
Universidad Michoacana de San Nicolás de
Hidalgo

Facultad de Ingenieŕıa Eléctrica

División de Estudios de Posgrado

A SOFTWARE ARCHITECTURE FOR INTELLIGENT TIME
SERIES FORECASTING BASED ON CLOUD COMPUTING

TESIS

Que para obtener el grado de

MAESTRO EN CIENCIAS EN INGENIERÍA ELÉCTRICA

Presenta

José Luis Garć

Director de Tesis
Dr. Juan Jos´

Morelia, Michoacán. Junio de 2018

ıa Nava

e Flores Romero

Para Maŕıa del Rosario, Maŕıa de la Luz, Maŕıa Paz y Rosa Maŕıa.

Para Juan y Maŕıa Guadalupe.

Para los doctores Juan José Flores Romero, José Antonio Camarena
Ibarrola, Leonardo Romero Muñoz, Jaime Cerda Jacobo y Félix Calderón

Solorio.

Para todos los miembros de la comunidad de la División de Estudios de
Posgrado de la Facultad de Ingenieŕıa Eléctrica, Universidad Michoacana

de San Nicolás de Hidalgo, con agradecimiento y respeto.

Para todos mis colegas en la transdisciplina, que no dudemos en saltar
fronteras una y otra vez.

José Luis Garćıa Nava’s M.Sc. program has been funded by CONACYT
Scholarship No. 737505/596109.

Contents

List of Figures ix

Glossary xi

Acronyms xiii

Abstract xvii

Resumen xix

1 Introduction 1
1.1 Problem Definition . 3
1.2 Context . 4

1.2.1 Cloud-Native Application Architectures 4
1.3 Objectives . 7

1.3.1 General Objective . 7
1.3.2 Specific Objectives . 7

1.4 Thesis Overview . 8

2 Software Architecture 11
2.1 State of the Art . 11

2.1.1 Information Resources for ITSFCC Architecture Design 12
2.2 Architecture Basics . 15

2.2.1 Definition of Architecture 15
2.2.2 Characteristics of Software Architecture 17

2.3 Software Quality Attributes 18
2.3.1 Performance . 19
2.3.2 Scalability . 19
2.3.3 Modifiability . 20

iii

iv Contents

2.3.4 Security . 20

2.3.5 Availability . 20

2.3.6 Integration . 21

2.3.7 Portability . 21

2.3.8 Testability . 21

2.3.9 Supportability . 22

2.3.10 Deployability . 22

2.4 The International Standard ISO / IEC / IEEE 42010 22

2.4.1 Architecture versus Architecture Description 23

2.5 Architecture Characterization for ITSFCC 26

2.5.1 Identification and Overview 27

2.5.2 Identification of Stakeholders 27

2.5.3 Identification of Concerns in Terms of Software Quality
Attributes . 27

2.5.4 Process-based View . 28

2.5.5 Block Diagram-based Architecture Model 28

2.5.6 Pattern-based Configuration 29

3 Architecture Elements for Intelligent Time Series Forecast-
ing 31

3.1 Description of System Environment 31

3.1.1 Complexity of Time Series Forecasting in the Energy
Domain . 32

3.1.2 Intelligent Methods for Time Series Forecasting 35

3.2 Identification of System Concerns 40

3.2.1 Definition of Software Quality Attributes 41

3.2.2 Complexity Management 42

3.2.3 Hybrid-operation Forecasting and Benchmarking 43

3.2.4 Context-aware Forecasting 44

3.2.5 Efficient Model Production and Parameter Optimization 44

3.2.6 Summary of System Concerns 45

3.3 Software Patterns Related to System Concerns 46

3.3.1 Software Pattern Formats 46

3.3.2 Cloud Offering Patterns 48

3.3.3 Cloud Application Architecture Patterns 50

Contents v

4 Architecture Elements for Cloud Computing 53

4.1 Description of System Environment 53

4.1.1 Definition of Cloud Computing 54

4.1.2 Cloud Computing Fundamentals 57

4.2 Identification of System Concerns 61

4.2.1 Rapid Elasticity . 61

4.2.2 Secure Operation . 62

4.2.3 Forecasting-as-a-Service Operation 63

4.2.4 Summary of System Concerns 65

4.3 Software Patterns Related to System Concerns 65

4.3.1 Cloud Offering Patterns 66

4.3.2 Cloud Application Architecture Patterns 68

4.3.3 Cloud Application Management Patterns 69

5 ITSFCC Architecture 71

5.1 Basic Documentation . 71

5.1.1 Identification and Overview 71

5.1.2 Identification of Stakeholders 72

5.1.3 Identification of Concerns 73

5.2 Architecture Model . 74

5.2.1 Distributed Application 77

5.2.2 Multi-source Data Extraction 79

5.2.3 Data Encryption . 79

5.2.4 User Identity Manager 79

5.2.5 Engagement Layer . 83

5.2.6 Publication-Subscription Channel 83

5.2.7 Multi-variable Elasticity Manager 83

5.2.8 Graph Representation 86

5.2.9 RESTful Interfaces . 86

5.2.10 Time Series Repository 86

5.2.11 Forecast Model Repository 90

5.2.12 Batch Processing . 90

5.2.13 Parallel Implementation 93

5.2.14 Pipes-and-Filters Processing 93

5.2.15 Firewall Protection . 97

vi Contents

6 ITSFCC on Amazon Web Services 99
6.1 Amazon Web Services Overview 99

6.1.1 Compute . 100
6.1.2 Storage . 101
6.1.3 Databases . 101
6.1.4 Networking . 101
6.1.5 Security . 102
6.1.6 Management . 102
6.1.7 Application Integration 103
6.1.8 Analytics . 103
6.1.9 Machine Learning . 104

6.2 Implementation Guides . 104
6.2.1 Application Components Included in AWS 106
6.2.2 Multi-source Data Extraction 107
6.2.3 Time Series Repository 108
6.2.4 Forecast Model Repository 108
6.2.5 Graph Representation 111
6.2.6 Batch Processing . 113
6.2.7 Parallel Implementation 115
6.2.8 RESTful Interfaces . 118
6.2.9 Engagement Layer . 119
6.2.10 Publication-Subscription Channel 119

6.3 Summary of Experiments on the AWS Cloud 122
6.3.1 Storage, Databases, and Pipelines 122
6.3.2 Deep Learning AMI . 124
6.3.3 Spark on Amazon EMR 126
6.3.4 Virtual Private Cloud 128
6.3.5 Bokeh Server Customized AMI 131

6.4 Results . 133

7 Conclusions and Future Work 137
7.1 Conclusions . 137

7.1.1 General Conclusion . 137
7.1.2 Contributions . 138
7.1.3 Recommendations . 139

7.2 Future Work . 140
7.2.1 ITSFCC FaaS Operation 140
7.2.2 ITSFCC as a Platform for Collaborative Research . . . 141

Contents vii

References 143

viii Contents

List of Figures

2.1 Context of architecture description [ISO/IEC/IEEE, 2011] . . 16

2.2 Conceptual model of an architecture description [ISO/IEC/IEEE,
2011] . 25

3.1 Hong’s Electric Load Forecasting Support System (based on
[Hong, 2013]) . 39

3.2 Example of graph representation of time series operations. . . 43

3.3 Summary of system concerns related to Intelligent Time Series
Forecasting . 46

4.1 Cloud computing characteristics, service, and deployment mod-
els . 54

4.2 Summary of system concerns related to Cloud Computing . . 66

5.1 ITSFCC Architecture . 76

5.2 ITSFCC’s concerns mapped to application component categories 78

5.3 Multi-source Data Extraction 80

5.4 Data Encryption . 81

5.5 User Identity Manager . 82

5.6 Engagement Layer . 84

5.7 Publication-Subscription Channel 85

5.8 Multi-variable Elasticity Manager 87

5.9 Graph Representation . 88

5.10 RESTful Interfaces . 89

5.11 Time Series Repository . 91

5.12 Forecast Model Repository . 92

5.13 Batch Processing . 94

5.14 Parallel Implementation . 95

ix

x List of Figures

5.15 Pipes-and-Filters Processing 96
5.16 Firewall Protection . 98

6.1 ITSFCC Architecture on Amazon Web Services 105
6.2 ITSFCC Multi-source Data Extraction on AWS 109
6.3 ITSFCC Time Series Repository on AWS 110
6.4 ITSFCC Forecast Model Repository on AWS 112
6.5 ITSFCC Graph Representation on AWS 114
6.6 ITSFCC Batch Processing on AWS 116
6.7 ITSFCC Parallel Implementation on AWS 117
6.8 ITSFCC RESTful Interfaces on AWS 120
6.9 ITSFCC Engagement Layer on AWS 121
6.10 ITSFCC Management Components on AWS 123
6.11 Architecture of the AWS experiment on storage, databases,

and pipelines. 125
6.12 Architecture of the AWS experiment on the Deep Learning AMI.127
6.13 Architecture of the AWS experiment on the Spark EMR cluster.129
6.14 Architecture of the AWS experiment on the virtual private

cloud. 132
6.15 Architecture of the AWS experiment on the Bokeh server cus-

tomized AMI. 134

Glossary

Anaconda A widely used free Python distribution with almost 200 packages
for science, math, engineering, and data analysis. 109, 111, 127

Analytics-as-a-Service A data analytics software licensing and delivery
model in which software is licensed on a subscription basis and is cen-
trally hosted. 1

Apache Spark An open-source powerful distributed querying and process-
ing engine that provides the flexibility and extensibility of MapReduce
but at significantly higher speeds: up to 100 times faster than Apache
Hadoop when data is stored in memory and up to 10 times when ac-
cessing disk. 111, 121, 123, 128

architecture description A strictly defined work product used to express
an architecture in terms of viewpoints, views, correspondences, corre-
spondence rules and rationales. 13, 14, 21–25, 27, 28

Bokeh An interactive visualization library that targets modern web browsers
for presentation. Its goal is to provide elegant, concise construction of
versatile graphics, and to extend this capability with high-performance
interactivity over very large or streaming datasets. 118, 121, 123, 126–
128

boto3 A Software Development Kit for Python that allows communica-
tion with the Amazon Web Services application programming interface.
120, 127

Forecasting-as-a-Service A forecasting software licensing and delivery model
in which software is licensed on a subscription basis and is centrally
hosted. 1, 10, 32, 56, 59, 131

xi

xii Glossary

Infrastructure-as-Code Is the process of managing and provisioning com-
puter data centers through machine-readable definition files, rather
than physical hardware configuration or interactive configuration tools.
9, 126

Internet of Things Is the network of physical devices, vehicles, home ap-
pliances and other items embedded with electronics, software, sensors,
actuators, and connectivity which enables these things to connect and
exchange data, creating opportunities for more direct integration of the
physical world into computer-based systems, resulting in efficiency im-
provements, economic benefits and reduced human intervention. 7, 33,
135

Pandas A software library written for the Python programming language for
data manipulation and analysis. In particular, it offers data structures
and operations for manipulating numerical tables and time series. 118,
120, 123, 127

TensorFlow A software library developed by Google Brain Team within
Google’s Machine Learning Intelligence research organization, for the
purposes of conducting machine learning and deep neural network re-
search. 100, 111, 120, 121, 128

Acronyms

ACO Ant Colony Optimization. 35, 36

AMI Amazon Machine Image. 100, 118, 120, 121, 127

ANN Artificial Neural Network. 34

API Application Programming Interface. 5, 20, 82, 98, 114

ARIMA Auto Regressive Integrated Moving Average. 34

ARIMAX Auto Regressive Integrated Moving Average with Exogenous In-
put. 34

AWS Amazon Web Services. x, 8, 9, 12, 95–100, 102–121, 123, 124, 126,
128, 132–134

AZ Availability Zone. 96, 109, 111, 114, 115

BPMN Business Process Model and Notation. 66

CACO Chaos/Cloud Ant Colony Optimization. 36

CGA Chaos/Cloud Genetic Algorithm. 36

CIA Chaos/Cloud Immune Systems. 36

CPSO Chaos/Cloud Particle Swarm Optimization. 36

CPU Central Processing Unit. 58, 59, 65, 78, 121, 123, 127

CRUD Create, Read, Update, Delete. 126

CSA Chaos/Cloud Simulated Annealing. 36

xiii

xiv Acronyms

CSV Comma-Separated Values. 75, 103, 127

CTA Chaos/Cloud Tabu Search. 36

DE Differential Evolution. 37, 38

DNS Domain Name System. 98, 114

EBS Elastic Block Storage. 97, 104, 107, 109, 121, 127

EC2 Elastic Cloud Computing. x, 96–100, 102, 103, 107, 109, 111, 114, 115,
120–124, 126, 127

ELB Elastic Load Balancing. 96

ELFSS Electric Load Forecasting Support System. 35, 36, 38

EMR Elastic MapReduce. 99, 118, 121, 123

FTPS File Transfer Protocol Secure. 59

GA Genetic Algorithm. 35, 36

HTTP Hypertext Transfer Protocol. 59, 82, 99, 114, 115, 124

HTTPS Hypertext Transfer Protocol Secure. 59, 124

IA Immune Systems. 35, 36

IAM Identity and Access Management. 98, 102, 114, 127

IP Internet Protocol. 93, 96, 103, 124, 126, 127

IT Information Technology. 2, 51, 53, 54, 65, 133

ITSFCC Intelligent Time Series Forecasting based on Cloud Computing.
v, vi, viii–x, 4, 6, 10–13, 25–30, 36–41, 44–50, 56–75, 78, 82, 86, 89, 93,
95–119, 121, 123, 128, 131–136

JSON JavaScrip Object Notation. 75, 103

Acronyms xv

KBES Knowledge-Based Expert System. 34

KMS Key Management Service. 102

KNN K-Nearest Neighbors. 121

NAT Network Address Translation. 126

NIST National Institute of Standards and Technology. 50, 53

NN Nearest Neighbors. 37

NNDE Nearest Neighbors - Differential Evolution. 36–38, 40, 41, 47, 134

NoSQL Not only SQL. 75, 97, 103

PSO Particle Swarm Optimization. 35, 36

RDS Relational Database Service. 97, 102, 104, 107, 109, 120, 124, 126

REST Representational State Transfer. 55, 114, 124

RFID Radio-Frequency Identification. 47

S3 Simple Storage Service. 97–99, 102–104, 107, 109, 118, 120, 123, 127

SA Simulated Annealing. 35, 36

SARIMA Seasonal Auto Regressive Integrated Moving Average. 34

SDK Software Development Kit. 120

SMS Short Message Service. 127

SNS Simple Notification Service. 99, 127

SOA Service-Oriented Architecture. 54, 55

SOAP Simple Object Access Protocol. 55

SQL Structured Query Language. 75, 99, 121, 123

SQS Simple Queue Service. 99, 104, 107, 109, 111, 115

xvi Acronyms

SRV Support Vector Regression. 34–36

SSH Secure Shell. 93, 123, 124

SSL Secure Sockets Layer. 59

TA Tabu Search. 35, 36

TLS Transport Layer Security. 59

TOGAF The Open Group Architecture Framework. 134

URI Uniform Resource Identifier. 55, 60, 114

URL Uniform Resource Locator. 120

VPC Virtual Private Cloud. 98, 102, 103, 124, 126

XML Extensible Markup Language. 55, 75, 103

YAML YAML Ain’t Markup Language. 89, 126

Abstract

Cloud computing enables research institutions to transfer specialized knowl-
edge to external users, as well as to collaboratively work among interdisci-
plinary, multi-location teams. However, cloud computing is not widely used
in mexican research institutions yet. In the case of the research Work Group
where this thesis was conceived, a methodology is required to properly deploy
its software research products to the cloud.

This thesis proposes the design of an architecture for a software system
able to integrate the Work Group’s research products as a cloud-native ap-
plication. In accordance with the research lines driven by the Work Group,
this software system is intended to apply Artificial Intelligence and Machine
Learning-based forecasting methods to produce high-quality predictions for
time series describing multiple-domain variables. In order to formally express
this architecture, a characterization based on the standard for architecture
description was designed. This characterization defines an architecture model
that is oriented to a process view, expressed via block diagrams, and based
on software patterns.

On this ground, a cloud-native, pattern-based, provider-independent ar-
chitecture was built. This architecture comprises 15 application components
designed to provide cloud functionality to the Work Group’s research prod-
ucts. In addition, a reference architecture for deploying the system on the
Amazon Web Services cloud was designed.

Keywords: machine learning, software patterns, Forecasting-as-a-Service,
Amazon Web Services.

xvii

xviii Acronyms

Resumen

La computación en la nube permite a las instituciones de investigación trans-
ferir conocimiento altamente especializado hacia usuarios externos, aśı como
colaborar en equipos interdisciplinarios, basados incluso en diferentes ubi-
caciones. Sin embargo, el uso de la computación en la nube todav́ıa no
está generalizado en las instituciones de investigación mexicanas. En el caso
del Grupo de Trabajo en el que esta tesis fue concebida, se carece de una
metodoloǵıa para trasladar el software resultado de sus investigaciones a la
nube.

Esta tesis propone el diseño de una arquitectura para un sistema de soft-
ware que integre los productos de investigación del Grupo de Trabajo en la
forma de una aplicación nativa para la nube. En concordancia con las ĺıneas
de investigación del Grupo de Trabajo, este sistema tiene por objetivo uti-
lizar métodos de pronóstico basados en inteligencia artificial y aprendizaje
automático para producir predicciones de alta calidad para series de tiempo
que describan variables de múltiples áreas de conocimiento. Para formalizar
esta arquitectura se diseñó una caracterización basada en el estándar para
descripciones de arquitectura de sistemas. Esta caracterización define un
modelo de arquitectura que está orientado hacia una vista de procesos, ex-
presado mediante diagramas de bloques y basado en patrones de software.

En este contexto se construyó una arquitectura nativa para la nube,
basada en patrones e independiente de proveedor. Esta arquitectura com-
prende 15 componentes de aplicación diseñados para proveer funcionalidad
en la nube a los productos de investigación del Grupo de Trabajo. Adicional-
mente se diseñó una arquitectura de referencia para implantar el sistema en
la nube de Amazon Web Services.

Keywords: aprendizaje automático, patrones de software, Pronóstico-
como-Servicio, Amazon Web Services.

xix

Chapter 1

Introduction

This work is part of the activities of the Data Science Research Work Group
(The Work Group) at the Graduate School of Electrical Engineering (DEP-
FIE), Universidad Michoacana de San Nicolás de Hidalgo (UMICH). For
more than 15 years, researchers and graduate students in the Work Group
have produced specialized knowledge centered on topics like Forecasting,
Time Series Analysis, Artificial Intelligence, Machine Learning, and Soft
Computing. This knowledge has impacted not only generations of Computer
Science and Electrical Engineering students, but also non-academic entities
that turned around to UMICH in search for a solid partner in advanced
innovation projects.

In recent years, the Work Group started collaboration as a forecasting
provider for different entities, most of them part of the mexican electric
power industry. By developing and implementing Artificial Intelligence and
Machine Learning-based methods of forecasting, the Work Group attempts
to contribute in closing the wide gap that separates the effective tools modern
data science offers from the methods currently used by mexican productive
enterprises. In this context a fundamental question arises: how to efficiently
transfer the high-level knowledge generated by research institutions to the
productive entities that demand it? Answering this question is an arduous
matter, specially in the mexican industry and services landscape, character-
ized by a weak culture of innovation that leads to reduced investments in
research and development.

A forecasting and data analytics service offered via the Internet to multi-
ple customers was proposed by Juan J. Flores, head researcher of the Work
Group, as a suitable solution. This Analytics-as-a-Service or Forecasting-

1

2 Chapter 1. Introduction

as-a-Service (FaaS) tool would enable tenants in different organizations to
benefit from the specialized knowledge generated in the Work Group at a
fraction of the cost usually paid for consulting services of this level. In addi-
tion, customers would not be required to have any special expertise or skill
to produce high-quality forecasts or analysis, as long as Artificial Intelligence
and Machine Learning-based techniques would mask the decision making
process behind a clear and simple user interface.

Soon after the solution analysis began a parallel problem came up, repre-
sented by the fact that most of the Work Group’s research intended to sup-
port the FaaS operation was not cloud-native, meaning it was not developed
using the specific resources of the cloud computing paradigm. Although this
condition does not affect the applicability or the effectiveness of algorithms or
programs, it does complicate their deployment on the cloud, as long as the el-
ements that constitute infrastructures (storage, processing, networking) and
platforms (operating system, programming languages, middleware) located
in a desktop environment are very different from those found in the cloud
landscape. This antecedent can be explained by the fact that cloud com-
puting is a resource just recently available to Information Technology (IT)
teams, therefore technology-related communities, researchers included, are
still accustomed to develop their projects as on-premises solutions, deployed
in local infrastructures ranging from personal computers to high-performance
clusters. However, the ability of cloud computing to host environments that
boost collaboration, as well as its potential to stimulate a transversal, in-
terdisciplinary way of conceptualizing software solutions are good reasons to
expect a progressively higher utilization of this paradigm in research projects.
As a consequence, the first driving question of this thesis, regarding knowl-
edge transfer, found an interesting complement in a second one: how to
transform research activities inside the Work Group in order to adopt cloud
computing not only as an efficient way to deliver its academic products, but
also as a collaboration platform able to accelerate its workflows and enhance
its performance? This time, the answer pointed out to a potential expansion
of the Work Group’s research interests in the direction of topics like service-
oriented and cloud computing, service science, distributed applications, web
services, etc.

In this context, the development of a software system that takes advan-
tage of the cloud computing paradigm to enable non-specialized users to
produce high-quality forecasts, based on the research produced by the Work
Group, emerged as an appropriate seed work for addressing both sides of the

1.1. Problem Definition 3

problem: how to leverage cloud computing as the basis of a knowledge trans-
fer platform, as well as the foundation for collaborative research. Although
the development of such a software system represents a very extensive task,
and it would have placed an unattainable goal for this work, the design of its
architecture is a suitable assignment, able to render high-end results within
the temporal scope of a graduate thesis, and to provide a solid basis for a
further, expanded research project.

1.1 Problem Definition

The main problem this thesis addresses is the lack of a methodology to inte-
grate the models, algorithms, and programs developed by the Work Group
as elements of a cloud-native application that allows to transfer knowledge
outward as well as to share research procedures and results inward. This
problem can be translated into action as the design of a cloud-native appli-
cation architecture because of the following reasons:

• Designing the architecture encompasses the explicit integration of mod-
els, algorithms, and programs as parts of specific application compo-
nents. In this context, the architecture acts as a master blueprint where
the aforementioned Work Group’s research products can be precisely
located, along with the communication exchanges they participate in.

• Designing the application architecture is equivalent to start building the
application itself, at an abstract level. This is particularly important
for the Work Group’s research products because most of them exist only
as isolated experiments and not as elements of a unified application.

• Once the architecture is defined and essential decisions concerning the
application design have been made, it can provide definite templates
and procedures for further modifications, expansions, or enhancements
to the initial development.

• Conway’s Law states that any organization that designs a system (de-
fined broadly) will produce a design whose structure is a copy of the
organization’s communications structure [Conway, 1968]. However, or-
ganizations seeking to move to cloud-native architectures have often
employed the Inverse Conway Maneuver: rather than building an ar-
chitecture that matches their organization chart, they determine the

4 Chapter 1. Introduction

architecture they want and restructure their organization to match
that architecture [Stine, 2015]. In the context of the Work Group,
this means that the design of this architecture can be regarded not
only as a way to consolidate isolated research products, but also as a
directive for a further alignment of human resources towards a unified,
collaborative research strategy.

In summary, the design of a cloud-native application architecture as a
way for migrating isolated research products like models, algorithms, or pro-
grams to a cloud-computing environment can be regarded as a strategy that
allows academic institutions to enhance its production through collabora-
tion as well as to stand out as suitable research and development partners
for other organizations in the same knowledge ecosystem. The significance
of solving the problem defined in these lines is based on the fact that the
overall conditions described are not exclusive of the Work Group, but widely
spread across mexican research entities.

1.2 Context

This section briefly presents cloud-native application architectures as the
context for Intelligent Time Series Forecasting based on Cloud Computing
(ITSFCC) architecture design and proposes the integration of hybrid infor-
mation resources as an adequate approach to the problem that drives this
thesis.

1.2.1 Cloud-Native Application Architectures

Designing a software system for a cloud environment is not equivalent to just
bundle an on-premises application as a monolithic virtual machine or con-
tainer [Leymann et al., 2016]. It demands a completely different approach
able to take into account not only the motivations for moving operations to
the cloud, but also the way this migration impacts traditional development
practices. For instance, an efficient cloud computing service makes scala-
bility and parallelization effortless, then computing problems that place a
high demand for performance can be addressed by launching a high number
of cloud-based parallel resources, which are available at a low cost from a
practically limitless pool, instead of by meticulously optimizing the static,
serial computing-based resources already owned. This is not a minor change.

1.2. Context 5

It impacts budget assignment as long as the investment in hardware and
facilities (capital expenditure, or CapEx) decreases while the investment in
cloud and consulting services (operating expenses, or OpEx) increases. It also
affects research and development workflows because human resources previ-
ously assigned to hardware and software configuration can now be shifted
to domain-specific tasks closer to the entity’s business logic. As a result,
services can be rendered at a higher speed and scale. Stine examines the fol-
lowing characteristics of cloud-native application architectures and how they
can provide speed, safety, scale, and mobility to business via software [Stine,
2015]:

• Twelve-factor app model. A collection of patterns1 intended to optimize
application design for speed, safety, and scale by emphasizing declar-
ative configuration, stateless/share-nothing processes that horizontally
scale, and an overall loose coupling to the deployment environment
[Wiggins, 2014].

