 2

1 1

4 3 4 2 2 4 3

j j j

j j j j

n n
j

kl k l k l k l
k l

k l k l k l

y t y t y t

y t y t y t

C y t y t y t y t y t y t

y t y t y t y t y t y t

ε ε ε

λ ε ε ε

ε ε ε

ε ε ε
= =

+ + + =

+ + + +

 + + +

+ + +

∑∑

   





        (3.9) 

Carrying out the indicated operations yields 

 ( ) ( )j j jy t y tλ=            (3.10) 

 ( ) ( ) ( ) ( )2 2

1 1

n n
j

j j j kl k l
k l

y t y t C y t y tλ
= =

= +∑∑         (3.11) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 2 2 1 1 1

1 1 1 1 1

n n n n n
j j

j j j kl k l k l pqr p q r
k l p q r

y t y t C y t y t y t y t D y t y t y tλ
= = = = =

 = + + + ∑∑ ∑∑∑

 
 (3.12) 

      

Transforming the equations (3.10)-(3.12) using Laplace transform, a system defined in terms of 

Laplace domain is obtained. In this step, the higher order terms may be either included or neglected, 

depending on the accuracy required for the dynamic analysis. Hence, the transformed system has the 

form, 

( ) ( ) ( )1 1 1
1 0j j j js Y s Y Y sλ− =           (3.13) 

( ) ( ) ( ) ( ) ( )2 2 1 1
1 2 1 2 1 2 1 2

1 1

, ,
n n

j
j j j kl k l

k l

s s Y s s Y s s C Y s Y sλ
= =

+ = +∑∑ (3.14)
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

3 3 2 1 1 2
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 1

1 1 1
1 2 3

1 1 1

, , , , , ,
n n

j
j j j kl k l k l

k l

n n n
j
pqr p q r

p q r

s s s Y s s s Y s s s C Y s s Y s Y s Y s s

D Y s Y s Y s

λ
= =

= = =

 + + = + + 

 +  

∑∑

∑∑∑
 

 (3.15) 

    

Please observe that the transformed system is given in the multidimensional Laplace domain, being 

1 2 3, , ,s s s   the first, second, third, etc. order terms associated to the same order coupled terms. The 

generalization to the multidimensional case is rather cumbersome and difficult to apply. To circumvent 

these limitations, an efficient approach based on the application of multidimensional Laplace transform 

is suggested. 

 

3.3.2 Multidimensional Laplace Transform 

For an assumed multivariate function or kernel 1 2( , ,..., )nf t t t  of n variables 1 2, ,..., nt t t , the direct 

Laplace transform of f is defined by [Shmaliy 2007], 

   ( ) ( )1 2 1 2, , , , , ,n nF s s s Lf t t t=   

   ( ) ( ) 1 1
1 2 1 2 1, , , , , , s t

n n nF s s s f t t t e dt dt
∞ ∞

−

−∞ −∞

= ∫ ∫         (3.16) 

Now, being ( )nsssF ,,, 21   a Laplace Transform of 1 2( , ,..., )nf t t t , the inverse of the multi-

dimensional Laplace transform can be written as [Debnath 1989], 

  ( ) ( )1
1 2 1 2 1 2, , , , , , ; , , ,n n n nf t t t L F s s s t t t−=             (3.17) 

or, 

  ( )
( )

( )
1

1

1

1 2 1 2 1 2

1
, , , , , ,

2

n

n j j
j

n

ii s t

n n nn
i i

f t t t e F s s s ds ds ds
i

αα

α απ
=

 
+ ∞+ ∞  

 
 

− ∞ − ∞

∑
= ∫ ∫        (3.18) 

where 1 2( , ,..., )nf t t t  are real-valued functions of 1t  and 2t  and the transform is a function of n 

variables. 

If there two or more multivariate functions of the same class with different number of variables are 

presented, there are some useful properties of the Laplace transform that can be applied [Shmaliy 

2007]. 

Distributivity 

Given if the distributivity property is expressed as, 

    ( ) ( )1 2 1 2
1 1

, , , , , ,
n n

i n i n
i i

L f t t t Lf t t t
= =

=∑ ∑        (3.19) 
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Product Transform

Assuming a function 1 2( , ,..., )nf t t t  that is represented by the product of two subfunctions 

1 2 1 1 2 2 1 2( , ,..., ) ( , ,..., ) ( , ,..., )n k k k nf t t t f t t t f t t t+ += . If subfunctions are given by different variables non-

overlaped in time, the transform of f is given by, 

  ( ) ( ) ( )1 2 1 1 2 2 1 2, , , , , , , , ,n k k k nF s s s F s s s F s s s+ +=         (3.20) 

In case of the same variables 

  1 2 1 1 2 2 1 2( , ,..., ) ( , ,..., ) ( , ,..., )n n nf t t t f t t t f t t t=  

The transform is represented by the convolution 

  ( )
( )

( ) ( )1 2 1 1 1 2 2 2 1 2 1 2

1
, , , , , , , , ,

2

j

n n n n nn
j

F s s s F s v s v s v F v v v dv dv dv
j

σ

σπ

+ ∞

− ∞

= − − −∫        (3.21) 

Convolution Transform 

If a function f is represented by the convolution, two special cases are presented. When 

( )1 2 1 1 2 1 2( , ,..., ) * ( , ,..., )n nf t t t f t f t t t=  the transform produces, 

   ( ) ( ) ( )1 2 1 1 2 2 1 2, , , , , ,n n nF s s s F s s s F s s s= + + +        (3.22) 

For the case of n-fold convolution, 1 2 1 1 2 2 1 2( , ,..., ) ( , ,..., ) * ( , ,..., )n n nf t t t f t t t f t t t= , the transform is 

similar to the single variable case, that is, 

   ( ) ( ) ( )1 2 1 1 2 2 1 2, , , , , , , , ,n n nF s s s F s s s F s s s=        (3.23) 

 

3.3.3 Association of variables 

In practice, however, it is desirable to find the inverse of the n-dimensional Laplace transform by 

specifying the inverse image at a single variable. That is, 

   ( ) ( )
tttttn

n
tttftg

=====
=




21
,,, 21        (3.24) 

Among the classical treatments, a method based on the idea of computing the Laplace Transform of 

the function ( )Y s  directly from ( )nsssF ,,, 21   is adopted, where a single variable inverse Laplace 

transform is only required to find y(t); this enables the evaluation of complicated integrals in a 

straightforward manner.  

In this approach, a n-dimension transformed function is first evaluated at a single transformed 

variable and then a single dimensional inverse Laplace transform is taken. The procedure to find ( )Y s  

from ( )nsssF ,,, 21   is known as the association of variables [Rugh 1981]. 
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The following sections introduce several theorems that will be especially important in the analysis 

of complex systems, which allows the direct determination of the function ( )Y s  without solving 

integral equations, rather than working in a direct way an algebraic system. 

Very useful theorems developed to the treatment of multidimensional Laplace kernels may be taken 

in order to solve some of the characteristic kernels derived from the modal series deduction. These 

theorems are detailed in Appendix A. 

 

3.4 MODAL SERIES CLOSED FORM SOLUTION 

We can now conveniently apply Theorem 1 to derive the two-dimensional Laplace transform of the 

system (3.13)-(3.15) as follows.  

   ( )( ) ( )1 1 0j j jY s s Yλ− =  

   ( ) ( )
( )1

1

0j
j

j

Y
Y s

s λ
=

−
         (3.25) 

Therefore, 

   ( ) ( )0 j t
j jy t y eλ=          (3.26) 

Then, from (3.14), solving for ( )2
1 2,jY s s  we have, 

   ( ) ( ) ( ) ( )2 1 1
1 2 1 2 1 2

1 1

,
n n

j
j j kl k l

k l

s s Y s s C Y s Y sλ
= =

+ − =∑∑   

   ( ) ( ) ( ) ( )2 1 1
1 2 1 2

1 1 1 2

1
,

n n
j

j kl k l
k l j

Y s s C Y s Y s
s s λ= =

=
+ −

∑∑       (3.27) 

Applying association of variables to the second order terms a single variable Laplace transform is 

obtained, which is easily solved through the direct application of common inverse Laplace transform 

transformations. A detailed description, step by step, of the procedure followed to carry out the closed 

form solution of modal series second order terms is described in Appendix B. Hence, performing the 

inversion with respect to x, the closed-form solutions are obtained 

  ( ) ( ) ( ) ( )
( )2 1 1

1 1

1
0 0 jk l

n n
ttj

j kl k l
k l k l j

y t C y y e eλλ λ

λ λ λ
+

= =

 = − + −
∑∑       (3.28) 

Upon rearranging terms, one has 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1
2 2

1 1 1 1

0 0 0 0 0j k l

N N N N
t tj j

j j kl k l kl k l
k l k l

y t y h y y e h y y eλ λ λ+

= = = =

 
= − + 
 

∑∑ ∑∑    (3.29) 

and 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1
2 2

1 1 1 1 1 1

0 0 0 0 0j k l

N N N N N N
t tj j

i ij j ij kl k l ij kl k l
j k l j k l

x t u y u h y y e u h y y eλ λ λ+

= = = = = =

 
= − + 

 
∑ ∑∑ ∑∑∑

 
 (3.30) 

where          1,...,i n=  

   2

j
j kl
kl

k l j

C
h

λ λ λ
=

+ −
        (3.31) 

which, for the case when 0u = , reduces to (3.30). This agrees with the results obtained in [Schanechi 

et al. 2003]. 

A useful variant of the modal series solution for the conveyed system in its physical variables is 

based on writing the final result in the Laplace domain. Some characteristics of the transfer functions 

may be accommodated in order to analyze the oscillations in dynamic systems with respect to a sample 

frequency range. According to Equation (3.2) and using the linearity properties of the Laplace 

transform, the complete solution for the nonlinear system can be written as, 

    ( ) ( ) ( ) ( )1 2 3
j j j jY s F s F s F s= + + + (3.32)

Also, assuming the relationship, 

     ( ) ( )X s Y s= U

where U is the right eigenvectors matrix, then, 

    ( ) ( ) ( ) ( )1 2 3
j j j jX s F s F s F s = + + + U       (3.33) 

where ( ) ( ) ( )1 2 3, , ,j j jF s F s F s   are the first, second, third, etc. order functions expressed in the single 

Laplace domain. 

Substituting the first and second order terms (Equations (3.25) and (3.27)) obtained for the modal 

series analysis, it yields, 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1 1

0 1 1 1
0 0

n n n
j j

i ij ij kl k l
j k l k lj k l j j

Y
X s u u C Y Y

ss sλ λλ λ λ λ λ= = =

     = + ⋅ −  − −− + − −     
∑ ∑∑   

 ( ) ( )
( ) ( ) ( ) ( ) ( )1 1

1 1 1

0 1
0 0

n n n
j j

i ij ij kl k l i
j k lj k l j

Y
X s u u C Y Y F s

s λ λ λ λ= = =

    = + ⋅ 
− + −    

∑ ∑∑     (3.34) 

where, 

  ( ) ( ) ( )








−
−

−−
=

jlk
i ss

sF
λλλ

11
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These equations can be conveniently analyzed using the proposed framework. Straightforward 

application of the Laplace transforms means a systematic procedure, which allows the analytical 

solution of the nonlinear system, assuming uncoupled each term (linear and nonlinear terms). 

 

3.5 MODAL SERIES CLOSED FORM SOLUTION UNDER RESONANCE 

CONDITION 

Recalling the nonlinear coefficients 2h  defined by Equation (3.31), the resonance condition is 

established as, 

    0k l jλ λ λ+ − =         (3.35) 

or, 

    k l jλ λ λ+ =

Thus, the Laplace transform kernels considering the resonance assumption are obtained as, 

  ( ) ( )
( )

1
1

1

1

0j
j

j

Y
Y s

s λ
=

−
     

  ( ) ( ) ( ) ( )2 1 1
1 2 1 2

1 1 1 2

1
,

n n
j

j kl k l
k l j

Y s s C Y s Y s
s s λ= =

=
+ −

∑∑   

  ( ) ( ) ( ) ( )( )( )
2 1 1

1 2
1 1 1 2 1 2

1
, 0 0

n n
j

j kl k l
k l j k l

Y s s C Y Y
s s s sλ λ λ= =

=
+ − − −

∑∑   

According to the resonance condition constraint, the kernel is defined as, 

  ( ) ( ) ( ) ( )( )( )
2 1 1

1 2
1 1 1 2 1 2

1
, 0 0

n n
j

j kl k l
k l k l k l

Y s s C Y Y
s s s sλ λ λ λ= =

=
+ − − − −∑∑    (3.36) 

which is associated in terms of Laplace domain as, 

  ( ) ( )
( )

1
1

1

0j
j

k l

Y
Y s

s λ λ
=

− −
 

Obtaining a time domain solution through inverse Laplace leads to, 

    ( ) ( ) ( )1 1 0 k l t
j jy t y e λ λ+=        (3.37) 

or 

    ( ) ( ) t
jj

jeyty
λ

011 =  

The second order kernel, 

  ( ) ( )( )( )2 1 2
1 2 1 2

1
,

k l k l

H s s
s s s sλ λ λ λ

=
+ − − − −
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is associated following the rule of association of variables detailed in Appendix A as, 

  ( ) ( )( ) ( )2 2

1 1

k l k l k l

H s
s s sλ λ λ λ λ λ

= =
− − − − − −

  

  ( )
( )2 2

1

j

H s
s λ

=
−

        (3.38) 

from which the time domain solution solving the inverse Laplace is, 

  ( )2
j th t t eλ=   

Thus, the complete closed form solution when a modal resonance condition is presented is, 

 ( ) ( ) ( ) ( )
1 1

0 0 0j j

n n
t tj

j j kl k l
k l

y t y e C y y teλ λ

= =

= +∑∑        (3.39) 

 ( ) ( ) ( ) ( ), ,
1 1

0 0 0j j

n n
t tj

i i j j i j kl k l
k l

x t u y e u C y y teλ λ

= =

= +∑∑       (3.40) 

 

3.6 HIGHER ORDER APPROXIMATIONS OF THE MODAL SERIES METHOD 

It is possible to extend the modal series method in order to incorporate higher order terms in the 

expansion of Taylor series from the original nonlinear system. Consider again the Taylor series 

expansion about a fixed stable equilibrium point sepx , that is, 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

2

1

6

T

Ti sep i sep

i i sep sep sep sep
sep sep sep

T

T T i sep

sep sep sep
sep sep sep

f f
f f

f

    ∂ ∂∂   = + − + − − +
 ∂ ∂ ∂      

   ∂∂ ∂   − − − +  ∂ ∂ ∂     

x x
x x x x x x x x

x x x

x
x x x x x x

x x x


   (3.41) 

for 1,2, ,i n=    

 Rewriting the Taylor series expansion, it yields, 

   ( ) ( ) ( ) ( )1 2 3 4f f f f= + + + +x x x x x        (3.42) 

where: 

( )1f =x Ax ,  and,   ( )

1 1 1

1 2

2 2 2

1 2

1 2

0

SEP

n

n

n n n

n x x

f f f

x x x

f f f

x x xD

f f f

x x x
=

∂ ∂ ∂ 
 ∂ ∂ ∂ 
 ∂ ∂ ∂
 ∂ ∂ ∂= =  
 
 
∂ ∂ ∂ 
 ∂ ∂ ∂ 

A f





   



     (3.43) 
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 ( )

1

2

2

1

2!

T

T

T n

f

 
 
 =
 
 
  

x H x

x H x
x

x H x


  with 

2 2 2

1 1 1 2 1

2 2 2

1 2 2 2 2

2 2 2

1 2
SEP

j j j

n

j j j
j

n

j j j

n n n n x x

f f f

x x x x x x

f f f

x x x x x x

f f f

x x x x x x
=

 ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ 

=  ∂ ∂ ∂ ∂ ∂ ∂
 
 
 ∂ ∂ ∂ 
∂ ∂ ∂ ∂ ∂ ∂  

H





   



  (3.44) 

( )

1
3

2
3

3

3

1

6

T

T

T n

f

  
  
  
    
  
  
  =
   
 
 
          

x 0 0

x H 0 x 0 x

0 0 x

x 0 0

x H 0 x 0 x
x

0 0 x

x 0 0

x H 0 x 0 x

0 0 x



    with 

3 3 3

1 1 1 1 1 2 1 1

3 3 3

3 1 2 2 2 2 2 2 2

3 3 3

1 2
SEP

j j j

n

j j j
j

n

j j j

n n n n n n n x x

f f f

x x x x x x x x x

f f f

x x x x x x x x x

f f f

x x x x x x x x x
=

 ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ 

=  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 
 
 ∂ ∂ ∂ 
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

H





   



   (3.45) 

( )

1
4

2
4

4

4

1

4!

T

T

T n

f

     
     

     
                


    
    
    
 =               



     
     

    
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x

0 x 0
x H x
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x

0 0 x
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x

0 x 0
x H x

x 0 x 0
x

0 0 x

x 0 0
x

0 x 0
x H x
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x

0 0 x

















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


 
 
 
 

  with     

4 4 4

4 3 3
1 1 2 1

4 4 4

3 4 3
4 1 2 2 2

4 4 4

3 3 4
1 2

SEP

j j j

n

j j j
j

n

j j j
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f f f

x x x x x

f f f

x x x x x

f f f

x x x x x
=

 ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ 
=  ∂ ∂ ∂ ∂ ∂
 
 
 ∂ ∂ ∂ 
∂ ∂ ∂ ∂ ∂  

H





   



    (3.46) 

       

Taking into account the result obtained in Section 3.2 through the variational approach, that is, 

 j j jy yλ=             (3.47) 

 2 2 1 1

1 1

n n
j

j j j kl k l
k l

y y C y yλ
= =

= +∑∑           (3.48) 
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 ( )3 3 2 1 1 2 1 1 1

1 1 1 1 1

n n n n n
j j

j j j kl k l k l pqr p q r
k l p q r

y y t C y y y y D y y yλ
= = = = =

 = + + + ∑∑ ∑∑∑       (3.49) 

 

4 4 1 3 2 2 3 1 1 1 2 1 2 1 2 1 1

1 1 1 1 1

1 1 1 1

1 1 1 1

n n n n n
j j

j j j kl k l k l k l klm k l m k l m k l m
k l k l m

n n n n
j

mpqr m p q r
m p q r

y y C y y y y y y D y y y y y y y y y

E y y y y

λ
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   = + + + + + +   

 +  

∑∑ ∑∑∑

∑∑∑∑



  (3.50) 

      

From the first order term, it is possible to determine the second and higher order terms. Being, 

    ( ) ( )
( )

1
1

1

0j
j

j

Y
Y s

s λ
=

−
        (3.51) 

and the second order terms obtained in Section 3.4, given by Equation (3.27), 

   

( ) ( ) ( ) ( )( )( )
2

1 2
1 1 1 2 1 2

1
, 0 0

n n
j

j kl k l
k l j k l

Y s s C Y Y
s s s sλ λ λ= =

=
+ − − −

∑∑        (3.52) 

the third order terms are obtained from the substitution of (3.51) and (3.52) in (3.15), that is, 

( )

( ) ( ) ( ) ( )( )( )( )( )

( ) ( ) ( ) ( )( )( )( )( )

( )( )( )( )
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1 2 3

1 1 1 1 1 2 3 1 2 1 2 3

1 1 1 1 1 2 3 2 3 1 2 3

1 1 1 2 3 1 2 3

, ,

1
0 0 0

1
0 0 0

1

j

n n n n
j k
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= = = =
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+
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+
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∑∑∑∑

∑∑∑∑

∑∑
1

n

p=
∑

 

                      (3.53) 

Step by step deduction procedure of expressions in Equation (3.53) is described in Appendix B. The 

inverse of the multidimensional Laplace transform in (3.52) and (3.53) can be obtained by the method 

of association of variables as discussed above, i.e. 
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 (3.54) 

Higher order terms are obtained in identical manner. The key point to be emphasized is that closed-

form solutions can be obtained by inverse Laplace transformation of (3.54). 

Performing the inversion with respect to s, the closed-form solutions are obtained as, 
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   (3.55) 

which after some manipulations gives, 
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and 
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  1,2, ,i n=    (3.56) 

In the above, the second and third-order nonlinear coefficients 3 j
pqrh  are defined by 

   
( )2

k
pql

pq

p q k

C
h

λ λ λ
=

+ −
       (3.57) 

   ( )2

j
j kl
kl

j l k

C
h

λ λ λ
=

− −
       (3.58) 

( )3

j
pqrj

pqr

j p q r

D
h

λ λ λ λ
=

− − −
       (3.59) 

The procedure can be indefinitely continued to determine higher-order nonlinear expressions in 

terms of the lower-order modal expansions. For the sake of simplicity only terms up to third are 

obtained. 

 

3.7 POWER SYSTEM MODELING BY HIGHER ORDER MODAL SERIES 

The application of the modal series method including higher order terms is demonstrated through 

the application to the synchronous machine-infinite busbar power system as illustrated in Figure 3.1 

 
Figure 3.1. Synchronous machine-infinite busbar power system 

Two different cases are conducted in order to remark the main advantages of utilizing the modal 

series method. As a first case, the power system of Figure 3.1 is modeled with the classical model of 

the synchronous machine; as a second one, the model is switched to the one flux modeling, which 

includes the dynamics of a simplified stator equivalence included in the q axis winding. Both cases of 

study are modeled using higher order modal series, taking into account up to third order terms. Higher 

order terms have not been considered yet by the author, leaving their development for future 

contributions. 

tjx
 ljx  tE  

BE  
G 
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3.7.1 Case 1: Classical Model 

The set of differential equations that represent the model of the synchronous machine connected to 

the infinite busbar are given by [Kundur 1994], 

 
d

dt

δ ω= ,   ( )max

1
sin

2 m m

d
P P D

dt H

ω δ ω= − −     (3.60) 

with,  max
t B

d t

E E
P

x x x
=
′ + + 

 

where δ represents the rotor angular position in electric radians with reference to the infinite busbar, ω 

is the rotor angular velocity in rad/s, Pm is the mechanical power input which comprises the primotor 

mechanical system in p.u., Dm is referred as the damping coefficient of the generator in torque 

p.u./speed p.u., and H is the inertia constant in MWs/MVA. Simulation data used during the 

experiment are taken and adapted to our study case from [Kundur 1994], 

3.5 , 10 . ., 0.3 . ., 0.15 . ., 0.8 . .d t lH MW MVA D p u x p u x p u x p u′= = = = =  

The nonlinear system is described by, 

   [ ] [ ]1 2

T T
x x δ ω= =x        (3.61) 

The movement equation is described by the nonlinear system [Martínez et al. 2004], 

  ( ) ( )
( ) ( )

1 1 2

2 1 2 max

,
1

, sin
2 m m

f x x

f x x P P D
H

ω

δ ω

    = = =   − −   

x f x      (3.62) 

with equilibrium point is defined as, 

   [ ] 1
0 0 0

max

sin 0

T

T mP
x

P
δ ω −  

= =   
   

      (3.63) 

Expanding the system (3.62) in Taylor series, a perturbed system is deduced, that is, 

( )2 3max max max
0 0 0

0 0
1 1

4
2! 3!cos sin cos

2 2 2 2
m

OP D P P

H H H H

ωδ
ω δ δ ω δ δ δ δ

∆     ∆       = = + + +       ∆ − ∆ − ∆ ∆ ∆            

x   (3.64) 

where O(4) represents the terms of fourth order and higher order which are truncated during the 

linearization process. Applying the definitions associated to vector fields, which specify that a system 

can be described by a decomposition of first-second-… etc. order terms, the linearized system can be 

described as, 

    ( ) ( ) ( )3≈ + +1 2x f x f x f x       (3.65) 

where each function is defined follows,  
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• First order terms: 

 ( ) =1f x Ax  

 ( )

( ) ( )

( ) ( )

1 1
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02 2

, ,
0 1

cos, ,
2 2

sep
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f f
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 − − ∂ ∂    ∂ ∂ 

0

x x
x x

A f x    (3.66) 

• Second order terms: 

 ( )








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
=
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

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• Third order terms: 

( )
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x x
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ω δ ω δ ω ω δ ω =
=
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  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   = =
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H  

The system eigenvalues are obtained from the state matrix A, being for this case given by, 
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   2 max 0cos
0

2 2

PD

H H

δ
λ λ+ + =        (3.68) 

   
2

max 0
1,2

cos1
4

4 2 2 2
m mD D P

H H H

δ
λ    = − ± −   

   
     (3.69) 

Hence the eigenvalues are calculated; it is possible to determine the right and left eigenvectors and 

therefore, the coefficients j
klC , j

klh2 , 3
j
klmh  using (3.5) and (3.31). 

 

3.7.1.1 Linear approximation 

From the linearized system and considering only the linear part of Equation (3.64), an approximate 

solution is obtained based on the modal analysis of the original system. Recalling the right and left 

eigenvectors,  

  11 12

21 22

u u

u u

 
=  
 

U   and 11 12

21 22

v v

v v
−  

= =  
 

1V U  

The time domain solution based on the linear part of the nonlinear system is given by, 
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       (3.70) 

where 

   
( )
( )

1 11 12

2 21 22

0

0

c v v

c v v

δ
ω

∆    
=      ∆       

 

3.7.1.2 Simulation Results 

The experiment is conducted considering a perturbation on the rotor angle of 30δ∆ =  . For this 

study case the solution obtained with the modal series technique is compared against the linear 

approximation and the numerical full solution obtained by solving the nonlinear differential equations 

that represent the dynamic system.  

Figures 3.2 through 3.5 show the comparison of the oscillations presented after the perturbation on 

the rotor angle obtained by the three different forms of solution described above, i.e. the full solution, 

the linear approximations and the modal series solution. The waveforms in Figure 3.2 are the rotor 

angle and speed deviations respectively; assuming a mechanical power input 0.9 . .mP p u=  Throughout 

the simulation an agreement between trajectories on the obtained waveforms is observed with a lighter 

difference on the waveform obtained with the linear approximation method. 

 



60 

 

a) Rotor angle δ  

 

 
b) Rotor speed ω  

Figure 3.2. Rotor angle and speed deviations comparison for a load condition of Pm=0.9 p.u. y Δδ=30° 

 

Figure 3.3 shows the phase plane of vsδ ω  for this stable case study. It can be observed that the 

oscillations in the state variables eventually reach a stable equilibrium point before a low frequency 

transient period. Also it is of importance the agreement between the full numerical solution and modal 

series approximation thus demonstrating the applicability of the method under low stress conditions. 
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Figure 3.3. Rotor angle and speed deviations phase plane comparison for a load condition of Pm=0.9 p.u. y Δδ=30° 

 

The next step of the experiment considers an increase on the input mechanical power, which 

emulates an overload of the generator (stress condition). Under this load condition the system can 

eventually become unstable. This point of loss of stability is reached when the electric power generated 

is less than the mechanical power demanded to the generator, causing a lack of damping torque. 

The Figure 3.4 shows the new condition mentioned above when an increase on the mechanical 

power is presented; e.g. to 1.12 . .mP p u=  That means a stress condition of operation for the generator. 

It is important to point-out that under this condition the modal series method shows a significant 

difference with respect to the full numerical solution. 

The reason of this effect is that when the system is operated under strong stress conditions, 

intermodulation frequencies of second and higher order are presented [Martinez et al. 2004]. This 

phenomenon can be easily verified using Fourier analysis. Also, the inclusion of higher order terms in 

the modal series solution is very useful to get insight into the nature of the nonlinear oscillations 

presented, due to nonlinearities in the dynamic systems operating under such stress conditions. 
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a) Rotor angle δ  

 
b) Rotor speed ω  

Figure 3.4. Rotor angle and speed deviations comparison for a load condition of Pm=1.12 p.u. and Δδ=30° 

 

As an intent to show in a different way the behavior of the state variables, a three dimensional 

graphic is depicted in Figure 3.5, showing the transient of state variables but noting the differences in 

the trajectory for this case of increasing stress conditions. Even though the solution is stable, during the 

transient, there are differences observed in the trajectories followed by full numerical solution and 

modal series approximation due to the reasons pointed out above. 

The experiment has demonstrated that the exactitude of the modal series technique depends on the 

magnitude of the initial perturbation and the stress level of the system operation, such as it has been 

observed in Figures 3.2 to 3.5. Perhaps it can be said for further applications, that one of the main 

handicaps of methods based on linearization through Taylor series expansion, is that the approximated 

solution is not valid at all when strong perturbations are presented (high stresses constraints). 
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Figure 3.5. Rotor angle and speed deviations comparison for a load condition of Pm=1.12 p.u. and Δδ=30° in a three 

dimensional view that shown the differences between full solution and modal series trajectories. 

Hence for the cases near to transient stability approximations based on modal analysis and their 

modal combinations, the dynamics could not be followed due to the farawayness with respect to the 

equilibrium point, a condition that has to be previously met as a part of the linearization approach. 

 

 

3.7.2 Case 2: Flux Decay Model 

A third order generator model is assumed, which incorporates the dynamic of the electromechanical 

system. This system is interesting and adds to the previous case of classical model the inclusion of 

algebraic equations, thus commuting the model into a combination of differential-algebraic modeling. 

The differential equations are [Sauer and Pai 1998], 
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    (3.71) 

Furthermore, eliminating the stator resistance effects, the algebraic equations are, 

( ) sin 0q t l q bx x x I V δ− + + + =
 

         (3.72) 

( ) cos 0d t l d q bx x x I E V δ′ ′+ + − + =        (3.73) 
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Linearizing the system at a stable equilibrium point, it has the form, 

  ( ) ( ) ( )1 2 3f f f= + + +x x x x          (3.74) 

with 

[ ]1 2 3

TT

qx x x E δ ω′ = =  x  

where each term is defined as, 
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ω ω
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′ ′ − + − −    ′    

   = = = −   
       ′ ′− + − − −      

x f x    (3.75) 

This dynamic system has the equilibrium point, 

( ) ( ) ( )( )
0 0 0 0

0 0 0cos vs

T
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T
j j

b vs t l d d b q t l G
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x V x x x I angle V e j x x x I eθ γ

δ ω

δ θ ω
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 ′= − + + + + + + 

(3.76)

The linear and nonlinear functions defined by (3.74) for which it is necessary to determine their 

closed form solutions are obtained next, that is: 

• First order terms, 

( )1f =x Ax ,  with,   

1 1 1

2 2 2

3 3 3

SEP

q

q

q x x

f f f

E

f f f

E

f f f

E

δ ω

δ ω

δ ω
=

 ∂ ∂ ∂
 ′∂ ∂ ∂ 
 ∂ ∂ ∂ =

′∂ ∂ ∂ 
 
∂ ∂ ∂ 
 ′∂ ∂ ∂ 

A       (3.77) 

Applied to the case of the third order power system under study, the state matrix has the form, 
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where, 
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• The second order terms are, 
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With,  
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• The third order terms of the linearization are, 
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where the third order matrix is defined by 
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Fitting to this case study, 3
jH  has the next elements, 
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   (3.82) 

Based on equation which links the relationship between the transformed variables with Jordan 

canonical form, the system (3.74) is then transformed, resulting in, 
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   ( ) ( )3= + +2yΛy f y f y         (3.83) 

where, 
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and, 
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where j
klC and 3

j
klmC are defined in (3.57) to (3.59). 

Once the nonlinear dynamic system has been transformed to the Jordan canonical form, the Laplace 

transformation has to be carried-out. The system expressed in the Laplace domain represents the 

contributions of linear and nonlinear higher order terms, which have to be solved by association of 

variables theorems such as described above. 

Finally, after the inverse Laplace transform has been applied, the time domain solution is expressed 

as, 
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( ) ( ) ( ) ( )1 2 3
j j j jy t f t f t f t≈ + +        (3.88) 

The full solution obtained for the nonlinear system is given by, 
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where this time domain solution is presented as a function of the Jordan variables; that is, 
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    (3.90) 

Transforming to the original state variables, the time domain final solution has the form, 

( )
( )
( )

( )
( )
( )

( )
( )
( )

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3
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ω

′  ∆    
      = ∆ =      
      ∆               (3.91)

 

Equation (3.91) provides closed form solutions to the state in terms of the initial conditions in the 

Jordan state variables. Also, the dynamic information given by the modal analysis is maintained at this 

part of the final solution. In a identical manner to the study case with the machine classical model, the 

linear approximation is obtained according to (3.70), extended for this case to three state variables and 

the algebraic equations. 

