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Resumen

Esta tesis, aborda la metodoloǵıa de śıntesis de un controlador óptimo no lineal ro-

busto, con el fin de lograr la estabilización y seguimiento de trayectoria para una clase de

sistemas mecánicos subactuados. La metodoloǵıa de control estada basada en el uso de la

factorización en coeficientes dependientes del estado, en donde la ecuación de Riccati de-

pendiente del estado es usada para resolver el problema de control óptimo; de hecho, este

enfoque podŕıa ser considerado como la extensión no lineal del regulador cuadratico lineal.

A posteriori, con la finalidad de mejorar la robustez del controlador, el control óptimo es

combinado con modos deslizantes, para el diseño de una superficie de deslizamiento ópti-

ma para aquellos sistemas no lineales que puedan ser representados en la llamada forma

regular, después la superficie de deslizamiento es utilizada para sintetizar un controlador

de super-twisting. La efectividad de la técnica de control óptimo no lineal, es demostrada a

través de simulaciones para el caso del Pendubot y a través de simulaciones y resultados de

tiempo real para el caso del péndulo invertido rotacional, siendo ambos sistemas no lineales

de fase no mı́nima. Sin embargo la metodoloǵıa de control puede ser aplicada para el caso

general de sistemas mecánicos subactuados. Cabe mencionar que a diferencia de trabajos

relacionados para el control de sistemas subactuados, esta tesis presenta un mayor rango de

control óptimo de seguimiento de trayectoria para la variable a controlar, lo que es logrado

a través de la solución en ĺınea de las ecuaciones diferenciales derivadas de la ecuación de

Hamilton-Jacobi-Bellman (HJB), cuya solución es suficiente para resolver el problema de

control óptimo no lineal.

Palabras clave: Control no lineal, sistemas subactuados, control óptimo, modos deslizan-

tes, seguimiento de trayectoria.





Abstract

This thesis addresses the synthesis of a robust nonlinear optimal control methodology

for achieving stabilization and trajectory tracking in underactuated mechanical system

(UAMS). The control methodology is based in using the state-dependent coefficient fac-

torization (SDCF) for nonlinear systems, in which the state-dependent Riccati equation

SDRE is associated to solve the nonlinear optimal control; indeed, this approach can be

described as the nonlinear extension of the linear quadratic regulator. A posteriori, with

the aim of enhancing the control strategy robustness, the optimal controller is combined

with sliding mode control for designing an optimal sliding surface for those nonlinear sys-

tems which can be presented into the so-called regular form, then the sliding surface is

used to synthesize a super-twisting controller. The effectiveness of the nonlinear optimal

control technique is proven via simulations for the Pendubot, and through simulations and

in real time for the rotary inverted pendulum, being both systems non-minimum phase and

nonlinear ones; nonetheless, the control methodology can be applied for general UAMS. It

is worth mentioning that compared to related works for controlling UAMS, this thesis pre-

sents a larger operation range of the optimal trajectory tracking for the controlled variable,

which is achieved by solving on-line the associated differential equations derived from the

Hamilton-Jacobi-Bellman (HJB) equation, whose solution is sufficient to solve the nonlinear

optimal control.
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Chapter 1

Introduction

Throughout history, man has been a protagonist in the development of new tech-

nologies, which have allowed him to satisfy his own needs or even guarantee his own

existence. New technological developments have created difficult engineering challen-

ges that require the use of sophisticated theoretical concepts, which are developed

based on the contributions of great mathematicians, scientists and engineers. A con-

trol system is an interconnection of components forming a system configuration that

will provide a desired system response [Dorf08]. Control systems have taken a leading

role in the advent of new technologies, where the control of mechanical systems is

currently among of the most active fields of research due to diverse applications of

mechanical systems, from the development of production tools to means of transpor-

tation and defense systems. As a result, the efforts of engineers and scientist together

led to the creation of different control schemes (e.g. linear control, optimal control,

adaptive control and nonlinear control theory). More recently, robust control theory

has been added to the control theories because of an inevitable need to deal with

the presence of parametric uncertainties and external disturbances of the systems on

real-life applications [Saber01].

The optimal control is one particular branch of modern control theory, which has

1



2 Chapter 1: Introduction

the objective of determine the control signals that will cause a process to satisfy the

physical constraints and at the same time minimize or maximize a performance in-

dex [Kirk04]. Linear optimal control is a special sort of optimal control, where the

plant is assumed to be linear as well as the controller, which is obtained by working

with quadratic performance indices. Methods that achieve linear optimal control are

named linear quadratic regulator (LQR) [Anderson90]. A solution to the optimal con-

trol problem is obtained by using the method of dynamic programming developed by

Bellman [Bellman57], which leads to a nonlinear partial differential equation named

the Hamilton-Jacobi-Bellman equation (HJB) [Kirk04], whose solution in general is

complicated for nonlinear systems. The application of this technique is well stablished

in solving the optimal control problem for linear systems, where its formulation re-

sults in the solution given by the differential Riccati equation (DRE); hence, optimal

control for linear systems is considered to be a solved problem; however, the nonlinear

optimal control is an open issue.

In this sense, the state-dependent Riccati equation (SDRE) [Cloutier02], extends

the LQR approach to the nonlinear case by allowing the matrices involved to be fun-

ctions of state variables and transforming an input-affine nonlinear system into the so-

called state-dependent coefficient factorized (SDCF) nonlinear systems [Cloutier97],

[Ornelas-Tellez13],[Cimen10], a linear like representation for nonlinear systems used

to solve the associated HJB equation. In essence, the SDCF nonlinear control techni-

que is a systematic way for synthesizing optimal nonlinear feedback controllers, which

mimics the controller synthesis as done for the linear case, by exploiting the nature

of the nonlinear behavior throughout the state space. Notice that by using the SDCF

technique the system is not being linearized around an equilibrium point, therefore

the nonlinear system is completely considered; thus, the controller has a larger ope-

ration range over the system in comparison with the linear controllers; in addition,

the nonlinear inherit nature of the system is exploited.
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In the other hand, sliding mode control (SMC) [Fridman02],[Utkin92], provides ro-

bustness properties against uncertainties in system parameters and external distur-

bances; however, sliding modes has a drawback: due to their associated discontinuous

control laws, high frequency switching may lead to actuator damage for the plant, or

may cause system resonance via excitation of neglected unmodeled dynamics, these

dangerous vibrations are called the “chattering-effect” [Bartolini98]. An ideal sliding

mode does not exist in practice since it would imply that switches can work at an

infinite frequency. The sliding mode controllers are typically designed for the worst

scenario, in which the system uncertainties and external disturbances are dominant

[Utkin92]. For such circumstance the stability is the main concern of the controller;

nevertheless, there are systems where it is possible to known or to be sure about some

of their parameters or structure; thus, the system becomes more or less transparent

in a certain degree and the nominal part of the system will be dominant, therefore

the robustness is no longer the only concern of the controller, also it is of concern

to design a controller able to minimize a criteria as it can be the convergence time,

the control effort or the energy expenditure. In this sense, optimal control provides

a systematic design procedure able to design a controller according to a performance

index; however, optimal control theory requires a complete knowledge of the system,

hence this type of controllers are not considered to be robust in the sense of para-

metric uncertainties. A possible solution to this problem is to introduce the so-called

optimal sliding mode control (OSMC) [Feng16]. A controller based on optimal sliding

modes, allows to take advantage of a robust controller that does not depend on the

parameters of the system to be controlled, along with the advantages of an optimal

controller which allows to minimize a certain performance index [Utkin92].

1.1. Problem Statement

For this thesis, it is of interest the controller design for dynamical systems, whe-
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re the nonlinear components can not be neglected, for instance the motion control

of underactuated mechanical systems [Mullhaupt09], actuated by DC drives, where

besides the intrinsic nonlinear operation of the DC motor, a linear model of the me-

chanical system cannot capture the behavior of the system under fast motions. This

thesis deals with the problem of nonlinear optimal control for a class of underactuated

mechanical systems, which have a highly nonlinear model. This kind of systems are of

interest, due to the great variety of nonlinear phenomena that present. Indeed most

cases, these systems are not feedback linearizable, and an internal instability appears,

which is the reflection of an input-output property namely in the presence of what is

called the non-minimum phase property; therefore, sophisticated control methodolo-

gies need to be employed [Mullhaupt09]. In this sense, the nonlinear optimal control

theory is proposed in order to deal with the non-minimum phase problem associated

with this class of nonlinear systems. The class of underactuated mechanical systems is

rich in both applications and control problems, in this sense inverted-pendulum type

systems (e.g. the Pendubot and the rotary inverted pendulum), have been extensively

used in order to test novel control strategies.

1.2. Background

As there is an increase in the applications of the control systems, there is an in-

crease in the requirements for the designed controller, which means that these systems

become more and more complex. Nonlinear control is an important area in control,

due to the fact that virtually all systems are nonlinear, it is possible to obtain appro-

ximated linear models of the systems, however; when the required operation range is

large, a linear model may result inaccurate or even inadequate. In this sense nonlinear

controllers take a leading role because they are capable of handling nonlinearities in

large operation ranges. It cannot be said, that there exist a single nonlinear control

strategy which might be considered to be the best of all, there are pros and cons
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between them, and the use of one particular control scheme depends mainly from the

plant the be controlled and the desired requirements. Within the popular nonlinear

control strategies, the followings can be mentioned:

� Feedback Linearization [Kokotovic97], Transforms the nonlinear system into

an equivalent linear system by introducing a feedback control law; however,

feedback linearization may result in wasteful controllers and also in nonrobust

systems, due to the fact that feedback linearization often destroys stabilizing

nonlinear terms and replaces them with destabilizing ones.

� Takagi-Sugeno Fuzzy Controller [Chang12], It is a design procedure for

nonlinear controllers, based on the representation of a nonlinear system into

a set of linear subsystems, where by doing so, it is possible to apply a linear

control strategy for each subsystem, which are related by a fuzzy implication

rule. The Takagi-Sugeno fuzzy models are said to be universal approximators,

however; this approach implies the linearization of the system and then the use

of a linear controller.

� Sliding Mode [Utkin92], Is a nonlinear control method which alters the dy-

namics of a nonlinear system by the application of a discontinuous control law.

The main advantages of this method are: the robustness against a large class

of perturbations or model uncertainties and the need for a reduced amount of

information in comparison to classical control techniques.

� Lyapunov Redesign [Khalil02], Refers to the design of a state feedback

controller based on the prior knowledge of the Lyapunov function, which is

used to stabilized the system, one of the major disadvantages for this method is

the difficulty of finding the associated Lyapunov function for a nonlinear system.

� Backstepping [Khalil02], Is a nonlinear control technique for the design of

stabilizing controllers, where the system is built from subsystems that radiate
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out from a irreducible subsystem which can be stabilized using some other

method.

� Neural Networks [Nguyen03], Refers both to a methodology in which the

controller itself is a neural network, and to a methodology in which controllers

are designed based on a neural network model of the plant.

� Optimal Control [Kirk04], Deals with the problem of finding a control law

for a given system, such that a certain optimality criterion is achieved. Optimal

control requires a complete knowledge of the system to be controlled as well as

the measurement of the state variables.

The applied controllers for inverted-pendulum like systems are chiefly based on swing-

up and balancing controllers [Saber01], as a subset of the balancing controller, it can

be considered the tracking and stabilization problem. Within the latest related works

for this class of underactuated mechanical systems, it is worth mentioning the follo-

wing:

In [Furuta93], a new type of pendulum on a rotating arm fixed to a rotating shaft and

a swing up controller is presented. This work supports the statement that inverted

pendulum systems have been used for the verification of designed control systems and

control laboratory experiments in control education. Later as seen in [Spong95], the

Pendubot is introduced as a mechatronic device for use in control engineering edu-

cation and for research in nonlinear control and robotics. In this work the Pendubot

is considered to be a mechatronic system such as the Acrobot and the the inverted

pendulum of Furuta. Different nonlinear control strategies have been applied to this

class of systems, in [Erdem01], the SDRE is used to regulate the Pendubot, results

show that SDRE control outperforms the LQR control. However, the SDRE contro-

ller proposed solves a nonlinear algebraic Riccati equation at each sampling time,

which requires of a great computational effort for real time implementations. In the
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work carried out by [Cai03], by combining optimal control theory and linear regula-

tor theory, the Takagi-Sugeno fuzzy methodology is used in order to obtain a global

stable fuzzy controller applied to the Pendubot. Later, in more recent works such as

done by [Rivera08], the nonlinear optimal regulation for the Pendubot is presented.

The theory is revisited for nonlinear systems presented into the so-called nonlinear

systems regular form. In [Serrano-Heredia11], the problem of nonlinear regulation of

the Pendubot is treated by means of sliding mode continuous control action combi-

ned with block control. Similar work as done by [Galicia12], presents an approach to

solve the output regulation problem for a class of nonlinear discrete non-minimum

phase systems, based on feedback linearization and sliding mode control applied to

the Pendubot.

For the rotary inverted pendulum, in [Jadlovská13], the application of a nonlinear

optimal control design technique based on the SDRE on generalized (n link) pen-

dulum systems is presented; however, the nonlinear optimal tracking control is not

considered. In [Dang14] and [Farooq15], an experimental study of optimal control

Takagi-Sugeno fuzzy controller for a rotary inverted pendulum is presented. More

recently in [Kathpal17] by the used of SimMechanicsR© and MatlabR© toolbox, a LQR

control is implemented to the rotary inverted pedulum.

1.3. Motivation

The interest of controlling underactuated mechanical systems (UAMS), is moti-

vated by a large number of applications which present this phenomenon; given the

nature of the system such as robotics systems, aerospace and marine vehicles, or

together with a design optimization factor, which is reflected in a simpler mecha-

nical design, derived into an economic profit in the manufacturing process. Given

the complexity of underactuated mechanicals systems, they represent a challenge for



8 Chapter 1: Introduction

any control scheme, which makes them attractive for the use of novel nonlinear and

optimal control strategies.

1.4. Hypotesis

It is possible to design a nonlinear optimal controller, in order to stabilize and

track time varying reference signals for a class of underactuated mechanical systems,

where the controller deals with the problem of non-minum phase associated with this

class of systems. In addition, it is possible to design a nonlinear optimal sliding mode

controller able to reject parametric uncertainties and external disturbances.

1.5. Objectives

1.5.1. General Objective

Synthesis of a novel robust control strategy, by combining optimal control and

sliding modes, applied a class of underactuated mechanical systems, which is able to

deal with the underactuation and non-minimum phase problems, in order to track a

time varying reference signal, and at the same time, to provide of robustness properties

to the controller against unknown parameters and external disturbances.

1.5.2. Particular Objectives

� Design of a nonlinear optimal tracking control scheme for a class of UAMS based

on the SDCF technique.

� To combine the nonlinear optimal control theory with the sliding modes in order

to provide of additional robustness properties to the optimal controller.

� Real-time application of the nonlinear optimal controller.
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1.6. Contributions

As a result of this thesis, the following contributions are given:

� The novel optimal sliding mode controller, which is extended to the nonlinear

case for a class of nonlinear systems which can be represented in the so-called

regular form, by combining sliding modes with the nonlinear optimal control

theory based on the state-dependent coefficient factorized form (SDCF), in or-

der to obtain an optimal manifold used for a sliding mode controller, this is

considered to be the main contribution of the thesis.

� Nonlinear optimal tracking control error analysis. An analysis of the convergence

of the error for the optimal nonlinear control based on the state dependent

coefficient factorization, which determines that the error is ultimately bounded.

� Nonlinear optimal control design based on the state-dependent coefficient facto-

rized form, extended to the tracking problem for a time-varying reference signal,

which is applied to the Pendubot and for the rotary inverted pendulum.

� It is worth remarking that with the proposed methodology, a wider tracking

range for the controlled variable is achieved in contrast with related works.

� The nonlinear optimal tracking control for the rotary inverted pendulum, which

stabilizes the system in the complete operational range of the system.

� Simulations and real-time experimental results to exhibit the effectiveness of

the design nonlinear controller for the rotary inverted pendulum.

1.7. Thesis Outline

This thesis is organized as follows:
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� Chapter 2. Details the concepts associated with nonlinear systems, as well as

a modeling tool for open kinematic chains, finally the dynamic equations for a

class of mechanical systems are obtained.

� Chapter 3. Describes the design of nonlinear optimal and sliding modes con-

trollers, after that a nonlinear control scheme which combines the capabilities

of both optimal control and sliding modes is presented.

� Chapter 4. Presents the application of the designed controllers in chapter 3, for

a class of underactuated mechanical systems, the effectiveness of the designed

controllers is proven for the Pendubot and the rotary inverted pendulum by

simulation and real-time experimental results.

