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Abstract

This thesis reports an adaptive identification scheme applied to uncertain and disturbed

nonlinear systems. The adaptive identifier parameters are adapted on-line using a recursive

least-squares algorithm. As an important characteristic of the adaptive identifier is that it

can be proposed in the state dependent coefficient factorization form, which could be used

for control purposes. Another important contribution is a robust optimal tracking nonlinear

control, which can be synthesized for state dependent coefficient factorization systems. The

optimal control scheme is related to finding a control law, such that a performance criterion

is minimized. This criterion is usually formulated as a cost functional, which is a function

of state and control variables. As a theoretical contribution, formal proofs are developed to

show the convergence in the adaptive identifier and the optimal control.

The adaptive identification and optimal tracking control effectiveness is validated

via simulation. Both schemes are applied for the type 1 diabetes treatment using the

Bergman minimal model and the Cobelli model. The principal aim is to regulate the blood

glucose levels in type 1 diabetic patients, where the dynamical behavior for different patients

is difficult to model since each one has particular biological characteristics, different eating

and healthy habits, age and weight, among other aspects. The optimal control versatility is

demonstrated by the generation of continuous and discontinuous control signals, with the

aim to be used in continuous and discontinuous insulin pumps, which are used in the current

type 1 diabetes treatments. To validate the adaptive identification and the optimal control

schemes, is used a specialized simulator approved by the food and drug administration in

USA.
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Resumen

Esta Tesis propone un esquema de identificación adaptativa aplicado a sistemas no lineales

inciertos y perturbados. Los parámetros del identificador adaptativo se adaptan en ĺınea

utilizando algoritmo de mı́nimos cuadrados recursivos. Como una caracteŕıstica importante

del identificador adaptativo es que puede proponerse en la forma de factorización de coefi-

cientes dependientes del estado, que podŕıa usarse con fines de control. Otra contribución

importante es un control no lineal de seguimiento óptimo robusto, que se puede sintetizar

para sistemas en su forma de factorización de coeficientes dependientes del estado. El es-

quema de control óptimo está relacionado con la búsqueda de una ley de control, de modo

que se minimice un criterio de rendimiento. Este criterio generalmente se formula como

un funcional de costo, que esta en función de las variables de estado y control. Como

contribución teórica, se desarrollan pruebas formales para mostrar la convergencia en el

identificador adaptativo y el control óptimo.

La identificación adaptativa y la efectividad del control óptimo de seguimiento se

validan mediante simulación. Ambos esquemas se aplican para el tratamiento de diabetes

tipo 1 usando el modelo mı́nimo Bergman y el modelo Cobelli. El objetivo principal es regu-

lar los niveles de glucosa en sangre en pacientes diabéticos tipo 1, donde el comportamiento

dinámico de diferentes pacientes es dif́ıcil de modelar ya que cada uno tiene caracteŕısticas

biológicas particulares, hábitos alimentarios y saludables diferentes, edad y peso, entre otros

aspectos. La versatilidad de control óptimo se demuestra mediante la generación de señales

de control continuas y discontinuas, con el objetivo de ser utilizadas en bombas de insulina

continuas y discontinuas, que se utilizan en los tratamientos actuales de diabetes tipo 1.

Para validar la identificación adaptativa y el esquemas de control óptimo, se utiliza un sim-

ulador especializado aprobado por la administración de alimentos y medicamentos en USA.

Palabras clave: Sistemas no linelaes, Identificación adaptiva, Control óptimo no lineal,

Modelo glucos-insulina, Diabetes tipo 1, Simulador T1DMS.
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lineal para la regulación de glucosa en pacientes diabéticos tipo 1”, Revista del
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Chapter 1

Introduction

Nonlinear systems usually present complex and often unpredictable behaviours in

different natural phenomena. The nonlinear systems are present in different areas of ev-

eryday life, e.g., engineering, industrial process, economic data, biology and life sciences,

medicine and health care. It is difficult to have general modeling methods due to the va-

riety of nonlinear systems, which are generally subject to uncertainties and disturbances.

Therefore, it is convenient to use alternative methodologies for modeling, such as systems

identification, which is the estimation of dynamic system models from observed data, among

other methodologies. Once an adequate system identification is achieved, it is necessary

synthesize effective controllers that satisfy the design needs. A specific area in biological

systems is focused for the application of the adaptive identification and the optimal nonlin-

ear control strategies, which is the type 1 diabetes treatment. Diabetes is a serious, chronic

disease that occurs either when the pancreas does not produce enough insulin (a hormone

that regulates blood sugar, or glucose), or when the body cannot effectively use the insulin

it produces. Diabetes is an important public health problem, one of four priority noncom-

municable diseases targeted for action by world leaders. Both the number of cases and the

prevalence of diabetes have been steadily increasing over the past few decades. Globally, an

estimated 422 million adults were living with diabetes in 2014, compared to 108 million in

1980. The global prevalence (age-standardized) of diabetes has nearly doubled since 1980,

rising from 4.7% to 8.5% in the adult population. This reflects an increase in associated risk

1



2 Chapter 1: Introduction

factors such as being overweight or obese. Over the past decade, diabetes prevalence has

risen faster in low- and middle-income countries than in high-income countries. Diabetes

caused 1.5 million deaths in 2012. Higher than optimal blood glucose caused an additional

2.2 million deaths, by increasing the risks of cardiovascular and other diseases. Forty three

percent of these 3.7 million deaths occur before the age of 70 years. The percentage of

deaths attributable to high blood glucose or diabetes that occurs prior to age 70 is higher

in low- and middle-income countries than in high-income countries [WHO].

Diabetes is on the rise, no longer a disease of predominantly rich nations, the preva-

lence of diabetes is steadily increasing everywhere, most markedly in the world’s middle-

income countries. Unfortunately, in many settings the lack of effective policies to create

supportive environments for healthy lifestyles and the lack of access to quality health care

means that the prevention and treatment of diabetes, particularly for people of modest

means, are not being pursued. When diabetes is uncontrolled, it has dire consequences

for health and well-being. In addition, diabetes and its complications impact harshly on

the finances of individuals and their families, and the economies of nations. Therefore, the

design of an adaptive identification and a robust optimal control scheme capable to close

the loop between the continuous glucose monitoring and the insulin pumps can provide a

solution to the blood glucose regulation problem in type 1 diabetic patients, allowing the

automation in the treatment with the aim that people with the disease live a life as close

as possible as a healthy person. This chapter presents an introduction of the identification

and control problem applied nonlinear systems as well as the objectives, the contributions

and the application of this thesis.

1.1 Nonlinear systems identification

For linear systems, there exist well-structured theory, methodologies and algo-

rithms for their respective modeling and control. For the case of nonlinear systems, the

situation is more complex. In this sense, the identification method is only as good as the

model it utilizes depending of the inputs and outputs of the system that can be measured. In

literature exist different methods, which are used to identify nonlinear systems [Now02, Nel],
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such as polynomial identifiers [MS87, Fun92], neural and polynomial networks [NI06], etc.

These identifier methods propose nonlinear models whose structures are based on param-

eters to be determined. If the parameters are linear respect to the model structure, the

identification may be carried out using linear parameter estimation methods, even though

the model is nonlinear in the system state variables. When parameters present uncertain-

ties, and unexpected disturbances affect the system dynamics, then it is convenient to use

an adaptive identification, which allows adapt the parameters to the changes in the system

behavior. Therefore, the adaptive identification is an adequate technique for obtaining the

optimal identifier parameter values due to that minimizes the error between the simulated

results and the experimental data [OTV15, VOTRM15]. Different techniques are used to

obtain the identification scheme that allow an approximation among the simulations of the

proposed model and the experimental data, however, these methods are not necessarily

computationally efficient and could not guarantee convergence [Nel13].

Two schemes are common in the field of system identification: a) A black-box

methodology, where only the data of the relationships between the input and output are

known, which should serve to determine an identifier model; b) a grey-box methodology,

where a priori knowledge of the system (e.g. system order, structure, variables relation-

ships, etc.) can be used to propose an identifier model. The last methodology is applied in

this thesis because of there exist a previous knowledge of the nonlinear system studied here.

In this sense, adaptive identifiers are used to determine accurate model structures, which

describe the behavior of a nonlinear system; however, in practice it is convenient to develop

efficient procedures that allow to approximate the complex nonlinear systems through gen-

erating suitable identifier structures, considering that the most important characteristics

are taken into account in the modeling process [SOH04].

In the literature exist different methods, which are used to identify nonlinear sys-

tems [Now02, Nel], such as polynomial identifiers [MS87, Fun92], neural and polynomial

networks [NI06], etc. Because of that, there exist different areas where the identification

process is used to obtain models to describe the essential behaviours of nonlinear systems,

e.g. in biochemical networks [MBVS05], electrical engineering [FNG12], biomedical process

[DJS+07], etc. Various nonlinear systems can be modelled by polynomial structures and
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are used as identifiers models, which is the case of the glucose-insulin system. Due to the

glucose-insulin system behaviours are very slow with soft curves, i.e., its dynamics are rep-

resented in hours, in this thesis is proposed an adaptive identification scheme which consists

to develop a polynomial identifier model whose parameters are linear regarding to the model

structure. The identifier parameters are adapted on-line using a recursive least-squares al-

gorithm (RLSA) due to has faster convergence rate than least mean-square (LMS) and

normalized least mean square (NLMS) algorithms with better robustness to noises, unpre-

dictable situations and better tracking capability, which allows an adequate identification

of the nonlinear systems, specifically the glucose insulin system. The polynomial structure

is selected due to their approximating capabilities, relatively simple structure, easy to im-

plement, and with the capacity to adjust its parameters (polynomial’s coefficients) on-line.

One of the most important advantages of polynomial models is that they allow a state

dependent coefficient factorization (SDCF) representation, whose feature can be used to

design nonlinear feedback controllers.

1.2 Optimal nonlinear control

Classical control system design is generally a trial-and-error process in which var-

ious methods of analysis are used iteratively to determine the design parameters of an

acceptable system. Acceptable performance is generally defined in terms of time and fre-

quency domain criteria such as rise time, settling time, peak overshoot, gain and phase

margin, and bandwidth. Radically different performance criteria must be satisfied, how-

ever, by the complex, multiple-input, multiple-output systems required to meet the demands

of modern technology. For example, the design of a spacecraft attitude control system that

minimizes fuel expenditure is not amenable to solution by classical methods. A new and

direct approach to the synthesis of these complex systems, called optimal control theory,

has been made feasible by the development of the digital computer.

The objective of optimal control theory is to determine the control signals that

will cause a process to satisfy the physical constraints and at the same time minimize (or

maximize) some performance criterion. In optimal nonlinear control, one deals with the



1.2. Optimal nonlinear control 5

determination of a stabilizing control law for a given system in a manner such that a per-

formance criterion is minimized, which is a function of the state variables and the control

inputs. Optimal control laws benefit from adequate stability margins, and the fact that they

minimize a meaningful cost functional ensures that control effort is not wasted [FK96]. In-

deed, optimal control theory is introduced in [SJK12, FK08] as a synthesis tool to guarantee

stability margins, which are basic robustness properties that a control system must possess

[SJK12, AM07]. Optimality is thus a discriminating measure to select a control law with

desirable properties among a set of stabilizing control laws [FK96]. In [FK08, LG95, LG94],

the robust optimal control approach is presented to deal with disturbances and uncertain-

ties in the system, and in [GKM06, SM12, Ebi13, Roj13] for systems in the discrete-time

framework, meanwhile optimal techniques based on model predictive control are presented

in [ZLC08, ZCC10, ANT14, Din13]. Optimal control can be solved by using the maximum

principle of Pontryagin (a necessary condition) [Pon87] and the method of dynamic pro-

gramming developed by Bellman [BBBB95].

The latter leads to a nonlinear partial differential equation named the Hamilton-

Jacobi-Bellman (HJB) equation (a sufficient condition), whose solution provides state feed-

back controllers and optimal trajectories from every initial condition [SJK12, PND99]. The

application of this equation is well-established in solving the optimal control problem for

linear systems, where its formulation results in the differential Riccati equation [AM07].

However, solving the HJB equation is rather complicated for general nonlinear systems

[SJK12, FK08].

Different control strategies have been proposed to provide nonlinear feedback con-

trollers, including the state-dependent Riccati equation (SDRE) approach, which is well-

known and has become popular over the last decade [CDM96b, Erd01, Erd01, BLT07b,

Cim08]. This control approach provides an effective algorithm for synthesizing nonlinear

feedback controllers. In [Pea62], a linear time and state-dependent approximation is pro-

posed to optimize a nonlinear system with respect to a quadratic performance index by

considering an instantaneously linear stationary system. A suboptimal solution to the non-

linear quadratic regulator and tracking with infinite final time is investigated in [WC75],
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for which the nonlinear system is represented by an instantaneous linearization and then

solves the optimal control.

A comprehensive survey on the SDRE scheme is presented in [Cim08], which de-

scribes the approach as an effective methodology for synthesizing nonlinear controllers,

observers and filters. In [BP10] a numerical optimal control approach is established for

polynomial nonlinear systems based on the sum of squares. In essence, the SDRE tech-

nique is a systematic way of synthesizing nonlinear feedback controllers, which mimic the

controller synthesis as done for the linear case [BLT07b]. In addition, SDRE has been an

effective applied control technique in the control of an artificial human pancreas [PR97], the

regulation of the growth of thin films in a high-pressure chemical vapor deposition reactor

[TAZ98, KBTB02], satellite and spacecraft control and estimation [Erd01, Puk13, HHR98b],

robotics [EA01] and a magnetic levitation ball [EA99]. Other systems that can be repre-

sented by in state-dependent coefficient factorization are polynomial systems, mechanical

systems [Bog04, ZAPP05] and electrical machines (inductions motor, induction generators).

In [MC98] the SDRE approach has been applied to unstable non-minimum phase systems.

An analysis for the stability region of the SDRE controllers is given in [CC09]. Recent

results [Erd01, KBTB02] have reported the success of the SDRE control technique in the

synthesis of feedback controllers for real-time implementation. Indeed, the SDRE approach

can be used for systems such as complex networks that may contain multiple nodes [LC05],

possibly competing or collaborating to achieve system wide goals, if a state-dependent coef-

ficient factorization of the complex network can be accomplished. Interestingly, the SDRE

approach has advantages with respect to other control techniques (such as feedback lin-

earization [Isi13] and backstepping [Kha96b]), since non-robust cancellations and possible

zero divisions are avoided [SJK12, Erd01]; moreover, the nonlinear SDRE technique has a

larger domain over the state space than the Taylor linearization [CDM96b, Erd01]. Further-

more, this control technique allows the incorporation of physical intuition characteristics

when the control scheme is synthesized, such that a specified performance for the system

is imposed by properly tuning the weighting matrices in the cost functional [Erd01]. Note

that although, as mentioned above, there already exist many important results on optimal

control based on the SDRE to achieve stabilization for nonlinear systems, the optimal track-
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ing for nonlinear systems has been seldom analyzed [CB04, Udw08]. In spite of that, for

different control applications, it is required that the output of the system tracks a desired

trajectory. Due to the adaptive identification scheme develops polynomial identifier models

which can be represented in the SDCF form, the optimal nonlinear control allows to syn-

thesize controllers for that kind of systems [OTRRC13, OTV15]. The principal aim of the

optimal nonlinear control is to minimize a meaningful cost functional, which is a function

of the state variables and the control inputs. In the particular application presented in this

thesis, this feature allows to determine an adequate insulin dose. The type 1 diabetes treat-

ment demands an adequate regulation of the blood glucose into safety levels, this problem

can be solved using the property of the nonlinear optimal control to track constant or slowly

time-varying references.

1.3 Modeling and control applied to biomedical systems

There exist different areas where the optimal control can be applied, but one of

the most interesting areas is the biological systems, which can be represented by nonlinear

models and affected by different disturbances. Therefore, it is important synthesize adequate

control strategies capable to deal with the complexity of the different biological systems. The

optimal nonlinear control is an excellent option to determine control signals that satisfy the

physical constraints in the biological systems and at the same time minimize (or maximize)

some performance criterion. In the last decades have existed an important attention in

some biological systems, specifically in the glucose-insulin system due to it is used to treat

the type 1 diabetes disease. The principal aim to study this particular biological system is

to develop an adequate control system capable to determine the optimal insulin signal to

maintain the glucose in safe levels. It could represent an opportunity for type 1 diabetic

patients to recover a normal life. The importance of solving this problem is due to the

diabetes is a chronic disease that occurs when the pancreas is no longer able to make

insulin, or when the body cannot make good use of the insulin it produces. Insulin is a

hormone made by the pancreas, that acts like a key to let glucose from the food we eat

pass from the blood stream into the cells in the body to produce energy. All carbohydrate
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foods are broken down into glucose in the blood. Insulin helps glucose get into the cells.

Not being able to produce insulin or use it effectively leads to raised glucose levels in the

blood (known as hyperglycaemia). Over the long-term high glucose levels are associated

with damage to the body and failure of various organs and tissues. There are two major

types of diabetes: type 1 and type 2 [FMD].

Type 1 Diabetes Mellitus (T1DM) used to be called juvenile-onset diabetes. It

is usually caused by an auto-immune reaction where the bodys defence system attacks the

cells that produce insulin. The reason this occurs is not fully understood. People with

type 1 diabetes produce very little or no insulin. The disease may affect people of any age,

but usually develops in children or young adults. People with this form of diabetes need

injections of insulin every day in order to control the levels of glucose in their blood. If

people with type 1 diabetes do not have access to insulin, they will die. In Mexico the

2016 National Health and Nutrition Survey (ENSANUT Encuesta Nacional de Salud y

Nutrición) explored the status of several chronic diseases [FMD]. Among them, diabetes

cases in the Mexican population over 15 years old. It was found that diabetes prevalence

in the country went from 9.2% in 2012 to 9.4% in 2016, based on a previous diagnosis of

the disease. On this population:

• At least 10 million people are diagnosed with this disease.

• 542,000 children live with type 1 diabetes.

• 78,000 children develop type 1 diabetes each year.

The current insulin therapy for T1DM patients is based on discrete blood glucose

measurements and Multiple Daily Insulin Injections (MDII) or a Continuous Subcutaneous

Insulin Infusion (CSII). The use of sensors and CSII pumps systems in an open-loop com-

bination has resulted in better clinical outcomes than conventional MDII therapy [Klo05].

Therefore, automatic regulation of a patient’s blood glucose level requires a minimum of

three components, namely, a continuous blood glucose sensor, a controller that matches

blood glucose level with an appropriate insulin delivery rate, and an infusion pump to

deliver the insulin to the subject. Figure 1.1 shows a schematic closed-loop system that
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combines a glucose sensor, a control algorithm, and an insulin infusion device, which could

be called as artificial pancreas.

Figure 1.1: Schematic of glucose management with an artificial pancreas.

The principal control algorithm’s aim in the artificial pancreas is to determine the

needed amount of insulin to maintain blood glucose levels within the desired range, prevent-

ing hypoglycemia, minimizing the need for patient intervention in the therapy and giving

higher flexibility for patients in daily life (e.g. meal times and quantities, physical activ-

ity, stress, among others). Given the inability of current therapies to achieve satisfactory

glycemic control, the development of continuous glucose monitoring (CGM) sensors and the

increasing use of CSII pumps, the development of an optimal nonlinear control technique

is viewed as a promising solution in the automatic control of the glucose level in T1DM

problem, due to this technique determines the control signals that will cause a process

(glucose-insulin system) to satisfy the physical constrains and at the same time minimize or

maximize a chosen performance criterion (optimal insulin dosage) [Kir12]. Optimal control

laws benefit from adequate stability margins, and the fact that they minimize a meaningful

cost functional ensures that control effort is not wasted [FK96]. Indeed, optimal control

theory is introduced in [SJK12, FK08] as a synthesis tool to guarantee stability margins,

which are basic robustness properties that a control system must possess [SJK12, AM07].

Optimality is thus a discriminating measure to select a control law with desirable properties
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among a set of stabilizing control laws [FK96]. In [FK08, LG95, LG94], the robust optimal

control approach is presented to deal with disturbances and uncertainties in the system, and

in [GKM06, SM12, Ebi13, Roj13] for systems in the discrete-time framework, meanwhile

optimal techniques based on model predictive control are presented in [ZLC08, ZCC10].