 

3.7.2.1 Simulation Results 

The experiment is conducted assuming a perturbation in the rotor angle. The solution obtained with 

the modal series technique is compared against the linear approximation and the numerical full solution 

obtained from the nonlinear differential equations that represent the dynamic system. The model of the 

system consists on stator dynamics represented by the state variable of voltage along the q axis, 

neglecting d axis effects (one axis flux decay model ((3.71))). The perturbation is initially applied 

assuming an increment in input torque (mechanical power in the generator); afterwards, a larger 

increment in the same power joint with another increase in the rotor angle perturbation is reflected as a 

stress condition. 

The modal analysis is resumed in Table 3.1. Two oscillatory modes are present, due to the 

electromechanical oscillations and a real mode, mainly due to the stator variable qE′ . The experiment is 
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performed to compare the solution obtained by modal series against the linear approximation and the 

direct solution of the nonlinear set of differential equations basically described by ((3.71)). 

 Table 3.1 Modal analysis of SMIB with one flux model 

Eigenvalue Frequency (Hz) Damping Ratio

1 0.032786337262722λ = −  - - 

2,3 0.478749 5.137238 iλ = − ±  0.817616863444186 0.092789977022137 

Figure 3.6 through 3.9 show the oscillations of the state variables , and qEδ ω ′  when a rotor angle 

perturbation conditions are applied. Figure 3.6 is showing the oscillations followed to a perturbation in 

the rotor angle of 10δ∆ =   followed by an increase on the power demand to 1.12 . .mP p u= . The full 

transient followed by state variables can be observed. Qualitative differences are noticed between 

modal series approximation with respect to the linear approximation in the waveform of the voltage 

,qE′  that presents an offset. Eventually since the system is stable, even in the presence of perturbation 

conditions, it eventually reaches a steady state point after a transient period, being larger for the case of 

voltage qE′ . Also, Figure 3.6 shows the transient behavior of selected state variables.  

 

 

 
a) Voltage qE′  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.902

1.904

1.906

1.908

1.91

1.912

1.914

Time     sec

V
o

lta
g

e
 E

'q
  p

.u
.

 

 

Full Solution
Modal Series
Linear Approx.

0 2 4 6 8 10 12 14 16 18 20
1.902

1.904

1.906

1.908

1.91

1.912

1.914

Time     sec

V
o

lta
g

e
 E

'q
  p

.u
.

 

 

Full Solution
Modal Series
Linear Approx.



70 

 

 
b) Rotor angle δ  

 

 
c) Speed Rotor ω  

Figure 3.6. Rotor angle and speed deviations comparison for a load condition of Pm=1.12 p.u. and Δδ=10° 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
80

82

84

86

88

90

92

94

96

98

Time     sec

R
o

to
r 

A
n

g
le

 d
e

lta
   

D
E

G

 

 

Full Solution
Modal Series
Linear Approx.

0 5 10 15
80

82

84

86

88

90

92

94

96

98

Time     sec

R
o

to
r 

A
n

g
le

   
D

E
G

 

 

Full Solution
Modal Series
Linear Approx.

0 5 10 15
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-3

Time     sec

R
o

to
r 

S
p

e
e

d
 D

e
vi

a
tio

n
s 

 r
a

d
/s

e
c

 

 

Full Solution
Modal Series
Linear Approx.

 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-3

Time     sec

R
o

to
r 

S
p

e
e

d
 D

e
vi

a
tio

n
s 

 r
a

d
/s

e
c

 

 

Full Solution
Modal Series
Linear Approx.



71 

The Figure has been conveniently zoomed to illustrate the differences between solutions in more 

detail. 

The phase planes shown in Figures 3.7 demonstrate that the system is stable after the oscillations 

followed due to the disturbance conditions. Both the rotor angle and speed rotor approaches to a stable 

equilibrium point, which is clearly observable in the phase plane of Figure 3.7 a). 

Figure 3.7 b) denotes a tridimensional phase plane that involves the three state variables where the 

final solution goes to a fixed steady state operating point in the same form as in the two dimensional 

phase plane. It is important to point out that the solution obtained by modal series is in close agreement 

to the solution obtained directly from numerical full approximation.  

 

 
 

Figure 3.7. Rotor angle and speed deviations comparison for a load condition of Pm=1.15 p.u. and Δδ=10° 
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accompanied by a decrement in the rotor angle and the magnitude on the voltage qE′ . The system keeps 

oscillating until it reaches the new equilibrium point, which is different in comparison with the initial 

operation conditions. 

Hence, it can be said that the method of modal series has a good accuracy in presence of low 

perturbation or low stress conditions, since the operation point is near to the initial equilibrium point 

defined for the linearization of the nonlinear system. 

Now the experiment is continued selecting different conditions of perturbation. The system is 

stressed by a step change of the demanded power of the synchronous machine moving it to 

1.15 . .mP p u=  together with a perturbation increment of 30δ∆ =  . Figure 3.8 shows the oscillation due 

to this constraint where it can be observed a clear difference between the three methods utilized (full 

solution, modal series and linear approximation). With respect to the voltage qE′  (Figure 7.8a) the 

offset is clearly observable from the linear approximation; there is an appreciable difference between 

the modal series and full solution waveform; such differences are remarkable in amplitude and phase 

angle. The same result is noted in Figures 3.8(b) and 3.8(c) for the rotor angle and rotor speed. Again, 

the waveforms have been conveniently zoomed to detail the initial oscillatory periods following the 

transient until reach the new steady state condition. 
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b) Rotor angle δ  

 

 
c) Speed Rotor ω

Figure 3.8. Rotor angle and speed deviations comparison for a load condition of Pm=1.15 p.u. and Δδ=30° 
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From this oscillatory condition, it is clear that the system is still stable despite the stress conditions 

previously established for the analysis (see zoomed Figures 3.8(b) and 3.8(c)). This situation can be 

denoted in the phase planes of Figures 3.9. The two dimensional phase plane of Figure 3.9(a) is 

showing the behavior of rotor angle versus speed rotor, where a different trajectory is followed by the 

modal series solution and the full numerical solution, although at the end both solutions find the same 

steady state point. 

Figure 3.9b shows a three dimensional trajectory followed by the two compared methods, where a 

different body of solution can be noticed, but similarly to the two dimensional phase plane case, both 

solutions eventually find the same final operating point. 

 
a) Two dimensional phase plane vsδ ω  

 
b) Three dimensional phase plane qvs vs Eδ ω ′  

Figure 3.9. Phase plane comparison for a load condition of Pm=1.5 p.u. and Δδ=30° 
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Thus, this experiment demonstrates that the modal series method approximation could fail when the 

stress conditions are increased in such a way that the operating point is moved away from the steady 

state conditions. It can be concluded that a stressed power system tends to change the apparent linear 

behavior, moving the system to oscillate near the edge of unstable conditions 

 

3.8 DISCUSSION 

Compared to other approaches, the main theoretical advantage of the revisited modal series lies in 

its ability to derive higher-order modal solutions, associated modal quantities and the computation of 

second and higher-order terms, which can be extended as it will be demonstrated in the Chapter 5 to 

obtain nonlinear transfer functions. 

Some limitations arise, however, associated with modeling assumptions as discussed below. The 

inclusion of detailed machine and control models is under development and will be discussed in future 

developments. The core of the experiments performed along this Chapter tried to demonstrate the 

advantages and limitations that can be found when the method of modal series is used to analyze a 

stressed system, in addition to the conclusions given early in the same tone, in the Chapter 2 (when the 

method was compared with Normal Forms method). 

Furthermore, a comparison of the modal series method with other methods including the previouly 

proposed modal series [Schanechi, et al. 2003] is detailed in Table 3.2. The comparison is focused on 

the modeling detail, analysis capacity and future developments so related with the other approaches. 

 

Table 3.2  Comparison between the modeling capacities of the proposed approach with other formulations 

Modeling Detail and Analysis 
Capability 

NF Method 
Conventional Modal Series 

Methods 
Proposed Modal Series 

Technique 

Higher order transfer 
function 

computation 
X 

Currently limited to second 
order 

Available 

Detailed system 
modeling/FACTS 

controllers 
Available Not reported Under development 

Sparsity 
representation 

Available Not reported X 

Higher order nonlinear 
solutions 

Available (third-
order)* 

Second-order 
approximation 

Higher-order 
approximation* 

Bifurcation analysis Available X Under Development 

* Theoretically possible up to arbitrary order 

 

On the other side, modal series analysis methods are based on the first steps of the normal forms 

formulation and use similar interaction coefficients and nonlinearity indexes. In the former method, 
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however, the computation of higher-order initial conditions in the normal form space needs to solve the 

nonlinear algebraic homological equations while the modal series method does not need any numerical 

algorithm. Thus, the nonlinear indexes are computed in a more straightforward manner. 

Modal analysis methods are still evolving to address theoretical and numerical problems and need 

further evaluation, particularly in regard to the study of various dynamic issues. 

The application of these methods to the study of power system separation mechanisms, stability 

boundaries, and the analysis and design of system controllers warrant further investigation. 

Finally, the flow chart diagram of Figure 3.10 illustrates the steps followed by the modal series 

method compared with the Normal Forms method and linear approximation. It is important to remark 

the accuracy of application based on multidimensional Laplace transform, which makes possible to 

obtain a closed form analytical solution. The Chapter 5 details its extension to the inclusion of a forced 

input response. 
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Equation Section 4 

44  
MMUULLTTIIMMAACCHHIINNEE  PPOOWWEERR  SSYYSSTTEEMMSS  MMOODDEELLLLIINNGG  

FFOORR  NNOONNLLIINNEEAARR  OOSSCCIILLLLAATTIIOONNSS  SSTTUUDDIIEESS  
 

A power system having ng generators interacting with the rest of the system is analyzed. The core the 

modeling of multimachine power system here described is based on the combination of the 

synchronous machine reference framework with the rest of the network. The load modeling considered 

in this research is based on static constant impedances; however, it is possible to extend the analysis to 

incorporate dynamic nonlinear loads, since the modeling platforms allow the inclusion of dynamic and 

time varying devices. In the sections to follow, the multimachine power system modeling used for the 

experiments that will be analyzed in the studies case exemplified in Chapters 5 and 6 is described in 

detail. 

 

4.1. SYNCHRONOUS MACHINE GENERATORS MODELLING 

Synchronous generators in power systems are modeled according to two axis theory [Sauer and Pai 

1998] [Anderson and Fouad 2003]. Magnetic saturation effects and saliency are not considered. A 

simple automatic voltage regulator is included to control the synchronous machine field excitation. 

The equations that describe the generator model taken from [Sauer and Pai 1998] are, 

( )( )
0

1
k

k k k k k

k

q
fd d d d q

d

dE
E x x I E

dt T

′
′ ′= − − −

′
        (4.1) 

( )( )
0

1
k

k k k k

k

d
d q q q

q

dE
E x x I

dt T

′
′ ′= − + −

′
         (4.2) 

0
kd

dt

δ
ω ω= − (4.3)

( )( )1
k k k k

k
mk d d q q k k

k

d
P E I E I D

dt M

ω
ω′ ′= − + −         (4.4) 

• Excitation system 

( )( )1
k

k k k k

k

fd
fd exc ref t exc

exc

dE
E K V V

dt T
= − + − (4.5)
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  ( ) ( )2 2

texc k dk k qk qk k dkV E x I E x I′ ′ ′ ′= + + −          (4.6) 

 

4.2. TRANSMISSION NETWORK MODELING 

The transmission network is represented by nodal admittance equations, modified in order to 

incorporate internal generators buses; that is, the system is referenced to the internal generator nodes. 

Each synchronous machine is represented as an emf behind its reactance. Figure 4.1 shows the 

schematic of power system representation. 

 

 
 

Figure 4.1 Schematic diagram of power system modeling 

 

The equation that represents the network is given by, 

0
gg gl gg

lg ll l

    
=     

    

Y Y VI

Y Y V
         (4.7) 

where, ggY , glY , lgY  and llY  are reduced admittance submatrices. Moreover, 

1 1 2 2

T

g D Q D Q Dng QngI jI I jI I jI = + + + I          (4.8) 

1 1 2 2

T

g D Q D Q Dng QngE jE E jE E jE′ ′ ′ ′ ′ ′ = + + + V          (4.9) 

1 1 2 2

T

l D ng Q ng D ng Q ng D ng nc Q ng ncV jI V jV V jV+ + + + + + = + + + V      (4.10) 

TRANSMISSION 

SYSTEM 

1r  

ngr

1 

ng 

ngjx  

1Vl ng nc+ +  

Vl N  

1Vl ng+  

Vl ng nc+  

LOAD1 

LOAD2 

LOADnc 

1jx  

2Vl ng+

 

ng number of generators 
nc  number of loads 
N    total number of buses in the network 
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The power system shown in Figure 4.1 is reduced to the network shown in Figure 4.2. Referring to 

this network, nodal currents and voltages, such as described in Equations (4.8)-(4.10) are expressed 

using phasor notation as, 

 
Figure 4.2 Transmission system reduced to the internal generator nodes 

 

Indeed, the network is described by, 

     I = YV        (4.11) 

where 

Y Admittance matrix reduced to internal generators  

I Nodal current injections vector 

V Nodal voltages vector 

 

The reduction approach of admittances matrix is described according to the following steps [Sauer 

and Pai 1994]: 

 

• Obtain BUSY  matrix by inspection, not considering the matrices associated to generators and loads 

• Add the nodes corresponding to the generators. 

• Conform the augmented admittance matrix, according to: 

A B

AUG
C D

 
=  
  

Y Y
Y

Y Y
         (4.12) 

TRANSMISSION 
SYSTEM 

1V

1I  1 

2  

n  

2I

nI

2V  

nV  

0  

  
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That is, 

   

[ ] [ ] [ ] ( )

[ ]
[ ]( )

[ ] [ ] [ ]
( ) ( )

0

0

I Ing ng ng ng ng n ng ng n

IAUG ng ng

BUS LOAD I n n
n ng ng

n ng
n ng n ng

× × × − ×

×

×
− ×

×
+ × +

  −  
 
 −=  
   + +       

Y Y

YY
Y Y Y

   (4.13) 

where 

I gidiag Y =  Y ;  giY  generator admittance i

LOADY load admittance matrix corresponding to the bus where the load is connected

 

Finally, the admittance matrix is reduced as, 

   1
RED A B D C

−= −Y Y Y Y Y         (4.14) 

where 

[ ]A I ng ng×
=Y Y     [ ] [ ] ( )0B I ng ng ng n ng× × −

 = − Y Y  

[ ] [ ] ( )0
T

C I ng ng ng n ng× × −
 = − Y Y   [ ]D BUS LOAD I n n×

= + +Y Y Y Y  

 

4.3. COORDINATE TRANSFORMATION TO A COMMON REFERENCE FRAMEWORK 

The formulated power network has been expressed in the coordinate system 0DQ , in such a way 

that it is necessary to transform the transmission system to a common coordinate reference framework 

or simply a common reference. The conversion process is graphically illustrated by Figure 4.3. This 

figure represents the 0dq  and 0DQ  axes framework. It is important to point out that the angle iδ  

relates the angular difference between both frameworks (that is, network reference and synchronous 

rotating reference frame). 

From Figure, it is possible to obtain the expressions that relate both frames dq  and DQ . Hence, 

sin cosDi di i qi iI I Iδ δ= +        (4.15) 

cos sinQi di i qi iI I Iδ δ= − +        (4.16) 

Conveying all network currents in matrix form, it yields, 

1 11 1 1 1

2 22 2 2 2

cos sin

cos sin

cos sin

D Q d q

D Q d q

n nDn Qn dn qn

jI jI I jI

jI jI I jI

jI jI I jI

δ δ
δ δ

δ δ

   ++ + 
    ++ +    =    
    ++ +       

 

  

 (4.17) 
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In compact form 

DQ dq=I TI          (4.18) 

 
Figure 4.3 Reference relationship between dq and DQ variables 

 

where the transformation matrix T is defined as, 

( )1 2 njj jdiag e e e δδ δ =  T        (4.19) 

with 

1 1

2 2

D Q

D Q

DQ

Dn Qn

I jI

I jI

I jI

+ 
 + =
 
 +  

I


    

1 1

2 2

d q

d q

dq

dn qn

I jI

I jI

I jI

+ 
 + =
 
 +  

I


 

Same definitions may be applied to voltage transformation, that is, 

ˆ =V TV         (4.20) 

where, 

1 1

2 2ˆ

D Q

D Q

Dn Qn

V jV

V jV

V jV

+ 
 + =
 
 +  

V


    

1 1

2 2

d q

d q

dn qn

V jV

V jV

V jV

+ 
 + =
 
 +  

V


 

The transformation matrix described by Equation (4.19) is a kind of orthogonal matrix, which 

satisfies with,  

     1 *− =T T        (4.21) 

Therefore, applying the transformation matrix (4.19) to the network of Figure 4.2, results in, 

id  

iq  

Reference (Synchronous 
speed velocity) 

iδ

iQ  

iD
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    g DQ dq= =I I TI         (4.22) 

    g DQ dq= =V V TΕ        (4.23) 

Substituting gI  and gV  in Equation (4.7) yields, 

0

g gg g gl l

lg g ll l

= +

= +

I Y V Y V

Y V Y V
       (4.24) 

 

0

dq gg dq gl l

lg dq ll l

= +

= +

TI Y TE Y V

Y TE Y V
       (4.25) 

Doing over some simplifications, a final definition is obtained as, 

    1
dq net dq

−=I T Y TE        (4.26) 

where, 

    1
net gg gl ll lg

−= −Y Y Y Y Y        (4.27) 

which in turn has the form, 

  

1,11 12

2,21 22

,1 ,2 ,

11 12 1,

21 22 2,

,1 ,2 ,

ng

ng

ng ng ng ng

jj j
ng

jj j
ng

net

j j j
ng ng ng ng

Y e Y e Y e

Y e Y e Y e
Y

Y e Y e Y e

θθ θ

θθ θ

θ θ θ

 
 
 

=  
 
 
 





   



      (4.28) 

It is possible to obtain an explicit solution for dqI , which represents the injection current in the same 

0dq  frame of reference. That means that both, transmission network and generators, are represented in 

the same framework just shifted by angle iδ . According to Equations (4.19) and (4.28), the product 

TYT net
1−  is given by, 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1, 1,11 12 12

2, 2,21 21 22

,1 ,1 ,2 ,2 ,

11 12 1,

1 21 22 2,

,1 ,2 ,

ng ng

ng ng

ng ng ng ng ng ng

jj j
ng

jj j
ng

net

j j j

ng ng ng ng

Y e Y e Y e

Y e Y e Y e

Y e Y e Y e

θ δθ θ δ

θ δθ δ θ

θ δ θ δ θ

−−

−−
−

− −

 
 
 
 =
 
 
  

Τ Y T





   



    (4.29) 

Simplifying and defining, 

( ) ( ) ( )cos sin cos sinkm kmj
km km km km km km km km kmY e G B j B Gθ δ δ δ δ δ− = + + −     (4.30) 

as well as, 

( ) cos sinG B km km km km kmF G Bδ δ δ+ = +       (4.31) 



85 

( ) cos sinB G km km km km kmF B Gδ δ δ− = −       (4.32) 

Consequently, 

( )
1

ng

dk qk km dm qm
m

I jI Y E jE
=

′ ′+ = +∑           (4.33) 

( )( ) ( )( ) ( )( ) ( )( )
1

ng

dk qk G B km dm G B km qm B G km qm B G km qm
m

I jI F E j F E j F E F Eδ δ δ δ+ + − −
=

′ ′ ′ ′+ = + + −∑   (4.34) 

( )( ) ( )( )
1

ng

dk G B km dm B G km qm
m

I F E F Eδ δ+ −
=

′ ′= −∑
  

      (4.35) 

( )( ) ( )( )
1

ng

qk G B km qm B G km dm
m

I F E F Eδ δ+ −
=

′ ′= +∑          (4.36) 

The dq0 currents expressed in matrix form, are obtained as, 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

( )

11 12 1,
11

22 21 22 2,

,
,1 ,2 ,

11 12 1,

21 22 2,

,1

G B G B n g
dd

dd G B G B n g

d ngd ng
G B ng G B ng ng ng

B G B G n g

B G B G n g

B G n g B G n

G F F EI

EI F G F

EI F F G

B F F

F B F

F F

δ δ

δ δ

δ δ

δ δ

δ δ

δ δ

+ +

+ +

+ +

− −

− −

− −

  ′          ′   = −            ′        





    







   

( )

1

2

,2 ,

q

q

q ng
g ng ng

E

E

EB

  ′      ′         ′    





   (4.37) 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

( )

11 12 1,
11

22 21 22 2,

,
,1 ,2 ,

11 12 1,

21 22 2,

,1

G B G B n g
qq

qq G B G B n g

q ngq ng
G B ng G B ng ng ng

B G B G n g

B G B G n g

B G n g B G n

G F F EI

EI F G F

EI F F G

B F F

F B F

F F

δ δ

δ δ

δ δ

δ δ

δ δ

δ δ

+ +

+ +

+ +

− −

− −

− −

  ′          ′   = +            ′        





    







   

( )

1

2

,2 ,

d

d

d ng
g ng ng

E

E

EB

  ′      ′         ′    





   (4.38) 

 

4.4. INITIAL CONDITIONS CALCULATION FOR DYNAMIC ANALYSIS OF 
MULTIMACHINE SYSTEMS 

Before proceeding with the dynamic analysis, the initial conditions for the state and algebraic 

variables are obtained carrying out the procedure proposed by [Sauer and Pai 1998]. The process is 
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based, at a first stage, on performing a power flow solution followed by an algebraic substitution 

procedure of differential equations valuated under steady state conditions (zero dynamics constraint). 

Through this simple procedure, it is possible to determine the equilibrium point of the nonlinear 

power system dynamics, in such a way that it allows the evaluation of the linearized system of the 

nonlinear system. In power system dynamic analysis, the fixed points and initial conditions are 

normally obtained from a base case load flow solution. The values are computed for each generator 

state variables of the whole system. 

The power flow equations are given by,  

  

( )

( )

1 1

1 1 1 1
1

1

sin

k k

n
j

k k
k

n

i i k ik i k ik
k

P jQ VV Y e

Q VV Y

θ θ α

θ θ α

− −

=

=

+ =

= − −

∑

∑
 SLACK BUS     (4.39) 

  ( )
1

cos
n

i i k ik i k ik
k

P VV Y θ θ α
=

= − −∑    PV BUSES     (4.40) 

  

( )

( )

1

1

0 cos

0 sin

n

Li i k ik i k ik
k

n

Li i k ik i k ik
k

P VV Y

Q VV Y

θ θ α

θ θ α

=

=

= − + − −

= − + − −

∑

∑
 PQ BUSES     (4.41) 

Remembering that the power system equilibrium values are obtained by numerically computing the 

nonlinear algebraic system, the magnitudes and angles of voltages for each busbar of the power system 

are determined. Thus, a step by step approach is followed for the calculation of the rest of variables of 

the power system dynamic model. The procedure is as follows, 

 

• Step 1 

Considering that Gi i LiP P P= −  y Gi i LiQ Q Q= −  

   ( ) ( )i ij j
Gi i Li i Li iI e P P j Q Q V eγ θ−= − − −  

   ( ) *ij
Gi Gi Li iI e P P Vγ = −         (4.42) 

Generator currents are set over the same network. They have the form, 

   ( ) ( )2
πδγ −+= j

qidi
j

Gi ejIIeI i        (4.43) 

Under steady state condition, all derivatives are zero valued. Therefore, it is possible to obtain an 

equivalent that represents both the state variables and network variables over the same equivalent 

circuit. This is based on, 
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  ( )0 0di
q i di qi qi qi

dE
T E x x I

dt

′
′ ′ ′= − + − =        (4.44) 

Indeed, 

  ( )di qi qi qiE x x I′ ′= −          (4.45) 

 
Figure 4.4 Generator Equivalent Circuit 

 

Analyzing the equivalent circuit shown by Figure 4.4, an explicit equation for calculating voltage 

angle iδ  is found. Applying KVL,  

( )( ) ( ) ( ) ( )2 20 i ii j jj
i si di di qi di qi di qi qiV e R jx I jI e E x x I jE e

π πδ δθ − − ′ ′ ′ ′ ′= + + + − + − +      (4.46) 

Substituting diE′  in Equation (4.46), results in, 

( )( ) ( ) ( ) ( ) ( )2 20 i ii j jj
i si di di qi qi qi qi qi di qi qiV e R jx I jI e x x I x x I jE e

π πδ δθ − − ′ ′ ′ ′ ′= + + + − − + − +        

Rearranging some terms and additionally considering that ( ) ( )2i jj
Gi di qiI e I jI e

πδγ −= + , it yields 

( ) ( )i i ij j j
i si qi Gi qi di di qiV e R jx I e x x I E eθ γ δ ′ ′+ + = − +       (4.47) 

with 1, 2, ,i m=   

The right hand side of Equation (4.47) represents the voltage behind the impedance ( )si qiR jx+  and 

it has an angle δi. The voltage has a magnitude ( )qi di di qix x I E ′ ′− +   and angle 

( )i ij j
i i si qi Giangle V e R jx I eθ γδ  = + +   [Sauer and Pai 1998]. 

 

• Step 2 

Calculate δi from, 

  ( )i ij j
i i si qi Giangle V e R jx I eθ γδ  = + +        (4.48) 

siR dixj ′  

+ 

− 

( )
( )2i

di qi di qi

j
qi

E x x I

E e
πδ −

 ′ ′ ′+ − +

′ 
 ( ) ( )2ij

di qiV jV e
πδ −+  

( ) ( )2ij
di qiI jI e

πδ −+  
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• Step 3 

Calculate qidiqidi VVII ,,,  

  ( ) ( )2
πδγ +−=+ iij

Giqidi eIjII        (4.49) 

  ( ) ( )2
πδθ +−=+ iij

iqidi eVjVV        (4.50) 

• Step 4 

Determine diE′  from, 

  qiqidisididi IxIRVE ′−+=′        (4.51) 

Also, 

( ) qiqiqidi IxxE ′−=′         (4.52) 

• Step 5 

Calculate qiE′  

didiqisiqiqi IxIRVE ′++=′ (4.53)

• Step 6 

Also, calculate fdiE′  from, 

  ( )( ) 0
1

0

=′−′−−
′

=
′

qidididifdi
id

qi EIxxE
Tdt

Ed
     (4.54) 

  ( ) qidididifdi EIxxE ′+′−=        (4.55) 

• Step 7 

With fdiE′  earlier known, obtain irefV  from (4.5), 

  ( )( )1
0fdi

fdi exc i ref i t exc i
exc i

dE
E K V V

dt T
= − + − =      (4.56) 

  ( )fd i exc i ref i t exc iE K V V= −        (4.57) 

Hence, 

  fdi
ref i t exc i

exc i

E
V V

K
= +         (4.58) 

Finally, from the swing equation, 

   0 0id

dt

δ
ω ω= − =         (4.59) 

( )( )1
0i

mi di di qi qi i i
i

d
P E I E I D

dt M

ω
ω′ ′= − + − =      (4.60) 
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And, with this, it is obtained, 

  0ω ω=   (Depends on system reference)     (4.61) 

  ( )mi di di qi qi i iP E I E I Dω′ ′= + +        (4.62) 

 

 

4.5. APPLICATION EXAMPLE. 9 BUSES, 3 GENERATORS TEST POWER SYSTEM 

The procedure described along this Chapter is carried out to exemplify its application to the test 

power system of 3 synchronous machine, 9 buses [Anderson and Fouad 2003] which it will be 

experimented in the cases studies of Chapters 5 and 6. The parameters of this system are shown in 

Appendix C. 

The example tried to follow numerically almost every calculation needed before executing the 

dynamic process of the multimachine power system, that are the initial conditions of the nonlinear 

system. 

The numerical calculations are detailed in Appendix D following the procedure previously 

described along this Chapter. 

 

4.6. DISCUSSION 

This Chapter has described in detail the modeling of the multimachine power systems, to be applied 

in nonlinear oscillation studies. Although there are other different forms of modeling the same system, 

the approach followed here represents an alternative of wide application even when some other 

components of the power system (such as time variant loads, FACTS devices, etc.) are included in the 

model. 

It is important to mention that the requirements of detailed modeling in some cases have to be 

extended, thus resulting necessary to incorporate the model of global elements around the generators 

(PSS, AVR, turbine-governors models, etc.) or some other components (transformers, transmission 

lines, etc.) resulting in an increment on complexity of the power system modeling that allows a more 

rigorous study. 

In the same form, the approach before described is centered on the dynamic analysis of the 

synchronous machine and power network considering their nonlinear characteristics. Thus, the main 

goal is to apply the modal series approach to the multimachine modeling, resulting necessary the 

linearization of the power system model in order to take the properties of the linear and nonlinear 

contributions to the system behavior. 
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Also important to mention to the reader is the reason for the inclusion of this chapter. Even when 

the procedure followed before the application of a dynamic study is based on systematic and somehow 

trivial procedure, it is sometimes critical the time spent for these calculations. Hence, the chapter tries 

to clarify each step followed before starting the transient or dynamic study; the numerical tables can be 

easily reproduced by other author. 
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Equation Section 5 

55  
 

FFOORRCCEEDD  OOSSCCIILLLLAATTIIOONNSS  FFRROOMM  
TTHHEE  MMOODDAALL  SSEERRIIEESS  MMEETTHHOODD  

 
 

A systematic procedure to consider higher order terms of the linearized dynamic system applying the 

modal series method is described. This addition represents one of the main contributions of this thesis. 

Also, an extension that incorporates the concept of nonlinear transfer function is described 

representing the basis of future research work to be developed in further contributions. 

 

 

5.1 INTRODUCTION 

The modal series method detailed in chapters 2 and 3 is based on the closed form solution of a 

homogeneous nonlinear dynamic system; the forced contribution is not considered so far. Nevertheless, 

it is possible to assume an arbitrary input signal to the dynamic system following the same systematic 

procedure, thus obtaining a closed form solution that incorporates control variables. 

Why is it important to consider the control variables in the dynamic behavior of a nonlinear system? 

This is a question that can be answered mainly over the extensive work developed to analyze 

controlled systems in many areas, including power systems. However, with respect to the nonlinear 

power system modeling, it has been detected a lack of work in this field, focused only in the analysis of 

linear contributions. This chapter will try to introduce an application of the multidimensional Laplace 

transform described above, which expresses the contribution of both linear and nonlinear terms through 

Laplace domain kernels, thus leading in a direct way to the inclusion of higher order terms, following 

the same rules of a linear transfer functions. Also, taking advantage of the residue theorems, 

multidimensional Laplace kernels are expressed in the form of a partial fraction expansions, where 

their residues are directly available. This affirmation will be extended along this chapter. 

 

5.2 MODAL SERIES BACKGROUNG 

The equations of motion are assumed to be of the form 

    ( ),x f x u=           (5.1) 
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where nx ℜ∈  is the state vector and mu ℜ∈  is the control vector. The vector function ( , )f x u  and its 

partial derivatives with respect to x and u are assumed to be continuously differentiable functions of x 

and u. 

To solve this model approximately, we expand (5.1) into a finite Taylor series as 

   ( ) BuxxHxAxx
3iT +++= O

2

1
         (5.2) 

where, A and H are defined as in (3.3) and ( )uG ∂∂=B  

Equation (5.2) in its Jordan canonical form and considering the third order terms as well, can be 

written as

  
1 1 1 1 1 1

ˆ
n n n n n r

j
j j j kl k l pqr p q r ji i

k l p q r i

y y C y y D y y y b uλ
= = = = = =

= + + + +∑∑ ∑∑∑ ∑    1, ,j n=      (5.3) 

The last term of Equation (5.3) associated to r  represents the control variables. This term is 

reduced to ˆ
ji ib u  when a single input-single output (SISO) system is under study; on the other side, the 

term is the summatory assuming a multiple input-multiple output (MIMO) system of number r . Thus, 

(5.3) is written for the general case. 

The case of forced system response is represented manipulating and solving Equation (5.3) in 

the same form as the unforced case obtained in Chapter 3. 