� Chapter 5. Concludes this thesis, where the final comments of this work are

presented, also proposals for future work are proposed.

Figure 1.1, depicts the thesis outline and the application of the control strategies

developed within this thesis.
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Figure 1.1: General flow chart of the modeling and control techniques developed
within this thesis.



Chapter 2

Modeling of Mechanical Systems

In this chapter the concept of nonlinear systems is introduced; then the main con-

cepts related with the mathematical modeling principles for open kinematic chains,

are developed based on the Euler-Lagrange equations for the generalized case, ap-

plied to robotic systems with n links. Finally, the use of the modeling methodology

is applied for the Pendubot and the Rotary Inverted Pendulum, deriving into the

equations of motion for the these UAMS in the state space framework.

2.1. Nonlinear Systems

Physical systems are inherently nonlinear in nature, thus all control systems are

nonlinear to certain extent [Slotine91]. A nonlinear system can usually be represented

by a set of differential equations in the form

ẋi = fi (xi, up)

yi = hi (xi, up)
(2.1)

where xi ∈ Rn denotes the state variable, up ∈ Rm are the input variables, and

y ∈ Rp is the output vector that comprises the variables of particular interest, fi

and hi are smooth maps of appropriate dimension. A particular value of the state

12
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vector is also called a point because it corresponds to a point in the state-space,

and the number of n states is called the order of the system. Nonlinearities can

be classified as inherent (natural) and intentional (artificial) [Slotine91], where the

inherent nonlinearities are those which comes with the system's hardware and motion

(e.g. centripetal forces in rotational motion or the Coulomb's friction). On the other

hand intentional nonlinearities are those which are introduced by the designer.

Equilibrium Points of Nonlinear Systems

An important concept related with nonlinear systems is the concept of equili-

brium points. Nonlinear systems frequently have more than one equilibrium point

[Slotine91].

Definition 1 [Khalil02] A point x = x∗ in the state-space is said to be an equilibrium

point of (2.1), if it has the property that whenever the state of the system starts at

x∗, it will remain at x∗ for all future time, for autonomous systems, the equilibrium

points are given by the real roots of the equation

f(x∗) = 0. (2.2)

Lyapunov Stability

Given a control system, the first and most important question about its various

properties is whether it is stable [Slotine91]. There are several well-developed techni-

ques for analyzing nonlinear feedback systems, as they are: the phase-plane method

[Isidori95], the Popov's criterion and passivity analysis [Ortega98]. For this thesis the

Lyapunov stability analysis will be used, which is stated in the following theorem:

Theorem 1 [Khalil02] Let x = 0 be an equilibrium point for (2.1) and D ∈ Rn be a

domain containing x = 0. Let V : D → R, be a continuous differentiable map such

that

V (0) = 0 ∧ V (x) > 0 ∈ D − {0} (2.3)
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V̇ (x) ≤ 0 ∈ D (2.4)

then x = 0 is stable. If

V̇ (x) < 0 ∈ D − {0} (2.5)

then x = 0 is asymptotically stable. �

The basic philosophy of the Lyapnunov's method is the mathematical extension of

a fundamental physics observation: if the total energy of a mechanical system (or

electrical) is continuously dissipated, then the system whether linear or nonlinear,

must eventually settle down to an equilibrium point [Slotine91]. Qualitative, a system

is described as stable, if starting the system somewhere near its desired operating

point, implies that it will stay around the point ever after.

2.1.1. A Class of Nonlinear Systems SDCF

Extended linearization [Friedland.96], also known as apparent linearization [Wernli75],

or state-dependent coefficient factorization (SDCF) [Cloutier02],[Ornelas-Tellez13] is

the process of factorizing a nonlinear system into a linear-like structure, which con-

tains state-dependent matrices. From (2.1), consider a class of input-affine nonlinear

system described as

ẋ = f(x) +B(x)u, x(t0) = 0

y = h(x)
(2.6)

where x ∈ Rn is the state vector, u ∈ Rm is the control input and y ∈ Rp is the

system output; the functions f(x), B(x) and h(x) are sufficiently smooth to make

the system well-defined, and it is assumed that they can be decomposed in the state-

dependent coefficient factorization. Under the assumptions f(·) ∈ C1(Ω) and f(0) =

0, a continuous nonlinear matrix-valued function exist such that f(x) = A(x)x and

h(x) = C(x)x, respectively, [Shamma03]. Then, system (2.6) can be rewritten as
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ẋ = A(x)x+B(x)u

y = C(x)x.
(2.7)

Remark 1 From now on system (2.7) will be named in this thesis as the SDCF

nonlinear system, and it will be used for analysis and control purposes.

Remark 2 The factorizations A(x)x and C(x)x are not unique; then, in order to

obtain well-defined control schemes, these factorizations must be chosen in order

to fulfilled the state-dependent controllability and observability properties as seen in

[Hammett98] and [Ornelas-Tellez13].

Associated with the SDCF, the following definitions are stated:

Definition 2 [Antsaklis07] A state x1 is called reachable if there exist an input that

transfers the state of the system x(t) from the zero state to x1 in a finite time T . In

addition a state x0 is called controllable if there exist an input that transfers the state

from x0 to the zero state in finite time T .

Definition 3 [Antsaklis07] The concept of observability refers to the ability of deter-

mining the present state x0 of a given system, from the knowledge of the current and

past outputs y(t) and present inputs u(t).

Definition 4 [Cimen10] The SDCF is a stabilizable parametrization of the nonlinear

system in a region Ω if the pair [A(x), B(x)] is pointwise stabilizable (respectively

controllable) in the linear sense ∀ x ∈ Ω.

Definition 5 [Cimen10] The SDCF is a detectable parametrization of the nonlinear

system in a region Ω if the pair [C(x), A(x)] is pointwise detectable (respectively

observable) in the linear sense ∀ x ∈ Ω.
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The SDCF controllability matrix must satisfy

rank{C(x)} = n ∀ x (2.8)

with

C(x) =
[
B(x) A(x)B(x) . . . An−1(x)B(x)

]
(2.9)

while the observability matrix must fulfill

rank{O(x)} = n ∀ x (2.10)

O(x) =


C(x)

C(x)A(x)
...

C(x)An−1(x)

 . (2.11)

2.1.2. Nonlinear Systems Regular Form

For a given nonlinear system, which is not represented into a canonical form [Su83],

with the purpose of analyzing certain properties of the nonlinear system or in order to

design a nonlinear controller (e.g. sliding mode, block control, feedback linearization

or backstepping), it is often more convenient to transform the nonlinear system (2.6)

via diffeomorphism (nonlinear transformation) into the so-called nonlinear system

regular form [Loukianov80]. Consider an appropriate state vector such that system

(2.6) can be presented as

ẋ1 = f1(x1, x2) +B1(x1, x2)u

ẋ2 = f2(x1, x2) +B2(x1, x2)u (2.12)

where x1 ∈ Rn−m, x2 ∈ Rm, u ∈ Rp, f1(x) and f2(x) are smooth functions of appro-

priate dimension. If it is possible to find a nonlinear transformation ϕ(x) applied to
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(2.12) such that B1(x1, x2) = 0, then system (2.12) is represented in the transformed

coordinates by two blocks as

ẋ′1 = f1(x′1, x
′
2)

ẋ′2 = f2(x′1, x
′
2) +B2(x′1, x

′
2)u.

(2.13)

Hereafter a system like (2.13) will be called the regular form of system (2.12), the

regular form (2.13) consists of two blocks, where the first block does not depend on

the control input, and the dimension of the second block coincides with the dimension

of the control. In order to find the nonlinear system regular form, a vector of new

state variables x′ = (x′1, . . . , x
′
n)T is introduced, which is related with the original

variables by a diffeomorphism ϕ(x), where x′1 = ϕ(x) and x′2 = x2 [Loukianov80].

Definition 6 [Khalil02] Let ẋ=f(x), where f : Rn → Rn. Consider the change of

variables z = ϕ(x), where ϕ(0) = 0 and ϕ : Rn → Rn is a diffeomorphisim in the

neighborhood of the origin; that is, the inverse map ϕ−1(·) exists, and both ϕ(·) and

ϕ−1(·) are continuously differentiable.

Considering the existence of the diffeomorphism ϕ(x), the equations with respect to

x′1 are given by

ẋ′1 =

[
∂ϕ(x)

∂x

]
f(x) +

[
∂ϕ(x)

∂x

]
B(x)u. (2.14)

Notice that (2.14) will not depend on the control input if the diffeomorphism ϕ(x) is

the solution of the matrix equation in partial derivates[
∂ϕ(x)

∂x

]
B(x) = 0. (2.15)

The solution of (2.15), is reduced to the problem of finding the m− dimensional

integral manifold that correspond to the Pfaffian system [Hermann83],[Loukianov80].
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2.2. Non-minimun Phase Nonlinear Systems

Linear non-minimum phase systems have been extensively studied in literature

[Isidori13]. Non-minimum phase is an input-output property and is linked to the po-

sitions of the zeros of a transfer function; if there is existence of zeros with positive

real part, the linear system is said to be non-minimum phase between the correspon-

ding input-output pairs [Mullhaupt09]. However, the problem with the position of the

zeros in the transfer function, is that they, can not be extended to the nonlinear case.

Then for the nonlinear case, the non-minimum phase property is defined in terms of

the existence of the so-called zero dynamics. Prior to the introduction of the concept

of zero dynamics it is necessary to define the concept of relative degree.

Relative Degree

Definition 7 [Isidori95] The nonlinear system is said to have relative degree r̄, 1 ≤

r̄ ≤ n in a region D0 ⊂ D if

LgL
i−1
f h(x) = 0, i = 1, 2, . . . , r̄ − 1; LgL

r̄−1
f h(x) 6= 0. (2.16)

Where LgLf denotes the Lie derivate of the functions g(x) and f(x). In other words

the relative degree r̄ of an input affine nonlinear system (2.6), given the input u and

the output y = h(x), is the number of times the output should be differentiated before

the input explicitly appears.

Zero Dynamics

Consider the nonlinear system (2.6) with r̄ strictly less than n, such that Lgh(x) 6=

0 ∀x. Then system (2.6) is transformed via diffeomorphism as

ż = f(z, ξ)

ξ̇ = q(z, ξ) + b(z, ξ)u

y = ξ

(2.17)
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in this coordinates the state ξ produces a zero output under a certain input, then the

system is constrained to obey

ż = f(z, 0). (2.18)

This phenomenon leads to the concept of zero dynamics and non-minimum phase

[Isidori13]. The nonlinear system (2.6) is said to be globally non-minimum phase if it

has a relative degree r̄, such that n < r̄, and if (2.18) have a globally asymptotically

stable equilibrium point at z = 0. on the other hand when the dynamics of (2.18) are

unstable, system (2.6) is said to be non-minimum phase.

2.3. Mechanical Systems Description

Classical mechanics is the branch of physics which describes the motion of bo-

dies. This field of study is divided in two subsets, statics and dynamics. The first one

studies the rigid bodies under the equilibrium conditions, and dynamics studies the

bodies under movement and the causes of movement. At the same time, the dynamics

is divided in two subsets the kinematics and kinetics. The major interest of kinematics

is the study of the geometric characteristics of movement and the kinetic studies the

causes of movement related with the applied forces [Norton98].

In order to understand the kinematic chains modeling, it is necessary to state the

following definitions:

Definition 8 (Mechanism) [Norton98] A mechanism is a device which transforms

motion into some desirable pattern.

Definition 9 (Link) [Norton98] A link is a rigid body which possesses at least two

nodes, which are points for attachments to other links.
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Definition 10 (Joint) [Reinholtz98] A joint is a connection between two or more

links which allows some motion.

Definition 11 (Kinematic Chain) [Reinholtz98] A kinematic chain refers to an as-

sembly of rigid bodies connected by joints to provide constrained motion.

2.3.1. Types of Motion

Pure Rotation

A body has pure rotational motion when one point of the body is attached and

all the other points rotate around it.

Pure Translation

Translational motion is the movement of object without a change of orientation

relative to a fixed point, as opposed to rotational motion, in which the object is

turning about an axis.

Complex motion

A complex movement is a combination of the simultaneous rotational and trans-

lational movements.

2.3.2. Degrees of Freedom DOF

Any mechanical system can be classified according to the number of degrees of

freedom (DOF) which it posses. The DOF is equal to the number of independent

parameters which are needed to uniquely define its position at any instant of time

[Norton98]. In order to determine the DOF for a mechanism, it is necessary to consider

the number of links, joints and their relations between them. The DOF of a mechanism

is determined by applying the Gruebler condition [Gruebler17] stated as follows:
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M̄ = 3L̄− 2J̄ − 3Ḡ (2.19)

where M̄ is the degree of freedom of the mechanism, L̄ is the number of links, J̄ the

number of joints and Ḡ the number of grounded joints.

2.3.3. Generalized Coordinates

Generalized coordinates, are called to any set of numerical parameters that serve

to uniquely describe the configuration of a mechanism, with a finite number of degrees

of freedom. The minimum number of generalized coordinates to define the state of

a system is known as independent coordinates, so the coordinates can be absolute

(where the system’s motion is referenced to a fixed point) or relative to another

element of the mechanism.

Example 1 Figure 2.1, shows a mechanical arm with two degrees of freedom, which

can be determined using the Gruebler 's equation. The system is composed by three

links, two joints and a fixed reference link therefore the DOF is computed as follows:

M̄ = 3(3)− 2(2)− 3(1) = 2. (2.20)

Thus, the number of generalized coordinates is equal to the DOF of the system. For

Figure 2.1, the coordinates (x1, y1) and (x2, y2) define the position of center of mass

for links 1 and 2 respectively, and (θ1, θ2) define the links angle. Therefore, the 6

parameters set can be described by d1 and d2, which represent the distance to the

centre of mass for each link.

x1 = d1cosθ1 (2.21)

y1 = d1sinθ1 (2.22)

x2 = L1cosθ1 + d2cosθ12 (2.23)
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y2 = L1sinθ1 + d2sinθ12 (2.24)

where θ12 = θ1 + θ2.

Figure 2.1: Generalized coordinates for a 2 DOF mechanical arm

2.4. The Euler-Lagrange Model

An accurate model of robotic systems is useful for the design of motion control sys-

tems and analysis of mechanical design. There exist two different approaches in order

to obtain the mathematical model for open kinematic chains or manipulator robots,

these approaches are the recursive Newton-Euler approximation [Yang16] based on

a force balance and the mechanical equilibrium conditions of the body under study,

and the second approach is the Euler-Lagrange model based on an energy or passivity

model of the system [Ortega98], both are equivalent as both describe the dynamic

behavior of the robotic motion. The most important reason for singling out the study

of the Euler-Lagrange systems is that they capture a large class of contemporary

engineering problems, specially some which are intractable with linear control tools

[Ortega98]. An Euler-Lagrange system is a system whose motion is described by the

Euler-Lagrange equations, from the mathematical point of view the Euler-Lagrange

equations are a set of nonlinear differential equations with a certain specific structure.
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Euler-Lagrange equations are important because they are the outcome of a powerful

modeling technique which describes the behavior of a large class of physical systems

[Ortega98]. Prior to the introduction of the Euler-Lagrange equations, the following

concepts must be stated:

Kinetic energy for a n−link robotic chain

Definition 12 [Vidyasagar89] The kinetic energy of an object is the energy which

it possesses due to its motion. In classical mechanics the kinetic energy K of a non-

rotating object is defined as

K =
1

2
mv2 (2.25)

where m is the mass of the body and v its speed.