The formulation of optimal control problem requires a mathematical description

or model (glucose-insulin system) of the process to be controlled (generally in state variable

form), a specification of the performance index, and a statement of boundary conditions

and the physical constraints on the states and/or controls. In this thesis the optimal con-

trol technique is developed considering that systems are usually uncertain and exposed to

disturbances, characteristics that the glucose-insulin system presents. The development of

an optimal control scheme capable of maintaining the glucose in normal levels over ex-

tended periods of time could improve the quality of life for diabetic patients. Therefore,

this thesis presents an adaptive identifier for modeling the glucose-insulin dynamics and

an optimal nonlinear control scheme capable to deal with disturbances and determine the

needed insulin dosage to maintain the blood glucose in the safety levels.

1.4 Research motivation

In Mexico the diabetes is one of the most serious health problems of our time.

In addition to its significant mortality rate (is the leading cause of death in the country),

the direct healthcare costs of diabetes are around 8,835 millions [IDF], and its related

complications range from 2.5% to 15% of annual healthcare budgets worldwide [WHO].

Therefore, from quality of life and economic perspectives, it is very important for diabetic

patients to regulate their blood glucose level tightly, keeping it within the acceptable range

of 70-180 mg/dL [ADA05], by using insulin therapy. Optimal nonlinear control techniques

allow to achieving the desired glycemic control in T1DM by delivering optimal doses of

insulin, resulting in less long-term medical complications, as well as avoiding hypoglycemic

and hyperglycemic incidents. The development of a closed-loop control algorithm has been

a continuously growing research topic for more than four decades. Different clinical and

simulation studies have demonstrated the feasibility of such an automated system, where
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several classical and advanced control algorithms have been tested as possible candidates

to close the control loop [Beq12, Beq05, CF07, EYCW09, TXH08, CDMS+09]. However, a

closed-loop system is not yet commercially available, and automatic blood glucose regulation

in T1DM is still a challenging problem in biomedical engineering and optimal controllers

development.

Glucose regulation in T1DM includes several sources of errors and uncertainties

that convert the design of a control algorithm into a very complex task. The principal prob-

lem to solve is the complexity of the insulin-glucose system which includes the presence of

nonlinearities, patient-specific parameters and disturbances (lifestyle, stress, cardiovascular

diseases, physical activities and special diets). An adequate adaptive identifier and optimal

nonlinear control algorithm must be capable of handling these physiological challenges while

still providing acceptable performance, increasing the quality lifestyle of the type 1 diabetic

patients.

1.5 Review of control algorithms applied in type 1 diabetes

A method for optimal continuous insulin therapy for diabetes patients has been

sought since the early 1970’s. The principal aim is to develop control algorithms for type

1 diabetic patients which automatically connect continuous glucose monitoring and insulin

injection, without patient intervention. Black-box model and grey-box model based control

strategies have been developed and their performances are evaluated, with a focus on their

feasibility of implementation in a real-life situation. In conclusion, a satisfactory control

strategy has not yet been proposed, mainly because most control algorithms rely on contin-

uous blood glucose measurement which is not yet available. Therefore, research on blood

glucose control needs to concentrate on patient modeling and control optimization under

realistic patient-oriented conditions.

At the moment, T1DM patients face the daily challenge of manually controlling

their blood glucose concentration as shown in Figure 1.2. After measuring their blood

glucose concentration e.g. with a test strip, they have to determine the appropriate size of

the insulin bolus and inject it subcutaneously with an insulin pen or pump.
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Figure 1.2: Schematic of current glucose management process: the patient appears once as
the metabolic system to be controlled and again as the controller itself.

Thus, in the resulting control loop, the patient appears twice: once as the glucose

metabolic system which has to be controlled and again as the controller itself (cognitive

system). In the decision-making process, external disturbances and internal system changes

have to be taken into account. Since it is difficult to take all effects into consideration, the

control method is often accompanied by hypo- or hyperglycemic events. On the one hand,

a low blood glucose concentration (<60 mg/dl) may induce an acute medical condition,

such as sudden loss of consciousness or even coma, which can be fatal. On the other hand,

a high blood glucose concentration (>180 mg/dl) may not be immediately life-threatening

but can lead to severe secondary disorders, such as diabetic nephropathy (kidney disease or

damage), neuropathy (general diseases or malfunctions of the nerves) and retinopathy (eye

disease).

To avoid patients having to determine each insulin dose manually, and to limit the

large variation in blood glucose concentration, an efficient control algorithm needs to be

developed. The basic idea is to calculate the required insulin dose using a control algorithm

based on continuous glucose measurements. For this, a mathematical patient model may

support the computation of an appropriate insulin injection. Then, the precise insulin dose

is automatically administered via a pump that continuously delivers insulin. This section

describes a review of different control algorithms developed with the aim to close the loop

for blood glucose control in type 1 diabetic patients.
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1.5.1 Control algorithms applied to T1DM treatment

Different techniques have been applied for diabetes closed-loop control. These

schemes range from the classical PID control scheme [DMRRC07, KBDMC09, Pal11, SPR04,

PDZ+09], the model predictive control (MPC) [KBDMC09, MFT+09, PBB+09], MPILC (A

combination of iterative learning control and MPC) [WDDI10]. In [BFC+09, EKRN+10,

CDMS+09] continuous subcutaneous insulin infusion is used with an approach based on

MPC; however there is no formal demonstration for stability [CDMS+09, PDP01, PD01].

All those control schemes are exhaustive reviewed in [CDMS+09, PDP01, PD01], where

advantages and disadvantages for each one of them are explained. In Table 1.1 are summa-

rized the most important control strategies, which are based on different internal models

that represent glucose-insulin dynamics in T1DM patients [Sor85, HCC+04a, LSW+13].

In Table 1.5.1 the control performance evaluation is summarized including blood glucose

Table 1.1: Overview of reviewed control algorithms classifying them using the input, output
and model type.

settling time and possible future control adaptations for performance improvement. In the

first column is presented the author, the publication year of the paper, and the applied

control strategy. The control algorithms are divided into black-box and grey-box model-
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Table 1.2: Overview of reviewed control algorithms classifying them using the control
evaluation.

based strategies. With regards to the evaluation of the controller, a distinction is made

between in silico and in vivo tests. Table 1.5.1 includes information whether or not the

control behavior was evaluated with respect to ingestion response, which is simply called

a meal, and to the quantity of glucose ingested. Most of the reviewed control algorithms

assume continuous intravenous (i.v.) glucose measurement. However, because no adequate

sensor device is available, the algorithms have not yet been applied in clinical studies for

closed-loop diabetic insulin therapy. For those algorithms addressing adequate sensor de-

vices, the step from in silico to in vivo application did not appear sufficiently safe for the

patient. Therefore, the performance of the controllers was generally evaluated by applica-

tion on simulation platforms only [KBDMC09, CWH04]. Some of the analysed algorithms

were tested as closed-loop systems in clinical trials [KBDMC09, CWH04].

The challenge of mimicking the natural closed-loop behavior with state-of-the-art

diabetes therapy devices are the large time delays induced by subcutaneous (s.c.) glucose

measurements and the effect of subcutaneously injected insulin on glucose metabolism.

Because the response of black-box model-based control algorithms to disturbances is slowed
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down, a rapid increase in blood glucose cannot be prevented in reasonable time by applying

a common PID control algorithm. This control strategy can only be used for initial closed-

loop trials. To stabilize blood glucose concentration at normoglycemia, advanced control

algorithms are preferred, such as MPC or feedforward-feedback control. These grey-box

model-based strategies include information on the patient’s glucose metabolism and, thus,

may prevent critical events, depending on the accuracy of the internal model.

Due to control simplification and reduced patient penetration, insulin is generally

used as the sole system input (cf. Table 1.1) and the counter hormone glucagon is ignored

as an actuating variable. As insulin is responsible for a decrease in glucose concentration,

the controller has to be designed with a slow dynamic behavior in order to avoid hypo-

glycemic events. This requirement is valid for single-input control algorithm, but is even

more important for black-box model-based control strategies than for gray-box model-based

ones. Especially the internal patient models in the latter control strategy are modified by

supplementary external information such as the patient’s body weight. Impending glucose

ingestion must be announced in order to adapt the calculations of insulin dose to reduce

hyperglycemia and impede hypoglycemic events.

Table 1.1 shows that almost all grey-box model-based control strategies require

supplementary patient information (manual input), which increases the manual effort but

improves the control performance. In contrast, the black-box model-based control strategies

do not need extra patient information. Several external and internal disturbances change

the behavior of the diabetic patient:

• Glucose ingestion and physical activity have a considerable impact on the patient’s

blood glucose concentration. According to patient models summarized in Table 1.1,

glucose uptake through the gastro-intestinal tract is assumed to be well understood.

In contrast, the influence of physical activity on glucose metabolism is not yet fully

elucidated and is generally ignored [DB02, Bre08, DMBC09, Nag06].

• Diurnal variation of insulin sensitivity of the glucose-consuming cells affects the es-

sential amount of plasma insulin. This behavior depends, for example, on eating and

sleeping times [DMRC07].
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Thus, a patient’s specific insulin demand depends on external disturbances and

intracorporeal metabolic changes, and differs between individuals. Some of the reviewed

control algorithms are able to adapt to the individual patient and minor system changes

as indicated with a check in Table 1.1. Especially black-box model-based control strategies

have the advantage that they do not require specific patient information for satisfactory

control performance. Grey-box model-based algorithms are able to control blood glucose

concentration in a tighter way, by adapting the internal model to the patient’s individual

behavior with the information provided.

Their performance is based on specifying the time and size of the meal. Black-

box control algorithms have a simple structure, do not require detailed information about

the patient’s internal behavior, and are easily designed. However, their performance is not

optimal due to large time delays, and system changes such as alterations in insulin sensitivity

are typically not accounted. In contrast, as model-based control algorithms predict the plant

behavior they may prevent critical events from occurring. As their response depends on the

accuracy of the internal model, control performance degradation is caused by model-induced

system simplification and neglected adaptation to the individuals patient’s metabolism.

In a more specific comparative, in [PJvzMB98] is employed the neural network

approach to predict the time course of the blood glucose level. The data used for predict-

ing blood glucose were measured only in one diabetic patient over almost 6 months and

consisted of the times and dosages of insulin injections, the times and amounts of food

intake, and the times and durations of exercise. Blood glucose levels were measured only a

few times a day. This model is used in [EJ05] where the modeling and simulation of type

1 diabetes mellitus is based on an artificial neural network approach. The methodology

builds upon an existing rich database on the progression of type 1 diabetes for a group

of diabetic patients. The model was found to perform well at estimating the next glucose

level over time without control. A neural controller that mimics the pancreas secretion of

insulin into the body was also developed. This controller is of the two term type: one stage

is responsible for short-term and the other for mid-term insulin delivery. In [MRDM+09]

a feedback control of glucose concentration in type 1 diabetic patients using subcutaneous

insulin delivery and subcutaneous continuous glucose monitoring is considered. A recently
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developed in silico model of glucose metabolism is employed to generate virtual patients on

which control algorithms can be validated against interindividual variability. An in silico

trial consisting of 100 patients is used to assess the performances of a linear output feed-

back and a nonlinear state-feedback model predictive controller, designed on the basis of

the in silico model. Finally, in [LAS+12] an inverse optimal neural control for trajectory

tracking is applied to glycemic control of type 1 diabetes mellitus patients. The proposed

control law calculates the adequate insulin delivery rate in order to prevent hyperglycemia

and hypoglycemia levels in T1DM patients. Two models are used: (1) a nonlinear com-

partmental model in order to obtain type 1 diabetes mellitus virtual patient behavior, and

(2) a neural model obtained from an on-line neural identifier, which uses a recurrent neural

network, trained with the extended Kalman filter (EKF); the last one allows the applica-

bility of an inverse optimal neural controller. The proposed algorithm is tuned to track a

desired trajectory; this trajectory reproduces the glucose absorption of a healthy person.

This last comparative present different techniques based on artificial intelligence, neural

networks, model predictive control and inverse optimal neural control, all of them with the

aim to obtain an adequate blood glucose regulation in type 1 diabetic patients based on

the development of models to represent the dynamics of the glucose-insulin system in type

1 diabetes, and the use of different mathematical models proposed by Sorensen [Sor85] and

Hovorka [HCE+08].

However, synthesizing a control law for these models is complicated due to the com-

plexity associated with measurements, and uncertainty of the related parameters [HCC+04a],

because of that it is necessary to develop an adaptive identifier scheme capable to represent

the glucose-insulin dynamics in T1DM patients, dealing with the complexity of the human

system and the internal and external disturbances. Once developed an adequate adaptive

identifier, the glucose-insulin control problem can be formulated within the framework of

optimal control theory [VOTRM15, AP+11, KKGB11, QFGF11], which allows an optimal

blood glucose regulation optimizing the resources under certain physical specifications.

A previous work related to the topic of this thesis is presented in [Men17], where

a reduced-order adaptive identifier and optimal control scheme are applied to regulate the

glucose level in type 1 diabetic patients. The adaptation of the identifier parameters is
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based on a recursive least squares algorithm. Then, a robust optimal controller design is

presented which supports the representation of state dependent coefficients, the proposed

optimal controller is applied to the proposed identifier model. The validation of the identifier

and the control is done through type 1 diabetes mellitus software (T1DMS) simulator and

simulations in Wolfram Mathematica R© and MATLAB R©.

Some important differences between the previous work and this thesis are: a)

theoretical contributions (formal proofs) about the adaptive identifier and optimal control

convergence are presented in this thesis, b) continuous and discontinuous optimal control

signals are developed to be used in the different insulin pumps used in the T1DM treatments,

c) the validation of the proposed adaptive identifier, which is based on the Cobelli model,

and the robust optimal tracking nonlinear control scheme is presented using the T1DMS

software. It is important to highlight that the T1DMS software is based on the Cobelli

model and is approved by the FDA in USA to validate control techniques focused in the

type 1 diabetes treatment.

1.6 Hypothesis

The design of an adaptive identification scheme and a robust optimal control

scheme for uncertain and disturbed nonlinear systems, can provide a solution to glucose

regulation in type 1 diabetic patients. An adequate adaptive identification of the glucose-

insulin behavior allows to deal with the different disturbances that affect the glucose dy-

namics in a type 1 diabetic patient (factors as eating and healthy habits, age, weight, among

others), due to allows the minimization of the identification error by the use of a RLSA to

adapt on-line the parameters in the adaptive identifier, achieving an adequate identification

of the dynamical glucose behavior in the type 1 diabetic patients. The optimal tracking

nonlinear control ensures an optimal regulation into the desired reference level by the min-

imization of a cost functional that provides the needed dose of insulin. This contribution

allows people with type 1 diabetes to live a life as close as possible to that of a healthy

person.
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1.7 Research objectives

The main objective of the thesis is to develop an adaptive identification scheme

applied to uncertain and disturbed nonlinear systems, and a robust optimal nonlinear con-

trol scheme applied to the developed adaptive identifier models, whose principal application

is the glucose regulation in type 1 diabetic patients.

1.7.1 Specific objectives

• To develop an adaptive identifier scheme to model uncertain and disturbed nonlinear

system dynamics by the use of an identification algorithm based on a recursive least

squares to adapt the identifier parameters.

• To develop a robust optimal nonlinear control scheme with the aim to be applied in

the developed adaptive identifier models, capable to reject disturbances and achieving

a trajectory tracking of the system output toward the desired reference.

• To apply the adaptive identification scheme to nonlinear mathematical models that

represent the physiological glucose-insulin dynamics in type 1 virtual diabetic patients.

• To apply the robust optimal tracking nonlinear control scheme in the developed adap-

tive identifier models with the aim to determine the continuous optimal amount of

insulin needed to regulate the blood glucose in type 1 diabetic virtual patients.

• To develop discontinuous (periodic) control signals by the use of a discretization strat-

egy applied to the continuous control signal obtained by the robust optimal control

scheme.

• To validate the adaptive identifier and control scheme using (T1DMS) software which

is accepted by the food and drug administration (FDA) as a substitute for pre-clinical

studies.

1.8 Thesis contributions

The specific contributions of the proposed research are:
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• The development of an adaptive identification scheme used to model unknown and

disturbed nonlinear systems, which adapts its parameters on-line using a recursive

least squares algorithm. The convergence of the adaptive identifier is presented in a

formal proof.

• A robust optimal tracking control scheme for SDCF nonlinear systems capable to

reject disturbances that affect the system. A formal proof of the robust optimal

tracking nonlinear control scheme is presented.

• The developed robust optimal tracking nonlinear control scheme, which is applied to

the different proposed adaptive identifier models, is capable to determine the required

insulin dose to regulate the blood glucose in type 1 diabetic patients toward the desired

reference (constant or variable).

• An optimal nonlinear control scheme capable to be used in continuous and discontin-

uous insulin pumps.

• The adaptive identifier and optimal nonlinear control scheme validation by using the

T1DMS used to simulate real-life conditions in type 1 diabetic patients.

1.9 Thesis outline

The reminder of this thesis is organized into 5 Chapters. A brief overview of each

one of these Chapters is given below:

Chapter 2 describes the identification background, which is the basis to develop

the adaptive identifier. A formal proof is presented to demonstrate its convergence. The

adaptive identifier model is proposed with the aim to identify disturbed and uncertain

nonlinear system dynamics. Finally, an application example is showed with some simulation

results.

Chapter 3 presents the robust optimal tracking nonlinear control development,

a formal to demonstrate its convergence and an example of the optimal control scheme

application. The control scheme shows capabilities to reject disturbances and achieve a

trajectory tracking of the system output toward the desired reference. The control scheme
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is applied to the adaptive identifier proposed in Chapter 2. The results are shown at the

end of this Chapter.

Chapter 4 details the modeling and control of the glucose-insulin system proposed

by Cobelli, which is accepted by the FDA to simulate the glucose-insulin dynamics in type

1 diabetic patients. The adaptive identifier and the optimal nonlinear control scheme are

applied under certain specifications such as: different disturbances, different virtual patients,

different regulation levels(constant and variables) and control signals to continuous and

discontinuous insulin pumps. A reduced-order identifier is presented to demonstrate the

effectiveness of the proposed adaptive identification scheme. The adaptive identification

and the optimal nonlinear control schemes are validated using the T1DMS software, which

is accepted by FDA.

Chapter 5 provides general conclusions on the work done, and summarizes the

major scientific contributions of the thesis. The chapter ends by highlighting the directions

of future work.

The thesis structure is summarized in Figure 1.3.

Chapter2
Disturbed and uncertain

nonlinear system

Chapter2
Adaptive Identification

Chapter3
Robust optimal

tracking nonlinear control

Chapter4
Application to the type
1 diabetes treatment

Optimalcontrolversatility
Continuous and

discontinuous control signals

Validation
Adaptive identification and

optimal control applied to the T1DMS

Type1diabetestreatment
Adaptive identification and

optimal control applied
to the Cobelli model

Figure 1.3: Thesis outline.





Chapter 2

Adaptive Identification

System identification is an important issue in many areas. It deals with character-

izing an unknown system using measurements of the system’s input and output. Although

the linear system model has been widely used in system theory for many years, many real-life

systems are actually nonlinear and it is important to consider nonlinear system identifica-

tion. Adaptive identification algorithms are particularly interesting being considered in the

area of nonlinear system identification. A major problem in the identification of nonlinear

system is to deal with disturbances. Adaptive identification is used to model nonlinear

dynamics adapting on-line the parameters in an identifier structure. This chapter briefly

describes useful results on adaptive identification of nonlinear systems, Lyapunov theory,

required in future chapters, for the optimal control problem solution. Section 2.2 gives

the mathematical preliminaries about nonlinear systems and Lyapunov stability. Section

2.3 presents the adaptive identifier and its formal convergence proof. Section 2.4 shows an

application example and its results. Finally, Section 2.5 presents the chapter summary.

2.1 Mathematical preliminaries

This chapter presents important mathematical preliminaries, required in future

chapters.

23
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2.1.1 Nonlinear autonomous systems

Consider the autonomous nonlinear system

ẋ = f(x) (2.1)

where f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into Rn. Suppose

x̄ ∈ D is an equilibrium point of (2.1); that is

f(x̄) = 0.

The principal aim is to characterize and study stability of x̄. For convenience, all

definitions and theorems are stated for the case where the equilibrium point is at the origin

of Rn; that is, x̄ = 0. There is no loss of generality in doing so because any equilibrium

point can be shifted to the origin via a change of variables. Suppose x̄ 6= 0, and consider

the change of variables y = x− x̄. The derivative of y is given by

ẏ = ẋ = f(x) = f(y − x̄) = g(y), where g(0) = 0.

In the new variable y, the system has equilibrium at the origin. Therefore, without loss of

generality, we shall always assume that f(x) satisfies f(0) = 0, and study stability at the

origin x = 0.