 

5.3 FORCED OSCILLATIONS

The above approach can be easily generalized to the case of forced oscillations resulting from 

arbitrary excitations. Agreeing with the procedure detailed in Section 3.3, considering the system 

(3.10)-(3.12), assuming a single input-single output system, and following a line of reasoning similar to 

the unforced case, we have 

   ˆ
j j j j jy y b uλ= +            (5.4) 

   2 2 1 1

1 1

n n
j

j j j kl k l
k l

y y C y yλ
= =

= +∑∑           (5.5) 

   3 3 2 2 1 1 1

1 1 1 1 1

n n n n n
j j

j j j kl k l k l pqr p q r
k l p q r

y y C y y y y D y y yλ
= = = = =

 = + + + ∑∑ ∑∑∑       (5.6) 

           

from which it follows that 

   ( ) ( ) ( )ˆ 0j j
j

j j

b Y
Y s U s

s sλ λ
= −

− −
          (5.7) 
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   ( ) ( ) ( ) ( )2 1 1
1 2 1 2

1 1 1 2

1
,

n n
j

j kl k l
k l j

Y s s C Y s Y s
s s λ= =

=
+ −

∑∑        (5.8) 

where 

   ( ) ( ) ( )1
1

1 1
1 1

ˆ 0kk
k

k k

Yb
Y s U s

s sλ λ
= −

− −
          (5.9) 

   ( ) ( ) ( )1
1

2 2
2 2

ˆ 0ll
l

l l

Yb
Y s U s

s sλ λ
= −

− −
        (5.10) 

To illustrate the proposed method, consider the case of an impulse function. If ( )ju t  is an impulse 

function, then, 

    ( ) ( )ttu j δ=          (5.11) 

    ( ) 1jU s =          (5.12) 

Transforming to Laplace domain the Jordan system including the input function, it is obtained, 

    ( ) ( ) ( ) ( )ˆ 0j j j j jsY s Y s b U s Yλ= + −       

    ( )( ) ( ) ( )ˆ 0j j j jY s s b U s Yλ− = −       

    ( ) ( ) ( ) ( )
( )

ˆ 0j j
j

j j

b Y
Y s U s

s sλ λ
= −

− −
     (5.13) 

Since ( )U s is an impulse function,

    ( ) ( )
( )

( )
ˆ 0j j

j

j j

b Y
Y s

s sλ λ
= −

− −
       (5.14) 

Applying inverse Laplace Transform, it yields, 

    ( ) ( )( )ˆ 0 j t
j j jy t b y eλ= −         (5.15) 

which represents the time domain solution of the first order terms in the Jordan system. 

In a similar manner, the second-order terms are given by 

   ( ) ( ) ( ) ( )2 1 1
1 2 1 2

1 1 1 2

1
,

n n
j

j kl k l
k l j

Y s s C Y s Y s
s s λ= =

=
+ −

∑∑      

with, 

   ( ) ( )
( )

( )

1
1

1
1 1

ˆ 0kk
k

k k

Yb
Y s

s sλ λ
= −

− −
        (5.16) 
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   ( ) ( )
( )

( )

1
1

2
2 2

ˆ 0ll
l

l l

Yb
Y s

s sλ λ
= −

− −
        (5.17) 

Rearranging some terms, 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )2 1 1 1 1
1 2

1 1 1 21 2

1 1 ˆ ˆ ˆ ˆ, 0 0 0 0
n n

j
j kl k l k l l k k l

k l k lj

Y s s C b b b Y b Y Y Y
s ss s λ λλ= =

   = − − −  − −+ −  
∑∑   (5.18) 

Considering, 

  ( ) ( ) ( )( )lkj ssss
ssN

λλλ −−−+
=

2121
212

11
,        (5.19) 

and using Theorem 1 from Appendix A to convert ( )2 1 2,N s s  into ( )2N s  it yields, 

  ( )
( )( ) ( )

( )

( )( ) ( )

( )
11

2 2

1 2 2 2 1 21 2 2 1 2

2

,, l jk

l l

ss j lk l
s s

k l j

s s s N s ss s N s s
N s

s s

λ λλ
λ λ

λ λλ λ

λ λ λ

=− +=
= =

+ − −− −
= +

− − −
   (5.20) 

Therefore, 

  ( ) ( ) ( ) ( )








−
−

−−−+
=

jlkjlk ss
sN

λλλλλλ
111

2       (5.21) 

Having obtained the coefficients, the second order terms can be written in the form 

  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 1 1 1 1
1 2

1 1

1 ˆ ˆ ˆ ˆ, 0 0 0 0

1 1

n n
j

j kl k l k l l k k l
k l k l j

k l j

Y s s C b b b Y b Y Y Y

s s

λ λ λ

λ λ λ

= =

  = − − −  + −
  − 

− − −  

∑∑
   (5.22) 

The time domain solution obtained by inverse Laplace Transform applied to the second order terms 

is, 

  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 1 1 1 1

1 1

1 ˆ ˆ ˆ ˆ0 0 0 0

jk l

n n
j

j kl k l k l l k k l
k l k l j

tt

y t C b b b Y b Y Y Y

e e
λλ λ

λ λ λ= =

+

  = − − −  + −
 −   

∑∑
   (5.23) 

It can be observed that Equation (5.23) expresses the closed form time domain solution of the 

second order nonlinear term, when an impulse function is applied to the dynamic system. In the 

following sections, the dependence of modal combination in this solution will be detailed. Thinking in 

a short analysis of the given solution, it is evident its dependence to the resonant condition, mostly due 

to the eigenvalues combination; also, there is a combination of modal solution and a dependence on the 

initial conditions. Finally, the solution of (5.1) for the case of an impulse function can be expressed as, 
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( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1

1 1

ˆ 0

1 ˆ ˆ ˆ ˆ0 0 0 0

j

jk l

t
j j j

n n
ttj

kl k l k l l k k l
k l k l j

y t b y e

C b b b Y b Y Y Y e e

λ

λλ λ

λ λ λ
+

= =

 = − + 
    − − − −     + − 

∑∑
  (5.24) 

and 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1 1 1
2

1 1 1

1 1 1 1
2

1 1 1

ˆ ˆ ˆ ˆ0 0 0 0 0

ˆ ˆ ˆ ˆ0 0 0 0

j

k l

n n n
tj

i ij j j ij kl k l k l l k k l
j k l

n n n
tj

ij kl k l k l l k k l
j k l

x t u b y u h b b b Y b Y Y Y e

u h b b b Y b Y Y Y e

λ

λ λ

= = =

+

= = =

   = − − − − − +     
  − − −   

∑ ∑∑

∑∑∑
   (5.25) 

with 1, ,i n=   

 

5.4 SYNTHETIC EXAMPLE

To illustrate the application of the method, let us assume a synthetic example taken from [Zhu et al. 

1995]. A first order nonlinear differential equation of the form, 

( )3y y y u tτ β+ + =        (5.26) 

is solved when the input function ( )tu  is an impulse function, as a first step, and afterwards, a step 

function is also studied; both using the modal series method. 

The differential equation has first and third order elements, which are considered in the final 

solution. Thus, assuming an impulse function, the equation takes the form, 

31 1
y y y F

β
τ τ τ

= − − + (5.27)

Being, 

   
1λ
τ

= − (eigenvalue) 

   0C =  

   D
β
τ

=  

   ( ) ( )1
u t F tδ

τ
=  

with,   
F

b
τ

=   

The first order term is calculated as, 

   ( ) ( ) ( )1 0yb
y s U s

s sλ λ
= −

− −
       (5.28) 
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with ( )0 0y =  

   ( ) ( )
1 1F

y s
sτ λ

=
−

        (5.29) 

Applying inverse Laplace transform, 

   ( ) tF
y t e τ

τ
−=          (5.30) 

This system does not particularly have second order terms. Hence, the third order terms are 

expressed by, 

( ) ( ) ( ) ( ) ( )( )3 1 1 1
1 2 3 1 2 3

1 2 3

1
, ,y s s s D y s y s y s

s s s λ
 =  + + −

    (5.31) 

where, 

( )1
j

j

b
y s

s λ
=

−
    1,2,3j =    (5.32) 

Substituting the first order terms into the third order expression (5.31), yields, 

( ) ( ) ( ) ( ) ( )
3 3

1 2 3
1 2 3 1 2 3

1 1 1 1
, ,y s s s Db

s s s s s sλ λ λ λ
 

=  
+ + − − − −  

     (5.33) 

Applying the Theorem 2 given in Appendix A, the equation (5.33) is associated to the single 

variable equation with the form, 

  ( ) ( ) ( )
3 1 1 1 1

2 2 3
y s

s sλ λ λ λ
= − +

− −
(5.34)

The full solution to the differential equation (5.26) for an input impulse function has the form, 

  ( ) ( )
3

3
32

t t tF F
y t e e eτ τ τβ

τ τ
− − −= − − +        (5.35) 

The time domain solution expressed in the Equation (5.35) is similar to that described in [Zhu et al. 

1995] for the same conditions. This sample has demonstrated the viability of the extension of the 

modal series method to the inclusion of a forced input signal. 

Similarly to the previous case, a step input function is analyzed now for the same nonlinear 

differential equation. This differential equation takes a similar form to (5.26); however, the first order 

terms, which include the step function have the form, 

   ( ) ( )
1

1
1 1

1 1F
y s

s sτ λ
=

−
        (5.36) 

with ( )0 0y =  

Therefore, 
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    ( ) ( )
1 1 1

y s F F
s sλ

= − +
−

      (5.37) 

Executing the inverse Laplace transform, 

    ( ) ( )1 1 ty t F e τ−= −        (5.38) 

The third order terms are those of (5.31), but for the step function take the form, 

( ) ( ) ( ) ( ) ( )
3 3

1 2 3
1 2 3 1 1 2 2 3 3

1 1
, ,y s s s Db

s s s s s s s s sλ λ λ λ
 

=  
+ + − − − −  

    (5.39) 

This equation may be solved using the theorems of association of variables on multidimensional 

Laplace transform, described in [Chen and Chiu 1973] 

 

• Real Convolution Theorem 

If a given function ( )1 2, , , nF s s s  has the following structure: 

   ( ) ( ) ( )1 2 1 2 1 2, , , , , ,n n nF s s s H s s s F s s s= + + +    

and 

   ( ) ( )1 1 2 1, , , nA
nF s s s G s→  

the real convolution theorem states that 

   ( ) ( ) ( ) ( )1 2 1, , , nA
nF s s s G s H s G s→ =  

Then, with 

  ( )1 2 3
1 2 3

1
, ,H s s s

s s s a
=

+ + +
 

  ( ) ( ) ( ) ( ) 







−−−

=
332211

3
3211

1
,,

ssssss
DbsssF

λλλ
 

From [Chen and Chiu 1973] a kernel of the form, 

 

( )( )
3

1
i i

i

K

s a s b
=

+ +∏
 

is associated into, 

  
( )3

1 1 1 1

3 2 2 3

K

s b s a b s a b s aa b

 − + − + + + + + + −
 

Therefore, 
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  ( ) ( )
( )

2 3
1 1 2 3 1 3

1 1 3 3 1
, ,

2 3
AF s s s G s Db

s s s sλ λ λλ
 → = − + − − − − −

 

and 

  ( )
( )

3
1 2 3 3

1 1 1 3 3 1
, ,

2 3
F s s s Db

s s s s sλ λ λ λλ
 = − + − − − − − −

 

Finally the third order terms in the time domain solution have the form, 

 ( )3 3 2 35 3 1
1 3

2 2
t t ty t F t e e eτ τ τβ

τ
− − −  = − − − + +    

 

with the full solution, 

 ( ) ( ) ( )1 3y t y t y t= + +  

 ( ) ( ) 3 2 35 3 1
1 1 3

2 2
t t t ty t F e F t e e eτ τ τ τβ

τ
− − − −  = − − − − + + +    

     (5.40) 

(5.40) agrees with that obtained in [Zhu et al. 1995] for the case of a step input signal. The analytical 

example has demonstrated the application of modal series which is based on multidimensional Laplace 

compared to the solution obtained by a different technique such as the Laplace-Borel transform. 

 

5.5 THE TRANSFER FUNCTION IN NONLINEAR SYSTEMS 

5.5.1 Introduction 

The transfer function concept has been deeply analyzed as a powerful tool for either time or time 

varying linear systems with solid applications to control systems. The concept of transfer function 

itself attends the behavior between inputs and outputs of the dynamic system.  

With respect to the application of transfer function concepts to power systems, it may be observed 

the following [Smith et al. 1993]: 

• The order of any transfer function is as large as the number of state variables included in the 

model 

• Most of poles or eigenvalues of the transfer function cannot be observed from any signal in the 

system; therefore, it is possible to identify the effective transfer function between two points in 

the system. 

• An input signal applied to a power system will usually excite many modes which will be 

reflected in different output signals and locations in the system. 

• It is important to point out that a transfer function is usually written as a ratio of polynomials; 

nevertheless it can be also expressed as a sum of residues over a first order pole. 
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• Transfer function analysis assumes that initial condition effects have died away and that the 

output is a function of the input only. 

 

Several applications and definitions have been introduced into the analysis of power systems based 

on issues associated to the transfer functions. One important concept quite addressed by some authors 

is the computation of dominant poles of power system transfer functions. The concept arises over the 

consideration of a transfer function in which the poles and zeros are known. So, it is of concern to 

determine the main modes that are taking part in the frequency response to the oscillations in the power 

system. An algorithm based on Rayleigh iterations has been proposed, which exploits its characteristics 

of numerical properties of global cubic convergence [Martins et al. 1996]. The participation factors and 

the applications of such algorithm are remarked when a large scale power system is studied. An earlier 

work proposed the use of Prony analysis to determine the residues and with them, to obtain the transfer 

functions for the design of PSS applied to a multimachine power system [Trudnowski et al. 1991]. In 

this work the usefulness of transfer function concept arises in its determination of frequencies 

presented during oscillations in the power system and eventually damped by PSS design. 

  

5.5.2 Theoretical Basis of Nonlinear Transfer Function 

Transfer functions of nonlinear systems satisfy many properties that are expected from transfer 

functions [Halás et al. 2008]; i.e. 

• They characterize a nonlinear system uniquely. This means that each nonlinear system has a 

unique transfer function, no matter what state space realization one starts with. 

• They provide an input-output description of the nonlinear system. 

• They allow the use of transfer function algebra, to combine systems in series, parallel or feedback 

connection. 

Assuming a transfer function defined for a linear system, we have, 

    ( ) ( )
( )

Y s
G s

U s
= (5.41)

The time response of ( )Y s  to an impulse disturbance applied in the input function U is equal to the 

inverse Laplace transform of ( )G s  considering zero initial conditions in all system states [Gomes Jr. et 

al. 2000]. Thus, 

    it
i

i

y R eλ=∑         (5.42) 

where, 
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   iλ  are the poles of ( )G s  

   iR  the associated residues 

The time response of ( )G s  can be directly obtained by integrating in the time domain the impulse 

response of ( )G s , that is, 

    ( )1iti

i i

R
y eλ

λ
= −∑        (5.43) 

This case is very illustrative since the time response contains two parts due to the generic 

disturbance [Rugh 1981]: 

• The first part is called forced response which consists of the steady state part. 

• The second one, so called natural response, consists of the transient part which is formed by a sum 

of exponentials, whose values depend on the applied disturbance. 

The natural characteristic response depends on the location of the system poles in the complex 

plane [Gomes Jr. et al. 2000]. Therefore, it is important to point out that modal analysis consists on the 

computation of these poles and on the determination of their nature and sensitivities [Martins et al. 

1996]. 

For instance, the transfer function of a single input-single output (SISO) system has the form 

[Rommes and Martins 2006], 

 
( ) ( ) ( )
( ) ( ) ( )T

z t z t u t

y t z t u t

= +

= +

A B

C D


 (5.44) 

whose transfer function is, 

 ( ) ( ) 1TH s s
−= − +C I A B D  (5.45) 

Being the eigenvalues the poles of A and the corresponding right and left eigenvectors given by 

( ), ,j j jλ x v , the transfer function can be expressed as a sum of residues jR  over first order poles, that 

is, 

 ( )
1

n
j

j j

R
H s

s λ=

=
−∑  (5.46) 

where the residues jR are,

 ( )( )*T
j j jR v= x C B (5.47)

A pole jλ  that corresponds to a residue jR  with large ( )Rej jR λ  is called a dominant pole, 

which is observable and controllable in the transfer function [Rommes and Martins 2006]. Several 

efforts oriented to research the dominant poles in large power systems have been focused over the 
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transfer function concepts. Almost every approach developed is based on numerical algorithms that 

allow the determination of poles that have the biggest participation in power systems oscillations 

[Martins et al. 1996], [Martins and Quintao 2003], [Rommes and Martins 2006], [Rommes and Martins 

2006a], [Gomes Jr. et al. 2009]. Their extension to frequency analysis is straightforward, since 

functional kernels expressed in Laplace domain are easily swifted to frequency domain. Both SISO and 

MIMO systems are described by each contribution following the properties of linear transfer functions. 

More recently, dominant zeros in computation of feedback transfer functions have been considered as 

well [Martins et al. 2007]. 

The calculation of dominant poles will not be addressed in this thesis. For now, only the theoretical 

basis of nonlinear transfer function is of concern, leaving for future developments this research topic. 

 

5.5.3 Volterra Functional Expansion 

The input-output behavior of a dynamic system of the form, 

     
x = Ax + Bu

y = Cx


        (5.48) 

may be represented by means of a generalized convolution integrals series [Isidori 1989]. A general 

convolution integral of order k is defined as follows: let ( )1, ,ki i  be a multiindex of length k with 

1, ,ki i of the set { }1, ,m and if 1, , mu u are real valued continuous functions defined on [ ]0,T ; the

generalized convolutions integral with kernel 
1, ,ki iω   is defined as [Isidori 1989], 

   ( ) ( )
2

1 1, , 1 1 1

0 0 0

, , ,
k

k

t

i i k i kt u d d
τ τ

ω τ τ τ τ τ∫ ∫ ∫          (5.49) 

for 0 t T≤ ≤  

After some manipulations, it can be demonstrated that the series written as, 

 ( ) ( ) ( ) ( ) ( )
2

1 1

1

0 , , 1 1 1
1 , 1 0 0 0

, , ,
k

k k

k

tm

i i k i k i k
k i i

y t t t u u d d
τ τ

ω ω τ τ τ τ τ τ
∞

= =

= +∑ ∑ ∫ ∫ ∫ 


       (5.50) 

is absolutely and uniformly convergent, and is called a Volterra series expansion [Isidori 1989], 

[Schetzen 1980]. 

The original application of the Volterra functional to the analysis of nonlinear circuits is due to 

Wiener [Bussgang et al. 1974]. Wiener established that an output function ( )y t  of a nonlinear system 

is some functional of its input ( )u t  and that the two functions can be related by a functional series. 

The first few terms (up to order three) of the functional expansion are, 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 1 2 1 2 1 2

3 1 2 3 1 2 3 1 2 3

,

, ,

y t h u t d h u t u t d d

h u t u t u t d d d

τ τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ τ

∞ ∞ ∞

−∞ −∞ −∞

∞ ∞ ∞

−∞ −∞ −∞

= − + − −

+ − − − +

∫ ∫ ∫

∫ ∫ ∫ 

    (5.51) 

The nth order kernel of (5.51) ( )1 2, , ,n nh τ τ τ  can be called a nonlinear impulse response of order n 

[Bussgang et al. 1974]. 

Its Fourier transform can be called the nonlinear transfer function of order n. Hence considering the 

input-output  relation (5.51) and writing in the form 

     ( ) ( )
1

i
i

y t y t
∞

=

=∑  

in which,

  ( ) ( ) ( ) ( )1 1 1, ,n n n n ny t h u t u t d dτ τ τ τ τ τ
∞ ∞

−∞ −∞

= − −∫ ∫        (5.52) 

is the output component of order n [Bussgang et al. 1974]. 

Therefore, Equation (5.51) can be rewritten as [George 1959], 

  [ ] [ ] [ ]1 2 ny H u H u H u= + + +         (5.53) 

That is, the system H has been broken into a parallel combination of systems iH  as shown in Figure 

5.1. The interpretation of such Figure can be resumed as [George 1959], 

 

 
Figure 5.1 Block diagram for the generalized functional representation 

 

• The generalized functional representation shows a nonlinear system as a parallel bank of 

systems iH  that are nth order nonlinear systems. 

• They have an impulse-response function ( )1, ,n nh t t  associated with them. 

Following the same reasoning, a nonlinear system of the form, 

NH

2H  

1H  

Σ  

  
  

INPUT 

OUTPUT
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    ( ) ( ) ( )( ) ( ), , ,f y t y t y t x t=         (5.54) 

can be splitted-up into a sequence of components connected in parallel by the method of Volterra 

functional expansion [Schetzen 1980]. The process is illustrated by Figure 5.2. For this case, the first 

component is linear [Karmakar 1979], that is, 

   ( ) ( ) ( )1 1 1 1 1f t h x t dτ τ τ= −∫        (5.55) 

Here, the procedure based on multidimensional Laplace transform described in Chapter 3, Section 

3.3.2 can be used. In this way the linear case can be transformed as, 

   ( ) ( ) ( )1 1F s H s U s=         (5.56) 

 

Figure 5.2. Functional expansion of the nonlinear system represented by (5.54) 

 

The second component is of quadratic nature, i.e. 

  ( ) ( ) ( ) ( )2 2 1 2 1 2 1 2,f t h x t x t d dτ τ τ τ τ τ= − −∫ ∫       (5.57) 

In order to use the theory of multidimensional Laplace transform, it is necessary to artificially 

introduce 1t  and 2t , i.e. 

  ( ) ( ) ( ) ( )2 2 1 2 1 1 2 2 1 2,f t h x t x t d dτ τ τ τ τ τ= − −∫ ∫  

and then, 

  ( ) ( ) ( ) ( )2 1 2 2 1 2 1 2, ,F s s H s s U s U s=        (5.58) 

( )1 1h τ  

( )x t  ( )y t

( )2 1 2,h τ τ

( )1 2, , ,n nh τ τ τ  

∑

( )1y t  

( )2y t

( )ny t  
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Formally, at least ( )2 1 2,F s s  can be inverted to obtain ( )2 1 2,f t t  for which ( )2f t  is the desired 

output [George 1959]. Graphically, this can be illustrated in Figure 5.3. ( )2 1 2,f t t  can be plotted by 

contours on the ( )1 2,t t  plane but we are interested only in the 45 line where 1 2t t t= = . 

 
Figure 5.3. ( )1 2,t t plane for the case of 1 2t t=  line 

 

The method generalizes to higher order cases, hence the third is a cubic component; its output is, 

  ( ) ( ) ( ) ( ) ( )3 3 1 2 3 1 2 3 1 2 3, ,f t h x t x t x t d d dτ τ τ τ τ τ τ τ τ= − − −∫ ∫ ∫     (5.59) 

which in Laplace transform domain is, 

  ( ) ( ) ( ) ( ) ( )3 1 2 3 2 1 2 3 1 2 3, , , ,F s s s H s s s U s U s U s=       (5.60) 

The procedure of taking a number of variables 1 2, , , nt t t  as equal is called association of variables, 

as it was described in Chapter 3.  

The great value of making the associations in the transform domain lies on the fact that these 

associations can be made by inspection; being this application a class of problem adapted to this 

theory. Hence, the total system output is given by, 

   ( ) ( )
1

n

i
i

y t f t
=

=∑          (5.61) 

assuming a finite number of terms represented as an nth order nonlinear approximation. It is to be 

pointed out that terms associated to Volterra representation are denominated impulse response Volterra 

kernels [Rugh 1981]. Such kernels can be compared with those obtained by the modal series method in 

Equations (5.14) and (5.22). 

Following the same reasoning, it is possible to represent a forced nonlinear system decomposed by 

the modal series method, in the same way as the Volterra framework. By comparing each kernel, 

similarities from a qualitative point of view for both kernels sets can be observed. Also, it is important 

to mention that one of the main applications of multidimensional Laplace transforms centers on the 

closed form solution of Volterra kernels. A detailed description of such procedure can be found in the 

1t  

2t  

1 2t t t= =
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references [Rugh 1981] and [Mohler 1991], where an extension to the analysis is made to include 

bilinear systems. 

 

5.6 NONLINEAR TRANSFER FUNCTION BASED ON MODAL SERIES ANALYSIS 

Based on the modal series approach developed above, and considering the definition of the transfer 

function, this section is focused to obtain the analytical expressions which define the nonlinear transfer 

functions for the first, second and third order terms of the modal series closed form solution. Recalling 

the first and second order terms obtained previously, we have,  

   ( ) ( )1
ˆ

j
j

j

b
Y s U s

s λ
=

−
         (5.62) 

   ( ) ( ) ( ) ( )2 1 1
1 2 1 2

1 1 1 2

1
,

n n
j

j kl k l
k l j

Y s s C Y s Y s
s s λ= =

=
+ −

∑∑      (5.63) 

where 

   ( ) ( )1
1 1

1

k̂
k

k

b
Y s U s

s λ
=

−
         (5.64) 

   ( ) ( )1
2 2

2

l̂
l

l

b
Y s U s

s λ
=

−
         (5.65) 

Thus, substituting (5.64) and (5.65) in (5.63), the second order terms are, 

 ( ) ( ) ( )( ) ( ) ( )2
1 2 1 2

1 1 1 21 2

1 1ˆ ˆ,
n n

j
j kl k l

k l k lj

Y s s C b b U s U s
s ss s λ λλ= =

  =  
− −+ −  

∑∑     (5.66) 

An identical process can be applied to obtain third order terms, that is, 

( ) ( ) ( )( )( )
( ) ( ) ( )2

1 2 3 1 2 3
1 1 1 1 2 3 1 2 3

1 1ˆ ˆ ˆ, ,
n n n

j
j pqr p q r

p q r j p q r

Y s s s D b b b U s U s U s
s s s s s sλ λ λ λ= = =

 
 =

+ + − − − −  
∑∑∑  

             (5.67) 

Now, it is possible to follow the association of variables procedure, which will express in a single 

Laplace variable the terms referred to second and third orders, that is, 

 ( ) ( )1
ˆ

j
j

j

b
Y s U s

s λ
=

−
          (5.68) 

 ( ) ( ) ( ) ( )2

1 1

1 1ˆ ˆ
n n

j
j kl k l

k l k lj

Y s C b b U s
ss λ λλ= =

  =  
− −−  

∑∑       (5.69) 
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 ( ) ( ) ( ) ( )3

1 1 1

1 1ˆ ˆ ˆ
n n n

j
j pqr p q r

p q r j p q r

Y s D b b b U s
s sλ λ λ λ= = =

 
 =

− − − −  
∑∑∑      (5.70) 

    

where, 

( ) ( )1 2U s U s  
Associated as→  ( )U s  

( ) ( ) ( )1 2 3U s U s U s  
Associated as→  ( )U s

Equations (5.68)-(5.70) express the transfer functions of the nonlinear system, once the 

multidimensional Laplace domain kernels have been associated to a single Laplace variable. Here, 

(5.68) represents the linear case of the transfer functions, where the residues are defined; the rest of 

Equations are clearly representing the nonlinear contributions based on modal interactions to the total 

transfer function of the nonlinear system, that it was decomposed through the modal series method. 

The same reasoning is extended to higher order terms, which are easily generated. It can be 

observed that the poles of a first order transfer function are given by the eigenvalues obtained from the 

state matrix Taylor series expansion of the nonlinear system. However, second and third order terms 

poles, besides the poles due to eigenvalues, are due to the combination of two and three eigenvalues 

respectively. In a schematic way, the transfer function can be represented by Figure 5.4.  

 

 

 
 

Figure 5.4 Schematic representation of transfer function for the nonlinear system 

 

NONLINEAR SYSTEM 
( )u t  ( )g t  

NONLINEAR SYSTEM 

( )F s  
( )U s ( )G s

( ) ( ) ( ) ( )1 2 nF s F s F s F s= + + + 
( )U s  ( )G s  



107 

Assuming a transfer function, 

    ( ) ( )
( )

G s
F s

U s
=  

For the linear part, the time response of f  to an impulse disturbance applied in ( )u t  is equal to 

the inverse Laplace transform of ( )F s  considering zero initial conditions in all system states [Gomes 

Jr. et al. 2000]. This is shown in Figure 5.5, where the decomposition of transfer function in individual 

kernels of first, second, third orders are denoted. Thus, the global output is dependent of the nonlinear 

contributions given by the modal combination included in the poles of the nonlinear transfer function. 

 

 

 
 

Figure 5.5 Schematic representation of individual transfer functions for the nonlinear system 

( ) ( )1

ˆ
j

j

b
F s

s λ
=

−

( )U s  ( )G s  
( ) ( )( )2 2

1 1

1ˆ ˆ
n n

j
kl k l

k l j k l

F s h b b
s sλ λ λ= =

=
− − −∑∑

( ) ( )( )3 3
1 1 1

1ˆ ˆ ˆ
n n n

j
pqr p q r

p q r j p q r

F s h b b b
s sλ λ λ λ= = =

=
− − − −∑∑∑  

 

∑

( )1F s  

( )U s  ( )G s

( )2F s  

( )nF s  

 
∑  
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5.7 EXAMPLE 

5.7.1 SMIB Classical model 

For the sake of exemplification, a simple power system consisting of a synchronous machine-

infinite busbar power system is studied. The system is based on a classical model [Kundur 1994], with 

extended representation up to third order and assuming a single input-single output. The system has the 

form, 

( )

[ ]

2 3max max max
0 0 0

0 0 0
1 1

4 1
2! 3!cos sin cos

22 2 2 2

0 1

mm
O PP D P P

HH H H H

ωδ
ω δ δ ω δ δ δ δ

δ
ω

∆       ∆         = = + + + + ∆         ∆ − ∆ − ∆ ∆ ∆              
∆ 

=  ∆ 

x

ψ



  (5.71) 

which includes only one transfer function given by, 

    ( ) ( )
( )m

s
F s

P s

ω∆
=
∆

        (5.72) 

Applying modal series, it yields, 

• First order terms: 

( )1

1

ˆn
j

i
j j

b
x s

s λ=

∆ =
−∑      1, 2i =  

 or 

  
( )
( )

1

1

2

2

ˆ

ˆ m

b

ss
P

s b

s

λδ
ω

λ

 
 

  −∆  = ∆   ∆    
 − 




  

 Being, Ĉ CU= , 

( )
( )

1 2
1 2

1 2

ˆ ˆ
ˆ ˆ

m

s b b
c c

P s s s

ω
λ λ

∆
= +

∆ − −


        (5.73) 

• Second order terms: 

The second order transfer function is expressed as a function of linear transfer functions. 

According to the theory above detailed, the kernels are function of the two-dimensional Laplace 

transform, which is associated to single variable kernels, that is, 

( ) ( )( )( )
2

1 2
1 1 1 2 1 2

1ˆ ˆ,
n n

j
j kl k l

k l j k l

x s s C b b
s s s sλ λ λ= =

∆ =
+ − − −

∑∑   1, 2j =  

which is associated into, 
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( ) ( ) ( )
2

2
1 1

1 1ˆ ˆ
n n

j
j kl k l

k l k l j

x s h b b
s sλ λ λ= =

  ∆ = − 
− − −  

∑∑      (5.74) 

that can be expanded for the state variables considered in the case study in the form, 

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 2 1
2 (1,1) 1 2 (1,2) 1 2

1 1 1 2 1

1 1
2 (2,1) 2 1 2 (2,2) 2 2

2
2 1 1 2 1

2
2 2
2 (1,1) 1

1 2

1 1 1 1ˆ ˆ ˆ
2

1 1 1 1ˆ ˆ ˆ ˆ
2

1 1ˆ
2

h b h b b
s s s s

h b b h b b
s s s ss

s
h b

s s

λ λ λ λ λ

λ λ λ λ λδ
ω

λ λ

      − + − +   
− − − − −      

      − + −   
− − − − −    ∆    

= 
∆       − 

− −





( ) ( )

( ) ( ) ( ) ( )

2
2 (1,2) 1 2

1 2 2

2 2 2
2 (2,1) 2 1 2 (2,2) 2

2 1 2 2 2

1 1ˆ ˆ

1 1 1 1ˆ ˆ ˆ
2

mP

h b b
s s

h b b h b
s s s s

λ λ λ

λ λ λ λ λ

 
 
 
 
 
 
  ∆    + − + 

− − −     
 

       − + −    − − − − −        

 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2
1 2 1

1 2 (1,1) 1 2 (1,2) 1 2
1 1 1 2 1

1 1
2 (2,1) 2 1 2 (2,2) 2 2

2 1 1 2 1

2 2
2 2 (1,1) 1

1 2

1 1 1 1ˆ ˆ ˆˆ
2

1 1 1 1ˆ ˆ ˆ ˆ
2

1 1ˆˆ
2

m

s
c h b h b b

P s s s s

h b b h b b
s s s s

c h b
s s

ω
λ λ λ λ λ

λ λ λ λ λ

λ λ

    ∆    = − + − +    
∆ − − − − −       

      − + − +   
− − − − −      

 −
− −



( ) ( )

( ) ( ) ( ) ( )

2
2 (1,2) 1 2

1 2 2

2 2 2
2 (2,1) 2 1 2 (2,2) 2

2 1 2 2 2

1 1ˆ ˆ

1 1 1 1ˆ ˆ ˆ
2

h b b
s s

h b b h b
s s s s

λ λ λ

λ λ λ λ λ

     + − +   
− − −       

      − + −    
− − − − −      

   (5.75) 

It can be observed from (5.75) that the transfer function residues are function of the nonlinear 

interaction matrix 2
jh , the elements of the transformed input matrix B̂  and the combination of 

eigenvalues.  