• Microservices-based. Microservices are an architecture pattern that
helps enterprises to align its units of deployment with business capabili-
ties, allowing each capability to move independently and autonomously,
with enhanced speed and safety [Lewis and Fowler, 2014].

• Self-service agile infrastructure. Cloud platforms that enable develop-
ment teams to operate at an application and service abstraction level,
providing infrastructure-level speed, safety and scale.

• API-based collaboration. An architecture pattern that defines service-
to-service interaction as automatically verifiable contracts, enabling
speed and safety through simplified integration work.

• Antifragility. As stress on the system is increased via speed (the ability
to innovate, experiment, and deliver value more quickly than competi-
tors) and scale (the ability to elastically respond to changes in demand),
the system improves its ability to respond, increasing safety (the ability
to move rapidly but also maintain stability, availability, and durability)
[Taleb, 2012], [Tseitlin, 2013].

1A body of work known collectively as architectural patterns or styles has catalogued a
number of successfully used structures that facilitate certain kinds of component commu-
nication. These patterns are essentially reusable architectural blueprints that describe the
structure and interaction between collections of participating components[Gorton, 2006]

6 Chapter 1. Introduction

In terms of defining the landscape of general software architecture it is
difficult to go past a few key books from members of the Software Engineer-
ing Institute written in the early 2000s [Gorton, 2006]. The vast research on
general software architecture produced during these almost two decades has
recently expanded towards cloud-native application architectures due to the
rise of cloud computing and the successful business model it has driven in
companies like Facebook, Uber, Netflix, or Airbnb. However, the aforemen-
tioned research does not offer close references to the very specific problem
addressed in this thesis, as long as no other research project working on
a cloud-native architecture for the application of Artificial Intelligence and
Machine Learning-based methods to time series forecasting was found when
searching for architecture or implementation references. Besides the speci-
ficity of the problem, a couple of circumstances contribute to this lack of
references:

• From the extensive revision on the state of the art presented in [Hong,
2013] it can be noticed that most of the results provided by researchers
in forecasting, time series forecasting, and intelligent time series fore-
casting are focused on developing models and algorithms, but not on
the resources that internally support such developments, like software
architectures, software patterns, or data engineering.

• On the other hand, cloud-native architectures are produced, to a great
extent, as the work of specific cloud computing providers that tend
to prioritize research on solutions to problems that represent higher
business opportunities for them, leaving other topics unattended.

These two circumstances unveil the fact that the intersection of cloud-
computing with intelligent-based methods for time series forecasting pro-
duces an emergent, interdisciplinary research field which demands to be ad-
dressed by deploying unprecedented strategies apt to hybridize different types
of resources. On this ground, the design of ITSFCC architecture is not based
on close architecture research or reference architectures, but on the integra-
tion of heterogeneous resources coming from multiple environments. These
resources will be enumerated and briefly described in the next chapter as
an attempt to configure a state of the art for the problem addressed in this
thesis.

1.3. Objectives 7

1.3 Objectives

This section presents the general objective that drives this work, as well as
the specific objectives derived from it.

1.3.1 General Objective

To design a cloud-native, pattern-based, abstract architecture for Intelligent
Time Series Forecasting based on Cloud Computing (ITSFCC), a software
system intended to produce high-quality forecasts for time series describ-
ing multiple variables, with a special focus on the electric power industry,
as well as to validate the functionality of this architecture by mapping its
components to a specific public cloud computing offering.

1.3.2 Specific Objectives

The specific objectives derived from the aforementioned general objective
are:

• To define or to select a model suitable to express the ITSFCC archi-
tecture as the final product of this thesis, as well as the basis for future
research work. In order to achieve this objective, basic research must be
conducted on the fields of software architecture and software patterns.

• To analyse ITSFCC’s operation context in relation to the Work Group’s
essential research domain, which is the application of Artificial Intel-
ligence and Machine Learning-based techniques to time series analysis
and forecast model production, as well as to define the requirements
this context places to the ITSFCC architecture.

• To analyse ITSFCC’s operation context in terms of the cloud comput-
ing paradigm application, as well as to define the requirements this
context places to the ITSFCC architecture.

• To elaborate an abstract, provider-independent, pattern-based archi-
tecture for ITSFCC that addresses all of the requirements issued by
the analysed context of ITSFCC operation.

• To map the abstract architecture designed for ITSFCC to a specific
cloud offering as a way to validate the adequacy of the architecture

8 Chapter 1. Introduction

model to concrete cloud resources and implementation procedures. In
order to achieve this objective, a provider-specific, general architecture
model will have to be produced, as well as tested for the deployment
of its essential components.

1.4 Thesis Overview

This remainder of this thesis is organized as follows:

Chapter 2 presents the information resources the design of ITSFCC archi-
tecture is based on, as an attempt to configure a state of the art for this thesis.
The concept of software architecture is introduced to provide a methodolog-
ical basis for subsequent chapters. The standard definition of architecture
is presented, as well as a series of characteristics that expand this defini-
tion towards a software-related environment. Software quality attributes are
discussed as they are considered fundamental elements for a software archi-
tecture characterization. The International Standard ISO/IEC/IEEE 42010
for systems and software architecture is summarized, and then used as a basis
for the definition of an architecture characterization for ITSFCC.

Chapter 3 introduces the concept of intelligent time series forecasting and
examines the architectural elements a software system requires to address it.
The ITSFCC environment is described in terms of the high complexity that
characterizes forecasting in the energy domain, and the Artificial Intelligence
and Machine Learning-based methods developed to deal with such complex-
ity. Concerns placed to ITSFCC under this environment are identified and
expressed as broad features the system must include. These features are
mapped to ITSFCC application components, and then to precise software
quality attributes. Finally, software patterns suggested to deal with the
identified concerns are described.

Chapter 4 presents the concept of cloud computing and examines the
basic architectural elements an intelligent time series forecasting application
must implement to leverage cloud computing potentials. ITSFCC environ-
ment is described in terms of the standard definition of cloud computing and
the technological and organizational prerequisites for its adequate implemen-
tation. Concerns placed to ITSFCC under this environment are identified
and expressed as broad features the system must include. These features
are mapped to ITSFCC application components, and then to precise soft-
ware quality attributes. Finally, software patterns suggested to deal with the

1.4. Thesis Overview 9

identified concerns are described.
Chapter 5 presents the detailed, architecture characterization of ITSFCC,

in compliance with the specifications covered in chapter 2. A set of text-
based documents containing the architecture identification and overview, the
identification of stakeholders, and the identification of concerns is presented.
An architecture model that conforms to a process-based architecture view
and is governed by a block diagram model kind is also presented. The overall
architecture of ITSFCC, as well as each one of its application components are
depicted in a comprehensive set of diagrams, which are described in detail
by explanatory texts.

Chapter 6 departs from the abstract architecture characterization of ITS-
FCC presented in chapter 5, and maps it to the services offered by a specific
public cloud provider. Amazon Web Services (AWS) was selected as the con-
crete cloud offering to land ITSFCC’s abstract architecture on because of the
extension and maturity of its services, as well as for the facilities it offers to
deploy cloud resources on a trial basis. An overview of AWS and the services
required to implement ITSFCC components in the AWS cloud are presented.
A set of guides for implementing ITSFCC components in AWS, consisting on
detailed, annotated architecture blueprints is also presented. Finally, a set of
experiments deployed on AWS in order to validate the adequacy of specific
services to the requirements placed by ITSFCC components is summarized.

Chapter 7 presents the general and specific conclusions of this work, as
well as the directives for future work.

10 Chapter 1. Introduction

Chapter 2

Software Architecture

This chapter introduces the concept of software architecture which provides
a foundation for the content of subsequent chapters. Section 2.1 presents a
state of the art for the design of a cloud-native architecture for intelligent
time series forecasting. Section 2.2 departs from the standard definition of
architecture and then describes a set of characteristics that expand the def-
inition towards a software-related environment. Software quality attributes
are discussed in Section 2.3 as they are considered fundamental elements for
a software architecture characterization. Section 2.4 summarizes the Interna-
tional Standard ISO/IEC/IEEE 42010 for systems and software architecture
description. Finally Section 2.5 proposes an architecture characterization for
ITSFCC that will provide a methodological guide for chapters 3 and 4.

2.1 State of the Art

The problem addressed in this thesis can be considered as highly specific, as
long as no other research project working on a cloud-native architecture for
intelligent time series forecasting was found in the literature. This situation
makes difficult to prepare a classic state of the art review because no reference
works are available for a comparative basis. As a result, an attempt to
configure a state of the art is made via the analysis of different categories of
information resources related to the design of ITSFCC architecture.

11

12 Chapter 2. Software Architecture

2.1.1 Information Resources for ITSFCC Architecture
Design

The information resources that provided a research background for ITSFCC
architecture design are focused on the following topics:

Cloud Computing in relation to Service-oriented Computing

The compilations in [Aiello et al., 2016] and [Dustdar et al., 2015] address
service-oriented computing as an important paradigm for the development
of distributed software applications, with a special emphasis in the use of
services in cloud infrastructures. On this ground, topics like service policies
and performance, service adaptation, service level agreements, job place-
ment, service compositionality, fault tolerance, and the Internet of Things
are discussed in the collection of papers included in these works.

Cloud Computing in relation to Service Science

The work in [Castro-Leon and Harmon, 2016] provides an extensive back-
ground for understanding service science history and foundations, as well
as the implications cloud computing represents for service transformation
nowadays. The compilations in [Helfert et al., 2017] and [Helfert et al., 2016]
contribute to the understanding of relevant trends of current research on
cloud computing and service science, like cloud interoperability and migra-
tion, cloud-native applications, microservices, and containers, auditing and
service level agreement management, detecting anomalies in cloud platforms,
deployment and adaptation of cloud data centers, public high-performance
clusters, and private cloud computing.

Cloud Computing in relation to Big Data Analytics and Applica-
tions

The fundamental technologies that conform the current Big Data landscape,
such as distributed computing, data serialization, NoSQL and columnar stor-
age, messaging systems, and distributed query engines are summarized in
[Guller, 2015]. A generic Big Data application architecture is presented in
[Sawant and Shah, 2014], along with useful patterns for data ingestion, data
streaming, storage, access, data discovery, visualization, and deployment in
a Big Data environment. Patterns that allow fine-tunning for non-functional

2.1. State of the Art 13

requirements like security, performance, scalability, and availability for Big
Data applications are also discused in this work. A complete revision of
Apache Spark functionalities for interactive data analysis, SQL-like query-
ing, data streaming, machine learning, and graph processing is provided in
[Kane, 2017], [Drabas and Lee, 2017], and [Nandi, 2015].

Cloud Computing in relation to Software Patterns

The work in [Fehling et al., 2014] introduces a precise and complete soft-
ware pattern format and uses it to present specific patterns for cloud com-
puting fundamentals, cloud offerings, cloud application architectures, cloud
application management, and composite cloud applications. By using the
same pattern format to describe both the generic properties of cloud of-
ferings and the best practices on how to deal with these properties this
work promotes research products that are programming language-neutral and
provider-independent. The extensive work in [Raj et al., 2017] reviews widely
used patterns for software architecture, design, deployment, and integration,
such as Client/Server, Multi-tier, Object-oriented, Domain-driven, Service-
oriented, Event-driven, Microservices, Containerized Applications, and Big
Data Architectures. By enumerating and expressing a huge collection of
prominent and dominant software patterns this work points out the hetero-
geneity and complexity of contemporary software and data engineering.

Time Series Forecasting

The work in [Dannecker, 2015] analyzes time series forecasting in the energy
domain and proposes a forecasting process that allows an application-aware
and efficient calculation of accurate predictions. By introducing the concept
of a context-aware forecasting model repository, this work enhances the fore-
cast model selection and the parameter estimation stages. It also presents
a framework that allows an efficient integration of external information into
forecast models. The work in [Hong, 2013] analyzes traditional and Artificial
Intelligence-based approaches for energy demand forecasting, and proposes
a hybrid approach based on the combination of support vector regression,
fuzzy logic, and evolutionary computation.

14 Chapter 2. Software Architecture

Cloud Computing in relation to the Amazon Web Services Cloud

An introduction to the best practices on how to move an enterprise-class
application from a fixed physical environment to a virtualized cloud environ-
ment is given in [Varia, 2010]. However, due to the extension of the AWS
ecosystem, it is advisable to consult works that address its specific function-
alities in a deeper level. The most widely used services of AWS are enumer-
ated and moderately described in [Wadia, 2016] and in [Vyas, 2015]. These
works offer basic to intermediate level contents related to security, access
management, virtual instances deployment, storage, networking, monitoring,
databases, and application management. All of the aforementioned service
categories are reviewed, with a special focus on how they relate to software
quality attributes like security, scalability, availability, and performance in
[Sarkar and Shah, 2015]. A description of AWS’ functionalities focused on
Infrastructure-as-Code is provided in [Chan and Udell, 2017]. Finally, exten-
sive reviews can be consulted for selected services like networking [Das and
Modi, 2017], or continuous integration and delivery [Kantsev, 2017].

Architectures for Time Series Forecasting

Although no other research project working on a cloud-native architecture
for intelligent time series forecasting was found, a couple of close projects
can be referenced. The work in [Dannecker, 2015] proposes an architec-
ture for a common energy data management system. It includes a fore-
casting component that tightly integrates the time series storage with the
forecasting algorithms to directly access and process time series data. The
architecture of this forecasting component is extensively described and in-
cludes advanced elements such as in-memory data storage and a publication-
subscription messaging system. The forecasting process in this work is based
on multi-equation ARIMA models. The work in [Afanasieva et al., 2018]
proposes a web application with open access aimed on forecasting of time
series stored in databases. It presents a system architecture which handles
forecasting model selection and an application programming interface as web
services. The forecasting process in this work is based on a hybrid approach
that combines ARIMA models and fuzzy techniques.

2.2. Architecture Basics 15

2.2 Architecture Basics

Every system, software-related or not, exhibits an architecture. Therefore a
software architecture is a particular case of system architecture or, as it is
commonly referred, architecture. This section presents the standard defini-
tion of architecture and expands it towards a software-related context in order
to develop an inital approach to the software architecture concept. Accord-
ingly, two categories are described: the key aspects included in the standard
definition and the characteristics that result from relations the architecture
establishes with the key aspects it comprises.

2.2.1 Definition of Architecture

Architecture is defined in [ISO/IEC/IEEE, 2011] as the fundamental orga-
nization of a system embodied in its components, their relationships to each
other, and to the environment, and the principles guiding its design and evo-
lution. [Pillai, 2017] enumerates the key aspects rooted to this definition and
maps them to a software-related context as follows:

1. System: A system is a collection of components organized in specific
ways to achieve a specific functionality. A software system is a collec-
tion of such software components. A system can often be subgrouped
into subsystems.

2. Structure: A structure is a set of elements that are grouped or organized
together according to a guiding rule or principle. The elements can
be software or hardware systems. A software architecture can exhibit
various levels of structures depending on the observer’s context.

3. Environment: The context or circumstances in which a software system
is built, which has a direct influence on its architecture. Such contexts
can be technical, business, professional, operational, and so on.

4. Stakeholder: Anyone, a person or groups of persons, who has an inter-
est or concern in the system and its success. Examples of stakeholders
are the architect, development team, customer, project manager, mar-
keting team, and others.

Figure 2.1 (extracted from [ISO/IEC/IEEE, 2011]) shows a class diagram
with the context of an architecture description. Although the concept of

16 Chapter 2. Software Architecture

architecture description has not been covered yet, the rest of the diagram
clarifies the relations that emerge between a system architecture and the core
elements in its formal definition. Conventions used are defined in [ISO/IEC,
2005] so the reader is advised to review this standard for a fully detailed
description. The class diagram depicts the following relations:

• A system may exhibit more than one architecture.

• An architecture may be expressed by one or more architecture descrip-
tions, or none at all.

• A stakeholder may have interests in one or more systems.

• One or more stakeholders may have interests in a system.

• Zero or more systems may be situated in an environment, but a system
is situated in only one environment.

Figure 2.1: Context of architecture description [ISO/IEC/IEEE, 2011]

2.2. Architecture Basics 17

2.2.2 Characteristics of Software Architecture

Mapping the elements included in the definition of system architecture to
their corresponding aspects in a software system is an informal but conve-
nient way to build a first approach to the concept of software architecture.
[Pillai, 2017] and [Gorton, 2006] extend this effort by enumerating a set of
characteristics found in every software architecture. It is important to notice
that each characteristic is based on a distinct relation between the software
architecture itself and at least one of the key aspects the architecture com-
prises:

1. An architecture defines a structure. As a common practice, the sys-
tem architecture representation conforms to a structural component or
class diagram able to represent both the involved subsystems and the
relationships established between them.

2. An architecture picks a core of set elements. A well-defined architecture
captures only the core set of structural elements required to build the
core functionality of the system and avoids documenting everything
about every component of the system.

3. An architecture captures early design decisions. As long as it has to be
focused on the elements required for offering the core functionality, an
architecture summarizes early design decisions about the system and
keeps them visible for further development processes.

4. An architecture manages stakeholder requirements. This usually means
for the architect to make decisions that balance the contradictory na-
ture of different stakeholders requirements while keeping the total sys-
tem costs under defined restrictions. It also means making use of these
constraints and their related trade-offs as the basis of a common lan-
guage used by stakeholders to efficiently help the architect to achieve
his/her goal.

5. An architecture influences the organizational structure. The archi-
tecture of a system is the best description available of its top-down
structures, then it is also a very effective start point for designing the
organizational structures that will be in charge of task-breakdown.

6. An architecture is influenced by its environment. Environment ele-
ments such as quality attribute requirements, standard conformance,

18 Chapter 2. Software Architecture

organizational constraints, and professional context define a set of ex-
ternal conditions the architecture must function under.

7. An architecture documents the system. Every system has an archi-
tecture, whether officialy documented or not. However, properly doc-
umented architectures can function as an effective documentation for
the system. Since an architecture captures the system’s initial require-
ments, constraints, and stakeholder trade-offs, it is a good practice to
document it properly.

8. An architecture often conforms to a pattern. Architectural patterns are
sets of styles which have had a lot of success in practice. Most archi-
tectures conform to architectural patterns, like N-tier, Client-Server, or
Pipes and Filters. In these cases, the job of the architect comes down
to mixing and matching existing sets of such readily available patterns
to solve the problem at hand. A body of work known collectively as
architectural patterns or styles has catalogued a number of successfully
used structures that facilitate certain kinds of component communica-
tion. These patterns are essentially reusable architectural blueprints
that describe the structure and interaction between collections of par-
ticipating components.

So far, a software architecture can be identified with the architecture a
software system exhibits. This characterization leads to a set of specific fea-
tures present in aspects like the system itself, its structure, the environment
where it is situated and the stakeholders that have interest in it. Moreover,
a software architecture can be further described by a set of characteristics
that arise as concrete relations between the architecture and its key aspects.

2.3 Software Quality Attributes

According to [Gorton, 2006] a software architecture addresses the nonfunc-
tional requirements of a system. Nonfunctional requirements can be clas-
sified in three areas: technical constraints, business constraints and quality
attributes. Technical constraints refer to technologies such as operative sys-
tem, programming languages, database systems, etc., that must be used
because of the specific context of the system. Business constraints also refer

2.3. Software Quality Attributes 19

to restrictions imposed by a particular context, but they originate in busi-
ness considerations such as customer requirements or provider specifications.
Technical and business constraints are usually nonnegotiable, and also de-
pend on specific contexts that cannot be completely defined until a particular
case is analysed. Therefore, a detailed description of technical and business
constraints as nonfunctional requirements addressed by a software architec-
ture is beyond the scope of this thesis. Software quality attributes, on the
other hand, can be properly described as a set of characteristics the system
must exhibit in order to satisfy issues of concern placed by its stakeholders.
Following subsections are based on the work of [Gorton, 2006] and [Pillai,
2017], and describe some of the most relevant software quality attributes.

2.3.1 Performance

A performance quality requirement defines a metric that states the amount of
work an application must perform in a given time, and/or deadlines that must
be met for correct operation. Common metrics for performance measurement
and evaluation are:

1. Throughput: the amount of work an application must perform in unit
time.

2. Response Time: a measure of the latency an application exhibits in
processing a business transaction.

3. Deadlines: a limited window of time given to an application to complete
its task.

2.3.2 Scalability

Scalability is about how a design can cope with some aspect of the applica-
tion’s requirements increasing in size. Examples of such aspects are:

1. Request Load: the total number of requests placed to the application,
regardless of the number of active clients.

2. Simultaneous Connections: the number of concurrent users served by
the application.

3. Data Size: the amount of data processed by the application.

20 Chapter 2. Software Architecture

4. Deployment: the size of the user base the application has to be deployed
and/or modified to.

2.3.3 Modifiability

The modifiability quality attribute is a measure of how easy it may be to
change an application to cater for new functional and nonfunctional require-
ments. Designing likely change scenarios for the application as guides for
future required modifications is a good practice to ensure an adequate level
of modifiability for the architecture. Modifiability is also defined as the ease
with which changes can be made to a system, and the flexibility at which
the system adjusts to those changes. From an architect’s perspective, the
interests in modifiability is about difficulty, costs and risks associated with
changes to the system at three levels: local, non-local and global.

2.3.4 Security

At the architectural level, security reduces to understanding the precise se-
curity requirements for an application, and devising mechanisms to support
them. The most common security-related requirements are:

1. Authentication: Applications can verify the identity of their users and
other applications with which they communicate.

2. Authorization: Authenticated users and applications have defined ac-
cess rights to the resources of the system.

3. Encryption: The messages sent to/from the application are encrypted.

4. Integrity: This ensures the contents of a message are not altered in
transit.

5. Nonrepudiation: The sender of a message has proof of delivery and
the receiver is assured of the sender’s identity. Therefore neither can
subsequently refute their participation in the message exchange.

2.3.5 Availability

Availability refers to the property of readiness of a software system to carry
out its operations when the need arises, and it is closely related to the re-

2.3. Software Quality Attributes 21

liability of the system and to its ability to recover from fails. As a result,
important techniques ensuring availability are fault detection, fault recovery
and fault prevention. The availability of an application is related to its re-
liability and, as a consequennce, to failures. Failures in applications cause
them to be unavailable. Failures impact on an application’s reliability, which
is usually measured by the mean time between failures. The length of time
any period of unavailability lasts is determined by the amount of time it
takes to detect failure and restart the system. Consequently, applications
that require high availability minimize or preferably eliminate single points
of failure, and establish mechanisms that automatically detect failure and
restart the failed components. Replicating application components is also a
tested strategy for high availability.

2.3.6 Integration

Integration is concerned with the ease with which an application can be
usefully incorporated into a broader application context. The value of an ap-
plication or component can frequently be greatly increased if its functionality
or data can be used in ways that the designer did not originally anticipate.
The most widespread strategies for providing integration are through data
integration or providing an API.

2.3.7 Portability

Portability is defined as the ability of an application to be easily executed
on a different software/hardware platform to the one it has been developed
for. It depends on the choices of software technology used to implement the
application, and the characteristics of the platforms that it needs to execute
on.

2.3.8 Testability

Testability refers to how much a software system is amenable to demonstrat-
ing its faults through testing, and can also be thought of as how much a
software system hides its faults from end users and system integration tests.
It is also related to how predictable a software system’s behavior is: the more
predictable a system, the more it allows for repeatable tests, and for develop-
ing standard test suites based on a set of input data or criteria. Testability

22 Chapter 2. Software Architecture

is also related to how easy or difficult it is to test the application, and it is
directly correlated to simplicity in design and to writing less original code by
incorporating pre-tested components.

2.3.9 Supportability

Supportability is a measure of how easy an application is to support once it
is deployed. Support typically involves diagnosing and fixing problems that
occur during application use. Supportable systems tend to provide explicit
facilities for diagnosis, such as application error logs that record the causes
of failures. They are also built in a modular fashion so that code fixes can
be deployed without severely inconveniencing application use.

2.3.10 Deployability

Deployability is the degree of ease with which software can be taken from the
development to the production environment. It is more of a function of the
technical environment, module structures, and programming runtime/lan-
guages used in building a system, and has nothing to do with the actual
logic or code of the system. Some factors that determine deployability are the
use of modular structures, the degree of similarity between development and
production environments, the level of maturity of the development ecosys-
tem, the use of standardized configurations and infrastructures and the use
of containerization technologies.

Software quality attributes constitute a key concept for this research be-
cause they provide a practical way to express the system concerns, that is
the concerns placed by the system stakeholders, in terms of definite architec-
tural features such as performance, security, scalability, availability, etc. As
it will be shown in next section, identifying the system stakeholders and their
concerns is a fundamental element for any software architecture description
or characterization.