Definition 2.1.1. [GHLZ13]. The equilibrium point x = 0 of (2.1) is

• stable if, for each ε > 0, there is δ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀ t ≥ 0

• unstable if not stable

• asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0.
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2.1.2 Lyapunov stability

Stability theory plays a central role in systems theory and engineering. There are

different kinds of stability problems that arise in the study of dynamical systems. Stability

of equilibrium points is usually characterized in the sense of Lyapunov, a Russian mathe-

matician and engineer who laid the foundation of the theory which now carries his name.

An equilibrium point is stable if all solutions starting at nearby points stay nearby; other-

wise, it is unstable. It is asymptotically stable if all solutions starting at nearby points not

only stay nearby, but also tend to the equilibrium point as time approaches infinity.

Lyapunov stability theorems give sufficient conditions for stability and asymptotic

stability, among other stability proofs. In 1892, Lyapunov showed that energy-based func-

tions or other mathematical functions could be used to determine stability of an equilibrium

point [Kha96a]. Let V (x) : D → R be a continuously differentiable function defined in a

domain D ⊂ Rn that contains the origin. V is positive definite if V (x) > 0, ∀x ∈ D , if

V (x) < 0, ∀x ∈ D is negative definite, if V (x) ≥ 0, ∀x ∈ D is positive semidefinite, and

if V (x) ≤ 0, ∀x ∈ D is negative semidefinite. The derivative of V along the trajectories of

(2.1), denoted by V̇ (x), is given by

V̇ (x) =
n∑
i=1

∂V

∂xi
ẋi =

n∑
i=1

∂V

∂xi
fi(x).

The derivative of V along the trajectories of a system is dependent on the system’s equation.

Hence, V̇ (x) will be different for different systems. If φ(t, x) is the solution of (2.1) that

starts at initial state x0 at time t = 0, then

V̇ (x) =
d

dt
V (φ(t, x))

∣∣∣∣
t=0

.

Therefore, if V̇ (x) is negative, V will decrease along the solution of (2.1). The Lyapunov’s

stability theorem is presented as follows.

Theorem 2.1.1. [Kha96a]. Let x = 0 be an equilibrium point for (2.1) and D ⊂ Rn be a

domain containing x = 0. Let V : D → R be a continuously differentiable function, such

that

V (0) = 0 and V (x) > 0 in D − {0} (2.2)
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and

V̇ (x) ≤ 0 in D − {0}. (2.3)

Then, x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0} (2.4)

then x = 0 is asymptotically stable.

In summary, the Lyapunov’s theorem establishes that: a) if V (x, t) is locally

positive definite and V̇ (x, t) ≤ 0 locally in x and for all t, then the origin of the system is

locally stable, b) if V (x, t) is locally positive definite and decrescent, and V̇ (x, t) ≤ 0 locally

in x and for all t, then the origin of the system is uniformly locally stable, c) if V (x, t)

is locally positive definite and decrescent, and −V̇ (x, t) ≤ 0 is locally positive definite,

then the origin of the system is uniformly locally asymptotically stable, and d) if V (x, t)

is positive definite and decrescent, and −V̇ (x, t) is positive definite, then the origin of the

system is globally uniformly asymptotically stable.

A class of scalar functions V (x) for which sign definiteness can be easily checked

is the class of functions of the quadratic form

V (x) = xTPx =
n∑
i=1

n∑
j=1

pijxixj

where P is a real symmetric matrix (P = P T ). In this case, V (x) is positive definite (positive

semidefinite) if and only if all the eigenvalues of P are positive (nonnegative), which is true

if and only if all the leading principal minors of P are positive (all principal minors1 of P

are nonnegative). If V (x) = xTPx is positive definite (positive semidefinite), we say that

the matrix P is positive definite (positive semidefinite) and write P > 0 (P ≥ 0).

1A minor of a matrix A is the determinant of some smaller square matrix, cut down from A by removing
one or more of its rows or columns. Minors obtained by removing just one row and one column from square
matrices (first minors) are required for calculating matrix cofactors, which in turn are useful for computing
both the determinant and inverse of square matrices.
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2.1.3 Stability definitions

Consider the disturbed and uncertain nonlinear system, whose dynamical be-

haviour is given by

Ẋ = F(X , u, t) + Γ̄ (2.5)

Y = CX

where X ∈ Rn is the system state, u ∈ Rm is the system input, Y ∈ Rp is the system

output; F and C are unknown (or partially known) smooth vector fields of appropriate

dimensions. Γ̄ is an unknown and bounded disturbance term representing uncertainties

and/or unmodelled dynamics. Therefore, an adaptive polynomial identifier is proposed to

obtain the dynamical behaviour of the system (2.5), which is assumed to be observable such

that the identification process can be carried out.

Definition 2.1.2. [Kha96b]. The system (2.5) is said to be forced or to have input. In

contrast, the system described by an equation without explicit presence of an input u, that

is (2.1), is said to be unforced. It can be obtained after selecting the input u as a feedback

function of the state

u = µ(x). (2.6)

Such substitution eliminates u:

ẋ = f(x, µ(x), t) + Γ̄ (2.7)

and yields an unforced system (2.7).

Definition 2.1.3. [GHLZ13]. The solution of (2.5) and (2.7) is semiglobally uniformly

ultimately bounded (SGUUB), if for any Ω, a compact subset of Rn, and all x(t0) = x0 ∈ Ω,

there exist a ε > 0 and a time T (ε, x) such that ||x(t)|| < ε for all t > t0 + T .

In other words, the solution of (2.5) is said to be SGUUB if, for any a priori given

bounded set Ω and any a priori given (arbitrarily small) set Ω0, which contains (0,0) as

an interior point, there exists a control (2.6) such that every trajectory of the closed loop

system starting from Ω enters the set Ω0 = {x(t)|||x(t)|| < ε} in a finite time and remains

in it thereafter.
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Lemma 2.1.2. [GW02]. Suppose that there exists a C1 continuous and positive definite

Lyapunov function V (x) satisfying

γ1(||x||) ≤ V (x) ≤ γ2(||x||), (2.8)

such that

V̇ (x) ≤ −c1V (x) + c2 (2.9)

where γ1, γ2 : Rn are class K∞ functions2 and c1, c2 are positive constants, then the

solution x is SGUUB.

In nonlinear systems, observability is an important characteristic when the system

modeling is required. A system is said to be observable if, for any possible sequence of

state and control vectors, the current state can be determined in finite time using only

the outputs, i.e., one can determine the behavior of the entire system from the system’s

outputs. A system is not observable, if the current values of some of its state variables

cannot be determined through output sensors. This implies that their value is unknown to

the controller. A formal observability definition is presented as follows.

Definition 2.1.4. [HS72].The system described by (2.5) is said to be completely observable

in Ω0 on the time interval [t0, t1] if there exists a one-to-one correspondence between the

set Ω0 of initial states and the set of trajectories of the observed output y(t) for t ∈ [t0, t1].

Now if the observability map H is one-to-one from Ω0 to H(Ω0), then by the data Z, the

initial state x(t0) of the system can be uniquely determined. Hence, according to the above

definition of observability, the system is completely observable.

The nonlinear map is represented by Z = H(x(t0)) and H is the observability

mapping of the system. The univalence of map H from Ω0 to H(Ω0) is only a sufficient

condition of observability for nonlinear continuous-time systems. The reason is that the

vector Z shown before does not represent the whole trajectory y(t), t ∈ [t0, t1].

2A continuous function α : [0, a)→ [0,∞) is said to belong to class K∞ if it belongs to class K, it is s.t.
a =∞ and it is s.t. limr→∞ α(r) =∞
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2.2 Adaptive identifier

In order to identify a supposed real system (2.5), an adaptive identifier model is

proposed as

ẋ = f(x)θ +Bu+ Γ(θ) (2.10)

y = C x

where x ∈ Rn is the state vector, u ∈ Rm is the control input, y ∈ Rp is the system output,

C is the output matrix and θ is the identifier parameters vector, which is adapted on-line

to ensure that the identifier converges toward the system (2.5). Γ(θ) represents possible

additional (constant or slowly time-varying) parameters of the identifier. In this sense,

different polynomial basis for f(x)θ can be used to approximate the vector field F in (2.5),

such as Chebyshev [MS87], Legendre polynomials [Fun92], etc. In addition to this, there

are different nonlinear systems with a natural polynomial structure [CDM96a, BLHG11,

BEG+03, GS97]. It is worth mentioning that function f(x) is proposed to be linear with

respect to the entries of vector θ. In the identification process, the parameters θ are adapted

on-line using an adaptation algorithm based on a recursive least-squares (RLS) algorithm.

2.2.1 Convergence analysis of the adaptive identifier using RLS

An adequate approximation of the original system is obtained if some characteris-

tics as essential dynamics are preserved and if the error between the adaptive identifier and

the original system is minimized. To achieve that, an adaptive identifier (2.10) is proposed

to approximate an uncertain and disturbed nonlinear system (2.5). The identifier parame-

ters are adapted using a RLSA, which minimizes the identification error. The identification

process is shown in Figure 2.1.

For analysis purpose, it is assumed that there exists an ideal unknown parameters

vector θ∗ in the adaptive identifier (2.10), whose dynamics can be described by

θ̇∗ = 0. (2.11)
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Ẋ = F(X , u, t) + Γ̄
Y = CX

ẋ = f(x)θ +Bu
y = C x

+RLSA

u(t) Y(t)

y(t)

−

ε(t)

θ

Figure 2.1: Convergence between the proposed adaptive identifier and the real nonlinear
system using RLS.

Hence, the dynamics behaviour of system (2.5) without modelling error, is given as

Ẋ ∗i = −aiX ∗i + θ∗Ti w∗(X ∗), X ∗i (0) = X ∗0i (2.12)

Y∗i = CX ∗i (2.13)

where X ∗i is the ideal state vector, w∗ is an ideal state vector of optimal polynomial functions,

ai are constant parameters and Yi is the output system.

There exist different adaptive algorithms to obtain the parameter values that ap-

proximate the identifier dynamics into the dynamics of the nonlinear system. In a compara-

tive study of adaptive algorithms [IA15], Islam concludes that the RLS algorithm has faster

convergence rate than LMS and NLMS algorithms, with better robustness to noises, un-

predictable situations, and better tracking capability. Therefore, for the adaptation on-line

of the parameters θ in the proposed identifier model (2.10), an RLS algorithm is applied,

which provides an efficient computational technique, which minimizes the identification

error [BKM+86, Hay04], given as

ε = x−X . (2.14)

For the use of the RLS algorithm in the identification process, it is assumed that

(2.11) is affected by zero mean white Gaussian noises of spectral intensities Ψ ∈ R2n×2n

and g ∈ R, respectively.



2.2. Adaptive identifier 31

Then, the RLS algorithm is presented as follows

θ̇ = −gΦwCε (2.15)

Φ̇ = Ψ− gΦwwTΦ, Ψ, g > 0

where the identification error depends on the difference between real system output and

identifier output Cε [SB11]. Assuming that w = fi(x) represents the i-th row of f(x) in the

adaptive identifier (2.10) which corresponds to the base structure used to approximate the

dynamics in (2.5), Ψ and g are design parameters used in the identifier process and their

values guarantee the convergence of the identification error. Φ is a covariance matrix used

as adaptation gain in the θ updating law. Φ(0) is a symmetric positive definite matrix and

its initial condition is Φ(0) > 0, whereas the initial condition for θ is arbitrary. Φ(0) is

usually chosen to reflect the confidence in the initial estimate of θ(0). In general selecting a

large value for Φ(0) is recommended. It is worth remarking that the adaptation law (2.15)

is implemented for each system state variable.

The following lemma, presented in [RC12], is useful in the adaptive identifier

convergence proof presented in this work.

Lemma 2.2.1. System (2.12) can be presented as

ξ̇i = −aiξi + w∗, ξi(0) = 0 (2.16)

X ∗i = θ∗Ti ξi + e−aitX ∗0i . (2.17)

Proof. Solving (2.12), we obtain

X ∗i = e−aitX 0
i +

t∫
t0

e−ai(t−τ)θ∗Ti w∗(X (τ))dτ. (2.18)

Then solving (2.16), results in

ξi =

t∫
t0

e−ai(t−τ)w∗(X (τ))dτ (2.19)

and replacing (2.19) in (2.17), we obtain

X ∗i = e−aitX 0
i +

t∫
t0

e−ai(t−τ)θ∗Ti w∗(X (τ))dτ. (2.20)
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Therefore, the solution of (2.12), as developed in (2.18), is equal to the right hand side of

(2.17). This concludes the proof.

Hence, one of the main contributions of this thesis related to the identifier conver-

gence is established as the following theorem.

Theorem 2.2.2. Consider that system (2.5) is observable. Then, the proposed adaptive

identifier (2.10), whose parameters θ are adapted on-line by the adaptive law (2.15), identi-

fies the unknown and disturbed nonlinear system (2.5), and guarantee that the identification

error (2.14) is SGUUB.

Proof. Using Lemma 2.2.1, the dynamical system described by (2.5), is represented by its

ideal identifier as

X ∗i = θ∗Ti ξi + eiCI i = 1, 2, ..., n, (2.21)

where eiCI = e−aitX ∗0i is an exponentially decaying term, which appears if the system is

in a nonzero initial state. By replacing the unknown parameters vector θ∗i in (2.21) by its

estimate θi, the following identification model is proposed

xi = θTi ξi − eiID i = 1, 2, ..., n, (2.22)

where eiID represents a bounded approximation error. Then, the identification error (2.14)

becomes

εi = θTi ξi − θ∗Ti ξi − eiCI − eiID

= φTi ξi − eiCI − eiID, φi = θTi − θ∗Ti (2.23)

where φi is the parameter estimation error. Then, consider the Lyapunov candidate function

V =
1
2

n∑
i=1

(
φTi Φiφi + εTi εi +

∫ ∞
t0

e2iCI(τ)dτ
)
. (2.24)

Considering (2.15) and (2.23), the time derivative of V in (2.24) is expressed as

V̇ =
1
2

n∑
i=1

(
φ̇Ti Φiφi + φTi Φ̇iφi + φTi Φiφ̇i + ε̇Ti εi + εTi ε̇i − e2iCI

)
=

1
2

n∑
i=1

(
[−giΦiξiCεi]TΦiφi + φTi [Ψ− giΦiξiξ

T
i Φi]φi + φTi Φi[−giΦiξiCεi]
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+[−giξTi ΦiξiCεi − aiφTi ξi + φTi w − ėiCI − ėiID]T εi

+εTi [−giξTi ΦiξiCεi − aiφTi ξi + φTi w − ėiCI − ėiID]− e2iCI
)

=
1
2

n∑
i=1

(
− 2giφTi ΦT

i ΦiξiCεi − φTi [giΦiξiξ
T
i Φi −Ψ]φi − 2giεTi ξ

T
i ΦiξiCεi − 2aiεTi φ

T
i ξi

+2εTi φ
T
i w − 2εTi [ėiCI + ėiID]− e2iCI

)
=

n∑
i=1

(
− 1

2
φTi [giΦiξiξ

T
i Φi −Ψ]φi − εTi

[
giξ

T
i ΦiξiC

]
εi − εTi [giCT ξTi ΦT

i Φi − wT + aiξ
T
i ]φi

−εTi [ėiCI + ėiID]− 1
2
e2iCI

)
≤ −1

2
||φi||2||giΦiξiξ

T
i Φi −Ψ|| − ||εi||2||giξTi ΦiξiC|| − ||εi|| ||giCT ξTi ΦT

i Φi − wT + aiξ
T
i || ||φi||

−||εi|| ||ėiCI + ėiID|| −
1
2
||eiCI ||2

≤ −1
2
||φi||2||giΦiξiξ

T
i Φi −Ψ|| − ||εi||

(
||giξTi ΦiξiC|| ||εi||+ ||giCT ξTi ΦT

i Φi|| ||φi||

−||wT || ||φi||+ ||aiξTi || ||φi||+ ||ėiCI + ėiID||
)
− 1

2
||eiCI ||2

the term ||giΦiξiξ
T
i Φi − Ψ|| is > 0 due to in (2.15), the RLSA established that Ψ > 0

and g > 0. Generally, they are selected with large values, which ensures that the term be

positive. Then, we obtain that V̇ < 0 for

||εi|| ≥
||wT || ||φi|| − ||giCT ξTi ΦT

i Φi|| ||φi|| − ||aiξTi || ||φi|| − ||ėiCI + ėiID||
||giξTi ΦiξiC||

. (2.25)

Therefore, the time derivative of V is negative definite when the condition (2.25)

is fulfilled; then any trajectory moves in the direction of decreasing V . Consequently, the

function V will continue decreasing until the trajectory enters to a small region fo which

(2.25) is not fulfilled and stays there for all future time. Then, it is concluded that the

identification error (2.14) is SGUUB.

2.3 Adaptive identification applied to a nonlinear system

This subsection presents an example of the adaptive identification scheme appli-

cation. The principal aim is to demonstrate its effectiveness modeling the dynamics in a

nonlinear system. The nonlinear system used in this application, which for identification

purposes is considered to be unknown, is described as follows.
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2.3.1 Bergman minimal model

The Bergman Minimal Model (BeMM) is composed of two separate parts: one

describing the dynamics of the glucose uptake after the external stimulus, regarding the

insulin concentration as a known forcing function; the other describing the dynamics of the

pancreatic insulin release in response to the glucose stimulus, with the glucose concentration

regarded as a known forcing function. This model is only used to simulate the glucose-insulin

dynamics, which are described as [BIBC79a]

Ġ = −p1G−XG+ p1Gb +D (2.26)

Ẋ = −p2X + p3(I − Ib) (2.27)

İ = −η(I − Ib) + γ(G− h)t (2.28)

where G, X and I are plasma glucose concentration, the insulin influence on glucose concen-

tration reduction, and insulin concentration in plasma, respectively. Insulin-independent

glucose-utilization rate is represented by p1, p2 is the rate of decrease of the tissue glu-

cose uptake ability, p3 is the insulin-dependent increase of the glucose uptake ability and

D = DG AG t e−t/TmaxI

VG T 2
maxG

is the disturbance caused by the meal [HCC+04b], where DG is

the meal carbohydrate load, AG is the carbohydrate bioavailability, TmaxI is the time-to-

maximum insulin absorption, TmaxG is the time-of-maximum appearance rate of glucose

in the accessible glucose compartment and VG is the glucose distribution space. The term

γ(G − h)t represents the pancreatic insulin secretion after a meal intake at t = 0. The

threshold value of glucose above which the pancreatic β-cells release insulin is represented

by h and γ is the rate of the pancreatic β-cells’ release of insulin after the glucose injection.

2.3.2 Adaptive identification for the BeMM

Since system (2.26)–(2.28) has a polynomial structure, we use such feature to

directly synthesize the adaptable identifier. It is assumed that the actual system parameters

are unknown and that the measurements of the blood glucose level (G) are available. Then,
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the adaptive identifier is proposed as

ẋ1 = θ1x1 − x2x1 + θ2 (2.29)

ẋ2 = θ3x2 + θ4x3 + θ5 (2.30)

ẋ3 = θ6x3 + θ7 (2.31)

where the state vector x = [x1 x2 x3]T identifies to the actual state vector X = [G X I]T .

System (2.29)–(2.31) can be presented in a SDCF as in (3.16)–(3.17), with A(x, θ) =
θ1 −x1 0

0 θ2 θ4

0 0 θ6

, B =
[

0, 0, 1
]T

, C =
[

1 0 0
]
, and Γ(θ) =

[
θ2, θ5, θ7

]T
,

where

θ = [θ1 θ2 θ3 θ4 θ5 θ6 θ7]T are the parameters to be identified by the RLS algorithm. Based

on the assumption that only the glucose measurement is available, the identification error

used to identify all the parameters θ in (2.29)–(2.31) is ε = x1 −G. It is worth remarking

that the system (2.26)–(2.28) is an uncertain and disturbed nonlinear one, representing the

glucose-insulin biological behavior, which depends on various factors as eating and healthy

habits, age, weight, etc. Therefore, it is convenient to develop a robust modeling scheme,

as the presented in (2.29)–(2.31), which is adequately adapted to the actual system changes

and admits an SDCF representation, which a posteriori will be used for control purposes.

The effectiveness of the proposed adaptive identifier strategy is illustrated via simulation.