 

• Third order terms: 

Executing the same procedure described for the second order nonlinear transfer function, the 

third order is represented as, 

  ( ) ( )( )
3

3
1 1 1

1ˆ ˆ ˆ
n n n

j
j pqr p q r

p q r j p q r

x s h b b b
s sλ λ λ λ= = =

∆ =
− − − −

∑∑∑    1, 2j =  

or in a single Laplace domain, 

  ( ) ( ) ( )
3

3
1 1 1

1 1ˆ ˆ ˆ
n n n

j
j pqr p q r

p q r j p q r

x s h b b b
s sλ λ λ λ= = =

 
 ∆ = −

− − − −  
∑∑∑     (5.76) 

Thus, 
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( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 3 1 2
1 1 23 1,1,1 3 1,1,2

1 1 1 1 2

1 2 1 2
1 2 1 23 1,2,1 3 1,2,2

1 1 2 1 1 2

1 2
1 23 2,1,1

1 1 2

3

3

1 1 1 1ˆ ˆ ˆ
3 2

1 1 1 1ˆ ˆ ˆ ˆ
2 2

1 1ˆ ˆ
2

h b h b b
s s s s

h b b h b b
s s s s

h b b
s s

s

s

λ λ λ λ λ

λ λ λ λ λ λ

λ λ λ

δ
ω

   
− + − +   

− − − − −      
   

− + − +   
− − − − − −      


−

− − −

 ∆
= 

∆  





( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1 2
1 23 2,1,2

1 1 2

1 2 1 3
1 2 23 2,2,1 3 2,2,2

1 1 2 1 2

2 3 2 2
1 1 23 1,1,1 3 1,1,2

2 1 2 1 2

2
3 1,2,1

1 1ˆ ˆ
2

1 1 1 1ˆ ˆ ˆ
2 3

1 1 1 1ˆ ˆ ˆ
3 2

ˆ

h b b
s s

h b b h b
s s s s

h b h b b
s s s s

h b

λ λ λ

λ λ λ λ λ

λ λ λ λ λ

  
+ − +   

− − −      
   

− + −   
− − − − −      

   
− + − +   

− − − − −      

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2
1 2 1 23 1,2,2

2 1 2 2 1 2

2 2 2 2
1 2 1 23 2,1,1 3 2,1,2

2 1 2 2 1 2

2 2 2 3
1 2 23 2,2,1 3 2,2,2

2 1 2

1 1 1 1ˆ ˆ ˆ
2 2

1 1 1 1ˆ ˆ ˆ ˆ
2 2

1 1 1ˆ ˆ ˆ
2

b h b b
s s s s

h b b h b b
s s s s

h b b h b
s s s

λ λ λ λ λ λ

λ λ λ λ λ λ

λ λ λ

   
− + − +   

− − − − − −      
   

− + − +   
− − − − − −      

 
− + 

− − − −   ( ) ( )2 2

1

3

mP

sλ λ

 
 
 
 
 
 
 
 
 
 
 
 
 
 

∆ 
 
 
 
 
 
 
 
 
 
 
  
 − 

−    

  (5.77) 

whose transfer function is expressed as, 

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

3
1 3 1 2

1 1 1 23 1,1,1 3 1,1,2
1 1 1 1 2

1 2 1 2
1 2 1 23 1,2,1 3 1,2,2

1 1 2 1 1 2

1 2
1 23 2,1,1

1 1 2

1 1 1 1ˆ ˆ ˆˆ
3 2

1 1 1 1ˆ ˆ ˆ ˆ
2 2

1 1ˆ ˆ
2

m

s
c h b h b b

P s s s s

h b b h b b
s s s s

h b b
s s

ω
λ λ λ λ λ

λ λ λ λ λ λ

λ λ λ

    ∆ = − + − +   
∆ − − − − −       

   
− + − +   

− − − − − −      


−
− − −



( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2
1 23 2,1,2

1 1 2

1 2 1 3
1 2 23 2,2,1 3 2,2,2

1 1 2 1 2

2 3 2 2
2 1 1 23 1,1,1 3 1,1,2

2 1 2 1 2

1 1ˆ ˆ
2

1 1 1 1ˆ ˆ ˆ
2 3

1 1 1 1ˆ ˆ ˆˆ
3 2

h b b
s s

h b b h b
s s s s
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 This process can be repeatedly applied up to the terms suitable to be considered. For this case, 

terms up to third order have been solved, hence the transfer function is represented by linear and 

second and third nonlinear terms. Figures 5.6 show the bode graphs for the transfer functions (5.73), 

(5.75) and (5.78) corresponding to the first, second and third order respectively, so related to the test 

power system considered in this experiment. Bode analysis has been performed by using Matlab® 

control toolbox, assuming individual transfer functions. The frequency contributions of second and 

third order terms can be observed in the gain of the transfer function.  

 

 
Figure 5.6 Bode graphics of first and second order transfer functions for the case of SMIB power system 

 

The Bode graphs of Figure 5.6 show the frequency contributions of both linear and nonlinear 

transfer functions. Of course, the linear frequency transfer function is due to the poles of the oscillatory 

eigenvalues, with frequency 1.1096f Hz= , such as it is described in Table 5.1. Furthermore, the 

frequencies due to the second order transfer functions are due to the combination of oscillatory modes, 

resulting in two main frequencies contributions, also detailed in Table 5.1. 
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The same Table 5.1 is specifying the residue, pole, frequency and damping ratio associated to each 

mode for the case of the first order transfer function, and the resulting of modal combination for the 

case of the second order transfer function. A frequency of 2.2191 Hz (which can be observed in the 

Bode graph of Figure 5.6) is the resultant of modal combination (5.75). Also to be noted is the 

substantial increase on residue values of the second order transfer function, that are dependent of 

nonlinear coefficients. 

 

Table 5.1 Residues, poles and frequency properties of transfer functions 

 
RESIDUES POLES FREQUENCY 

DAMPING 

RATIO 

First Order 
Transfer Function 

27.0380i 0.3571 6.9715i− ± 1.1096 0.0512 

Second Order 
Transfer Function 

223.24370479 11.4365329i− 0.7143 13.9430i− +  2.2191 0.0512

223.24370479 11.4365329i− +  0.3571  6.9715i− +  1.1096 0.0512 

223.24370479 11.4365329i− 0.7143−  - -

223.24370479 11.4365329i− +  0.3571  6.9715i− +  1.1096 0.0512 

223.24370479 11.4365329i− 0.7143−  - -

223.24370479 11.4365329i− +  0.3571  6.9715i− +  1.1096 0.0512 

74.58811208  1.27368937i− −  0.7143 13.9430i− −  2.2191 0.0512

74.58811208  1.27368937i+  0.3571  6.9715i− +  1.1096 0.0512 

74.58811208  1.27368937i− −  0.7143 13.9430i− +  2.2191 0.0512

74.58811208  1.27368937i+  0.3571  6.9715i− −  1.1096 0.0512 

223.24370479 11.4365329i− 0.7143−  - -

223.24370479 11.4365329i− +  0.3571  6.9715i− −  1.1096 0.0512 

223.24370479 11.4365329i− 0.7143−  - -

223.24370479 11.4365329i− +  0.3571  6.9715i− −  1.1096 0.0512 

223.24370479 11.4365329i− 0.7143 13.9430i− −  2.2191 0.0512

223.24370479 11.4365329i− +  0.3571  6.9715i− −  1.1096 0.0512 

 

Another schematic form to express the frequency response of the linear and nonlinear transfer 

functions is the application of the Nyquist plots or polar plots shown in Figure 5.7. 

In this case study, the mechanical power input, as it was mentioned before, is applied as the input 

signal to the transfer function. Figure 5.7a shows the polar plot for the linear transfer function. 

According to the theory of Nyquist diagrams, the frequency evolution is demonstrating that the system 

is stable for the a defined perturbation, since the polar diagram is not circling the axis in 1−  [Lazaro-

Castillo 2008]. The analysis is made considering transfer functions in open loop. 
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a) Linear transfer function

   
b) Second order transfer function 

Figure 5.7 Nyquist plots for the linear and transfer functions of 
mP

ω∆
∆  

 

Also, the same reasoning is used for the second order transfer function. A zoomed vision of the 

diagram of Figure 5.7 is shown in Figure 5.8, where the frequency of 2.2 Hz which is contributed by 

second order modal terms is observed. In the same way as the linear case, referring to Figures 5.7b and 

5.8, the trajectory obtained by the Nyquist plot is not closing the x axis point 1− , thus demonstrating 

that the system is stable for the transfer function performed under the parameter conditions given. 
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Figure 5.8 Detailed zoom of Nyquist plot of the second order transfer function 

 

5.7.2 Step Input Response 

The transfer functions previously defined are subjected to the application of a unit step function of 

the form [Ogata 1997], 

   
( )
( )

0 for 0

1 for 0

= <

= >

f t t

f t t
  

The unit step function is undefined at 0=t . In the Laplace domain it is defined as, 

   [ ]
0

1
1 ste dt

s

∞
−ℑ = =∫  

Taking the transfer functions (5.73) and (5.75) defined for linear and second order respectively, and 

applying the input unit step function, the closed form expressions in the Laplace domain are, 

( ) 1 2
1 2

1 2

ˆ ˆ1 1
ˆ ˆ

b b
s c c

s s s s
ω

λ λ
∆ = +

− −
            (5.79) 
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      (5.80) 

Now, applying the inverse Laplace transform, the closed form solutions in time domain are obtained 

as follows, 

( ) 1 21 1 2
1 2
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λ λ
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 (5.82) 

Performing simulations through the time domain expressions (5.81) and (5.82) and according to the 

assumed parameter conditions for this case study, the waveforms of Figure 5.9 are obtained for the 

case of input step function response. 
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a) Linear transfer function 

 
b) Second order transfer function 

Figure 5.9 Time evolution after a unit step function applied to the transfer functions 

 

Low frequency oscillations are observed in this Figure, where the second order evolution is 

considered. The graphs also show that the system keeps stable under this input signal, thus oscillating 

to eventually disappear. An additional exercise can be performed in this case study, now assuming 

various damping coefficients, resulting in different oscillation conditions. Figures 5.10a and 5.10b 

show this experiment for the linear and nonlinear transfer function, respectively, where the damping 

constant is varied from 0 to 5 and increased to the hypothetic values of 10 and 20 (over-damped 

conditions). Observe that the oscillations vary only in amplitude, keeping unchanged the frequency; as 

it was expected. For the higher values of damping conditions, oscillations disappear more rapidly than 

low damping constants. 
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a) Linear transfer function 

 

 
b) Second order transfer function 

Figure 5.10 Time evolution after a unit step function applied to the transfer functions varying the damping coefficient 

 

 

5.7.3 3 SM, 9 BUSES Test Power System 

The application of the proposed method is illustrated on a 3 machines, 9 bus test power system. The 

generation and network parameters, load data and the system operating conditions are taken from 

[Anderson and Fouad 2003] and given in Appendix C. The power system is represented by a fourth-

order model including the AVR representation. In Chapter 4 the model of this power system is 

detailed. 

Expanding the nonlinear model into a truncated series, up to order 2, one has 
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( )2

1
( )

2
O= + + = + + +3T ix Ax F x Bu Ax x H x x Bu      (5.83) 

Once the nonlinear representation has been obtained, modal solutions can be calculated. 

 

Nonlinear Transfer Functions 

Taking into account the modeling of a multimachine power system, and considering the fourth 

order power system previously described in Chapter 4, the system is linearized considering the state 

variables of each generator and the input variables associated to the power system as the mechanical 

power inputs and the reference voltages of the automatic voltage regulator, that is, 

[ ] [ ]1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

q q q

T

d d d fd fd fd

E E E

E E E E E E

δ δ δ ω ω ω ′ ′ ′ ∆ = ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ 

′ ′ ′   ∆ ∆ ∆ ∆ ∆ ∆   

x
    (5.84) 

1 2 3 1 2 3

T

m m m ref ref refP P P V V V    ∆ = ∆ ∆ ∆ ∆ ∆ ∆    u       (5.85) 

Hence, the complete model including for the power system under study has the form (in a similar 

way to the linearized system described by (3.41)), 

  ( ) ( ) ( )1 2 3F F F= + + + + ∆x x x x B u          (5.86) 

where, ( )1F x , ( )2F x  and ( )3F x  are defined by (3.43), (3.44) and (3.45), respectively. The input 

matrix B has the form, 
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



   



        (5.87) 

which for the assumed power system is a ( )15 6×  order matrix. 

For this case study, the transfer functions can be described choosing the rotor speed deviations as 

the set of output variables, resulting in a multivariable transfer function with 6 inputs-3 outputs, in the 

form shown by Figure 5.11. Since the system under study has multiple inputs-multiple outputs (MIMO 

system) it is necessary to incorporate the concept of superposition. Although this is a concept only 

valid for linear systems, it can be assumed the linearity of inputs and the nature of each kernel 

represented in terms of the multidimensional Laplace domain. For the sake of simplicity, each transfer 



119 

function will be calculated as a single input-single output system thus considering only the effect on 

the output variable due to a single input variable. 

 

Figure 5.11 Multivariable transfer function ( )sΩ
 

 

Applying the modal series method, detailed transfer functions including second and third order 

terms can be described. Following the modal series reasoning, the complete system can be modeled 

according to linear rules, that is, 

   ( )1

2
O= + + +

=

3T ix Ax x H x x Bu

y Cx


      (5.88) 

which in its own can be expressed according to Jordan canonical form, i.e., 

   
( ) ( ) 1−

2 3x =Λx + F x + F x +…+ U Bu

y = CUx

   
     (5.89) 

and then transformed into its Laplace transform domain as, 
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s s s s s

s s
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     (5.90) 

Calculating 1−=B U B , 
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From (5.90) it is possible to separate the terms corresponding to first, second, etc. order resulting in 

the next transfer functions that are expressed as a Multi Input-Multi Output system. 

 

• First order transfer functions: 

( )1

1 1

ˆn n
ij

i
i j j

b
x s

s λ= =

∆ =
−∑∑  



121 

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

13 15 1611 12 14

1 1 1 1 1 1

2321 22

2 2 2

ˆ ˆ ˆˆ ˆ ˆ

ˆˆ ˆ ˆ

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

b b bb b b
s s s s s s

bb b
s s s

q

q

q

d

d

d

fd

fd

fd

s

s

s

s

s

s

E s

E s

E s

E s

E s

E s

E s

E s

E s

λ λ λ λ λ λ

λ λ λ

δ
δ
δ
ω
ω
ω

− − − − − −

− − −

 
 
 
 
 
 
 
 
 
 ′ 
 ′ =
 ′ 
 ′
 
′ 

 ′
 
 
 
 
  































25 2624

2 2 2

31 32 33 34 35 36

3 3 3 3 3 3

43 45 4641 42 44

4 4 4 4 4 4

51 52 53 54 55 56

5 5 5 5 5 5

61 62 63 64

6 6 6 6

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

b bb
s s s

b b b b b b
s s s s s s

b b bb b b
s s s s s s

b b b b b b
s s s s s s

b b b b
s s s s

λ λ λ

λ λ λ λ λ λ

λ λ λ λ λ λ

λ λ λ λ λ λ

λ λ λ λ

− − −

− − − − − −

− − − − − −

− − − − − −

− − − −
65 66

6 6

71 72 73 74 75 76

7 7 7 7 7 7

81 82 83 84 85 86

8 8 8 8 8 8

91 92 93 94 95 96

9 9 9 9 9 9

10,1 10,2 10,3 10,4

10 10 10

ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

b b
s s

b b b b b b
s s s s s s

b b b b b b
s s s s s s

b b b b b b
s s s s s s

b b b b

s s s s

λ λ

λ λ λ λ λ λ

λ λ λ λ λ λ

λ λ λ λ λ λ

λ λ λ

− −

− − − − − −

− − − − − −

− − − − − −

− − − −
10,5 10,6

10 10 10

11,1 11,2 11,3 11,4 11,5 11,6

11 11 11 11 11 11

12,1 12,2 12,3 12,4 12,5 12,6

12 12 12 12 12 12

13,1 13,2 13,3 13,4

13 13 13 1

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

b b

s s

b b b b b b

s s s s s s

b b b b b b

s s s s s s

b b b b

s s s s

λ λ λ

λ λ λ λ λ λ

λ λ λ λ λ λ

λ λ λ λ

− −

− − − − − −

− − − − − −

− − − −
13,5 13,6

3 13 13

14,1 14,2 14,3 14,4 14,5 14,6

14 14 14 14 14 14

15,1 15,2 15,3 15,4 15,5 15,6

15 15 15 15 15 15

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

b b

s s

b b b b b b

s s s s s s

b b b b b b

s s s s s s

λ λ

λ λ λ λ λ λ

λ λ λ λ λ λ

− −

− − − − − −

− − − − − −

 
 
 
 
 
 
 
 
 
 
 




















 

1

2

3

1

2

3

m

m

m

ref

ref

ref

P

P

P

V

V

V

 ∆   ∆    ∆   ∆   ∆   ∆  












         (5.92) 

The transfer function matrix has the form, 
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In general, the linear transfer functions are, 
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−∑        (5.94) 

with  1, ,i o=   3o = = number of output variables 

  1, ,j r=   6r = = number of input variables 

  15n = = number of state variables 

 

• Second order transfer functions 

To formulate the second order transfer function, it is necessary to consider the system as a Single 

Input-Single Output in order to form the transfer function matrix, that is, 
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13,2 13,3 13,4 13,5 13,6

2 2 2 2 2 2
14,1 14,2 14,3 14,4 14,5 14,6
2 2 2 2 2 2

15,1 15,2 15,3 15,4 15,5 15,6

m

m

m

ref

ref

ref

s

s

s

s

s

s

s G s G s G s G s

G s G s G s G s G s G s

G s G s G s G s G s G s

 
 
 
 
 
 
 
  
  
  
 
 
 
 
 
   
 
 
 
 
 
  

P

P

P

V

V

V





 
 
 
 
 
 

   (5.95) 

where ( ) ( ) ( )
2

, 2
1 1 1

1 1ˆ ˆ
n n n

j
p q kl pk ql

j k l k l j

G s h b b
s sλ λ λ= = =

  = − 
− − −  

∑∑∑ with 1,2, ,p n=  15n =

          1,2, ,q r=   6r =  

 

From here, (5.95) is developed considering the selected output variables, which in this case study 

are the rotor speed deviations ( 1 2 3, ,ω ω ω ), to obtain individual transfer functions that are grouped to 

form the transfer function matrix. For instance, the first transfer function is formed as, 
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( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1 1
1,1 1,1 1,1 1,22 1,1 2 1,2

1 1 1 1 2 1

1 1
1,1 1,15 1,2 1,12 1,15 2 2,1

1 15 1 2 1 1

2
1 1

1,1 1,2 1,2 2,2
1

1 1 1 1ˆ ˆ ˆ ˆ

1 1 1 1ˆ ˆ ˆ ˆ

ˆ ˆˆ
m

h b b h b b
s s s s

h b b h b b
s s s s

s
c h b b

P

λ λ λ λ λ λ

λ λ λ λ λ λ

ω

      − + − + +   
− − − − − −      

      − + − +   
− − − − − −      

∆
=

∆





( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1
2 1,2 1,152 2,15

2 2 1 2 15 1

1 1
1,15 1,1 1,15 1,22 15,1 2 15,2

15 1 1 15 2 1

1
1,15 1,152 15,15

15 15 1

1 1 1 1ˆ ˆ

1 1 1 1ˆ ˆ ˆ ˆ

1 1ˆ ˆ

h b b
s s s s

h b b h b b
s s s s

h b b
s s

λ λ λ λ λ λ

λ λ λ λ λ λ

λ λ λ

      − + + − + +   
− − − − − −      

      − + − + +   
− − − − − −      

−
− − −

 



( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
1,1 1,1 1,1 1,22 1,1 2 1,2

1 1 1 1 2 1

1 1
1,1 1,15 1,2 1,12 1,15 2 2,1

1 15 1

1,2

1 1 1 1ˆ ˆ ˆ ˆ

1 1 1ˆ ˆ ˆ ˆ

ˆ

h b b h b b
s s s s

h b b h b b
s s s

c

λ λ λ λ λ λ

λ λ λ λ

 
 
 
 
 
 
 
 
 +
 
 
 
 
 
 

   
     

      − + − + +   
− − − − − −      

  − + 
− − − −  



( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 1 1

1 1
1,2 1,2 1,2 1,152 2,2 2 2,15

2 2 1 2 15 1

1 1
1,15 1,1 1,15 1,22 15,1 2 15,2

15 1 1 15 2 1

1

1 1 1 1ˆ ˆ ˆ ˆ

1 1 1 1ˆ ˆ ˆ ˆ

s

h b b h b b
s s s s

h b b h b b
s s s s

λ λ

λ λ λ λ λ λ

λ λ λ λ λ λ

  − + 
− −  

      − + + − + +   
− − − − − −      

      − + − + +   
− − − − − −      

 



( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1
1,15 1,152 15,15

15 15 1

1 1
1,1 1,1 1,1 1,22 1,1 2 1,2

1 1 1 1 2 1

1
1,1 1,152 1,15

1 1

1,15

1 1ˆ ˆ

1 1 1 1ˆ ˆ ˆ ˆ

1ˆ ˆ

ˆ

h b b
s s

h b b h b b
s s s s

h b b
s

c

λ λ λ

λ λ λ λ λ λ

λ λ

 
 
 
 
 
 
 
 
  +
 
 
 
 
 
 

   −  − − −   

      − + − + +   
− − − − − −      

− −





( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
1,2 1,12 2,1

5 1 2 1 1

1 1
1,2 1,2 1,2 1,152 2,2 2 2,15

2 2 1 2 15 1

1 1
1,15 1,12 15,1 2 15,2

15 1 1

1 1 1ˆ ˆ

1 1 1 1ˆ ˆ ˆ ˆ

1 1ˆ ˆ ˆ

h b b
s s s

h b b h b b
s s s s

h b b h
s s

λ λ λ λ

λ λ λ λ λ λ

λ λ λ

      − + − +   
− − − −      

      − + + − + +   
− − − − − −      

  − + 
− − −  

 

( ) ( )

( ) ( ) ( )

1,15 1,2
15 2 1

1
1,15 1,152 15,15

15 15 1

1 1ˆ

1 1ˆ ˆ

b b
s s

h b b
s s

λ λ λ

λ λ λ

 
 
 
 
 
 
 
 
 
 
 
   − + +  

− − −   
 

   −  − − −   



      (5.96) 

 

In the same way, the rest of transfer functions are defined and then grouped in matrix form in order 

to complete the transfer function matrix as, 

( )
( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )
( )
( )
( )
( )
( )

1

22 2 2 2 2 2
1 1,1 1,2 1,3 1,4 1,5 1,6

32 2 2 2 2 2
2 2,1 2,2 2,3 2,4 2,5 2,6

12 2 2 2 2 2
3 3,1 3,2 3,3 3,4 3,5 3,6

2

3

m

m

m

ref

ref

ref

s

s
s s s s s s s

s
s s s s s s s

s
s s s s s s s

s

s

 
 
    Ω Ω Ω Ω Ω Ω     = Ω Ω Ω Ω Ω Ω         Ω Ω Ω Ω Ω Ω     
 
  

P

P
ω

P
ω

V
ω

V

V







   (5.97) 

where 
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( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

2
12 1 1

(1,1) 1,1 2 1 1 1,2 2 1 1
1 1 1 11 1 1

1
1,15 2 1 1

1 1 1

1 1 1 1ˆ ˆ ˆ ˆˆ ˆ

1 1ˆ ˆˆ

n n n n

kl k l kl k l
k l k lm k l k l

n n

kl k l
k l k l

s
s c h b b c h b b

P s s s s s

c h b b
s s

ω
λ λ λ λ λ λ

λ λ λ

= = = =

= =

         Ω = = − + −      
∆ − − − − − −            

   + + −  
− − −  

∑∑ ∑∑

∑∑







 

    

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

2
12 2 2

(1,2) 1,1 2 2 2 1,2 2 2 2
1 1 1 12 2 2

2
1,15 2 2 2

1 1 2
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1 1ˆ ˆˆ
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s
s c h b b c h b b

P s s s s s

c h b b
s s

ω
λ λ λ λ λ λ

λ λ λ

= = = =

= =

         Ω = = − + −      
∆ − − − − − −            

   + + −  
− − −  

∑∑ ∑∑

∑∑







 

   

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

2
12 3 3

(1,3) 1,1 2 3 3 1,2 2 3 3
1 1 1 13 3 3

3
1,15 2 3 3

1 1 3

1 1 1 1ˆ ˆ ˆ ˆˆ ˆ

1 1ˆ ˆˆ

n n n n

kl k l kl k l
k l k lm k l k l

n n

kl k l
k l k l

s
s c h b b c h b b

P s s s s s

c h b b
s s

ω
λ λ λ λ λ λ

λ λ λ

= = = =

= =

         Ω = = − + −      
∆ − − − − − −            

   + + −  
− − −  

∑∑ ∑∑

∑∑







 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

2
12 4 4

(1,4) 1,1 2 4 4 1,2 2 4 4
1 1 1 11 4 4

4
1,15 2 4 4

1 1 4

1 1 1 1ˆ ˆ ˆ ˆˆ ˆ

1 1ˆ ˆˆ

n n n n

kl k l kl k l
k l k lref k l k l

n n

kl k l
k l k l

s
s c h b b c h b b

V s s s s s

c h b b
s s

ω
λ λ λ λ λ λ

λ λ λ

= = = =

= =

         Ω = = − + −      
∆ − − − − − −            

   + + − 
− − −  

∑∑ ∑∑

∑∑






 
  

   

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

2
12 5 5

(1,5) 1,1 2 5 5 1,2 2 5 5
1 1 1 12 5 5

5
1,15 2 5 5

1 1 5

1 1 1 1ˆ ˆ ˆ ˆˆ ˆ

1 1ˆ ˆˆ

n n n n

kl k l kl k l
k l k lref k l k l

n n

kl k l
k l k l

s
s c h b b c h b b

V s s s s s

c h b b
s s

ω
λ λ λ λ λ λ

λ λ λ

= = = =

= =

         Ω = = − + −      
∆ − − − − − −            

   + + − 
− − −  

∑∑ ∑∑

∑∑






 
  

   

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

2
12 6 6

(1,6) 1,1 2 6 6 1,2 2 6 6
1 1 1 13 6 6

6
1,15 2 6 6

1 1 6

1 1 1 1ˆ ˆ ˆ ˆˆ ˆ

1 1ˆ ˆˆ

n n n n

kl k l kl k l
k l k lref k l k l

n n

kl k l
k l k l

s
s c h b b c h b b

V s s s s s

c h b b
s s

ω
λ λ λ λ λ λ

λ λ λ

= = = =

= =

         Ω = = − + −      
∆ − − − − − −            

   + + − 
− − −  

∑∑ ∑∑

∑∑






 
  

   

  

 

In the general case, 

( ) ( )
( ) ( ) ( )

2
2
( , ) , 2

1 1 1

1 1ˆ ˆˆ
n n n

i j
i j i p kl kj lj

p k lj k l j

s
s c h b b

U s s s

ω
λ λ λ= = =

    Ω = = − 
− − −    

∑ ∑∑


    (5.98) 

with 1, ,i o=   3o =  

 1, ,j r=   6r =  

 

That is, the input signal is chosen as the input mechanical torque, for which it is possible to 

determine the transfer function of any state variable. Upon rearranging terms, we obtain the transfer 

functions defined by Equation (5.98). These equations are amenable to multidimensional Laplace 
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analysis using the detailed theory of Chapter 3. We emphasize that, unlike previous approaches, the 

above formulations allows the study of the system behavior in both, the time and frequency domains. 

Finally, the complete transfer function for this MIMO system is expressed in matrix form as, 

( )
( )

( )

( )

( )

( )

( )

( )

( )
( )
( )

( )
( )

( )
( )
( )

( )
( )

2 31
1 11

1

1 1 1
1

2 31
2 222

2 2 22

1
3 3

3 3

1

1

2

2

3

3

( )( )

( )( )

( ) ( )
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( )
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m m m
m

m m mm

m m
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s sss
P s P s P sP s

s sss
P s P s P sP s

s s
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V s
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V s
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ω ωωω

ω ωωω

ω ω

ω
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ω

∆ ∆∆∆  + + +
  ∆ ∆ ∆∆ 

∆ ∆∆ ∆ + + +  ∆ ∆ ∆∆ 
 ∆ ∆
 
∆ ∆ 

= = ∆∆  
∆ 
 
∆ 
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 
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 ∆ 
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3 3
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 
 
 
 
 
 
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







               (5.99) 

 

5.7.4 Numerical Analysis 

The example is conducted following the theory of nonlinear transfer functions through modal series 

described above. In this study case, the linear transfer functions were defined by (5.93) which are 

expressed in partial fractions as a result of the modal series expansion. 

 

5.7.4.1 Linear transfer functions 

The form of the transfer function is as follows (in this case, only the first transfer function ( ) ( )1
1,1 sΩ  

is shown as a sake of exemplification) once the parameters of the test power system are substituted in 

the analytical expressions and the eigenvalues obtained. Hence, 

 

( ) ( ) ( ) ( ) ( )

( )

1
1,1

0.0453 0.0066 0.0453 0.0066 1.1701 0.0154 1.1701 0.0154 0.0173

1.0618 13.0572 1.0618 13.0572 0.3744 8.5858 0.3744 8.5858 5.8688

0.0516 0.0885 0.0516 0.0885

1.5421 2.4311

i i i i
s

s i s i s i s i s

i i

s i s

− + + −
Ω = + + + − +

− − + − − − − − + − − − +

− +
+

− − + − ( ) ( ) ( )

( ) ( )

0.3588 0.0864 0.0465 0.0864 0.0465

1.5421 2.4311 3.4589 3.2841 0.1123 3.2841 0.1123

0.0403 0.0549 0.0403 0.0549 5.5573 0.0051

1.8002 1.2864 1.8002 1.2864 0.1401 0.9943

i i

i s s i s i

i i

s i s i s s

− +
− + + +

− − + − − + + +

− +
+ + +

− − + + + + +

 

(5.100) 

This transfer function is of 15th order, being the individual poles the linear combination of original

eigenvalues. Similar expressions are obtained for the rest of transfer functions that complete the 

transfer function matrix in (5.93). In order to obtain the frequency characteristics of the transfer 
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functions, a Bode analysis is performed using the tools for these purposes developed in Matlab® 

platform. The Matlab® Control Toolbox possesses well defined routines of Bode and Nyquist analysis 

that are exploited in this case study. Figure 5.12 shows the Bode and Nyquist graphics for the linear 

transfer functions ( ) ( )1,1 sΩ , ( ) ( )1,2 sΩ , ( ) ( )1,3 sΩ , ( ) ( )2,2 sΩ  and ( ) ( )3,3 sΩ  selected due to they present 

the highest contributions (highest residues). 
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Bode graphic Nyquist Graphic 

d) ( )
1
2,2Ω  

 

Bode graphic Nyquist Graphic 

e) ( )
1
3,3Ω  

Figure 5.12 Bode and Nyquist diagrams from the linear transfer functions of the 3SM-9 Buses test power system 

 

The frequency combinations observed in this Figure are 2.0781 Hz and 1.3665 Hz. Regarding the 

details observed in the Figure 5.12, it can be denoted that transfer functions ( ) ( )1,1 sΩ  and ( ) ( )1,2 sΩ  

have predominant frequency contribution of 1.3665 Hz while transfer functions ( ) ( )1,3 sΩ , ( ) ( )2,2 sΩ  

and ( ) ( )3,3 sΩ  have resonant contributions of both frequencies 2.0781 Hz and 1.3665 Hz 

 

5.7.4.2 Nonlinear transfer functions 

Now, the nonlinear transfer functions are analyzed. Please observe the Figure 5.13, which denotes 

the Bode and Nyquist graphics for the transfer function ( ) ( )2
1 21,2 ,s sΩ . It is important to notice the 

several frequency contributions that the Bode graph is showing. This transfer function is an element of 

the nonlinear transfer function matrix obtained above and detailed in (5.97) for the MIMO system 

under analysis. Also, there is a fact that the system may be of a huge size since the partial fractions of 

the transfer functions obtained by modal series are the result of combination of all the possible second 

order modal combinations. Considering these modal combinations, the poles can originate a transfer 
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function of almost 6750 order in the system under study. Of course, a higher number is very 

complicate to handle by a Bode and Nyquist routine. 