The kinetic energy of a system conceived as a kinematic chain made up n links is

defined as follows:

K =
1

2
q̇T

n∑
i=1

[
miJvi(q)

TJvi(q) + Jwi(q)
TRi(q)IiRi(q)

TJwi(q)
]
q̇ (2.26)

where q is the vector of generalized coordinates of the system, the mass of the link

i is denoted by mi, Ii is the inertia matrix, Ri is transformation matrix between the

body attached frame and the inertial frame, Jωi and Jvi are the corresponding Jaco-

bian matrices for the angular acceleration and velocity respectively, for appropriate

Jacobian matrices it is follows that

vi = Jvi(q)q̇ ωi = Jω(q)q̇ (2.27)

in a compact form the expression (2.26) can be reduced into

K =
1

2
q̇TD(q)q̇ (2.28)

where D(q) ∈ Rn×n is the generalized inertia matrix which satisfies D(q) = D(q)T > 0

[Ortega98]
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Potential energy for a n−link robotic chain

Definition 13 [Vidyasagar89] The potential energy of a body is the energy that it

possesses as a result of it's position, in classical mechanics the kinetic energy P of

an object is defined as

P = mgh (2.29)

where m is the mass of the body under study, g is the gravitational term and h is

the altitude of the object with respect to their inertial reference frame. The potential

energy P for a kinematic chain is described as

Pi = gT rcimi. (2.30)

where g is a vector which represents the gravitational force in the inertial reference

frame, rci are the coordinates of the centre of mass for the link i, and mi is the mass

of the link i, such that the potential energy of the system can be represented as

P =
n∑
i=1

Pi =
n∑
i=1

gT rcimi. (2.31)

2.4.1. The Euler-Lagrange Equations

A mechanical system with n degrees of freedom with generalized coordinates

q ∈ Rn and external applied forces Q ∈ Rn , it is described by the Euler-Lagrange

equations as

d

dt

∂L
∂q̇k
− ∂L
∂qk

= Q (2.32)

where the Lagrangian function L is defined as the difference between the kinetic and

the potential energy of the system as

L = K − P . (2.33)
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The Euler-Lagrange model consider three types of external forces: the control actions,

dissipation and the interaction of the system with the environment, assuming that

the controls enter linearly as Mu ∈ Rn, where M is a column matrix relating the

external inputs to the generalized coordinates, u ∈ Rn is the control vector, which

represents the applied input torques τk, dissipative forces are of the form ∂F
∂q̇

, where

F is the Rayleigh dissipation function which satisfies

q̇
∂F
∂q̇

(q̇) ≥ 0. (2.34)

In summary the external forces presented in the Euler-Lagrange systems are defined

by

Q = −∂F
∂q̇

(q̇) +Mτk. (2.35)

Therefore the Euler-Lagrange equation is defined as

d

dt

(
∂L
∂q̇k

(q, q̇)

)
− ∂L
∂qk

(q, q̇) +
∂F
∂q̇

(q̇) =Mτk. (2.36)

Once the kinetic and the potential energy are obtained and the Lagrangian is found,

then the task is to compute various derivates in order to get the equations of motion,

after going through this process, from (2.32 ) and (2.35), the Euler-Lagrange equation

is obtained into it's matrix form

D(q)q̈ + C(q, q̇)q̇ +G(q) + F (q̇) = τk (2.37)

where D(q) is the proper inertia matrix of the corresponding robotic configuration,

C(q, q̇) is the vector of Coriolis and centripetal torques, G(q) is the gravitational

terms matrix, F (q̇) is the vector of viscous frictional terms, τk is the vector of applied

torques. Hereinafter, a mechanical system described by (2.37) will be called an Euler-

Lagrange system.



26 Chapter 2: Modeling of Mechanical Systems

2.4.2. Actuated and Underactuated Mechanical Systems

According to the structure of matrixM from (2.35), it is convenient to distinguish

two classes of Euler-Lagrange systems: fully actuated and underactuated mechanical

systems, described as follows:

Fully-actuated Mechanical System

Definition 14 [Ortega98] An Euler-Lagrange system is said to be fully actuated if

it has equal number of degrees of freedom as available control inputs, otherwise, if

rank(τk) < n it is said that the system is underactuated.

Underactuated Mechanical System

A Mechanical system satisfying the Euler-Lagrange equation (2.32), with rank(τk) <

n is called an underactuated mechanical system, which have fewer actuators than

configuration variables. This property does not allow the exact feedback linearization

[Mullhaupt09], therefore sophisticated control techniques must be applied to this cer-

tain class of systems, which is the main topic of this thesis. Underactuated mechanical

systems appear in a wide range of applications including robotics, aerospace systems,

marine systems applications and locomotion. The interest of controlling UAMS is

motivated mainly by the following reasons [Spong95]:

� Dynamics of the system: There are systems that by their very nature are un-

deractuated and need to be controlled, such as helicopters, airplanes, space

vehicles, submarine vehicles and locomotion systems for robots.

� Design optimization: For practical purposes in many mechanical systems it is

possible to carry out a process of optimization in the design, which allows to

reduce the number of actuators, this way has a reduction of the manufacturing

costs and the weight of the system. As in the case of manipulator robots with

flexible links or satellites with two propellers.
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� Failure of actuators: In a fault tolerant control scheme, it is possible to have a

control strategy where due to the failure of an actuator, the system can continue

operating but underactuated, where a control action compensates the actuator

failure and the system continues operating, as could be the case in aerospace

systems.

Keeping in the palm of the hand a rod of a certain length in it's vertical position

as seen in Figure 2.2, it is an example of an underactuated system. This system has

5 degrees of freedom (three corresponding to the translational movements along the

axes x, and, z and two rotational movements characteristic of the wrist). Examples

of less obvious underactuated systems are bipedal robots, submarine vehicles, mani-

pulators with flexible structure, missiles, satellites, space rockets, among others. The

underactuated mechanical systems involve more challenges than the fully actuated

mechanical systems because its control inputs are less that their degrees of freedom.

Figure 2.2: Underactuated system

2.4.3. Examples of Underactuated Mechanical Systems

The following are examples, among a vast of underactuated mechanical systems,

which will be used within this thesis for analysis and control purposes.
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The Pendubot

Figure 2.3: Pendubot

The Pendubot [Spong95], shown in Figure 2.3, is a mechatronic device used in control

engineering education and for research in nonlinear control and robotics. This device is

a two-link robot with an actuator at the shoulder but not at the elbow. The Pendubot

inertia matrix is defined as

D(q) =

 J1 + 2J3cos(q2) J2 + J3cos(q2)

J2 + J3cos(q2) J2

 . (2.38)

Where Ji us the inertia moment for the i-th arm respectively, and the internal dyna-

mics are

q̈1 = − J3sin(q2)

J2 + J3cos(q2)
q̇2

1. (2.39)

Notice that these dynamics are well defined and unstable therefore this systems are

considered to be nonminimum phase [Mullhaupt98].

Pendubot Equations of Motion

Consider the following Pendubot's representation as seen in Figure 2.4
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Figure 2.4: Schematic diagram of the Pendubot

with m1 and m2 as the mass of the first and second link of the Pendubot respectively,

l1 and l2 are the length of the first and second link respectively, lc1 and lc2 are the

distance to the center of mass of link one and two respectively, g is the gravitational

term, I1 and I2 are the moment of inertia of the first and the second link respectively

about its centroids, µ1 and µ2 are the viscous drag coefficients for the first and second

joint of the system, q1 and q2 are the actuated and underactuated joints respectively

and τ is the applied input torque. The dynamics of the Pendubot can be derived

from the Euler-Lagrange principle (2.33) and (2.32), as seen in [Vidyasagar89], where

q =
[
q1 q2

]T
∈ R2 are vectors of generalized coordinates; q1 and q2 are actuated and

unactuated variables, and τk =
[
τ 0

]T
is the control input. From the Pendubot's

inertia matrix (2.38) and (2.36), the equations of motion for the system become

τ − q̇1µ1 = gθ4cos(q1) + q̈2(θ2 + θ3cos(q2)) + q̈1(θ1 + θ2 + 2θ3cos(q2))

+ gθ5cos(q1 + q2)− 2q̇1q̇2θ3sin(q2)− q̇2
2θ3sin(q2)

−q̇2µ2 = q̈2θ2 + q̈1(θ2 + θ3cos(q2)) + gθ5cos(q1 + q2) + q̇2
1θ3sin(q2)

(2.40)
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where the masses and link lengths are grouped into five system parameters θ1, . . . , θ5

as [Eom15], with θ1 = m1l
2
c1+m2l

2
1+I1, θ2 = m2l

2
c2+I2, θ3 = m2l1lc2, θ4 = m1lc1+m2l1

and θ5 = m2lc2.

Then the nominal Pendubot's dynamics (2.40) can be rewritten in the matrix form

(2.37), where D(q) is the inertia matrix, C(q) is the vector of Coriolis and centripe-

tal forces, G(q) is the gravitational terms matrix, and F (q̇) is the vector of viscous

frictional terms, given respectively as

D(q) =

 D11 D12

D21 D22

 ; C(q, q̇) =

 C1

C2



G(q) =

 G1

G2

 ; F (q̇) =

 F1

F2


where D11 = θ1 +θ2 +2θ3cos(q2), D12 = θ2 +θ3cos(q2), D21 = θ2 +θ3cos(q2), D22 = θ2,

C1 = −2θ3q̇1q̇2sin(q2)− θ3q̇
2
2sin(q2), C2 = θ3sin(q2)q̇2

1, G1 = θ4gcos(q1) + θ5gcos(q1 +

q2) + θ6cos(q1), G2 = θ5gcos(q1 + q2), F1 = µ1q̇1 and F2 = µ2q̇2. Thus the system

(2.40) can be described as

 D11 D12

D21 D22

 q̈1

q̈2

+

 C1

C2

+

 G1

G2

+

 F1

F2

 =

 τ

0

 . (2.41)

Pendubot SDCF

With state x ∈ R4 of the origin and u ∈ R1, y ∈ R1. Choosing (x1 x2 x3 x4)T =

(q1 + π
2

q2 q̇1 q̇2)T as the state vector, with u = τ as the control input and x2

as the system output, the system (2.41) can be represented into the space state form

(2.6), and then apply the state dependent coefficient factorization. Therefore, the

Pendubot's Euler-Lagrange mode into the SDCF is described as
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ẋ =


0 0 1 0

0 0 0 1

a31 a32 a33 a34

a41 a42 a43 a44




x1

x2

x3

x4

+


0

0

b3

b4

u (2.42)

y =
[

0 1 0 0
]

x1

x2

x3

x4


where the entries of matrices A(x) and B(x) are defined as follows:

a31 = α
sin(x1)

x1

(
gθ2θ4 − gθ3θ5cos

2(x2)
)

a32 = α
sin(x2)

x2

(θ2θ3x
2
3 + 2θ2θ3x3x4 + θ2θ3x

2
4 + θ2

3x
2
3cos(x2)− gθ3θ5cos(x1)cos(x2))

a33 = −αµ1θ2

a34 = α (µ2θ2 + µ2θ3cos(x2))

a41 = α
sin(x1)

x1

(−gθ2θ4 − gθ3θ4cos(x2) + gθ1θ5cos(x2) + gθ3θ5cos
2(x2))

a42 = α
sin(x2)

x2

(−θ1θ3x
2
3 − θ2θ3x

2
3 − 2θ2θ3x3x4 − θ2θ3x

2
4 + gθ1θ5cos(x1)

− 2θ2
3x

2
3cos(x2)− 2θ2

3x3x4cos(x2)− θ2
3x

2
4cos(x2) + gθ3θ5cos(x1)cos(x2))

a43 = α (µ1θ2 + µ1θ3cos(x2))

a44 = α(−µ2θ1 − µ2θ2 − 2µ2θ3cos(x2))

α =
−1

(θ2 + θ3cos(x2))2 + θ2(θ1 + θ2 + 2θ3cos(x2))

b3 =
θ2

θ1θ2 − θ2
3cos

2(x2)

b4 = − θ2 + θ3cos(x2)

θ1θ2 − θ2
3cos

2(x2)
.
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Notice that the entries of A(x) are always continuous and bounded in x since

ĺım
x→0

sin(x)

x
= 1.

2.4.4. The Rotary Inverted Pendulum

The rotary inverted pendulum or Furuta pendulum [Furuta93] is a system compo-

sed by two rigid links, a rotary arm pivot attached actuated at the base and a simple

pendulum which is underactuated. Consider the following rotary inverted pendulum

model shown in Figure 2.5. The inertia matrix for the rotational inverted pendulum

is given by (2.43) as seen in [Mullhaupt98].

Figure 2.5: Rotary inverted pendulum

D(θ, α) =

 J1 + J3cos(2α) −J4sin(α)

−J4sin(α) J2

 (2.43)

where Ji us the inertia moment for the i-th arm respectively. From the inertia matrix,

this system has a singularity when α 6= 0 the zero dynamics are θ̈ = 2cos(α)θ̇2, if

the system happens to be in the position where α = 0 or α = π with zero velocity,

singularity occurs and the system becomes uncontrollable [Mullhaupt98].
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Equations of Motion

Consider a system composed by two rigid links, a rotary arm pivot attached to

the actuated link at the base, and a simple pendulum, which is underactuated, as

shown in Figure 2.6.

Figure 2.6: Schematic diagram of the Rotary Inverted Pendulum

where lr is the rotary arm length, lp the pendulum length, lp
2

Pendulum length to the

center of mass, mp the pendulum mass, Jp and Jr are the moment of inertia of the

pendulum link and the moment of inertia of the rotary arm link respectively, τ1 is

the applied input torque, θ and α are the rotary arm angle and the pendulum angle

respectively. The dynamics of the rotary inverted pendulum are derived from the

Euler-Lagrange principle (2.33) and (2.32), where q =
[
qi qj

]
=
[
θ α

]T
∈ R2

is a vector of the so-called generalized coordinates of the system, where θ and α are

the actuated and underactuated variables respectively, τk =
[
τ1 0

]T
is the control

input, g is the gravity vector, rci is a vector of generalized coordinates of the center

of mass of the i, j links, mi,j is the mass of the i, j links, D(q) is the inertia matrix.

Thus the system equations of motion are given by
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τ −Brθ̇ =

(
mpL

2
r +

1

4
mpL

2
p −

1

4
mpL

2
pcos(α)2 + Jr

)
θ̈

−
(

1

2
mpLpLrcos(α)

)
α̈ +

(
1

2
mpLpLrsin(α)

)
α̇2

+

(
1

2
mpL

2
psin(α)cos(α)

)
θ̇α̇

(2.44)

−Bpα̇ = −1

2
mpLpLrcos(α)θ̈ − 1

2
mpLpgsin(α)

+

(
Jp +

1

4
mpL

2
p

)
α̈− 1

4
mpL

2
pcos(α) sin(α)θ̇2.

(2.45)

Then the nominal dynamics of the rotary inverted pendulum can be rewritten into

the Euler-Lagrange matrix form as (2.37), with

D(q) =

 D11 D12

D21 D22

 ; C(q, q̇) =

 C1

C2

 ;

G(q) =

 G1

G2

 ; F (q̇) =

 F1

F2



where: D11 = ∆1 + ∆2−∆2cos(α)2, D12 = −∆3cos(α), D21 = −∆3cos(α), D22 = ∆4,

C1 = 2∆2sin(α)cos(α)θ̇α̇ + ∆3sin(α)α̇2, C2 = −∆2sin(α)cos(α)θ̇2, G1 = 0, G2 =

−∆5gsin(α), F1 = Beqθ̇, and F2 = Bpα̇, with: ∆1 = mpL
2
r + Jr, ∆2 = 1

4
mpL

2
p,

∆3 = 1
2
mpLpLr, ∆4 = 1

4
mpL

2
p + Jp, ∆5 = 1

2
mpLp.

Rotary Inverted Pendulum SDCF

Consider the rotary inverted pendulum equations of motion (2.44) and (2.45), notice

that the control variable for the nonlinear model is the applied torque; however, for

the real-time implementation, the torque is not directly controlled , the servo motor
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input voltage is the controlled variable; therefore, the applied torque at the base of

the rotary arm is generated by the servo motor gear-box given by

τ =
ηgKgηmkt(Vm −Kgkmθ̇)

Rm

(2.46)

where ηg is the gear box efficiency, Kg high-gear total gear ratio, ηm is the motor

efficiency, kt motor current-torque constant, Vm is the applied voltage and Rm is

the armature resistance (The servo motor gear-box model is described in detail in

appendix C). Substituting (2.46) into (2.44), the Euler-Lagrange model of the system

is defined as follows:

ΛVm = D11θ̈ +D12α̈ + C1 +G1 + F1

0 = D21θ̈ +D22α̈ + C2 +G2 + F2

(2.47)

where

Λ =
ηgKgηmkt

Rm

(2.48)

Then defining a state vector x =
[
θ α θ̇ α̇

]T
, it is possible to represent the

nonlinear equations of motion into the nonlinear input affine representation as (2.6),

where the system output is defined as h(x) = x1 + x2. Therefore the Rotary Inverted

Pendulum can be represented into the SDCF form as

ẋ =


0 0 1 0

0 0 0 1

a31 a32 a33 a34

a41 a42 a43 a44




x1

x2

x3

x4

+


0

0

b3

b4

u (2.49)
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h(x) =

 1 0 0 0

0 1 0 0



x1

x2

x3

x4

 . (2.50)

Where the entries of matrix A(x) and B(x) are defined as follows:

a31 = 0

a32 = Γ
sin(x2)

x2

(−θ3θ4x
2
4 + gθ3θ5cos(x2)− 2θ2θ4x3x4cos(x2) + θ2θ3x

2
3cos

2(x2))

a33 = −Γ(Beqθ4)

a34 = −Γ(Bpθ3cos(x2))

a41 = 0

a42 = Γ
sin(x2)

x2

(gθ1θ5 + gθ2θ5 + θ1θ2x
2
3cos(x2) + θ2

2x
2
3cos(x2)− θ2

3x
2
4cos(x2)− gθ2θ5cos

2(x2)

− 2θ2θ3x3x4cos
2(x2)− θ2

2x
2
3cos

3(x2))− θ2
3x

2
4cos(x2) + gθ3θ5cos(x1)cos(x2))

a43 = −Γ(Beqθ3cos(x2))

a44 = Γ(−Bpθ1 −Beqθ2 +Beqθ2cos
2(x2))

Γ =
1

(θ1 + θ2)θ4 − (θ2
3 + θ2θ4)cos2(x2)

b3 = Λ
θ4

(θ1 + θ2)θ4 − (θ2
3 + θ2θ4)cos(x2)2

b4 = Λ
θ3cos(x2)

(θ1 + θ2)θ4 − (θ2
3 + θ2θ4)cos(x2)2

Beq =

[
ηgηmK

2
gktkm

Rm

+Br

]
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2.5. Conclusions

In this chapter the main concepts related to the dynamics and modeling of open

cinematic chains are presented, making use of the methodology known as the Euler-

Lagrange model, from which the equations of motion for the Pendubot and rotary

inverted pendulum are obtained. Finally different representations that can be given for

a class of nonlinear systems, such as the state dependent coefficient factorization and

the regular form, are stated. The state-space models obtained for both the Pendubot

and the rotary inverted pendulum. Particularly the SDCF will be used in the incoming

chapters for control purposes.