2.4 The International Standard ISO / IEC /

IEEE 42010

The ISO/IEC/IEEE 42010 Systems and software engineering — Architec-
ture description [ISO/IEC/IEEE, 2011] is an international standard for ar-

2.4. The International Standard ISO / IEC / IEEE 42010 23

chitecture description of systems and software. It has an antecedent in the
IEEE Std 1471:2000, Recommended Practice for Architectural Description of
Software-Intensive Systems, and was prepared by the Joint Technical Com-
mittee 1, Information Technology, integrated by the International Organi-
zation for Standardization and the International Electrotechnical Commi-
sion, in cooperation with the Software and Systems Engineering Standards
Committee of the Computer Society of the Institute of Electrical and Elec-
tronic Engineers. Besides providing a formal specification for architecture
description, the ISO/IEC/IEEE 42010 also specifies architecture viewpoints,
architecture frameworks and architecture description languages. It gives mo-
tivations for terms and concepts used; presents guidance on specifying archi-
tecture viewpoints; and demonstrates its use with other standards as well.

2.4.1 Architecture versus Architecture Description

The ISO/IEC/IEEE 42010 specifies the manner in which architecture de-
scriptions of systems are organized and expressed. It clearly distinguishes
between architecture and architecture description: whereas an architecture
is abstract, consisting of concepts and properties, an architecture descrip-
tion is a strictly defined work product used to express an architecture. The
standard establishes there is no single characterization of what is essential or
fundamental to a system, and that characterization could pertain to any or
all of the following aspects:

• system constituents or elements;

• how system elements are arranged or interrelated;

• principles of the system’s organization or design; and

• principles governing the evolution of the system over its life cycle.

On the other hand, the architecture description of a system is formally
defined in full detail by the standard, and include the following contents:

1. Architecture description identification and supplementary information
such as date of issue, status, authors, reviewers, approving authority,
issuing organization, change history, summary, scope, context, glos-
sary, version control information, configuration management informa-
tion and references; as well as results from any evaluations of the ar-
chitecture or its architecture description.

24 Chapter 2. Software Architecture

2. Identification of the system stakeholders and their concerns. Exam-
ples of applicable stakeholders are users, operators, acquirers, owners,
suppliers, developers, builders, or maintainers; while examples of ap-
plicable concerns are the purposes of the system, the suitability of the
architecture for achieving the system’s purposes, the feasibility of con-
structing and deploying the system, the potential risk and impacts of
the system to its stakeholders throughout its life cyle, and maintainabil-
ity and evolvability of the system. Stakeholder concerns are directly
related to nonfunctional requirements of the system and to software
quality attributes previously discussed.

3. A definition for each architecture viewpoint used in the architecture
description. An architecture viewpoint frames one or more concerns.
It establishes the conventions for constructing, interpreting and ana-
lyzing a particular architecture view so the latter is able to address
the concerns framed by the viewpoint. Viewpoint conventions can in-
clude languages, notations, model kinds, design rules, and/or modeling
methods, analysis techniques, and other operations on views.

4. An architecture view and architecture models for each architecture
viewpoint used. Views address one or more of the concerns placed
by the stakeholders. A view is governed by the conventions established
in the corresponding viewpoint and is composed of one or more ar-
chitecture models. An architecture model uses modeling conventions
appropiate to the concerns to be addressed and is governed by a model
kind.

5. Applicable architecture description (AD) correspondence rules, AD cor-
respondences and a record of known inconsistencies among the archi-
tecture description’s required contents. Correspondences define rela-
tions between AD elements (stakeholders, concerns, viewpoints, views,
model kinds, models, decisions, rationales) and can be governed by
correspondence rules.

6. Rationales for architecture decisions. They record explanations, justifi-
cations or reasoning about architecture decisions that have been made.

The conceptual model of an architecture description as provided by the
ISO/IEC/IEEE 42010 is shown in Figure 2.2. It also uses the conventions

2.4. The International Standard ISO / IEC / IEEE 42010 25

Figure 2.2: Conceptual model of an architecture description [ISO/IEC/IEEE,
2011]

for class diagrams defined in [ISO/IEC, 2005]. This highly detailed charac-
terization of a system architecture depicts relations that are more specific
than the ones reviewed in the architecture description context. Following are
examples of such relations:

• A system-of-interest exhibits exactly one architecture, which is ex-
pressed by exactly one architecture description.

• An architecture description identifies exactly one system-of-interest,
and also identifies one or more stakeholders that have interests in the
system, as well as one or more concerns that system stakeholders have.

26 Chapter 2. Software Architecture

• An architecture description aggregates (diamond arrowhead) one or
more architecture viewpoints, one or more architecture views, zero or
more correspondence rules, zero or more correspondences, and one or
more architecture rationales.

• An architecture view addresses one or more concerns, is governed by
exactly one architecture viewpoint, and aggregates one or more archi-
tecture models.

• An architecture model is governed by exactly one model kind, but a
model kind may govern one or more architecture models.

It is evident in the class diagram that an architecture description is a com-
plex work product which involves the use of strict templates and even spe-
cialized description languages. For this reason, in order to build a consistent
architecture characterization for ITSFCC within a suitable time frame, an al-
ternative, reduced method was designed. This architecture characterization,
proposed in next section, cannot be regarded as an architecture description,
as it does not entirely comply with the specifications the ISO/IEC/IEEE
42010 defines. However it can be considered as a partial implementation
of the standard, therefore as a basis for further efforts towards an ITSFCC
architecture description.

2.5 Architecture Characterization for ITSFCC

The proposed architecture characterization for ITSFCC consists of the fol-
lowing elements:

1. Identification and overview.

2. Identification of stakeholders.

3. Identification of concerns in terms of software quality attributes.

4. Process-based view.

5. Block diagram-based architecture model.

6. Pattern-based configuration.

The following subsections briefly present each item of the suggested ar-
chitecture characterization.

2.5. Architecture Characterization for ITSFCC 27

2.5.1 Identification and Overview

In compliance with the ISO/IEC/IEEE 42010, the first element of the char-
acterization comprises the identification of the architecture and the following
supplementary information: date of issuance, status, authors, issuing orga-
nization, change history, summary, context, glossary, and references. Part of
the supplementary information is provided by this thesis document and the
remaining part will be recorded as the revision history of the architecture.

2.5.2 Identification of Stakeholders

Stakeholders that may have interest in ITSFCC are primarily located in two
areas: Intelligent Time Series Forecasting and Cloud Computing. While
the former area is related to research domains like Time Series Analyisis,
Data Science, Machine Learning, and Electric Power Industry, the latter is
associated with topics like Networking, System Virtualization, Distributed
Computing, and Service Ecosystems. As a consequence, stakeholders of ITS-
FCC face an interdisciplinary and complex domain when analysing the sys-
tem’s environment. For this reason primary stakeholders are the members
of the Data Science Research Work Group (The Work Group) at the Gradu-
ate School of Electrical Engineering (DEPFIE), Universidad Michoacana de
San Nicolás de Hidalgo (UMICH). Researchers and graduate students in the
Work Group conform an academic team experienced enough to deal with the
design, building, testing, and deployment of ITSFCC; consequently they act
as development stakeholders with strong interests in the research possibilities
of ITSFCC’s functionality.

2.5.3 Identification of Concerns in Terms of Software
Quality Attributes

Since primary stakeholders of ITSFCC have been identified as academic de-
velopers with strong interests in research activities, the concerns they place
to the system must be expressed accordingly. Software quality attributes
provide the basis for expressing these concerns, as long as no business or
technical constraint has to be considered at this stage. Performance, scal-
ability, security, availability, and supportability are quality attributes that
result significant not only to current academic stakeholders, but also to po-
tential system users in the future. They clearly impact system development

28 Chapter 2. Software Architecture

and utilization and, on this ground, will be explicitly stated when address-
ing specific concerns in further chapters. On the other hand, modifiability,
integration, portability, testability, and deployability will not be addressed,
at least not explicitly, in architecture characterization.

2.5.4 Process-based View

Although no architecture viewpoint is defined in this characterization, an
architecture view is still considered. It is based on the process view portrayed
by [Kruchten, 1995] as part of the renowned 4+1 View Model of Architecture.
This process view is able to address quality attribute-based concerns, to focus
on architecturally significant elements and to depict the high-level structure
of the system. A process, as the key concept of this view, is considered
as a group of tasks that: form an executable unit which can be tactically
controlled (started, recovered, reconfigured, shut down, and so on), can be
replicated to distribute processing load or improve system availability, and
can be partitioned into a set of independent tasks. The process-based view
considers processes as basic components of the system, while messages or calls
are regarded as connections between processes. The system is consequently
represented as a high-level structure made up of blocks, detailed or simplified,
and connection lines. For this reason the only architecture model the view
aggregates is governed by the block diagram model kind.

2.5.5 Block Diagram-based Architecture Model

According to the standard, a model kind captures conventions for a type of
modeling, like languages, notations, techniques, analytical methods, etc. In
an architecture description, each architecture model aggregated in an archi-
tecture view is governed by exactly one model kind. ITSFCC architecture
characterization includes an architecture model that, in accordance with the
aforementioned process-based view, is governed by the block diagram model
kind. A block diagram represents a system as a set of blocks connected
by lines. Blocks are principal parts or functions of the system while lines
simbolize the relationships between blocks. Block diagrams are intended for
high-level representation of complex systems, where blocks are commonly
black boxes that just return outputs from defined inputs. This representa-
tion is adequate when details are not relevant for the analysis, or when they
do not exist or have not been implemented yet.

2.5. Architecture Characterization for ITSFCC 29

2.5.6 Pattern-based Configuration

A last element of ITSFCC architecture characterization is a pattern-based
configuration. As previously stated, patterns are sets of styles which have had
a lot of success in practice, are reusable and readily available, and describe the
structure and interaction between collections of participant components. Ar-
chitectural patterns conform the preferred design strategy for this research
work because they consolidate a strong body of collective knowledge that
has been tested and refined through its application in many different envi-
ronments by many architect teams. Moreover, a pattern-based configuration
for ITSFCC is not only a tribute to the idea of standing on the shoulders of
giants, but also the only possible way to accomplish this research’s objectives
within the scheduled time limits.

Summary

This chapter has shown the concept of software architecture based on the
standard definition of system architecture and on a set of characteristics
that arise as concrete relations between the architecture itself and its key
aspects, when analysing a software system. The concept of architecture de-
scription was presented on the basis of the ISO/IEC/IEEE 42010 interna-
tional standard. Differences between architecture, architecture description,
and architecture characterization were also discussed. Finally, an architec-
ture characterization for ITSFCC was proposed as a partial implementation
of the international standard for architecture description. This characteriza-
tion is intended to provide a methodological guide for the next two chapters,
where architectural elements will be developed for addressing the particu-
lar environments related to Intelligent Time Series Forecasting and Cloud
Computing.

30 Chapter 2. Software Architecture

Chapter 3

Architecture Elements for
Intelligent Time Series
Forecasting

This chapter introduces the concept of intelligent time series forecasting and
examines the architectural elements a software application requires in order
to address it. In accordance to the architecture characterization developed in
previous chapter, Section 3.1 describes the system environment in terms of
the high complexity that characterizes time series forecasting for the energy
domain and the Artificial Intelligence and Machine Learning-based methods
developed to cope with it. Section 3.2 identifies concerns placed to ITSFCC
by its academic stakeholders and expresses them as broad features the system
must include. Features are then mapped to application components that can
be related to precise software quality attributes. Finally, Section 3.3 presents
software pattern formats and describes the architectural patterns suggested
to deal with the identified concerns.

3.1 Description of System Environment

Although there is no formal definition for the term intelligent time series
forecasting, it is used in this work to encompass the broad use of Artificial
Intelligence and Machine Learning-based methods of time series forecasting,
with a special focus on the energy domain. As defined, intelligent time
series forecasting is a fundamental research line for the Work Group. In

31

32 Chapter 3. Architecture Elements for Intelligent Time Series Forecasting

order to delimit ITSFCC environment, two research domains must be briefly
described: the complexity involved in time series forecasting for the energy
domain, and the intelligent-based methods that have been developed as a
resource to deal with such high complexity. The following two subsections
address these topics.

3.1.1 Complexity of Time Series Forecasting in the En-
ergy Domain

Time series forecasting in the energy domain conforms an extensive network
of activities spreaded across the fields of generation, distribution, transmis-
sion, and demand. This subsection is primarily based on the work of [Dan-
necker, 2015] and its objective is to present diverse situations commonly
found in the forecasting network that operate as factors of a significant com-
plexity. Following is a list of such factors, then a brief discussion of them in
subsequent paragraphs:

• Multiple forecast scopes and horizons.

• Forecast data characteristics.

• Context-aware forecast models.

• Multi-component forecast models.

• Hierarchical data warehouses.

• Renewable energy sources.

• Smart grids.

Multiple Forecast Scopes and Horizons

Forecasting in the energy domain encompasses many different processes with
particular scopes that require accurate predictions in multiple horizons. This
broad landscape can be summarized in terms of horizon spans and examples
of associated tasks as follows:

• Very short term (seconds to minutes): turbine control.

3.1. Description of System Environment 33

• Short term (minutes and hours up to day-ahead): power plant opera-
tions, grid balancing and scheduling, real-time unit dispatching, auto-
matic generation control, operation reserve planning and control, real-
time electricity market trading and administration, peak load analysis,
load following, etc.

• Medium term (days): pre-dispatch, unit commitment, day ahead trad-
ing, and maintenance planning, etc.

• Long term (weeks): maintenance planning, improving balance area con-
trol, system planning, investment planning, etc.

Forecast Data Characteristics

Complexity in time series forecasting for the energy domain is also due to
a diversity of characteristics observed in time series specific to this domain,
that must be considered by forecast models, like:

1. Seasonal Patterns. Aggregated energy demand commonly exhibits three
different seasonal components related to daily, weekly, and yearly con-
sumption patterns.

2. Aggregation-Level-Dependent Predictability. In general, the more en-
tities, like electricity meters, plants, cities, regions, etc., are aggregated
in the forecasting process, the better the predictability of forecasts.

3. Time Series Context and Context Drifts. When it comes to forecast-
ing for the energy domain, the temporal development of time series
is driven by a conglomeration of background processes and external
influences, such as working calendar, meteorological behavior, and eco-
nomic factors. Usually this context is not static but presents dynamics
or drifts that are observable and measurable, and can be considered as
valuable information for enhancing predictability.

Context-aware Forecast Models

Most of the time series context in forecasting for the energy domain (calendar,
meteorological or economic-driven) is observable. Thus, a better forecast can
be achieved if additional time series describing this context are incorporated
into the model. As a consequence, complexity increases because variables in

34 Chapter 3. Architecture Elements for Intelligent Time Series Forecasting

context time series raise the dimensionality of models. For instance, [Tam
and Sehgal, 2014] propose a Forecasting-as-a-Service framework intended to
provide on-demand forecasts of solar or wind power at locations specified
by the customers. A fundamental part of this framework consists of a large
volume of data pertinent to renewable energy forecasting such as weather and
geographic information, measurement data, and equipment specifications.
This data is collected over the internet and comes from a variety of sources
like federal agencies, national databases, private organizations, universities,
equipment vendors, etc.

Multi-component Forecast Models

A useful approach to develop a very accurate forecast model is to split the
data into logical subseries and to produce a separate model for each one of
them [Dannecker, 2015], [Rangel et al., 2017], [Lopez Farias et al., 2018]. For
instance, instead of a single-equation ARIMA model built upon a singular
time series of load values, a 24-equation ARIMA can be generated on the
basis of registered load values for each hour of the day. The same applies for
models that are not based on equations, like Artificial Neural Networks or
Support Vector Machines, then a single-component model is transformed into
a multi-component one. Complexity increases under this approach because
numerous additional parameters are required to be optimized.

Hierarchical Data Warehouses

Forecasting in the energy domain encompasses a hierarchical structure made
up of diverse entities such as devices, meters, final users, distribution, trans-
mision or generation plants, over cities, states, countries or regions. Fore-
casting in a hierarchical environment typically means that higher level enti-
ties forecasts are based on the aggregated data of lower level entities. Even
though this hierarchical operation simplifies model production at higher level
entities, required data synchronization over associated data warehouses im-
plies additional efforts from energy management systems.

Renewable Energy Sources

Forecast of future energy consumption and production is a fundamental re-
quirement for the stability and the day to day operation on the electricity
grid. While demand forecasts are well-established since years, the increasing

3.1. Description of System Environment 35

amount of renewable energy sources substantiate the need to also provide ac-
curate forecasting for renewable supply. The reason is that renewable energy
sources cannot be planned or dispatched like conventional energy sources,
since they strongly depend on environmental conditions and most impor-
tantly on the current state of weather. Once again forecasting complexity
increases as long as weather prediction must deal with nonlinear, chaotic
and/or noisy data.

Smart Grids

In present time, extensive use of Information and Communication Technology
(ICT) across electricity production, distribution, and consumption simulta-
neously enriches and complicates energy management activities, including
forecasting. For instance, Internet of Things (Internet of Things) devices
such as smart meters or smart home systems and appliances make it possi-
ble to accomplish demand side management, providing increased flexibility
to energy management systems. Smart grids make use of this flexibility to
deal with recurrent modifications to energy production schedules caused by
intermitent availability of renewable energy sources. In other words, flexibil-
ity provided by smart grids comes at the cost of adding numerous layers of
information to the forecasting network, rising its complexity to a Big Data
scale [Daki et al., 2017].

All of the aforementioned factors make time series forecasting for the
energy domain a complex process that demands the application of efficient
and reliable methods. Artificial Intelligence and Machine Learning-based
methods, briefly addressed in the next subsection, constitute an important
approach to deal with this complexity.

3.1.2 Intelligent Methods for Time Series Forecasting

Time series forecasting for the energy domain involves multiple tasks that
must be performed at the different levels of an extensive, hierarchical infor-
mation structure. It must also consider the diverse relationships information
levels tend to establish among them. This complex landscape has motivated
the development of multiple methods to accomplish the fundamental goal
of producing accurate and efficient predictions. This subsection presents
a couple of classifications for time series forecasting in the energy domain

36 Chapter 3. Architecture Elements for Intelligent Time Series Forecasting

where Artificial Intelligence and Machine Learning-based methods outstand
as novel approaches to address complexity. In addition to produce accurate
and fast solutions, intelligent forecasting methods are suitable to merge into
hybrid approaches that combine specific strengths from individual methods
in order to enhance predictability [Flores et al., 2009], [Hong, 2013], [Ro-
driguez et al., 2016], [Rangel et al., 2017]. Although a complete review of
the different methods applied to time series forecasting is beyond the scope
of this work, the reader is advised to examine, if required, the sources of the
two cited classifications.

Classification of Time Series Forecasting Methods

A classification of forecast models for the energy domain with three cate-
gories is provided in [Dannecker, 2015]. It includes autoregressive models,
exponential smoothing models, and Machine Learning-based models. This
source identifies Bayesian Networks, Artificial Neural Networks, and Support
Vector Machines as the most important examples for Machine Learning tech-
niques used for forecasting. It also states that the results in several research
studies that evaluated the use of Machine Learning approaches for forecast-
ing energy supply and demand are controversial, and that the advantage of
certain modeling technique over the others highly depends on the use-case,
in this context the specific sequence of interactions between the user and the
system, and the existing data.

Focusing on a more specific domain [Hong, 2013] proposes a classification
for electric load forecasting methods based on their primary technological
development, as follows:

1. Traditional approaches or mathematical relationship models, including
Box-Jenkins Auto Regressive Integrated Moving Average (ARIMA),
Auto Regressive Integrated Moving Average with Exogenous Input
(ARIMAX), Seasonal Auto Regressive Integrated Moving Average (SARIMA),
exponential smoothing models, including Holt-Winters (HW) and Sea-
sonal Holt-Winters’ linear exponential smoothing (SHW), state space/Kalman
filtering, and linear regression.

2. Artificial Intelligence-based approaches, including Knowledge-Based Ex-
pert System (KBES), artificial nerural networks (ANNs), and fuzzy
inference system.

3.1. Description of System Environment 37

3. Hybrid approaches that integrate traditional and AI-based models,
such as the support vector regression (SRV) and its related hybrid/-
combined models.

This classification groups Box-Jenkins and Holt-Winters models with
their variants into a single category, and places intelligent forecasting meth-
ods in a second one. By allocating all combined forecast methods in a third
category, it underlines the importance of the numerous efforts that have been
conducted towards enhancing model predictability by hybridizing basic fore-
casting approaches. An exhaustive review of recent research on electric load
forecasting is given by the preceding source, including references to several
cases of hybrid operation. Moreover, it proposes an Electric Load Forecast-
ing Support System (ELFSS) which includes clear hybridization rules and
processes. This ELFSS framework will be briefly described in the following
paragraphs, as an example of a hybrid operation model of forecasting for the
energy domain that helps to identify specific architectural requirements for
this application field.

Hybrid Operation in Energy Demand Forecasting

Hong’s ELFSS is a valuable framework to understand extensive hybrid pro-
cesses in energy demand forecasting. ELFSS is depicted in Figure 3.1 and
can be summarized as follows [Hong, 2013]:

• It is based on a Support Vector Regression (SRV) forecast model. SRV
has been successfully employed to solve forecasting problems in many
fields, such as financial time series forecasting, production value fore-
casting of machinery industry, software reliability forecasting, atmo-
spheric science forecasting, tourism forecasting, etc.

• It deploys evolutionary algorithtms, such as Genetic Algorithm (GA),
Simulated Annealing (SA), Immune Systems (IA), Particle Swarm Op-
timization (PSO), Tabu Search (TA), and Ant Colony Optimization
(ACO) as optimization techniques to obtain the best parameter com-
bination for the SRV model.

• It employs fuzzy logic to construct an inference system to preprocess
the time series data and find out or define the characteristic rule sets
of data pattern, such as linear, logarithmic, inverse, quadratic, cubic,

38 Chapter 3. Architecture Elements for Intelligent Time Series Forecasting

compound, power, growth, and exponential. Pre-processed data is then
associated to the appropriate pattern in a three-value classification:
fluctuation, regular, or noise.

• Filtered data is then passed to the SRV model. The evolutionary al-
gorithm used for parameter optimization depends on the data pattern
previously found: according to experimental results, SA and ACO per-
form better for fluctuation or noise patterns, while GA, TA, IA, and
PSO are selected in presence of a regular pattern.

• In addition, to avoid getting trapped in local minima, suitable chaos
or cloud theory and appropriate (recurrent or seasonal) mechanism
could be further hybridized or combined with associated evolutionary
algorithms. These mechanisms lead to the deployment of Chaos/Cloud
variants of original evolutionary algorithms: CGA, CSA, CTA, CIA,
CACO, and CPSO.

• Finally, ARIMA, exponential smoothing, and regression forecast mod-
els are built and run on filtered data in order to obtain benchmarking
references for the hybrid SRV-(Chaos/Cloud) Evolutionary Algorithm
model.

The ELFSS framework illustrates the extensive hybrid operation of con-
temporary time series forecasting systems, which offer a way to overcome
specific drawbacks identified in singular forecasting techniques by combining
the particular strengths of different methods into a more effective mixed so-
lution. As long as hybridization is strongly based on Machine Learning and
Artificial Intelligence techniques, like support vector regression, evolutionary
algorithms, fuzzy logic, artificial neural networks, deep learning, etc., it can
be regarded as an important feature of intelligent time series forecasting.

In addition to ELFSS, a more concrete and specific hybrid approach worth
to review is the Nearest Neighbors - Differential Evolution (NNDE) system,
developed inside the Work Group by [Flores et al., 2017]. Contents in the
remainder of this section are entirely based on this source.

NNDE as a Representative Model for ITSFCC

NNDE is a forecasting method currently at an advanced development stage
inside the Work Group and, hence, it is well-known to ITSFCC stakehold-
ers. Similar to the ELFSS framework, it is Machine Learning-based and

3.1. Description of System Environment 39

Figure 3.1: Hong’s Electric Load Forecasting Support System (based on
[Hong, 2013])

presents a fundamental hybrid operation, then it can be used as a represen-
tative forecast model for ITSFCC. Finally, for the reason that it resides in
the Work Group, it provides a close and precise guide for system concerns to
be addressed in ITSFCC architectural design and characterization. NNDE
is based on the Nearest Neighbors (NN) algorithm [Kantz and Schreiber,
2004], which has been successful in different areas of pattern recognition.
NN searches for similar instances recovering them from a large dimensional
feature space and incomplete data. It assumes that sub-sequences of a time
series that emerged in the past are likely to have a resemblance to the future
sub-sequences and can be used for generating NN-based forecasts. NN offers
simple coding, as well as efficient and fast execution, however it is sensi-
tive to changes in the input parameters (i.e. the length of the radius of the
neighborhood, the embedding dimension, and the delay between measure-
ments). Those parameters must be adequately optimized in order to obtain
accurate results. Parameter optimization is based on Differential Evolution
(DE) [Price et al., 2006], an evolutionary algorithm that has recently proven

40 Chapter 3. Architecture Elements for Intelligent Time Series Forecasting

to be a valuable method for optimizing real valued multi-modal objective
functions. It is a parallel direct search method having good convergence
properties and simplicity in implementations. Furthermore, DE has recently
motivated the development of parallel schemes to execute the optimization
algorithm on distributed environments, such as Apache Spark. DE executed
in parallel results in significant advantages on performance and scalability,
when compared to conventional serial implementations [Teijeiro et al., 2016].