 

( ) ( )2
1 21,2 ,s sΩ  

 

Figure 5.13 Bode and Nyquist diagrams for the second order transfer function ( ) ( )2
1 21,2 ,s sΩ  for the case study of the  

test power system 3SM-9BUSES 
 

In order to obtain an easier expression, a simple analysis based on the highest residues is applied to 

the nonlinear terms. Figure 5.14 shows the residues location in the complex plane. Thus, due to the 

excessive number of residues and therefore, the same number of poles, only those with highest 

absolute magnitude are considered to characterize the nonlinear transfer function. The zoomed Figure 

5.14 details the residues that are out of bounds, that is, residues whose magnitude are 0.1ir < . 

Agreeing to the reasoning of residues, the corresponding poles (modal combination) referred to the 

resultant residues are shown in Figure 5.15. This analysis can be compared with the proposal of 

dominant poles calculation [Martins et al. 1996], [Rommes and Martins 2006] where the main residues 

and their corresponding poles are obtained using an iterative process. 

With respect to the complete poles of the transfer functions, the main frequencies detected in the 

wide range spectrum are 4.16Hz, 3.44 Hz, 2.73 Hz, 2.47, 2.28, 2.1, 2.08, 1.87, 1.75, 1.69, 1.57 and 

0.98 Hz. 
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Figure 5.14 Residues spectrum for the nonlinear transfer function ( ) ( )2
1 21,2 ,s sΩ for the case study of the  

test power system 3SM-9BUSES 
 
 
 

 

Figure 5.15 Poles spectrum for the nonlinear transfer function ( ) ( )2
1 21,2 ,s sΩ  for the case study of the  

test power system 3SM-9BUSES 

 

A spectrum characteristic of the nonlinear transfer function is obtained, as shown in Figure 5.16. 

The Figure shows the full frequency content of the nonlinear transfer function of order 6750th. A 

zoomed window denotes the content of some of the terms, i.e. through order 300. It is clear that there is 

a predominant frequency detected in the spectrum (2.08 Hz) which is a low frequency due to the 

electromechanical modes of the power system.
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Figure 5.16 Frequency spectrum of the nonlinear transfer function ( ) ( )2
1 21,2 ,s sΩ  for the case study of the  

test power system 3SM-9BUSES 

 

Once the reduction in the nonlinear transfer function order is performed, an approximate frequency 

content is obtained; please see Figure 5.17. From this Figure, the similarity on frequency content with 

respect to the full spectrum already commented with reference to the Figure 5.16 is observed. In such 

case, it can be said that the reduced model keeps almost the same frequency characteristics of the full 

system. 

 
Figure 5.17 Pole spectrum of the reduced nonlinear transfer function for the case study of the 

test power system 3SM-9BUSES 

 

 

Finally, the Figure 5.18 shows the Bode and Nyquist graphs of some of the main nonlinear transfer 

functions, where the frequency content of each of them can be observed. In some cases, for instance 
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( ) ( )2
1,3 sΩ  various resonant frequencies are presented, being of predominance the frequencies in the range 

of 2 to 3 Hz. 

 
( ) ( )2
1,3 sΩ  

 
( ) ( )2
1,4 sΩ

 
( ) ( )2
1,5 sΩ  

 
( ) ( )2
1,6 sΩ  
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( ) ( )2
2,2 sΩ  

 
( ) ( )2
3,3 sΩ  

 
Figure 5.18 Bode and Nyquist graphics of nonlinear transfer functions 

 

 

5.8 DISCUSSION 

This chapter has described in detail the theory related to the linear transfer functions concepts 

and its extension to the nonlinear transfer function through the application of the modal series method, 

as the basis of nonlinear system expansion, assuming an input force response. The method has the great 

advantage of analyzing in both time and frequency domains, in a numerical and analytical way, the 

transfer functions of nonlinear systems. Application of the multidimensional Laplace transform and 

association of variables techniques are the core of modal series technique, which allows a closed form 

analytical solution of the nonlinear system, being the extension of including the control forced 

response. The examples were focused on applications to simple power systems, however, it is possible 

following the same definitions, to extend it easily in a straightforward manner to the analysis of large 

scale power systems. It is clear that dealing with bigger systems, the complexity of analysis is 

increased, being necessary the inclusion of sparsity techniques, effective algorithms of eigenvalues 

determination, etc. Future developments based on this contribution will take this problem adding the 

determination of dominant poles and the analysis of large scale power systems. 
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Equation Chapter 6 Section 1 

66  
CCAASSEE  SSTTUUDDIIEESS::  

AAPPPPLLIICCAATTIIOONN  OOFF  MMOODDAALL  SSEERRIIEESS  TTOO  TTHHEE  
AANNAALLYYSSIISS  OOFF NNOONNLLIINNEEAARR  OOSSCCIILLLLAATTIIOONNSS  

 

This chapter consolidates with the theory detailed along this research. To exemplify it, two test power 

systems are considered, i.e. the 9 buses, 3 generators [Anderson and Fouad 2003] and the version of 

New England test power system with 10 generators, 39 buses [Pai 1989]. Experiments with both 

methods are conducted using the modal series method, analyzing the linear and nonlinear 

contributions to the closed form solution through numerical simulations and linear and nonlinear 

participation factors and interaction modal indices on the test systems. 

 

6.1 INTRODUCTION 

The theory of modal series method described along this thesis is exemplified in this Chapter 

through the study of two test power systems. The first one was already analyzed in Chapter 5, where 

the concept of nonlinear transfer function was introduced; the main goal of the experiment with the 

same test power system is to clarify the application of the modal series method, the modal analysis, the 

nonlinear modal interaction, the frequency contribution of nonlinear terms considered in the study and 

also the analysis of nonlinearity when a time disturbance clearance is changed. 

On the second part, a larger power system based on the WSCC test power system of 10 machines, 

39 buses is exemplified; the nature of linear and nonlinear oscillations are clarified, following a similar 

procedure of the previous case study, in fact, modal analysis and nonlinear modal interaction are of 

concern. Also, the system is simulated when the modal analysis results in unstable working conditions. 

One of the main advantages of the modal series method is its facility of application even under modal 

resonance conditions. 

 

6.2 CASE STUDY 1: 3 SYNCHRONOUS MACHINES, 9 BUSES TEST POWER SYSTEM 

The first study case is oriented to the study of the 9-bus test power system shown in Figure 6.1 

[Anderson and Fouad 2003]. The generation and network parameters, load data and the system

operating conditions are given in Appendix A. For the purposes of analysis, the power system is 

represented by a fourth-order model including the AVR representation such as it was described in 
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Chapter 4. The network is represented by a quasi-stationary model; loads are treated as constant 

impedances and the generator impedances are included in the augmented network admittance matrix. 

 
Figure 6.1. Nine-bus, three-machine test power system 

 
The state variables vector in that represent the nonlinear power system model are defined as 

( ) [ ]
q d fd

T
E E Et δ ω ′ ′=x x x x x x , where, 

[ ]1 2 3

T

δ δ δ δ=x      

[ ]1 2 3

T

ω ω ω ω=x     

' 1 2 3
q

T

q q qE
E E E′ ′ ′ =  x      

[ ]' 1 2 3
d

T

d d dE
E E E′ ′ ′=x    

1 2 3fd

T

E fd fd fdE E E =  x     

The state matrix obtained by the linearization process detailed in Section 2.2, Chapter 2, is 

evaluated to obtain the Jacobian equation which has the form, 

J =  
0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 

-24.1837 13.5322 10.6514 -0.0997 0 0 9.6542 7.0316 22.5939 -8.6678 -7.7655 0 0 0 

44.3537 -77.584 33.2302 0 -0.2 0 -92.879 13.5713 -42.4814 16.6473 -31.4914 0 0 0 

78.3229 73.9174 -152.2403 0 0 -0.3 42.3338 -150.9938 -74.7438 -56.5049 67.1463 0 0 0 

0.0014 -0.0014 0 0 0 0 0.01 0.0089 -0.008 0.0107 0.0077 0.1116 0 0 

0.1972 -0.3222 0.125 0 0 0 -0.519 0.1363 -0.185 -0.0543 -0.0444 0 0.1667 0 

0.2219 0.1595 -0.3814 0 0 0 0.2124 -0.6246 -0.2073 -0.0153 -0.0532 0 0 0.1698 

0.3347 -0.1875 -0.1473 0 0 0 -0.1307 -0.0947 -3.5738 0.1228 0.1095 0 0 0 

-0.7905 1.5983 -0.8077 0 0 0 0.5846 0.4782 0.794 -5.6607 1.4672 0 0 0 

-1.1223 -1.4642 2.5865 0 0 0 0.1432 0.497 1.1068 1.9839 -5.9155 0 0 0 

-1.274 0.9783 0.2957 0 0 0 -3.8051 -3.4385 0.008 -4.5919 -3.371 -3.1847 0 0

-3.786 4.865 -1.079 0 0 0 -29.0439 -7.0326 3.3255 -31.7483 -4.7018 0 -3.1847 0 

-3.1797 0.9322 2.2475 0 0 0 -8.9983 -26.0508 2.6864 -9.1065 -25.5488 0 0 -3.1847 
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with the sparsity structure shown in Figure 6.2. The coupling existing between the main state variables 

can be observed. 

 
Figure 6.2 Jacobian matrix structure 

 

In the same way, the second order partial derivatives of the power system model are represented by 

the Hessian matrix whose sparse structure has the form illustrated by Figure 6.3. The Hessian is a 

sparse matrix, requieres of an efficient technique for matrices storage mostly in cases where the system 

explodes in dimension, for instance, large scale power systems. In particular for this study case the 

Hessian matrix has size  of 15 225×  elements. 

 
Figure 6.3 Hessian matrix structure 

 
The sparsity structure of the Jacobian and Hessian matrices is illustrated for visual and qualitative 

evaluation objectives. Both matrices in computational implementation are obtained in a symbolic way: 

the original set of differential equations is linearized obtaining the first and second order partial 

derivatives using the symbolic properties of Matlab®. It is very important to remark the importance of 

using symbolic applications. Powerful tools as Mathematica® can be very useful in order to obtain the 

analytical expressions, since the modal series method is based on analytical solutions instead on 

numerical calculations. Despite the Symbolic Toolbox of Matlab® is not the best option to write a

symbolic math program, the developed software for the case studies reported in this thesis includes 

routines written using the symbolic toolbox. Further developments consider the extension of some 

other routines, thought to be used with a better analytical platform, such as Mathematica®. 

 

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

nz = 120

0 50 100 150 200

0

10

nz = 540



138 

6.2.1 Small Signal Analysis 

The small signal analysis in the case study is resumed in the Table 6.1. 

Table 6.1 Modal analysis of 3SM, 9 buses test power system

Mode Eigenvalue Damping Ratio Frequency 

1,2 1.0618 13.0572i− ± - 0.081 2.0781 

3,4 0.3744 8.5858i− ±  0.0436 1.3665 

5 -5.8688 1 0 

6,7 1.5421 2.4311i− ± 0.5357 0.3869 

8 -3.4589 1 0 

9,10 3.2841 0.1123i− ±  0.9994 0.0179 

11,12 1.8002 1.2864i− ±  0.8136 0.2047 

13 0 1 0 

14 -0.1401 1 0 

15 -0.9943 1 0 

 

From Table 6.1 we can observe that there are 10 oscillatory modes, being the electromechanical 

modes 1,2 and 3,4 of main importance. With respect to the analysis of participation factors, the bar 

diagrams illustrated in Figure 6.4 show the variables with the highest participation factors, only for the 

oscillatory modes. For this case study, the set of highest participation factors are resumed in Table 6.2. 

 

Table 6.2 Most dominant participation factors 

Mode Participation 
Factor 

State 
Variables 

1,2 0.3823 3 3,δ ω  

3,4 0.3011 2 2,δ ω  

5 0.5195 2dE′  

6,7 0.2437 1 1,q fdE E′  

8 0.4209 3dE′  

9,10 0.4367 3fdE  

11,12 0.2186 2fdE  

13 0.4971 1δ  

14 0.4944 1ω  

15 0.4601 3qE′  
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1 1.0618 13.0572iλ = − + 3 0.3744  8.5858iλ = − + 6  1.5421  2.4311iλ = − +

 
9 3.2841 + 0.1123iλ = − 11 1.8002 1.2864iλ = − +

Figure 6.4 Linear Participation Factors 
 

The participation factors listed in Table 6.2 denotes that the oscillatory modes 1,2 with frequency 

2.0781 Hz are associated to rotor angle and speed of generators 2 and 3, acting as local modes, while 

the modes 3,4 with frequencies 1.3665 Hz are with generator 2. The rest are modes due to control 

interactions between field and stator windings. In this particular case, there are no any inter-area modes 

presented. The modal analysis establishes the main characteristics of frequency, damping ratio and 

participation factors, which interact in the analysis of the nonlinear system when modal combination is 

present. 

 

6.2.2 Approximate Time-Domain Solutions to System Motion 

To test the accuracy of the method, a three-phase fault is applied at bus 8 cleared in 6 cycles 

followed by 10 MW load rejection. The state variables perturbation constraint is, 

[ ]0.0036 0.2384 0.1384 0.0958 4.7531 2.6458 0.0031 0.0049 0.0043 0.0019 0.4258 0.2308 1.0502 3.9079 2.4613
T

disturb =

− − − − −

 

The time domain validation of the nonlinear power system is performed by comparing the time 

domain solution obtained with the modal series method with the full non-linear system behavior 

obtained through numerical integration. Also the linear approximation is studied and compared. 

Figures 6.5 a) to f) provide a comparison of the full system solution for selected states with the solution 

obtained from the modal series approach for the already described conditions. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

State Variable Number

P
ar

tic
ip

at
io

n 
F

ac
to

r

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

0.3

State Variable Number

P
ar

tic
ip

at
io

n 
F

ac
to

r

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

State Variable Number

P
ar

tic
ip

at
io

n 
F

ac
to

r

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

State Variable Number

P
ar

tic
ip

at
io

n 
F

ac
to

r

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

State Variable Number

P
ar

tic
ip

at
io

n 
F

ac
to

r



140 

 
a) Relative rotor angles 21δ  and 23δ  

   

 
b) Absolute rotor angles of 1δ , 2δ  and 3δ  

 
c) Rotor Speed 1ω       d)   Voltage 1qE′  
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             e)   Voltage 3dE′       f)  Voltage 1fdE

 
Figure 6.5 Time domain validation of the 3 SM, 9 buses test power system 

 

Figure 6.5a) is related to the relative rotor angles, it does not reflect almost any considerable 

difference between solutions; the angles 21δ  and 23δ  follow similar trajectories for the three methods 

during the transient. A slight difference with respect the linear approximation is observed in the rotor 

angle 21δ  although it is not of concern. However, the absolute rotor angles shown in Figures 6.5b) have 

the largest differences with respect to the linear approximation. The modal series response closely 

follows the full numerical solution during the transient and eventually reaches an identical steady state 

solution, not shown, which is considerably different to that obtained by the linear approximation 

approach. The reason is based on the angles are the variable with the highest nonlinear characteristic of 

the model that is clearly appreciable. 

The transient evolution of the rest of variables present differences with respect to the linear 

approximation but closely agree in steady state. For instance, referring to Figures 6.5d) e) and f), there 

is a noticeable difference between linear approximation with respect to modal series and full numerical 

solution, but it practically follows the same trajectory just before the steady state solution is reached. A 

smaller difference is observed for the rotor speed in Figure 6.5 c). 

It can be concluded that for all the cases here described, the modal series solution is always closer 

to the time domain response described by the full numerical solution, while linear approximation may 

fail for the cases where the nonlinear characteristic is presented. 

A new condition of operation is considered in this case study, when the fault duration is increased to 

10 cycles, accompanied with the absence of damping conditions (damping factor 0D = ) for each 

generator. The simulation is shown throughout Figure 6.6. The variables exhibit higher differences

between modal series and linear approximation. 

The solution obtained by the modal series method, detailed for the variables of rotor angle iδ , rotor 

speed iω  and voltage qiE′  are described; significative differences are observed, when compared against 
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the linear approximation for the case of rotor angle variables, since the linear approximation follows a 

different direction of solution with respect to modal series and the full numerical solution. 

 

    
a) 1δ b) 2δ

 
c) 3δ  

   
d) 1ω                                                                                 e) 2ω  

 
f) 3ω
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g) 1qE′                                                                h) 2qE′  

 
i) 3qE′  

Figure 6.6 Time domain validation of 3SM 9 buses test power system under different perturbation conditions 
 

 

6.2.3 Nonlinear Modal Interaction Through Nonlinear Indices 

To analyze the nonlinear contribution of the modal series terms, several nonlinear indices are taken 

into account as follows: 

a) The first nonlinear index is defined by, 

    ( ) ( )1 max 2 0 0j
kl k lI h y y=         (6.1) 

which provides the maximum measure of the nonlinearity to the closed form solution. Also, it can 

be the contribution of modes k, l to the jth mode. 

b) Other nonlinear index is defined as, 

    
( ) ( )

( )
,

max 2 0 0
2

0

j
kl k l

k l

j

h y y
I

y
=         (6.2) 

which determines the second order nonlinear effects, indicating a strong modal interaction 

[Barocio 2003]. 

c) A new coefficient of nonlinearity taken from [Barocio 2003] that is defined from the theory of 

nonlinear distorsion interference criteria, has been applied to estimate the nonlinear interaction in 

terms of normal forms variables. The same index is adapted in terms of Jordan canonical variables, 

resulting in, 
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( ) ( )

( )

2

1 1

2 0 0

3
0

n n
j
kl k l

k l

j

h y y

I
y

= ==
∑∑

        (6.3) 

d) Finally, a fundamental mode nonlinearity index provides a measure of the effect of modal 

interactions on the fundamental mode in the original coordinates [Chen et al. 2010], that is, 

   ( )
( ) ( ) ( )

( )
1 1

0 2 0 0

4
0

n n
j

j kl k l
k l

j

y h y y

I j
y

= =

 
− 

 =
∑∑

       (6.4) 

To demonstrate the contribution of the nonlinear part to the system dynamics, the experiment is 

conducted applying a three phase fault at bus 8 during 15 cycles (0.25s), clearing the fault without any 

change on network topology. The Figure 6.7 shows a comparison between the nonlinear solution 

(closed form solution by modal series method) and the linear approximation for the rotor angle and 

rotor speed of generator 1.  

 

a) Rotor angle 1δ  

 
b) Rotor speed 1ω  

Figure 6.7 Comparison of linear and nonlinear approximation 
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A qualitative clear difference between linear and nonlinear solutions is observed from Figure 6.7. 

After the fault, the rotor angle 1 increases trying to maintain the synchronism of the power system. 

This causes an acceleration of the rotor speed, which starts an oscillation that eventually disappears. 

However, apparently the linear solution estimates a very low damped oscillation in rotor angle, quickly 

finding the steady state solution. A large difference between linear and nonlinear solution, mostly for 

the particular case of rotor angle is observed. In the case of rotor speed, Figure 6.7b), the linear 

solution closely follows to the nonlinear solution, with the solution difference being kept over the first 

5 cycles of oscillation. 

With respect to the nonlinear indices, the nonlinear coefficients 2 j
klh  can be analyzed. For this case, 

the largest coefficient for each mode is considered. The Figure 6.8 shows a bar diagram of coefficients 

magnitude. For this particular case, the main contribution is due to the modes 11 and 12, which are 

control modes of the test power system 

 

Figure 6.8 Second order coefficients ( )max 2 j
klh  

The four nonlinear indices given by (6.1) to (6.4) are now taken into account. Calculating the

indices magnitude in the same way as the nonlinear coefficients, the graphs shown in Figure 6.9 

denotes the absolute value of each index. From this Figure, it can be commented that: 

• The main contribution index is I1, which means that the modes 5, 8, 9 and 10 are the modes that 

have major contributions to the closed form solution. 

• The indices which show less contribution are I3 and I4. This may imply that there is no strong 

modal interaction on the fundamental modes. Their values are quite small compared with 

indices I1 and I2, as it can be noticed from Figure 6.9 
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• The index I2 has its largest value in the mode 5. Thus, there is a strong modal interaction due to 

the mode 5 with the rest of modes. 

 

           

 

 

 

            

Figure 6.9 Nonlinear indices I1, I2, I3 and I4 

 

6.2.3.1 Nonlinear participation factors 

The participation factors are applied to the analysis of nonlinear power system assuming the linear 

definition and introducing the nonlinear definition. The linear participation factors are used as a 

measure of mode-machine interactions [Pérez-Arriaga et al. 1982]. The participation factor represents 

a measure of the participation of the kth machine state trajectory of the ith mode, and it is defined as, 

     ki ik kip u v=          (6.5) 

With reference to the normal forms method, the nonlinear participation factors are defined based on 

the second order solution given by, 
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   ( ) ( ) ( ) ( )
2

1 1 1

( ) 0 0 0j k l

n n n
t t

i ij j ikl k l
j k l

x t u z e u z z eλ λ λ+

= = =

= +∑ ∑∑       (6.6) 

where iju  is an element of the thi  right-eigenvector and, 

    2
1

2
n

j
ikl ij kl

j

u u h
=

=∑          (6.7) 

and 2 j
klh  is the second order normal form transformation coefficient of the kl product in the thj  

equation [Starret, S. K. 1994]. 

From (6.6) the next statements can be observed: 

• 2iklu  performs the same function for the second order mode k lλ λ+  as iju  does for the linear 

mode j. 

• Right-eigenvectors terms (linear and second order) indicate how the modal oscillations are 

translated to the machine states. 

Following the same reasoning than the normal forms method, it is possible to determine the 

nonlinear participation factors derived for the closed form solution of the modal series method. Since 

there are similarities between both methods, the deduction can be made in a direct way. 

Recalling that the modal series method has the closed form solution represented as, 

 ( ) ( ) ( ) ( ) ( ) ( )
2 2

1 1 1 1 1

( ) 0 0 0 0 0j k l

n n n n n
t t

i ij j ikl k l ikl k l
j k l k l

x t u y u y y e u y y eλ λ λ+

= = = = =

 
= − + 
 
∑ ∑∑ ∑∑

 
    (6.8) 

or, it can be written as, 

  ( )( ) 1 2j k lt t
i ij iklx t u e u eλ λ λ+= +           (6.9) 

where, 

  ( ) ( ) ( )2
1 1 1

1 0 0 0
n n n

ij ij j ikl k l
j k l

u u y u y y
= = =

 
= − 
 
∑ ∑∑       (6.10) 

  ( ) ( )2
1 1

2 0 0
n n

ikl ikl k l
k l

u u y y
= =

=∑∑         (6.11) 

Some observations can be made from this simple algebraic step: 

• From a comparative point of view, the modal series solution has the same form as the normal 

forms solution, that is, linear terms are associated to the right eigenvectors, while the second 

order coefficients are associated to the modal combination ( )k lλ λ+ . 
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• However, with respect to the linear mode, the linear coefficient 1iju  is also function of 

nonlinear coefficients 2 j
klh . This means that the linear terms are influenced by the action of 

nonlinear modal combination, since 2 j
klh  is a function of modal combination ( )k l jλ λ λ+ −  

Equation (6.8) describes the linear and nonlinear combination of the solution, however, it is 

necessary to re-define it, in order to obtain the nonlinear participation factors oriented to the closed 

form solution obtained through the modal series method. The deduction can be made considering that 

the initial condition vector is 0 kx e= , which implies that the Jordan form initial condition can be

expressed as, 

     0j jky v=         (6.12) 

It is important to remark the meaning of (6.12): the participation factors are due to the excitation of one 

mode at the time, by which it is possible to apply superposition procedure. If in the initial condition

only one mode is considered, the initial condition in Jordan variables is a column corresponding to the 

left eigenvectors. 

Thus, the solution for the thk  machine state variable (with 0 0ix =  for all i k≠ ), 

 ( ) ( )

1 1 1 1 1 1

2 2j k l

n n n n n n
t tj j

i ij ji ij kl ki li ij kl ki li
j k l j k l

x t u v u h v v e u h v v eλ λ λ+

= = = = = =

 
= − + 

 
∑ ∑∑ ∑∑∑     (6.13) 

or, 

 ( ) ( )

1 1

2 2j k l

n n
t tj j

i ij kl kl
j j

x t P P e P eλ λ λ+

= =

 = − + ∑ ∑        (6.14) 

where, 

 ij ij jiP u v=  

 
1 1

2 2
n n

j j
kl ij kl ki li

k l

P u h v v
= =

=∑∑  

Also, 

 ( ) ( )

1 1

1 2j k l

n n
t tj j

i kl kl
j j

x t P e P eλ λ λ+

= =

= +∑ ∑         (6.15) 

where, 

 1 2j j
kl ij klP P P= −  

There is a very important result in the expression (6.14): the linear participation factors are due to 

two terms, the linear definition of participation factors given by (6.5) and a correction term given by 

the contribution of nonlinear coefficients. 2 j
klP  represents the second order participation of the thj  
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machine to the modal combination obtained from ( )k lλ λ+  which also has influence on the 

participation of linear modes jλ . Figure 6.10 shows the nonlinear participation factors, basically 

focusing on factors 2 j
klP . 

 

   
i) Mode 1 ii) Mode 2 iii) Mode 3 

   
iv) Mode 4 v) Mode 5 vi) Mode 6 

   
vii) Mode 7 viii) Mode 8 ix) Mode 9 

   
x) Mode 10 xi) Mode 11 xii) Mode 12

   
xiii) Mode 13 xiv) Mode 14 xv) Mode 15

 

Figure 6.10 Nonlinear participations factors for the 3SM-9 Buses power system 
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Each bar diagram corresponds to the contribution of the modal combination with each mode. The 

modes with higher contributions due to modal combination are the 5, 8, 9, 10 and 13. 

 

6.2.4 Algebraic Variables 

The dynamic analysis in this section is oriented to the algebraic variables, e.g., currents, active and 

reactive powers and generator voltages. Once the dynamic behavior of state variables has been 

obtained, it is straightforward to obtain the adequate conditions for algebraic variables. Basically, the 

solution is obtained solving the algebraic set of equations (4.37), (4.38) and (4.62) of Chapter 4. That 

is, 
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( ) ( )

( ) ( )
( ) ( )
( ) ( )

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

11 12 13 1

21 22 23 2

31 32 33 3

d G B G B d

d G B G B d

d G B G B d

B G B G q
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and, 
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The comparison is made considering the solution of (6.16) and (6.17) using the modal series 

solution and the full numerical solution of the nonlinear set of differential equations. The results are 

shown in Figure 6.11. According to the constraints defined in Section 6.6.2, the solutions obtained 
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using the modal series state variables is nearly identical to those obtained by the full numerical solution 

for each algebraic variables. 

Low frequency oscillations are presented in the variables, which are the result of modal behavior of 

the original state variables, combined with their algebraic relationships. It is observed the transient 

presented after the fault, for which both trajectories are in very similar form. Thus, through this 

numerical proof, it can be concluded that even in the case of algebraic equations, that depend on state 

variables solution, the modal series approximation is giving good results. 

 

6.2.5 Frequency analysis of linear and nonlinear contributions 

In order to further assess the method ability to accurately capture the essential system behavior, the 

nonlinear contributions to the system response were computed by extracting the nonlinear part from the 

closed form solution obtained by the modal series method (Equation (3.30), Chapter 3), that is, 
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and 

  ( ) ( ) ( ) ( )1 1
2

1 1 1

0 0 k l

N N N
tj

i NONLINEAR ij kl k l
j k l

x t u h y y e λ λ+

= = =

=∑∑∑      (6.21) 

 

  
d axis currents      q axis currents 

a) Stator Currents 

  
b) Active Powers     c) Reactive Powers 

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time     sec

C
ur

re
nt

s 
Id

  
p.

u.

 

 

Id1

Id2

Id3

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time     sec

C
ur

re
nt

s 
Iq

  
p.

u.

 

 

Iq1

Iq3

Iq2

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

Time     sec

A
ct

iv
e 

P
ow

er
 P

m
  p

.u
.

 

 

Pm3

Pm2

Pm1

0 1 2 3 4 5 6
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time     sec

R
ea

ct
iv

e 
P

ow
er

 Q
m

  p
.u

.

 

 

Q1

Q3

Q2



152 

 

d) Terminal Voltages tiV  

Figure 6.11 Algebraic variables comparison between full solution and modal series method 

 

This is shown in Figure 6.12 where the speed deviations at each synchronous machine are shown. 

These waveforms result from the consideration of the second order terms in the modal series method, 

and represent the nonlinear contribution to the total oscillation given by (6.21). 

 

 
Figure 6.12 Nonlinear contribution associated to the speed deviations in the time domain 

 

For comparison, using the Fast Fourier Transform (FFT) the rotor angle deviations for the nonlinear 

linear part were computed and plotted in Figure 6.13. Analysis of the peaks in the FFT of Figure 6.13 

shows a good correlation with the system electromechanical modes of the state matrix A in Table 6.1. 
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Figure 6.13 Spectral analysis by FFT of the nonlinear contribution of the speed deviations 

 
 

As shown in Figure 6.14, the linear and nonlinear contributions to the speed deviations identify the 

presence of the electromechanical modes 3 and 4. The nonlinear contribution shows resonant 

frequencies at 1.3665 and 2.0781 Hz.  

 

6.2.6 Comparisons with other Approaches 

The proposed method generalizes modal analysis to high-dimensional systems and allows the 

computation of nonlinear input-output functions, which has been absent in previous work. 

 
Table 6.3 Computational times comparison* 

Activity 
Full 

Numerical Solution 
Linear 

Approximation 
Modal Series CPU-Time

Initialization 2.992638 2.992638 2.992638  

State Matrix - 0.121824 0.121824  

Eigenvalues 
Eigenvectors 

- 0.001278 0.001278  

Hessian Matrix - - 0.967034  

j
klC , 2klh  - - 0.025406  

Full Solution 0.193144  -  

Linear 
Approximation 

- 0.246577 -  

Modal Series 
Formula  

- - 4.059203  

Total 3.185782 3.362317 8.167383 10.3429 

*All times are expressed in seconds 

 

An insight into the involved computational effort can be resumed from the study of CPU time 

required for the analysis of the test system using various approaches. Table 6.3 summarizes the CPU 
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times required for analysis of the above test system using linear solution and the modal series method. 

The software is executed using a PC/2.30 GHz; the code is written in MATLAB. All CPU times are in 

seconds. 

In this study, the CPU time required to compute the linearized system (basically state matrix and its 

parameter obtained from symbolic analysis of the overall power system model) representation is about 

0.121824 seconds, whereas the time spent to compute the Hessian matrix is 0.967034 s. The total time 

required to compute higher-order modal solutions is about 4.059203 seconds, compared to 0.246577 

seconds needed for the linear approximation, and 0.193144 seconds for the full numerical solution. As 

suggested in this Table, the cost of nonlinear modal analysis drastically increases with the number of 

states, which requires the application of efficient sparsity-based techniques. 

 

6.3 CASE STUDY 2: NEW ENGLAND TEST POWER SYSTEM (10 SM, 39 BUSES) 

The 10 machines 39 buses New England test power system is considered in this case study. This 

system is a reduced equivalent of the WSCC power system, first introduced by [Pai 1989] and shown 

in Figure 6.14. The data of such system are given in Appendix C. The system is modeled according to 

the power system model previously described in Chapter 4, that is, a fourth order model for each 

synchronous machine combined with an AVR. The constraints of operation followed in this case study 

are: 

 
Figure 6.14 New England test power system
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• A three phase fault is applied at the bus 31 during 0.083 seconds, and removed without any line 

switched. 