Chapter 3

Nonlinear Optimal Control and

Sliding Modes Design

In this chapter, two control strategies for nonlinear systems are presented; the

optimal control based on SDCF and the sliding modes. Then it is proposed the design

of a control algorithm which combines the capabilities of optimal control in the sense

of minimization of a performance index, along with the sliding modes, which allows

to add elements of robustness to the controller.

3.1. Optimal Control for SDCF Systems

The state-dependent Riccati equation (SDRE) [Cimen10], entails factorization of

the nonlinear dynamics of a system into the product of a matrix-valued function (de-

pendent on the state), and a state vector. By doing so the SDRE algorithm fully cap-

tures the nonlinearities of the system, and in the context of optimal control, it allows

the minimization of a quadratic performance index, having a linear-like structure. As

a result of the SDCF of the involved matrices, the non-unique parametrization of the

system gives extra degrees of freedom, which can be used in order to enhance the con-

troller performance. Therefore, the SDRE solves online the optimal problem. SDRE

38
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has emerged as a general design methodology, which provides a systematic means of

designing nonlinear controllers observers and filters, this include missiles, aircraft, un-

manned aerial vehicles, satellites, spacecraft ships, under water vehicles, biomedical

systems and robotics [Cimen10]. According with the existence of the SDRE solution

the following considerations are stated:

Remark 3 If matrices A(x), B(x), C(x) are bounded and piecewise continuous and,

if the pair
[
A(x), C(x)

]
, is observable, then the solution of the SDRE is positive

definite and upper bounded.

Remark 4 If the pairs
[
A(x), B(x)

]
and

[
A(x), C(x)

]
are stabilizable and

detectable ∀x, then the SDRE has a unique and asymptotically stable solution.

The above considerations are derived from the properties of linear systems in terms

of the Riccati equation as seen in [Kalman59], and for this thesis, these properties are

considered to be inherited to SDCF systems due to their linear-like structure.

3.1.1. Optimal Control for Nonlinear Systems Stabilization

Problem statement

Consider a nonlinear system described by (2.6) and (2.7). The objective of the

nonlinear optimal stabilizing controller is to provide an optimal control law u∗(x) such

that it stabilizes the system (2.7). The nonlinear optimal controller is introduced by

the following theorem:

Theorem 2 [Ornelas-Tellez13] Assume that system (2.7) is state-dependent contro-

llable and state-dependent observable, then it is possible to compute an optimal control

law u∗(x) such that it provides asymptotic stability of the system in close loop:

u∗(x) = −R−1BT (x)P (x)x (3.1)

which minimizes the following performance index described by
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J =
1

2

∫ ∞
0

(
xTQx+ uTRu

)
dt (3.2)

where Q and R are symmetric and positive define weighting matrices, and P (x) is the

solution of State-dependent Riccati matrix differential equation (SDRE) given by

Ṗ (x) = −Q+ P (x)B(x)R−1BT (x)P (x)− AT (x)P (x)− P (x)A(x) (3.3)

With the boundary condition P (x(∞)) = 0 �

According with Theorem 2, the stabilization of (2.7) is achieved.

3.1.2. Nonlinear Optimal Tracking Control

Nonlinear optimal tracking control [Ornelas-Tellez13], extends the nonlinear opti-

mal control methodology by using the SDCF in order to track time varying reference

signals. The problem considered is the infinite-horizon tracking control [Carlson87] of

nonlinear systems, derived from the state-regulation problem [Athans07], which has

the objective of “keeping the state near zero”, then the minimum principle is used in

order to obtain the necessary conditions for the optimal control.

Problem Statement

Consider a nonlinear system affine in the input as (2.6), which can be described

into the SDCF given by (2.7). Considering the output of the system y and a refe-

rence signal r, the objective of the nonlinear optimal tracking control is to make the

system output to track the desired reference signal and at the same time minimize a

performance index given as

J =
1

2

∫ ∞
0

(eTQe+ uTRu)dt (3.4)
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with a trajectory tracking error defined as

e = r − y

= r − C(x)x (3.5)

where r is the reference to be tracked. Vector r can be considered to be the desired

output for the system, as seen in [Athans07]; Q and R are symmetric and positive

definite matrices. The optimal tracking scheme deals with the problem of determining

an optimal control law u(x)∗ which forces the output of system (2.7) to track a desire

reference r, in the optimal sense of minimizing a given performance index (3.4), so

that the tracking error e is minimized [Athans07]. It is assumed that the optimal

control law u(x)∗ is not constrained in magnitude, thus there may be cases in which

the control signal is extremely large; therefore, there exist a tradeoff between the

control expenditure and the error magnitude; in one hand it is desired to keep the

error “small”, but on the other hand it is desired not to use unnecessary “large”

controls. Matrix Q is a matrix weighting the performance of the state vector, while R

is a matrix weighting the control effort expenditure, if more importance is given to the

system state performance, a higher value for Q could be selected or reducing the value

of R. Matrix Q can be also selected as Q(x) in order to gain flexibility on the entries

of Q, in such a way that they can be defined as error functions in order to weight

the controller perfomance in terms of the error. Different methodologies are reported

in which the optimal values of matrix Q are computed, as seen in [Ornelas-Tellez14]

where a particule swarm optimization method is used, a different approach might be

the use of the so-called Bryson rules for linear systems, thus the entries of matrix Q

might be selected as

qn =
α

β|e|+γ
. (3.6)

Therefore, it is guaranteed that for “small” errors the element of matrix Q will be a
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constant defined by ĺıme→0(qn) = α
γ
, and for the case of “large” errors ĺıme→∞(qn) = 0,

which reduces the control input expenditure. The following theorem establishes the

solution to the optimal tracking control problem for SDCF systems:

Theorem 3 [Ornelas-Tellez13] Assume that system (2.7) is state-dependent contro-

llable and state-dependent observable, then the nonlinear optimal control law

u∗(x) = −R−1BT (x) (P (x)x− z(x)) (3.7)

achieves trajectory tracking for system (2.7), along a desired trajectory r, where P (x)

is the solution of the SDRE and z(x) is the solution of a vector differential equation,

respectively, where

Ṗ (x) = −CT (x)QC(x) + P (x)B(x)R−1BT (x)P (x) (3.8)

−AT (x)P (x)− P (x)A(x)

ż(x) = −
[
A(x)−B(x)R−1BT (x)P (x)

]T
z(x)− CT (x)Qr (3.9)

ϕ̇ = −1

4
zTB(x)R−1B(x)z(x)− rTQr

with boundary conditions P (x(∞)) = 0, z(x(∞)) = 0, and ϕ(∞) = 0. �

Here, for the sake of completeness, a sketch of the proof for Theorem 3 is presented.

Details of the proof can be seen in [Ornelas-Tellez13].

The controller (3.7)-(3.9) is derived from the optimality conditions on the Hamiltonian

function, which is defined as

H(x, u, t) =
1

2
(r − C(x)x)TQ(r − C(x)x) +

1

2
uTRu+ (3.10)

∂V (x, t)

∂x
f(x) +

∂V (x, t)

∂x
g(x)u
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where V (x, t) is the optimal value function. The Hamiltonian is used to attain the

control law u by applying the maximum principle condition

∂H(x, u, t)

∂u
= Ru+BT (x)

∂V (x, t)

∂x
= 0 (3.11)

and solving for u, then the optimal control law results in

u∗ = −R−1BT (x)
∂V (x, t)

∂x
(3.12)

For the optimal control solution based on (3.10) and the optimal control law (3.12)

the following HJB equation must be satisfied

0 =
∂V (x, t)

∂t
+

1

2
rTQr − rTQC(x)x

+
1

2
xTCT (x)QC(x)x− 1

2

∂V T (x, t)

∂x
B(x)

×R−1BT (x)
∂V (x, t)

∂x
+
∂V T (x, t)

∂x
A(x)x.

(3.13)

One way of solving the Hamilton-Jacobi-Bellman (HJB) equation is to propose a

solution such that (3.11) satisfies itself [Kirk04]; hence, V (x) is proposed as a quadratic

form, as seen in [Athans07]

V (x, t) =
1

2
xTPx− zT (x)x+ ϕ P = P T > 0. (3.14)

Using (3.14) and (3.13), equations (3.8) and (3.9) are obtained. The optimal value

of the function V (x) also serves as a Lyapunov function, which along with the de-

tectability property guarantees asymptotic stability of the optimal feedback systems

[Kokotovic97].

3.1.3. Nonlinear Optimal Tracking Control Error Analysis

This subsection provides the tracking error analysis of the optimal controller based

on the SDCF proposed in [Ornelas-Tellez13], the following analysis results in the
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conclusion that the tracking error is globally uniformly ultimately bounded, unlike

the stability analysis proposed in [Ornelas-Tellez13], for this analysis it is considered

the differential vector (3.9), which implies the tracking error for the controller (3.7).

This result is considered to be a contribution of this thesis. Consider an input affine

nonlinear system as (2.6) under the following assumptions:

Assumption 1 The functions f(x) and h(x) can be decomposed into the state-dependent

coefficient factorization (SDCF) as

f(x) = A(x)x, h(x) = C(x)x. (3.15)

Assumption 2 The factorization of A(x), B(x) and C(x) fulfill the state-dependent

controllability and observability tests

rank{C} = n ∀ x rank{O} = n ∀ x. (3.16)

Under assumptions 1 and 2, the following analysis can be carried out for the tracking

error, defined as

ε = x− r. (3.17)

The close-loop behavior of the system (2.7) under optimal tracking control law (3.7)

is described by

ẋ =
[
A(x)−B(x)R−1BT (x)P

]
x+B(x)R−1BT (x)z

= Ā(x)x+ B̄(x)z
(3.18)

where

Ā(x) =
[
A(x)−B(x)R−1BT (x)P

]
B̄(x) = B(x)R−1BT (x).

(3.19)

From (3.17), (3.18) and (3.9), it follows that the dynamic of the error function results

in



3.1. Optimal Control for SDCF Systems 45

ε̇ = Ā(x)x+ B̄(x)z − ṙ

= Ā(x)(ε+ r) + B̄(x)z(x)

= Ā(x)ε+ Ā(x)r + B̄(x)z(x)− ṙ

ż(x) = −Ā(x)T z(x)− CTQr.

(3.20)

In order to analyze the stability of the transformed system (3.20) in terms of the

tracking error (3.17), let consider the following Lyapunov candidate function

V = εTP (t)ε+ zTMz (3.21)

where P (t) and M are symmetric positive define matrices. Assume that P (t) satisfies

the matrix differential equation [Khalil02]

− Ṗ (t) = P (t)Ā+ ĀTP (t) +Qz (3.22)

with

0 < c1I ≤ P (t) ≤ c2I, ∀t ≥ 0 (3.23)

and Qz a symmetric and positive definite matrix satisfying

Qz ≥ c3I > 0. (3.24)

Thus, the time derivate of V is calculated as
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V̇ = εT Ṗ ε+ ε̇TPε+ εTP ε̇+ zTṀz + żTMz + zTMż

= εT Ṗ ε+ (Āε+ B̄z + Ār − ṙ)TPε+ εTP (Ā+ B̄z + Ār − ṙ)

+ zTṀz + (−ĀT z − CTQr)TMz + zTM(−ĀT z − CTQr)

= εT Ṗ ε+ εT ĀTPε+ εTPĀε+ 2zT B̄TPε+ 2(Ār − ṙ)TPε

+ zTṀz − zT ĀMz − zTMĀT z − 2rQCMz

= εT
[
Ṗ + ĀTP + PĀ

]
ε+ zT

[
Ṁ − ĀM −MĀT

]
z + 2zT B̄TPε

+ 2(Ār − ṙ)TPε− 2rQCMz.

(3.25)

From (3.8) and (3.22), it follows that

V̇ = −ε
[
CTQC + PB̄P

]
ε− zTQzz + 2zT B̄TPε

+ 2(Ār − ṙ)TPε− 2rQCMz (3.26)

Setting an augmented state defined as follows:

xa =

 ε

z

 , (3.27)

expression (3.26) can be rewritten in terms of the augmented state xa as follows:

V̇ = −
[
εT zT

] CTQC + PB̄P −B̄TP

−B̄TP Qz

 ε

z


+
[

2(Ār − ṙ)TP −2rQCM
] ε

z


= −xTa Q̄xa + Exa.

(3.28)
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By defining

Q̄ =

 CTQC + PB̄P −B̄TP

−B̄TP Qz

 (3.29)

E =
[

2(Āxss − ẋss)TP −2xssQCM
]

(3.30)

then (3.28) becomes

V̇ = −xaQ̄xa + Exa. (3.31)

Through Q and Qz matrix Q̄ can be selected as a continuous bounded positive definite

differentiable matrix such that

0 < c4I ≤ Q̄ ≤ c5I ∀x (3.32)

then (3.31) can be expressed as

V̇ ≤ −c4(Q̄)||xa||2+||E|| ||xa|| (3.33)

Rewriting (3.31) by adding a convenient zero

V̇ ≤ −c4(Q̄)||xa||2+||E|| ||xa||+θc4(Q̄)||xa||−θc4(Q̄)||xa||

= −(1− θ)c4(Q̄)||xa||2+(||E||−θc4(Q̄)||xa||)||xa||

= −(1− θ)c4(Q̄)||xa||2

∀||xa||≥
||E||
θc4(Q̄)

(3.34)

where 0 < θ < 1. That is, the tracking error is globally uniformly ultimately bounded.

Remark 5 Notice that as far as the values of Q and Qz are greater the convergence

quote for the state xa will be smaller, therefore the greater the values for Q and Qz

are, the lower the tracking error will be, according to [Khalil02]. The convergence

quote for the state xa is defined as follows:
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Figure 3.1: Tracking error bounded region

Υ =
||E||
θc4(Q̄)

√
c2

c1

. (3.35)

That is, the tracking error remains bounded in a region Υ, as seen in Figure 3.1.

�

3.1.4. Robust Nonlinear Tracking Controller

As a result of the tracking error analysis, it was possible to demonstrate that

nonlinear optimal tracking control based on the SDCF, bounds the error function

in a certain region Υ. Then in order to reduce the tracking error it possible to add

an integral action to the optimal controller that would enhance the controller per-

formance and reduce the tracking error. This approach is called the robust nonlinear

tracking controller, also this approach is more feasible for a real-time implementation.

Consider a nonlinear disturbed system described as follows:

ẋ = f(x) + g(x)u+D

y = h(x) (3.36)
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where D is a disturbances term, which is considered to be known. Consider that

system (3.36) can be decomposed into the SDCF resulting in

ẋ = A(x)x+B(x)u+D

y = C(x)x. (3.37)

The main purpose of the robust nonlinear optimal tracking controller is that the

controller allows the system(3.37) output to track a desired reference signal as close

as possible in the presence of disturbances in the optimal sense of minimizing a

performance index. Defining the trajectory tracking error as (3.5), an integral term

is introduced such that disturbances can be rejected defined as

Φ̇ = −e (3.38)

where Φ ∈ Rp is a vector of integrators for a system with p outputs. Therefore an

augmented system can be stated, as seen in [Diaz-Sepulveda16], which includes an

integrator defined as

ẋa =

 Φ̇

ẋ


=

 −e

A(x)x+B(x)u


=

 C(x)x− r

A(x)x+B(x)u


(3.39)

with xa = [Φ, x]T , therefore the augmented system (3.39) can be rewritten as
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ẋa = Aa(xa) +Ba(xa)u+D

ya = Ca(xa)xa (3.40)

where

Aa(xa) =

 0 C(x)

0 A(x)

 ; Ba(xa) =

 0

B(x)

 ;

Ca(xa) =
[

0 C(x)
]

; Da =

 −r
0

 .
(3.41)

With the addition integral term, the performance index is defined as

J =
1

2

∫ ∞
t0

(ΦTQiΦ + eTQe+ uTRu)dt (3.42)

where Qi is a parameter weighting matrix with the integral gains. The solution of the

nonlinear robust optimal tracking control is established as the following theorem.