In summary, NNDE can be regarded as an intelligent time series forecast-
ing method that exhibits a fundamental hybrid principle. Consequently, it
can be employed as a representative model for ITSFCC, which means it can
be referenced not only as the first model to be included in the system, but
also as a good approximation to design and development challenges placed
by other intelligent forecasting methods to be added in the future. In combi-
nation with the ELFSS framework, NNDE can be used as a target scenery, a
representative source to elaborate ITSFCC concerns. Therefore, NNDE can
be considered as a design guide for the system’s architecture characterization.
Next section is precisely devoted to the identification of ITSFCC concerns
by summarizing the software quality attributes required to deal with the
complexity of time series forecasting using intelligent methods.

3.2 Identification of System Concerns

As stated in the previous chapter, concerns from ITSFCC’s stakeholders must
be translated to non-functional requirements, specifically to software quality
attributes, as long as no technical or business constraint has to be considered
at this stage of the ITSFCC design. In order to achieve this objective, a set
of broad features required by the system to face the problems located in the
environment will be listed. Broad features will then be mapped to several
application components which offer two important advantages:

1. They can be clearly associated, individually or as a whole, to concrete
software quality attributes.

2. They provide a basis to identify the architecturally significant elements
of the process view required by the architecture characterization.

3.2. Identification of System Concerns 41

3.2.1 Definition of Software Quality Attributes

The collection of values assigned to ITSFCC’s quality attributes primarily
depend on the expected work load the Work Group will place to the system
under normal operation. Presently, the Work Group comprises aproximately
10 researchers on 5 facilites, located in 5 different states of Mexico. The
work load for ITSFCC will be intermitent and activated on request, not on
schedule. The system will have to be available for the 99% of total operation
requests. The target response time for complex forecasting operations will
be initially set to 60 minutes. Finally, the target time for the system to be
fully functional after scheduled shutdown or failure will be initially set to 10
minutes. Consequently, the initial collection of values for ITSFCC’s quality
attributes are:

• Availability: ITSFCC will have to be available for 99% of total opera-
tion requests.

• Scalability: work load from 10 to a peak of 20 users, located in 5 to 10
different cities, working simultaneously in forecast model production
and evaluation.

• Performance: initial forecasting results must be delivered in less than
one hour of operation.

• Supportability: after unavailability periods due to failure or scheduled
maintenance, ITSFCC will have to be fully functional again in less than
10 minutes.

The remainder of this section identifies ITSFCC concerns using each
broad feature name as subsection header. The subsection body is conformed
by a simple description of the feature and an item list including its associated
application components. Software quality attributes are finally summarized
in the last subsection. Whenever a quality attribute is exclusively related to
a specific application component, it is identified within the item content. Ac-
cording to the ITSFCC architecture characterization, this process involves
only performance, availability, scalability, security, and supportability, be-
cause these quality attributes are significant not only to current academic
stakeholders, but also to potential stakeholders in the future, like system
users, customers, marketing team, suppliers, etc.

42 Chapter 3. Architecture Elements for Intelligent Time Series Forecasting

3.2.2 Complexity Management

Complexity in time series forecasting for the energy domain is the result
of multiple factors that demand the management of numerous time series,
which exhibit multiple relationships and hierarchies among them, and are
likely to grow up to a Big Data scale.

• Time Series Repository: A number of time series, in the order of hun-
dreds, each one of them composed of a number of elements account-
able in millions when considering its length and dimensionality, must
be stored in a repository able to provide required speed for comput-
ing operations, high availability in case of disk, file system or database
failures, and efficient metadata management. Availability: 0.99 during
on-request operation. Scalability: Peak load of 20 concurrent forecast
processes.

• Batch Processing: All of the aforementioned time series must be effi-
ciently processed in batch mode with results available in sub-one hour
intervals. Processing tasks must consider the possibility of prior subse-
quencing of the time series, so they can be treated as a single sequence
(a time series of daily values), or as a set of sequences obtained by
regularly splitting the main sequence (24 time series of hourly values).
Availability and Scalability: as previously stated. Performance: sub-
one hour intervals for task completion.

• Graph Representation: Operations performed on time series must be
represented and stored as graphs, where nodes identify input and re-
sulting time series while edges identify operators. This representation
will provide a flexible method to script complex operation sequences,
produce variations in intermediate results, and rollback to previous pro-
cessing stages when needed. Fig. 3.2 shows an example of this graph
representation of time series operations. A series identified as 01 is
clipped under a threshold of 4.5 on the axis 0 and the resulting series is
identified as 02 and stored in the serialized file 02.pkl. A series identi-
fied as 03 comes as the result of an alternative operation at a threshold
value of 3.5. A couple of series identified as 04 and 05 come as the
result of applying a difference operation on series 03, at lag values of 1
and 2, respectively. All series are stored as serialized files referenced by
the output dataset property of the edge that identifies the operation.
Availability and Scalability: as previously stated.

3.2. Identification of System Concerns 43

Figure 3.2: Example of graph representation of time series operations.

3.2.3 Hybrid-operation Forecasting and Benchmark-
ing

ITSFCC’s hybrid operation demands a reliable and efficient communication
channel between the programs that support the different functionalities of
the system, for instance the Nearest Neighbors algorithm and the Differential
Evolution optimizer integrated inside the NNDE approach. This also applies
to the different programs that support benchmarking operations, where the
results of intelligent forecasting must be compared to conventional methods
such as autorregresive and exponential smoothing models.

• Publication-Subscription Channel: Results obtained from a certain pro-
gram must be broadcasted as messages into appropriate queues, where
they can be asynchronously extracted by other programs that require
these results in order to continue their execution. This pub-sub channel

44 Chapter 3. Architecture Elements for Intelligent Time Series Forecasting

must allow different applications to exchange information in a reliable
way, regardless of the programming languages they are written in, or
the data formats they use. Availability, Scalability and Performance:
as previously stated. Supportability: Component must be ready from
shutdown to fully functional state in sub-ten minute periods.

3.2.4 Context-aware Forecasting

Context-aware forecasting places two additional requirements to ITSFCC:
the procurement of context-related time series from multiple information
sources, and the ability to keep previously generated forecast models along
with their context-related time series, for reference purposes.

• Multi-source Data Extraction: The system must be able to acquire data
from multiple sources over the internet to conform a detailed context for
the time series used to produce the forecast model. This includes cal-
endar, meteorological and economic-driven data, comming from many
different repositories, where they might be stored in multiple formats.
Availability and Scalability: as previously stated. Security: All extrac-
tion operations must be performed over secure connections.

• Forecast Model Repository: As proposed in the work of [Dannecker,
2015], for any given time series the system must be able to (1) keep
previously generated forecast models along with their context informa-
tion, (2) evaluate the similarity between a present context and contexts
in history, and (3) use this context similarity as a criterion for a fast
selection of the best forecast model in the repository. This model can
then be used to provide almost immediate, preliminary predictions,
while waiting for the newest model formulation. Besides context sim-
ilarity, other criteria suggested to be considered are time series shape
similarity, accuracy of the historic forecast model, and the elapsed time
since that forecast model was last used. Availability and Scalability:
as previously stated.

3.2.5 Efficient Model Production and Parameter Op-
timization

Complexity management, hybrid operation and the consideration of diverse
context-related datasets for intelligent time series forecasting are likely to

3.2. Identification of System Concerns 45

stress the ITSFCC processing components to a great extent, especially during
parameter optimization operations. This situation places a critical require-
ment for the system: the ability to configure and execute parallel computing
processes over a distributed platform.

• Parallel Implementation: Whenever possible, the system must imple-
ment parallel processing components able to produce a forecast model
and to find its optimal parameters in sub-one hour periods. Regarding
NNDE as a representative model for ITSFCC, parallel processing can
be implemented, via Apache Spark, to speed up the Nearest Neighbors
algorithm [Maillo et al., 2017] or the Differential Evolution optimizer
[Teijeiro et al., 2016]. In addition, Apache Spark has been suggested to
be used as a unified cluster computing platform, suitable for storing and
performing Big Data analytics on smart grid data applications, both in
batch processing and real-time mode [Shyam et al., 2015]. Availability,
Scalability, Performance and Supportability: as previously stated.

3.2.6 Summary of System Concerns

Fig. 3.3 represents a summary of the system concerns identified in this sec-
tion. It shows broad features required by ITSFCC to solve problems located
in the environment, associated application components, and related software
quality attributes. Notice that the data management components primarily
call for availability and scalability, while Multi-source Data Extraction ad-
ditionally calls for security during connections required to extract datasets.
Processing and messaging components call for availability, scalability, and
also for performance and supportability. Performance can be achieved by
setting high computing specifications for server instances, while supporta-
bility can be enforced via analytics processes over failure log records and
automated infrastructure. Next section will present the software patterns
suggested to deal with the identified system concerns for intelligent time
series forecasting operations.

46 Chapter 3. Architecture Elements for Intelligent Time Series Forecasting

Figure 3.3: Summary of system concerns related to Intelligent Time Series
Forecasting

3.3 Software Patterns Related to System Con-

cerns

Once the system concerns derived from intelligent time series forecasting
have been identified and summarized as a set of application components
related to relevant software quality attributes, the next step is to describe
the software patterns that can be applied in order to deal with the context.
This description requires an adequate software pattern format.

3.3.1 Software Pattern Formats

Different formats have been used in literature for software pattern specifica-
tion. Suitable examples can be found in [Doddavula et al., 2013b], [Fehling

3.3. Software Patterns Related to System Concerns 47

et al., 2014], and [Raj et al., 2017]. These formats share essential charac-
teristics and tend to differ only in minor features. The pattern specification
forward used in this work comes from [Fehling et al., 2014], which is the main
pattern source, and comprises the following attributes:

• Name: used to identify the pattern.

• Intent: short statement of the purpose and goal of the pattern.

• Driving Question: captures the problem that is answered by the pat-
tern.

• Icon: graphical representation of the pattern.

• Context: describes the environment and forces leading to the problem
solved by the pattern.

• Solution: briefly states how the pattern solves the problem raised by
the driving question.

• Result: in this part the solution is elaborated in greater detail. The
behavior of the application after implementation of the pattern is also
discussed.

• Variations: covers slightly different forms of application of the pattern.

• Related Patterns: describes interrelations of the pattern with others,
such as dependencies or exclusions.

• Known Uses: Covers existing applications implementing the pattern, as
well as products that offer the pattern or support its implementation.

This format was selected because it provides a complete and useful char-
acterization of patterns focused on cloud computing, which constitutes a
major directive for ITSFCC. This collection of patterns is available, along
with valuable graphic resources, not only in the main pattern source but also
on the Internet, at the domain name clearly indicated in the introduction of
the book. For this reason, patterns presented in this section will only display
its name in the topic header, followed by its intent and the description of a
specific context associated to the ITSFCC design. If required by the reader,
standard context for the pattern, as well as the remaining attributes, can be

48 Chapter 3. Architecture Elements for Intelligent Time Series Forecasting

reviewed directly on the main pattern source. Whenever a pattern presented
in this section does not come from the main pattern source the alternative
source will be explicitly cited. Finally, patterns are aggregated by subsection
following the classification provided in the main pattern source.

3.3.2 Cloud Offering Patterns

Patterns in this subsection correspond to virtual resources that are offered
via a self-service interface over a network.

Blob Storage

Intent: Data is provided in form of large files, or Binary Large OBject files,
that are made available in a file system-like fashion by storage offerings
that provide elasticity.

ITSFCC Context: This pattern is intended to provide backup and active
storage for large objects that must be organized and made available
over a network for the system operation: serialized time series in the
Time Series Repository, database snapshots from Graph Representa-
tion, log files from the Publication-Subscription Channel, datasets ob-
tained from Multi-source Data Extraction, and models and contexts
integrated in the Forecast Model Repository.

Relational Database

Intent: Data is structured according to a schema that is enforced during
data manipulation and enables expressive queries of handled data.

ITSFCC Context: This pattern is intended to provide efficient metadata
management for the Time Series Repository and the Forecast Model
Repository, as well as basic analytics and replication services for essen-
tial structured data obtained from Multi-source Data Extraction.

Key Value Storage

Intent: Semi-structured or unstructured data is stored with limited querying
support but high-performance, availability, and flexibility.

3.3. Software Patterns Related to System Concerns 49

ITSFCC Context: This pattern is intended to provide high-performance
active storage for nodes and edges in Graph Representation, as well
as for analytics of log files resulting from the Publication-Subscription
Channel. It also provides replication services for essential unstructured
or semi-structured data obtained from Multi-source Data Extraction.

Eventual Consistency

Intent: If data is stored at different locations (replicas) to improve response
time and avoid data loss in case of failures, performance and the avail-
ability of data in case of network partitioning are enabled by ensuring
data consistency eventually and not at all times.

ITSFCC Context: This pattern is intended to provide increased avail-
ablity and performance in case of network partitioning to the replicated
databases in the Time Series Repository, the Forecast Model Reposi-
tory, and the Graph Representation components.

Map Reduce

Intent: Large data sets to be processed are divided (mapped) into smaller
data chunks and distributed among processing application components.
Individual results are later consolidated (reduced).

ITSFCC Context: This pattern is intended to provide a basis for high-
performance processing components in Batch Processing and Parallel
Implementation.

Block Storage

Intent: Centralized storage is integrated into servers as a local hard drive
managed by the operating system to enable access to this storage via
the local file system.

ITSFCC Context: This pattern is intended to provide fast and reliable ac-
cess to essential data for all the application components, in the form
of centralized data buffers located between Blob Storage and process-
ing stages. It also facilitates automatic infrastructure and platform
deployment via scripting operations that are stored on and executed
from it.

50 Chapter 3. Architecture Elements for Intelligent Time Series Forecasting

Message-Oriented Middleware

Intent: Asynchronous message-based communication is provided while hid-
ing complexity resulting from addressing, routing, or data formats from
communication partners to make interaction robust and flexible.

ITSFCC Context: This pattern is intended to provide a basis for the oper-
ation of the Publication - Subscription Channel.

3.3.3 Cloud Application Architecture Patterns

Patterns in this subsection correspond to architectural patterns that describe
how applications have to be designed to benefit from a cloud environment.

Data Lake

Intent: According to [Raj et al., 2017] the data lake architecture pattern
provides efficient ways to achieve reusing most of the data infrastruc-
ture and, at the same time, get the benefits of big data paradigm shifts.
Data lakes have the following essential characteristics to address: man-
age abundant unprocessed data, retain data as long as possible, ability
to manage data transformation, and support dynamic schema.

ITSFCC Context: This pattern is intended to provide efficient mechanisms
for ingestion, storing, and conditioning of data obtained from Multi-
source Data Extraction.

Machine Learning

Intent: According to [Raj et al., 2017] this pattern helps to find a pattern
of data inputs generated from heterogeneus devices such as RFID de-
vices, energy meters, signal devices, weather-related devices, etc. Un-
derstanding data generated by automated systems or devices without
manual intervention is a challenging task that requires to rely on algo-
rithms and statistical methods.

ITSFCC Context: This pattern is intended to provide a basis for the use
of algorithms like Nearest Neighbors in NNDE, Artificial Neural Net-
works, Support Vector Machines, etc., for Batch Processing and Parallel
Implementation. It includes special data structures and types required

3.3. Software Patterns Related to System Concerns 51

for optimal ITSFCC processing, such as the tensor object from the
TensorFlow library.

Big Data Analytics

Intent: According to [Doddavula et al., 2013a] the intent of this pattern
is to provide a low-cost, large-scale analytics solution on Big Data for
scenarios like fraud detection, product recommentations and Enterprise
Data Warehouse

ITSFCC Context: This pattern is intended to provide a basis for the effec-
tive integration of all the application components, in compliance with
low-cost, large-scale and high-performance directives.

Summary

This chapter introduced the concept of intelligent time series forecasting as
an important element of the foundation for ITSFCC environment. It also
presented the system concerns which were summarized as a set of broad fea-
tures the system must exhibit, a set of application components that support
those features, and a set of precise software quality attributes related to ap-
plication components. Software pattern formats were introduced, and then
used to describe architectural elements that are advised to deploy in order
to cope with ITSFCC concerns. Next chapter will approach this analysis
from the point of view of the second fundamental research domain involved
in ITSFCC: cloud computing.

52 Chapter 3. Architecture Elements for Intelligent Time Series Forecasting

Chapter 4

Architecture Elements for
Cloud Computing

This chapter presents the concept of cloud computing and examines the ba-
sic architectural elements an intelligent time series forecasting application
must implement to exploit cloud computing potentials. According to the
architecture characterization developed in Chapter 2, Section 4.1 describes
the system environment in terms of the standard definition of cloud comput-
ing and the technological and organizational prerequisites for its adequate
implementation. Section 4.2 identifies concerns related to properly leverage
cloud computing potentials in ITSFCC design. The system concerns are
expressed as a set of broad features that must be included, the application
components required to achieve such features, and a set of precise quality
attributes linked to components. Finally, Section 4.3 describes the software
patterns suggested to deal with the identified concerns.

4.1 Description of System Environment

Regarding ITSFCC design process, there is a reason to separate the anal-
ysis of architectural elements related to intelligent time series forecasting
from those correspondent to cloud computing : whereas the former concept
refers to a clearly defined research domain, the latter points to a technol-
ogy model which can be effectively applied for solving problems in many
different domains. From the internal perspective of this work, intelligent
time series forecasting places an extensive but nevertheless concrete prob-

53

54 Chapter 4. Architecture Elements for Cloud Computing

lem to solve (vertical domain), while cloud computing offers a technical and
methodological approach to the solution (transversal domain). Consequently,
the description of ITSFCC environment related to these two topics is also
different: while the previous chapter primarily dealt with problematic situa-
tions to face, this chapter alludes to potential opportunities found in cloud
computing and the way to properly leverage them.

Figure 4.1: Cloud computing characteristics, service, and deployment models

4.1.1 Definition of Cloud Computing

The National Institute of Standards and Technology (NIST) provides the
official definition of cloud computing in [Mell et al., 2011]: Cloud computing
is a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and re-
leased with minimal management effort or service provider interaction. This
cloud model is composed of five essential characteristics, three service models,
and four deployment models. The elements in the definition are depicted in

4.1. Description of System Environment 55

Figure 4.1. Following are their complete descriptions as extracted from the
aforementioned source.

Cloud Essential Characteristics

1. On-demand self-service. A consumer can unilaterally provision com-
puting capabilities, such as server time and network storage, as needed
automatically without requiring human interaction with each service
provider.

2. Broad network access. Capabilities are available over the network and
accessed through standard mechanisms that promote use by hetero-
geneous thin or thick client platforms1 (e.g., mobile phones, tablets,
laptops, and workstations).

3. Resource pooling. The provider’s computing resources are pooled to
serve multiple consumers using a multi-tenant model, with different
physical and virtual resources dynamically assigned and reassigned ac-
cording to consumer demand. There is a sense of location indepen-
dence in that the customer generally has no control or knowledge over
the exact location of the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country, state, or dat-
acenter). Examples of resources include storage, processing, memory,
and network bandwidth.

4. Rapid elasticity. Capabilities can be elastically2 provisioned and re-
leased, in some cases automatically, to scale rapidly outward and in-
ward commensurate with demand. To the consumer, the capabilities
available for provisioning often appear to be unlimited and can be ap-
propriated in any quantity at any time.

5. Measured service. Cloud systems automatically control and optimize
resource use by leveraging a metering capability3 at some level of ab-

1A thin client platform is a lightweight computer that basically monitors and controls
processes executed in the server side, so it can work efficiently without advanced processing
or storage components. On the other hand, a thick client platform usually performs most
of the processing workload over data stored in the server side.

2In this context elasticity means the ability to flexibly and rapidly increase or decrease
the quantity of IT resources to adjust them to the experienced workload.

3Typically this is done on a pay-per-use or charge-per-use basis.

56 Chapter 4. Architecture Elements for Cloud Computing

straction appropriate to the type of service (e.g., storage, processing,
bandwidth, and active user accounts). Resource usage can be mon-
itored, controlled, and reported, providing transparency for both the
provider and consumer of the utilized service.

Cloud Service Models

1. Software as a Service (SaaS). The capability provided to the consumer
is to use the provider’s applications running on a cloud infrastructure4.
The applications are accessible from various client devices through ei-
ther a thin client interface, such as a web browser (e.g., web-based
email), or a program interface. The consumer does not manage or
control the underlying cloud infrastructure including network, servers,
operating systems, storage, or even individual application capabilities,
with the possible exception of limited user-specific application config-
uration settings.

2. Platform as a Service (PaaS). The capability provided to the con-
sumer is to deploy onto the cloud infrastructure consumer-created or
acquired applications created using programming languages, libraries,
services, and tools supported by the provider5. The consumer does
not manage or control the underlying cloud infrastructure including
network, servers, operating systems, or storage, but has control over
the deployed applications and possibly configuration settings for the
application-hosting environment.

3. Infrastructure as a Service (IaaS). The capability provided to the con-
sumer is to provision processing, storage, networks, and other funda-
mental computing resources where the consumer is able to deploy and
run arbitrary software, which can include operating systems and appli-
cations. The consumer does not manage or control the underlying cloud

4A cloud infrastructure is the collection of hardware and software that enables the five
essential characteristics of cloud computing. The cloud infrastructure can be viewed as
containing both a physical layer and an abstraction layer. The physical layer consists of
the hardware resources that are necessary to support the cloud services being provided,
and typically includes server, storage and network components. The abstraction layer
consists of the software deployed across the physical layer, which manifests the essential
cloud characteristics. Conceptually the abstraction layer sits above the physical layer.

5This capability does not necessarily preclude the use of compatible programming lan-
guages, libraries, services, and tools from other sources.

4.1. Description of System Environment 57

infrastructure but has control over operating systems, storage, and de-
ployed applications; and possibly limited control of select networking
components (e.g., host firewalls).

Cloud Deployment Models

1. Private cloud. The cloud infrastructure is provisioned for exclusive use
by a single organization comprising multiple consumers (e.g., business
units). It may be owned, managed, and operated by the organization,
a third party, or some combination of them, and it may exist on or off
premises.

2. Community cloud. The cloud infrastructure is provisioned for exclu-
sive use by a specific community of consumers from organizations that
have shared concerns (e.g., mission, security requirements, policy, and
compliance considerations). It may be owned, managed, and operated
by one or more of the organizations in the community, a third party,
or some combination of them, and it may exist on or off premises.

3. Public cloud. The cloud infrastructure is provisioned for open use by
the general public. It may be owned, managed, and operated by a
business, academic, or government organization, or some combination
of them. It exists on the premises of the cloud provider.

4. Hybrid cloud. The cloud infrastructure is a composition of two or more
distinct cloud infrastructures (private, community, or public) that re-
main unique entities, but are bound together by standardized or pro-
prietary technology that enables data and application portability (e.g.,
cloud bursting6 for load balancing between clouds).

4.1.2 Cloud Computing Fundamentals

The cloud characteristics, service and deployment models stated in the NIST
definition point to important technical benefits that can be leveraged by IT
departments. Among those benefits [Varia, 2010] identifies automatic and

6Cloud bursting refers to the ability to get infrastructure at runtime from a cloud
provider and enabling the applications to use that to meet the service levels during a
temporary spike in the workload [Doddavula et al., 2013b].

58 Chapter 4. Architecture Elements for Cloud Computing

proactive scaling, a more efficient development lifecycle, improved testabil-
ity, business continuity, and overflowing traffic to the cloud. However, in
order to properly develop a cloud computing-based project it is essential to
understand the technological and organizational fundamentals that support
the model.

Technological Prerequisites

On the technological side, cloud computing depends on three complemen-
tary elements: virtualization, service-oriented architectures, and web ser-
vices. These features can be summarized from [Baun et al., 2011] as follows:

• Virtualization. It allows an abstract, logical view on resources like
servers, operating systems, data stores, and networks. Customers make
use of this abstract layer by requesting virtual resources as services, in-
curring in much lower costs and efforts than those required for deploy-
ment and configuration of physical resources. Virtualization provides
IT departments with important benefits such as dynamic scalablility,
high availability, and simple, clear access to resource pools via self-
service interfaces.

• Service-oriented architectures (SOA). They define applications whose
components are implemented as independent services. SOA can be flex-
ibly tied together and orchestrated, and they can communicate asyn-
chronously via messaging systems in a loosely coupled configuration.
With cloud computing, virtualized IT infrastructures, platforms, and
entire applications are implemented as services and made available for
consumption in SOA. Consumers or clients for these services can be
other services, applications or final customers. Interoperability is an
essential feature of SOA, so heterogeneus service consumers and ser-
vice providers must be able to interact across different platforms or
programming languages.

• Web services. In cloud computing, independent services aggregated in
SOA can be orchestrated not only over local networks, but also over
the internet, allowing applications to be built on the basis of globally
distributed resources. This situation results in enhanced availabilty be-
cause servers and data stores can be replicated on several locations in
order to keep them close to many different customers. It also increases

4.1. Description of System Environment 59

performance and scalability because data management and processing
tasks can be delegated, when required, on multiple servers from one or
more cloud providers. However, communications over the internet are
likely to experience slow response times and unreliable connections. A
practical solution to this problem is to implement the SOA applica-
tion or component as a web service, able to be located on the inter-
net with a Uniform Resource Identifier (URI), and to asynchronously
communicate using standardized requests over internet-based proto-
cols. Two common approaches for this communication are transfer-
ring XML-compliant data packages according to messaging standards
like Simple Object Access Protocol (SOAP), or Representational State
Transfer (REST).