• A three phase fault is applied at bus 26, leaving out of operation the transmission line 26-29. The 

fault is sustained during 5 cycles. 

Also, the case study is structured as follows: 

a) The small signal analysis is performed in order to obtain the linear characteristics of the system 

through the eigenvalues, eigenvectors and participation factors. 

b) The nonlinear characteristics are obtained through the time domain simulation of the nonlinear 

power system operating under the constraints above described. The system is evaluated with 

respect to the numerical solution of the nonlinear model and with the linear approximation. 

c) The fault clearance time is changed in the simulation, and analyzed with respect to the accuracy of 

the modal series method. In this case, the fault is sustained during 5, 8, 10 and 15 cycles and 

observed the dynamic of the nonlinear model. 

d) Unstable conditions are also considered varying the system parameters (decreasing the time 

constant 0qT ′  up to 0.7, together with adding a damping coefficient 1 3.5D = ) and removing the 

fault at bus 31 by opening the line 31-14. 

 

6.3.1 Small Signal Analysis 

The modal analysis is performed on the power system under study. Table 6.4 describes the modes 

that are obtained from small signal analysis; 13 of them are oscillatory modes, and the rest are real 

eigenvalues. 

Considering the participation factors analysis, dominant machines are obtained. In this case, only 

participation factors greater larger in magnitude than 0.09 have been considered. After the modal 

analysis, the system is exhibiting dominant modes that are related to local and control modes. 

However, a single interarea mode is observed (highlighted in Table 6.4), which represents an 

oscillation between machines 5 and 7. 

 

6.3.2 Nonlinear model 

To perform the study of nonlinear characteristics of the power system under study, the modal series 

approach is incorporated into the modeling. The set of nonlinear differential equations are treated once 

the linearization process and Jordan canonical form transformation are performed, resulting in the new 

set of equations, which is processed by the modal series approach. In the same way as the earlier case 

study, it is important to remark that the closed form analytical solution obtained by modal series is not  
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Table 6.4 Small Signal Analysis of the 10 unit,39 bus New England test power system 

Mode Eigenvalue Frequency (Hz) 
Damping 

Ratio 
Associated 

State Variables 
Participation 

Factor 

1 -49.7818 0 1 9fdE  0.9789 

2 -49.5617 0 1 7fdE  0.9825 

3 -47.6599 0 1 1fdE  0.9246 

4 -46.8122 0 1 8fdE  0.8976 

5 -19.7051 0 1 4fdE 0.9827 

6 -16.3053 0 1 6 10,fd fdE E  0.5367, 0.4373 

7 -16.3721 0 1 6 10,fd fdE E  0.4395, 0.5397 

8,9 -0.3980 ± 9.4390i 1.5023 0.0421 2 3 2 3, ,δ δ ω ω  0.2225, 0.2418 

10,11 -0.4927 ± 9.4525i 1.5044 0.0521 8 9 8 9, ,δ δ ω ω  0.2759, 0.1363 

12,13 -0.4941 ± 9.0491i 1.4402 0.0545 6 6,δ ω  0.3397, 0.3397 

14,15 -0.2228 ± 7.8150i 1.2438 0.0285 2 3 2 3, , ,δ δ ω ω  0.1936, 0.1896 

16,17 -0.2877 ± 7.8529i 1.2498 0.0366 4 10 4 10, , ,δ δ ω ω  0.2244, 0.2518 

18 -8.0753 0 1 5dE′  0.8586 

19,20 -0.2251 ± 6.8802i 1.095 0.0327 8 9 8 9, , ,δ δ ω ω  0.0939, 0.2052 

21,22 -0.1098 ± 6.1822i 0.9839 0.0178 4 7 10 4 7 10, , , , ,δ δ δ ω ω ω  0.1192, 0.1723, 0.1203 

23,24 -0.0431 ± 5.6759i 0.9033 0.0076 5 7 5 7, , ,δ δ ω ω  0.2393, 0.1701 

25 -6.8386 0 1 3 9,d dE E′ ′  0.3197, 0.4557 

26 -6.3624 0 1 3 9,d dE E′ ′  0.5312, 0.2064 

27,28 -0.0455 ± 3.0717i 0.4889 0.0148 1 1,δ ω  0.1483, 0.1370 

29 -4.5902 0 1 8 8,q dE E′ ′  0.6603 

30,31 -2.6975 ± 2.0940i 0.3333 0.7899 5 5,q fdE E′ ′  0.3560, 0.3543 

32,33 -2.9332 ± 1.2846i 0.2044 0.916 3 3 3, ,q d fdE E E′ ′  0.3095, 0.1311, 0.3868 

34,35 -1.0443 ± 1.7357i 0.2762 0.5155 2 2,q fdE E′ ′  0.4144, 0.4318 

36 -2.6254 0 1 5 6 5, ,q d fdE E E′ ′ 0.1429, 0.5947, 0.1366 

37 -2.4591 0 1 1 1 3 3, , ,q q fdE E Eω ′ ′  0.1028, 0.4686, 0.1064, 
0.0960 

38 -1.9331 0 1 4 10,d dE E′ ′ 0.3003, 0.5692 

39 -1.7251 0 1 4 10,d dE E′ ′  0.4790, 0.2519 

40 0 0 -1 1δ  1.0000 

41 -1.3269 0 1 8 7 8, ,q d dE E E′ ′ ′  0.1219, 0.1031, 0.6707 

42 -1.2462 0 1 7 7 8, ,q d dE E E′ ′ ′  0.1910, 0.5810, 0.1045 

43,44 -1.0162 ± 0.0312i 0.005 0.9995 1 1, dEω ′  0.2656, 0.3096 

45 -0.725 0 1 2dE′  0.9826 

46 -0.6357 0 1 7 7,q dE E′ ′  0.5996, 0.1972 

47 -0.5268 0 1 4 10,q qE E′ ′  0.3144, 0.3726 

48 -0.4051 0 1 6 6,q dE E′ ′  0.8194, 0.0929 

49 -0.4499 0 1 9qE′
 

0.8758 

50 -0.4341 0 1 4 10,q qE E′ ′
 

0.4771, 0.3943 
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affected by the estimation of the initial conditions, since they are calculated based on the perturbation 

conditions; therefore, their calculation do not need any numerical process. 

Writing the set of differential equations for this case study and according to the modal series 

process, it can be represented in the Laplace domain as, 
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where, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 10 1 10 1 10 1 10 1 10( ) ( ) ' ' ' '
T

q q d d fd fds s s s s E s E s E s E s E s E sδ δ ω ω =  X     

 

Upon rearranging terms, we obtain, 
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where, 

 ( ) ( )1 0j
j

j

y
F s

s λ
=

−
 

 ( ) ( )
2 1 1 1
j

k l jk l j

F s
s sλ λ λλ λ λ

 
= −  − − −+ −  

  

 ( ) ( ) ( ) ( ) ( ) ( )
3 1

1

1 1 1 1
j

j p q l j l k p q k p q l

F s F s
sλ λ λ λ λ λ λ λ λ λ λ λ λ

 
 = −

− − − − − + − − − −  
 

 ( ) ( ) ( ) ( ) ( )
3 1

2

1

1 1 1
j

j p q k p q l p q k

F s F s
sλ λ λ λ λ λ λ λ λ λ

 
 = −

− − − + − − − −  
  

 ( ) ( ) ( ) ( )
3 1

3

1 1
j

j p q r p q r

F s F s
sλ λ λ λ λ λ λ

 
 = −

− − − − − −  
  

These equations are amenable to multidimensional Laplace analysis using the theory of Chapter 3 

and 5. We emphasize that, unlike other approaches (such as normal forms), the above formulations 

allows the study of system behavior in both, time and frequency domains. To allow a comparison with 

full nonlinear results, the following study is constrained to time-domain solution. The closed form time 

evolutions of the linear and nonlinear parts of ( )ix t with second-order accuracy are, respectively: 
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6.3.3 Time Domain Validation 

The experiment in this section is conducted to validate the nonlinear approximation with respect to 

the linear approximation and the full numerical solution of the nonlinear set of differential equations. 

The first study shows the results obtained for the relative rotor angles (Figure 6.15) according to the 

constraints defined previously, that is, a three phase stub at bus 31 maintained over 5 cycles and 

liberated without network change. The waveforms show identical responses between modal series and 

full numerical solution. More noticeable differences between the solution obtained by modal series and 

linear approximation are observed for the selected variables. 
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c) Relative rotor angle 5,9δ  d) Relative rotor angle 4,3δ  

Figure 6.15 Relative rotor angle graphics of selected angles 

 

Now, continuing with the experiment, the same fault is applied extending the faulted time to 8 

cycles (0.1333 seconds) and removing the fault by switching-off the line 37-31. The Figure 6.16 shows 

the time domain evolution of rotor angle variables. In all cases, the modal series solution closely 

follows the full numerical solution, while a large solution deviation results when the linear 

approximation method is used. 
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g) 

7δ  
 

h) 
8δ  

 
i) 

9δ  
 

j) 
10δ  

 
Figure 6.16 Absolute rotor angle graphics of generators in the study case of the New England test power system 

 

Similar evolution is observed in the variables of qiE′  voltages that are shown in Figure 6.17. Again, 

the trajectories obtained by the linear approximation are with notorious differences with respect to 

modal series and full numerical solution, respectively. The last two are in closed agreement. 
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g) 7qE′  

 
h) 8qE′  

 
i) 9qE′  

 
j) 10qE′  

 
Figure 6.17 Voltage qiE′  graphics of generators in the study case of the New England test power system 

 

The rest of state variables involved in the power system model, are exemplified. Let us consider the 

Figure 6.18 that illustrates the rotor velocity ω3 and ω5. The nonlinear contribution of such state 

variables may seem to be less relevant than the rotor angles and q axis voltages, since the waveforms of

linear approximation, modal series and full numerical solution follow similar patterns. Small 

differences in the trajectory of linear approximation are noticed in the two variables illustrated in this 

Figure. Also, a graph of sixty seconds of simulation is shown in Figure 6.18 c), where it can be 

observed that the solutions reproduce similar waveforms, but oscillate with differences in both, phase 

angle and amplitude. 
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c) Long simulation of Rotor Speed 5ω  

Figure 6.18 Rotor Speed graphics of generators 3 and 5 in the study case of the New England test power system 
 

 

  
a) Voltage 5dE′  b) Voltage 7dE′  

  
c) Voltage 2fdE  d) Voltage 5fdE  

  
Figure 6.19 Voltages diE′  fdiE′  graphics of generators 2, 5 and 7 in the study case of the New England test power system 

 

With reference to the direct axis voltages diE′  and controlled field voltage fdiE , there are also visible 

differences in the simulations that are compared between linear approximation and modal series and 

full numerical solution. Figures 6.19 a) and b) detail the experiment for the voltages 5dE′  and 7dE′  

where linear approximation maintains different trajectory than that followed by modal series and full 
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numerical solution in both cases, while for the field voltages variables 2fdE  and 5fdE  shown in Figure 

6.19 c) and d), these differences are smaller.  

This behavior confirms the presence of nonlinear contribution to the full solution, which is not 

considered when only the linear approximation is considered. Finally, Figure 6.20 shows a three-

dimensional graph to detail the differences in trajectories followed when the rotor angle, rotor speed 

and q axis voltage are compared. In section 6.3.5 the nonlinear factors extend in a mathematical frame 

the meaning of these differences here illustrated in a qualitative way. 

 

 
Figure 6.20 Three-dimensional comparison of modal series solution with respect to linear approximation and full 

numerical solution 
 
 

6.3.4 Nonlinear oscillation analysis 

In the same way as in the previous case study, the nonlinear indexes given by (6.1)-(6.4) are 

considered now. Recalling that such indexes establish some of the main nonlinear characteristics with 

respect to the nonlinear modal interaction, they are used here to express the nonlinear contribution to 

the closed form solution. 
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klC  under two different damping constraints: 6.21a) refers 
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the damping coefficients are zero. This slight change results in a large difference: the values of 

coefficients in 6.21b) are bigger that those obtained in the case of Figure 6.21a). The damping helps to 

decrease the stress conditions, thus decreasing the nonlinear contributions. 
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a) 0iD = , except 1 3.5D =  b) 0iD =  

Figure 6.21 j
klC  Coefficients for different damping constant conditions 

 

The same behavior is observed in Figure 6.22 where the coefficients 2
j
klh  are shown. Again, the 

case with zero damping (Figure 6.22a) exhibits much higher values of the coefficient magnitudes with 

respect to that obtained assuming 1 3.5D =  (Figure 6.22b). 

  
a) 0iD = , except 1 3.5D =  b) 0iD =  

Figure 6.22 2max j
klh  Coefficients for different damping constant conditions 

The analysis of bar diagrams obtained for the nonlinear coefficients results in different 

contributions. For instance, from Figure 6.21a), the most relevant generators are G1, G2 and G5, 

although, the situation changes without damping conditions, being now the generators G6, G7 and G8 

besides G1 and G2 the relevant ones (Figure 6.21b). Now, considering the nonlinear coefficients 2
j
klh , 

the most relevant contribution are the electromechanical modes of generators G9 and G10, followed by 

G7 and G8 shown in Figure 6.22a. In turn, in the absence of damping conditions, the relevant generator 

modes are G1-G4, according to the results observed in Figure 6.22b. 

Now, the nonlinear indexes are calculated, assuming the operation condition with 1 3.5D = . This is 

observed in the bar diagram of Figure 6.23. The analysis of nonlinear indices allows to determine the 

different contributions of modal interactions. The index with highest value is I4 followed by index I3. 
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The index with lowest values is I1. Thus it can be concluded that there is a strong interaction on the 

fundamental modes of the system, being highest for the modes 25, 40, 46 and 49 (generators G5, G10, 

G6 and G9, respectively). 

 
Figure 6.23 Nonlinear indices for the study case of the New England test power system 

 

Another parameter to characterize the modal interaction is through the nonlinear participation 

factors. Figure 6.24 shows the participation factors of the system, according to (6.14)-(6.15). Each bar 

diagram represents the magnitudes of the linear participation factor ( ijP ), the first order participation 

factor ( 1 j
klP ) and second order participation factors ( 2 j

klP ) for the modes with magnitude higher than 

1.0. Some observations can be draw from these results: 
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g) Mode 42 h) Mode 43,44 i) Mode 47 

 
j) Mode 49 

Figure 6.24 Linear and nonlinear participation factors of the New England test power system

 

• For all the modes, the linear participation factor has the lowest value, which means that the 

linear participation factor represents the smallest contribution to modal interaction. 

• The second order participation factors have the highest values associated to the modal 

combination (43,6) (Figure 24h) and (49,9) (Figure 24j). This represents a modal combination 

effect due to interaction between generators G3-G6 and G9. 

Graphically, the nonlinear contributions of the mechanical state variables calculated by the modal 

series method is illustrated in Figure 6.25. The absolute rotor angles of each generator are shown in 

6.25a), with its zoomed graph. From this Figure the contributions of each variable to the total 

oscillations presented in the power system can be noticed. In the same way, the contributions of rotor 

speed deviations are shown in Figure 6.25b) and zoomed in its attached graph. Please observe that the 

nonlinear oscillations associated to each variable are not the same, being the less oscillatory the rotor 

speed 3ω  and the largest 4 5andω ω . 

Therefore, Figure 6.25 is illustrating the total contributions to the oscillation due to a small 

perturbation of the nonlinear terms included in the closed form solutions obtained with the modal 

series method. 
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a) Absolute rotor angles 

 

 
 

 
b) Rotor Speed Deviations 

 
Figure 6.25 Time domain nonlinear contributions  
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6.3.5 Critical Fault Clearance 

This experiment is centered on moving the time over which a three phase stub is maintained. The 

faulted bus is the 30 node, which directly affects to the machine 2. The expected result is that the 

nonlinearity of the power system goes increasing due to the even longer time of fault application, that 

is, disturbed and stressing conditions of the system have been assumed. Again, a comparison between 

the modal series method (MS) with respect to linear approximation (LINA) and full numerical solution 

(FNS) of the nonlinear system is carried-out. The comparison is established on the variables with 

higher dynamics during the fault, which in a qualitative way are the rotor angles 3 7andδ δ  together 

with 3 7andω ω . 

As it was studied in Chapter 3, the accuracy of the modal series depends on the stress conditions: 

when the system is more stressed, the solution obtained by modal series tends to follows a different 

trajectory with respect to the full numerical solution, which implies that the dynamic of the system 

cannot be followed due to the stable equilibrium point is moving far away of the equilibrium 

conditions. 

The Figure 6.26 shows the time domain evolution of selected variables when the time clearing is 

moving. The fault clearing times are: 1 2 3 4 53 , 5 , 8 , 10 , 15t T s t T s t T s t T s t T s= = = = = . Some 

observations concerning on the experiment can be pointed out: 

• When the fault is liberated after 1 3t T s=  (Figure 26a), the solutions exhibit identical solutions 

between MS and FNS while the LINA tends to follow a different trajectory. 

• The same situation is observed when 2 5t T s=  (Figure 26b) although a small difference 

between MS and FNS is presented. 

• Now, for the time clearing 3 8t T s=  (Figure 26c) the difference between MS and FNS 

solutions has increased, resulting more evident the differences between both solutions with 

respect to LINA. 
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iii) 3ω  iv) 7ω  

a) 3 sec (0.05sec)t T=  

 

  
i) 3δ  ii) 7δ  

  
iii) 3ω  iv) 7ω  

b) 5 sec (0.0833sec)t T=   

  
i) 3δ  ii) 7δ  

iii) 3ω  iv) 7ω  

c) 8 sec (0.1333sec)t T=   
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i) 3δ  ii) 7δ  

  
iii) 3ω  iv) 7ω  

d) 10 sec (0.1667sec)t T=   

  
i) 3δ  ii) 7δ  

  
iii) 3ω  iv) 7ω  

e) 15 sec (0.25sec)t T=   

 
Figure 6.26 Nonlinear time domain simulation for different time clearing fault 

 

• The case of 4 10t T s=  (Figure 26d) demonstrates that the MS and FNS responses tend to 

separate but maintaining the same dynamics, while LINA is following different trajectories for 

all the variables here illustrated. 

• Finally, the condition of time clearing equal to 5 15t T s=  (Figure 26e) exhibits dramatic 

differences in all the variables: 7 7andδ ω  have become unstable and not followed by MS and 
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LINA, while the dynamics of 3 3andδ ω  calculated by FNS is not the same to that determined 

by MS and LINA. 

The experiment conducts to the next conclusions: 

• While the time clearing is changed, the system is approximating to unstable conditions due to 

the perturbation condition. 

• The modal series method can be very accurate for low stress conditions, and under increased 

stress tends to be more precise than linear approximation approach. The oscillations presented 

during the transient state are accurately followed by the modal series solution. 

• Definitely, the linear approximation cannot reproduced the dynamic of the system. During 

transient, the oscillations predicted by the linear approximation method are in considerable error 

with respect to the full numerical solution.

 

6.4 UNSTABLE CASE STUDY OF THE NEW ENGLAND TEST POWER SYSTEM 

It is important to recall that the application of the modal series method is based on determining an 

stable equilibrium point of the nonlinear power system. However, it is possible to operate the system 

under instability conditions, which leads the system to eventually loss synchronism. 

 

Table 6.5 Small signal analysis of unstable study case 

MODE EIGENVALUE 
FREQ. 

(Hz) 
DAMPING 

RATIO 
ASSOCIATED STATE 

VARIABLES 
PARTICIPATION 

FACTORS 

1,2  -0.5557 + 9.4232i 1.4998 0.0589 1 3 2 3, , ,δ δ ω ω  0.2148, 0.2527 

3,4 -0.6530 + 9.3381i 1.4862 0.0698 8 9 8 9, , ,δ δ ω ω  0.2609, 0.1624 

5,6 -0.4984 + 9.0567i 1.4414 0.0549 6 6,δ ω  0.3503 

7,8 -0.3226 + 7.8551i 1.2502 0.041 4 10 4 10, , ,δ δ ω ω  0.2285, 0.2489 

9,10 -0.2829 + 7.7129i 1.2275 0.0367 2 3 2 3, , ,δ δ ω ω  0.2018, 0.1817 

11,12 -0.2350 + 6.7983i 1.082 0.0345 4 8 9 4 8 9, , , , ,δ δ δ ω ω ω  0.0704, 0.1004, 0.1779 

13,14 -0.0337 + 5.9727i 0.9506 0.0056 4 5 10 4 5 10, , , , ,δ δ δ ω ω ω  0.0864, 0.1913, 0.0868 

15,16 0.3982 + 5.6952i 0.9064 0.0697 5 7 5 7 7 7, , , , ,q fdE Eδ δ ω ω ′ ′  0.0795, 0.2578, 0.0815, 0.0731 

20,21 -3.2900 + 4.3688i 0.6953 0.6016 7 7 7 7, , ,q fdE Eδ ω ′ ′  0.0901, 0.0901, 0.3547, 0.3893 

22,23 0.2483 + 3.0600i 0.487 0.0809 1 1,δ ω  0.1584, 0.1584 

24,25 -2.9431 + 3.5629i 0.567 0.6369 8 8,q fdE E′  0.3938, 0.4195 

29,30 -2.5699 + 2.2984i 0.3658 0.7454 2 2,q fdE E′ 0.3955, 0.3913 

31,32 -2.6842 + 1.9144i 0.3047 0.8141 5 5,q fdE E′  0.3757, 0.3744 

34,35 -1.7205 + 0.3695i 0.0588 0.9777 4 4 10 4 10, , , ,q d d fd fdE E E E E′ ′ ′  0.0988, 0.2713, 0.1293, 0.3364, 
0.1188 

36,37 -1.3700 + 0.3237i 0.0515 0.9732 10 10 10, ,q d fdE E E′ ′  0.1121, 0.2353, 0.325 

41,42 -1.0293 + 0.2047i 0.0326 0.9808 4 10 1 10 10, , , ,q q d d fdE E E E E′ ′ ′ ′  0.0924, 0.1519, 0.142, 0.0943, 
0.2052 
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The main objective of this case study is to simulate the same power system earlier analyzed in 

Section 6.3, but now operating under unstable conditions. Basically, the instability conditions are 

obtained when the time constant in the generator 2 is reduced to 0.7, with an addition in the damping 

speed parameter of generator 1 to 1 3.5D = . 

Table 6.5 details the oscillatory modes obtained in this case study, being the modes 15-16 and 22-23 

the unstable ones. For the case of modes 15-16, the generators 5 and 7 are involved in the main 

dynamics, while for the case of modes 22-23 the generator 1 is the most affected. 

 

 
a) Relative rotor angles ( )4,7δ  and ( )2,7δ  

 
b) Relative rotor angles ( )7,6δ  

6.27 Relative rotor angles in the unstable case of the New England power system 

 

The dynamics of the system is illustrated in Figures 6.27 to 6.29. In the first place, Figure 6.27 

shows the dynamics followed by the relative rotor angle for the selected angles (4,7)δ , (2,7)δ  and (7,6)δ . 

Over the first 3 seconds of simulation, the solutions obtained by the full numerical approach, modal 

series and linear approximation, respectively, follow the same trajectory. However, while the time is 

running up to 3 seconds, appreciable differences between linear approximation with the other solutions 
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are observed, being more important in the angle (7,6)δ  (Figure 6.27b). In general, while the time of 

simulation is increasing, the separation between linear approximation, modal series and full numerical 

solution becomes larger, due to the instability condition and modal interaction. 

Continuing the experiment, Figure 6.28 shows the absolute rotor angles of each machine of the 

system under analysis. The comparison denotes appreciable differences between the angles determined 

with the linear approximation, which are under and away of the solutions obtained by modal series, and 

the full numerical solution. That is, the dynamics shown by the linear angles cannot follow the real 

oscillation of the unstable system; even so, the modal series solution is more accurate since it is 

maintained closer to the real angles. 

 
Figure 6.28 Absolute Rotor Angles the unstable case of the New England power system 

 

 

Finally, the case study is concluded with the rest of state variables analysis. Figure 6.29 shows the 

oscillatory behavior of the selected variables 5 7 4 7 3 7, , , , ,q q fd fdE E E Eω ω ′ ′ . Some comments are drawn 

from the graphs: 

 The comparison of the rotor speeds 5 7andω ω  describe slow oscillations being the linear 

approximation solution detached from the trajectory described by modal series and the full 

numerical solution. 

 The oscillations followed by linear approximation, for the case of 4 7 3, ,q q fdE E E′ ′  and 7fdE , 

have appreciable differences with respect to the solution obtained with modal series and full 

numerical solution, respectively. In such case, the nonlinear terms have an important 
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contribution to the oscillations of these variables, which are not taken into account when the 

linear approximation is used. 

 The generator with the highest contribution to the oscillations is the generator 7. This situation 

has been graphically observed along the study. Please observe Figures 6.29 d) and f), where 

the corresponding variables to generator 7 7qE′  and 7fdE show considerable differences to the 

solution obtained with linear approximation with respect to the modal series and the full 

numerical solution. 

 

  
a) 5ω  b) 7ω  

  
c) 4qE′  d) 7qE′  

  

e) 3fdE  f) 7fdE  

Figure 6.29 Generator selected variables in the unstable case of the New England power system 
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6.5 DISCUSSION 

The Chapter has been focused on the analysis of the two test power systems, i.e. the 3 generators-9 

buses and the New England 10 generators-39 buses, when are subjected to perturbation and stress 

conditions. The oscillations observed during the transient followed after the perturbations have been 

graphically analyzed, and the effects observed on the global state variables involved in the modeling 

described in detail. The analysis of nonlinear contributions using nonlinear indices and nonlinear 

participation factors have been considered. The case study has demonstrated that the contribution to the 

oscillations of nonlinear terms represented with the modal series method, is of great importance, in 

order to represent and characterize the effects involved during perturbation conditions. 

Beside from the visual study of the nonlinear oscillations, the importance of characterize the 

nonlinear contribution to the nonlinear power system can be concluded. The information that is leaving 

out of scope is when only the  linear approximation is used. One of the most important characteristics 

of the modal series method relies on the analytical closed form solution, which means a straight form 

to incorporate nonlinear modal interactions to the nonlinear system analysis. It is of concern how to 

detail and link this information with the nature of phenomena presented in a real operation of the power 

system. To be developed further, is the application of the modal series method to large scale systems 

and systems with more detailed models. 
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IINNCCOORRPPOORRAATTIIOONN  OOFF  FFAACCTTSS  DDEEVVIICCEESS::  
RREEFFEERREENNCCEE  TTOO  TTHHEE  UUPPFFCC  MMOODDEELLLLIINNGG  

 

 

 

7.1 INTRODUCTION 

Modern power systems have to be able to operate under a wide range of constraints, new power 

sources, dynamic loads continuously increasing on type and amount, which moved to the power system 

to operate among different stability conditions. With respect to small disturbances, small signal models 

are needed in order to efficiently incorporate, and as a predictive assessment, the new challenges of 

operating conditions. Following this philosophy, several models have been proposed in the literature 

concerning flexible AC transmission systems; created to make easier and more versatile the operating 

conditions of the modern power systems. In parallel, FACTS technology has opened new opportunities 

to control power and to enhance the usable capacity, thus to control the interrelated power systems 

parameters that govern the operation of transmission systems, including series impedance, shunt 

impedance, current, voltage, phase angle and the damping of oscillation at a various frequency levels 

[Hingorani y Giugyi 2000]. 

The primary function of the FACTS devices is to control the transmission line power flows. 

Secondary functions of the FACTS are related to the voltage control, transient stability improvement 

and oscillation damping. 

 

7.2 UPFC MODELING 

The UPFC is a versatile element of the FACTS family that is able to simultaneously provide both 

series and shunt compensation to a transmission line, providing separate control of the active and 

reactive power on the transmission lines [Guo et al. 2009]. The UPFC here modeled is formed by two 

VSC’s employed in combinations that are used for dynamic compensation and real time control of 

voltage and power flow in transmission systems [Uzunovic 2001]. The DC terminals of both 

converters are connected to a common capacitor. Basically, it can be affirmed that an UPFC is a 

combination of STATCOM (shunt VSC compensator) and a SSSC (series compensator); acting 
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together conform the UPFC, but each VSC complies with specific functions: STATCOM can absorb or 

generate reactive power while the SSSC acts as a voltage source, injected in series to the transmission 

line through the series transformer. Thus, the two branches of the UPFC can generate or absorb the 

reactive power independent of each other [Uzunovic 2001]. 

 

7.3 THE UPFC. GENERAL CHARACTERISTICS 

The UPFC is a very versatile controller which has many applications in order to improve power 

system operation. The UPFC combines two controlled voltage sources that work together linked by a 

direct current busbar. Figure 7.1 shows the basic structure and operation of the UPFC. Some important 

operating characteristics of the UPFC that identifies it from other FACTS devices family are the 

following, 

• The series part is normally used to control the power flow over the transmission line, inserting 

a series voltage source through a series transformer. 

• The shunt part of UPFC is generally used to control the AC voltage. This function is achieved 

by interchange of reactive power, and the direct current voltage control is obtained by 

interchange of active power. 

 
Figure 7.1 Basic operation of the UPFC 

 

At its own part, the series inverter operates according to the diagram shown in Figure 7.2, where the 

following is observed, 

• A voltage can be sourced that it is adjustable on magnitude and phase angle. 

• If the active power flow is modified over the transmission line, the series voltage is inserted in 

such a way that it creates a voltage phase shifting. 

• If it is desirable to modify the reactive power flow over the transmission line, the series voltage 

is injected, in such a way that a change in voltage magnitude is added. 
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• The possible operating points are governed by two main constraints: the maximum magnitude 

of series voltage and the minimal magnitude of voltage, in order to control the terminal voltage 

2TV . 

 
Figura 7.2 Operating principle of UPFC series part 

 

On the other side, the series part performs the following functions: 

• Keeps the voltage constant over the direct current bus. This is done by interchanging active 

power with the network and controlling the phase angle of the shunt converter generated 

voltage. 

• Controls the voltage magnitude over the AC side, through interchange of reactive power with 

the network, by controlling generated voltage magnitude of the shunt converter. 

The diagram of Figure 7.3 illustrates these functions. 

 
Figure 7.3 Operating principle of the UPFC shunt part 
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7.4 DETAILED MODEL OF UPFC 

In this section, the UPFC steady state and dynamic model is described. The model here selected is 

one basically described and widely utilized by [Nabavi-Niaki & Iravani 1996] [Wang 1999], however, 

some other alternative models have been explored as well [Dong et al. 2004]. 

7.4.1 Steady State of UPFC 

The UPFC in steady state operation, and not considering converter losses, neither absorbs nor 

injects active and reactive power to the power system. Physical insight of this operating conditions is 

due to the fact that the voltage capacitor is maintained over a predetermined constant Vcd. [Nabavi-

Niaki & Iravani 1996]. Figure 7.4 shows this condition, where controlled voltage sources of the UPFC 

are represented as constant voltage sources. 

 
Figure 7.4 UPFC diagram in sinusoidal steady state condition 

 

The constraint 0E BP P+ =  implies that no real power is exchanged between the UPFC and the 

system; hence, the dc link remains constant and the two voltage sources BV  and EV  are mutually 

dependent [Nabavi-Niaki 1996] 

 

7.4.2 UPFC power flow 

Consider the diagram shown in Figure 7.5 that illustrates the UPFC in parallel with the power 

system represented as a black box. The UPFC is connected between buses E and B. Referring to the 

diagram, please observe that the UPFC is mainly used to maintain a pre-specified power flow from the 

E bus to the B bus and to regulate the B bus voltage at a pre-specified value [Nabavi-Niaki 1996]. 
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Figure 7.5 UPFC linked to the power system 

 

It should be remarked that Bδ  and BM  determine the active power BtP  and BtV , respectively. In the 

same way, EM and Eδ determine the reactive power EQ and the dc voltage at the capacitor link dcV , 

respectively.

Taking into account the UPFC operation, the power flow analysis results are used in order to 

determine the steady state condition of the UPFC through the control variables Bδ , BM , Eδ , and EM

by solving [Nabavi-Niaki 1996], 
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where 1f  to 4f  are nonlinear functions of the UPFC steady state model. The solution of this set of 

nonlinear algebraic equations may be obtained with the application of Newton methods (FACTS power 

flows) [Acha et al. 2004]. 