For the adaptive identification process, the significant terms of the basis w in (2.15) are

given as w1 = [x2 1]T , w2 = [x3 x4 1]T and w3 = [x4 1]T , which allow an efficient adaptive

identification process. The identifier parameters to ensure the identification convergence

are Ψ1 = diag{0.1, 1000}, Ψ2 = diag{0.0001, 0.0001, 0.0001}, Ψ3 = diag{1, 10000} and

g1 = 10, g2 = 900000 and g3 = 10000. The parameters to simulate the glucose-insulin

dynamics are presented in Table 2.1 [KS08].

Figure 2.2 shows the adaptive identification for the basal glucose response, corre-

sponding to the BeMM variable G (continuous red line), which is identified by the adaptive

identifier variable x1 (dashed blue line).
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Table 2.1: BeMM parameters used to simulate glucose-insulin dynamics.

Parameter Value Units
Gb 105 mg/dl
Ib 85 µU/ml
G(0) 126 mg/dl
I(0) 102 µU/ml
X(0) 0 1/min
p1 0.1076 1/min
p2 0.0192 1/min
p3 5.1×10−6 ml/µUmin2

η 0.2867 1/min
TmaxG 7 min
TmaxI 16 min
DG 130 mg
VG 12.85 dl
AG 0.79 Adimensional
γ 0 µU/ml min−2(mg/dl)−1

h 80 mg/dl
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Figure 2.2: Adaptive identification of the glucose signal in the BeMM.
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In Figure 2.2 can be appreciated oscillations at the beginning of the simulation

due to the minimization of the identification error by the use of the RLSA to adapt on-

line the identifier parameters and achieve an adequate identification of the BeMM glucose

variable behaviour. Figure 2.3 shows the identification error Ge between the BeMM variable

(G) and its corresponding identifier variable x1. At the beginning of the simulation can be

appreciated that the error is high, this is due to the oscillations presented in the identification

process. It is important to highlight that the convergence speed can be improved by tuning

the parameters Ψ and g. Their values were chosen to demonstrate a slow convergence

process between G and x1. In addition, it can be seen that the identification error is

minimized (tending to zero).
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Figure 2.3: Glucose identification error.

Figure 2.4 shows the identification of the effect of active insulin response, corre-

sponding to the minimal model X (continuous red line), by means of the proposed identifier

x2 (dashed blue line). The adaptive identification is carried out for each variable of the pro-

posed identifier. In the case of the variable x2, values of Ψ and g are selected to obtain a

faster convergence and less oscillations.



38 Chapter 2: Adaptive Identification

0 1 2 3 4 5
0.0000

0.0005

0.0010

0.0015

0.0020

Time !hrs"Ef
fe
ct

of
Ac

tiv
eI

ns
ul
in
!min!1 "

x2

X

Figure 2.4: Adaptive identification of the effect of active insulin signal in the BeMM.

Figure 2.5 shows the identification error Xe between the BeMM variable X and

its corresponding identifier variable x2. In this case the parameters Ψ and g were chosen to

demonstrate a faster convergence between both variables. Due to the selected values of the

parameters Ψ and g in the identification process, a faster convergence can be appreciated.
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Figure 2.5: Effect of active insulin identification error.
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Figure 2.6 shows the adaptive identification of the basal insulin response, corre-

sponding to the BeMM variable I (continuous red line), by means of the proposed identifier

x3 (dashed blue line). At the beginning of the simulation, small oscillations can be appre-

ciated due to the selected values of the parameters Ψ and g in the identification process.
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Figure 2.6: Adaptive identification of the insulin signal in the BeMM.

Figure 2.7 shows the insulin identification error Ie between the BeMM variable

I and its corresponding identifier variable x3. It can be appreciated that the convergence

error is minimized by the use of the RLSA and tends to zero.
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Figure 2.7: Insulin identification error.
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2.4 Adaptive reduced-order identification

Over the last years, investigators have attempted to develop several methodologies

to reduce the order in nonlinear systems [DHR97, EH99, HTD99]. These methods work ex-

ceedingly well when the dynamics of the system can be considered to be linear. Researchers

have in recent years looked into the creation of black box models which use only input

and output data to create a model which can be used to predict system behavior. Many

such methods, a majority of which are based on the seminal work done by Kalman [K+60],

are used in the structural dynamics community to build linear state-space equations and to

predict system parameters [Jua94, JP85]. Recently similar methods have been used to build

linear state-space aerodynamics models as well [TKJD01, Cov04]. Although these system

realization methods produce a compact model which relies only on input and output data,

the input/output mapping produced by such methods is linear. In [ADWT06], a nonlinear

system identification methodology is presented which is used to identify a set of low dimen-

sional, nonlinear, first order ordinary differential equations. The coefficients of the terms in

the ordinary differential equations are found using a simple least squares method.

The description of a dynamic system can be obtained from mathematical models

(described by differential or difference equations) or experimental results. Based on a priory

knowledge about the system, the differences between the high-order model dynamics and

the reduced-order model can be taken into account as disturbances or dynamics rapidly

disappear, which can be handled using adaptive identification methodologies. In any case,

the model reduction procedures might be flexible enough to let the user indicate the essen-

tial behaviours that need to be captured for his/her application [ADWT06]. In the order

reduction process, the dynamics of a system model M of high order n is approximated by a

model Mr of order r < n. Assume that (2.5) is a supposedly real, uncertain and disturbed

non linear system with a complete-order and X ∈ Rn, then a reduce-order model is proposed

as

ẋ = f(x)θ +Bu+ Γ(θ) (2.32)

y = C x (2.33)

where x ∈ Rr, with r < n, the control input is u ∈ Rj with j < m, the system output is
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y ∈ Rq with q < p, the output matrix is C, and θ is the identifier parameters vector.

The quality of the approximation is usually evaluated by looking at the model

reduction error, that is, the signal obtained as the difference between the outputs of the

original system and the outputs of the reduced-order model, driven by the same excitation

signal, as is shown in Figure 2.8.

Original model

Reduced-order model

+
u(t) Y(t)

y(t)

−

ε(t)

Figure 2.8: Model order reduction that preserves the input-output behaviour.

Model order reduction is a branch of systems and control theory which studies

properties of dynamical systems in application for reducing their complexity, while pre-

serving their input-output behavior. To ensure an adequate approximation of the original

system is needed to preserve some system’s properties, essential dynamics, stability, and

controllability. Therefore, the adaptation algorithm must be efficient to identify the original

system dynamics minimizing the error between the outputs of the original system and the

outputs of the reduced-order model, as shown in Figure 2.9.

Original model

Reduced-order model

+Adaptation

u(t) Y(t)

y(t)
−

ε(t)

Figure 2.9: Model order reduction with adaptive identification.
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In [CW+00], a quadratic reduction method which uses the Krylov subspace gen-

erated from linearized analysis and the result is a reduced order model with a quadratic

nonlinearity. In [TKMK89], an adaptive update law, which counteracts the effects of un-

known parameters, is shown to be robust to the unmodeled dynamics. In the presence of

unmodeled dynamics, the regulation property is preserved in a stability region. The size

of the region is estimated using bounds that not only prove robustness, but also allow a

comparison between adaptive and nonadaptive nonlinear controls.

In this thesis a reduced-order modeling to approximate the essential behaviours of

an uncertain and disturbed nonlinear system is proposed, with the aim to develop adaptive

reduced-order identifiers with fewer parameters to be adapted than the complete-order

identifiers. The reduced-order modeling allows a faster convergence, lower dimension, and

some variables can be considered as disturbances. The reduced-order modeling will be used

in Chapter 4 with the aim to demonstrate the effectiveness of the adaptive identification

scheme.

2.5 Summary

An adaptive identification scheme based on a RLS algorithm to adapt on-line its

parameters is proposed. The RLSA minimizes the identification error between the nonlinear

system and the proposed adaptive identifier and its effectiveness is verified via simulation.

The proposed adaptive identifier model can be presented in SDCF, so it can be used in con-

trol purposes in the following chapter. Complementing the adaptive identification scheme,

a theoretical contribution is developed and is presented as a formal proof to validate the

adaptive identifier convergence. The application shows that an adequate adaptive identi-

fier model is proposed to approximate the BeMM dynamics. The adaptation algorithm is

capable to achieve a complete identification of the minimal model dynamics using only the

glucose signal G to adapt the parameters θ in the identifier model under the assumption that

there is only available the measurements of the plasma glucose concentration. Comparing

with some related works, in [HCL+05] a model that uses two time-varying patient specific

parameters for glucose effectiveness and insulin sensitivity is developed. This method is
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used for the identification of patient specific parameters. In [DMRC07] a simulation model

of the glucose-insulin system is presented. The simulation model is for normal humans and

describes the physiological events that occur after a meal. Model parameters were set to

fit the mean data of a large normal subject database that underwent a triple tracer meal

protocol which provided quasi-model-independent estimates of major glucose and insulin

fluxes. Those works present the identification of specific parameters for specific patients and

scenarios. Contrary to the obtained results in this chapter, the identification is carried out

adapting the parameters of the developed adaptive identifier with the aim to mimic the be-

havior of the BeMM variables, i.e., the identifier process identifies behaviours adapting the

parameters in the proposed identifier model, which allows the identification for different pa-

tients in different scenarios. Finally, an introduction about the reduced-order identification

is presented with the aim to be applied in the proposed adaptive identification scheme.





Chapter 3

Robust Optimal Nonlinear Control

The optimal control of nonlinear systems is a topic of great practical interest,

especially with regard to the development of control laws that minimize or maximize a

performance cost. Over the past four decades, a considerable amount of research has been

concentrated in analysis and stability problems that arise from constraints imposed on con-

trol. The majority of techniques have focused on the stability analysis applying the Lya-

punov theory. The Hamilton-Jacobi theory and the maximum principle of Pontryagin have

been given to solve the optimization problems and find optimal control laws. This chapter

presents the optimal control theory and the developed nonlinear optimal control strategy.

Section 3.2 presents the theory needed to develop a optimal nonlinear controller. Section

3.3 shows the basic definitions and theory about nonlinear control stabilization, which is

the basis to understand the optimal tracking control. In Section 3.4 the robust optimal

tracking control for disturbed nonlinear systems is developed. As a theoretical contribution

and as a complement, a formal proof about the optimal tracking control convergence is pre-

sented. The application of the optimal control scheme is applied to the adaptive identifier

previously developed in Section 2.4. Finally, in Section 3.5 the chapter is summarized.

3.1 Optimal nonlinear control theory

The formulation of an optimal control problem requires: a) a mathematical de-

scription (or model) of the process to be controlled. A nontrivial part of any control prob-

45
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lem is modeling the process. The objective is to obtain the mathematical description that

adequately predicts the response of the physical system to all anticipated inputs, b) the

specification of a performance criterion. In order to evaluate the performance of a system

quantitatively, the designer selects a performance measure. An optimal control is defined as

one that minimizes (or maximizes) the performance measure. In certain cases the problem

statement may clearly indicate what to select for a performance measure, whereas in other

problems the selection is a subjective matter. For example, the time can be the performance

measure to be minimized, or use a small expenditure of control energy. The designer may

be required to try several performance measures before selecting one that yields what he

considers to be optimal performance.

Optimal control methodology can be generalized if physical constraints are con-

sidered. More specifically, the optimal control is related to finding a control law for a given

system such that a performance criterion is minimized. This criterion is usually formulated

as a cost functional, which is a function of state and control variables. The optimal con-

trol problem can be solved using Pontryagin’s maximum principle (a necessary condition)

[Pon87], and the method of dynamic programming developed by Bellman [BD62, Bel57],

which can leads to a nonlinear partial differential equation called the HJB equation (a suf-

ficient condition). For the optimal control methodology, the proposed modeling developed

in Chapter 2 is used.

3.1.1 Performance measures

The optimal control problem is to find a control u∗ ∈ U which causes the system

(2.5) to follow a trajectory x∗ that minimizes the performance measure [Kir12]

J(x, t) = h(x(tf ), tf ) +
∫ tf

t0

g(x(t), u(t), t)dt. (3.1)

The specific selection of a performance measure can be described as:

• Terminal control problem. To minimize the deviation of the final state of a system

from a desired value r(tf ). A possible performance measure is

J(x, t) =
n∑
i=1

[xi(tf )− ri(tf )]2 . (3.2)
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Since positive and negative deviations are equally undesirable, the error is squared.

Absolute values could also be used, but the quadratic form in (3.2) is easier to handle

mathematically.

• Minimum-control-effort problem. To transfer a system from an arbitrary initial

state x0 to a specified target set S, with a minimum expenditure of control effort.

That depends upon the particular physical application; therefore, the performance

measure may assume various forms.

J(x, t) =
∫ tf

t0

[
uT (t)Ru(t)

]
dt (3.3)

where R is a real symmetric positive definite weighting matrix. The elements of R may

be functions of time if it is desired to vary the weighing on control-effort expenditure

during the interval [t0, tf ].

• Stabilization problem. Consider the system (2.5). Let the matrices Q(t) and

R(t) have continuous entries, be symmetric, and be nonnegative and positive definite,

respectively. Define the performance index as

J(x, t) =
∫ tf

t0

[
x(t)TQ(t)x(t) + uTRu

]
dt. (3.4)

and the stabilization problem as the task of finding an optimal control u∗(t) for t ≥ 0,

minimizing J and the associated optimum performeance index J∗(x(t0), t0).

• Tracking problem. To maintain the system state x(t) as close as possible to the

desired reference r(t) in the interval [t0, tf ]. Note r(t) can be selected as a time-varying

signal. The performance measure is selected as

J(x, t) =
∫ tf

t0

[x(t)− r(t)]T Q(t) [x(t)− r(t)] dt. (3.5)

Q(t) is a real symmetric n × n matrix that is positive semi-definite for al t ∈ [t0, tf ].

The elements of the matrix Q are selected to weight the relative importance of the

different components of the state vector and to normalize the numerical values of the

deviations. If control energy is to be conserved, the following modified performance

is used

J(x, t) =
∫ tf

t0

{[x(t)− r(t)]T Q(t) [x(t)− r(t)] + uTRu}dt (3.6)
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where R(t) is a real symmetric positive definite m ×m matrix for all t ∈ [t0, tf ]. It

may be specially important that the states be close to their desired values at the final

time. In this case, the performance measure is

J(x, t) = [x(t)− r(t)]T H [x(t)− r(t)]+
∫ tf

t0

{[x(t)− r(t)]T Q(t) [x(t)− r(t)]+uTRu}dt
(3.7)

where H is a real symmetric positive semi-definite n× n matrix.

• Regulation problem. A regulation problem is a special case of a tracking problem,

which results when the desired reference r(t) value is constant r(t) = c for all t ∈
[t0, tf ], where c is a constant or piece-wise constant signal.

Once the performance measure for a system has been selected, the next task is to

determine a control function that minimizes this criterion.

3.1.2 The optimal control law

Two methods of accomplishing the minimization are the minimum principle of

Pontryagin, and the method of dynamic programming developed by Bellman. The optimal

control law is defined as

u∗(t) = k(x, t) (3.8)

as being as closed-loop or feedback optimal control. The functional relationship k is called

the optimal control law, or the optimal policy. The control law specifies how to generate

the control value at time t from the state value at time t. The presence of t as an argument

of k indicates that the optimal control law may be time-varying.

3.1.3 The Hamilton-Jacobi-Bellman equation

In this subsection, we present a method of obtaining the closed-loop optimal con-

trol, using the principle of optimality and the HJB equation. The optimal feedback control

of a linear system is a subject which has been extensively studied [AM07]. If the cost func-

tional is quadratic in the state and control, and it is assumed a full state knowledge, then the
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optimal control is a linear state feedback law where the control gains are obtained by solv-

ing a differential/algebraic Riccati equation. The success of this linear quadratic regulator

problem is due to the successful development of robust and efficient algorithms for solving

the Riccati equation. However, if the system is described by nonlinear dynamics, then the

optimal state feedback law is given in terms of the solution to the Hamilton-Jacobi-Bellman

equation [Kir12]. The HJB equation provides the solution to the optimal control problem

for general nonlinear systems; however, it is in most cases difficult to solve analytically.

To define the HJB equation, first we need to state Bellman’s principle of optimality

[Bel57]. It simply states that any portion of the optimal trajectory is optimal. Alternatively,

the optimal control has the property that no matter what the previous control signal have

been, the remaining decision must constitute an optimal control signal. Considering the

nonlinear system (2.5)–(2.6) and the performance index

J(x(t0), t0) =
∫ tf

t0

l(x, u, t)dt. (3.9)

where l represents a function of x, u, t. The control law is a function of the state variables,

leading to closed-loop optimal control. This is important from the practical point of view

in implementation of the optimal control. Let us define a scalar function J∗(x∗(t), t) as

the minimum value of the performance index J for an initial state x∗(t) at time t, which is

defined as,

J∗(x∗(t), t) =
∫ tf

t0

l(x∗(τ), u∗(τ), τ)dτ (3.10)

where J∗(x∗(t), t) is the value of the performance index when evaluated along the optimal

trajectory starting at x(t). Here, we use the principle of optimality in saying that the

trajectory from t to tf is optimal. The Hamiltonian definition is

H = V (x, u, t) +
(
∂V ∗(x∗, t)

∂x∗

)T
f(x, u, t). (3.11)

The interest is to find V (x(t0), t0) as a function of x(t0) and t0. Therefore, the Hamilton-

Jacobi equation is defined as

∂V ∗(x∗, t)
∂t

+H
(
x∗,

∂V ∗(x∗, t)
∂x∗

, u∗, t

)
= 0 ∀ t ∈ [t0, tf ) (3.12)



50 Chapter 3: Robust Optimal Nonlinear Control

with boundary condition from as

V ∗(x∗(tf ), tf ) = 0 (3.13)

Since (3.13) is the continuous-time analog of Bellman’s recurrence equations in dynamic

programming [Bel57], it is also called the Hamilton-Jacobi-Bellman equation and is

V ∗t +H(x∗, V ∗x , u
∗, t) = 0. (3.14)

In general, (3.14) is a nonlinear partial differential equation in V ∗, which can be solved for

V ∗. Once V ∗ is known, its gradient V ∗x can be calculated and the optimal control u∗(t) is

obtained as (
∂H
∂u

)
∗

= 0→ u∗(t) = k(x∗, V ∗x , t). (3.15)

The HJB partial differential equation solves the optimal control problem for every initial

condition all at once. In this sense it is a global approach, and provides a closed-loop (state-

feedback) formula for the optimal control action. Unfortunately, most of the systems are

nonlinear and obtaining the solution to the optimal nonlinear control is complicated since

solving the HJB partial differential equation is required, which rarely has solution for the

nonlinear case. However, there is a solution for the HJB equation, developed for a specific

nonlinear system class named state dependent coefficient factorized systems. Recently, an

optimal control scheme for state-dependent coefficient factorized nonlinear systems has been

proposed based on the state dependent Riccati equation approach which is a systematic way

for synthesizing nonlinear feedback controllers, and mimic the controller synthesis as done

for the linear case. This method also possesses many of the capabilities of other nonlinear

design methods as; stability, optimality, real-time implementability, and inherent robustness

with respect to parametric uncertainties and unmodeled dynamics, as well as disturbance

rejection.

3.1.4 State-dependent coefficient factorized nonlinear systems

One of the most important characteristics of considering in a polynomial structure,

specifically for f(x)θ, is that this function always admits the state-dependent coefficient
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factorization as f(x)θ = A(x, θ)x1. Then, system (2.10)–(2.11) can be rewritten as

ẋ = A(x, θ)x+Bu+ Γ(θ) (3.16)

y = C x (3.17)

where the state-dependent factorizations must be determined such that controllability and

observability properties for system (3.16)–(3.17) are fulfilled and will be used in Chapter 3

for control purposes [BLT07a, OTRRC14, HHR98a].

As established in [Cim08, Clo97], the assumptions f(0) = 0 and f(·) ∈ C1 guar-

antee that the factorization as described in (3.16)–(3.17) can be carried out. This salient

feature is used to obtain an analytical solution for the optimal control via the Riccati equa-

tion. In order to obtain well-defined control schemes, appropriate factorization for these

representations should be determined such that controllability and observability properties

are fulfilled for system (3.16)–(3.17). For notation facility the term θ is omitted in A(x, θ).

In [BLT07b, HHR98b], the generalization of the rank test for the state-dependent

controllability matrix of system (3.16) is defined as

rank{C(x)} = n∀x (3.18)

where

C(x) = [B(x) A(x)B(x) · · ·An−1(x)B(x)]

whereas weak controllability for system (1) is characterized at each x in terms of the span

dimension for the smallest nonsingular and involutive distribution ∆C(x), as established in

[BLT07b, Isi95]. Here the weak controllability test is summarized for the sake of complete-

ness as follows:

1. Let the control matrix be described as B(x) = [b1, b2 · · · bm] and ∆0 = span{B(x)} =

span(bi), 1 ≤ i ≤ m.