Organizational Prerequisites

In addition to the aforementioned technology-based fundamentals, a success-
ful implementation of cloud computing requires a particular organizational
context centered on the notion of service. This special context can be illus-
trated with native cloud service companies like Uber, Amazon, Netflix, or
Airbnb, which operate cloud applications able to effectively manage widely
distributed physical resources, like cars, data centers, audiovisual contents,
or accomodations, for serving customers that value more making use of a
product than owning it. Three key aspects can be found on the root of this
type of operation: a service-dominant logic, a networked business model, and
the concept of service ecosystem. These features can be summarized from
[Castro-Leon and Harmon, 2016] as follows:

• Service-dominant logic. It is a particular method of thinking business
processes where the primary key is not a concrete good or product,
but the intangible user experience the good or product conveys. For
cloud computing to prosper the traditional good-dominant logic, that
views services as non-core add-ons to the value of products, have to be
replaced in favor of a service-dominant logic, where service is considered
as an essential value-creating process involving knowledge and skills to
create primary benefits for another party.

• Networked business model. It consists on leveraging multi-sided ser-
vice platforms, such as cloud-based software, social networks, search
engines, and mobile operating systems, in order to allow engagement

60 Chapter 4. Architecture Elements for Cloud Computing

beyond the usual provider-customer dyad, in the form of direct or indi-
rect interactions between suppliers, partners, developers, advertising
agencies, employees, distributors, agents, competitors, shareholders,
etc., sometimes simultaneously. As a result, business contexts and pro-
cesses, typically fixed and locally enclosed, become fluid and distributed
over global landscapes.

• Service ecosystem. It comprises the sum of all of the actors in a net-
worked business as well as the service exchanges that those actors per-
form in a collaborative way to create value for mutual benefit. Actors
that populate the service ecosystem can be individuals, online commu-
nities, organizations, and even machines, and they primarily integrate
resources like knowledge, skills, capabilities, and technologies, accord-
ing to shared institutional arrangements.

Environment Summary

The environment where ITSFCC will reside is shaped by the intention of ex-
ploiting the five essential characteristics of cloud computing to enhance the
intelligent time series forecasting process. In order to achieve this objective
a cloud deployment model has to be selected and prepared as the ground for
the development and evaluation of multiple prototypes. The most straight-
forward option for experimenting with cloud computing is indeed the public
cloud deployment model, because cloud providers have already implemented
the resources needed to develop, operate, and manage robust applications,
making such resources available at a fraction of the cost and effort required
to provision them in a private or community cloud. Regarding the service
model, ITSFCC will render two different modes based on its development
stage and the corresponding user type. At a development stage, when used
only by the academic stakeholders affiliated to the Work Group, ITSFCC
will conform to a Platform-as-a-Service model, suitable for the deployment
of consumer-created, intelligent time series forecasting applications. Once at
production stage, and made available to non-specialized customers coming
from a wider service ecosystem, it will take the form of a Software-as-a-
Service tool, more specifically, a Forecasting-as-a-Service (FaaS) one. Next
section deals with the identification of the system concerns associated to
these characteristics.

4.2. Identification of System Concerns 61

4.2 Identification of System Concerns

The identification of the concerns placed to ITSFCC by its stakeholders fol-
lows the conventions described in Subsection 3.2.1. The initial collection of
values for ITSFCC’s quality attributes presented in Subsection 3.2.1 remains
valid for the application components listed here, and only aggregates con-
siderations for additional users able to analyze forecasting results via web
services. Consequently, the following quality attribute values are added to
the original collection:

• Scalability: work load of 20 to a peak of 50 users, located anywhere in
Mexico, either querying or visualizing completed forecasting results.

• Availability: ITSFCC will have to be available for 99% of total requests
for analyzing forecasting results.

• Performance: once completed, forecasting results must be accessible,
via a user interface, in less than one second.

4.2.1 Rapid Elasticity

Processing components of ITSFCC are likely to deal with huge numerical
tasks related to time series analysis and production of complex forecast mod-
els in a Big Data environment. In addition, the need for running multiple ex-
periments over the data for model evaluation or enhancement will constantly
modify processing workloads. Elasticity, as the ability to easily provision or
decommission resources in order to meet computing demand, is a fundamen-
tal feature of ITSFCC. Moreover, scaling resources outward or inward must
be done quickly so as to avoid performance issues when workload increases
or incurring in superfluous costs when it decreases.

• Distributed Application: Essential application components of ITSFCC
must be able to scale outward or inward7 independently. Processing
components of ITSFCC place the higher requirement for scalability
due to intensive variable workloads associated with intelligent time se-
ries forecasting. Primary stakeholders of ITSFCC are the academic

7An application or component is scaled outward by increasing the number of virtual
servers where it is executed, in order to deal with a higher workload. If the workload
decreases, the application or component is scaled inward by reducing the number of virtual
servers.

62 Chapter 4. Architecture Elements for Cloud Computing

research group in the Work Group, so user interface and data man-
agement components are currently far less demanding for scalability.
However, present conditions might change in the future if the system
is made available to new users as part of a wider service ecosystem.
Performance: Sub-one hour intervals for task completion. Availabil-
ity: 0.99 during on-request operation. Scalability: Peak load of 20
concurrent forecast processes.

• Multi-variable Elasticity Manager: Load measurements in terms of
CPU utilization, quantity of synchronous accesses to the user and ap-
plication interface components, and quantity of asynchronous accesses
to the processing components must be continuously monitored in real
time, and stored for further in-depth analytics. Real time monitor-
ing provides data triggers for scaling decisions while in-depth analysis
supports overall performance evaluation of the system. ITSFCC com-
ponents must be able to automatically scale outward or inward in or-
der to meet workload demand, using results obtained from workload
monitoring to determine the number of virtual servers required for de-
ploying interface, processing, and data components. Additionally, a set
of rules for provisioning/decommissioning must be implemented, based
on the behavior of the monitored variables over standardized periods of
time. This is because, for instance, a new server should not be imme-
diately added when CPU utilization raises to a pre-defined threshold,
but when the expected behavior of this variable suggests the threshold
will be steadily reached if no server is added. Availability: As previ-
ously stated. Supportability: Application component must be ready
from shutdown to fully functional state in sub-ten minute periods.

4.2.2 Secure Operation

In cloud computing, a special concern for security arises from the fact that
customers or tenants have no control or visibility on the portions of the physi-
cal infrastructure their platforms and applications run on. [Yeluri et al., 2012]
explore challenges in deploying and managing services in a cloud infrastruc-
ture from a security perspective and identify the following five key drivers
for cloud security: (1) identity management, (2) visibility, compliance, and
monitoring, (3) data discovery and protection, (4) architecture, and (5) au-
tomation policy and orchestration. The specific context of ITSFCC places a

4.2. Identification of System Concerns 63

security condition that can be primarily handled with a narrower approach,
which considers only the first, third, and fourth of these key drivers.

• User Identity Manager: ITSFCC must be able to verify the identity
of users and other applications with which it interacts, in terms of a
valid set of access rights granted to each one of them over the different
resources of the system. Availability and Supportability: As previously
stated. Security: All data must be transferred over secure connections.
All data must be stored behind a firewall accessible only from the data
access or the processing components.

• Data Encryption: ITSFCC must be able to apply different encryption
levels to digital data when at rest (in storage systems and databases),
in transit (flowing over a network), and in use (in CPU and memory).
In addition, the system must be able to protect data in transit using en-
crypted connections like HTTPS, FTPS, TLS, or SSL, in order to deal
with its higher vulnerability. Availability and Security: As previously
stated.

• Firewall Protection: ITSFCC application components must be imple-
mented over virtual local area networks (VLANs) to define subnets or
network segments on which virtual servers may communicate directly
with each other. Then, it must be possible to place virtual firewalls
between these subnets, and to configure them with specific routing ta-
bles and access rules in order to securely expose interfaces for users
or applications in public subnets, while keeping processing and data
components hidden in private subnets. Availability, Security and Sup-
portability: As previously stated.

4.2.3 Forecasting-as-a-Service Operation

As a novel and comprehensive research project, ITSFCC condenses valuable
knowledge and skills from an important group of academics affiliated to the
Work Group. Therefore, the system comprises significant data science capa-
bilities that can be made available to a wider service ecosystem in the form
of a Software-as-a-Service tool, more specifically a Forecasting-as-a-Service
(FaaS) one. Multiple entities having interests in intelligent time series fore-
casting like energy providers, universities, public service institutions, and

64 Chapter 4. Architecture Elements for Cloud Computing

entrepreneurs can collaboratively integrate their specific resources into ITS-
FCC operation in order to create value for a mutual benefit. Taking ITSFCC
to an adequate FaaS operation primarily involves the application components
listed below.

• RESTful Interfaces: ITSFCC components, especially those related to
the user and application interfaces, must be exposed as RESTful web
services, which means they must operate in response to HTTP re-
quest messages composed by a HTTP method (i.e. POST, GET, PUT,
DELETE), the URI that locates the service over the network, and the
request body and header, which describe the data required for the oper-
ation. Usually authentication and metadata are provided in the request
header while operation details are provided in the request body [Vyas,
2015]. The main advantage of this approach is that the data handled by
the application component, commonly referred as its state, is provided
in every request message, so it does not have to be kept in the server
side. The application component becomes stateless and, consequently,
multiple request messages coming from one or more clients can be han-
dled by arbitrary servers hosting the application component, which is
now easily scalable and replaceable in case of failure, on a cloud envi-
ronment. Availability: 0.99 during continuous operation. Scalability:
Peak load of 50 concurrent users. Security and Supportability: As
previously stated.

• Pipes-and-Filters Processing: Academic stakeholders of ITSFCC will
be able to operate the system by manually executing each one of its
application components, in order to get intermediate and final results,
as well as to run advisable variations from the main sequence of opera-
tions, following a PaaS service model. When made available as a FaaS
tool, ITSFCC must be able to automatically execute the complete se-
quence of processing operations, based on requests from customers or
tenants who are likely to expect minimal or null interaction with the
application components. A pipes-and-filters processing model is rec-
ommended for data-centric processing of an application and consists
of filters which provide a certain function that is performed on input
data and produces output data after processing. Multiple filters are
interconnected with pipes ensuring that the output of one filter is fed
to the next filter in a processing chain. In a distributed application,
such as ITSFCC, filters map to application components that provide a

4.3. Software Patterns Related to System Concerns 65

certain function and are interconnected using communication services
provided by a cloud [Fehling et al., 2014]. Availability: 0.99 during
continuous operation. Scalability: Peak load of 20 concurrent forecast
processes. Security and Supportability: As previously stated.

• Engagement Layer: Academic stakeholders of ITSFCC are able to get
insight into the results from the system with a rapid glance at numerical
outcomes or a few graphic representations. However, once available as a
FaaS tool ITSFCC must provide tenants with a visualization layer built
on top of the system to get such insight. This application component,
which [Nandi, 2015] identifies as engagement layer when immersed in a
data-intensive application, must give tenants access to a comprehensive
set of graph styles, as well as to customized dashboards for at-a-glance
views of forecasting key performance indicators. The engagement layer
must be exposed as a RESTful web service so as to be accessed via
modern web browsers. It must also efficiently render visual interactive
analytics over huge data sets. Performance: Sub-one second response
time for graphics or dashboards updates. Availability: 0.99 during
continuous operation. Peak load of 50 concurrent users. Security and
Supportability: As previously stated.

4.2.4 Summary of System Concerns

Fig 4.2 represents a summary of the system concerns identified in this section.
It shows broad features required by ITSFCC to properly leverage cloud com-
puting potentials, the application components required to achieve such fea-
tures, and the corresponding software quality attributes. The figure clearly
shows more quality attributes are called for once ITSFCC is available as a
FaaS tool. Next section presents the software patterns suggested to deal with
the identified system concerns for cloud computing operation.

4.3 Software Patterns Related to System Con-

cerns

This section presents the software patterns suggested to address the system
concerns identified in the previous section; it follows the classification estab-
lished in [Fehling et al., 2014], so, besides proper architectural patterns, cloud

66 Chapter 4. Architecture Elements for Cloud Computing

Figure 4.2: Summary of system concerns related to Cloud Computing

offering patterns are also listed. As in Chapter 3, subsection headers identify
the categories used to aggregate individual patterns, which are described in
terms of their intent and ITSFCC context attributes. All patterns in this
section come from the aforementioned source.

4.3.1 Cloud Offering Patterns

Patterns in this subsection correspond to virtual resources that are offered
via a self-service interface over a network.

Elastic Infrastructure

Intent: Hosting of virtual servers, disk storage, and configuration of network
connectivity is offered via a self-service interface over a network.

ITSFCC Context: This pattern is intended to provide elasticity to the

4.3. Software Patterns Related to System Concerns 67

servers, storage systems, and networking elements in the Distributed
Application.

Elastic Platform

Intent: Middleware for the execution of custom applications, their commu-
nication, and data storage is offered via a self-service interface over a
network.

ITSFCC Context: This pattern is intended to provide elasticity to the
databases in the Distributed Application, as well as to customized pro-
grams for visualization in the Engagement Layer.

Relational Database

Intent: Data is structured according to a schema that is enforced during
data manipulation and enables expressive queries of handled data.

ITSFCC Context: This pattern is intended to provide efficient data man-
agement for the User Identity Manager, including user specification,
permissions granted over different resources, security groups and roles,
etc. It also provides a way to store metadata from the request messages
reaching the RESTful Interfaces.

Virtual Networking

Intent: Networking resources are virtualized to empower customers to con-
figure networks, firewalls, and remote access using a self-service inter-
face.

ITSFCC Context: This pattern is intended to provide the virtual LANs and
other networking resources required to implement the Firewall Protec-
tion of ITSFCC.

Message-Oriented Middleware

Intent: Asynchronous message-based communication is provided while hid-
ing complexity resulting from addressing, routing, or data formats from
communication partners to make interaction robust and flexible.

68 Chapter 4. Architecture Elements for Cloud Computing

ITSFCC Context: This pattern is intended to provide the message queues
that act as pipes in the Pipes-and-Filters Processing model. Under
this approach, the application components act as the independently
operating filters.

4.3.2 Cloud Application Architecture Patterns

Patterns in this subsection correspond to architectural patterns that describe
how applications have to be designed to benefit from a cloud environment.

Data Access Component

Intent: Functionality to store and access data elements is provided by special
components that isolate complexity of data access, enable additional
data consistency, and ensure adjustability of handled data elements to
meet different customer requirements.

ITSFCC Context: This pattern is intended to facilitate access operations
for Data Encryption, as well as for handling application state for the
application components exposed as RESTful Interfaces.

Stateless Component

Intent: State is handled external of application components to ease their
scaling-out and to make the application more tolerant to component
failures.

ITSFCC Context: This pattern is intended to provide a model for the
implementation of ITSFCC application components, so they can be
exposed as RESTful Interfaces.

Loose Coupling

Intent: A communication intermediary separates application functionality
from concerns of communication partners regarding their location, im-
plementation platform, the time of communication, and the used data
format.

4.3. Software Patterns Related to System Concerns 69

ITSFCC Context: This pattern is intended to provide an operational basis
for the ability of ITSFCC to scale its components independently, as
required by the Distributed Application.

User Interface Component

Intent: Interactive synchronous access to applications is provided to hu-
mans, while application-internal interaction is realized asynchronously
when possible to ensure loose coupling. Furthermore, the user interface
should be customized to be used by different customers.

ITSFCC Context: This pattern is intended to provide a basis for the inter-
active operation of the Engagement Layer.

4.3.3 Cloud Application Management Patterns

Patterns in this subsection correspond to architectural components that en-
able the automated execution of management processes handling application
components and system resources.

Elasticity Manager

Intent: The utilization of IT resources on which an elastically scaled-out
application is hosted, for example virtual servers, is used to determine
the number of required application component instances.

ITSFCC Context: This pattern is intended to provide a measurement of the
system workload in terms of the CPU utilization for the Multi-variable
Elasticity Manager component.

Elastic Load Balancer

Intent: The number of synchronous accesses to an elastically scaled-out
application is used to determine the number of required application
component instances.

ITSFCC Context: This pattern is intended to provide a measurement of
the system workload in terms of the synchronous accesses to the user
and application interface components for the Multi-variable Elasticity
Manager.

70 Chapter 4. Architecture Elements for Cloud Computing

Elastic Queue

Intent: The number of asynchronous accesses via messages to an elasti-
cally scaled-out application is used to adjust the number of required
application component instances.

ITSFCC Context: This pattern is intended to provide a measurement of
the system workload in terms of the asynchronous accesses to the pro-
cessing components for the Multi-variable Elasticity Manager.

Elasticity Management Process

Intent: Application component instances are added automatically to an
application to cope with increasing workload. If the workload decreases
application component instances are removed respectly.

ITSFCC Context: This pattern is intended to provide a basis for the de-
tailed implementation of the rules for provisioning/decommissioning
application component instances in the Multi-variable Elasticity Man-
ager. [Fehling et al., 2014] illustrate the use of the Business Process
Model and Notation (BPMN) language for expressing this pattern.

Summary

This chapter presented the concept of cloud computing as the second part,
along with intelligent series forecasting, of the foundation for ITSFCC en-
vironment. It also presented the system concerns as a set of broad features
ITSFCC must include to properly leverage cloud computing potentials, a set
of application components that support the features, and a set of precise soft-
ware quality attributes linked to the application components. Finally, cloud
computing patterns were used to describe architectural elements suggested
to address the identified concerns. Next chapter will integrate the architec-
tural elements described in Chapters 3 and 4 into the definitive architecture
characterization for ITSFCC, in accordance with the specifications developed
in Chapter 2.

Chapter 5

ITSFCC Architecture

This chapter presents the detailed architecture characterization of ITSFCC,
in compliance with the specifications covered in Chapter 2. Section 5.1
presents a set of text-based documents containing the architecture identifi-
cation and overview, the identification of stakeholders, and the identification
of concerns. Section 5.2 presents the architecture model, which conforms to
a process-based architecture view and is governed by a block diagram model
kind. The overall architecture of ITSFCC, as well as each one of its applica-
tion components are depicted in a comprehensive set of graphics, which are
described in detail by explanatory texts.

5.1 Basic Documentation

This section covers the basic documentation for ITSFCC’s architecture char-
acterization, in compliance with the specifications listed in Chapter 2. It
comprises the following text-based documents:

• Architecture identification and overview.

• Identification of stakeholders.

• Identification of concerns.

5.1.1 Identification and Overview

• Date of issue: March, 2018.

71

72 Chapter 5. ITSFCC Architecture

• Status: Model completed and ready for prototyping in a public cloud.

• Authors: José Luis Garćıa Nava and Juan José Flores Romero.

• Issuing organization: Data Science Research Work Group at the Grad-
uate School of Electrical Engineering, Universidad Michoacana de San
Nicolás de Hidalgo (The Work Group).

• Change history: Null (no changes have been made to the architecture
characterization).

• Context: The implementation of a set of Artificial Intelligence and
Machine Learning-based methods for time series forecasting available
to multiple tenants in the form of a Software-as-a-Service tool.

• Glossary: All of the following required concepts can be reviewed in
chapters 2, 3, and 4: software architecture, architecture description, ar-
chitecture characterization, system, environment, stakeholder, concern,
software quality attributes, performance, availability, scalability, secu-
rity, supportability, architecture view, architecture model, model kind,
software pattern, intelligent time series forecasting, hybrid-operation
forecasting, context-aware forecasting, Nearest Neighbors Differential
Evolution, cloud computing, virtualization, service-oriented architec-
ture, web services, service-dominant logic, networked business model,
service ecosystem, Infrastructure-as-a-Service, Platform-as-a-Service,
Software-as-a-Service, Forecasting-as-a-Service.

• References: The references this architecture characterization conform
to the References section of this thesis.

5.1.2 Identification of Stakeholders

Researchers and graduate students affiliated to the Work Group are the pri-
mary stakeholders of ITSFCC, as well as the only users, operators, develop-
ers, builders, and maintainers of the system during its development stage.
Once ITSFCC become available as a FaaS tool, new stakeholders will be
incorporated to conform a wider service ecosystem. It is expected that en-
ergy providers, universities, public service institutions, and entrepreneurs will
participate in the future as users, acquirers, and suppliers of the system.

5.1. Basic Documentation 73

5.1.3 Identification of Concerns

So far, ITSFCC concerns have been expressed as a set of broad features the
system must incorporate in order to deal with the problems related to intelli-
gent time series forecasting (Chapter 3), and to properly leverage the poten-
tials of cloud computing (Chapter 4). Application components required to
address the broad features were listed, and then mapped to specific software
quality attributes as summarized in Fig. 3.3 and in Fig. 4.2. The soft-
ware quality attributes defined for ITSFCC’s application components can be
aggregated as follows:

1. Performance: Sub-one hour intervals for processing tasks completion.

2. Performance: Sub-one second response time for graphics and dash-
boards update on the Engagement Layer component.

3. Scalability: Peak load of 20 concurrent forecast processes on processing
components.

4. Scalability: Peak load of 50 concurrent sessions of the user interface
components.

5. Availability: 99% during on-request operation of the data repositories
and the processing components.

6. Availability: 99% during continuous operation of the user interface
components.

7. Security: All extraction operations on the Multi-source Data Extrac-
tion component must be performed over secure connections.

8. Security: All data must be transferred over secure connections.

9. Security: All data must be encrypted when at rest1 or in transit2.

10. Supportability: All application components must be ready from shut-
down to fully functional state in sub-ten minute periods. This is partic-
ularly crucial for the Publication-Subscription Channel and the Multi-
variable Elasticity Manager, which are the core management compo-
nents of ITSFCC.

1Data at rest refers to inactive data that is stored in any digital form.
2Data in transit refers to data that flows over a network

74 Chapter 5. ITSFCC Architecture

5.2 Architecture Model

This section presents the architecture model for ITSFCC, which exhibits the
following characteristics:

• It conforms to an architecture view based on the concept of process, de-
fined as a group of tasks that form an executable unit which can be (a)
tactically controlled (started, recovered, reconfigured, shut down, and
so on), (b) replicated to distribute processing load or improve system
availability, and (c) partitioned into a set of independent tasks.

• It is governed by the block diagram model kind, which allows to rep-
resent the system’s architecture as a high-level structure composed of
interconnected blocks. In this modelling technique blocks identify pro-
cesses while connections identify messages that the processes exchange.

• As a consequence of the previous items, this architecture model con-
tributes to efficiently address concerns related to non-functional re-
quirements of the system. As long as no business or technical con-
straints are considered in the scope of this work, non-functional re-
quirements of the system are equivalent to its software quality attribute
values.

The ITSFCC architecture model is depicted in Fig. 5.1. It includes the
following ITSFCC application components:

1. Multi-source Data Extraction.

2. Data Encryption.

3. User Identity Manager.

4. Engagement Layer.

5. Publication-Subscription Channel.

6. Multi-variable Elasticity Manager.

7. Graph Representation.

8. RESTful Interfaces.

5.2. Architecture Model 75

9. Time Series Repository.

10. Forecast Model Repository.

11. Batch Processing.

The individual diagrams of the above application components are pre-
sented in subsequent pages. A total of four ITSFCC application components
are not included in Fig. 5.1 because of the following reasons:

1. Distributed Application. This functionality does not depend on a single
application component but on the ability of all ITSFCC’s components
to scale independently.

2. Parallel Implementation. This application component is intended to
operate in a side-by-side way with the Batch Processing component,
and to eventually take over the serial processing-based functionalities of
Batch Processing into a parallel operation. Therefore it was considered
redundant to place this component on the general architecture diagram.

3. Pipes-and-Filters Processing. This functionality does not depend on a
single application component, but on the integration of five of them into
an automated process that is executed on schedule or in response to a
specific request. A separate diagram for this functionality is provided.

4. Firewall Protection. This functionality does not depend on a single
application component, but on the implementation and regulation of a
Virtual Local Area Network that includes all of the ITSFCC’s compo-
nents. A separate diagram for this functionality is provided.

Based on the ITSFCC architecture model, a graphic concern map was
prepared to clarify how the requirements on software quality attributes im-
pact the system. Depicted in Fig. 5.2, the ITSFCC concern map shows
a simplified block representation of the architecture, on top of which six
categories that logically group application components are represented by
enclosed areas, as follows:

1. Data Ingestion: includes Multi-source Data Extraction component.

2. Security: includes Data Encryption and User Identity Manager com-
ponents.

76 Chapter 5. ITSFCC Architecture

Figure 5.1: ITSFCC Architecture

5.2. Architecture Model 77

3. Interfaces: includes RESTful Interfaces and Engagement Layer compo-
nents.

4. Management: includes Publication-Subscription Channel and Multi-
variable Elasticity Manager components.

5. Data Repositories: includes Time Series Repository and Forecast Model
Repository components.

6. Processing: includes Graph Representation, Batch Processing, and
Parallel Implementation components.

The concern map of ITSFCC was completed by labeling each quality at-
tribute value inside the component category it primarily impacts. Important
information can be easily derived from the examination of this concern map,
for instance that performance and scalability requirements placed to appli-
cation components in the Interfaces category are higher than those placed to
components in the Processing category. Likewise, security is mainly enforced
in the Data Ingestion and Security categories, which basically encompass the
data management operations. This concern map is intended to achieve higher
detail with further refinements on the mapping from application components
to software quality attributes to be produced by the continuous evaluation
of the ITSFCC architecture.