 

7.4.3 Dynamic Model of UPFC 

The dynamic UPFC is modeled according to [Navabi-Niaki and Iravani 1996], which is based on 

assuming VSC’s without losses and interferences due to commutation effects of IGBT’s. The proposed 

model is developed at fundamental frequency with each VSC (both series and shunt) dependent on 

modulation indexes and phase angle of each constant voltage source. 

Figure 7.6 shows the UPFC diagram connected to an infinite busbar, linked with a synchronous 

machine and a tie transmission line. In this particular case, the UPFC is controlling the amount of 

reactive power transmitted from generator to the infinite busbar and viceversa. 

Following the model illustrated by Figure 7.6, , ,E B Em m δ  and Bδ  are the modulation indexes and 
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phase angles, corresponding to the series converter and shunt converter, respectively. These variables 

may be assumed as the input control variables of the UPFC controller, which rule the characteristics of 

operation of UPFC connected to the power network. That is, 

   ( )cos sin
2

E dc
SH E E

m v
V jδ δ= +          (7.2) 

Furthermore, 

   ( )cos sin
2

B dc
SERIES B B

m v
V jδ δ= +        (7.3) 

 
Figura 7.6 Diagram of UPFC connected to an infinite-busbar 

 

In order to obtain the model which will be eventually applied to the nonlinear analysis of the 

dynamic power system, consider the single phase diagram shown in Figure 7.7, which again describes 

the same UPFC connected between generator and the infinite busbar, but now shown as an equivalent 

circuit. If the general Pulse Width Modulation (PWM) is adopted for the IGBT based VSC, the three 

phase dynamic differential equations of the UPFC are [Song and Johns 1999], 
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Figure 7.7 Single line of UPFC connected in a synchronous machine infinite busbar power system 

 

( )
( )
( )

1
0 0 0 0

cos
1

0 0 cos 120 0 0
2

cos 120 1
0 00 0

BBa

B E
BBa Bta

Bb B dcB
Bb B Btb

B B E
Bc Btc

BBc B

EB

rdi
l ldt ti v

di m vr
i t v

dt l l l
i vtdi r

dt ll

ω δ

ω δ

ω δ

     −         +           = − − + − +                + +      −           





 
 
 
  

     (7.5) 

( ) ( ) ( )

( ) ( ) ( )

cos cos 120 cos 120
2

cos cos 120 cos 120
2

Ea

dc E
E E E Eb

dc
Ec

Ba

B
B B B Bb

dc
Bc

i
dv m

t t t i
dt C

i

i
m

t t t i
C

i

ω δ ω δ ω δ

ω δ ω δ ω δ

 
  = + + − + +   
  
 
  + + + − + +   
  

 

 

      (7.6) 

Applying Park’s transformation, the dynamic system for the UPFC in 0dq coordinates is,
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In order to study oscillations in power systems, transient effects due to transformers characteristics 

and transmission line resistances can be neglected, so that the set of differential equations take the 

form,  

[ ] [ ]3 3
cos sin cos sin

4 4
Ed Bddc E B

E E B B
Eq Bqdc dc

i idv m m
i idt C C

δ δ δ δ
   

= +   
   

     (7.10) 

 

7.4.4 UPFC Algebraic Model 

Consider again the system shown in Figure 7.7 which represents the steady state equivalent circuit 

of the UPFC connected to an infinite busbar. In this single phase diagram, the synchronous machine is 

represented as a two order flux decay model. Hence, 

    ( )i d q d q qE E x x I jE′ ′ ′ ′= + − +       (7.11) 

From power flow analysis, the voltage magnitudes and nodal angles are obtained, as well as active 

power generated and generator terminal voltages. Thus, referring all values of the equivalent circuit to 

the generator quantities, it yields, 

( )2j

d q GI jI I e
πδ− −

+ =         (7.12) 

( )2j

d q tV jV V e
πδ− −

+ =         (7.13) 

Considering the rest of constraints for the network, we have, 

   
( )2

2 2

j

E EV V V e
πδ

θ
− −

= ⇒  

In a similar manner, 

 ( )2j

SH SHV V e
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E EI I e
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L LI I e
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B BI I e
πδ− −′ ⇒   ( )2j

b bV V e
πδ− −′⇒   (7.14) 
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Combining equations relationships according to the chosen reference, we have, 

   d d q q

q q d d

E V x I
E V x I
′ ′= −
′ ′= +   ⇒   d d q q

q q d d

V E x I
V E x I

′ ′= +
′ ′= −     (7.15) 

For the sake of simplicity, only the UPFC part of the network is considered, in order to obtain the 

main relationships of UPFC variables through the simple circuit shown in Figure 7.8, which is 

basically the same circuit of Figure 7.7 but only showing the UPFC part. Hence, 

    E E E SHV jx I V= +        (7.16) 

    B B B SERIESV jx I V= +        (7.17) 

 
Figure 7.8 One line diagram of UPFC. Equivalent circuit in steady state 

 

From the branch belonging to the shunt converter, we have, 

E E E SHV jx I V′ ′ ′= +  

or, 

   ( )Ed Eq E Ed Eq SHv jv jx i ji V+ = + +      (7.18) 

Expanding Equation (7.18) and separating into real and imaginary parts, we obtain 

   Ed E Eq SH dv x i V= − + (7.19)

   Eq E Ed SH qv x i V= +         (7.20) 

with, 
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B B B SERV jx I V′ ′ ′= +  

Also, 

   ( )Bd Bq B Bd Bq SERv jv jx i ji V+ = + +      (7.21) 

In a similar way for the shunt converter branch, substituting the series converter source given by 

(7.21) and separating into real and imaginary parts, gives, 

   Bd B Bq SER dv x i V= − +         (7.22) 

   Bq B Bd SER qv x i V= +         (7.23) 

From Equations (7.19)-(7.20) and (7.22)-(7.23), the algebraic matrix representation of voltages and 

currents for the UPFC is, 

   
cos0 2

0
sin

2

E dc
E

Ed EdE

Eq EqE E dc
E

m v
v ix

v ix m v

δ

δ

 
 −    

= +      
     
  

     (7.24) 

   
cos0 2

0
sin

2

B dc
B

Bd BdB

Bq BqB B dc
B

m v
v ix

v ix m v

δ

δ

 
 −    

= +      
     
  

      (7.25) 

Now, incorporating these relationships to the transmission line current that is parallel with the 

UPFC, the line currents are obtained as, 

  ( ) ( )2j

d q B E LI jI I I I e
πδ− −

+ = + +  

  ( ) ( ) ( )2j

d q Ed Bd Ld Ed Bd LdI jI i i i j i i i e
πδ− −

+ =  + + + + +        (7.26) 

Solving for voltages and currents that involve generator variables and not considering saliency 

effects, the voltage at generator terminals can be expressed as, 

( )d q d q d d qV jV E jE jx I jI′ ′ ′+ = + − +  

Also, 

 ( ) ( )( ) ( ) ( )2 0
j

d q d q q d tE d q Ed EqE x x I jE j x x I jI v jv e
πδ− − ′ ′ ′ ′ ′− + − + + + + + + =    (7.27) 

 

After some algebraic manipulations of (7.18) to (7.27) and solving for internal UPFC currents, the 

algebraic equations expressed in matrix form for the UPFC connected to the synchronous machine-

infinite busbar power system are, 
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with, 

   d Ed Bd LdI i i i= + +  

   q Eq Bq LqI i i i= + +  

 

 

7.5 UPFC CONTROL FUNCTIONS 

The UPFC control function to be chosen depends on the functions it must perform. For instance, the 

UPFC may have three control parameters: magnitude and angle of the injected voltage and shunt 

reactive current. The active and reactive power flow control can be independently controlled by 

injecting a series voltage with a specified magnitude and angle [Dong et al. 2004]. In the reference 

[Guo et al. 2009] a different alternative of UPFC control is proposed, which is based on injecting a 

series voltage into the line, so that the line powers satisfy certain desired active and reactive power, 

with respect to the series controller. The shunt control is designated following the same functions as a 

STATCOM controller, regulating the shunt bus voltage magnitude and maintaining the dc link 

capacitor voltage. 

The UPFC control scheme used in this thesis is basically the one proposed in the study of [Wang 

2002]. Although control systems designed for UPFC functionality are more accurate and with solid 

theoretical basis, the control here used tries to overcome the final goal of damping oscillations. Some 

other control schemes have been developed such as [Mehraeen et al. 2010], [Uzunovic 2001], [Wang 

1999] [Huang et al. 2000] [Cañizares et al. 2004] and oriented to different applications, such as 
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employing ultracapacitors as a part of the UPFC configuration for controlling interarea oscillations 

[Zarghami et al. 2010].  

The UPFC is assigned to operate under basic control functions: power flow and AC voltage control. 

In order to achieve this, three PI controllers are included, i.e. a PI power flow controller, a PI AC 

voltage controller and a PI DC voltage controller; separately designed to try to ensure close loop 

system stability and good control performance [Wang 2002]. The scheme of such controller is shown 

in Figure 7.9. It is necessary to remark that one of the main contributions of this chapter is to 

demonstrate the modal interaction presented even among control functions of the UPFC. [Wang 2002] 

has stated that when the three PI controllers associated to the UPFC are in combined operation, poor 

control performance and even the closed-loop system instability occurs due to existence of the dynamic 

interactions among controllers. Obviously, when linear approximations are used, this interaction is 

imputable to linear modes, however when a nonlinear interaction is considered, it gives insight into the 

nature of control actions between controllers. 

 
Figure 7.9 UPFC Control functions: Power flow controller, AC voltage and DC voltage controller 

 

The selection of UPFC control is made following the suggested approach from [Wang 2002] which 

uses two variant selection of output control signals, i.e. , andp B AC E DC EU m U m U δ= = =  or 

, andp E AC B DC EU m U m U δ= = = . The first one is operated with power flow control function for the 

series part and AC voltage support and DC voltage regulation in the link capacitor for the shunt part; 

the second option takes the AC voltage controller in the series part, leaving the shunt part with power 

flow control and DC voltage regulation. 
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Despite the UPFC controls constitute a multi input-multi-output control (MIMO) problem, it is 

decomposed into three single input-single output (SISO) problem [Navabi Niaki 1996]. The close loop 

poles of the overall system are tested against a wide range of operating conditions of the system to 

ensure the accuracy of the control tuning. Thus, a multivariable PI controller for the UPFC is used to 

perform the three control functions, with the transfer functions [Wang 2002] given in Table 7.1: 

 

Table 7.1 Transfer Functions PI Controllers of UPFC 

OPTION 1 OPTION 2 

PI power flow controller PI power flow controller 

( )PI
B P t ref t

K
m K P P

s
 = + − 
 

 ( )PI
E P t ref t

K
m K P P

s
 = + − 
 

 

PI DC voltage controller PI DC voltage controller 

( )DCI
E DCP DC ref DC

K
K V V

s
δ  = + − 

 
 ( )DCI

E DCP DC ref DC

K
K V V

s
δ  = + − 

 
 

PI AC voltage controller PI AC voltage controller 

( )ACI
E ACP E ref Et

K
m K V V

s
 = + − 
 

 ( )ACI
B ACP E ref Et

K
m K V V

s
 = + − 
 

 

 

 

7.6 UPFC DAMPING APPLICATIONS. SMIB POWER SYSTEM 

The UPFC needs the DC voltage across the link capacitor to be kept constant. A generic diagram of 

the UPFC can be illustrated in Figure 7.10. The block diagram refers to a FACTS device (such as the 

UPFC or SVC) installed in a power system. Referring to the particular case of a UPFC, the reference 

signal is the dc refv , being the output the variable dcv  [Wang et al. 1999], 

 

Figure 7.10 Control Diagram of a UPFC Connected to a Power System

To exemplify the behavior of a UPFC interacting with the power system, the experiment is designed 

in order to describe the next statements: 

• To analyze the small signal stability of the system 

• To evaluate the nonlinear contributions of the UPFC interacting with the power system 

Controller 
FACTS 
Device 

Power 
System 

Plant 

dc refv  dcv  +  

−  

( )u t  
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The system to be analyzed is shown in Figure 7.11.  

 
Figure 7.11 UPFC connected to a SMIB test power system for damping oscillations 

 

The DC voltage regulator is basically a PI controller, with the transfer function taken from Table 

7.1 with a slight addition, 

   ( ) ( )1

1
I

E P dc ref dc
c

K
s K v v

sT s
δ  = + − +  

      (7.30) 

Manipulating (7.30) to obtain a state variable representation, a set of differential equations that 

represents the voltage regulator is, 

  ( )E
I DC ref DC

d
K v v

dt

δ ′
= −     

  ( )1E
P DC ref DC E E

C

d
K v v

dt T

δ δ δ ′= − + −     

Thus, the power system integrated with the UPFC and control actions is an eighth order dynamic 

system. This system is linearized and then, the modal series method is applied such as it was described 

in Chapter 3. 

The steady state diagram in this case study is shown in Figure 7.12. The steady state values are 

obtained from a power flow study with estimated initial conditions as [Acha et al. 2004] [Fuerte-

Esquivel and Acha 1997], 

 VSC B
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0 2 2
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. .
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C I

x
V P C I

V

δ −  =  
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 
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         (7.31) 

   where 

    ( )
0
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    . . tC I Q= if 0 0
Bt EtV V=

 

 
Figure 7.12 Steady state diagram of the UPFC connected to the SMIB study case 

 

 VSC E
( )0 0 0 0

1
0 0

sin
sin

Et Bt B E B

E
E Et B

V V m x

m V x

δ
δ −

 − = −  
  

        (7.32) 

From power flow analysis, the system under study results in the following UPFC parameters of 

modulation indices and angles for shunt ( ,E Em δ ) and series ( ,B Bm δ ) VSC's and internal voltage 

machine ( iE ) and rotor angle (δ), that is, 

    1.16 40.0666 . .iE p uδ =  

    0.11385 174.949 . .B Bm p uδ = − −  

    0.979554 20.0086 . .E Em p uδ =  

 

Table 7.2 Eigenvalues and damping ratio for the case study of SMIB-UPFC 

Eigenvalues Damping Ratio 

−49.831885231975711 1.00 

−33.492328635278355 1.00 

16.673751838802978 3.740509054841034i− ±  0.975748485361660 

−2.838813683838964 1.00 

0.771881207091769 0.395341519956049  i− ±  0.890049105052969 

−0.237839096373391 1.00 

 

The small signal analysis is indicated in Table 7.2. There are four oscillatory modes that for the case 

of the UPFC connected show high values of damping ratios. 
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The eigenvalues are changing depending on the controller parameters. The list shown in Table 7.3 

resumes the eigenvalues obtained for the given constraints. 

 
Table 7.3 Controller parameters variation and Eigenvalues for the case study of SMIB-UPFC 

CONTROLLER PARAMETERS EIGENVALUES 

1 14p IK = , K =− −  

49.798007988217186 

31.775868883313439

33.368378715993721

3.816071582811596

0.357354263976474  1.961087561753644

0.357354263976474  1.961087561753644

 1.565026171201958

 0.254070869765097

i

i

−
 −
 −


−
=
− +
− −

−
−

L  







 
 
 
 
 
 
 

 

10.5 1p IK = , K =− −  
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24.500358420498447

 10.149186309011327 

 2.135545061513665

 0.161309437325926 + 0.048081636278437

 0.161309437325926 0.048081636278437

 0.906560617345859

i

i

−
−
−
−

=
−

−
− −

−

L  


 
 
 
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 
 
 
 
 
 
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0.5 5p IK = , K =− −  

49.797999386311581

31.904580188031169

33.356400692828117

 4.194528651744296

 1.685096756928323

0.045378617710198 1.073813162495645

0.045378617710198 1.073813162495645

 0.262769827991752

i

i

−
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

−
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−
−  + 
−  − 

−
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 
 
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 
 
 
 

 

1.5 1.5p IK = , K =− −  

49.798027828957636

31.247817660898104  

33.400468555660680

 4.695880010721426

 1.790892209196046 

 0.032587203635567 + 0.514287467647266

 0.032587203635567  0.514287467647266

 0.284655543914654

i

i

−
−
−
−

=
−

−
− −

−

L  


 
 
 
 
 
 
 
 
 
 
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15 15p IK = , K =− −  

49.798305761437945

33.488382215081415

16.854376998063390 + 2.143667676639956

16.854376998063390  2.143667676639956

 2.065300049765778

 0.988080406689826  0.606543283650125

 0.988080406689826 

i

i

i

−
−

−
− −

=
−

− +
− −

L  

 0.606543283650125

 0.255229903464238

i

 
 
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 
 
 
 
 
 
 
 
 − 
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7.7 SECOND ORDER SMIB-UPFC SOLUTIONS 

The SMIB-UPFC system is decomposed into its linear and nonlinear model using the modal 

series method. The system is given by the next state variables vector, 

    
T

q d fd dcX E E E vδ ω ′ ′ =        (7.33) 

The order of the state vector depends on the control actions that are used in order to control de 

VSC's of the UPFC. The stable equilibrium point of the system is given as, 

    0 0 0 0 0 0

T

SEP q d fd dcX E E E vδ ω ′ ′ =       (7.34) 

The linearization and second order of the state variables , , , andq d fdE E Eδ ω ′ ′  have been detailed in 

this thesis. Emphasis on the dc voltage at the VSC's of the UPFC is deduced in this section. The

differential equation that overcomes the dynamics of the dc link in the UPFC operation has 

characteristics of highly nonlinear nature, since it is dependent on modulation indices and angles of 

both series and shunt VSC's. Besides the quadrature and direct axis currents are involved, followed by 

nonlinear interactions of the rotor angle. This may implies the presence of high nonlinear modal 

interactions, which can be detailed using the modal series method. 

Recalling the modal series procedure, applied into this particular case of the differential equation 

for dc voltage dcv , a closed form analytical solution can be found based on their linear and nonlinear 

components; this is obtained with Equation (7.35). It results evident the division of this Taylor 

expanded equation into linear and nonlinear terms; the variables that are not involved in the state 

variable are not considered. In order to apply the modal series method, the Jacobian and Hessian 

matrices of the global test power system have to be calculated, as well as eingenvalues and 

eigenvectors. As it was pointed-out in the previous section above, the eigenvalues are function on the 

system parameters, thus resulting necessary the determination of the steady state operation selected for 

a given control action i.e., constant voltage condition at the VSC shunt, active and reactive power 

controlled after the series VSC, etc. 
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(7.35) 

Although in the development of Taylor series expansion in Equation (7.35) the controller actions 

are not included, the formulation tries to get insight into the nature of nonlinear contribution based on 

the UPFC dynamic modeling. 

One of the usefulness of the modal series method relies on its capacity to represent the linear and 

nonlinear expansion in terms of multidimensional Laplace transform. Thus, a closed form solution is 

given by (7.36), where the linear part (basically expressed in terms on single Laplace variable) and 

second order terms (as a function of two variables Laplace domain) are easily identified. Please 

observe in this detailed closed form solution, that there is an explicit relationship between state 

variables (rotor angle δ and quadrature axis voltage qE′ ) with d and q current components given for 

both voltage source converters, series and shunt. This represents a very interesting analytical result, 

since the nonlinear dynamics of the UPFC can be explicitly incorporated using the algebraic and state 

variables in the analysis. 
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  (7.36) 

Finally, the closed form solution in the time domain of (7.36) is calculated applying association of 

variables and inverse Laplace transform, resulting in, 
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2 2

1 1 1 1 1 1

0 0 0 0 0j k l

N N N N N N
t tj j

i dc ij j ij kl k l ij kl k l
j k l j k l

x t v t u y u h y y e u h y y eλ λ λ+

= = = = = =

 
= = − + 

 
∑ ∑∑ ∑∑∑    (7.37) 

where, 

  
1

0 0 0 0 0 0 0

T

q d fd dcY U E E E vδ ω− ′ ′ =     

The rest of time domain solutions obey the same reasoning. Also, in the nonlinear interaction 

coefficients 2
j
klh  are included in the relationships of terms associated to the internal parameters and 

algebraic equations of the UPFC, as well as the modal characteristics and modal interaction through 

second order modal combination. 

 

7.8 NONLINEAR OSCILLATIONS ANALYSIS 

The system is perturbed increasing the rotor angle from its initial value of 71δ =   to the value of 

81δ =   followed by an step increase in the dc voltage reference. Due to the inclusion of the dc voltage 

dynamics and its control, the UPFC-SMIB power system is highly nonlinear. The waveforms of the 

experiment are shown in Figure 7.13, where the nonlinear oscillations of rotor angles and rotor speeds 
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for each generator are shown. Through the analysis of the simulation, it can be resumed that the system 

describe different oscillations depending on the controller setting parameters, which are reflected on 

more content of nonlinear contributions. In the same form as the previous case study, the oscillations of 

rotor angles are charted comparing their response obtained with the modal series method and the linear 

approximation.  

The experiment shows differences between both solutions in phase and amplitude mostly in the case 

of oscillatory response. Each angle corresponds to the controller parameters according to the Table 7.3.  

 

 
a) 1 14p IK = , K =− −  

 

b) 10.5 1p IK = , K =− −  

 

c) 0.5 5p IK = , K =− −  

 

d) 1.5 1.5p IK = , K =− −  

 

e) 15 15p IK = , K =− −  

Figure 7.13 Rotor angles for different PI controller parameters in the case study of SMIB-UPFC 

 

It is clear that the correctness setting of the controller reflects into higher damped response after the 

disturbance; hence, the better controllers are those with values 10.5 1p IK = , K =− −  (Figure 7.13b) 
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and 15 15p IK = , K =− − (Figure 7.13e). The controllers designed with parameters 

1 14p IK = , K =− −  (Figure 7.13a), 0.5 5p IK = , K =− −  (Figure 7.13c) and 0.5 5p IK = , K =− −  

(Figure 7.13d) show low frequency oscillations after the transient, which means that the controllers are 

not able to damp the oscillations due to the disturbance in the power system. 

The waveforms of Figure 7.14 complete the analysis of the electromechanical variables involved in 

the model. In the same way as the rotor angles, the rotor speed also oscillates depending on the 

controller parameters, reflecting that the most oscillatory cases are when 1 14p IK = , K =− −  and 

0.5 5p IK = , K =− − . These results are in clear agreement with the eigenvalues detailed in Table 7.3. 

 

 
b)  Rotor Speed 

Figure 7.14 Case study of SMIB-UPFC (Rotor speed variables) 

 

Keeping the same subject followed in this case study, now it is important to analyze the Figure 7.15, 

which shows the voltages presented in the dc link of the UPFC. Again, each graph corresponds to its 

controller parameters according to the Table 7.3. It is evident the most oscillatory responses, which 

agrees with Figures 7.13 and 7.14 for the rotor angle and speed rotor, respectively. However, it is also 

important to describe the remarkable differences between the linear approximation and the modal 

series solutions. The differences are observed in both, amplitude and phase shifting, being the worst 

cases for the most oscillatory responses. 

Then, it can be inferred from Figure 7.15 that there is an important nonlinear contribution in the 

total response related to the modal interaction, which is not included in the linear approximation 
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method. The dynamic during transient cannot be followed in the same way applying only a linear 

solution, being relevant the inclusion of a nonlinear method such as the modal series. 

 

 

  
a) 1, 14KP KI= − = −  b)  10.5, 1.0KP KI= − = −  

 
c)  0.5, 5KP KI= − = −  

  
d)  1.5, 1.5KP KI= − = −  e)  15, 15KP KI= − = −  

 

Figure 7.15 Case study of SMIB-UPFC (voltages 
dcv  for each constraint of PI controllers) 
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The nonlinear contribution described above is remarked through the nonlinear indices analysis 

shown in the graph diagrams of Figure 7.16. The calculated indices are the same used in Chapter 6, 

described by Equations (6.1)-(6.4), applied now to this case study. Basically, the bar diagrams indicate 

the value of each index for the given controller parameters. From this Figure 7.16, the following 

comments are resumed: 

 The case with the higher values for all indices is when the controller parameters have values 

with 15, 15KP KI= − = −  (Figure 7.16e) whose highest index is I4, which denotes considerable 

modal interaction. 

 

 

a) 1, 14KP KI= − = −  

 

b) 10.5, 1.0KP KI= − = −  

 

c) 0.5, 5KP KI= − = −  

 

d) 1.5, 1.5KP KI= − = −  

 

e) 15, 15KP KI= − = −

 

Figure 7.16 Nonlinear indices for the different PI controller parameters
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Table 7.4 Linear and nonlinear participation factors for the SMIB-UPFC power system 

MODE 
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

max 1 jklP  k max 2 jklP  k max 1 jklP  k max 2 jklP  k max 1 jklP  k max 2 jklP  k max 1 jklP  k max 2 jklP  k max 1 jklP  k max 2 jklP k 

1 1.0056 5 0.0027 3 1.0055 5 0.0165 6 1.0056 5 0.0027 3 1.0056 5 0.0027 3 1.0055 5 0.002 3 

2 0.8436 2 0.0643 1 1.4182 1 1.3988 1 0.9044 2 0.091 1 0.7022 2 0.2582 6 146.428 8 146.2738 8 

3 0.6822 8 0.3719 1 115.8674 6 115.4191 6 0.8676 8 0.0294 1 0.6347 8 0.0274 1 1,853.7 6 1,854.80 6 

4 2.1103 4 0.9816 4 109.5481 6 110.5128 6 1.9963 4 1.089 4 1.7871 4 1.0464 4 1,853.7 6 1,854.80 6 

5 15.0041 6 15.1588 6 1.7939 6 1.9153 6 1.0413 1 0.3292 1 1.1561 3 0.8856 3 3.2744 5 3.4503 1 

6 15.0041 6 15.1588 6 2.6414 6 2.7934 6 7.6002 6 7.7544 6 4.3887 6 4.669 6 8.1927 6 8.516 6 

7 2.5018 1 2.0532 6 10.9072 3 2.7934 6 7.6002 6 7.7544 6 4.3887 6 4.669 6 8.1927 6 8.516 6 

8 0.6555 3 0.2569 7 10.9072 3 10.3575 3 0.5776 1 0.4552 7 0.4117 3 0.3049 3 0.629 3 0.1183 6 

   
Mode 1 Mode 2 Mode 3,4 

   
Mode 5 Mode 6,7 Mode 8 

Figure 7.17 Linear and nonlinear participation factors bar graphs for the case of SMIB-UPFC 
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 The case with the less modal interaction is when the controller parameters are 

1.5, 1.5KP KI= − = −  (Figure 7.16d) since all the indices have small values. 

 The case of 10.5, 1.0KP KI= − = −  (Figure 7.16b) has the highest index associated to I4. 

Again, the dynamic of the system under such constraints has an important modal interaction 

presented in the original state variables. 

 

The case study is completed with the analysis of linear and nonlinear participation factors described 

in Table 7.4. Here, the maximum linear and nonlinear participation factors as well as the interacting 

modes are indicated. The most dominant modal interaction is presented when the parameters are 

15, 15KP KI= − = − , which agrees with Figure 7.15e) for the nonlinear indices. Please observe the 

annexed bar diagram of Figure 7.17, which visually denotes the modal contribution measured by the 

participation factors. Here, the linear participation factor defined by Equation (6.5) has the lowest 

contribution, then being the most important participation those due to the nonlinear interaction 

coefficients given by (6.15). 

 

7.9 SUMMARY 

The conclusion of the case study can be decomposed into two issues: the first one is the damping 

scenario introduced by the correct setting of controller parameters. As it was mentioned in Section 7.5 

above, extensive work has been proposed to determine the correct setting of controller parameters for 

the UPFC and in general, for any FACTS device. In second place, the case study was focused to get 

insight into the nature the modal interaction when the UPFC is presented. 

It is clear that the idea of including FACTs devices such as the UPFC in the power system open a 

great variety of work that can be done in future contributions: the setting of controller parameters, the 

inclusion of one or more UPFC´s into multimachine and large scale power networks, which opens a 

plenty of research related to the nature of linear and nonlinear modal interactions.
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88  
 

CCOONNCCLLUUSSIIOONNSS  AANNDD  
FFUUTTUURREE  RREESSEEAARRCCHH  

 
 

 

8.1 CONCLUDING REMARKS 

The modal series method studied along this thesis is a systematic procedure that allows the study of 

a nonlinear system, obtaining decomposed terms, which specify separately the first, second, third, etc. 

order terms of the nonlinear system. 

As it was mentioned, mainly in Chapter 2, the modal analysis represents a very important tool to 

characterize the oscillation characteristics of a linear system subjected to a small perturbation. 

However, under a more general set of operating conditions and perturbations, the linear approximation 

given by the modal analysis may not be enough to determine the nature of nonlinear contributions 

neither of modal interaction. 

Some analytical methods have been developed and tested to get insight into these nonlinear 

oscillations, i.e. the method of Normal Forms of Vector Fields and the method of Modal Series, both 

studied and compared in this thesis. Each of them have their own properties, although the core the 

methods are strictly the same, that is, the linearization of the nonlinear system around a stable 

equilibrium point applying Taylor series expansion and then, the Jordan canonical form. Finally, an 

analytical closed form solution is obtained, after a nonlinear transformation (for the case of the Normal 

Forms method) and application of the multidimensional Laplace transform and association of variables 

theorems (for the case of the Modal Series method). 

In chronological order of appearance along the thesis, the next statements draw the main 

conclusions of this research, based on the study of nonlinear oscillations: 

• In this thesis, an analytical methodology based on the modal series technique has been 

presented. Based on the modal series previously proposed by [Schanechi, et al. 2003] [Pariz et 

al. 2003], an extension of the method has been achieved, which consists on generalizing the 

method using the theorems of multidimensional Laplace transform and the theorems of 

association of variables, to solve the dynamic nonlinear system as an algebraic problem. 
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• The application of multidimensional Laplace transform was applied so far only to nonlinear 

systems using the Volterra series expansion; some kernels in terms of multidimensional Laplace 

variables are solved to characterize the nonlinear system. In the method of Modal Series, a set 

of kernels expressed in terms of multidimensional Laplace transform are solved by the 

association of variables theorems, thus obtaining a single Laplace domain set of kernels. 

• A comparison with other methods such as linear approximation has been presented, remarking 

the main advantages of the method here proposed. 

• An application of the Normal Forms (NF) and the Modal Series (MS) methods to nonlinear 

dynamic systems has been illustrated. When the solution of both methods is compared with 

respect to the direct numerical integration of differential equations, it is shown that it strongly 

depends on the initial conditions and parameters of the original system. Selected conditions to 

start the simulation in both NF and MS, becomes in remarkable differences with respect to the 

closed form analytic solution for the two methods, reflecting more drastic differences in the NF 

method. 

• The main contribution of the comparative analysis between NF and MS has demonstrated the 

viability of the application of the modal series method, as an easier and less complex alternative 

to analyze dynamic systems, rather than Normal Forms, and shown how the initialization of the 

system also modifies the final solution. 

• The application of the multidimensional Laplace transform and association of variables 

techniques are the core of the Modal Series technique, which allows a closed form analytical 

solution of the nonlinear system; being the extension of including the control forced response, 

one of the main contributions of this thesis. 

• The solutions obtained with the Modal Series method have been compared with the full 

numerical solution of the nonlinear set differential equations, in order to establish the numerical 

validations of the results obtained. For each case study the accuracy of responses has been 

detailed. 

• The forced response solution by the Modal Series technique has been obtained. The analytical 

solution includes the main characteristics between the nonlinear terms and the input signal 

function. The basic case is when an impulse function is used as the input signal of the transfer 

function, however it is possible to apply any input function. The case with the unit step function 

has been tested as well. 

• The method has been successfully simulated through a 9-bus, 3-machines and the New England 

10 generators, 39 buses test systems, presenting the results on the principal state variables in the 

time domain and remarking the main contributions of oscillatory modes. Emphasis is given to 
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the nonlinear contributions using the Fast Fourier Transform on machines speed deviations, 

modal analysis, nonlinear interaction indices and nonlinear participation factors. 

• A detailed description of the higher order modal series terms have been exemplified with a 

synchronous machine infinite busbar power system, through the classic model and the one flux 

dynamic model. 

• The nonlinear oscillations produced by a perturbation in the third order model of the 

synchronous machine have been analyzed 

• The detailed theory related to the linear transfer function concepts and its extension to the 

nonlinear transfer function through the application of the modal series method, as the basis of 

nonlinear system expansion, and assuming an input force response, have been described 

• The method has the great advantage to analyze in both time and frequency domain, in 

numerical and analytical ways, the transfer functions of nonlinear system 

• The examples of application of the nonlinear transfer function definition was focused on 

applications to simple power systems, such as the SMIB and the 3 machines-9 buses test 

systems. However, following the same definitions, it is possible to extend the concepts in a 

straightforward manner to the analysis of large scale power systems. It is clear that dealing with 

larger-scale systems, the complexity of analysis is increased, thus resulting necessary the 

inclusion of sparsity techniques, effective algorithms of eigenvalues determination, etc. 