Theorem 4 Assume that system (3.37) is state-dependent controllable and state-

dependent observable, then the nonlinear optimal control law

u∗(xa) = −R−1BT
a (xa)(P (xa)xa − za(xa)) (3.43)

ensures trajectory tracking control for system (3.37) over the desired reference r, where

P (xa) is the solution of the matrix Riccati differential equation (3.8), and z(xa) is the

solution of the vector differential equation

ż(xa) = −
[
Aa(xa)−BaxaR

−1BT
a (xa)P (xa)

]T
z(xa) + P (xa)D − CT

a (xa)Qr (3.44)

with boundary conditions P (x(∞)) = 0 and z(x(∞)) = 0 respectively. �
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Remark 6 By using the SDCF technique, the system is not being linearized around

an equilibrium point, hence the nonlinear system is completely considered, and thus

the controller has a larger operation range over the system in comparison with the

linear controllers; in addition, the nonlinear inherit nature of the system is exploited.

Optimal Control Properties

In this thesis it is assumed that the previous properties are inherit for the nonlinear

case for systems represented into the SDCF. These properties have been considered

for the nonlinear case in [Kokotovic97].

By the use of optimal control techniques, the following properties are achieved for the

case of linear systems:

� Robustness. Optimal control provides infinite gain margin K → ∞, also it

guarantees phase margin γ ≥ 60◦. The passivity connection established by

[Moylan74], states that as in the linear case, optimal systems have an in-

finite gain margin, due to its passivity property with respect to the output

[Kokotovic97].

� Behavior of closed-loop poles: Expensive control. When R > CTQC, the cost

function is dominated by the control effort u and the controller minimizes the

control action itself.

� Behavior of closed-loop poles: Cheap control. When R < CTQC, the cost fun-

ction is dominated by the output errors and there is no penalty for using large

values for u. (For the LQR tracking control).
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3.2. Sliding Mode Control

Uncertainty in the system behavior appears as a result of the imperfection of

the model, which is supposed to be idealized the real life system; nonetheless, the

models fail to recognize factors as time delays, dead zones, hysteresis, inertiality of

the elements, etc. [Utkin92]. Robust control is a branch of modern control theory

that explicitly deals with uncertainty in its approach to controller design. Robust

control methods are design to function properly so long as uncertain parameters or

disturbances [Fridman14]. The sliding mode control (SMC) is considered to be a

sort of robust control because it is able to deal with model uncertainties as well as

external disturbances. Sliding mode control has been successfully applied to robot

manipulators, underwater vehicles, automotive transmissions, engines, high perfor-

mance electric motors and power systems [Slotine91].

The sliding mode control was developed in the Soviet Union in the mid 1950s,

the control technique is a particular type of variable structure control (VSC), cha-

racterized by a suite of feedback control laws and a decision rule. The decision rule,

(known as the switching function), has information related with the system behavior

and produces an output, which is the particular feedback control that should be used

at a particular instant of time. The result is a variable structure system which consist

of a combination of subsystems where each one of them have a well defined control

structure, valid for specific regions of the whole system behavior.

3.2.1. Problem Statement

Consider the following nonlinear system (2.6) with the discontinuous control law

ui =

{
u+
i if σi(x) > 0

u−i if σi(x) < 0
i = 1, 2, . . . ,m (3.45)

where
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σ(x) = [σ1(x), σ2(x), . . . , σm(x)]T = 0 (3.46)

is the sliding mode surface.

The aim of the sliding mode control is to find a continuous function u+
i , u

−
i and

a sliding surface σ(x) in order to drive and constrain the trajectories of system to

lie inside a neighborhood of a sliding manifold. The next important aspect of the

sliding mode control (SMC) is to guarantee the existence of a sliding mode. A sli-

ding mode exist when in the neighborhood the switching function σ(x) = 0, where

the velocity vector of the state trajectories is always directed toward the switching

function. The advantages for obtaining such motion are firstly the system reduction

order and secondly, that the sliding motion is insensitive to parameter variations; this

property makes the sliding mode methodology attractive for designing robust contro-

llers [Edward98]. Figure 3.2, illustrates sliding mode in the intersection of each of the

surfaces.

Figure 3.2: Portrait phase sliding motion
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3.2.2. Existence of the Sliding Mode

The existence of the sliding mode requires the stability of the trajectories of the

sliding surface σ(x) = 0. Thus, the system states must approach the sliding surface

at least asymptotically. Therefore the existence of sliding mode problem can be seen

as a generalized stability problem; hence, the Lyapunov's method may be used for

such analysis. For single input systems, the suitable Lyapunov's function is

V (x) =
1

2
σ2(x) (3.47)

which is positive definite, thus the time derivate of the candidate Lyapunov's function

is given by

V̇ (x) = σ
∂σ

∂x
< 0. (3.48)

Condition (3.48) is called the reaching condition or the reachability condition [Utkin99],

which ensures that the sliding surface is reached asymptotically. The reachability

condition (3.48) is also replaced by the so-called η reachability condition defined as

follows:

V̇ (x) = σ
∂σ

∂x
≤ −η|σ|< 0. (3.49)

Condition (3.49) ensures finite time convergence of the sliding surface σ(x) = 0,

defined by integration of (3.49) as

|σ(x(t))|−|σ(x(0))|≤ −ηt. (3.50)

From (3.50), the required time to reach the sliding surface from the initial condition,

is defined as [Fridman02]:

ts =
|σ(x(0))|

η
. (3.51)
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3.2.3. The Chattering Effect

Sliding mode control is an effective control methodology for nonlinear systems. The

major advantage of the sliding mode control is that the uncertainties and external

disturbances of the system can be handled, nevertheless sliding mode control has the

following drawbacks:

� The SMC is only effectively applied to systems described in the regular form.

� Chattering: the undesirable oscillations inspired by the discontinouos control

law in the presence of unmodeled dynamics.

� Basic sliding mode is invariant with respect to matched perturbations only.

One of the major disadvantages of the sliding mode controllers is that the resulting

control action is a discontinuous function of time, which in practical applications

may lead to actuators damage, besides to the fact that there not exist any physical

device able to support a theoretical infinite switching frequency; this phenomenon

will take place as the system trajectories repeatedly cross the sliding surface, this

high frequency motion is described as “chattering”, illustrated in Figure 3.3. In or-

der to overcame these drawbacks, it is of interest to find a continuous control action

(smooth function), robust against uncertainties and disturbances, guaranteeing the

same control objectives as the discontinuous sliding mode control. The use of smooth

functions in sliding modes has some advantages: reduces chattering and make sli-

ding mode viable in real time applications due to their limited switching frequency.

Hence high order sliding modes can reduce and eliminate chattering and ensure the

asymptotically convergence of the system.

3.2.4. High-Order Sliding Modes

The recently proposed high-order sliding modes (HOSM), generalizes the basic

sliding mode idea acting on the higher order time derivates of the system deviation
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Figure 3.3: The chattering effect

from the constraint instead of influencing the first deviation as it happens in stan-

dard sliding modes [Fridman02]. The main problem in the implementation of HOSM

is the increasing information demand where the only known exclusion is the so-called

“Super-Twisting ” [Levant93], a second order sliding mode which only need informa-

tion related to the measurable elements of the sliding surface.

For the super-twisting analysis, let consider the nonlinear system

ẋ = f(x, u), s = s(x) ∈ R, u = U(x) ∈ R (3.52)

where x ∈ Rn, u is the control input, f and s are smooth functions of appropriate

dimension. The main task of the controller is to constrain s = 0. By differentiating

successively the output variable s, depending on the relative degree of the system,

the following 2 different cases are considered:

1. Relative degree of the system r̄ = 1

2. Relative degree of the system r̄ ≥ 2

In case 1, the variable structure problem can be solved by means of first-order sliding

mode control, however second-order sliding mode control can be used to avoid the

chattering effect. In this case u, will become the output of a first order dynamic system,

thus a discontinuos control u̇ steers the sliding variable s to zero, keeping s = 0 in a
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second order sliding mode, thus the control u is continuous and the chattering effect

is avoided.

Super-Twisting Algorithm

The super-twisting algorithm is a variant from the sliding mode controller used to

control systems with relative degree one; thus, the chattering effect can be elimina-

ted. The controller name refers that the trajectories of the phase plane (σ, σ̇) are

characterized by a twist around the origin as seen in Figure 3.4.

Figure 3.4: Portrait phase super-twisting

Theorem 5 [Moreno08] Consider the system (2.6), assuming that it has relative

degree one, therefore the algorithm defined by

u(x) = −M1|σ|
1
2 sign(σ) + u1

u̇1(x) = −M2sign(σ), M1 > 0, M2 > 0

σ = λ− λi

(3.53)

with M1,M2 > 0 is able to drive the trajectories of the second order sliding mode on

the sliding manifold in finite time. �

Proof: see Appendix A, where the analysis is done based on [Moreno08]
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3.3. Optimal Control with Sliding Modes

In this section a nonlinear controller which combines the capabilities of both opti-

mal control an sliding modes is presented, in order to obtain a robust control scheme

able to reject bounded external disturbances and parametric uncertainties, for nonli-

near systems represented in the so-called regular form, which is the main contribution

of this thesis.

Consider a nonlinear system described in the regular form (2.13), then assume that

the subsystem ẋ′1, can be decomposed into the SDCF representation as

ẋ′1 = A(x′1)x′1 +B1(x′1)x′2

y = C(x′1)x′1

(3.54)

where x′1 is a reduced order vector such that x′1 ∈ Rn−1 with A(x′1) ∈ Rn−1×n−1 and

B(x′1) is a column matrix of appropriate dimension. Notice that the state x′2 becomes

the control input for the subsystem (3.54). Hereinafter the state x′2 will be called

“Pseudocontrol”. If the resulting subsystem (3.54) is both state-dependent contro-

llable and state-dependent observable, satisfying conditions (2.8) and (2.10), then it

is possible to apply a nonlinear optimal tracking control law as (3.7) to subsystem

(3.54) described as

x′∗2 = −R−1BT (x′1) (P (x′1)x′1 − z(x′1)) (3.55)

where

Ṗ (x′) = −CT (x′1)QC(x′1) + P (x′1)B(x′1)R−1BT (x′1)P (x′1)

−AT (x′1)P (x′1)− P (x′1)A(x′1)

ż(x′1) = −
[
A(x′1)−B(x′1)R−1BT (x′1)P (x′1)

]T
z(x′1)− CT (x′1)Qr

(3.56)
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where r is a desired reference vector and e is the tracking error defined as

e = r − y

= r − C(x′1)x′1.
(3.57)

such that system (3.54) tracks a time varying reference signal in the optimal sense of

minimizing the following performance index.

J =
1

2

∫ ∞
ts

(eTQe+ x′T2 Rx
′
2)dt (3.58)

where ts is the required time to reach the sliding surface which is calculated as (3.51).

Then the optimal control law x′∗2 will be considered to be the reference signal for the

synthesis of a super-twisting controller (3.53), for controlling the second block (2.13),

which is achieved by selecting an optimal sliding surface σ(x) defined as

σ = x′∗2 − x′2 = 0. (3.59)

Remark 7 One of the major advantages of using the nonlinear optimal sliding mode

controller, in contrast with the nonlinear optimal controller based on the SDCF, is

firstly a reduction of the possible system factorizations of f1(x) = A(x1)x1 for the

first block (which is controlled via optimal control based on SDCF), due to the fact

that only the state dependent coefficient factorization is performed for the first regular

form subsystem and is considered to be a reduced-order system. Secondly since the

second regular form block with the structure

ẋ′2 = f2(x′1, x
′
2) +B2(x′1, x

′
2)u+ δ (3.60)

is controlled via a super-twisting controller, it does not require the complete informa-

tion of the parameters of the system, only the measurable information of the sliding
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surface, which makes this control scheme to be robust against parametric uncertainties

and bounded external disturbances, where δ is a bounded term of external disturbances.

Since the nonlinear optimal sliding modes controller does not require neither informa-

tion of the parameters nor the structure of the regular form second block, it is possible

to reject such external disturbances.

Nonlinear Optimal Tracking Sliding Mode Algorithm

Nonlinear System

ẋ = f(x) + B(x)u

Regular Form

ẋ′1 = f1(x
′
1, x
′
2)

ẋ′2 = f2(x
′
1, x
′
2)+

B2(x
′
1, x
′
2)u

SDCF

ẋ′1 = A(x′1)x
′
1 +

B(x′1)x
′
2

Sliding Surface

σ = x′∗2 − x2

Super-Twisting

u = −M1|σ|
1
2 sign(σ) + u1

u̇1 = −M2sign(σ)

Figure 3.5: General flow chart of the nonlinear optimal sliding mode controller.

The nonlinear optimal tracking sliding modes procedure Figure 3.5, can be summa-

rized as follows:

1. Determine the diffeomorphism ϕ(x).

2. Bring the nonlinear system into the regular form.

3. Apply nonlinear optimal control theory for the reduced order subsystem (first

block), from which is calculated the optimal pseudo control x∗2.

4. Determine the optimal sliding surface σ(x) = x∗2 − x2, for the second block.

5. Apply high order sliding mode (Super-Twisting) to drive σ(x) = 0, for the

second block.

3.4. Conclusions

In this chapter the theoretical concepts for the design of optimal nonlinear controllers

are presented, as well as a variant, which combines the nonlinear optimal control with
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the sliding modes. The following points can be additionally addressed:

� A characterist of using a SDCF control schemes is the multiple factorizations

of matrices A(x) and B(x), which may result in a enhance the controller per-

formance or even cause a loss of controllability of the system.

� Nonlinear optimal control based on the SDCF needs a complete knowledge of

the systems parameters, in contrast by the use of optimal sliding modes it is

possible to design an optimal controller for a reduced order subsystem, which

reduces the amount of information required, and then control the rest of the

system by the use of a robust controller which do not require information of the

system parameters.

� For use of an optimal sliding mode controller, it is necessary the prior knowledge

of the diffeomorphism, which transforms the nonlinear system into the regular

form.

� The design control strategies are used in the next chapter for controlling unde-

ractuated mechanical systems.



Chapter 4

Application of Optimal Control

and Sliding Modes

This chapter presents the application of optimal control based on the SDCF and

the nonlinear optimal sliding modes control algorithms designed in chapter 3, to the

Pendubot and the rotary inverted pendulum, whose models are obtained in chapter

2. Simulations and real-time experimental results demonstrate the effectiveness of the

designed control algorithms.

4.1. Application to the Pendubot

Consider the Pendubot SDCF model (2.42). Notice that this system is a particular

case of input-affine nonlinear systems in the form (2.6), and therefore, the optimal

tracking control technique can be applied.

4.1.1. Controllability Analysis

In accordance with Remark 2, in order to design a nonlinear optimal controller, the

observability and controllability properties of the systems must be fulfilled; therefore,

62
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the region over the space state, where the Pendubot is not controllable, is defined by

the condition where det(C(x)) = 0, that is for the following regions [Wang11]:

1) x1 = ±π ∧ x2 = ±π

2) x1 = ±π
2
∧ x2 = ±π

2

(4.1)

The first uncontrollable configuration of the Pendubot corresponds with the first link

being completely horizontal and the second link at π
2
rad in reference with the first

link. The second configuration corresponds to the links folded over each other with

the first link hanging downward.

(a) (b)

(c) (d)

Figure 4.1: Pendubot’s uncontrollable positions

Figure 4.1 depicts the Pendubot’s uncontrollable positions where a) is the first un-

controllable position defined by x1 = −π
2
∧x2 = π

2
, b) with x1 = π

2
∧x2 = π

2
, c) with

x1 = π ∧ x2 = π and d) with x1 = −π ∧ x2 = −π.
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4.1.2. Nonlinear Optimal Controller Design

It is worth mention that there exist a natural steady-state constraint for the

Pendubot, the sum of the angles q1 + q2 = π
2
, since the origin of the system was

shifted up to the vertical position it follows that in the transformed coordinates

system q1 + q2 = 0, using such constraint it is possible to define a reference vector r

for the complete state of the system, given a time varying reference signal χref

r =


−χref
χref

−χ̇ref
χ̇ref

 . (4.2)

With the given parametrization for matrices A(x) and B(x) as (2.42), the optimal

control law (3.7) is applied to the system, in order to track a time varying reference

signal for the position of link 2 of the Pendubot. Notice that by selecting this output

for the system, it becomes a nonminimum phase system. The matrices Q and R must

be selected in order to obtain the desired behavior of the tracking error or the control

effort respectively.