2. Let ∆1 = ∆0 + [f(x), bi] + [bj , bi], 1 ≤ j ≤ m where [f(x), b] is the Lie bracket

defined as [f(x), b] = (∂b/∂x)f(x) − (∂b/∂x)b(x), notation + indicates the sum of

spans.
1For instance, the polynomial scalar system ẋ = −x + x3 can be presented as ẋ = a(x)x, with a(x) =

(x2 − 1).
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3. Let ∆k = ∆k+1 + [f(x), dj ] + [bd dj ], 1 ≤ i ≤ m, 1 ≤ j ≤ m, where dj is a basis for

∆k−1.

4. The test terminates when ∆k+1 = ∆k. A system is weakly controllable if rank{∆C} =

rank∆k = n∀x.

The state-dependent observability matrix is defined as [BLT07b]

O(x) =



C(x)

C(x)A(x)
...

C(x)An−1(x)


. (3.19)

Hence, by considering that a system is weakly controllable, factorization A(x)x must be

determined such that C(x) has full rank and then state-dependent controllability is fulfilled.

Similar analysis must be done to determine state-dependent observability, or to use duality

between controllability and observability [Isi95, HK77].

3.1.5 Stabilization for SDCF nonlinear systems

Before developing the optimal tracking scheme, the optimal stabilization solution

for SDCF nonlinear systems is established, in which a controller is synthesized in order to

achieve that the state of the system converges to zero in an optimal sense.

Theorem 3.1.1. [OTRRC14]. Assume that system (3.16) is state-dependent controllable

and state-dependent observable. Then the control law

u∗ = −R−1BT (x)P (x)x (3.20)

is a state feedback optimal control law for system (3.16), which ensures asymptotic stability

of the closed-loop system, and minimizes the associated cost functional

J =
1
2

∫ ∞
0

(xTQx+ uTRu)dt (3.21)

where Q and R are symmetric and positive definite matrices, and P (x) in (3.20) is the

solution of the SDRE

Ṗ = −Q+ P (x)B(x)R−1BT (x)P (x)−AT (x)P (x)− P (x)A(x) (3.22)
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with boundary condition P (∞) = 0.

From the proof of Theorem 3.1.1, it is worth noting, once the system is described

as (3.16)–(3.17), the solution of the HJB equation is possible, since it is related to the

solution of the state-dependent Riccati equation (3.22). It turns out that the proposed

state-dependent factorization may be understood as linear time-varying systems, for which

the solution of the optimal control through the Riccati equation is analyzed in detail in

[AM07] and in [KS72b]. Matrix Q in (3.21) is a matrix weighting the performance of the

state vector x, meanwhile R is a matrix weighting the control effort expenditure; hence

these matrices are used to establish a trade-off between state performance and control

effort [Kir70]. If more importance is given to the system state performance, one can select

a higher value for Q or reduce R. If one is more interested in saving control energy, it is

suggested a lower value for Q is selected or R is increased [AM07, AF13]. Particularly in

[Bry75], the entries of these matrices are selected such that physical constraints for states

and control signals are included in the control scheme. Note that in [OTRRC14] does not

consider disturbances exciting the dynamics of the system.

3.2 Robust optimal tracking control for nonlinear systems

Based on the stabilization theory In order to synthesize the optimal controller, we

will use the salient feature of the state-dependent representation for (3.16)–(3.17) to obtain,

via the Riccati equation, an analytical solution for the robust optimal tracking control, for

which the output of the system is required to track a desired trajectory as close as possible

in an optimal sense and with minimum control effort expenditure [AM90, AF66]. In order

to introduce the trajectory tracking, the tracking error is defined as

e = r − y

= r − C x (3.23)

where r is the desired reference to be tracked by the system output y.

Considering that the disturbance term Γ(θ) is affecting system (3.16), an integral

term of the tracking error e is included such that this disturbance is rejected and the
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robustness of the controller is proved. The integral term is defined as

q̇ = −e (3.24)

where q ∈ Rp is a vector of integrators for a system with p outputs. Then, an augmented

system, which includes the integrator, can be established as

ẋa =

 q̇

ẋ


=

 −e
A(x)x+Bu+ Γ


=

 Cx− r
A(x)x+Bu+ Γ

 . (3.25)

with xa = [qT , xT ]T . The dependence of parameter θ in all functions is omitted for sim-

plicity of notation. System (3.25) can be rewritten as

ẋa = Aa (xa)xa +Bau+Da (3.26)

ya = Caxa (3.27)

where Aa (xa) =

 0 C

0 A(x)

, Ba =

 0

B

, Ca =
[

0 C
]

and Da =

 −r
Γ

. For

system (3.26), let us consider the problem of minimizing the cost functional

J =
1
2

∫ ∞
t0

(
qT QI q + eT Qe+ uT Ru

)
dt (3.28)

where QI is a parameter weighting the integrator performance, which can be considered as

the integrator gain, Q is a matrix weighting the time evolution of the error, meanwhile R

is a matrix weighting the control effort expenditure. These matrices are used to establish a

trade-off between state performance and control effort [Kir70].

The robust optimal tracking solution, which is one of the main contributions of

this work, is established as the following theorem.

Theorem 3.2.1. Assume that system (3.16)-(3.17) is state-dependent controllable and

state-dependent observable. Then the robust optimal control law

u∗(xa) = −R−1BT
a (P (xa)xa − z(xa)) (3.29)
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ensures trajectory tracking for the system along a desired trajectory r, where P (xa) is the

solution to the symmetric matrix differential equation

Ṗ (xa) = −Qa + P (xa)BaR−1BT
a P (xa)−ATa (xa)P (xa)− P (xa)A(xa) (3.30)

and z(xa) is the solution to the vector differential equation

ż(xa) = −
[
Aa(xa)−BaR−1BT

a P (xa)
]T
z(xa) + PDa − rTQCa (3.31)

with boundary conditions P (∞) = 0 and z(∞) = 0, respectively. Control law (3.29) is

optimal in the sense that it minimizes the cost functional (3.28), which has an optimal

value function given as

J∗ =
1
2
xTa (t0)P (t0)xa(t0)− zT (t0)xa(t0) + ϕ(t0) (3.32)

where ϕ is the solution to the scalar differentiable function

ϕ̇ = −1
2
rTQr + zTDa +

1
2
zT (xa)BaR−1BT

a z (3.33)

with ϕ(∞) = 0.

Proof. Hereafter, P (xa) in (3.30) will be written as P only to simplify notation, however,

P is always a state-dependent matrix on xa; the same can be said for z(xa) in (3.31), i.e.,

for simplicity vector z(xa) will be written as z. In order to determine the conditions for

which the optimal control law (3.29) stabilizes the system (3.26) along a desired trajectory

and at same time minimizes (3.28), let us rewrite (3.28) as

J =
1
2

∫ ∞
t0

(
qT QI q + eT Qe+ uT Ru

)
dt

=
1
2

∫ ∞
t0

(
qTQIq + (r − Caxa)TQ(r − Caxa) + uTRu

)
dt

=
1
2

∫ ∞
t0

xTa
 QI 0

0 CTa QCa

xa + uT Ru

 dt+
1
2

∫ ∞
t0

(
rTQr − 2rTQCaxa

)
dt

=
1
2

∫ ∞
t0

(
xTaQaxa + uT Ru

)
dt+

1
2

∫ ∞
t0

(
rTQr − 2rTQCaxa

)
dt (3.34)
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with Qa =

 QI 0

0 CTa QCa

. Hence, the Hamiltonian is established as

H(xa, u, t) =
1
2
xTaQa xa +

1
2
uTRu+

1
2
(
rTQr − 2rTQCaxa

)
+
∂V (xa, t)
∂xa

T [
Aa(xa)xa +Ba u+Da

]
(3.35)

where V (xa, t) is the optimal value function. The Hamiltonian is used to determine the

control law u by applying the maximum principle condition

∂H(xa, u)
∂u

= Ru+BT
a

∂V (xa, t)
∂xa

= 0.

Then the optimal control law results in

u∗(xa) = −R−1(t)BT
a

∂V (xa, t)
∂xa

. (3.36)

For the optimal control solution, based on (3.35) and (3.36), the following HJB

equation must be satisfied [Kir70]:

0 =
∂V (xa, t)

∂t
+H(xa, u∗, t)

=
∂V (xa, t)

∂t
+

1
2
xTaQa xa +

1
2
u∗T Ru∗ +

1
2
(
rTQr − 2rTQCaxa

)
+
∂V (xa, t)
∂xa

T

[Aa(xa)xa +Ba u
∗ +Da]

=
∂V (xa, t)

∂t
+

1
2
xTaQaxa +

1
2
rTQr − rTQCa xa −

1
2
∂V (xa, t)
∂xa

T

Ba

×R−1BT
a

∂V (xa, t)
∂xa

+
∂V (xa, t)
∂xa

T

Aa(xa)xa +
∂V (xa, t)
∂xa

T

Da.

One way of solving (3.37) for V (xa, t) is to guess a solution such that (3.37) is satisfied

[Kir70]; hence, V (xa, t) is proposed as

V (xa, t) =
1
2
xTa P xa − zTxa + ϕ, P = P T > 0. (3.37)

Thus
∂V (xa, t)

∂t
=

1
2
xTa Ṗ xa − żTxa + ϕ̇ and

∂V (xa, t)
∂xa

= P xa − z.
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Hence, the HJB equation becomes

0 =
1
2
xTa Ṗ xa − żTxa + ϕ̇+

1
2
xTaQaxa −

1
2

(P xa − z)T BaR−1BT
a (P xa − z)

+ (P xa − z)T Aa(xa)xa + (Pxa − z)TDa +
1
2
rT Qr − rT QCa xa

=
1
2
xTa
[
Ṗ +Qa − PBaR−1BT

a P +ATa (xa)P + P Aa(xa)
]
xa

−1
2
zT BaR

−1BT
a z +

1
2
rTQr − zTDa + ϕ̇

−
[
żT + zT

(
Aa(xa)−BaR−1BT

a P
)
− PDa + rTQCa

]
xa. (3.38)

From (3.38), differential equations (3.30), (3.31) and (3.33) are derived. Equation (3.30)

is also named the state-dependent differential Riccati equation (SDDRE). Mimicking the

linear optimal control results [AM90, AF66, KEB62], the controllability and observability

assumptions for (3.16) guarantee that the solution for the SDDRE (3.30) exists [BLT07a],

is unique and its solution is a positive definite matrix. Once satisfied the HJB equation

by using the proposed function V (x, t), the optimal controller (3.29) is directly obtained

from (3.36) with (3.37). The trajectory tracking convergence can be analyzed in two steps.

Firstly, we consider the closed-loop system (3.26) with (3.29) as

ẋa =
[
Aa(xa)−BaR−1BT

a P
]
xa +BaR

−1BT
a za +Da (3.39)

which is composed of a dynamical (nominal) system plus the forcing functions za (which

depends on the reference r) and Da. Note that by using the proposed adaptive identifier

(2.10)–(2.11), disturbance Da is known. At this point, the stability of the nominal system

ẋ =
[
Aa(xa)−BaR−1BT

a P
]
xa can be investigated as follows. Assuming controllability

and observability for system (3.26) and output (3.27), there exists a differentiable, symmet-

ric and positive definite matrix P as a solution of (3.30). Considering the positive definite

and radially unbounded candidate Lyapunov function W = xTa P xa and taking the time

derivative for W along the nominal system, it results in

Ẇ = xTa Ṗ xa + xTa P ẋa + ẋa
TP xa

= xTa Ṗ xa + xTa
[
P Aa(xa) +ATa (xa)P − 2P BaR−1BT

a P
]
xa. (3.40)
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From (3.30) PAa(xa) +ATa (xa)P = −Ṗ −Qa + P BaR
−1BT

a P then (3.40) becomes

Ẇ = xTa Ṗ xa + xTa
[
− Ṗ −Qa − PBaR−1BT

a P
]
xa

= −xTa
[
Qa + PBaR

−1BT
a P ]xa. (3.41)

Therefore, Ẇ is negative semidefinite. Since the pair (A(x), C) is observable, and by

LaSalle’s theorem, asymptotic stability for the nominal system is ensured [Kha96a]; hence

limt→∞ xa = 0 (or limt→∞ ẋa = 0), and thus limt→∞ q̇ = e = 0, and therefore y = r.

Secondly, by being the entries ofDa either constants or piece-wise constant bounded

inputs signals, it is known that these signals does not affect the asymptotic stability of (3.39)

[KS72a], therefore limt→∞ q̇ = e = 0 and thus y = r.

The optimal value function J∗ for (3.28) is calculated as

J∗ =
1
2

∫ ∞
t0

(
xTaQaxa + u∗T Ru∗

)
dt+

1
2

∫ ∞
t0

(
rTQr − 2rTQCaxa

)
dt

=
1
2

∫ ∞
t0

xTa
[
Qa + P BaR

−1BT
a P

]
xa dt+

1
2

∫ ∞
t0

zTBaR
−1BT

a z dt

−
∫ ∞
t0

(
zTBaR

−1BT
a P + rTQCa

)
xa dt+

1
2

∫ ∞
t0

rTQr dt. (3.42)

From (3.30), the following relation can be obtained: Qa+P BaR−1BT
a P = −Ṗ+2P BaR−1BT

a P−
ATa (xa)P − P Aa(xa) then (3.42) results in

J∗ =
1
2

∫ ∞
t0

xTa
[
− Ṗ + 2P BaR−1BT

a P −ATa (xa)P − P Aa(xa)
]
xa dt

−
∫ ∞
t0

(
zTBaR

−1BT
a P + rTQCa

)
xa dt+

∫ ∞
t0

zTBaR
−1BT

a z dt+
∫ ∞
t0

−
[
ϕ̇− zTDa

]
dt

= −1
2
xTa P xa

∣∣∣∞
t0

+ zTxa

∣∣∣∞
t0
− ϕ

∣∣∣∞
t0

= −1
2
xTa (∞)P (∞)xa(∞) +

1
2
xTa (t0)P (t0)xa(t0) + zT (∞)xa(∞)− zT (t0)xa(t0)

−ϕ(∞) + ϕ(t0).

Considering the boundary conditions for P (∞), z(∞) and ϕ(∞), optimal value function

(3.32) follows.

3.2.1 Robust optimal tracking control applied to the BeMM

The proposed identifier system (2.29)–(2.31) applied to the minimal model (2.26)–

(2.28) is presented in a SDCF, used in the optimal nonlinear control scheme. The output
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of the minimal model is only the blood glucose level, then it requires to add only one

integrator; hence, the augmented system becomes

ẋa =

 −e
A(x, θ)x+Bu+ Γ


=

 x1 − r
A(x, θ)x+Bu+ Γ

 (3.43)

with xa = [q x]T = [q x1 x2 x3]T , which can be rewritten as

ẋa = Aa (xa, θ)xa +Bau+ Γa (3.44)

and

y = Caxa (3.45)

where Aa (xa, θ) =


0 1 0 0

0 θ1 −x1 0

0 0 θ2 θ4

0 0 0 θ6

, Ba =


0

0

0

1

, Ca =
[

0 1 0 0
]

and Γa =

[
−r θ2 θ5 θ7

]T
. Parameter r is the reference value for the glucose level, and the cost

functional to be minimized is (3.28). For the augmented system, the robust optimal con-

troller is given by (3.29).

Simulation results

Once the adaptive identifier has converged, the optimal control law is applied, this

is at time t ≥ 40 min (0.66 hrs). The parameters for the robust optimal tracking controller,

which determine the speed convergence of the error in the control law, are QI = 0.06, Q = 10

and R = 1. These parameter values are selected such that an adequate performance of the

control system is achieved. Fig. 3.1(a) shows the glucose level regulation with a reference

level r = 115 mg/dl. Fig. 3.1(b) shows the control signal that represents the required level of

exogenous insulin to maintain the blood glucose on the reference level for a type 1 diabetic

patient fed with 50 grams of carbohydrates. At the beginning of the simulation can be

appreciated oscillations, which are generated in the identification process. The convergence
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speed and the size of the oscillations depend on the selected parameters values g and Ψ

in (2.15). In this case the values were chosen to show a slow convergence speed and large

oscillations. Once the variable x1 from the adaptive identifier converges to the dynamical

behaviour of the BeMM glucose variableG, the optimal tracking nonlinear control is applied.
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(a) Glucose regulation at reference level r.
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(b) Control signal u.

Figure 3.1: Adaptive identification and optimal tracking control applied to the BeMM.

Finally, Fig. 3.2(a) illustrates the capabilities of the optimal control scheme for

regulating the glucose level to different reference values at different intervals of time, i.e.,

for t < 250 min(4.16 hrs) the reference level is r = 115 mg/dl. In the same way, for
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250 min(4.16 hrs) ≤ t < 450 min(7.5 hrs) the reference level is r = 100 mg/dl, for

450 min(7.5 hrs) ≤ t < 650 min(10.83 hrs) the reference level is r = 120 mg/dl and

the last time interval is t ≥ 650 min(10.83 hrs) with reference level r = 110 mg/dl and

Fig. 3.2(b) shows the control signal to maintain the glucose at reference levels above r.

(a) Glucose regulation at different reference levels r.
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(b) Control signal u to regulate the glucose level at different reference levels r.

Figure 3.2: Adaptive identification and optimal tracking control applied to the BeMM at
different reference levels r.

The proposed optimal tracking nonlinear control scheme has the advantage to

track variable references. In Fig. 3.3(a) is shown the regulation of the blood glucose into

a variable reference. At the beginning of the simulation are some oscillations that repre-
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sent the adaptive identifier convergence, and once the convergence is achieved, the optimal

control is applied to track the variable reference. Fig. 3.3(b) shows the control signal u

that represents the exogenous insulin dose to maintain the glucose level into the variable

reference level r.

(a) Glucose regulation for a variable reference level r.
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(b) Control signal u to regulate the glucose level into a variable reference level r.

Figure 3.3: Adaptive identification and optimal tracking control applied to the BeMM for
a variable reference level r.

In the simulation results it is shown that by adding an integrator term to the

proposed optimal control law, one can deal with possible disturbances affecting the identifier,

resulting in a robust optimal tracking control scheme. As an application, the simulation
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results show that the proposed optimal controller can regulate the glucose level for an

assumed uncertain type 1 diabetic patient. The proposed identification and control schemes

have advantages, such as: they can work with disturbances affecting the system, and an

appropriate identifier model can be obtained for control purposes.

In Table 1.1 are summarized the most important control strategies, which are based

on different internal models that represent glucose-insulin dynamics in T1DM patients.

Some of them use the BeMM as a mathematical model to develop different control strategies,

e.g., in [LB01] a constrained state space model predictive controller, designed based on the

BeMM, was implemented on a 19 state simulation model of a type 1 diabetic patient. In

[GRG07] a control algorithm is presented for feedback control of glucose levels in type 1

diabetic patients using the BeMM. A simple asymmetric PI controller is presented where

controller parameters vary depending on the sign of the current error value. In comparison

with the optimal nonlinear control scheme proposed in this thesis, the results obtained in

[LB01, GRG07] show oscillations on the established reference, reaching values under 60

mg/dl which could be dangerous for the patient. The results presented in this thesis show

a soft regulation reaching the established reference level (without oscillations) regardless of

whether the reference is variable.

3.3 Summary

This chapter has presented a robust optimal control scheme, which achieve trajec-

tory tracking for uncertain and disturbed nonlinear system, minimizing a meaningful cost

functional. A formal proof is resented as a theoretical contribution to validate the optimal

tracking control convergence. The applicability of the proposed method is illustrated via

simulation. The adaptive identifier model proposed in Chapter 2 used to model the BeMM

dynamics delivers appropriate identifier structure which is used in the optimal nonlinear

control process. The proposed adaptive identifier is presented in the SDCF form to approxi-

mate uncertainties in the glucose-insulin nonlinear system, and by adding an integrator term

to the proposed optimal control law, we can deal with possible disturbances affecting the

identifier (different eating and healthy habits, age, weight, among other aspects) resulting
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in a robust optimal tracking control scheme. Both schemes are successfully applied with the

aim to regulate the blood glucose level in type 1 diabetic patients using the BeMM model,

where the dynamical behavior for different patients is difficult to model. Both schemes are

applied with the aim to be included in type 1 diabetic treatments, where the patients only

have access to measure the blood glucose concentration as an indicator to be used in the

classic control process to regulate the blood glucose into the safety levels. In this thesis

is analysed only the regulation problem due to is pretended that the patient reach a con-

stant reference level regulation of the blood glucose concentration which could be changed

depending the patients needs and the medical instructions. Some experiments have been

done to track variable references but they are not highlighted in this thesis due to the blood

glucose regulation in type 1 diabetic patients is solved using constant reference levels at

different times. Some studies show that trajectories tracking establishing restrictions as

the time when the patient has to be fed among other restrictions and that restrictions are

pretended to be avoided by using glucose regulation for constant reference levels.