The following subsections describe the application components of ITS-
FCC as elements of the aforementioned architecture model: the subsection
header identifies the application component, then the subsection body de-
scribes the software patterns the component includes, the tasks it performs,
and the relationships it establishes to other application components.

5.2.1 Distributed Application

Fig. 5.1 shows ITSFCC’s application components implemented as loosely
coupled services communicated by a central Publication-Subscription Chan-
nel. As a result of this decoupled architecture all of the components can be
scaled outward or inward independently via a central Multi-variable Elastic-
ity Manager.

78 Chapter 5. ITSFCC Architecture

Figure 5.2: ITSFCC’s concerns mapped to application component categories

5.2. Architecture Model 79

5.2.2 Multi-source Data Extraction

The Multi-source Data Extraction component, depicted in Fig. 5.3, imple-
ments a data lake pattern for gathering time series and their specific con-
texts. Structured data (relational databases and CSV files), semi-structured
data (XML and JSON files), and unstructured data (e-mail messages, word
processing documents, photos, etc.) that describe variables related to the
forecasting process are extracted from external sources and ingested into a
blob storage. Data is then transformed to comply with ITSFCC specifications
and stored in a data warehouse conformed with elastic relational databases
(SQL) and key-value storage (NoSQL). Elastic processing components config-
ured on block storage (operating system, software, fast-access data storage)
are used for implementing data extraction and transformation. Due to the
huge, constantly increasing size of the data sets, databases are not replicated,
leaving blob storage as the only backup for extracted information.

5.2.3 Data Encryption

The Data Encryption component, depicted in Fig. 5.4, implements a data ac-
cess component pattern to isolate complexity of data access over blob storage,
block storage, relational database, and key-value storage instances distributed
over the complete ITSFCC architecture. Data is encrypted when saved to
storage elements and decrypted when retrieved so as to keep it safe at rest.
Encryption is implemented in an elastic processing component configured on
block storage (operating system, software, fast-access data storage) follow-
ing the Advanced Encryption Standard (AES) algorithm in Galois/Counter
Mode (GCM), known as AES-GCM. This is a symmetric-key algorithm that
can be used with 128, 192, and 256-bit secret keys [Dworkin, 2007]. Encryp-
tion keys and configuration files are kept in blob storage.

5.2.4 User Identity Manager

The User Identity Manager component, depicted in Fig. 5.5, implements an
elastic relational database to store information about users, resources, and
the permissions that link them. Security roles and policies can also be kept in
the database. Authentication and authorization processes are implemented
in an elastic processing component configured on block storage (operating
system, software, fast-access data storage).

80 Chapter 5. ITSFCC Architecture

Figure 5.3: Multi-source Data Extraction

5.2. Architecture Model 81

Figure 5.4: Data Encryption

82 Chapter 5. ITSFCC Architecture

Figure 5.5: User Identity Manager

5.2. Architecture Model 83

5.2.5 Engagement Layer

The Engagement Layer component, depicted in Fig. 5.6, is intended to pro-
vide interactive graphics and dashboards via modern web browsers or mobile
applications. It implements an elastic user interface component managed
with an elastic load balancer for dashboard operation, as well as an elastic
processing component managed with an elastic queue for interactive visual-
ization. Both components are configured on block storage (operating system,
software, fast-access data storage), and follow a stateless component pattern
for ensuring loose coupling. Consequently, the user interface component must
keep its session state on the client side and send it to the processing server
with each request.

5.2.6 Publication-Subscription Channel

The Publication-Subscription Channel component, depicted in Fig. 5.7,
asynchronously communicates all of the ITSFCC components by exchang-
ing messages. It implements a message-oriented middleware pattern where
incoming messages are passed to an elastic queue. The number of messages
arriving to the queue is used to scale an elastic processing component which
routes messages to intended receivers. A second elastic queue is used to
scale another elastic processing component which handles message format
transformation to comply with each receiver’s specifications. Both process-
ing components are configured on block storage (operating system, software,
fast-access data storage). Once routed and transformed, messages are put in
an elastic queue where receivers pick them up.

5.2.7 Multi-variable Elasticity Manager

The Multi-variable Elasticity Manager component, depicted in Fig. 5.8, im-
plements an elasticity management process pattern to scale the elastic plat-
form and elastic infrastructure instances distributed over the complete ITS-
FCC architecture, based on real time monitoring of three variables: CPU
utilization of virtual servers is managed by an elastic manager, the number
of synchronous accesses to interface components is managed by an elastic load
balancer, and the number of asynchronous accesses to processing components
is managed by an elastic queue. In addition, all this data is transformed to
key-value pairs by an elastic processing component configured on block stor-

84 Chapter 5. ITSFCC Architecture

Figure 5.6: Engagement Layer

5.2. Architecture Model 85

Figure 5.7: Publication-Subscription Channel

86 Chapter 5. ITSFCC Architecture

age (operating system, software, fast-access data storage), then stored as
workload history values in an elastic key-value storage for further analytics.
Blob storage is used to keep workload history database snapshots as backup.

5.2.8 Graph Representation

The Graph Representation component, depicted in Fig. 5.9, implements
elastic databases for managing sequences of operations performed on time
series during the forecasting process. Sequences are represented as graphs
where nodes identify input and output time series while edges identify op-
erators. Key-value storage databases are used to keep time series operation
graphs and relational databases are used to store graph metadata. In order
to enhance availability, databases are replicated on standby3 instances fol-
lowing an eventual consistency pattern. Additional backup is provided with
database snapshots preserved in blob storage.

5.2.9 RESTful Interfaces

The RESTful interfaces component, depicted in Fig. 5.10, implements a
user interface as well as an Application Programming Interface (API) which
provide tenants with access to ITSFCC by sending HTTP request messages
via modern web browsers or mobile applications. Accesses to the user inter-
face are synchronous while accesses to the API, implemented in a processing
component, can be either synchronous or asynchronous. Both interfaces are
configured on block storage (operating system, software, fast-access data stor-
age).

5.2.10 Time Series Repository

The Time Series Repository component, depicted in Fig. 5.11, extracts from
the data warehouse in the Multi-source Data Extraction component the time
series to be forecast, and copies them into a reduced primary database for
faster access. Time series values are put on an elastic key-value storage while

3A standby database is a synchronized copy of the primary database, usually kept for
data protection. On the other hand, a replica database is a copy of the primary database
optimized for reading operations, usually intended to enhance performance for read-heavy
database workloads.

5.2. Architecture Model 87

Figure 5.8: Multi-variable Elasticity Manager

88 Chapter 5. ITSFCC Architecture

Figure 5.9: Graph Representation

5.2. Architecture Model 89

Figure 5.10: RESTful Interfaces

90 Chapter 5. ITSFCC Architecture

time series metadata is put on an elastic relational database. Backup for
primary database is provided by an elastic standby database replicated in a
different physical location, and by a set of elastic read-replica databases, as-
signed on a per-customer basis. All backup databases implement an eventual
consistency pattern for ensuring tolerance to network partitioning and data
availability over data consistency. Additional backup is provided by keeping
snapshots of the primary database in blob storage.

5.2.11 Forecast Model Repository

The Forecast Model Repository component, depicted in Fig. 5.12, extracts
from the data warehouse in the Multi-source Data Extraction component
the context information elements of the time series to be forecast, and copies
them into a reduced primary database for faster access. This primary database
also contains a historic set of forecast models previously produced for all of
the time series, including the one to be forecasted. Based on context similar-
ity a forecast model in the repository is selected as an initial approximation
for producing fast predictions for the time series, that are available while
ITSFCC calculates the best model given the current information. Once the
best model has been produced, it replaces the temporary model, and is stored
along with its context information in the repository. The primary database
comprises an elastic key-value storage for forecast model and context values,
as well as an elastic relational database for storing metadata. It is replicated
on an elastic standby database placed on a different physical location, which
is updated following an eventual consitency pattern. Additional backup is
provided by keeping snapshots of the primary database in blob storage. An
elastic processing component, configured on block storage (operating system,
software, fast-access data storage), implements the forecast model selector.

5.2.12 Batch Processing

The Batch Processing component, depicted in Fig. 5.13, processes the time
series in the Time Series Repository to produce a forecast model based on the
sequences of operations managed in the Graph Representation component. It
implements at least three processing components on elastic infrastructure for
data transformation, forecast model production, and model evaluation and
benchmarking. All processing components are configured on block storage

5.2. Architecture Model 91

Figure 5.11: Time Series Repository

92 Chapter 5. ITSFCC Architecture

Figure 5.12: Forecast Model Repository

5.2. Architecture Model 93

(operating system, software, fast-access data storage). Results from this
application component are stored in the Forecast Model Repository.

5.2.13 Parallel Implementation

The Parallel Implementation component, depicted in Fig. 5.14, replicates
the functionality of the Batch Processing component adding the deployment
of a distributed computing platform to speed up the processing components.
Therefore, it processes the time series in the Time Series Repository to pro-
duce a forecast model based on the sequences of operations managed in the
Graph Representation component. It implements at least three processing
components on elastic infrastructure for data transformation, forecast model
production, and model evaluation and benchmarking. All processing compo-
nents are configured on block storage (operating system, software, fast-access
data storage) and implement a map-reduce pattern. Some Big Data pro-
cessing frameworks suitable for implementing this component in ITSFCC
are Apache Hadoop, Apache Spark, and Apache Flink. Results from this
application component are stored in the Forecast Model Repository.

5.2.14 Pipes-and-Filters Processing

The Pipes-and-Filters Processing component, depicted in Fig. 5.15, inte-
grates a set of the ITSFCC’s components into an automated process that is
executed in response to a tenant’s request for producing forecasts for par-
ticular data sets. The process is event-driven and starts when the tenant
requests ITSFCC operation, via the RESTful interfaces of the system, by
uploading the data sets as serialized objects to the blob storage in the Time
Series Repository. Context information elements for the data sets are auto-
matically copied from the data warehouse in the Multi-source Data Extrac-
tion component and transferred to the Forecast Model Repository component.
Then, either the Batch Processing component or the Parallel Implementation
component produces and evaluates the appropriate forecast model based on
a sequence of operations managed by the Graph Representation component.
This sequence of operations can be overriden by the tenant, if requested, by
uploading a customized operation graph in a YAML configuration file to a
specific blob storage location in ITSFCC.

94 Chapter 5. ITSFCC Architecture

Figure 5.13: Batch Processing

5.2. Architecture Model 95

Figure 5.14: Parallel Implementation

96 Chapter 5. ITSFCC Architecture

Figure 5.15: Pipes-and-Filters Processing

5.2. Architecture Model 97

5.2.15 Firewall Protection

The Firewall Protection component, depicted in Fig. 5.16, implements a
Virtual Local Area Network comprised of at least three subnets or virtual
network segments: a public subnet accesible from the internet, a private
subnet accesible only from the virtual servers in the public subnet, and a
second private subnet accessible only from the virtual servers in the first
private subnet. Public subnet exposes user and application interfaces of
ITSFCC to tenants. First private subnet allocates virtual servers where
processing components are hosted. Second private subnet allocates virtual
servers where databases are hosted. For development and delivery purposes,
the first private subnet may also be accesible to ITSFCC staff via SSH from
specific local IP addresses. As a consequence, ITSFCC’s business logic and
data layers are kept hidden from unauthorized access while the presentation
layer is accessible to the world.

Summary

This chapter presented the detailed architecture characterization of ITSFCC,
in compliance with the specifications covered in Chapter 2. Basic architec-
ture documentation, including its identification and overview, the identifi-
cation of the system’s stakeholders, and the identification of their concerns
was presented. A graphic concern map which groups ITSFCC application
components into six categories and shows how the system concerns impact
on each category was also presented. The overall architecture of the system
as well as each one of its application components were presented as elements
of the final architecture model, which conforms to a process-based architec-
ture view and is governed by a block diagram model kind. The next chapter
describes how this architecture characterization can be used as a source of
important guidelines for prototyping ITSFCC on the most extensively used
cloud computing platform nowadays: Amazon Web Services.

98 Chapter 5. ITSFCC Architecture

Figure 5.16: Firewall Protection

Chapter 6

ITSFCC on Amazon Web
Services

This chapter departs from the detailed architecture characterization of ITS-
FCC presented in chapter 5 and maps it to the services offered by a specific
public cloud provider. Amazon Web Services (AWS) was selected as the con-
crete cloud offering to land ITSFCC’s abstract architecture on, because of
the extension and maturity of its services, as well as for the facilities it offers
to deploy cloud resources on a trial basis. Section 6.1 presents an overview
of AWS and the services required to implement ITSFCC components in the
AWS cloud. Section 6.2 presents a set of guides for implementing ITSFCC
components in AWS. Each guide consists of a detailed architecture blueprint
including numbered pointers that conduct a text-based explanation. Finally,
section 6.3 summarizes a set of experiments deployed on AWS in order to val-
idate the adequacy of specific services to the requirements placed by ITSFCC
components.

6.1 Amazon Web Services Overview

Amazon Web Services started operations as a cloud computing provider in
2006 by releasing three products: the Simple Storage Service, the Simple
Queue Service, and the Elastic Cloud Computing service. As of the first
quarter of 2018, with a cloud offering that surpasses 90 services, AWS holds
over a million active customers in 190 countries. With data center locations
in the U.S., Canada, Brazil, India, South Korea, Singapore, Japan, China,

99

100 Chapter 6. ITSFCC on Amazon Web Services

Germany, France, England, Ireland, and Australia, AWS offers cloud re-
sources allocated in 18 geographical regions and 54 availability zones [AWS,
2018]. AWS is the leader of the public cloud market with a 62 percent market
share, distantly followed by Microsoft Azure (20 percent), and Google Cloud
Platform (12 percent) [Novet, 2018].

The infrastructure of AWS is divided up into geographically diverse re-
gions so as to provide speed and performance to globally distributed cus-
tomers. Within a region, there are always multiple availability zones, or AZ,
which represent geographically distinct -but still close- physical data centers.
AZs have their own facilities and power source, so an event that might take
a single AZ offline is unlikely to affect the other AZs in the region [Chan
and Udell, 2017]. AWS cloud offering range from basic functionalities like
compute, storage, databases, and networking services, to advanced features
such as Internet of Things, Machine Learning, and Virtual Reality deploy-
ments. The following subsections, based on [AWS, 2018], briefly describe the
services required to implement ITSFCC on AWS.

6.1.1 Compute

Services in this category provide secure and scalable compute capacity in the
AWS cloud. A couple of them are included in the ITSFCC design:

• Amazon Elastic Cloud Computing (EC2). This service provides com-
puting resources in the form of virtual server instances deployed on
several operating systems. Instances are optimized to fit different use
cases such as general purpose (M instances), burstable performance (T
instances), compute (C instances), memory (X and R instances), ac-
celerated computing (P, G, and F instances), and storage (H, I, and D
instances).

• Elastic Load Balancing (ELB). This service automatically distributes
incoming traffic to EC2 instances, containers, and IP addresses to make
an application fault tolerant. It also makes the application highly avail-
able by monitoring target states and ensuring only healthy targets re-
ceive traffic.

6.1. Amazon Web Services Overview 101

6.1.2 Storage

Services in this category provide storage capacity in the AWS cloud. A couple
of them are included in the ITSFCC design:

• Amazon Simple Storage Service (S3). This service provides blob storage
with 99.999999999% durability of objects over a given year, which is
equivalent to an average expected loss of 0.000000001% of the stored
objects per year. This means, for instance, that from a set of 1,000,000
stored objects one of them is expected to be lost every 100,000 years.

• Amazon Elastic Block Storage (EBS). This service provides high-performance,
low-latency, persistent block storage for EC2 instances. It is adequate
for storing data in applications that benefit from fine tunning per-
formance, such as Big Data analytics engines, relational and NoSQL
databases, stream and log processing applications, and data warehous-
ing applications.

6.1.3 Databases

Services in this category provide complete and diverse database function-
alities in the AWS cloud. A couple of them are included in the ITSFCC
design:

• Amazon Relational Database Service (RDS). This service provides com-
plete relational database functionality with options to six widely used
database engines: PostgreSQL, MySQL, MariaDB, Oracle, SQL Server,
and Aurora.

• Amazon DynamoDB. This service provides NoSQL database function-
ality under two different models: key-value and document. It is ade-
quate for applications that require consistent, single-digit millisecond
latency at any scale.

6.1.4 Networking

Services in this category provide virtual networking appliances in the AWS
cloud. Three of them are included in the ITSFCC design:

102 Chapter 6. ITSFCC on Amazon Web Services

• Amazon Virtual Private Cloud (VPC). This service provides a logically
isolated section of the AWS cloud where customers are able to deploy
resources under a highly customized network. Subnets and firewalls
can be defined inside the VPC to enforce the security of operations.

• Amazon Route 53. This service provides a highly available and scalable
cloud Domain Name System (DNS) that routes end user requests to
infrastructure running in AWS, such as EC2 instances, elastic load
balancers or S3 buckets.

• Amazon API Gateway. This service allows developers to create, pub-
lish, maintain, monitor, and secure application programming interfaces
at any scale. An API can be used as a “front door” to access data,
business logic, or functionality from back-end services. API Gateway
handles all the tasks involved in API calls processing, including traffic
management, authorization and access control, monitoring, and version
management.

6.1.5 Security

Services in this category provide security features in the AWS cloud. One of
them is included in the ITSFCC design:

• AWS Identity and Access Management (IAM). This service provides
secure access management to AWS services and resources through per-
missions granted to users in the form of security groups, roles, and
policies.

6.1.6 Management

Services in this category provide management tools for resources deployed in
the AWS cloud. One of them is included in the ITSFCC design:

• AWS Auto Scaling. This service monitors the usage of multiple AWS
resources across multiple services and automatically adjusts them in
order to maintain steady, predictable performance. Auto-scalable re-
sources include EC2 instances, DynamoDB tables and indexes, and
Aurora database replicas.

6.1. Amazon Web Services Overview 103

6.1.7 Application Integration

Services in this category allow fully managed communication among resources
and applications deployed in the AWS cloud. A couple of them are included
in the ITSFCC design:

• Amazon Simple Queue Service (SQS). It is a fully managed message
queuing service that allows sending, storing, and receiving messages be-
tween application components at any volume, without losing messages
or requiring other services to be always available.

• Amazon Simple Notification Service (SNS). It is a fully managed publi-
cation and subscription messaging service for coordinating the delivery
of messages to subscribing HTTP endpoints and clients. Subscribers
can be distributed systems, microservices, serverless applications, and
mobile devices. It also allows to push messages directly into elastic
queues from Amazon SQS in order to easily decouple and scale appli-
cation components.

6.1.8 Analytics

Services in this category provide multiple analytics tools in the AWS cloud.
A couple of them are included in the ITSFCC design:

• Amazon Elastic MapReduce (EMR). This service provides a managed
Hadoop-based environment to process Big Data workloads across dy-
namically scalable EC2 instances. In addition to the components of
the Hadoop ecosystem, like MapReduce, HBase, Hive, and Pig, other
popular Big Data frameworks such as Spark, Presto, or Flink can be
easily deployed in EMR.

• Amazon Redshift. This service provides a fully managed data ware-
house service flexible enough to use standard SQL-based analytics as
well as external business intelligence tools. By using sophisticated
query optimization, columnar storage on high-performance disks, and
massively parallel execution, Redshift is able to run complex analytic
queries against petabytes of structured data, or exabytes of unstruc-
tured data in S3.

104 Chapter 6. ITSFCC on Amazon Web Services

6.1.9 Machine Learning

Services in this category provide machine learning-based functionalities to
applications deployed in the AWS cloud. One of them is included in the
ITSFCC design:

• TensorFlow on AWS. This service provides a highly optimized envi-
ronment for the execution of TensorFlow, a software library developed
by Google Brain Team within Google’s Machine Learning Intelligence
research organization, for the purposes of conducting machine learning
and deep neural network research [Zaccone, 2016]. An Amazon EC2
instance or cluster is fully provisioned for TensorFlow operation by un-
packing a Deep Learning Amazon Machine Image (AMI). An AMI is
a special virtual device that encapsulates all the information required
to deploy a specific type of instance in the AWS cloud. It provides
a template for the root volume of the instance, a set of permissions
granted over the instance, as well as its block device mapping. Once
the Deep Learning AMI is unpacked, machine learning-based applica-
tions can rapidly be developed, tested, deployed, and managed in the
cloud. In the context of ITSFCC, TensorFlow is intended to provide a
high-performance environment for running machine learning algorithms
like Neural Networks, Support Vector Machines, and Nearest Neighbors
as part of the forecast model production, evaluation and benchmarking
within the Batch Processing application component.

6.2 Implementation Guides

This section presents a set of guides for implementing ITSFCC application
components using the services in the AWS cloud above described. The guides
are based on the general architecture block diagram for ITSFCC shown in
Fig. 6.1, which was produced with Cloudcraft, a visual designer optimized
for AWS that incorporates smart building components, enables real-time con-
nection with AWS accounts, and is available as a web service [Cloudcraft,
2018]. Each guide comprises a blueprint that frames the application compo-
nent inside the general diagram, along with numbered pointers that conduct
the explanation given in the corresponding subsection.

6.2. Implementation Guides 105

Figure 6.1: ITSFCC Architecture on Amazon Web Services

106 Chapter 6. ITSFCC on Amazon Web Services

6.2.1 Application Components Included in AWS

The abstract ITSFCC architecture presented in Section 5.2 is comprised by
15 application components. A total of 6 application components are not
considered in this concrete, provider-specific architecture because the services
they address are already part of the core functionality of AWS. Following is
a list with such components included in AWS:

• User Identity Manager. Amazon IAM performs the function of this ap-
plication component via the definition of users and the authentication
of their permissions in security groups, roles and policies.

• Data Encryption. Data stored in Amazon S3, Amazon DynamoDB,
and Amazon RDS can be encrypted in the server side (the virtual
servers and disks in the AWS cloud) at customer request, using the
Amazon Key Management Service (KMS). If a higher level of control
over the encryption process is required, client-side encryption is avail-
able via multiple tools. However it is important to bear in mind that
encrypting data in the client-side involves a complex process of key
management for the user.

• Multi-variable Elasticity Manager - The function of this application
component is covered by AWS Auto Scaling, which dynamically scales
outward or inward EC2 instances and DynamoDB tables according to
pre-defined scaling policies and resource metrics provided by Amazon
CloudWatch. Relational databases in Amazon RDS are horizontally
scaled since their deployment by using read-replica instances of the
primary database.

• Firewall Protection - The function of this application component is
covered by Amazon VPC, via the definition of the appropriate subnets
for the presentation (user interface), business logic (processing), and
data (databases) layers. Once virtual servers have been allocated into
subnets, a virtual firewall is defined with the security groups assigned
to each EC2 instance in the VPC.

• Pipes-and-Filters Processing. Two services can be used to perform the
functionality of this application component: AWS Data Pipeline is a
service that allows to reliably process and move data between different
AWS compute and storage services at specified intervals. Therefore it

6.2. Implementation Guides 107

can be used to automatically manage the Pipes-and-Filters Processing
component on a calendar basis. If for some reason the activation of the
processing pipeline cannot be scheduled, AWS Lambda, an event-driven
serverless computing platform, can be used to trigger it in response to
a pre-defined event, such as the successful incoming of new data into
the ITSFCC data lake.

• Distributed Application. Fig. 6.1 shows the general architecture block
diagram of ITSFCC on AWS, where a total of eight application compo-
nents are shown as loosely coupled elements that communicate through
a Publication-Subscription Channel. All of the computing, database
and storage resources are redundantly deployed on at least two Avail-
ability Zones, and all EC2 instances are placed in auto-scaling groups.
As a result of these architecture features, all of the ITSFCC applica-
tion components make use of multiple services in the AWS cloud to
independently scale outward or inward when required.

The implementation guides for the remaining ITSFCC components are
presented in the following subsections.

6.2.2 Multi-source Data Extraction

The Multi-source Data Extraction component, depicted in Fig. 6.2, extracts
the time series values and contexts required for ITSFCC operation from mul-
tiple external sources. (1) Structured data coming from relational databases
or CSV files, (2) unstructured data in the form of E-mail messages, text, and
image files, and (3) semi-structured data coming from XML and JSON files
enters ITSFCC through an Amazon VPC gateway (4) in the form of a data
flow (5) pulled by the data extractor processing group (6). The data extrac-
tor is deployed on two general purpose M5-type Amazon EC2 instances which
integrate an automatically scalable group inside the processing subnet, iden-
tified with the private IP address 10.0.4.0/24. Route tables in the processing
subnet must declare the VPC gateway as the target for all Internet-routable
traffic. All data in its original format is batch stored in Amazon S3 (7)
to conform to the data lake pattern. An instance of Amazon Redshift (9)
implements the data warehouse by pulling the required data from S3, trans-
forming it in accordance to ITSFCC specifications, and storing it on NoSQL,
columnar databases. The operation of this application component is started
by a control flow (9) over the data extractor which comes in the form of

108 Chapter 6. ITSFCC on Amazon Web Services

request messages from an Amazon SQS elastic queue (10) fed by ITSFCC’s
management components (11).