Table 4.1: Pendubot simulation parameters

Parameter Value
l1 0.203m
lc1 0.155m
l2 0.384
lc2 0.164m
m1 0.829kg
m2 0.34kg
I1 0.0055kg −m2

I2 0.0041kg −m2

µ1 0.00545Ns/rad
µ2 0.00047Ns/rad
g 9.81m/s2
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4.1.3. Simulation Results

In order to demonstrate the performance of the nonlinear optimal tracking contro-

ller, simulations are carried out using Matlab/SimulinkR©, by applying the nonlinear

optimal control law (3.7) to system (2.42) considering the parameters given in Table

4.1, and the following weighting matrices Q and R defined as

Q =


2000 0 0 0

0 1 0 0

0 0 10 0

0 0 0 1

 , R = [1] . (4.3)
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Figure 4.2: Nonlinear optimal tracking for Pendubot’s link 2

The proposed controller is evaluated as follows: nonlinear optimal tracking control for

x2 is displayed in Figure 4.2, for which the desired reference is χref = 1.2sin(0.2t),

and the initial conditions for the pendubot are chosen near the equilibrium point as

x(0) =
(

1.5607, 0.01, 0.01, 0.01,
)T

. In Figure 4.2, it can be seen that the output

of the system, has a constant error, due to the fact that the tracking error has been

bounded in a region Υ, therefore the result shown in Figure 4.2 is considered to be
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the minimization of the tracking error under the optimal control (3.7), since larger

values of the entries of matrix Q do not allow a decrease of the error.

4.1.4. Nonlinear Optimal Controller with Integral Action

In order to reduce the steady state error of the system as a result of the bounded

error in a region Υ by the use of nonlinear optimal control based on the SDCF, an

integral action is added to system (2.42), therefore it is represented as a disturbed

nonlinear systems with an augmented state defined as (3.40) where

Aa(xa) =



0 q2 0 0 0

0 0 0 1 0

0 0 0 0 1

0 a31 a32 a33 a34

0 a41 a42 a43 a44


Ba(xa) =



0

0

0

b3

b4



Ca(xa) =



0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


D =



Xref
0

0

0

0



(4.4)

with xa =
[

Φ2 x1 x2 x3 x4

]T
, the given matrices Aa(xa), Ba, Ca(xa) and D, the

nonlinear optimal controller (3.43) is used. Notice that for many practical applica-

tions in most cases it is necessary the addition of an integral action in order to add

robustness properties to the controller.
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4.1.5. Nonlinear Optimal Sliding Mode Controller

Consider the Pendubot's nonlinear equations of motion (2.40) obtained in Chapter

2, then it is possible to represent the system dynamics into a state-space model with a

more convenient structure as seen in [Serrano-Heredia11] having the form (2.6), with

state x ∈ R4 of the origin and u ∈ R1, y ∈ R1. The vector f(x) and the columns

of g(x) are smooth vector fields of appropriate dimension, choosing the variables

(x1 x2 x3 x4)T = (q1 + π
2

q2 q̇1 q̇2)T as the state vector, with u = τ as the

control input and x2 as the system output, the system can be represented into the

form (2.6) where

f(x) =


f1(x)

f2(x)

f3(x)

f4(x)

 =


x3

x4

g3(x2)p3(x)

g4(x2)p4(x)



g(x) =


g1(x)

g2(x)

g3(x2)

g4(x2)

 =


0

0

D22

D11D22−D2
12

−D12

D11D22−D2
12


h(x) = x2

(4.5)

with p3 = D12

D22
(C2 +G2 +F2)−C1−G1−F1, p4 = D11

D12
(C2 +G2 +F2)−C1−G1−F1

in a admissible region Ω : (−π
2
≤ x2 ≤ π

2
).
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Pendubot Regular Form

To design an optimal sliding mode controller for the Pendubot, it is necessary to

transform the system (4.5) via differomorphism ϕ(x) into the regular form (2.13)

x′ =

 ϕ1(x)

ϕ2(x)

 , ϕ1 ∈ R3, ϕ2 ∈ R1 (4.6)

The resulting transformation (4.6) can be obtained from the condition (2.15) thus

after the transformed system variables are defined as follows:


x′1

x′2

x′3

 = ϕ1(x) =


x1

x2

x3 − [g3g
−1
4 ]x4


x′4 = ϕ2(x) = x4

(4.7)

with g3g
−1
4 = D22D

−1
12 , then the regular form becomes

ẋ′1 =


f1(x′)

f2(x′)

f3(x′)



ẋ′2 = f4(x′) + g4u

(4.8)

where

f1(x′) = x′3 −D22D
−1
12 x

′
4

f2(x′) = x′4

f3(x′) = Θ1

(
D12

D22

− D11

D12

)
Θ2

f4(x′) = g4p4

(4.9)

and Θ1 = D22

D11D22−D2
12

, Θ2 = C2 +G2 + F2.
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Pendubot’s Regular Form Steady State

Since for the use of the nonlinear optimal sliding mode controller, it is necessary

to transform the nonlinear system into its regular form (2.13), the system reference

vector for the optimal controller for the regular form first block ẋ′1 is also affected,

therefore it is necessary to compute the system's reference (steady state constraint).

For a class of mechanical systems (e.g. Pendubot or rotary inverted pendulum), it

is possible to define a geometrical constraint between the links angles of the system,

however for a different class of nonlinear systems (e.g. biomedial, electrical) it is not

possible to define a geometrical constraint in order to obtain the steady state of the

system, in this sense the Francis-Isidori-Brynes equation [Isidori90] is used in order to

determine the steady state for general nonlinear system in the transformed framework.

For the case of the Pendubot's regular form steady state, it is obtained as follows:

The output tracking error e(x, ω) is defined as the difference between the output of

the system x′2 and a reference signal r(ω).

e = x2 − r(ω) (4.10)

where the reference signal is provided by a signal generator (exosystem) described by

ω̇ = s(ω), s(0) 6= 0 (4.11)

with ω = (ω1, ω2)T , and r(ω) = ω2. Notice that an exosystem is a system with the

Jacobian matrix S =
(
∂s
∂ω

)
, which at the equilibrium point it has eigenvalues on the

imaginary axis. For this application the exosystem is a linear system given by

s(ω) =

 αω2

−αω1

 , α > 0 (4.12)

where ωi and α determines the amplitude and the frequency of the signal respectively.

The steady state of the system can be found in terms of the state feedback regulation

problem (SFRP), which is stated in terms of the existence of a pair of mappings
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x = π(ω) and u = c(ω) (4.13)

which solves the partial differential Francis-Isidori-Byrnes (FIB) equations [Isidori90]

∂π

∂ω
s(ω) = f(π(ω)) + g(π(ω))c(ω)

0 = h(π(ω), ω)

(4.14)

where vector π(ω) is defined as π′(ω) = (π′1(ω), π′2(ω), π′3(ω), π′4(ω, ))T . Introducing a

zero output manifold and a control error defined as


e1

e2

e3

e4

 =


x′1 − π1(ω)

x′2 − π2(ω)

x′3 − π3(ω)

x′4 − π4(ω)

 (4.15)

then, π(ω) will be calculated with respect to system (4.8) making use of the respective

regulation equations (4.14)

∂π1(ω)

∂ω
s(ω) = π3(ω) (4.16)

∂π2(ω)

∂ω
s(ω) = π4(ω) (4.17)

∂π3(ω)

∂ω
s(ω) = Θ1

D12(π2(ω))

D22

Θ2 −
D11(π2(ω))

D12(π2(ω))
Θ2 (4.18)

0 = π2(ω)− ω2. (4.19)

From (4.19), it follows that

π2(ω) = ω2 (4.20)

replacing (4.20) in (4.17)
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(
0 1

) αω2

−αω1

 = π4(ω)

−αω1 = π4(ω).

(4.21)

Notice that it is needed to known the complete vector π(ω); however, the values of

π1(ω) and π3(ω) are not easy to calculate since they are part of a set of nonlinear

partial differential equations, but it is possible to calculate an approximate solution

based on the following power series, as seen in [J. Rivera08]:

π1(ω) = a0 + a1ω1 + a2ω2 + a3ω
2
1 + a4ω

2
1 + a4ω1ω2

+ a5ω
2
2 + a6ω

3
1 + a7ω

2
1ω2 + a8ω1ω

2
2 + a9ω

3
2

+O4(||ω||1)

(4.22)

where O4(||ω||1) represents the high order terms from the approximation which are

despised, then replacing (4.22) into (4.16) yields to the approximated solution for

π′3(ω)

π3(ω) = α(a1ω2 − a2ω1 + 2a3ω1ω2 + a4ω
2
2 − a4ω

2
1

− 2a5ω1ω2 + 3a6ω
2
1ω2 + 2a7ω1ω

2
2 − a7ω

3
1

+ a8ω
3
2 − 2a8ω

2
1ω2 − 3a9ω1ω

2
2

−D22D
−1
12 (ω2)ω1) +O4(||ω||1).

(4.23)

By using this Taylor series expansion on (4.18) around the equilibrium point x =

(π
2
, 0, 0, 0)T the values of the coefficients ai(i = 0, . . . , 9) can be found, as shown in

Table 4.2.

Figure 4.3 shows the reference steady-state vector for the Pendubot system described

in the regular form, selecting ω = 0.2 rad and α = 1 rad.
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Table 4.2: Parameters Taylor series expansion

Coefficient Value
a0 1.570757
a1 −0.0025944
a2 −1.001871
a3 0
a4 0
a5 0
a6 0
a7 0.001926
a8 0
a9 −0.00001588

4.1.6. Simulation Results

The proposed nonlinear optimal tracking controller, is evaluated as follows, conside-

ring the Pendubot's transformation into the regular form (4.8), the nonlinear optimal

sliding mode controller (3.55) is applied for the regular form first block having the

following SDCF representation

ẋ′1 =


0 0 1

0 0 0

a31 a32 a33



x′1

x′2

x′3

+


0

b2

b3

x′2

y = x′2

(4.24)

where the entries of the matrix A(x′) and B(x′) are defined as follows
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Figure 4.3: References for the Pendubot’s transformed system into the regular form,
generated by the solution of the Francis -Isidori equations

a31 =
sin(x1)

x1

(
gθ5cos(x2)

θ2 + θ3cos(x2)

)
a32 =

sin(x2)

x2

(
−θ3x

2
3

θ2 + θ3cos(x2)
+

gθ5cos(x1)

θ2 + θ3cos(x2)

)
a33 = 0

b1 = 1

b2 = − µ2

θ2 + θ3cos(x2)

with a reference vector is defined as

r =


π1(ω)

π2(ω)

π3(ω)

 . (4.25)
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The effectiveness of the nonlinear optimal sliding mode controller is proven via simu-

lation results using Matlab/SimulinkR© and SimMechanics/SolidWorksR©. Where the

initial conditions for the pendubot are chosen near the equilibrium point as selected

for the SDCF controller; x(0) =
(

1.5607, 0.01, 0.01, 0.01,
)T

, the parameters

given by Table (4.1) and a reference signal χref = 1.2sin(0.2t) rad. For the nonlinear

optimal control, the entries of matrices Q and R are selected as

Q(x) =


100000 0 0

0 1
0.5|χref−x2|+1

0

0 0 10

 , R = [1] . (4.26)

And for the Pendubot’s regular form second block x′2, the sliding modes super-twisting

gains are user defined in order to fulfill the desired system response requirements, for

this simulation they were chosen as: M1 = 10 and M2 = 0.8. Using a sampling period

of 0.001s.

Figure 4.4: Comparison between optimal tracking based on the SDCF with integral
action and optimal sliding mode for the Pendubot’s link 2

Figure 4.4 displays a comparison between the optimal tracking control with an integral
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Figure 4.5: Link 1 position during the optimal tracking for link 2

action with Qi = 80 and the nonlinear optimal tracking control for the Pendunbot's

link 2. Simulations results depicts that by the use of the SDCF optimal control, it is

possible to obtain a wider operation range for tracking a time varying signal for the

Pendubot's link 2 (± 70◦), in comparison with related works, for instance [Rivera08]

with ± 8◦ tracking range, [Serrano-Heredia11], [Cai03] with ± 60◦ and [Erdem01]

where the use SDCF was only used for stabilization and the tracking problem not

considered. Also it is possible to appreciate that with the optimal sliding modes there

exists a reduction in the transient effect, in comparison with the nonlinear optimal

control with integral action.

Figure 4.5 depicts the position of link 1 during both nonlinear optimal tracking con-

trol with integral action and nonlinear optimal sliding modes. Notice that simulation

results fulfill the natural steady state constraint for the Pendubot.

In Figure 4.6, it can be seen that by the application of high-order sliding modes

(super-twisting controller), the control action results in a smooth function rather



76 Chapter 4: Application of Optimal Control and Sliding Modes

than a discontinuous function, which makes this controller attractive for real time

applications.

In Figure 4.7, the velocities for link 1 and 2 are shown.

In Figure 4.8, it can be seen the convergence of the sliding mode controller which cons-

trains the system over a manifold where the sliding surface is defined as σ(x) = 0.

The transient effect shown in the simulation is due to the fact that the nonlinear

optimal sliding mode controller requires a reaching time ts, in order to constrain the

system to lie within the manifold. And from there on the performance index will be

optimized by the action of the optimal control.

Figure 4.9, depicts the “Pseudocontrol” action, which serves as a reference signal for

the super-twisting controller.
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Figure 4.6: Pendubot’s control law, (applied torque)



4.1. Application to the Pendubot 77

0 5 10 15 20 25 30 35 40 45

Time (s)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

V
e
lo

c
it
y
 (

R
a
d
/s

)

Link1 SDCF

Link 2 SDCF

Link 1 Optimal Sliding Modes

Link 2 Optimal Sliding Modes

0.5 1 1.5 2

-2

0

2

Figure 4.7: Pendubot’s velocities during optimal tracking
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Figure 4.8: Sliding surface reaching the condition σ = 0
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Figure 4.9: Pseudo control action x′2

4.1.7. SolidWorks/SimMechanicsR© Simulation

Simscape Multibody (formerly SimMechanicsR©) provides a multibody simulation

environment for 3D mechanical systems, such as robots, vehicle suspensions, cons-

truction equipment, and aircraft landing gear. It is possible to model multibody sys-

tems using blocks representing bodies, joints, constraints, force elements, and sensors.

Simscape Multibody formulates and solves the equations of motion for the complete

mechanical system. Due to the lack of the Pendubot’s physical system in the labora-

tory of Faculty of Electrical Engineering of the Universidad Michoacana, this analysis

tool was applied to the pendubot as shown in Figure 4.10, in order to have a complete

simulation of the system dynamics under the action of the proposed controllers.

SolidWorksR©

Model
SimulinkR© Controller

Figure 4.10: Mechanical simulation loop scheme.

In Figure 4.11 the Pendubot’s mechanical simulation is depicted, during the nonli-
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Figure 4.11: Pendubot’s mechanical Simulation

near optimal sliding mode control application, tracking a time varying reference signal

for the Pendubot’s link 2.

4.2. Application to the Rotary Inverted Pendulum

In order to show the effectiveness of the nonlinear optimal tracking controller, si-

mulations and a real time implementation are carried out, using the nonlinear optimal

controller based on the SDCF.