In next chapter the adaptive identification and the optimal control scheme are ap-

plied in virtual type 1 diabetic patients using the T1DM software to validate both schemes.



Chapter 4

Modeling and Control of the

Glucose-Insulin System for Type 1

Diabetes

This chapter presents the application of the adaptive identification and the optimal

tracking control scheme focused on the type 1 diabetes treatment. In the previous chapters,

the adaptive identification and the optimal nonlinear control scheme were applied to the

Bergman minimal model, which was used only as an example to simulate the glucose insulin

dynamics in type 1 diabetic patients. In this chapter, the adaptive identification and the

optimal nonlinear control scheme will be applied to the Cobelli model, whose principal

advantage and difference compared with the Bergman minimal model is that the Cobelli

model was used in the development of the T1DMS software, which is approved by the FDA

and is used to validate the control strategies for type 1 diabetes treatments. Section 4.2

describes the mathematical models used to simulate the glucose-insulin dynamics in type

1 diabetic patients. In Section 4.3 the adaptive identification scheme is applied to the

Cobelli system used to simulate the glucose-insulin in healthy people. Section 4.4 shows the

adaptive identification and the optimal tracking control scheme which are applied to the

Cobelli system used to represent the glucose insulin dynamics in type 1 diabetic patients.

The simulation resluts are presented in Section 4.5, where continuous and discontinuous

65
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control signals are developed for constant and variable reference levels, different scenarios

and different virtual patients. A reduced-order identifier is proposed in Section 4.6 and is

validated using the T1DMS software. Finally, a general summary of the chapter is presented

in Section 4.7.

4.1 Glucose-insulin mathematical models used to simulate

type 1 diabetes disease

Approximately 10 million people in Mexico have diabetes, among which about 5%

have type 1 diabetes [FMD], an auto-immune disease that destroys a person’s pancreas’

ability to release insulin. Type 1 diabetics depend on everyday insulin infusion or injec-

tion to maintain their glucose level within the acceptable range where too much insulin

can cause life-threatening hypoglycemia (extremely low glucose level) and too little insulin

can cause nerve-damaging hyperglycemia (high glucose level) [MKOP+17]. Unfortunately,

meal carbohydrates are a major disturbance to one’s blood glucose level, and therefore ev-

ery type 1 diabetic patient faces a life-long control challenge: the patient has to carefully

control the blood glucose injecting exogenous insulin doses for every meal so that post-meal

hyperglycemia is effectively controlled without risking hypoglycemia. In recent years, CGM

technology has become more popular, which drives a whole class of Medical Cyber-Physical

System (MCPS), most notably the artificial pancreas (AP), that aims to facilitate glucose

management for type 1 diabetics. At the AP system’s core are a CGM sensor, a wear-

able insulin pump for continuous and discontinuous infusion, and algorithms that control

the insulin infusion and boluses [CRK11]. Reliably predicting meals is difficult in real-

life situations, thus all AP systems depend on certain kinds of meal declaration/detection

mechanisms. Meal detection is a safety critical problem, where an incorrectly identified

meal may trigger the system to either deliver too much insulin unnecessarily or deliver too

little insulin, both of which have harmful (if not deadly) consequences. Currently, most

type 1 diabetics who use CGM sensors and wearable insulin pumps manually input the

time and estimated carbohydrates count of each meal into the device, which then calcu-

lates a suggested insulin dose. Unfortunately, self-reported meal information is inherently
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unreliable [DBBD08]. Thus, more dependable meal detection methods are necessary to

ensure patient safety. whereby, it is important developing adaptive identifiers capable to

identify the glucose-insulin dynamics regardless of gender, age, diet and lifestyle, and devel-

oping control algorithms that allow an optimal regulation with the capabilities to deal with

different disturbances, achieving the adequate blood glucose regulation into safety levels.

The literature dealing with mathematical modelling for diabetes is abundant. Dur-

ing the last decades, a variety of models have been devoted to different aspects of diabetes,

including glucose and insulin dynamics, management and complications prevention, cost

and cost-effectiveness of strategies and epidemiology of diabetes in general. Over the years,

researchers modelled the behavior of the glucose-insulin system in diabetic patients by ap-

plying either an empirical approach [FZJ+06, FPD+09] or the more attractive compartment

modelling technique based on mass balance equations which results in first-principles mod-

els, as described in [CF07, CC08].

The glucose-insulin system offers one of the clearest and simplest examples of

homeostatic control in the organism. The level of glucose in blood needs to be kept within

a narrow range. Since it represents the main energy source, for brain tissue, abnormally

low glucose concentrations give rise to anxiety, tremors, aggressiveness, obfuscation, coma,

and eventually death. On the other hand, excessive plasma glucose concentrations produce

microvascular damages (notably in the retina and kidney) and neural damages, leading

among others to blindness and chronic renal insufficiency. The way the body controls

glycemia seems deceptively simple. Essentially a single hormone (insulin) is secreted by the

β-cells of the pancreas in response to rising glucose concentrations (hyperglycemia). Insulin

effects include increasing peripheral tissue glucose uptake (mainly by the muscle and fat

tissues) and decreasing spontaneous glucose output by the liver. When insulin secretion by

the pancreas is insufficient or absent, due to (autoimmune) destruction of β-cells, the clin-

ical picture of T1DM results. A number of hormones contribute to rescuing the organism

from hypoglycemia (adrenalin, glucagon, growth hormone, cortisol, etc.): however, since in

clinical practice the situation of interest is normally inappropriately high glycemia, concen-

trating attention on the response to hyperglycemia by insulin seems justified, at least as a

first modeling approach. We may therefore consider, as a first approximation, a simplified
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system in which a single metabolite (glucose) is controlled by a single hormone (insulin).

This system will have to maintain glycemia in the absence of food intake, and will have to

suppress hyperglycemia rapidly after meals, without incurring in dangerous hypoglycemias.

Therefore, the glucose-insulin system could be viewed, at least approximately, as a feedback

control with a controller (the pancreas) and multiple effectors (muscle, liver, fat tissue).

First-principle models of glucose physiology broadly fall into two categories: max-

imal models and minimal models [CDMS+09]. This section introduces a minimal model

and an FDA-accepted maximal model, which are used in in-silico evaluations in this thesis.

4.1.1 Mathematical models

Short term modeling concerns the glucose-insulin dynamics after an external per-

turbation such as a glucose bolus injection (intra-venous glucose tolerance test, IVGTT),

an oral glucose consumption (oral glucose tolerance test, OGTT) or continuous glucose

and insulin infusions like the Euglycemic Hyperinsulinemic Clamp (EHC), within a rela-

tively short time period of a few hours. These clinical experiments, and the mathematical

models aimed at their interpretations, have generated much interest in the last decades

since they offered the possibility to estimate a set of key markers of T1DM development.

Besides generally allowing a more accurate knowledge of the regulatory mechanisms under-

lying glucose-insulin homeostasis, short term mathematical models may be fruitfully linked

to clinical protocols in order to compute the insulin sensitivity of a given subject. The

common denominator of these models is the fact that they are top-down compartmental

models, representing the observable features of glucose-insulin homeostasis without detail-

ing the molecular events leading to such features. The IVGTT is a clinical experiment

where a glucose bolus is rapidly injected intra-venously into a subject. Glucose and insulin

samples are acquired in the following three hours, during which glycemia and insulinemia

return to their basal values. The glucose injection is modelled as an instantaneous change

in the plasma glucose concentration. In healthy subjects the glucose induced pancreatic re-

sponse of insulin release consists of two contributions: a first phase release, which is a quick

response to a sudden change in glycemia, and a second phase release, which occurs some ten

minutes after the bolus injection. The first phase is usually modelled as an instantaneous
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change in the plasma insulin concentration. The second phase is described by the model

equations, and the difference among the many existing mathematical models are evaluated

by their ability to capture correctly the observed dynamics.

Minimal model

Minimal model use only a few compartments to model the physiology, and they

have a simple structure that is convenient for linearization and control design [GPZ+07].

The early linear models of the glucose-insulin homeostasis, which have been validated

by means of an IVGTT, date back to Bolie [BOL61] and Ackerman’s research group

[EA64, AGRM65] in the sixties. However, the most famous and still greatly widespread

model used in clinical assessments, such as the estimate of the insulin sensitivity index, is

the so-called Bergman Minimal Model, proposed by Bergman and collaborators in the late

seventies [BIBC79b]. For a historical review see [Ber97, Ber03]. The BeMM is composed

of two separate parts: one describing the dynamics of the glucose uptake after the external

stimulus, regarding the insulin concentration as a known forcing function; the other de-

scribing the dynamics of the pancreatic insulin release in response to the glucose stimulus,

with the glucose concentration regarded as a known forcing function.

The model equations for the glucose dynamics are (2.26)–(2.28), which were used

in Chapter 2 as an example of a nonlinear system used to propose an optimal identifier

capable to identify the glucose-insulin dynamics. The BeMM is a two-compartment model:

the first equation refers to the plasma glucose concentration in plasma G(mg/dl), the second

refers to a remote compartment for the insulin. The physiological assumption is that the

insulin-dependent glucose uptake does not directly depend on the plasma insulin concen-

tration I(µU /ml), but on the insulin concentration in the remote compartment, through

the auxiliary function X(min−1), whose dynamics depends on the plasma insulinemia.

The insulin kinetics of the BeMM is thus necessarily associated to the IVGTT

procedure, since the initial experimental time plays a crucial role in assessing the insulin

secretion rate. Therefore the model cannot be used for other purposes, such as a multi bolus

experiment, or during glucose infusions. The integrated glucose-insulin system is illustrated

by the compartment model in Figure 4.1 [DGA00]. The BeMM is presented in (2.26)–(2.28),
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Figure 4.1: BeMM describing the glucose and insulin kinetics in an IVGTT study.

where the parameter h (mg/dl) is the threshold value of glucose above which the pancreatic

β-cells release insulin. The term γ (µU/ml min−2(mg/dl)−1) is the rate of the pancreatic

β-cells’ release of insulin after the glucose injection and with glucose concentration above

h. The control input u represents the exogenous insulin infusion rate, and U is the units

of insulin needed to regulate the glucose into the desired level. Data from a normal glucose

tolerant individual is shown in Figure 4.2 [PB86].

Figure 4.2: Glucose-insulin concentrations in plasma frequently sampled over 180 minutes
after an intravenous glucose injection given to a normal glucose tolerant individual.

The model parameters usually are estimated by a recursive least squares estimation

technique, where the parameters in G and X are estimated using insulin as a forcing function

and then the parameters in I are estimated using glucose as a forcing function.
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Maximal model

Maximal models use compartmental submodels to describe the dynamics of glucose

and insulin in the human body. These models are mostly used for simulation purposes.

One of the most used maximal model is the Cobelli model, which includes insulin

subsystem, the meal glucose absorption, and the glucose kinetics. Extensive details of the

model, including the modeling rationale and meanings of the variables and parameters, can

be found in a series of publications [MRDM+09, DMRC07, MML+14, KBDMC09]. In the

Cobelli model, the glucose-insulin system is represented by a model with 6 subsystems,

which include 14 equations that describe the relation between plasma concentrations (glu-

cose G and insulin I), glucose fluxes (rate of appearance Ra, endogenous glucose production

EGP , utilization U , renal extraction E), and insulin fluxes (secretion S, and degradation

D) [MRM+09]. Figure 4.3 describes the interactions between the different components

belonging to the system [MRC07].

Figure 4.3: Interaction scheme between the different components of the glucose-insulin
system.

The dynamical behavior for each subsystem in the Cobelli model is summarized

in Appendix A, through equations (A.1)–(A.14).
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4.2 Adaptive identification applied to the Cobelli system used

to model the glucose-insulin dynamics in healthy persons

In order to apply the adaptive identification scheme, the meal glucose-insulin model

is summarized in Figure 4.4. The current system (A.1)–(A.14) is considered to be an un-

certain and a disturbed nonlinear one, representing the glucose-insulin dynamical behavior

in the human body, which depends on various factors as eating and healthy habits, age,

weight, etc.; therefore, it is convenient to deal with those uncertainties and disturbances

by applying an adaptive identifier. It is assumed that the glucose-insulin system and its

parameters are unknown, and only the measurements of the plasma glucose concentration

G are available to be used in the adaptive identification process as shown in Figure 4.5.

Glucose-Insulin System

6 Subsystems
14 Equations

Glucose
Subsystem

Ġp Ġt Ġ

Insulin
Subsytem

İp İl İ

Endogenous
Glucose

Production

İ1 İd

Glucose Intesti-
nal Absorption

Q̇sto1 Q̇sto2 Q̇gut

Insulin Secretion

İpo Ẏ

Glucose
Utilization

Ẋ

Figure 4.4: Cobelli glucose-insulin subsystems summarized in differential equations.

Glucose-Insulin System [19]

Based on 14 Differential Equations.

Variables Identification

x1 → Gp, x2 → Gt, x3 → G, x4 → Il,
x5 → Ip, x6 → I, x7 → I1, x8 → Id,
x9 → Qsto1, x10 → Qsto2, x11 → Qgut,

x12 → Ipo, x13 → Y , x14 → X.

Glucose
Measurement G

Figure 4.5: Adaptive identification and variables convergence.
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This Section proposes an adaptive identifier presented in SDCF for an adequate

approximation of the Cobelli model dynamics. The adaptive identifier process minimizes the

identification error using the adaptation algorithm (2.15) to adapt its parameters on-line.

The adaptive identifier to approximate the dynamics of the glucose-insulin model

(A.1)–(A.14) is proposed as

ẋ1 = θ1 + θ2x1 + θ3x3 + θ4x8 + θ5x12 + θ6x11

ẋ2 = θ7x1 + θ8x2 + θ9 + θ10x2x14 + θ11x8 + θ12x10

ẋ3 = θ13 + θ14x2x3 + θ15x2 + θ16x7x8 + θ17x1x12 + θ18x11

ẋ4 = θ19 + θ20x4 + θ21x5 + θ22x12 + θ23x4x12 + θ24x8

ẋ5 = θ25x4 + θ26x5

ẋ6 = θ27x4 + θ28x5 + θ29x6 + θ30 + θ31x8 (4.1)

ẋ7 = θ32x5 + θ33x7 + θ34

ẋ8 = θ35x7 + θ36x8

ẋ9 = θ37x9 + θ38d

ẋ10 = θ39x9 + θ40x10

ẋ11 = θ41x10 + θ42x11

ẋ12 = θ43 + θ44x1 + θ45x3 + θ46x8 + θ47x11 + θ48x12 + x13

ẋ13 = θ49 + θ50x3 + θ51x13

ẋ14 = θ52 + θ53x5 + θ54x14

where θ = [θ1, θ2, θ3 . . . θ52, θ53, θ54]T are the parameters to be determined, x = [x1 . . . x14]T

is the state vector, which identifies the glucose-insulin variables in the Cobelli model X =

[Gp Gt G Il Ip I I1 Id Qsto1 Qsto2 Qgut Ipo Y X]T . Based only on the plasma glucose

concentration measurement, the identification error ε = x3−G is used to adapt the param-

eters θ in (4.1) through the RLSA given in (2.15). Different structures, different orders and

relation between the variables can be proposed to design the identifier model, the developed

one in this section allows the adequate identification of the Cobelli system.
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4.2.1 Adaptive identifier performance

The performance effectiveness of the adaptive identification scheme applied to the

Cobelli model is shown as follows. The parameters θ in the proposed identifier are adapted

using the RLSA. The convergence speed and the oscillations are determined by the values

of the parameters Ψ and g in (2.15). The parameters used to simulate the glucose-insulin

dynamics in a healthy person are shown in Table 4.1 [MRC07]. The initial conditions for

the identifier are given with a difference of 10 % with respect to the initial conditions of the

glucose-insulin model.

Table 4.1: Cobelli system parameters for a healthy person.
Parameter Value Unit Parameter Value Unit
dG 78000 mg AG 0.8 dimensionless
VG 1.88 dl TmaxG 1 min
TmaxI 1.3 min Gpb 172.5 mg/kg
Gtb 130.29 mg/kg Gb 91.48 mg/l
Ilb 4.54 pmol/kg Ipb 1.2745 pmol/kg
Ib 25.49 pmol/l Ipob 3.084 pmol/kg
Gp(0) 172.5 mg/kg Gt(0) 130.29 mg/kg
G(0) 91.48 mg/dl Il(0) 4.086 pmol/kg
Ip(0) 1.143 pmol/kg I1(0) 22.94 pmol/l
Id(0) 24 pmol/l I(0) 25.4 pmol/l
Qsto1(0) 0 mg Qgut(0) 0 mg
Qsto2(0) 0 mg Ipo(0) 2.775 pmol/kg
Y (0) 0 pmol/kg X(0) 0 pmol/kg

For the identification process, the bases w and the parameters Ψ, as well as g

used for the RLSA are presented in Table 4.2, Table 4.3, Table 4.4 respectively, which are

selected to achieve an adequate on-line adaptation of the parameters θ in (4.1).

Table 4.2: Bases w used in the proposed adaptive identifier.
w1 = [1 x1 x3 x8 x12 x11]T w2 = [x1 x2 1 x2x14 x8 x10]T

w3 = [1 x2x3 x2 x7x8 x1x12 x11]T w4 = [1 x4 x5 x12 x4x12 x8]T

w5 = [x4 x5]T w6 = [x4 x5 x6 1 x8]T

w7 = [x5 x7 1]T w8 = [x7 x8]T

w9 = [x9 d]T w10 = [x9 x10]T

w11 = [x10 x11]T w12 = [1 x1 x3 x8 x11 x12]T

w13 = [1 x3 x13]T w14 = [1 x5 x14]T
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Table 4.3: Parameters Ψ used in the proposed adaptive identifier.
Ψ1 = diag{0.005, 0.005, 0.005, 0.005, 0.005, 0.005}
Ψ2 = diag{5× 10−8, 5× 10−8, 5× 10−8, 5× 10−8, 5× 10−8, 5× 10−8, 5× 10−8}
Ψ3 = diag{0.05, 0.05, 0.05, 0.05, 0.05, 0.05}
Ψ4 = diag{5, 5, 5, 5, 5, 5, 5}
Ψ5 = diag{5, 5}
Ψ6 = diag{5, 5, 5, 5, 5, 5}
Ψ7 = diag{5, 5, 5}
Ψ8 = diag{5, 5}
Ψ9 = diag{5, 5}
Ψ10 = diag{5, 5}
Ψ11 = diag{5, 5}
Ψ12 = diag{0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005}
Ψ13 = diag{0.0005, 0.0005, 0.0005}
Ψ14 = diag{0.0005, 0.0005, 0.0005}

Table 4.4: Parameters g used in the proposed adaptive identifier.
g1 = 1× 106 g2 = 5× 107 g3 = 0.0088 g4 = 1× 105

g5 = 1× 106 g6 = 1× 106 g7 = 1× 106 g8 = 1× 106

g9 = 1× 106 g10 = 1× 106 g11 = 1× 106 g12 = 1× 106

g13 = 1× 106 g14 = 1× 106

In the simulation results, Figure 4.6 shows the adaptive identification scheme ap-

plied to the glucose-insulin system in a healthy person. Figure 4.6(a) shows the convergence

between the glucose signal G from the glucose-insulin model (A.3) and its corresponding

variable x3 from the proposed identifier. From all the identifier’s variables only the glucose

signal measurement is available to be used in the RLSA to minimize the convergence er-

ror. Figure 4.6(b) displays the convergence between the glucose mass in plasma Gp and its

corresponding identification variable x1. In Figure 4.6(c) shows the convergence between

the glucose mass in tissues Gt and its corresponding variable x2. In Figure 4.6(d) shows

the convergence between the insulin mass in liver Il and its corresponding variable x4. In a

similar way Figure 4.7 and Figure 4.8 show the convergence between the adaptive identifier

variables and the glucose-insulin system. From Figure 4.6(e) to Figure 4.8(b) are repre-

sented the remainder variables; in the same figures, a little square with zoom is shown to

appreciate the convergence between the variables.
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Figure 4.6: Adaptive identification scheme applied to the Cobelli system in a healthy person.
Identification of the variables G, Gp, Gt, Il, Ip and I.
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Figure 4.7: Adaptive identification scheme applied to the Cobelli system in a healthy person.
Identification of the variables I1, Id, Qsto1, Qsto2, Qgut and Ipo.
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Figure 4.8: Adaptive identification scheme applied to the Cobelli system in a healthy person.
Identification of the variables Y and X.