• The incorporation of UPFC to the nonlinear power system model has been analyzed. The steady 

state and dynamic model of the UPFC have been included in the study, detailing their main 

equations that link its dynamic behavior. 

• The modal analysis and the nonlinear contributions to the damping oscillations of the power 

system operating together with the UPFC have been analyzed. The correct set of UPFC control 

actions over the damping performance and nonlinear interaction have been performed. 

 

8.2 FUTURE CONTRIBUTIONS

The next issues can be included as some ideas to be developed in a near future based on this 

research. Most of them are focused on the nonlinear systems analysis, FACTS devices and other 

analytical and numerical topics. 

• Incorporation of algorithms to determine dominant poles in the nonlinear transfer functions. 

The nonlinear transfer functions concept introduced in this thesis, needs to determine what are 

the most important poles that originate the modal interaction. Hence, it is proposed to use the 

techniques developed to determine the most dominant poles [Martins et al. 1996] in the 

nonlinear transfer function concept. 
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• Power damping devices sintonization applying nonlinear transfer functions and frequency 

analysis for the nonlinear interactions. Since the modal series method allows the definition of 

nonlinear transfer function, and the frequency and system stability calculation, it is very useful 

to determine the damping devices that help to damp the oscillations presented during 

disturbances. 

• Reference [Pagola et al. 1989] deals with eigenvalue sensitivities analysis. An extension of this 

interesting work can be done now assuming the interaction between modes and determining 

their sensitivities. 

• Regarding the study of near resonance conditions presented when modal series method is 

applied. Despite the demonstrated fact that the modal series method can obtain a closed form 

solution under resonance condition, there is a lack of work concerning on how to determine the 

near to resonance conditions. [Zhu et al. 2001] describe an approach that incorporates a 

procedure to determine resonance and near-resonance conditions in the Normal Forms method. 

Similar procedure can be analyzed in order to find a systematic procedure to be applied in the 

modal series method. 

• A method to establish the relationship between stability zones obtained with bifurcation theory 

and continuation techniques, can be included in the modal series method to identify the zones 

where the application of the method is valid. 

• Other linearization procedures, such as Carleman linearization can be explored to avoid Taylor 

series expansion. In the reference [Arroyo 2007], the author proposed the Carleman 

linearization that modifies the analytical response and analysis obtained with the Normal 

Forms method. A similar procedure can be followed to determine different characteristics of 

the closed form solutions obtained with the Modal Series method. 

• In the same way as the UPFC was modeled and analyzed in this thesis, other FACTS devices 

can be easily explored, in order to determine their nonlinear modal interaction when are 

connected to the power system. 

• The linear and nonlinear dynamic analysis of the VSC-HVDC represents an interesting 

application of the Modal Series method. The topic involves calculation of steady state 

conditions, dynamic analysis of the control actions and applications to the links of non-

conventional energy sources. 
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Equation Chapter 1 Section  1 

AAPPPPEENNDDIIXX  AA  
MMUULLTTIIDDIIMMEENNSSIIOONNAALL  LLAAPPLLAACCEE  TTRRAANNSSFFOORRMM  AANNDD  AASSSSOOCCIIAATTIIOONN  

OOFF VVAARRIIAABBLLEESS  TTHHEEOORREEMMSS  
 
 
 

 
A.1 Theorem 1 [Crum & Heinen 1974] 

The reduction and expansion of a realizable two dimensional Laplace Transform kernel of the form, 
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The function ( )212 , ssZ  represents the second order Laplace term whose variables would be 

associated to the function ( )sZ2  that is defined as a single variable problem. Applied to our case, the 

second order term ( )212 , ssY j given by equation (A.2) will be converted into a one dimensional 

expression ( )sY j
2 , as it is explained below. 

 

A.2 Theorem 2 [Crum & Heinen 1974]

The complete reduction and expansion of a realizable n-dimensional kernel of the form, 
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where, ( )nn sssN ,,, 21   is a polynomial in n variables. 

The generalization to the n-dimensional case is straightforward [10]: 
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Equation Chapter 1 Section 2 

AAPPPPEENNDDIIXX  BB  
MMOODDAALL  SSEERRIIEESS  HHIIGGHHEERR  OORRDDEERR  DDEEDDUUCCTTIIOONN  

 
 
 

 
 

B1. SECOND ORDER TERMS 

With the terms obtained in Chapter 3, but defining them on terms of 1s  and 2s  yields, 

   ( ) ( )
( )

1
1

1
1

0k
k

k

Y
Y s

s λ
=

−
  and  ( ) ( )

( )

2
2

2
2

0l
l

l

Y
Y s

s λ
=

−
       (B.1) 

Then,

   ( ) ( )
( )

( )
( )

( )

1 1
2

1 2
1 1 1 21 2

0 01
,

n n
k lj

j kl
k l k lj

Y Y
Y s s C

s ss s λ λλ= =

=
− −+ −

∑∑   

which can be also expressed as 

   ( ) ( ) ( ) ( )( )( )
2 1 1

1 2
1 1 1 2 1 2

1
, 0 0

n n
j

j kl k l
k l j k l

Y s s C Y Y
s s s sλ λ λ= =

=
+ − − −

∑∑       (B.2) 

We can now apply Theorem 1 to associate the variables of the function ( )2
1 2,jY s s  to ( )2

jY s . Let 

  ( ) ( )( )( )2 1 2

1 2 1 2

1
,

j k l

N s s
s s s sλ λ λ

=
+ − − −

 

  ( )
( )( ) ( )

( )

( )( ) ( )

( )
11

2 2

1 2 2 1 21 2 1 2

2

,,
l jk

l l

j l s sk l s s
s s

k l j

s s s N s ss s N s s

N s
s s

λ λλ
λ λ

λ λλ λ

λ λ λ

=− +=
= =

+ − −− −
= +

− − −

  ( ) ( ) ( ) ( )








−
−

−−−+
=

jlkjlk ss
sN

λλλλλλ
111

2
 

Therefore, the second order-term becomes 

  ( ) ( ) ( ) ( ) ( ) ( )
2 1 1

1 1

1 1 1
0 0

n n
j

j kl k l
k l k lk l j j

Y s C Y Y
s sλ λλ λ λ λ= =

    = − 
− −+ − −    

∑∑      (B.3) 

Higher order terms could be obtained in like manner. 
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B2. THIRD ORDER TERMS 

Recalling, 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

3 3 2 1 1 2
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 1

1 1 1
1 2 3

1 1 1

, , , , , ,
n n

j
j j j kl k l k l

k l

n n n
j
pqr p q r

p q r

s s s Y s s s Y s s s C Y s s Y s Y s Y s s

D Y s Y s Y s

λ
= =

= = =

 + + = + + 

 +  

∑∑

∑∑∑
     (B.4) 

And also, 

 ( ) ( )
( )j

j
j s

Y
sY

λ−
=

1

1

1
1 0

 and ( ) ( ) ( ) ( )2 1 1
1 2 1 2

1 1 1 2

1
,

n n
j

j kl k l
k l j

Y s s C Y s Y s
s s λ= =

=
+ −

∑∑       (B.5) 

New indexes are defined in order to conform third order terms. That is, 

 ( ) ( )
( )

1
1

3
3

0l
l

l

Y
Y s

s λ
=

−
 ; ( ) ( )

( )

1
1

1
1

0k
k

k

Y
Y s

s λ
=

−
  

 ( ) ( )
( )

1
1

1

1

0p
p

p

Y
Y s

s λ
=

−
 ; ( ) ( )

( )
1

1
2

2

0q
q

q

Y
Y s

s λ
=

−
 ; ( ) ( )

( )

1
1

3
3

0r
r

r

Y
Y s

s λ
=

−
  

In the same way, second order terms are re-indexed as, 

 ( ) ( ) ( ) ( )2 1 2
1 2 1 2

1 1 1 2

1
,

n n
k

k pq p q
p q k

Y s s C Y s Y s
s s λ= =

=
+ −∑∑          (B.6) 

 ( ) ( ) ( ) ( )2 1 1
2 3 2 3

1 1 2 3

1
,

n n
l

l pq p q
p q l

Y s s C Y s Y s
s s λ= =

=
+ −∑∑         (B.7) 

Substituting, 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )

( )
( ) ( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

3
1 2 3 1 2 3

3
1 2 3

1 1 1

1 1 1 1 1 2 31 2

1 11

1 11 2 3 2 3

1 1 1

31 2

, ,

, ,

0 0 01

0 00 1

0 0 0

j

j j

n n n n
p q lj k

kl pq
k l p q k lp q

n n
p qk l

pq
p qk l p q

p q rj
pqr

r rp q

s s s Y s s s

Y s s s

Y Y Y
C C

s s ss s

Y YY
C

s s s s s

Y Y Y
D

ss s

λ

λ λλ λ

λ λ λ λ

λλ λ

= = = =

= =

=

+ + =


+ +

+ − −− −



− + − − − 
 
 +

−− −  

∑∑ ∑∑

∑∑

1 1 1

n n n

p q= =
∑∑∑

       (B.8) 
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( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )

3
1 2 3 1 2 3

3
1 2 3

1 1 1

1 1 1 1 1 2 31 2

1 11

1 1 1 1 1 2 3 2 3

1 1 1

31 2

, ,

, ,

0 0 01

0 00 1

0 0 0

j

j j

n n n n
p q lj k

kl pq
k l p q k lp q

n n n n
p qkj l

kl pq
k l p q k l p q

p q rj
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rp q

s s s Y s s s

Y s s s

Y Y Y
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s s ss s

Y YY
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s s s s s

Y Y Y
D
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λ

λ λλ λ

λ λ λ λ

λλ λ

= = = =

= = = =

+ + =

+ +
+ − −− −

− + − − −


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−− −

∑∑∑∑

∑∑∑∑

1 1 1

n n n

p q r= = =





∑∑∑

 

( ) ( )
( )

( ) ( ) ( )
( )( )( )( )

( ) ( ) ( )
( )( )( )( )

( ) ( ) ( )

3
1 2 3 1 2 3

3
1 2 3

1 1 1

1 1 1 1 1 2 1 2 3

1 1 1

1 1 1 1 2 3 1 2 3

1 1 1

1

, ,

, ,

1
0 0 0

1
0 0 0

1
0 0 0

j

j j

n n n n
j k

kl pq p q l
k l p q k p q l

n n n n
j l

kl pq k p q
k l p q l k p q

j
pqr p q r

s s s Y s s s

Y s s s

C C Y Y Y
s s s s s

C C Y Y Y
s s s s s

D Y Y Y
s

λ

λ λ λ λ

λ λ λ λ

= = = =

= = = =

+ + =

+

 
  +

+ − − − −  
 
  +

+ − − − −  

∑∑∑∑

∑∑∑∑

( )( )( )1 1 1 2 3

n n n

p q r p q rs sλ λ λ= = =

 
 

− − −  
∑∑∑

 

Hence, 

( ) ( )

( ) ( ) ( )
( )( )( )( )

( ) ( ) ( )
( )( )( )( )

( ) ( ) ( ) ( )

3
1 2 3

1 2 3

1 1 1

1 1 1 1 1 2 1 2 3

1 1 1

1 1 1 1 2 3 1 2 3

1 1 1

1 2

1
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1
0 0 0

1
0 0 0

1
0 0 0

j

j

n n n n
j k

kl pq p q l
k l p q k p q l

n n n n
j l

kl pq k p q
k l p q l k p q

j
pqr p q r

p

Y s s s
s s s

C C Y Y Y
s s s s s

C C Y Y Y
s s s s s

D Y Y Y
s s

λ

λ λ λ λ

λ λ λ λ

λ

= = = =

= = = =

=
+ + −

     +
+ − − − −   

 
  +

+ − − − −  

−

∑∑∑∑

∑∑∑∑

( )( )1 1 1 3

n n n

p q r q rsλ λ= = =

  
− −  

∑∑∑

     (B.9) 

Or, 
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( )

( ) ( ) ( ) ( )( )( )( )( )

( ) ( ) ( ) ( )( )( )( )( )

( ) ( ) ( )

3
1 2 3

1 1 1

1 1 1 1 1 2 3 1 2 1 2 3

1 1 1

1 1 1 1 1 2 3 2 3 1 2 3

1 1 1

1

, ,

1
0 0 0

1
0 0 0

1
0 0 0

j

n n n n
j k

kl pq p q l
k l p q j k p q l

n n n n
j l

kl pq k p q
k l p q j l k p q

j
pqr p q r

Y s s s

C C Y Y Y
s s s s s s s s

C C Y Y Y
s s s s s s s s

D Y Y Y
s

λ λ λ λ λ

λ λ λ λ λ

= = = =

= = = =

=

 
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+ + − + − − − −  
 
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∑∑∑∑

∑∑∑∑

( )( )( )( )1 1 1 2 3 1 2 3

n n n

p q r j p q rs s s s sλ λ λ λ= = =

 
 

+ + − − − −  
∑∑∑

 

             (B.10) 

Third order kernel can be re-defined as, 

( ) ( ) ( ) ( )3
1 2 3 1 1 1 2 3 2 2 1 2 3 3 3 1 2 3, , , , , , , ,jY s s s K N s s s K N s s s K N s s s= + +     (B.11) 

Where, 

( ) ( )( )( )( )( )1 1 2 3

1 2 3 1 2 1 2 3

1
, ,

j k p q l

N s s s
s s s s s s s sλ λ λ λ λ

=
+ + − + − − − −

    (B.12) 

( ) ( )( )( )( )( )2 1 2 3

1 2 3 2 3 1 2 3

1
, ,

j l k p q

N s s s
s s s s s s s sλ λ λ λ λ

=
+ + − + − − − −

   (B.13) 

( ) ( )( )( )( )3 1 2 3

1 2 3 1 2 3

1
, ,

j p q r

N s s s
s s s s s sλ λ λ λ

=
+ + − − − −

(B.14)

B3. ASSOCIATION OF VARIABLES 

In order to solve the kernels ( )1 1 2 3, ,N s s s  and ( )2 1 2 3, ,N s s s  it is posible to use the corollary 

proposed by [Crum and Heinen 1974]. The corollary fits to ( 1)i − st reduction and expansion of a n-

dimensional kernels of the form, 

( ) ( )

( )

( ) ( ) ( )

1 2
1 2 11

1 2 1
1 1

22

1 2 2
2 11 1

11 22

1 1 2 2
1 1 2 1 1
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=
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⋅
 
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 

⋅
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∏

∑∏

∏ ∏ ∏










     (B.15) 
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where ( )1 2, , ,n nG s s s  is the ratio of a polynomial in n variables to a polynomial in the n i−  variables 

1, 2, , 1i i n+ + −  and n, yields 

( )

( )( ) ( )
( )

( )

( )( ) ( )
( )
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2 2

1 1
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1 2 1 2 2
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β η
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+
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=
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=
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 
 
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∑ ∑
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 
 
 
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∑ ∑ ∑



    (B.16) 

Where, 

1 2 , 11 1 22k m k
m i

x s x K k K
>

= + < ≤∑  

Hence, applying the corollary to kernels ( )1 1 2 3, ,N s s s  and ( )2 1 2 3, ,N s s s , it yields, 

( )

( )( )( ) ( )( )( )( )( )

( )

( )( )( ) ( )( )( )( )( )

( )
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1

1
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1
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l
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s
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λ
λ
λ
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λ

λ λ λ
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 
 
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 
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 Making algebraic operations, the new kernel is, 

( ) ( ) ( ) ( ) ( ) ( )1 1 3

1 3 1

1 1 1 1 1
,

j p q l j l k j p q k p q l

N s s
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which is defined in terms of a single Laplace domain by association of variables theorems as, 

( ) ( ) ( ) ( ) ( ) ( )1

1 1 1 1 1

j p q l j l k j p q k p q l
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   (B.17) 
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+ −
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which is defined in terms of a single Laplace domain by association of variables theorems as, 

( ) ( ) ( ) ( ) ( )2 1 3

1

1 1 1 1
,

j p q k p q l j p q k

N s s
s sλ λ λ λ λ λ λ λ λ λ λ

 
 = −

− − − + − − − − −  
    (B.18) 

 Finally, the kernel ( )1 1 2 3, ,N s s s  is reduced following the next approach: 

Recalling (B.14), 

( ) ( )( )( )( )3 1 2 3

1 2 3 1 2 3

1
, ,

j p q r

N s s s
s s s s s sλ λ λ λ

=
+ + − − − −

 

From [Lubbock and Bansal 1968], 

( )( ) ( )( )1 1 2 2 1 2m m m

k

s a s a s a s s s α+ + + + + + + 
     (B.19) 

It is associated as, 

  
( )( )1 2 m

k

s s a a aα+ + + + +
        (B.20) 

Therefore, 
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  ( ) ( )( )3

1

j p q r

N s
s sλ λ λ λ

=
− − − −

        (B.21) 

Decomposing (B.21) in partial fractions expansion, results in, 

  ( ) ( ) ( ) ( )3
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j p q r j p q r

N s
s sλ λ λ λ λ λ λ λ
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    (B.22) 

 Thus, the final solution of third order terms expressed as a single Laplace transform variable is, 
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AAPPPPEENNDDIIXX  CC  
TTEESSTT  PPOOWWEERR  SSYYSSTTEEMMSS  DDAATTAA  

 
 
 

 
 
C.1 3 GENERATORS, 9 BUSES TEST POWER SYSTEM 

Table C1. Line Bus Data 
SENDING 

BUS 
RECEIVING 

BUS 
RESISTANCE REACTANCE

SHUNT 
SUSCEPTANCE 

TAP 
RATIO 

2 7 0 0.0625 0 1 

7 8 0.0085 0.072 0.149 1 

8 9 0.0119 0.1008 0.209 1 

9 3 0 0.0586 0 1 

9 6 0.039 0.17 0.358 1 

6 4 0.017 0.092 0.158 1 

4 5 0.01 0.085 0.176 1 

 

Table C2. Machine Dynamic Data 

MACHINE x  ar  dx  dx′  0dT ′  qx  qx′  0qT ′  H D 

G1 0.2 0 0.146 0.0608 8.96 0.0969 0.0608 0.31 23.64 0.0125 

G2 0.2 0 0.8958 0.1198 6 0.8645 0.1198 0.535 6.4 0.0068 

G3 0.2 0 1.3125 0.1813 5.89 1.2578 0.1813 0.6 3.01 0.0048

 

Table C3. Power Flow Data 

BUS V  θ  GP  GQ  LP  LQ  

1 1.04 0 0.716 0.27 0 0 

2 1.025 0.1623 1.63 0.067 0 0 

3 1.025 0.082 0.85 -0.109 0 0

4 1.026 -0.0384 0 0 0 0 

5 0.996 -0.0698 0 0 1.25 0.5 

6 1.013 -0.0646 0 0 0.9 0.3 

7 1.026 0.0646 0 0 0 0 

8 1.016 0.0122 0 0 1 0.35 

9 1.032 0.0349 0 0 0 0 
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C.2 10 GENERATORS, 39 BUSES NEW ENGLAND TEST POWER SYSTEM 

Table C4. Line Bus Data 
SENDING 

BUS 
RECEIVING 

BUS 
RESISTANCE REACTANCE 

SHUNT 
SUSCEPTANCE 

TAP 
RATIO 

39 30 0.0035 0.0411 0.6987 1 

39 1 0.001 0.025 0.75 1 

30 37 0.0013 0.0151 0.2572 1 

30 25 0.007 0.0086 0.146 1 

37 31 0.0013 0.0213 0.2214 1 

37 18 0.0011 0.0133 0.2138 1 

31 34 0.0008 0.0128 0.1342 1 

31 14 0.0008 0.0129 0.1382 1 

34 33 0.0002 0.0026 0.0434 1 

34 36 0.0008 0.0112 0.1476 1 

33 38 0.0006 0.0092 0.113 1 

33 11 0.0007 0.0082 0.1389 1 

38 36 0.0004 0.0046 0.078 1 

36 35 0.0023 0.0363 0.3804 1 

35 1 0.001 0.025 1.2 1 

32 11 0.0004 0.0043 0.0729 1 

32 13 0.0004 0.0043 0.0729 1 

13 14 0.0009 0.0101 0.1723 1 

14 15 0.0018 0.0217 0.366 1 

15 16 0.0009 0.0094 0.171 1 

16 17 0.0007 0.0089 0.1342 1 

16 19 0.0016 0.0195 0.304 1 

16 21 0.0008 0.0135 0.2548 1 

16 24 0.0003 0.0059 0.068 1 

17 18 0.0007 0.0082 0.1319 1 

17 27 0.0013 0.0173 0.3216 1 

21 22 0.0008 0.014 0.2565 1 

22 23 0.0006 0.0096 0.1846 1 

23 24 0.0022 0.035 0.361 1 

25 26 0.0032 0.0323 0.513 1 

26 27 0.0014 0.0147 0.2396 1 

26 28 0.0043 0.0474 0.7802 1 

26 29 0.0057 0.0625 1.029 1 

28 29 0.0014 0.0151 0.249 1 

12 11 0.0016 0.0435 0 1 

12 13 0.0016 0.0435 0 1 

33 4 0 0.025 0 1 

32 10 0 0.02 0 1 

19 6 0.0007 0.0142 0 1 

20 5 0.0009 0.018 0 1 

22 9 0 0.0143 0 1 

23 8 0.0005 0.0272 0 1 

25 3 0.0006 0.0232 0 1 

30 2 0 0.0181 0 1 

29 7 0.0008 0.0156 0 1 

19 20 0.0007 0.0138 0 1 
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Table C6. Power Flow Data 
 

BUS V  θ  GP  GQ  LP  LQ  

1 1.03 -11.13 10 0.904 11.04 2.5 

2 1.0475 -4.61 2.5 1.5114 0 0 

3 1.0278 1.15 5.4 0.0773 0 0 

4 0.982 0 5.7356 2.0889 0.092 0.046 

5 1.0123 0.61 5.08 1.6827 0 0 

6 0.9972 2.05 6.32 1.1171 0 0 

7 1.0265 6.65 8.3 1.0451 0 0 

8 1.0635 6.72 5.6 1.0221 0 0 

9 1.0493 4.03 6.5 2.1423 0 0

10 0.9831 1.6 6.5 2.0786 0 0 

11 1.0121 -7.21 0 0 0 0 

12 0.9995 -7.23 0 0 0.085 0.88 

13 1.0137 -7.11 0 0 0 0 

14 1.011 -8.78 0 0 0 0 

15 1.0147 -9.2 0 0 3.2 1.53 

16 1.0311 -7.79 0 0 6.29 1.323 

17 1.032 -8.79 0 0 0 0 

18 1.0296 -9.64 0 0 1.58 0.3 

19 1.0496 -3.17 0 0 0 0 

20 0.9907 -4.58 0 0 6.8 1.03 

21 1.0313 -5.39 0 0 2.74 1.15

22 1.0495 -0.93 0 0 0 0 

23 1.0445 -1.13 0 0 2.475 0.846 

24 1.0367 -7.68 0 0 3.086 0.922 

25 1.0559 -5.64 0 0 2.24 0.472 

26 1.0464 -6.89 0 0 1.39 0.47 

27 1.0339 -8.93 0 0 2.81 0.755 

28 1.0389 -3.3 0 0 2.06 0.276 

29 1.0372 -0.47 0 0 2.835 1.269 

30 1.0479 -7.03 0 0 0 0 

31 1.003 -10.67 0 0 5 1.84 

32 1.0166 -6.4 0 0 0 0 

33 1.0069 -8.78 0 0 0 0

34 1.0045 -9.49 0 0 0 0 

35 1.0279 -11.32 0 0 0 0 

36 0.9953 -11.5 0 0 5.22 1.76 

37 1.0292 -9.88 0 0 3.22 1.224 

38 0.9962 -10.99 0 0 2.338 0.84 

39 1.0471 -9.59 0 0 0 0 
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Table C5. Machine Dynamic Data 

MACHINE x  ar  dx  dx′  0dT ′  qx  qx′  0qT ′  H D 

G1 0.003 0 0.02 0.06 7 0.019 0.06 0.7 500 0 

G2 0.0125 0 0.1 0.031 10.2 0.069 0.031 1.5 42 0 

G3 0.028 0 0.29 0.057 6.7 0.28 0.057 0.41 24.3 0 

G4 0.035 0 0.295 0.0697 6.56 0.282 0.0697 1.5 30.3 0 

G5 0.054 0 0.67 0.132 5.4 0.62 0.132 0.44 26 0 

G6 0.0295 0 0.262 0.0436 5.69 0.258 0.0436 1.5 28.6 0 

G7 0.0298 0 0.2106 0.057 4.79 0.205 0.057 1.96 34.5 0

G8 0.0322 0 0.295 0.049 5.66 0.292 0.049 1.5 26.4 0 

G9 0.0224 0 0.254 0.05 7.3 0.241 0.05 0.4 34.8 0 

G10 0.0304 0 0.2495 0.0531 5.7 0.237 0.0531 1.5 35.8 0 

 

 
 

Table C7. Excitation System Data 
Generator 

No. AT  AK  

1 0.02 40 

2 0.6 40 

3 0.2 40 

4 0.05 6.2

5 0.2 40 

6 0.06 5 

7 0.02 5 

8 0.02 40 

9 0.02 5 

10 0.06 5 
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AAPPPPEENNDDIIXX  DD  
IINNIITTIIAALL  CCOONNDDIITTIIOONNSS  CCAALLCCUULLAATTIIOONNSS  

33  SSMM--99  BBUUSSEESS  TTEESSTT  PPOOWWEERR  SSYYSSTTEEMM  
 
 
 

 
The admittance matrix BUSY  and the intermediate matrix admittances are calculated among reduced 

admittance matrix redY . The numerical matrices obtained are, 

BUS =Y  

-17.3611i 0 0 17.3611i 0 0 0 0 0 

0 -16.0000i 0 0 0 0 16.0000i 0 0 

0 0 -17.0648i 0 0 0 0 0 0 +17.0648i 

17.3611i 0 0 
3.3074 -
39.3089i 

-1.3652 
+11.6041i 

-1.9422 
+10.5107i 

0 0 0 

0 0 0 
-1.3652 

+11.6041i 
3.8138 -
17.8426i 

0
-1.1876 + 
5.9751i

0 0 

0 0 0 
-1.9422 

+10.5107i 
0 

4.1018 -
16.1335i 

0 0 
-1.2820 + 
5.5882i 

0 16.0000i 0 0 
-1.1876 + 
5.9751i 

0
2.8047 -
35.4456i 

-1.6171 
+13.6980i 

0 

0 0 0 0 0 0
-1.6171 

+13.6980i 
3.7412 -
23.6424i 

-1.1551 + 
9.7843i 

0 0 17.0648i 0 0
-1.2820 + 
5.5882i 

0
-1.1551 + 
9.7843i 

2.4371 -
32.1539i 

 

which is the admittance matrix conformed by the multimachine parameters (basically transmission 

lines). The matrices that complement the total matrix of the power system are the loads and internal 

generators parameters, that is, 

 

16.4474i 0 0

0 8.3472i 0

0 0  5.5157i
G

− 
 = − 
 − 

Y  

0

0

0

0

1.2610 0.5044

0.8776 0.2925

0

0.9690 0.3391

0

LOAD i

i

i

 
 
 
 
 
 
 = −
 

− 
 
 
 −
 
 

Y
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Hence, the complete admittance matrix that includes transmission line parameters, loads and 

internal generators admittances is, 

[ ]BUS LOAD G+ + =Y Y Y  

-33.8085i 0 0 17.3611i 0 0 0 0 0 

0 -24.3472i 0 0 0 0 16.0000i 0 0 

0 0 -22.5806i 0 0 0 0 0 17.0648i 

17.3611i 0 0 3.3074 -39.3089i 
-1.3652 

+11.6041i 
-1.9422 

+10.5107i 
0 0 0 

0 0 0 
-1.3652 

+11.6041i 
3.8138 -17.8426i 0 

-1.1876 + 
5.9751i 

0 0 

0 0 0 
-1.9422 

+10.5107i 
0 4.1018 -16.1335i 0 0 

-1.2820 + 
5.5882i 

0 16.0000i 0 0 
-1.1876 + 
5.9751i 

0 2.8047 -35.4456i 
-1.6171 

+13.6980i 
0 

0 0 0 0 0 0 
-1.6171 

+13.6980i 
3.7412 -23.6424i 

-1.1551 + 
9.7843i 

0 0 17.0648i 0 0 
-1.2820 + 
5.5882i 

0 
-1.1551 + 
9.7843i 

2.4371 -32.1539i 

 

Following the augmented admittance matrix given by Equation (4.13) it yields, 

AUG =Y  

-16.4474i 0 0 16.4474i 0 0 0 0 0 0 0 0 

0 -8.3472i 0 0 8.3472i 0 0 0 0 0 0 0 

0 0 -5.5157i 0 0 5.5157i 0 0 0 0 0 0 

16.4474i 0 0 -33.8085i 0 0 17.3611i 0 0 0 0 0 

0 8.3472i 0 0 -24.3472i 0 0 0 0 16.0000i 0 0 

0 0 5.5157i 0 0 -22.5806i 0 0 0 0 0 17.0648i 

0 0 0 17.3611i 0 0 
3.3074 

-39.3089i 
-1.3652 

+11.6041i 
-1.9422 

+10.5107i 
0 0 0 

0 0 0 0 0 0 
-1.3652 

+11.6041i
3.8138 

-17.8426i
0 

-1.1876 + 
5.9751i

0 0 

0 0 0 0 0 0 
-1.9422 

+10.5107i 
0 

4.1018 -
16.1335i 

0 0 
-1.2820 

+5.5882i 

0 0 0 0 16.0000i 0 0 
-1.1876 
+5.9751i 

0 
2.8047 -
35.4456i 

-1.6171 
+13.6980i 

0 

0 0 0 0 0 0 0 0 0 
-1.6171 

+13.6980i 
3.7412 

-23.6424i 
-1.1551 

+9.7843i 

0 0 0 0 0 17.0648i 0 0 
-1.2820 
+5.5882i 

0 
-1.1551 
+9.7843i 

2.4371 
-32.1539i 

 

with reduced admittance matrix agreeing with (4.14), 

 

 
0.8455 - 2.9883i 0.2871 + 1.5129i 0.2096 + 1.2256i

red =Y  0.2871 + 1.5129i 0.4200 - 2.7239i 0.2133 + 1.0879i 

0.2096 + 1.2256i 0.2133 + 1.0879i 0.2770 - 2.3681i 

 

After the calculations of the admittance matrix, steady state initial conditions are necessary before 

the dynamic analysis. The next set of numerical calculations were obtained with the application of the 

approach detailed in Section 4.4 (Equations (4.42)-(4.62)), thus resulting, 
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1.04   0.6889 - 0.2601i 

=V 1.0116 + 0.1653i  
G =I  1.5799 + 0.1924i 

1.0216 + 0.0834i   0.8179 + 0.1730i 

 

1.0652 + 0.0668i   3.5857 

i =E 0.8453 + 1.5311i  
îδ =  61.0984 

0.8040 + 1.1121i   54.1366 

 

0.3026  0.6712 

d =I 1.2901 q =I  0.932 

0.5615  0.6194 

0.065   1.038 

d =V 0.8057  q =V  0.6336 

0.7791 0.6661

 

0.0242 1.0564 

0d′ =Ε 0.6941 
 0q′ =Ε  0.7882 

0.6668 0.7679 

 

1.0821 1.04

0fd =Ε 1.7893 
 0texcV =  1.025 

1.403 1.025 

 

1.0941 0.7164 

0refV = 1.1145 
 miP =  1.63 

1.0951 0.85

 

 

0.2705  376.9911 

miQ = 0.0665 
 0ω̂ =  376.9911 

-0.1086 376.9911
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0.0626 

1.0664 

0.9449 

376.9911 

376.9911 

376.9911 

1.0564 

0 =x 0.7882 

0.7679 

0.0242 

0.6941 

0.6668

1.0821 

1.7893 

1.403 

 

All quantities are expressed in per unit, except angles which are expressed in degrees and angular 

speed in radians per second. 
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