4.2.1. Simulations and Real-Time Experimental Results

Consider the rotary inverted pendulum equations of motion (2.44) and (2.45), ob-

tained from Chapter 2. Once the equation of motion are represented into the SDCF
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Table 4.3: Rotary Inverted Pendulum parameters

Parameter Value
mp 0.1270Kg
Lr 0.2159m
Lp 0.3365m
Jr 9.9829e−4Kg −m2

Jp 0.0012Kg −m2

Br 0.0024
Bp 0.0024
ηg 0.90
ηm 0.69
Kg 70
kt 7.68x10−3N −m/A
km 7.68x10−3V/(rad/s)
Rm 2.6 Ω

as (2.6), then it is possible to apply the nonlinear optimal tracking controller (3.7),

where the vector r is defined as the desired trajectory for the complete state vec-

tor. The main objective of the controller (considering the case of the rotary inverted

pendulum) is to stabilize the underactuated link over their upward vertical position,

while the actuated link tracks a desired reference. Therefore the given reference for

the link 2 is 0, thus vector r is defined as

r =
[
χref 0 χ̇ref 0

]T
(4.27)

where χref is the desired reference to be tracked, while the values of matrices Q and

R must be selected in order to obtain the desired behavior of the tracking error or

the control effort respectively. The initial conditions for the rotary inverted pendulum

are given as: x1(0) = −0.01, x2(0) = 0.01, x3(0) = −0.01 and x4(0) = 0.01, using a

sampling period of 0.001s. The entries of matrices Q and R are defined as
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Q(x) =


500 0 0 0

0 1000 0 0

0 0 10 0

0 0 0 10

 , R = [30] . (4.28)

With the system parameters as shown in Table 4.3. The proposed controller is eva-

luated as follows. Figure 4.12, shows the stabilization of the controlled variable (link

1) over different references, then the nonlinear optimal tracking controller is applied

in order to track a time varying reference signal, the controller references χref are

described as follows

χref =



0 rad if 0 < t < 21s

1 rad if 21s < t < 43s

0 rad if 43s < t < 52s

−1 rad if 52s < t < 62.6s

0 rad if 62.6s < t < 63s

1.1sin(0.2t) rad if 62.6s < t < 111.67s

0 rad if t > 111.67s


(4.29)

where clearly the tracking for the desired reference is achieved by using the propo-

sed controller. In Figure 4.13, the pendulum stabilization over their upward vertical

position is shown, notice that a swing-up controller is not considered, therefore the

pendulum is manually moved from their downward vertical position to their upward

vertical position where the nonlinear optimal controller is activated.

Figure 4.20 displays the applied voltage to the servo motor gear box, during the

optimal tracking control.
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Figure 4.12: Rotary arm nonlinear optimal tracking control for θ over different refe-
rences, then it tracks a time varying reference signal.
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Figure 4.13: Pendulum stabilization
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Figure 4.14: Applied voltage to servo-motor unit

4.2.2. Hardware Description and Data Acquisition

The rotary inverted pendulum physical system Figure 4.15, is located in the control

laboratory of the graduated studies division of the Faculty of Electrical Engineering

(UMSNH), which uses a Q8-USB QuanserR© data acquisition device, and the servo

amplifier voltPAQ-X1 from QuanserR©. The motor is a QuanserR© rotary servo unit

base.

The rotary inverted pendulum physical prototype, is composed by the following com-

ponents:

� The data acquisition device Quanser Q8-usb Figure 4.16, which is a measure-

ment and control board with an extensive range of analog and digital input and

output and encoders support, is used in order to measure the state variables of

the system which are provided by encoder.
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Figure 4.15: Complete rotary inverted pendulum system, which is composed by the
following elements: 1) pendulum, 2) SRV02 rotary servo unit, 3) VoltPAQ-X1 power
amplifier and 4) Q8-usb data acquisition device.

� The servo unit rotary base Figure 4.17, consists of a DC motor that is encased

in a solid aluminum frame and equipped with a planetary gearbox. The system

is equipped with three sensors: potentiometer, encoder, and tachometer. The

potentiometer and encoder sensors measure the angular position of the load

gear and the tachometer can be used to measured its velocity. Notice that for

real time applications where the servo unit is used in order to drive the motion

of a kinematic chain the servo unit model must be considered in the full model

of the system.

� The VoltPAQ-X1 Figure 4.18, is linear voltage-controlled amplifier, pairing the

VoltPAQ-X1 with Quanser data acquisition board it is possible to control phy-

sical systems as the rotary inverted pendulum.

� The Rotary Inverted Pendulum module attached to the Rotary Servo Base Unit
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Figure 4.19.

The real time experiment carried out for the Rotary Inverted Pendulum can be found

at:

http://dep.fie.umich.mx/~fornelas/data/uploads/video1.mov

https://www.youtube.com/watch?v=KiTNdwVf3p8&feature=youtu.be

4.3. Conclusions

In this chapter the effectiveness of the nonlinear optimal controller as well as the

optimal sliding mode are proven via simulations for the Pendubot and both simulation

and experimental results for the rotary inverted pendulum, which validates the models

obtained from Chapter 2, and the controllers developed in Chapter 3. As a result of

the simulation carried out for the Pendubot it was possible to appreciate that as the

system reference approached the uncontrollable positions of the system, simulation

errors were found mainly of numeric character, since the proposed controller has a

wider tracking result in comparison with the controllers reported in the literature for

the Pendubot, for instance [Rivera08],[Serrano-Heredia11],[Cai03]. It was considered

that it is possible to check the advantage offered by the nonlinear optimal controller.

http://dep.fie.umich.mx/~fornelas/data/uploads/video1.mov
https://www.youtube.com/watch?v=KiTNdwVf3p8&feature=youtu.be
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Figure 4.16: Quanser Q8-usb data acquisition device board

Figure 4.17: Servo motor gear-box
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Figure 4.18: Quanser VoltPAQ-X1, power amplifier

Figure 4.19: Rotary Inverted Pendulum, rotary arm and pendulum links
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Figure 4.20: Real time experiment for the rotary inverted pendulum



Chapter 5

Conclusions and Future Work

5.1. General Conclusions

In this thesis the nonlinear optimal control techniques and the sliding modes, based

on the SDCF representation, are applied for a class of mechanical systems. Derived

on the research carried out together with the simulations and experimental results,

the following facts can be concluded:

� The nonlinear optimal tracking control theory can be applied to general me-

chanical systems in order to be stabilized over a reference, or to track a time

varying reference signal.

� Optimal control theory based on the SDCF can be used for the design of non-

linear controllers to directly handle with the non-minimum phase property as-

sociated with the underactuated mechanical systems. This result may be gene-

ralized for a class of systems which exhibits unstable internal dynamics.

� It is possible to combine nonlinear optimal control with sliding modes for a class

of nonlinear systems, which can be represented into the so-called regular-form;

by doing this, it is possible to take advantage of the optimality criterion derived

89
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from the optimal control and the robustness properties from the sliding mode

controller.

� Through the use of the nonlinear optimal control with sliding modes, it is pos-

sible to take advantage of the nonlinear regular form, in order to decouple the

system into two different block, where the first block (which is considered to

be a reduced order subsystem) controlled with an optimal control scheme, has

a simpler structure that the second block, which is controlled by a robust con-

troller, which do not require information of the parameters of the system. By

doing so, it possible to have a robust nonlinear optimal controller able to reject

parametric uncertainties and external disturbances.

� Nonlinear optimal control based on the SCDF is a suitable control scheme for

real time applications without a great computational effort.

5.2. Future Work

This work represents the opportunity to continue investigating on the nonlinear

optimal control systems and the sliding modes, as well as their properties and applica-

tions to mechanical systems, below are some proposals that could enrich the research

within this area:

1. Obtain real-time experimental results for the nonlinear optimal sliding mode

controller designed for the Pendubot.

2. Design state observers based on the SDCF.

3. Apply the nonlinear optimal control based on the SDCF to a different class of

mechanical systems such as unmanned aerial vehicles (UAV), locomotive robotic

systems, automotive mechatronic systems.
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4. Apply nonlinear optimal control for disturbed nonlinear systems in the presence

of unknown external disturbances.

5. Investigate methods in order to find the best factorization of the nonlinear

system represented into the SCDF.



Appendix A

Nonlinear Optimal Stabilizing

Controller Proof

Consider the following nonlinear system represented into the SDCF form

ẋ = A(x)x+B(x)u (A.1)

Then the optimal control law u∗ is applied where

u∗ = −R−1BT (x)P (x)x (A.2)

Therefore the behavior of the close loop system is given by

ẋ =
(
A(x)−B(x)R−1BT (x)P (x)

)
x (A.3)

The stability of the system is proved in terms of the Lyapunov theory therefore the

following Lyapunov candidate function is proposed

V (x) = xTPx (A.4)

V̇ (x) = xT Ṗ x+ xTPẋ+ ẋTPx (A.5)
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V̇ (x) = xT Ṗ x+ xT [PA(x)− PB(x)R−1BT (x)P (x)

+AT (x)P − PB(x)R−1BT (x)P (x)]
(A.6)

V̇ (x) = xT Ṗ x+ xT
[
PA(x) + AT (x)P − 2PB(x)R−1BT (x)P (x)

]
(A.7)

Ṗ = −C(x)TQC(x) + PB(x)R−1B(x)TP − A(x)TP − PA(x) (A.8)

− Ṗ − C(x)TQC(x) + PB(x)R−1B(x)TP = A(x)TP + PA(x) (A.9)

V̇ (x) = xT Ṗ x− xT
[
Ṗ + C(x)TQC(x) + PB(x)R−1B(x)TP

]
x (A.10)

V̇ (x) = xT Ṗ x− xT Ṗ x−
[
C(x)TQC(x) + PB(x)R−1B(x)TP

]
x (A.11)

V̇ (x) = −
[
C(x)TQC(x) + PB(x)R−1B(x)TP

]
x (A.12)

V̇ (x) < 0 (A.13)

That is (A.1) with (A.2) has an asymptotically stable equilibrium point [Khalil02].



Appendix B

Nonlinear Optimal Tracking

Controller Proof

Consider the following nonlinear system represented into the SDCF form

ẋ = A(x)x+B(x)u (B.1)

Then the optimal control law u∗ is applied where

u∗ = −R−1BT (x)(P (x)x− z(x)). (B.2)

Therefore, the behavior of the close loop system is given by

ẋ =
[
A(x)−B(x)R−1BT (x)P (x)

]
x+B(x)R−1BT (x)z(x). (B.3)

System (B.3) can be analyzed as a dynamical system with a forcing term z, due to the

fact that the solution of the SDRE does not depend on the solution of the differential

vector z as seen in [Ornelas-Tellez13], the stability analysis for the nominal part can

be established as

ẋ =
[
A(x)−B(x)R−1BT (x)P (x)

]
z (B.4)
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The stability of the system is proved in terms of the Lyapunov theory; therefore, the

following Lyapunov candidate function is proposed

V (x) = xTP (x)x (B.5)

Taking the time derivate of V (x) along the nominal system B.4, thus

V̇ (x) = xT Ṗ (x)x+ xTP (x)ẋ+ ẋTP (x)x (B.6)

By replacing (3.8) and (B.4) into (B.6) it follows that

V̇ (x) = xT Ṗ (x)x+ xT
[
P (x)A(x) + ATP (x)− 2P (x)BR−1BTP (x)

]
x (B.7)

from (3.8) it follows that

P (x)A(x) + AT (x)P (x) = −Ṗ (x)− CT (x)QC(x) + P (x)B(x)R−1BT (x)P (x) (B.8)

Equation (B.7) becomes

V̇ (x) = xT Ṗ (x)x+ xT
[
−Ṗ (x)− CT (x)QC(x)− P (x)B(x)R−1BT (x)P (x)

]
x

= −xT
[
CT (x)QC(x) + P (x)B(x)R−1BT (x)P (x)

]
x

(B.9)

That is (B.1) with (B.2) has an asymptotically stable equilibrium point [Khalil02].



Appendix C

Super-Twisting Stability Proof

The super-twisting algorithm defined by

u(x) = −M1|σ|
1
2 sign(σ) + u1

u̇1(x) = −M2sign(σ), M1 > 0, M2 > 0

σ = λ− λi

(C.1)

with M1,M2 > 0 is able to drive the trajectories of the second order sliding mode on

the sliding manifold in finite time.

The stability of the Super-Twisting algorithm (C.1) has been proven in [Moreno08] in

the sense of Lyapunov theory by proposing the following candidate Lyapunov function

V (x) = 2M2|σ|+
1

2
u2

1 +
1

2

(
M1|σ|

1
2 sign (σ)− u1

)2

= ξTPξ

(C.2)

where ξ =
(
|σ| 12 sign(σ)u1

)
and

P =
1

2

 4M2 +M2
1 −M1

−M1 2

 . (C.3)
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The time derivate along the Super-Twisting algorithm (3.53) is given by

V̇ (x) = − 1

|σ 1
2 |
ξTQξ +

f(σ, t)

|σ 1
2 |

qT1 ξ (C.4)

where

Q =
M1

2

 2M2 +M2
1 −M1

−M1 1

 (C.5)

qT1 =

(
2M1 +

1

2
M2

1 −
1

2
M1

)
. (C.6)

According with the procedure described in [Moreno08], the expresion (C.4) can be

reduced to

V̇ (x) = − M1

2|σ 1
2 |
ξT Q̃ξ (C.7)

where

Q̃ =
M1

2

 2M2 +M2
1 −

(
4M2

M1
+M1

)
δ1 − 2δ2 ?

−
(
M1 + 2δ1 + 2δ2

M1

)
1

 (C.8)

There is exponential convergence if (P0 − Q̃) > 0 if

M2 >2δ3

M4 >
2δ3M

3
2 + (1

4
δ2

3 + 3δ4)M2
2 + δ3δ4M2 + δ2

4

M2(M2 − 2δ3)

(C.9)



Appendix D

Gear-Box Mathematical Modeling

Consider a DC motor armature circuit and a power train gear as seen in Fig. (D.1)

Figure D.1: Gear-box and DC motor

where Rm is the motor resistance, Lm is the inductance and km is the back-emf cons-

tant. The back-emf voltaje eb depends on the motor speed shaft ωm, which opposes

the current flow, therefore the back emf voltage is given by:

eb(t) = kmωm(t) (D.1)
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Analyzing the electrical circuit mesh, by using Kirchoff’s voltage law

Vm(t)−RmIm(t)− Lm
dIm(t)

dt
− kmωm(t) = 0 (D.2)

Assuming that the motor inductance Lm < Rm, thus Lm can be ignored, therefore

(D.2) becomes:

Vm −RmIm(t)− kmωm(t) = 0 (D.3)

solving for Im

Im(t) =
Vm(t)− kmωm(t)

Rm

(D.4)

Since the motor gear-box has one DOF, it is possible to apply the Newton’s second

law of motion described as

Jα = τ (D.5)

where J is the inertia moment of the body about its centroid, α is the angular ac-

celeration of the system and τ is the sum of applied torques. Due to the fact that

there are viscous frictional terms acting over the system, a viscous acting force on the

motor shaft Bm and the load shaft Bl are considered, then (D.5) is expressed as

Jl =
dωl(t)

dt
+Blωl(t) = τl(t) (D.6)

where Jl is the inertia moment of the load and τl is the applied torque to the load.

Then the motor shaft equation is described as

Jm
dωm(t)

dt
+Bmωm(t) + τml(t) = τm(t) (D.7)

where Jm is the inertia moment of the motor shaft and τml is the resulting torque

acting on the motor shaft and the load. Where the torque applied to the load can be

described by
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τl = ηgKgτml(t) (D.8)

where Kg is the gear ratio and ηg is the gear box efficiency, for planetary gearboxes

the gear ratio is represented by N1 and N2 where

Kginternal =
N2

N1

(D.9)

which is the internal gearbox ratio, for the motor gear N3 and the load N4, the gear

ratio is defined as

Kgexternal =
N4

N 3
. (D.10)

Then from (D.9) and (D.10) the power train gear ratio is defined as:

Kg = KgexternalKginternal . (D.11)

Therefore the applied torque at the motor shaft is expressed as

τml =
τl(t)

ηgKg

. (D.12)

Assuming that the motor shaft must rotate Kg times for each output revolution, the

the following expression can be obtained:

θm(t) = Kgθl(t). (D.13)

Then the relationship between the angular speed of the motor shaft ωm and the

angular speed of the shaft can be found

ωm(t) = Kgωl(t). (D.14)

The differential equation which describes the gearbox motion is obtained by replacing

(D.12),(D.14) and (D.7) into (D.6) where
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JmKg
dωl(t)

dt
+BmKgωl(t) +

Jl(
dωl(t)
dt

) +Blωl(t)

ηgKg

= τm. (D.15)

Defining the terms

Jeq = ηgK
2
gJm + Jl

Beq1 = ηgK
2
gBm +Bl.

(D.16)

Equation (D.15) derives in

Jeq
dωl(t)

dt
+Beqωl(t) = ηgKgτm(t). (D.17)

Considering that the motor torque is proportional to the applied torque the following

expression is given

τm(t) = ηtIm(t) (D.18)

expressing the motor torque in terms of the input voltage Vm and the load shaft

speed ωl and substituting the motor armature current (D.4) into the current torque

relationship (D.18), the following expression is obtained

τm =
ηmkt(Vm(t)− kmωm(t)

Rm

. (D.19)



Appendix E

Real-Time Software Installation

In order to have a correct operation of the system it is necessary to take care of the

following indications

E.1. Step 1

It is necessary a personal computer running Microsoft-WindowsR© 7, Windows 8.1

or Windows 10, both 32 and 64 bit-version are supported, ensure the corresponding

MatlabR© R2014b, R2015a or R2015 version is installed on the computer. It is very

important to ensure that the with Matlab installation the following add ons are

accompanying the software:

� Simulink

� Simulink Coder

� Matlab Coder

� Control System Toolbox

Otherwise the system would no function
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E.2. Step 2

Install a Microsoft Compiler, the Quaser-Software Quarc requieres a Matlab suppor-

ted C+ + compiler, ensure that only one of the following c+ + compilers is installed:

� Microsoft Visual Studio Professional Edition 2012 (version 11.0) or 2013 (version

12.0).