This section presented the adaptive identification scheme applied to the Cobelli

system which is used to model the glucose-insulin in a healthy person with the aim to

demonstrate the adaptive identifier effectiveness. The simulation results showed an adequate

convergence between the adaptive identifier variables and the Cobelli system variables, i.e.,

the dynamical behavior is identified for every variable of the Cobelli’s model. This Section is

the basis to introduce the reader to the adaptive identification and optimal control applied

to type 1 diabetes. Next Section will show the differences between the Cobelli model used to

simulate the glucose-insulin dynamics in a healthy person and the modified Cobelli model

used to simulate the glucose-insulin dynamics in type 1 diabetic patients. The last model

is used to evaluate different control schemes in the T1DM treatments.

4.3 Adaptive identification and optimal nonlinear control ap-

plied to the Cobelli system used to model the glucose-

insulin dynamics in type 1 diabetic patients

In type 1 diabetic patients, insulin is usually administered by subcutaneous injec-

tion, when the pancreas produces little or no insulin. Insulin is needed to allow glucose to

enter cells to produce energy. Then, to represent the glucose-insulin dynamics in a type
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1 diabetic person, the Cobelli system is adapted to represent the insulin subcutaneous in-

jection with two compartments, S1 and S2 (pmol/kg) (which is a variation of the model

(A.1)–(A.14) described in [MRC07])

Ṡ1 = −(ka1 + kd)S1 + u (4.2)

Ṡ2 = kdS1 − ka2S2 (4.3)

where S1 represents polymeric insulin and S2 monomeric insulin in the subcutaneous tissue,

u (pmol/kg/min) represents injected insulin flow, kd is called degradation constant, ka1 and

ka2 are absorption constants. The parameters used to simulate the glucose-insulin dynamics

in a type 1 diabetic person are shown in Table 4.5 [MRM+09].

Table 4.5: Cobelli system parameters for a type 1 diabetic person.
Parameter Value Unit Parameter Value Unit
dG 60000 mg AG 0.78 dimensionless
VG 1.8 dl TmaxG 0.89 min
TmaxI 2.5 min Gpb 102.5 mg/kg
Gtb 98.29 mg/kg Gmb 55 mg/l
Ilb 4.45 pmol/kg Ipb 1.2745 pmol/kg
I1b 25.49 pmol/l Idb 3.084 pmol/kg
Gp(0) 90 mg/kg Gt(0) 130.29 mg/kg
Gm(0) 50 mg/dl Il(0) 5.8 pmol/kg
Ip(0) 5 pmol/kg I1(0) 24 pmol/l
Id(0) 24 pmol/l X(0) 0 pmol/kg
S1(0) 0 pmol/kg S2(0) 0 pmol/kg
ka1 0.52 dimensionless ka2 0.077 dimensionless
kd 0.0162 dimensionless

4.3.1 Adaptive identifier

Due to this adaptation, the Cobelli model is the basis on which the UVa/Padova

T1DMS has been developed [MRDM+09, DMRC07, KBDMC09]. At the present time, this

model is an FDA-accepted substitute for pre-clinical trials and evaluating certain control

algorithms [MML+14]. This Section proposes an adaptive identifier, which is based in the

Cobelli’s model, and a robust nonlinear optimal tracking control scheme to regulate the

blood glucose levels in type 1 diabetic patients.
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The adaptive polynomial identifier to approximate the glucose-insulin dynamics

in type 1 diabetic patients using the adapted Cobelli model [MRM+09] is proposed with

the following structure

ẋ1 = θ1x1 + θ2x2x3

ẋ2 = θ3x2 + θ4x3

ẋ3 = θ5x2 + θ6x3 + θ7x7 + θ8x8

ẋ4 = θ9x3 + θ10x4 (4.4)

ẋ5 = θ11x4 + θ12x5

ẋ6 = θ13x3 + θ14x6 + θ15

ẋ7 = θ16x7 + u

ẋ8 = θ17x7 + θ18x8

where θ = [θ1 . . . θ18]T are the parameters to be determined by the recursive least-squares

algorithm, x = [x1 . . . x8]T is the state vector, which identifies the glucose-insulin variables

X = [Gp GM Il Ip Id X S1 S2]T . Based only on the plasma glucose concentration mea-

surement, the identification error ε = x2 − GM is used to adapt the parameters θ in (4.4)

through the RLSA given in (2.15). The difference between (4.1) and (4.4) is that the last

one is used to represent the glucose-insulin dynamics in type 1 diabetic patients and the

first one is used to model the dynamics of the glucose-insulin system in healthy people.

4.3.2 Robust optimal tracking control

In order to synthesize the optimal controller and based on the structure of the

adaptive identifier (4.4), the salient feature of the state-dependent representation in the

proposed adaptive identifier is used to obtain the solution to the robust optimal tracking

control. The output of the system is required to track a desired trajectory as close as

possible in an optimal sense and with minimum control effort expenditure [AM90, AF66].

Since the output of the adapted Cobelli model is only the blood glucose level, then it is re-

quired to add only one integrator; hence, the augmented system becomes into (3.43), with

xa = [q x]T = [q x1 x2 x3 x4 x5 x6 x7 x8]T , which can be rewritten as (3.44)–(3.45),
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with

Aa (xa, θ) =



0 1 0 0 0 0 0 0 0

0 θ1 0 θ2x2 0 0 0 0 0

0 0 θ3 θ4 0 0 0 0 0

0 0 θ5 θ6 0 0 0 θ7 θ8

0 0 0 θ9 θ10 0 0 0 0

0 0 0 0 θ11 θ12 0 0 0

0 0 0 θ13 0 0 θ14 0 0

0 0 0 0 0 0 0 θ16 0

0 0 0 0 0 0 0 θ17 θ18



, Ba =
[

0 0 0 0 0 0 0 0 0
]T

,

Ca =
[

0 1 0 0 0 0 0 0 0
]

and Γa =
[
−r Gm 0 0 0 0 θ15 0 0

]T
.

Parameter r is the reference value for the glucose level, Gm is the blood glucose mea-

surement, and the cost functional to be minimized is (3.28). For the augmented system,

the robust optimal controller is given by (3.29).

4.4 Simulation results

The performance effectiveness of the adaptive identifier and the optimal tracking

control scheme, which are applied to the adapted Cobelli system used to represent the

glucose-insulin dynamics in a type 1 diabetic patient, is shown in this subsection.

For the identification process, the bases w and the parameters Ψ, as well as g used

for the RLSA are presented in Table 4.6, which are selected to achieve an adequate on-line

adaptation of the parameters θ in (4.4).

4.4.1 Adaptive identification and optimal control for continuous insulin

pumps and constant reference

The following figures show the simulation results of the adaptive identification

process applied to the adapted Cobelli system used to represent the glucose-insulin dynamics

in type 1 diabetic patients. The adaptive identification and optimal control of the glucose
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Table 4.6: Parameters used in the adapted Cobelli system identification process.
w1 = [x1 x2x3]T Ψ1 = diag{0.05, 0.05, 0.05} g1 = 1× 105

w2 = [x2 x3]T Ψ2 = diag{0.0005, 0.0005} g2 = 1× 106

w3 = [x2 x3 x7 x8]T Ψ3 = diag{0.05, 0.05, 0.05, 0.05} g3 = 5× 106

w4 = [x3 x4]T Ψ4 = diag{0.005, 0.005} g4 = 1× 106

w5 = [x4 x5]T Ψ5 = diag{5, 5} g5 = 1× 104

w6 = [x3 x4 1]T Ψ6 = diag{0.005, 0.005, 0.005} g6 = 5× 104

w7 = [x7]T Ψ7 = diag{0.0005} g7 = 1× 106

w8 = [x8 x9]T Ψ8 = diag{0.0005, 0.0005} g8 = 5× 106

dynamical behavior for type 1 diabetic disease is carried out into the following scenario:

Scenario 1 consists in a one day feed scheme for an adolescent virtual patient,

where the first intake is at 07:00 hrs with 30 grams of carbohydrates, the second intake is

at 09:00 hrs with 50 grams of carbohydrates, the third intake is at 13:00 hrs with 70 grams

of carbohydrates, the fourth intake is at 18:00 hrs with 50 grams of carbohydrates, and the

fifth intake is at 21:00 hrs with 30 grams of carbohydrates. Figure 4.9 shows the simulation

results obtained in the application of the adaptive identifier and the robust optimal control

scheme. Once the identifier (continuous red line) converges to the glucose signal G (dashed

blue line), the optimal tracking control is applied. In this simulation the control signal is

applied at 02:00 hrs and is programmed to regulate the blood glucose signal to the reference

r = 110 mg/dl.
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Figure 4.9: Adaptive identification and optimal tracking control applied to the adapted
Cobelli system. The blood glucose regulation is carried out to a constant reference level
r = 110 mg/dl. Every peak represents the time when the patient was fed.
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Once the reference level is achieved, the optimal control maintains the blood glu-

cose value in that reference even the patient is fed, rejecting the possible disturbances that

could alter the glucose level in the patient. At the times when the patient is fed, it could ap-

preciate that the control scheme maintains the blood glucose into a threshold of ±10 mg/dl

over the reference, avoiding possible hyperglycemia cases. Figure 4.10 depicts the control

signal u for a continuous infusion insulin pump, and represents the continuous exogenous in-

fusion of insulin to maintain the glucose level to the required reference level r = 110 mg/dl.

At the moment when the patient is fed, the rate of insulin infusion increase, allowing to

reject the disturbances caused by different food quantities.
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Figure 4.10: Control signal u that represents the continuous exogenous insulin needed to
regulate the glucose at the constant reference level r = 110 mg/dl.

The bolus dose for food coverage is prescribed as an insulin to carbohydrate ratio.

The insulin to carbohydrate ratio represents how many grams of carbohydrate are covered

or disposed of by 1 unit of insulin. Generally, one unit of insulin will dispose of 12-18 grams

of carbohydrate. This range can vary depending on an individual’s sensitivity to insulin and

the insulin sensitivity can vary according to the time of day, from person to person, and is

affected by physical activity and stress [FMD]. Based on the above, Figure 4.10 shows the

control signal needed to regulate the blood glucose in a type 1 diabetic patient under scenario

1, where to regulate the first intake (30 grams of carbohydrates) an exogenous dose of 2
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insulin units is calculated, in the second intake (50 grams of carbohydrates) an exogenous

dose of 3 insulin units is calculated , and for the third intake (70 grams of carbohydrates)

an exogenous dose of 5 insulin units is calculated. The simulation results confirms that the

control signal matches with the insulin units needed to regulate each intake in the type 1

diabetic patient, i.e., to regulate an intake from 30 grams of carbohydrates an average dose

of 2 units of insulin is needed, to regulate an intake from 50 grams of carbohydrates an

average dose of 3 units of insulin is needed, and to regulate an intake from 70 grams of

carbohydrates an average dose of 5 units of insulin is needed. The simulation results shows

that the signal u determines the insulin infusion needed to regulate the glucose into the

desired reference.

4.4.2 Adaptive identification and optimal control for discontinuous in-

sulin pumps and constant reference

There exist different types of insulin pumps (continuous and discontinuous), so it

is necessary that the control algorithm can be used for both of them. In this subsection is

shown an adaptation from the proposed optimal control scheme to be used in discontinuous

insulin pumps. The simplest way to generate a PWM signal is the intersective method,

which requires only a sawtooth or a triangle waveform and a comparator as shown in

Figure 4.11.

Figure 4.11: Intersective PWM.
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When the value of the reference signal (the red sine wave) is more than the modu-

lation waveform (blue), the PWM signal (magenta) is in the high state, otherwise it is in the

low state [SKSP14]. The intersective method is applied to the continuous control signal u

calculated by the optimal control algorithm. In this sense, the continuous control signal u is

converted to a discontinuous signal with different pulse width, depending on the continuous

control signal dynamics, i.e., if the continuous control signal u exceeds the amplitude of a

proposed triangular signal, the PWM signal is in the high state, otherwise it is in the low

state.

Figure 4.12 shows the simulation results obtained in the application of the PWM

in the continuous control signal u obtained by the optimal control scheme. The established

reference is r = 110 mg/dl; once the reference level is achieved, the optimal control maintains

the blood glucose value in that reference using the control signal uPWM , even when the

patient is fed and rejecting the possible disturbances that could alter the glucose level

in the patient. The regulated glucose signal G shows oscillations around the reference

signal due to the nature of the control signal uPWM . As in the previous case (continuous

control signal u), at the times when the patient is fed, it can be observed that the control

scheme maintains the blood glucose in an average threshold of ±10 mg/dl over the reference,

avoiding possible hyperglycemia cases.
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Figure 4.12: Constant blood glucose regulation using a discontinuous control signal uPWM .
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The control signal uPWM is shown in Figure 4.13, which represents the exogenous

discontinuous insulin doses needed to regulate de glucose level to the required reference

r = 110 mg/dl. The discontinuous control signal shows multiple insulin infusions at different

times determined by the switching frequency and the pulse width is determined by the

value of the control signal u in the moment when the PWM is in a high state. Both signals

are compared showing how the control signal uPWM changes its pulse width depending if

the continuous control signal behaviour u exceeds or doesn’t exceed the established PWM

amplitude. At the moment when the patient is fed, the rate of insulin infusion increase,

allowing to reject the disturbances caused by food.

Figure 4.13: Control signal that represents the discontinuous exogenous insulin needed to
regulate the glucose at the reference r = 110 mg/dl.

4.4.3 Adaptive identification and optimal control for continuous insulin

pumps and variable references

The adaptive identification and optimal control of the glucose dynamical behavior

for type 1 diabetic disease is carried out into the following scenario:

Scenario 2 consists of a one day feed scheme for an adult virtual patient, where

the first intake is at 07:00 hrs with 15 grams of carbohydrates, the second intake is at
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09:00 hrs with 30 grams of carbohydrates, the third intake is at 13:00 hrs with 50 grams

of carbohydrates, the fourth intake is at 18:00 hrs with 30 grams of carbohydrates, and

the fifth intake is at 21:00 hrs with 15 grams of carbohydrates. Figure 4.14 illustrates

the capabilities of the optimal control scheme for regulating the glucose level to different

reference values (r) at different intervals of time (t), i.e., for t < 9 hrs the reference level

is r = 150 mg/dl, and in the same way, for 9 ≤ t < 24 hrs the reference level is r = 110

mg/dl.
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Figure 4.14: Adaptive identification and optimal tracking control applied to the adapted
Cobelli system. The blood glucose regulation is carried out to different reference levels
r = 150 and r = 110 mg/dl.

Figure 4.15 shows the exogenous continuous insulin dose needed to regulate de

glucose level to the required references r = 150 mg/dl and r = 110 mg/dl. The control

signal u shows different insulin dosage which depends of the required level to regulate the

blood glucose. To regulate the glucose into the level r = 150 a continuous insulin infusion of

1 U/ml is needed. When the patient is fed, the optimal control determines a bigger insulin

dose to maintain the glucose into the established level as is shown at 7 and 9 hrs. If the

level reference change to a lower value, is needed more insulin dosage as is appreciated at 12

hrs when the reference level change from r = 150 mg/dl to r = 110 mg/dl, i.e., to maintain

the glucose into the level r = 110 mg/dl is needed a continuous dosage of 2 U/ml and if the

patient is fed, the needed insulin dose is incremented. As in the previous results (control
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for constant reference), to regulate an intake from 15 grams of carbohydrates is needed an

average dose of 1 unit of insulin, to regulate an intake from 30 grams of carbohydrates is

needed an average dose of 2 units of insulin, and to regulate an intake from 50 grams of

carbohydrates is needed an average dose of 3 units of insulin.
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Figure 4.15: Control signal u that represents the continuous exogenous insulin needed to
regulate the glucose at different reference levels r.

4.4.4 Adaptive identification and optimal control for discontinuous in-

sulin pumps and variable references

In Figure 4.16 is shown the simulation results obtained in the application of the

PWM in the continuous control signal u for different reference levels r. The first established

reference level is r = 150 mg/dl, and once the reference level is achieved, the optimal control

maintains the blood glucose value in that reference using the control signal uPWM , even

the patient is fed and rejecting the possible disturbances that could alter the glucose level

in the patient. As in the previous case (PWM control for constant reference), the regulated

glucose signal G shows oscillations around the reference signals r. The control signal uPWM

maintains the oscillations into a threshold of ±10 mg/dl.

Figure 4.17 shows the control signal uPWM for variable reference levels r, repre-

senting the exogenous discontinuous insulin doses needed to regulate de glucose level into
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Figure 4.16: Glucose regulation at different reference levels using the control signal uPWM .

the required reference r = 110 mg/dl and r = 150 mg/dl.

Figure 4.17: Control signal uPWM to achieve different regulation levels r = 150 and 110
mg/dl.

The discontinuous control signal shows multiple insulin infusions at different times

determined by the switching frequency and the pulse width is determined by the value of the

control signal u in the moment when the PWM is in a high state. Both signals are compared

showing how the control signal uPWM changes its pulse width depending if the continuous
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control signal behaviour u exceeds or doesn’t exceed the established PWM amplitude. At

the moment when the patient is fed, the rate of insulin infusion increase, allowing to reject

the disturbances. Considering the application of rapid-acting insulin, which has a initial

acting time at 5 minutes after being injected, insulin pump cartridges can be used for

continuous and discontinuous pumps. Each cartridge contains 1.5 ml of insulin equivalent

to 150 units of insulin with an average use of 28 days [FMD].

4.5 Adaptive identifier and optimal nonlinear control valida-

tion: application to the T1DMS software

4.5.1 T1DMS software

The T1DMS [Gro] is a computer model of the human metabolic system based on

the glucose-insulin dynamics in human subjects, which is described in [MRC07, DMCC06].

The T1DMS technology provides realistic computer simulation of clinical trials using an

in silico population of 300 subjects with parameters derived from triple tracer metabolic

studies that reflect the human metabolism found with type 1 diabetes mellitus. It has been

validated against actual clinical data and is accepted by the FDA as a substitute for pre-

clinical trials in the testing of certain control strategies for T1DM. In Figure 4.18 is shown

the software platform in MATLAB R© based on files and structures to describe simulation

scenarios, hardware (insulin-pumps and glucose sensors), the control algorithm, and the

parameters of the human metabolic models.

4.5.2 Adaptive identifier

The Cobelli system [MRDM+09] used to model the glucose dynamics in type 1

diabetic patients is considered to be an uncertain and a disturbed nonlinear one. In the

previous section the Cobelli model was approximated by an adaptive identifier, therefore,

the proposed identifier will be applied, in this section, to the T1DMS software. The Cobelli

system structure and dynamics were only used to proposed the adaptive identifier model in

the previous section, which is capable to approximate the dynamics of the Cobelli system.
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Figure 4.18: T1DMS software.

The adaptive identifier model is presented through (4.4), where the identification error,

which is used to adapt its parameters θ, is given by ε = x1 −G and G is the signal glucose

delivered by the T1DMS software.

4.5.3 Optimal control applied to the adaptive identifier

Exploiting the characteristics of the proposed SDCF adaptive identifier (4.4), a

state-feedback robust optimal tracking controller (3.29)–(3.31), based on SDCF, is synthe-

sized with the aim to validate and determine the needed insulin to regulate the glucose level

in the T1DMS software. The performance effectiveness of the adaptive identifier model and

the control scheme which are applied to T1DMS software is shown via simulation. For the

identification process, the parameters Ψ and g, are selected with the aim that allow an

adequate on-line adaptation of the parameters θ in (4.4), and are presented in Table 4.6. In

this case the optimal control algorithm is programmed in the T1DMS testing platform as

is shown in Figure 4.19. In Figure 4.20 is shown the proposed optimal nonlinear controller,

which is programmed in the orange block (control law Simulink block).
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Figure 4.19: T1DMS testing platform.

4.5.4 Validation results

Based in the software T1DMS, the identification and control of the glucose-insulin

dynamical behavior for an adolescent with type 1 diabetic disease is carried out into two

scenarios: Scenario 3 shows a 50 grams of carbohydrates which are administrated at the

time 2, 8 and 16 hours in a simulation of 24 hours. The following figure shows the results

where the adaptive identification process and the optimal control scheme are applied to

regulate the glucose level.
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Figure 4.20: Optimal nonlinear control programmed in the T1DMS testing platform.