6.2.3 Time Series Repository

The Time Series Repository component, depicted in Fig. 6.3, receives time
series information (1) from the Amazon Redshift data warehouse in the
Multi-source Data Extraction component. Based on the time series data
format, Amazon Redshift sends the information directly from its columnar
databases or transfers it from the S3 data lake. As long as there is no process-
ing group in the Time Series Repository, this operation is started on-request
by the application component that acts as customer, or in event-driven mode
by the Pipes-and-Filters Processing component. Time series values are stored
in Amazon DynamoDB using primary tables (2) for operation and standby
tables (3) as backup. Time series values are also replicated on a per-customer
basis on read-replica tables (4) for faster access. This replication procedure
is also implemented for time series metadata on Amazon RDS, with primary
(5), standby (6), and per-customer read-replica tables (7). In order to ensure
high availability, primary, standby, and read-replica databases are placed in
three different Availability Zones of the same AWS Region. For this reason,
databases must also reside in different subnets identified with the private IPs
10.0.7.0/24, 10.0.8.0/24, and 10.0.9.0/24. For availability and performance
purposes, serialized objects containing currently used time series are stored
in S3 (8). Snapshots of DynamoDB and RDS databases are also stored in
S3 (9). A faster but more expensive alternative for database backup can be
achieved by replacing S3 storage with Amazon EBS volumes linked to the
databases. Applications components that can activate the operation of the
Time Series Repository are the Batch Processing component (10) and the
Parallel Implementation component (11).

6.2.4 Forecast Model Repository

The Forecast Model Repository component, depicted in Fig. 6.4, receives
time series context information (1) from the Amazon Redshift data ware-
house in the Multi-source Data Extraction component. Based on the con-
text data format, Amazon Redshift sends the information directly from its
columnar databases or transfers it from the S3 data lake. Time series con-
text values are stored in Amazon DynamoDB using primary tables (2) for

6.2. Implementation Guides 109

Figure 6.2: ITSFCC Multi-source Data Extraction on AWS

110 Chapter 6. ITSFCC on Amazon Web Services

Figure 6.3: ITSFCC Time Series Repository on AWS

6.2. Implementation Guides 111

operation and standby tables (3) as backup. This replication procedure is
also implemented for context metadata on Amazon RDS, with primary (4)
and standby (5) tables. In order to ensure high availability, primary and
standby databases are placed in two different Availability Zones of the same
AWS Region. For this reason, databases must also reside in different subnets
identified with the private IPs 10.0.7.0/24 and 10.0.8.0/24. For availabil-
ity and performance purposes, snapshots of DynamoDB and RDS databases
are stored in S3 (6). A faster but more expensive alternative for database
backup can be achieved by replacing S3 storage with Amazon EBS volumes
linked to the databases. When requested, this application component eval-
uates the context similarity between the current problem and the forecast
models in the respository and selects the best previous model as an initial
approximation for producing fast predictions. This forecast model selector
is deployed on two compute-optimized C5-type Amazon EC2 instances (7)
which integrate an automatically scalable group. As well as with databases,
the EC2 instances are placed in different Availability Zones of the same AWS
region for high availability. Therefore, they must reside in different subnets
identified with the private IPs 10.0.4.0/24 and 10.0.5.0/24. Once a better
forecast model for the present problem has been produced, it is stored in the
repository (8) for further use. Application components that can produce a
new forecast model to be stored in this component are the Batch Processing
component and the Parallel Implementation component (9). The operation
of the forecast model selector is started by a control flow which comes in
the form of request messages from an Amazon SQS elastic queue fed by
ITSFCC’s management components (10).

6.2.5 Graph Representation

The Graph Representation component, depicted in Fig. 6.5, stores the se-
quences of operations to be performed on the time series in order to produce
and evaluate a forecast model. Sequences of operations are coded as graphs
which either are pre-stored as part of ITSFCC implementation or enter the
system as a data flow sent by the application programming interface in the
RESTful Interfaces component (1). Operation graphs are stored in Ama-
zon DynamoDB using primary tables (2) for operation and standby tables
(3) as backup. This replication procedure is also implemented for operation
graph metadata on Amazon RDS, with primary (4) and standby (5) ta-
bles. In order to ensure high availability, primary and standby databases are

112 Chapter 6. ITSFCC on Amazon Web Services

Figure 6.4: ITSFCC Forecast Model Repository on AWS

6.2. Implementation Guides 113

placed in two different Availability Zones of the same AWS Region. For this
reason, databases must also reside in different subnets identified with the
private IPs 10.0.7.0/24 and 10.0.8.0/24. For availability and performance
purposes, snapshots of DynamoDB and RDS databases are stored in S3 (6).
A faster but more expensive alternative for database backup can be achieved
by replacing S3 storage with Amazon EBS volumes linked to the databases.
Operation graphs are sent as a data flow to the Batch Processing component
(7) and the Parallel Implementation component (8) for processing purposes.

6.2.6 Batch Processing

The Batch Processing component, depicted in Fig. 6.6, is started by a con-
trol flow which comes in the form of request messages from an Amazon
SQS elastic queue fed by ITSFCC’s management components (1). Time se-
ries data (2) provided by the Time Series Repository is used to produce a
forecast model in an automatically scalable processing group, integrated by
four accelerated-computing G3-type EC2 instances, placed on pairs in two
different Availability Zones (3), (4) of the same AWS Region for high avail-
ability. A second automatically scalable processing group, comprised of four
compute-optimized C5-type EC2 instances, evaluates the forecast model and
runs benchmarking tests in response to requests messages coming from an
Amazon SQS elastic queue (5) fed by the forecast model production process-
ing group. EC2 instances in the second group are also placed in pairs on
two Availability Zones (6), (7) of the same AWS Region for high availability.
As long as EC2 instances are deployed in different AZs, they must reside
in different processing subnets identified with the private IPs 10.0.4.0/24
and 10.0.5.0/24. All of the EC2 instances are provisioned with Anaconda, a
widely used free Python distribution with almost 200 packages for science,
math, engineering, and data analysis [Nandi, 2015]. Python was selected as
the fundamental programming language for ITSFCC development because it
is highly expressive and easy-to-learn, it includes a broad range of libraries
developed by a huge community of developers, it provides an efficient inter-
active programming mode, and its structure and concept make it is easier to
write and maintain large programs than in any other scripting language. Ac-
cording to [Sethi, 2017], these features make Python the best programming
language for cloud native microservices development. The EC2 instances in
the forecast model production group are also provisioned with the deep learn-

114 Chapter 6. ITSFCC on Amazon Web Services

Figure 6.5: ITSFCC Graph Representation on AWS

6.2. Implementation Guides 115

ing framework TensorFlow. Once produced and evaluated, forecast models
are stored in the Forecast Model Repository (8).

6.2.7 Parallel Implementation

The Parallel Implementation component, depicted in Fig. 6.7, is started by
request messages from an Amazon SQS elastic queue fed by ITSFCC’s man-
agement components (1). Time series data (2) provided by the Time Series
Repository is used to produce a forecast model in an automatically scal-
able processing group, integrated by four compute-optimized C5-type EC2
instances, placed on pairs in two different Availability Zones (3), (4) of the
same AWS Region for high availability. A second automatically scalable pro-
cessing group, comprised of four compute-optimized C5-type EC2 instances,
evaluates the forecast model and runs benchmarking tests in response to re-
quests messages coming from an Amazon SQS elastic queue (5) fed by the
forecast model production processing group. EC2 instances in the second
group are also placed in pairs on two Availability Zones (6), (7) of the same
AWS Region for high availability. As long as EC2 instances are deployed
in different AZs, they must reside in different processing subnets identified
with the private IPs 10.0.4.0/24 and 10.0.5.0/24. All of the EC2 instances
in the application component are provisioned with Anaconda, while the EC2
instances in the forecast model production group are also provisioned with
Apache Spark, an open-source powerful distributed querying and process-
ing engine that provides the flexibility and extensibility of MapReduce but
at significantly higher speeds: up to 100 times faster than Apache Hadoop
when data is stored in memory and up to 10 times when accessing disk.
Apache Spark was selected for the Parallel Implementation component of
ITSFCC not only because of its outstanding performance features, but also
for the vast community it encompasses, with more than 1,000 contributors
from 250+ organizations and with 300,000+ Apache Spark Meetup commu-
nity members in more than 570 locations worldwide [Drabas and Lee, 2017].
Apache Flink, a newer and more efficient distributed computing framework
than Apache Spark, but at present time used by a significantly smaller com-
munity, can be considered as a suitable alternative for future development of
this component. Once produced and evaluated, forecast models are stored
in the Forecast Model Repository (8).

116 Chapter 6. ITSFCC on Amazon Web Services

Figure 6.6: ITSFCC Batch Processing on AWS

6.2. Implementation Guides 117

Figure 6.7: ITSFCC Parallel Implementation on AWS

118 Chapter 6. ITSFCC on Amazon Web Services

6.2.8 RESTful Interfaces

The RESTful Interfaces1 component, depicted in Fig. 6.8, handles DNS re-
quests placed by a customer or tenant (1) using the cloud DNS Amazon
Route53 (2). Incoming traffic is routed to infrastructure running in AWS
after the tenant’s credentials are validated by Amazon IAM (3). HTTP re-
quests to ITSFCC user interface are handled by a load balancer from Amazon
Elastic Load Balancing (4), which automatically distributes traffic to the web
server group. This is an auto-scaling group integrated by two general pur-
pose M5-type EC2 instances, placed in different Availability Zones (5), (6)
of the same AWS Region for high availability. As long as EC2 instances
are deployed in different AZs, they must reside in different interface subnets
identified with the private IPs 10.0.1.0/24 and 10.0.2.0/24. Request mes-
sages coming out of the user interface group are passed as a control flow (7)
to the Publication-Subscription channel. If the tenant’s requests are for the
ITSFCC application programming interface, they are routed to an instance
of Amazon API Gateway (8) which is able to directly pass each request to
the appropriate ITSFCC application component, as long as all of them are
exposed in REST style. However, in order to provide a more complex utiliza-
tion scheme to the user of the API, a processing group is assigned to design
elaborate sequences of operations and to route them to the backend com-
ponents via the Publication-Subscription Channel. Requests processed in
this way are handled by a load balancer from Amazon Elastic Load Balanc-
ing (9), which automatically distributes traffic to the API processing group.
This is an auto-scaling group integrated by two general purpose M5-type
EC2 instances, placed in different Availability Zones (10), (11) of the same
AWS Region for high availability. As long as EC2 instances are deployed in
different AZs, they must reside in different interface subnets identified with
the private IPs 10.0.1.0/24 and 10.0.2.0/24. Request messages coming out
of the application programming interface group are passed as a control flow
(12) to the Publication-Subscription channel. In addition, the tenant can use
the application programming interface to pass data elements (13) to backend
components in ITSFCC, such as configuration files describing customized se-

1ITSFCC’s user interface and application programming interface will have to be ex-
posed as RESTful web services, which means they operate in response to HTTP request
messages composed by a HTTP method (i.e. POST, GET, PUT, DELETE), the URI that
locates the service over the network, and the request body and header, which describe the
data required for the operation.

6.2. Implementation Guides 119

quences of operations to be stored in the Graph Representation component.

6.2.9 Engagement Layer

The Engagement Layer component, depicted in Fig. 6.9, is started by a
control flow which comes in the form of request messages from an Amazon
SQS elastic queue fed by ITSFCC’s management components (1). Interac-
tive visualization of forecasting results is provided by an automatically scal-
able processing group, integrated by two compute-optimized C4-type EC2
instances (2) placed in different Availability Zones of the same AWS Region
for high availability. As long as EC2 instances are deployed in different AZs,
they must reside in different processing subnets identified with the private
IPs 10.0.4.0/24 and 10.0.5.0/24. Forecasting visualization is sent as a data
flow (3) to the Business Intelligence User (4) that requested it, via a user
interface instance handled by the RESTful Interfaces component.

6.2.10 Publication-Subscription Channel

The Publication-Subscription Channel component, depicted in Fig. 6.10,
implements an Amazon Simple Notification Service instance (1) to provide a
Pub/Sub Messaging channel to the system. Requests for ITSFCC operation
enter the Pub/Sub channel as control flows coming from the user interface
group (2) or the application programming interface group (3). Acording to
a set of previously defined topics, notifications in the form of HTTP request
messages are sent to the application components that are subscribed to the
Pub/Sub channel: the Multi-source Data Extraction (4), the Forecast Model
Repository (5), the Parallel Implementation (6), the Batch Processing (7),
and the Engagement Layer component (8). The figure also depicts three
additional Amazon Web Services, not included in the ITSFCC architecture
yet, that must be considered in the future as a complement to the Pub/Sub
channel for ITSFCC management. AWS Data Pipeline (8) is a service that
allows to reliably process and move data between different AWS compute and
storage services at specified intervals. It is intended to automatically manage
the Pipes-and-Filters Processing component on a calendar basis. Amazon
Cloud Watch (9) is a cheap and easy-to-use centralized monitoring service
that provides a variety of features such as alerts, logging, notifications, and
custom metrics [Wadia, 2016]. As a part of ITSFCC management it can, for

120 Chapter 6. ITSFCC on Amazon Web Services

Figure 6.8: ITSFCC RESTful Interfaces on AWS

6.2. Implementation Guides 121

Figure 6.9: ITSFCC Engagement Layer on AWS

122 Chapter 6. ITSFCC on Amazon Web Services

instance, invoke customized, automated workflows that exchange workloads
between the Batch Processing and the Parallel Implementation components,
in order to balance their performance metrics. Finally, AWS CloudFormation
is a service that allows to provision and manage a collection of AWS resources,
also referred to as stack, in an automated and repeatable fashion [Chan
and Udell, 2017]. It is intended to speed up the deployment of ITSFCC
infrastructure after shutdown periods caused by failure or maintenance.

6.3 Summary of Experiments on the AWS

Cloud

This section describes a set of basic and intermediate-level experiments that
were conducted on the AWS cloud as part of the ITSFCC architecture de-
sign. Although the fundamental goal of this work is to propose an abstract
architecture for the software application, mapping such abstract design to
the specific features of a concrete offering demands the deployment and test
of as much services as possible. This is essential to get a better understand-
ing of the available resources, their structure, operation logic, and syntax, as
well as to validate their capabilities working as standalone units or as part
of integrated workflows. The experiments performed on AWS for ITSFCC
architecture design covered the following topics:

• Storage, databases, and pipelines.

• Deep Learning AMI.

• Spark on Amazon EMR.

• Virtual Private Cloud.

• Bokeh server on a customized AMI.

The following subsections describe the procedure and the extent of each
experiment.

6.3.1 Storage, Databases, and Pipelines

Sample time series related to the energy domain were serialized into the Pan-
das dataframe format and then programatically uploaded to S3, by running

6.3. Summary of Experiments on the AWS Cloud 123

Figure 6.10: ITSFCC Management Components on AWS

124 Chapter 6. ITSFCC on Amazon Web Services

simple applications in a T2-type EC2 instance. The applications leveraged
boto3, a Software Development Kit (SDK) for Python that allows commu-
nication with the AWS application programming interface. In addition, a
DynamoDB key-value database and a MySQL RDS database were launched
to store time series values and metadata. A multi-tenancy environment was
considered for database design, then time series metadata included informa-
tion as the project and tenant the data belongs to, the S3 URL where the data
resides, the file name, type and extension that identify the series, etc. The
metadata database followed a shared-database-shared-schema mode, which
allows tenants to manage their own metadata and business logic while ensur-
ing database extensibility [Sarkar and Shah, 2015]. AWS Data Pipeline was
used to export a DynamoDB table to a S3 bucket, to export data from a RDS
table to a S3 bucket, and finally to copy data from a S3 bucket to another.
For this purpose, a Data Pipeline template was downloaded from a public-
access S3 repository containing AWS resources and modified in accordance
to naming specifications for the specific AWS account. The architecture of
this experiment is depicted on Fig. 6.11.

6.3.2 Deep Learning AMI

In order to test the deployment of a deep learning environment for the Batch
Processing component, an AWS Deep Learning AMI was used to mount a
TensorFlow framework in the AWS cloud as follows:

• An AWS Deep Learning AMI was unpacked to a C4.8xlarge-type EC2
instance, which is provisioned with 36 virtual CPUs, 60 GiB of memory,
EBS-only storage, and 4,000 Mbps bandwith, as well as with multiple
deep learning frameworks including TensorFlow.

• The TensorFlow framework was used to code a Python program that
calculates non-linear predictions based on the Nearest Neighbors algo-
rithm provided in [McClure, 2017]. This program receives as input the
values for the embedding dimension and the delay between measure-
ments required to map the time series into a collection of delay vectors.
It also receives as input the number of neighgbors to be taken into
account for calculating the non-linear prediction.

• A time series with 25,000+ values corresponding to the maximal daily
temperature recorded by a CONAGUA’s meteorological station in the

6.3. Summary of Experiments on the AWS Cloud 125

Figure 6.11: Architecture of the AWS experiment on storage, databases, and
pipelines.

126 Chapter 6. ITSFCC on Amazon Web Services

city of Morelia from 1947 to 2015, was serialized into the Pandas
dataframe format, and then uploaded to a S3 bucket. The Python
program was also uploaded to the same bucket.

• By using boto3, both the Python application and the serialized time
series were copied from the S3 bucket to the EBS linked to the EC2
instance.

• The Python application was run on the EC2 instance. It removed
lectures on the time series with missing values or outliers, and mapped
the remaining values to a collection of 24,400+ delay vectors, which
were randomly separated into an 80-percent training set and a 20-
percent test set.

• Specific data types and operators from TensorFlow were used to ex-
actly calculate the non-linear predictions based on the aforementioned
Nearest Neighbors algorithm. This algorithm uses the reduce-sum op-
eration as the basis for a broadcasting operation over arrays of diferent
shape that speeds up calculations.

The architecture for this experiment is depicted in Fig. 6.12. It is impor-
tant to bear in mind that the objective of this experiment was only to test
the deployment of an AWS Deep Learning AMI for leveraging TensorFlow in
the Batch Processing component of ITSFCC, and that a proper forecasting
experiment on this platform requires an extensive configuration of the infras-
tructure and a solid planning and evaluation of the computing procedures,
which are beyond the scope of this work. For this reason no further analysis
on the data or results is provided.

6.3.3 Spark on Amazon EMR

In order to test the deployment of an Apache Spark environment for the
Parallel Implementation component, a Spark cluster was launched in the
Amazon EMR service. The experiment was implemented as follows:

• An Amazon EMR Spark cluster was launched on three M3.xlarge-type
EC2 instances (1 master and 2 core nodes), which are provisioned with
4 virtual CPUs and 15 GiB of memory, as well as with Spark 2.3.0 on
Hadoop 2.8.3.

6.3. Summary of Experiments on the AWS Cloud 127

Figure 6.12: Architecture of the AWS experiment on the Deep Learning AMI.

128 Chapter 6. ITSFCC on Amazon Web Services

• The Spark distributed processing system was used to code a set of
Python snippets via the Spark Python application programming inter-
face PySpark. These snippets were designed to apply basic filters to
a time series, to run customized SQL queries against it, and to build
interactive plots based on the time series via Bokeh.

• A time series with 5000+ daily values of the water level of a dam used
for electric power generation, ranging from 2002 to 2017, was serialized
into the Pandas dataframe format, and then uploaded to a S3 bucket.

• A PySpark snippet was run to remove lectures with missing values from
the time series, then another snippet was executed to load the resulting
time series into a Spark Data Frame by using a customized schema.

• A PySpark snippet was run to execute highly expressive SQL-based
queries against the Data Frame using both SparkSQL queries, and Data
Frame-based SQL-style functions. A complete description of these two
methods of querying Apache Spark Data Frames can be found in [Kane,
2017] and in [Drabas and Lee, 2017].

• A PySpark snippet was run to produce a statistical description of the
water level values in the Data Frame, and to produce a Bokeh interac-
tive plot with the time series values.

The architecture for this experiment is depicted in Fig. 6.13. It is impor-
tant to bear in mind that the objective of this experiment was only to test the
deployment of a Spark environment for leveraging it in the Parallel Imple-
mentation component of ITSFCC, and that a proper forecasting experiment
on this platform requires an extensive configuration of the infrastructure and
a solid planning and evaluation of the computing procedures, which are be-
yond the scope of this work. For this reason no further analysis on the data
or results is provided.

6.3.4 Virtual Private Cloud

In order to test the resources and services required to implement the Fire-
wall Protection component, a sample virtual private cloud was launched by
executing the following steps on Amazon VPC:

6.3. Summary of Experiments on the AWS Cloud 129

Figure 6.13: Architecture of the AWS experiment on the Spark EMR cluster.

130 Chapter 6. ITSFCC on Amazon Web Services

• A virtual private cloud was started and then identified with the pri-
vate IP address 10.0.0.0/16. Inside the VPC, a single EC2 instance
was launched on a public subnet identified with the private IP address
10.0.1.0/24 (the interface subnet).

• By default, Amazon VPC provides an internet gateway for the VPC
and places it in the public subnet, therefore the EC2 instance can
connect to the internet via this gateway.

• The EC2 instance was assigned to a security group that allows inbound
traffic over HTTP and HTTPS (ports 80 and 443) only, therefore it is
open to REST-based requests and can be used as a web server.

• A second EC2 instance was launched on a private subnet, identified
with the private IP address 10.0.4.0/24 (the processing subnet). This
EC2 instance was assigned to a security group that allows inbound traf-
fic from the interface subnet only, therefore it is hidden to the internet
but open to the web server and can be used as an application server.

• The security group for the application server was modified to allow
inbound traffic over SSH (port 22) from specific local IPs, therefore it
is open to developers for maintenance purposes.

• A RDS database was launched in a private subnet identified with the
private IP address 10.0.7.0/24 (the database subnet). This RDS in-
stance was assigned to a security group that allows inbound traffic
over MySQL (port 3306) from the processing subnet only, therefore
the database is open for CRUD operations (Create, Read, Update,
Delete) to the application server but hidden to users or applications in
any other instance.

• The EC2 instance in the public subnet was given an elastic IP address,
a static IPv4 address reachable from the Internet, so the web server can
be exposed under a global identifer. Amazon Route53 can be used to
translate this elastic IP address into a human-readable domain name
like www.itsfcc.org.

• A NAT gateway was linked to the processing subnet, therefore the
application server is able to communicate to the Internet to download
software updates while remaining hidden to outside access.

6.3. Summary of Experiments on the AWS Cloud 131

The architecture for this experiment is depicted in Fig. 6.14. Even though
this is a simple VPC configuration, its deployment can be time consuming
and prone to human error. For this reason it is advisable to compile all of the
aforementioned steps as a template for AWS CloudFormation. This is a ser-
vice that allows to programatically deploy AWS stacks based on YAML tem-
plate files, either on the AWS Management Console or the AWS Command
Line Interface, in compliance with an approach known as Infrastructure-as-
Code. Examples of typical Infrastructure-as-Code operations for networking
in the AWS cloud can be found in [Das and Modi, 2017].

6.3.5 Bokeh Server Customized AMI

In order to test the deployment of an interactive visualization environment
for the Engagement Layer component, a Bokeh server was configured on the
AWS cloud as follows:

• An EC2 M5.xlarge-type instance was launched on AWS. This instance
was provisioned with 4 virtual CPU’s, 16 GiB of memory, and 8 GiB
of EBS, as well as with Ubuntu and Anaconda. A Bokeh server was
installed on the EC2 instance. Bokeh is an interactive visualization
library that targets modern web browsers for presentation. Its goal
is to provide elegant, concise construction of versatile graphics, and
to extend this capability with high-performance interactivity over very
large or streaming datasets [Anaconda, 2015].

• A set of time series containing measures of the quality of electric power
in five sub-station circuits, recorded each 10 minutes from January 2015
to November 2017 (140,000+ lectures), were uploaded to a S3 bucket.
The time series were previously used to produce 7-day forecasts, start-
ing on each one of the last 28 days of the original period, for each
circuit. As a result, a total of 5x28 time series comprised of 7x144 fore-
cast values were obtained. These forecast values were also uploaded to
the S3 bucket.

• A Python program was coded to request services from the Bokeh server.
This program leveraged boto3 to download from S3 the original data,
as well as the 5x28 time series that resulted from forecasting. Time
series were translated from CSV to the Pandas dataframe format, and
then passed to Bokeh methods to build the interactive plots.

132 Chapter 6. ITSFCC on Amazon Web Services

Figure 6.14: Architecture of the AWS experiment on the virtual private
cloud.

6.4. Results 133

• A Graphic User Interface (GUI) was implemented to allow a Business
Intelligence (BI) user to visualize a specific forecast period and a sum-
mary of results by selecting a circuit and a starting date. The GUI also
allowed the BI user to send SMS-based alarms to specific stakehold-
ers if the predicted energy quality measures dropped below pre-defined
thresholds. For this purpose, an Amazon SNS Pub/Sub messaging
channel was setup with specific notification topics, a list of subscribers,
and their phone numbers.

• The EC2 instance was given an Elastic IP address to make the inter-
active visualization available to remote computers authorized by the
firewall defined via Amazon IAM security groups.

• Finally, a customized Amazon Machine Image was built with the fully
deployed Bokeh server, including the EC2 instance configuration and
the contents in the EBS volume. By launching this customized AMI,
the time required for complete re-deployment of the Bokeh server dropped
from 20+ to 2 minutes.

The architecture for this experiment is depicted in Fig. 6.15. It is im-
portant to bear in mind that the objective of this experiment was only to
test the deployment of a Bokeh-based environment for the Engagement Layer
component of ITSFCC, and that a proper user interface development on this
platform requires an extensive configuration of the infrastructure as well as a
complete design of interaction strategies, which are beyond the scope of this
work. For this reason no further information regarding the data or the user
interface is provided.