� Microsoft Windows SDK 7.1.

Caveat if the Microsoft Windows SDK 7.1 is attempt to be installed, an installation

failure may occur under two scenarios:

� If Microsoft Visual C++ 2010 SP1 (Express or Professional) is installed.

� If Microsoft Visual C++ 2010 redistributable packages (x64 or x86) are insta-

lled.

To avoid this issue:

1. Uninstall the Microsoft Visual C + + 2010 redistributable packages (both x86

as well as x64).

2. Install the Windows SDK 7.1. During installation, under the Installation Op-

tions menu, UNCHECK the “Visual C + + Compilers” and “Microsoft Visual

C + + 2010” components.

3. Apply the SDK 7.1 patch from below:

http://www.microsoft.com/en-us/download/details.aspx?displaylang=en

&id=4422

4. Reinstall the Microsoft Visual C++ 2010 redistributable packages from

http://www.microsoft.com/en-us/download/details.aspx?id=14632

http://www.microsoft.com/en-us/download/details.aspx?id=5555



Appendix F

Matlab/SimulinkR© Simulation

Codes

F.1. Pendubot’s SimulinkR© Model

Figure F.1: SimulinkR© Pendubot’s controller simulation model
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F.1.1. Nonlinear Optimal Sliding Mode Controller

SimulinkR© Code

function [u,p11d,p12d,p13d,p21d,p22d,p23d,p31d,p32d,p33d,z1d,z2d,z3d,u1d,S,Ups]=

fcn(ref,refd,x1,x2,x3,x4,p11,p12,p13,p21,p22,p23,p31,p32,p33,z1,z2,z3,u1)

th1 = 0.0399466;

th2 = 0.00952431;

th3 = 0.0113025;

th4 = 0.197753;

th5 = 0.0556227;

mu1 = 0.00545;

mu2 = 0.00047;

g = 9.8;

det = (1/((th2 + th3*cos(x2))*(th1*th2 - th3^2*cos(x2)^2)));

a11 = 0;

a12 = 0;

a13 = 1;

a21 = 0;

a22 = 0;

a23 = 0;

a31 = det*(sin(x1)/x1)*(-g*th1*th3*th5*cos(x2)^2 - g*th2*th3*th5*cos(x2)^2

- 2*g*th3^2*th5*cos(x2)^3);

a32 = det*(sin(x2)/x2)*(-g*th1*th3*th5*cos(x1)*cos(x2) - g*th2*th3*th5*cos(x1)*cos(x2)

- 2*g*th3^2*th5*cos(x1)*cos(x2)^2);

a33 = det*(th1*th3^2*x3*cos(x2)*sin(x2) + th2*th3^2*x3*cos(x2)*sin(x2)

+ 2*th3^3*x3*cos(x2)^2*sin(x2));

b1 = 0;

b2 = 1;

b3 = det*(mu2*th1*th3*cos(x2) + mu2*th2*th3*cos(x2) + 2*mu2*th3^2*cos(x2)^2);

A = [a11,a12,a13;a21,a22,a23;a31,a32,a33];

B = [b1;b2;b3];

C = [1,0,0;0,1,0;0,0,1];

X = [x1;x2;x3];

R = 1;

q1 = 100000;

q2 = 1/(0.5*abs(ref-x2)+1);

q3 = 1;

Q = [q1,0,0;0,q2,0;0,0,q3];

q3d = ref;

q4d = refd;

q2d = -refd;

r = [-q3d;q3d;q2d];

P = [p11,p12,p13;p21,p22,p23;p31,p32,p33];

z = [z1;z2;z3];
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Pd = C’*Q*C-P*B*inv(R)*B’*P+A’*P+P*A;

zd =(A-B*inv(R)*B’*P)’*z+C’*Q*r;

p11d = Pd(1,1);

p12d = Pd(1,2);

p13d = Pd(1,3);

p21d = Pd(2,1);

p22d = Pd(2,2);

p23d = Pd(2,3);

p31d = Pd(3,1);

p32d = Pd(3,2);

p33d = Pd(3,3);

z1d = zd(1,1);

z2d = zd(2,1);

z3d = zd(3,1);

Ups = -inv(R)*B’*(P*X-z);

m1 = 10;

m2 = 0.8;

S = Ups -x4;

u1d = -m1*sign(S);

% Super Twisting

u = -m2*sqrt(abs(S))*sign(S)+u1;

F.1.2. Nonlinear Optimal Controller based on SDCF

SimulinkR© Code

function [p11d,p12d,p13d,p14d,p21d,p22d,p23d,p24d,p31d,p32d,p33d,p34d,p41d,p42d,p43d,p44d,z1d,z2d,z3d,z4d,U,e]=

fcn(p11,p12,p13,p14,p21,p22,p23,p24,p31,p32,p33,p34,p41,p42,p43,p44,z1,z2,z3,z4,x1,x2,x3,x4,ref,refd,ei)

q1 = 2000;

q2 = 1;

q3 = 1;

q4 = 10;

r1 = 1;

th1 = 0.0399466;

th2 = 0.00952431;

th3 = 0.0113025;

th4 = 0.197753;

th5 = 0.0556227;

mu1 = 0.00545;

mu2 = 0.00047;

g = 9.8;

q3d = ref;

q4d = refd;

q2d = -refd;

r = [-q3d;q3d;q2d;q4d];

a11 = 0;

a12 = 0;

a13 = 1;

a14 = 0;

a21 = 0;

a22 = 0;
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a23 = 0;

a24 = 1;

det = (1/(-(th2 + th3*cos(x2))^2 + th2*(th1 + th2 + 2*th3*cos(x2))));

a31 = det*(sin(x1)/x1)*(g*th2*th4 - g*th3*th5*cos(x2)^2);

a32 = det*(sin(x2)/x2)*(th2*th3*x3^2 + 2*th2*th3*x3*x4 + th2*th3*x4^2 + th3^2*x3^2*cos(x2)

- g*th3*th5*cos(x1)*cos(x2));

a33 = det*(-mu1*th2);

a34 = det*(mu2*th2 + mu2*th3*cos(x2));

a41 = (sin(x1)/x1)*det*(-g*th2*th4 - g*th3*th4*cos(x2) + g*th1*th5*cos(x2)

+ g*th3*th5*cos(x2)^2);

a42 = (sin(x2)/x2)*det*(-th1*th3*x3^2 - th2*th3*x3^2 - 2*th2*th3*x3*x4 - th2*th3*x4^2

+ g*th1*th5*cos(x1)

- 2*th3^2*x3^2*cos(x2) - 2*th3^2*x3*x4*cos(x2) - th3^2*x4^2*cos(x2)

+ g*th3*th5*cos(x1)*cos(x2));

a43 = det*(mu1*th2 + mu1*th3*cos(x2));

a44 = det*(-mu2*th1 - mu2*th2 - 2*mu2*th3*cos(x2));

b3 = (th2)/(th1*th2 - th3^2*cos(x2)^2);

b4 = -(((th2 + th3*cos(x2)))/(th1*th2 - th3^2*cos(x2)^2));

A = [a11,a12,a13,a14;a21,a22,a23,a24;a31,a32,a33,a34;a41,a42,a43,a44];

B = [0;0;b3;b4];

C = [1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,1];

Q = [q1,0,0,0;0,q2,0,0;0,0,q3,0;0,0,0,q4];

R = r1;

P = [p11,p12,p13,p14;p21,p22,p23,p24;p31,p32,p33,p34;p41,p42,p43,p44];

z = [z1;z2;z3;z4];

X = [x1;x2;x3;x4];

Pd = C’*Q*C-P*B*inv(R)*B’*P+A’*P+P*A;

zd =(A-B*inv(R)*B’*P)’*z+C’*Q*r;

p11d = Pd(1,1);

p12d = Pd(1,2);

p13d = Pd(1,3);

p14d = Pd(1,4);

p21d = Pd(2,1);

p22d = Pd(2,2);

p23d = Pd(2,3);

p24d = Pd(2,4);

p31d = Pd(3,1);

p32d = Pd(3,2);

p33d = Pd(3,3);

p34d = Pd(3,4);

p41d = Pd(4,1);

p42d = Pd(4,2);

p43d = Pd(4,3);

p44d = Pd(4,4);

z1d = zd(1,1);

z2d = zd(2,1);

z3d = zd(3,1);

z4d = zd(4,1);

U = -inv(R)*B’*(P*X-z);
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F.2. RIP SimulinkR© Model

Figure F.2: SimulinkR© RIP controller simulation model

F.3. Nonlinear Optimal Controller based on SDCF

SimulinkR© Code

function [p11d,p12d,p13d,p14d,p21d,p22d,p23d,p24d,p31d,p32d,p33d,p34d,p41d,p42d,p43d,p44d,z1d,z2d,z3d,z4d,U]

=fcn(p11,p12,p13,p14,p21,p22,p23,p24,p31,p32,p33,p34,p41,p42,p43,p44,z1,z2,z3,z4,x1,x2,x3,x4,ref,refd)

q1 = 500;

q2 = 1000;

q3 = 10;

q4 = 10;

r1 = 30;

th1 = 0.00692521;

th2 = 0.00360582;

th3 = 0.00462229;

th4 = 0.00480772;

th5 = 0.0213995;

mu2 = 0.0005;

mu1 = .5;
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g = 9.8;

Jt = 1.1883e-05;

Jr = 9.9829e-04;

Jp = 0.0012;

Mp = 0.1270;

Lp = 0.3365;

Lr = 0.2159;

g = 9.8100;

Dr = 0.0024;

Dp = 0.0024;

Kg = 70;

kt = 0.0077;

km = 0.0077;

Rm = 2.6000;

r = [ref;0;refd;0];

a11 = 0;

a12 = 0;

a13 = 1;

a14 = 0;

a21 = 0;

a22 = 0;

a23 = 0;

a24 = 1;

det = (1/((th1 + th2)*th4 - (th3^2 + th2*th4)*cos(x2)^2));

a31 = 0;

a32 = det*(sin(x2)/x2)*(-th3*th4*x4^2 + g*th3*th5*cos(x2) - 2*th2*th4*x3*x4*cos(x2)

+ th2*th3*x3^2*cos(x2)^2);

a33 = det*(-mu1*th4);

a34 = det*(-mu2*th3*cos(x2));

a41 = 0;

a42 = det*(sin(x2)/x2)*(g*th1*th5 + g*th2*th5 + th1*th2*x3^2*cos(x2) + th2^2*x3^2*cos(x2)

- th3^2*x4^2*cos(x2) - g*th2*th5*cos(x2)^2 - 2*th2*th3*x3*x4*cos(x2)^2 - th2^2*x3^2*cos(x2)^3);

a43 = det*(-mu1*th3*cos(x2));

a44 = det*(-mu2*th1 - mu2*th2 + mu2*th2*cos(x2)^2);

b3 = (th4)/((th1 + th2)*th4 - (th3^2 + th2*th4)*cos(x2)^2);

b4 = (th3*cos(x2))/((th1 + th2)*th4 - (th3^2 + th2*th4)*cos(x2)^2);

A = [a11,a12,a13,a14;a21,a22,a23,a24;a31,a32,a33,a34;a41,a42,a43,a44];

B = [0;0;b3;b4];

C = [1,0,0,0;0,1,0,0;0,0,0,0;0,0,0,0];

A(3,3)= A(3,3)-Kg^2*kt*km/Rm*B(3);

A(4,3)= A(4,3)-Kg^2*kt*km/Rm*B(4);

B = Kg*kt*B/Rm;

Q = [q1,0,0,0;0,q2,0,0;0,0,q3,0;0,0,0,q4];

R = r1;

P = [p11,p12,p13,p14;p21,p22,p23,p24;p31,p32,p33,p34;p41,p42,p43,p44];

z = [z1;z2;z3;z4];

X = [x1;x2;x3;x4];



110 Appendix F: Matlab/SimulinkR© Simulation Codes

Pd = C’*Q*C-P*B*inv(R)*B’*P+A’*P+P*A;

zd =(A-B*inv(R)*B’*P)’*z+C’*Q*r;

p11d = Pd(1,1);

p12d = Pd(1,2);

p13d = Pd(1,3);

p14d = Pd(1,4);

p21d = Pd(2,1);

p22d = Pd(2,2);

p23d = Pd(2,3);

p24d = Pd(2,4);

p31d = Pd(3,1);

p32d = Pd(3,2);

p33d = Pd(3,3);

p34d = Pd(3,4);

p41d = Pd(4,1);

p42d = Pd(4,2);

p43d = Pd(4,3);

p44d = Pd(4,4);

z1d = zd(1,1);

z2d = zd(2,1);

z3d = zd(3,1);

z4d = zd(4,1);

U = -inv(R)*B’*(P*X-z);



Appendix G

List of publications

1. Nonlinear Optimal Control in Combination with Sliding Modes: Applied to the

Pendubot, 2017 IEEE International Autumn Meeting on Power, Electronics and

Computing (ROPEC 2017). Ixtapa, Mexico. (Under review)
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págs. 73–78 vol.1. July 2003.

112



References 113

[Carlson87] Carlson, D., Haurie, A., y Leizarowitz, A. Infinite Horizon Op-

timal Control. Springer-Verlag, Berlin, Germany, 1987.

[Chang12] Chang, X.-H. Takagi-Sugeno Fuzzy Systems Non-fragile H-

infinity Filtering. Springler, Berlin, Germany, 2012.

[Cimen10] Cimen, T. Systematic and effective design of nonlinear feed-

back controllers via the state-dependent riccati equation (sdre)

method. Annual Reviews in Control, 34(1):32 – 51, 2010.

[Cloutier97] Cloutier, J. R. State-dependent riccati equation techniques: an

overview. En Proceedings of the 1997 American Control Confe-

rence (Cat. No.97CH36041), tomo 2, págs. 932–936 vol.2. Jun

1997.

[Cloutier02] Cloutier, J. R. y Stansbery, D. T. The capabilities and art

of state-dependent riccati equation-based design. En Procee-

dings of the 2002 American Control Conference (IEEE Cat.
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Sept 2016.



114 References

[Dorf08] Dorf, R. C. Modern Control Systems. Pearson Prentice Hall,

USA, 2008.

[Edward98] Edward, C. y Spurgeon, S. Sliding Mode Control. Taylor and

Francis, London, UK, 1998.

[Eom15] Eom, M. y Chwa, D. Robust swing-up and balancing control

using a nonlinear disturbance observer for the pendubot sys-

tem with dynamic friction. IEEE Transactions on Robotics,

31(2):331–343, April 2015.

[Erdem01] Erdem, E. B. y Alleyne, A. G. Experimental real-time sdre con-

trol of an underactuated robot. En Proceedings of the 40th IEEE

Conference on Decision and Control (Cat. No.01CH37228), to-
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trol (CDC), págs. 7708–7713. Dec 2012. ISSN 0191-2216. doi:

10.1109/CDC.2012.6425813.

[Gruebler17] Gruebler, M. Getriebelehre. Springler Verlag, Berlin, Germany,

1917.

[Hammett98] Hammett, D., Hall, C., y Ridgely, B. Controllability issues in

nonlinear state-dependent riccati equation control. Journal of

guidance, control and dynamics, 21:767–773, oct 1998.

[Hermann83] Hermann, R. Pfaffian systems and feedback lineariza-

tion/obstructions. En The 22nd IEEE Conference on Decision

and Control, págs. 119–121. Dec 1983.

[Isidori90] Isidori, A. y Byrnes, C. I. Output regulation of nonlinear sys-

tems. IEEE Transactions on Automatic Control, 35(2):131–140,

Feb 1990.

[Isidori95] Isidori, A. Nonlinear Control Systems. Springler, Berlin, Ger-

many, 1995.

[Isidori13] Isidori, A. The zero dynamics of a nonlinear system: From the



116 References

origin to the latest progresses of a long successful story. European

Journal of Control, 19(5):369 – 378, 2013.

[J. Rivera08] J. Rivera, A. L. y Castillo-Toledo, B. Discontinuous output re-

gulation of the pendubot. Proceeding of the 17th world congress

The international federation of automatic control Seoul Korea,

2008.
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