In Figure 4.21 is shown the glucose regulation into a reference level r = 120 mg/dl.

Scenario 4 shows a 50, 30, and 30 grams of carbohydrates which are administrated at the

time 2, 7 and 18 hours, respectively. The simulation is focused in an adult type 1 diabetic

patient with a 24 hours duration. In this scenario, the glucose regulation is carried out for

a variable reference r = 140 mg/dl for t < 12 hours and r = 120 mg/dl for t ≥ 12 hours.
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Figure 4.21: Glucose regulation into a reference level r = 120 mg/dl applying the adaptive
identifier and the optimal nonlinear control in the T1DMS.

The simulation result is shown in Figure 4.22.

Figure 4.22: Glucose regulation into a variable reference for an adult type 1 diabetic patient.
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The simulation results show an adequate regulation for constant and variable ref-

erences. The adaptive identifier and the optimal tracking nonlinear control scheme are

capable to deal with the different disturbances (factors as eating and healthy habits, age,

weight, etc.), which affect the type 1 diabetic patients.

In the reviewed literature exist different works focused on the type 1 diabetes

control, some of them are evaluated using the T1DMS software e.g., in [KBDMC09] and

[mag]. In a general conclusion, the MPC (proposed in the reviewed works) produces a

better regulation than PID, limiting glucose oscillation significantly with the disadvantage

that the best implementations is reached for individual tuning. Those works present an

adequate regulation compared with the behavior of a healthy person, however, an adequate

behaviour identification is not achieved just as there is no tracking of trajectories. In

comparison with the results presented in this work, the adaptive identification and the

optimal tracking nonlinear control of the glucose-insulin system is achieved regardless the

different disturbances that affect the glucose dynamics in a type 1 diabetic patient (factors

as eating and healthy habits, age, weight, among others).

4.6 Adaptive reduced-order identifier and optimal nonlinear

control validation: application to the T1DMS software

4.6.1 Adaptive reduced-order identifier

The Cobelli system [MRDM+09] used to model the glucose dynamics in type 1

diabetic patients is considered to be an uncertain and a disturbed nonlinear one with order

n and can be approximated by a reduced-order adaptive identifier. The glucose-insulin

dynamics in type 1 diabetic patients depend on various factors as eating and healthy habits,

age, weight, etc.; therefore, it is convenient to deal with those uncertainties and disturbances

by applying an adequate adaptive identification and optimal control scheme. Therefore,

in this Section, the Cobelli system structure and dynamics are only used to proposed a

reduced-order identifier model, which is capable to approximate the essential dynamics of

the Cobelli system used to model the glucose-insulin dynamics in type 1 diabetic patients.
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The adaptive reduced-order identification proposed to model the glucose-insulin

dynamics in the Cobelli system is proposed as follows

ẋ1 = θ1 + θ2x1x3 + θ3x3

ẋ2 = θ4x2 + θ5x3

ẋ3 = θ6x2 + θ7x3 + θ8x4 + θ9x5 (4.5)

ẋ4 = θ10x4 + u

ẋ5 = θ11x4 + θ12x5

where θ = [θ1 . . . θ12]T are the parameters to be adapted on-line by the RLSA (2.15),

x = [x1 . . . x5]T is the state vector which identifies the glucose-insulin variables X =

[G Il Ip S1 S2]T in the Cobelli system. The identification error which is used to adapt

the parameters θ in (4.5) is given by ε = x1 −G.

4.6.2 Optimal control applied to the adaptive reduced-order identifier

Exploiting the characteristics of the proposed SDCF adaptive reduced-order identi-

fier (4.5), a state-feedback robust optimal tracking controller (3.29)–(3.31), based on SDCF,

is synthesized with the aim to determine the insulin for regulating the glucose level in the

identifier (4.5) and hence the glucose level in the T1DMS software. The process of the

identification and control methodology is shown in Figure 4.23.

Figure 4.23: Reduced-order identification and optimal control scheme.
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The performance effectiveness of the reduced-order identifier model and the control

scheme which are applied to T1DMS software is shown via simulation. The validation results

are presented in Appendix B.

4.7 Summary

This chapter has presented the application of the adaptive identification and the

robust optimal tracking control scheme for disturbed and uncertain nonlinear systems. First,

the adaptive identification is applied to the Cobelli system used to model the glucose-

insulin dynamics in a healthy person. Secondly, to introduce the robust optimal tracking

control scheme, an adaptive identifier is proposed to model the Cobelli system which is

adapted to represent the dynamics in type 1 diabetic patients. The proposed adaptive

identifier is presented in a SDCF with the aim to synthesis a nonlinear optimal controller to

regulate the glucose in type 1 diabetes patients. With the purpose of proposing a versatile

control scheme, continuous and discontinuous control signals are developed with the aim

to be used in the different types of insulin pumps that currently exist in the market. The

robustness of the control scheme presented robustness against the disturbances proposed in

the different scenarios for two different virtual patients, achieving an adequate regulation

regardless of whether the regulation is required in constant or variable reference levels.

Thirdly, to demonstrate the effectiveness of the adaptive identification scheme, a reduced-

order identifier is proposed, which uses the RLSA to adapt on-line its parameters based on

the assumption that only the blood glucose concentration G is available to be measured,

which is obtained from T1DMS simulator. The adaptive reduced-order identifier model is

used for control purposes in type 1 diabetic treatments which are based on different scenarios

and virtual patients. Some advantages that presents the proposed adaptive reduced-order

identification are: a) lower dimension, b) some of the variables that are presented in the

Cobelli model are considered as disturbances allowing an order reduction in the proposed

identifier system, c) fewer parameters to be determined. All these characteristics make the

adaptive reduced-order identifier computationally more efficient.





Chapter 5

Final remarks and future research

work

5.1 General conclusions

System identification is about building mathematical models of dynamical nonlin-

ear systems based on observed input-output data. The difficulty with nonlinear systems is

that a unified model structure is generally not possible. This means that besides requiring

a priori information about the order of the system, a priori knowledge about the model

structure is also required. There may be special classes of nonlinear models where the

model structure is linear in the unknown parameters. In this case, the identification may

be done using linear parameter estimation methods even though the model is nonlinear in

the system variables.

This thesis proposed adaptive identifiers (for the BeMM and the Cobelli model) to

approximate the dynamical behavior of unknown nonlinear systems. The proposed adaptive

identifiers are presented in the SDCF form, and whose structure is linear in the unknown

parameters θ. The adaptive identifiers uses a RLSA for the on-line adaptation of its param-

eters such that the identification error is minimized. The following benefits of the proposed

identification scheme can be mentioned: a) the identifier serves to on-line approximate

uncertain and disturbed nonlinear system, using a RLSA to adapt the identifier parame-
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ters, and b) the effectiveness of the proposed adaptive identification methodology have been

successfully validated via computer simulations. This thesis also presents a reduced-order

adaptive identification scheme used to approximate the essential dynamical behaviours of

uncertain and disturbed nonlinear systems. The proposed reduced-order identifier algo-

rithm minimizes the identification error between the real nonlinear system dynamics and

the proposed reduced-order identifier model, using the developed RLSA in the adaptation

process.

An optimal nonlinear control scheme is developed for SDCF nonlinear systems. In

this thesis the optimal control is developed with the aim to reject disturbances that affect

the system and track the desired references, minimizing a meaningful cost functional. As

a theoretical contribution, formal convergence proofs are presented for both schemes, the

adaptive identification and the optimal tracking nonlinear control.

The principal application of the adaptive identifier and the optimal nonlinear con-

trol is focused on the type 1 diabetes treatment. The adaptive identifiers are proposed

for two different mathematical models (BeMM and Cobelli models), which represent the

blood-glucose dynamics in type 1 diabetic patients. The simulation results, for both models,

show an adequate identification of the principal glucose-insulin dynamics. The importance

to use de Cobelli model is that the T1DMS software is based in this model and is used

to validate different control techniques focused on the type 1 diabetes treatment. All the

adaptive identifier models are used for control purposes in type 1 diabetic treatments, under

the assumption that only the blood glucose measurement is considered to be available for

adapting the parameters in the adaptive identification process., i.e., the type 1 diabetic

patients only have access to measure the blood glucose concentration as an indicator to be

used in the control process. A reduced-order adaptive identification scheme is presented

with the aim to demonstrate the versatility and efficacy of the proposed adaptive identifica-

tion scheme. The reduced-order identifier presents lower dimension and different structure

compared with the Cobelli system, where some variables are considered as disturbances

allowing the reduction in the proposed identifier model, resulting in fewer parameters to

be determined. All these characteristics make the reduced-order identifier computationally

more efficient.
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Once the adaptive identifiers are developed, the optimal nonlinear control scheme

is applied in different virtual patients under 6 different scenarios. By adding an integrator

term to the proposed optimal control law, we can deal with possible disturbances affecting

the identifier (factors as eating and healthy habits, age, weight, etc.), resulting in a robust

optimal tracking control scheme. To validate the efficacy of the control scheme, the simu-

lation results show that the regulation of the plasma glucose concentration can be achieved

for different established reference levels. Also the control signal is converted from a con-

tinuous dosage to a discontinuous dosage applying a PWM intersective method. This is an

important contribution because the optimal control algorithm can be used for continuous

and discontinuous insulin pumps.

With the proposed identifier and control schemes it is possible to obtain an ap-

propriate identifier model to use for control purposes and deal with disturbances and un-

certainties that affect the system which in this case are uncertain type 1 diabetic virtual

patients. The proposed adaptive identification and robust optimal tracking control schemes

are developed with the aim to be applied in the type 1 diabetes treatment. The adaptive

identification and the optimal nonlinear control schemes are validated using the T1DMS

software, which is approved by the FDA. As a conclusion both schemes showed an adequate

behavior and promising results.

5.2 Future work

Work is progressing in the implementation of the proposed methodology in real di-

abetic patients under the assumption that the proposed identifier and control schemes could

improve the style life in type 1 diabetic patients allowing them to live as a normal person.

Departing from the adaptive identification and the optimal nonlinear control scheme pro-

posed in this work, new proposals for future research work are proposed below:

1. Implementation

• Include a continuous glucose meter (invasive or non invasive) to obtain real glucose
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measurements and use them in the adaptive identification and optimal nonlinear con-

trol process.

• Use a Field Programmable Gate Array (FPGA) to program the optimal nonlinear

control law.

• Include continuous and discontinuous insulin pumps to verify if the control signals

generated by the optimal control scheme are the needed by the insulin pumps to

deliver the adequate insulin dose in the glucose regulation process.

• Develop a prototype which includes all the previous elements (continuous glucose

meter, the control law programmed in a FPGA and an insulin pump) to close the

control loop and be used in a type 1 diabetic person.

2. Trials

• Determine the adequate protocols to use the prototype in type 1 diabetic patients.

• Work with some health sectors in the application the protocols and the validation of

the prototype.



Appendix A

Cobelli glucose-insulin system

The T1DMS software emulated meal challenges and included a population of 300

in silico subjects (100 adults, 100 adolescents, 100 children). Each virtual subject was rep-

resented by a model parameter vector, which was randomly extracted from an appropriate

joint parameter distribution. The T1DMS has been successfully used by 32 research groups

in academia, as well as by companies active in the field of T1DM; simulation results were

presented by 63 publications in peer-reviewed journals. The UVA/PADOVA T1DMS was

accepted to FDA in 2013 and is used to test and validate control strategies developed for

the type 1 diabetes treatment. This important simulator is based on the Cobelli model and

due to this model is used in the adaptive identifier process proposed in this thesis.

The dynamical behavior for each subsystem in the Cobelli model, which represents

the glucose-insulin dynamics in the human body is summarized as follows.

Glucose Subsystem

Three differential equations are used to describe the glucose dynamics as

Ġp = EGP +Ra− Uii − E − k1Gp + k2Gt (A.1)

Ġt = −Uid + k1Gp − k2Gt (A.2)

Ġ =
Ġp
VG

(A.3)

where G is the plasma glucose concentration, Gp and Gt are glucose masses in plasma

and rapidly equilibrating tissues, and in slowly equilibrating tissues, respectively, EGP is
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the endogenous glucose production, Ra is the glucose rate of appearance in plasma, E is

renal excretion, Uii and Uid are assumed constant and describe the insulin-independent

and insulin-dependent glucose utilizations, respectively. VG is the distribution volume of

glucose, and k1 and k2 are constant parameters.

Insulin Subsystem

Three differential equations are used to describe the insulin subsystem, where the

insulin flows S, coming from the subcutaneous compartments, enters the bloodstream and

is degradated in the liver and in the periphery. The subsystem is described as

İl = −(m1 +m3)Il +m2Ip + S (A.4)

İp = −(m2 +m4)Ip +m1Il (A.5)

İ =
İp
VI

(A.6)

where I is the plasma insulin concentration, Ip and Il are insulin masses in plasma and in

liver, respectively. Term S denotes the insulin secretion, VI is the distribution volume of

insulin and m1, m2, m3 and m4 are model parameters.

Endogenous Glucose Production

The function description of EGP in terms of glucose and insulin signals comes

from the liver, where glucose reserve exists (glycogen). EGP is inhibited by high levels of

glucose and insulin as

EGP = kp1 − kp2Gp − kp3Id − kp4Ipo

where Ipo is the amount of insulin in the portal vein and Id is a delayed insulin signal,

represented as

İ1 = −ki(I1 − I) (A.7)

İd = −ki(Id − I1) (A.8)

for which kp1 is the extrapolated EGP at zero glucose and insulin, kp2 is the liver glucose

effectiveness, kp3 is the parameter governing amplitude of insulin action on the liver, kp4
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is the parameter governing amplitude of portal insulin action on the liver and ki is the

rate parameter accounting for delay between insulin signal and insulin action. EGP is also

constrained to be non-negative.

Glucose Intestinal Absorption

A three-compartment model describes the glucose transit through the stomach

and intestine by assuming the stomach is represented by two compartments (one for solid

and one for triturated phase), while a single compartment is used to describe the gut. The

subsystem is described by

Q̇sto1 = −kgriQsto1 + d (A.9)

Q̇sto2 = −kemptQsto2 + kgriQsto1 (A.10)

Q̇gut = −kabsQgut + kemptQsto2 (A.11)

Qsto = Qsto1 +Qsto2

Ra =
fkabsQgut
BW

where Qsto is the amount of glucose in the stomach (solid, Qsto1 and liquid phase Qsto2),

Qgut is the glucose mass in the intestine, kgri is the rate of grinding and kabs is the rate

constant of intestinal absorption, f is the fraction of intestinal absorption which actually

appears in plasma, BW is the body weight, and Ra is the appearance rate of glucose in

plasma. Term d is the amount of ingested glucose that represents the disturbance caused

by the meal intake [HCC+04a], which is given as

d =
dGAG t e

−t/TmaxI

VG T 2
maxG

where dG is the amount of carbohydrates intake, AG is the carbohydrate bioavailability,

TmaxI is the time-to-maximum insulin absorption, TmaxG is the time-of-maximum appear-

ance rate of glucose in the accessible glucose compartment and VG is the glucose distribution

space. kempt is the rate constant of gastric emptying, which is a nonlinear function of Qsto

described as

kempt = kmax +
kmax − kmin

2
{tanh[α(Qsto − bd)]− tanh[β(Qsto − nd)]}
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where

α =
5

2d(1− b) , β =
5

2dn

with b, n, kmax and kmin as model parameters.

Glucose Utilization (U)

Glucose utilization is made up of two components: 1) the insulin-independent

utilization Uii, which takes place in the first compartment and represents the glucose uptake

by the brain and erythrocytes, and 2) the insulin-dependent component utilization Uid,

which takes place in the remote compartment and depends nonlinearly from glucose in the

tissues. The total glucose utilization U is thus

U = Uii + Uid

where Uii is assumed constant as

Uii = Fcns

while Uid is represented by

Uid =
VmGt
km +Gt

where Vm and Km are assumed to be linearly dependent from a remote insulin X as

Vm = Vm0 + VmxX

Km = km0 + kmxX

which depends from insulinemia in the following way:

Ẋ = −p2uX + p2u(I − Ib) (A.12)

where Vm0, Vmx, km0 and kmx are model parameters, I is plasma insulin, and p2u is the

rate constant of insulin action on the peripheral glucose utilization.
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Insulin Secretion (S)

The model used to describe pancreatic insulin secretion is the proposed in [TBC+01,

BCT+01], given as

İpo = −γIpo + Spo (A.13)

Ẏ =

−α[Y − β(G− h)] if β(G− h) ≥ −Sb
−αY − αSb if β(G− h) < −Sb

(A.14)

Spo =

Y +KĠ+ Sb for Ġ > 0

Y + Sb for Ġ ≤ 0

S = γIpo

where term Spo is the insulin secretion in the portal vein, Sb is the basal insulin secretion, γ

is the transfer rate constant between portal vein and liver, K is the pancreatic responsivity

to the glucose rate of change, α is the delay between glucose signal and insulin secretion,

β is the pancreatic responsivity to glucose, h is the threshold level of glucose above, which

the β-cells initiate to produce new insulin, and Y is the difference between the basal insulin

secretion and the threshold glucose level.

Glucose Renal Excretion (E)

Glucose excretion by the kidney occurs when plasma glucose exceeds a certain

threshold, which can be modeled by a linear relationship with plasma glucose as

E =

ke1(Gp − ke2) if Gp > ke2

0 if G ≤ ke2

where ke1 is the glomerular filtration rate and ke2 is the renal threshold of glucose. The

complete glucose-insulin model is given by system (A.1)–(A.14).





Appendix B

Adaptive reduced-order and

optimal nonlinear control

validation results

For the identification process, the parameters Ψ and g, are selected with the aim

that allow an adequate on-line adaptation of the parameters θ in (4.5), as shown in Table

B.1.

Table B.1: Parameters used in the identification process applied to T1DMS software.

Ψ1 = diag{5000, 5000, 5000} g1 = 4.5× 105

Ψ2 = diag{5, 5} g2 = 1× 103

Ψ3 = diag{0.5, 0.5, 0.5, 0.5} g3 = 50× 103

Ψ4 = diag{50} g4 = 1× 104

Ψ5 = diag{5, 5} g5 = 1× 104

Based in the software T1DMS, the identification and control of the glucose-insulin

dynamical behavior for an adult with type 1 diabetic disease is carried out into two scenarios:

Scenario 5 shows a 50 grams of carbohydrates which are administrated during

the first 2 hours of the simulation. The following figures show the results where the adaptive

identification process and the optimal control scheme are applied to regulate the glucose

level. In Figure B.1 is shown the convergence between the glucose concentration (dashed
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line) obtained from the T1DMS simulator, and its corresponding identification variable

(solid line). The Figure shows a zoom where it is appreciated the identifier and control

convergence. Figure B.2 depicts the control signal u which represents the exogenous insulin

needed to regulate de glucose level to the required reference r = 130 mg/dl.
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Figure B.1: Adaptive identification and control scheme applied to a virtual patient under
the third scenario using the T1DMS simulator.
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Figure B.2: Control signal u applied to the T1DMS simulator to regulate the glucose level
in type 1 diabetic patients under the third scenario.

Scenario 6 shows a 50 grams of carbohydrates which are administrated during

the first 2 hours of the simulation, then, 30 grams of carbohydrates are administrated at 48

hours of the simulation. Based on the glucose signal, which is acquired from the T1DMS,



111

the identification process and the control of the level glucose is performed. The convergence

is appreciated in the zoom of the Figure B.3. In Figure B.3 shows the convergence between

the glucose concentration (dashed line) obtained from the T1DMS simulator, and its corres-

ponding identification variable (solid line), which is regulated to r = 130 mg/dl. Figure B.4

depicts the control signal u which represents the exogenous insulin needed to regulate de

glucose level to the required reference.
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Figure B.3: Adaptive identification and control scheme applied to a virtual patient under
the fourth scenario using the T1DMS simulator.
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Figure B.4: Control signal u applied to the T1DMS simulator to regulate the glucose level
in type 1 diabetic patients under the fourth scenario.
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The results show the effectiveness performance of the proposed adaptive identifi-

cation and optimal tracking control scheme. For both scenarios, the identifier converged,

and the regulation were achieved applying the control scheme, i.e, the identifier and con-

trol methodologies are robust against the disturbances that could be present in the subject

(healthy habits, age, weight, etc.). In this particular case the regulation was achieved to

r = 130 mg/dl for an adult person.
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