6.4 Results

This section summarizes the results achieved by this thesis in relation to the
objectives stated in Section 1.3, as follows:

• An architecture characterization, based on a partial implementation of
the ISO/IEC/IEEE 42010 standard for architecture description, was
designed to express the ITSFCC architecture. This architecture char-
acterization includes basic documentation concerning the system, its
stakeholders, and the stakeholder’s concerns the system addresses. The
architecture characterization also includes an architecture model which

134 Chapter 6. ITSFCC on Amazon Web Services

Figure 6.15: Architecture of the AWS experiment on the Bokeh server cus-
tomized AMI.

6.4. Results 135

is oriented to a process view, expressed via block diagrams, and based
on software patterns. As long as it is a partial implementation of the
standard, this architecture characterization can be eventually expanded
in order to fully comply with the overall specifications of an architecture
description.

• Based on the aforementioned architecture characterization, an abstract
architecture model for ITSFCC was built. This cloud-native, pattern-
based, provider-independent architecture comprises 15 application com-
ponents designed to provide a set of features the system requires to
address the problem of intelligent time series forecasting and to lever-
age the potential of the cloud computing paradigm. The application
components are also designed to meet the software quality attributes
required by the system’s stakeholders under normal operation.

• A reference architecture for deploying ITSFCC on the AWS cloud was
built. This reference architecture comprises 9 of the 15 application
components in the abstract architecture, as long as the other com-
ponents are already included in AWS’s core functionality. For each
one of these 9 application components, a block diagram expressed as a
Cloudcraft blueprint, as well as a guide for deploying the correspond-
ing infrastructures and platforms on the AWS cloud are provided. This
reference architecture can be considered as a pioneering work, as long
as no other effort to integrate time series forecasting, Artificial Intelli-
gence and Machine Learning-based methods of forecasting, and cloud
computing was found in the literature.

Summary

Based on the abstract architecture characterization for ITSFCC proposed in
Chapter 5, this chapter presented a concrete, provider-specific architecture
for the Amazon Web Services cloud. An overview of the specific services
required to implement ITSFCC components on AWS was provided. A cor-
responding set of implementation guides, consisting of Cloudcraft blueprints
directed, via numbered pointers, to detailed explanations was also presented.
Finally, a set of experiments deployed on AWS in order to validate the ade-
quacy of specific services to the requirements placed by ITSFCC components

136 Chapter 6. ITSFCC on Amazon Web Services

was summarized. Among these experiments, several concrete applications of
cutting edge platforms on the AWS cloud stood out as promising subjects
for future research. That is the case of the deep learning framework Tensor-
Flow, the distributed processing system Apache Spark, and the interactive
visualization library Bokeh. Next chapter presents the general conclusions of
this work, as well as a set of directives for future work.

Chapter 7

Conclusions and Future Work

This chapter presents the conclusions of the thesis, as well as set of directions
for future work. A summary with the main points covered in the thesis is
given as the general conclusion. Specific conclusions regarding the contribu-
tions made by the thesis and recommendations for extending this work are
also given. Finally, directives for future work on ITSFCC are grouped into
two categories: actions concerning FaaS operation, and actions related to
expanding it into a cloud-based platform for collaborative research.

7.1 Conclusions

7.1.1 General Conclusion

A software architecture was designed as the first step towards the develop-
ment of the Intelligent Time Series Forecasting based on Cloud Computing
system. The model of a cloud-native application architecture was selected
to enable the system to provide a Forecasting-as-a-Service operation, as well
as to setup the basis for a collaborative research platform. The architec-
ture was designed following a top-down approach: it started with analyses
of the system context in terms of the problems inherent to intelligent time
series forecasting and the resources cloud computing offers to address such
problems. Context description was mapped to broad features the system is
required to exhibit, then features were translated into application compo-
nents, and finally to precise software quality attributes. The architecture
was designed as an abstract, provider-independent product, able to be trans-

137

138 Chapter 7. Conclusions and Future Work

ferred to different cloud offerings and deployment models. Nevertheless, in
order to validate its adequacy to a concrete situation, it was also translated
to a provider-specific architecture for the Amazon Web Services cloud. AWS
was selected because of the extension, maturity, and market leadership of its
services. Software patterns for cloud offering components, cloud application
architecture, cloud application management, and Big Data and advanced
analytics provided a basis for the design of ITSFCC architecture.

7.1.2 Contributions

Following are the contributions made by this thesis:

• The thesis produced original content by addressing a very specific, con-
temporary research field. As a matter of fact, no other project work-
ing on the design of a cloud-native application architecture for intelli-
gent time series forecasting was found when searching for architecture,
model, or implementation references.

• In order to deal with the lack of reference architectures in the very
specific field this thesis addressed, multiple information resources were
combined into a systematic collection that included results from formal
research on software and systems architecture, software patterns, cloud
computing in relation to computer systems, cloud computing in rela-
tion to service sciences, Big Data analytics, energy time series analy-
sis and forecasting, Artificial Intelligence and Machine Learning-based
forecasting tools, and also concrete reference architectures produced
by cloud providers. This hybridization of information resources can be
considered as part of an interdisciplinary approach required to deal with
contemporary technology-based projects that exhibit high complexity.

• Unlike most of the research projects working on time series forecasting
or intelligent time series forecasting, which emphasize in results pre-
sented as models or algorithms, this thesis focused on architectures,
patterns, and data engineering as the backbone that internally sup-
ports the model/algorithm deployment. This approach is driven by
the fact that, when it comes to operating at production stage, forecast-
ing is required to be not only accurate, but also efficient in terms of
speed and performance. In this context, leveraging cloud computing
for fast results over complex processing structures and huge datasets

7.1. Conclusions 139

requires to simultaneously think about the algorithm and the architec-
ture, in compliance with the interdisciplinary approach mentioned in
the previous item.

• The abstract architecture presented in this thesis can be regarded as
a valuable link between the vast amount of formal research previ-
ously conducted on software and systems architecture and the also
extensive catalog of informal reference architectures produced by cloud
providers to address frequent use-scenarios. In this context, the ele-
ments suggested by this thesis for ITSFCC architecture characteriza-
tion (process-based architecture view, block-diagram model kind, and
software pattern-based configuration) provide a basis for a formal study
on the huge collection of empiric architectures built for the AWS cloud
so far.

• As a result of analysing the ITSFCC context in terms of the problems
inherent to intelligent time series forecasting (Chapter 3) this thesis
suggested that hybridization is worth to be studied as a productive
strategy for building Artificial Intelligence and Machine Learning-based
methods of forecasting. Research in this direction can be started by
analysing hybrid methods studied by the Work Group, in addition to
the Nearest Neighbors Differential Evolution algorithm, and by sum-
marizing other promising hybrid tools to be explored in the future.

7.1.3 Recommendations

Following are recommendations the author of this thesis considers valuable
for researchers interested in working on parallel projects:

• The conceptual framework this thesis presented around software and
systems architecture (Chapter 2) can be expanded by including a sec-
tion dealing with the concept of enterprise architecture, as a high-level
view of an organization’s information-related components that con-
veys an overall understanding of each component and an understand-
ing of the relationship and the interaction between these components
[Mahmood and Hill, 2011]. Enterprise architectures encompass soft-
ware architectures as part of a higher-level organizing principle that
aligns a functional business mission with the IT strategy and execution

140 Chapter 7. Conclusions and Future Work

plans. Descriptions and application examples of popular enterprise ar-
chitecture frameworks like Zachman’s or The Open Group Architecture
Framework (TOGAF) [Raj et al., 2017] are also recommended to be
included.

• The technological and organizational prerequisites for cloud comput-
ing adoption discussed in Chapter 4 can be complemented with a set
of guidelines to more specific changes that are also required. Those
changes are grouped in [Stine, 2015] with the overall theme of decen-
tralization and autonomy. Among the most relevant of those changes
are: decentralization of skill sets into cross-functional teams (DevOps),
decentralization of the release schedule and process (continuous deliv-
ery), control of application packaging distributed to business capability
teams (containerization), and control of individual business capabilities
distributed to individual autonomous services (microservices).

• A preliminar analysis of the requirements and implications of deploy-
ing ITSFCC on cloud offerings and deployment models alternative to
AWS is highly recommended. This analysis should include AWS’ con-
tenders in the public-cloud market, like Microsoft Azure, Google Cloud
Platform, or Digital Ocean. The analysis can also be extended to de-
ploying ITSFCC on a private, community, or hybrid cloud instead of
on a public one.

7.2 Future Work

7.2.1 ITSFCC FaaS Operation

Future work on ITSFCC concerning its FaaS operation include the following
actions:

• To develop, on the basis of the abstract ITSFCC architecture charac-
terization, a complete plan for implementing the system using NNDE
as an initial and representative model of forecasting, as it was used
for architecture design. This plan will have to include a timeline for
designing, building, and deploying each application component, as well
as a set of guidelines to test individual and overall functionality. Once
this plan is completed, the implementation of ITSFCC can be properly
scheduled as part of the Work Group’s production.

7.2. Future Work 141

• To enhance the ITSFCC functionality by merging the Batch Processing
and Parallel Implementation components, to perform parallel process-
ing to the greatest possible extent. Eventually, this action will result
in the deployment of just one application component able to process
data in a serial or parallel way, depending on the characteristics of time
series operations or parameter optimization to be performed.

• To enhance the functionality of the Graph Representation component
by storing time series operations in true graph databases instead of in
key-value storage, as it is currently designed. As long as this applica-
tion component uses graphs to manage complex operation sequences,
it can be extended to provide an abstraction layer for the processing
structures used by advanced frameworks such as Spark or TensorFlow,
which are graph-based as well.

• To design and develop an experimental application component able to
process a continual stream of data coming from, for instance, Internet of
Things devices reading energy-related variables at a high-rate. The de-
velopment and testing of this component can provide valuable insights
for future streaming operation in specific data flows of the system. The
Spark infrastructure in the Parallel Implementation component can be
used as a starting point for stream processing, however an analysis of
moving this functionality to a Flink environment is highly advised.

7.2.2 ITSFCC as a Platform for Collaborative Research

Future work in relation to expanding ITSFCC into a cloud-based platform
for collaborative research include the following actions:

• To develop a complete plan to convert the ITSFCC architecture into
a unified environment for collaboration in data science projects, start-
ing with the researchers and graduate students affiliated to the Work
Group. Key issues to address in this plan are the definition of stan-
dards for data management and security, as well as for sharing research
results.

• Regarding the standardization of data management, full specifications
for shared data repositories, data extraction and transformation oper-
ations, and processing workflows, via the Graph Representation com-
ponent, will have to be designed.

142 Chapter 7. Conclusions and Future Work

• Regarding data security, an extensive set of internal regulations for
ensuring confidentiality, integrity and availability of data will have to
be produced.

• Regarding the process of sharing research results, an exhaustive pro-
cedure for storing fully detailed experiments as shared data, machine
images, or workflows will have to be prepared. This procedure will
also have to provide precise instructions for a different researcher to
remotely recover the experiments from shared resources.

The importance of future work on ITSFCC as a platform for collaborative
research cannot be overstated. Cloud-based collaboration allows academic
institutions to enhance research workflows across multiple laboratories or
teams, as well as to speed up the generation, variation, and interpretation of
experiments from different viewpoints. As a consequence, high-complexity
research fields, such as intelligent time series forecasting, can be addressed by
interdisciplinary groups, able to examine the problems from diverse and com-
plementary perspectives, and to collectively propose an enriched approach to
the solution. In this context, cloud computing must be regarded not only as
a way to improve the efficiency of current research procedures, but also as
a foundation for the development of future, interdisciplinary research strate-
gies.

References

T Afanasieva, A Sapunkov, and A Afanasiev. Software of time series fore-
casting based on combinations of fuzzy and statistical models. 2018.

Marco Aiello, Einar Broch Johnsen, Schahram Dustdar, and Ilche
Georgievski. Service-Oriented and Cloud Computing. Springer, 2016.

Anaconda. Welcome to Bokeh. http://bokeh.pydata.org, 2015. [Online;
accessed: 2018-04-02].

AWS. Amazon Web Services. http://aws.amazon.com, 2018. [Online; ac-
cessed: 2018-04-02].

Christian Baun, Marcel Kunze, Jens Nimis, and Stefan Tai. Cloud Comput-
ing: Web-Based Dynamic IT Services. Springer Science & Business Media,
2011.

Enrique Castro-Leon and Robert Harmon. Cloud as a Service: Understand-
ing the Service Innovation Ecosystem. Apress, 2016.

Lucas Chan and Rowan Udell. AWS Administration Cookbook. Packt Pub-
lishing Ltd, 2017.

Cloudcraft. Cloudcraft. http://cloudcraft.co, 2018. [Online; accessed:
2018-04-02].

Melvin E Conway. How do committees invent. Datamation, 14(4):28–31,
1968.

Houda Daki, Asmaa El Hannani, Abdelhak Aqqal, Abdelfattah Haidine, and
Aziz Dahbi. Big data management in smart grid: concepts, requirements
and implementation. Journal of Big Data, 4(1):13, 2017.

143

http://bokeh.pydata.org
http://aws.amazon.com
http://cloudcraft.co

144 References

L. Dannecker. Energy Time Series Forecasting: Efficient and Accurate
Forecasting of Evolving Time Series from the Energy Domain. Springer
Fachmedien Wiesbaden, 2015.

Satyajit Das and Jhalak Modi. AWS Networking Cookbook. Packt Publishing
Ltd, 2017.

Shyam Kumar Doddavula, Ira Agrawal, and Vikas Saxena. Cloud computing
solution patterns: Application and platform solutions. In Cloud Comput-
ing, pages 221–239. Springer, 2013a.

Shyam Kumar Doddavula, Ira Agrawal, and Vikas Saxena. Cloud computing
solution patterns: Infrastructural solutions. In Cloud Computing, pages
197–219. Springer, 2013b.

Tomasz Drabas and Denny Lee. Learning PySpark: build data-intensive ap-
plications locally and deploy at scale using the combined powers of Python
and Spark 2.0. Packt Publishing Ltd, 2017.

Schahram Dustdar, Frank Leymann, and Massimo Villari. Service-Oriented
and Cloud Computing. Springer, 2015.

Morris J Dworkin. Recommendation for block cipher modes of operation:
Galois/Counter Mode (GCM) and GMAC. Technical report, 2007.

Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and
Peter Arbitter. Cloud computing patterns: fundamentals to design, build,
and manage cloud applications. Springer Science & Business Media, 2014.

Juan J Flores, Roberto Loaeza, Héctor Rodŕıguez, and Erasmo Cadenas.
Wind speed forecasting using a hybrid neural-evolutive approach. In Mex-
ican International Conference on Artificial Intelligence, pages 600–609.
Springer, 2009.

Juan J Flores, José R Cedeño González, Rodrigo Lopez Farias, and Felix
Calderon. Evolving nearest neighbor time series forecasters. Soft Comput-
ing, pages 1–10, 2017.

Ian Gorton. Essential software architecture. Springer Science & Business
Media, 2006.

References 145

Mohammed Guller. Big data analytics with Spark: A practitioner’s guide to
using Spark for large scale data analysis. Springer, 2015.

Markus Helfert, Vı́ctor Méndez Muñoz, and Donald Ferguson. Cloud Com-
puting and Services Science. Springer, 2016.

Markus Helfert, Donald Ferguson, Vı́ctor Méndez Muñoz, and Jorge Cardoso.
Cloud Computing and Services Science. Springer, 2017.

Wei-Chiang Hong. Intelligent energy demand forecasting. Springer, 2013.

ISO/IEC. ISO/IEC 19501: information technology - open distributed pro-
cessing - unified modeling language (UML) version 1.4.2. ISO, 2005. URL
https://books.google.com.mx/books?id=2k-6kQEACAAJ.

ISO/IEC/IEEE. ISO/IEC/IEEE Systems and software engineering – Archi-
tecture description. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC
42010:2007 and IEEE Std 1471-2000), pages 1–46, Dec 2011. doi:
10.1109/IEEESTD.2011.6129467.

Frank Kane. Frank Kane’s Taming big data with Apache Spark and Python:
real-world examples to help you analyze large datasets with Apache Spark.
Packt Publishing Ltd, 2017.

Veselin Kantsev. Implementing DevOps on AWS. Packt Publishing Ltd,
2017.

Holger Kantz and Thomas Schreiber. Nonlinear time series analysis, vol-
ume 7. Cambridge university press, 2004.

P. B. Kruchten. The 4+1 View Model of architecture. IEEE Software, 12
(6):42–50, Nov 1995. ISSN 0740-7459. doi: 10.1109/52.469759.

James Lewis and Martin Fowler. Microservices: a definition of this new
architectural term. MartinFowler. com, 25, 2014.

Frank Leymann, Uwe Breitenbücher, Sebastian Wagner, and Johannes Wet-
tinger. Native cloud applications: Why monolithic virtualization is not
their foundation. In International Conference on Cloud Computing and
Services Science, pages 16–40. Springer, 2016.

https://books.google.com.mx/books?id=2k-6kQEACAAJ

146 References

Rodrigo Lopez Farias, Vicenç Puig, Hector Rodriguez Rangel, and Juan J
Flores. Multi-model prediction for demand forecast in water distribution
networks. Energies, 11(3):660, 2018.

Zaigham Mahmood and Richard Hill. Cloud Computing for enterprise ar-
chitectures. Springer Science & Business Media, 2011.

Jesus Maillo, Sergio Ramı́rez, Isaac Triguero, and Francisco Herrera. knn-is:
An iterative Spark-based design of the k-Nearest Neighbors classifier for
big data. Knowledge-Based Systems, 117:3–15, 2017.

Nick McClure. TensorFlow Machine Learning Cookbook. Packt Publishing
Ltd, 2017.

Peter Mell, Tim Grance, et al. The NIST definition of cloud computing.
2011.

Amit Nandi. Spark for Python Developers. Packt Publishing Ltd, 2015.

Jordan Novet. Amazon lost cloud market share to Microsoft in the fourth
quarter: Keybanc, 2018. URL http://www.cnbc.com/2018/01/12/

amazon-lost-cloud-market-share-to-microsoft-in-the-fourth-

quarter-keybanc.html. [Online; accessed: 2018-03-30].

Anand Balachandran Pillai. Software architecture with Python: design and
architect highly scalable, robust, clean, and high performance applications
in Python. Packt Publishing Ltd, 2017.

Kenneth Price, Rainer M Storn, and Jouni A Lampinen. Differential evo-
lution: a practical approach to global optimization. Springer Science &
Business Media, 2006.

Pethuru Raj, Anupama Raman, and Harihara Subramanian. Architectural
Patterns: Uncover essential patterns in the most indispensable realm of
enterprise architecture. Packt Publishing Ltd, 2017.

Hector Rodriguez Rangel, Vicenç Puig, Rodrigo Lopez Farias, and Juan J
Flores. Short-term demand forecast using a bank of neural network models
trained using genetic algorithms for the optimal management of drinking
water networks. Journal of Hydroinformatics, 19(1):1–16, 2017.

http://www.cnbc.com/2018/01/12/amazon-lost-cloud-market-share-to-microsoft-in-the-fourth-quarter-keybanc.html
http://www.cnbc.com/2018/01/12/amazon-lost-cloud-market-share-to-microsoft-in-the-fourth-quarter-keybanc.html
http://www.cnbc.com/2018/01/12/amazon-lost-cloud-market-share-to-microsoft-in-the-fourth-quarter-keybanc.html

References 147

Hector Rodriguez, Vicenç Puig, Juan J Flores, and Rodrigo Lopez. Com-
bined holt-winters and ga trained ann approach for sensor validation and
reconstruction: Application to water demand flowmeters. In Control and
Fault-Tolerant Systems (SysTol), 2016 3rd Conference on, pages 202–207.
IEEE, 2016.

Aurobindo Sarkar and Amit Shah. Learning AWS: design, build, and deploy
responsive applications using AWS cloud components. Packt Publishing
Ltd, 2015.

Nitin Sawant and Himanshu Shah. Big Data Application Architecture Q&A:
A Problem-Solution Approach. Apress, 2014.

Manish Sethi. Cloud Native Python. Packt Publishing Ltd, 2017.

R Shyam, Bharathi Ganesh HB, Sachin Kumar, Prabaharan Poornachan-
dran, and KP Soman. Apache Spark: a big data analytics platform for
smart grid. Procedia Technology, 21:171–178, 2015.

Matt Stine. Migrating to cloud-native application architectures, 2015.

Nassim Nicholas Taleb. Antifragile: Things that gain from disorder, volume 3.
Random House Incorporated, 2012.

Kwa-Sur Tam and Rakesh Sehgal. A cloud computing framework for on-
demand forecasting services. In International Conference on Internet of
Vehicles, pages 357–366. Springer, 2014.

Diego Teijeiro, Xoán C. Pardo, Patricia González, Julio R. Banga, and
Ramón Doallo. Implementing Parallel Differential Evolution on Spark,
pages 75–90. Springer International Publishing, Cham, 2016. ISBN 978-3-
319-31153-1. doi: 10.1007/978-3-319-31153-1 6. URL https://doi.org/

10.1007/978-3-319-31153-1_6.

Ariel Tseitlin. The antifragile organization. Communications of the ACM,
56(8):40–44, 2013.

Jinesh Varia. Architecting for the cloud: Best practices. Amazon Web Ser-
vices, 1:1–21, 2010.

Uchit Vyas. Mastering AWS Development. Packt Publishing Ltd, 2015.

https://doi.org/10.1007/978-3-319-31153-1_6
https://doi.org/10.1007/978-3-319-31153-1_6

148 References

Yohan Wadia. AWS Administration–The Definitive Guide. Packt Publishing
Ltd, 2016.

Adam Wiggins. The twelve-factor app. factor. net, 2014.

Raghu Yeluri, Enrique Castro-Leon, Robert R Harmon, and James Greene.
Building trust and compliance in the cloud for services. In SRII Global
Conference (SRII), 2012 Annual, pages 379–390. IEEE, 2012.

Giancarlo Zaccone. Getting Started with TensorFlow. Packt Publishing Ltd,
2016.

	List of Figures
	Glossary
	Acronyms
	Abstract
	Resumen
	Introduction
	Problem Definition
	Context
	Cloud-Native Application Architectures

	Objectives
	General Objective
	Specific Objectives

	Thesis Overview

	Software Architecture
	State of the Art
	Information Resources for itsfcc Architecture Design

	Architecture Basics
	Definition of Architecture
	Characteristics of Software Architecture

	Software Quality Attributes
	Performance
	Scalability
	Modifiability
	Security
	Availability
	Integration
	Portability
	Testability
	Supportability
	Deployability

	The International Standard ISO / IEC / IEEE 42010
	Architecture versus Architecture Description

	Architecture Characterization for itsfcc
	Identification and Overview
	Identification of Stakeholders
	Identification of Concerns in Terms of Software Quality Attributes
	Process-based View
	Block Diagram-based Architecture Model
	Pattern-based Configuration

	Architecture Elements for Intelligent Time Series Forecasting
	Description of System Environment
	Complexity of Time Series Forecasting in the Energy Domain
	Intelligent Methods for Time Series Forecasting

	Identification of System Concerns
	Definition of Software Quality Attributes
	Complexity Management
	Hybrid-operation Forecasting and Benchmarking
	Context-aware Forecasting
	Efficient Model Production and Parameter Optimization
	Summary of System Concerns

	Software Patterns Related to System Concerns
	Software Pattern Formats
	Cloud Offering Patterns
	Cloud Application Architecture Patterns

	Architecture Elements for Cloud Computing
	Description of System Environment
	Definition of Cloud Computing
	Cloud Computing Fundamentals

	Identification of System Concerns
	Rapid Elasticity
	Secure Operation
	Forecasting-as-a-Service Operation
	Summary of System Concerns

	Software Patterns Related to System Concerns
	Cloud Offering Patterns
	Cloud Application Architecture Patterns
	Cloud Application Management Patterns

	ITSFCC Architecture
	Basic Documentation
	Identification and Overview
	Identification of Stakeholders
	Identification of Concerns

	Architecture Model
	Distributed Application
	Multi-source Data Extraction
	Data Encryption
	User Identity Manager
	Engagement Layer
	Publication-Subscription Channel
	Multi-variable Elasticity Manager
	Graph Representation
	RESTful Interfaces
	Time Series Repository
	Forecast Model Repository
	Batch Processing
	Parallel Implementation
	Pipes-and-Filters Processing
	Firewall Protection

	ITSFCC on Amazon Web Services
	Amazon Web Services Overview
	Compute
	Storage
	Databases
	Networking
	Security
	Management
	Application Integration
	Analytics
	Machine Learning

	Implementation Guides
	Application Components Included in AWS
	Multi-source Data Extraction
	Time Series Repository
	Forecast Model Repository
	Graph Representation
	Batch Processing
	Parallel Implementation
	RESTful Interfaces
	Engagement Layer
	Publication-Subscription Channel

	Summary of Experiments on the AWS Cloud
	Storage, Databases, and Pipelines
	Deep Learning AMI
	Spark on Amazon EMR
	Virtual Private Cloud
	Bokeh Server Customized AMI

	Results

	Conclusions and Future Work
	Conclusions
	General Conclusion
	Contributions
	Recommendations

	Future Work
	itsfcc FaaS Operation
	itsfcc as a Platform for Collaborative Research

	References

