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1. RESUMEN

El sistema radicular de las plantas desempefia un papel importante en la
absorcién de agua y nutrientes, la interaccién con microorganismos de la rizosfera
y la tolerancia al estrés. El complejo Mediador es un complejo multiproteinico
conservado en organismos eucariontes, el cual participa como un adaptador entre
los factores de transcripcion y la RNA polimerasa Il. Mutaciones con pérdida de
funcion en PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25
(PFT1/MED25), un componente del complejo Mediador, incrementan el
crecimiento de la raiz primaria y las raices laterales, y la formacion de raices
laterales y adventicias, afectando la divisién y la elongacion celular. De manera
opuesta, la sobreexpresion de PFT1/MED25 reduce estas respuestas, indicando
que PFT1/MED25 es un importante elemento de la proliferacion celular
meristematica y del control del tamafio celular tanto en raiz primaria como raices
laterales. El estudio de marcadores de genes de respuesta a auxinas, indicaron
que PFT1/MED25 regula negativamente la expresion de genes de respuesta y
transporte de auxinas, evidenciado por un incremento y una disminucion de los
marcadores asociados a auxinas PIN-FORMED1 (PIN1)::PIN1::GFP ( proteina
verde fluorescente), DR5:GFP, DR5:uidA y BA3:uidA en mutantes pft1-2 y plantas
35S:PFT1, respectivamente. Sin embargo, no se encontré ningin cambio en los
niveles endégenos de auxinas en plantas mutantes pft7-2 o en plantas 35S:PFT1.
El analisis detallado de la actividad de DR5:uidA, DR5:GFP y BA3:uidA en
respuesta al &cido indol-3-acético, al acido naftalen acético y al inhibidor del
transporte polar de auxinas, el acido N-naftiltalamico indic6 que PFT1/MED25
regula principalmente el transporte y la respuesta a auxinas. En conjunto, estos
resultados sugieren la participacion de PFT1/MED25 en la regulacién de la
arquitectura del sistema radicular a través de un mecanismo dependiente de la
sefalizacion por auxinas. Este estudio abre nuevas perspectivas de investigacion
para determinar la participacion del complejo Mediador en los diferentes
programas de desarrollo de la raiz, asi como en respuesta a multiples sefiales
ambientales.

Palabras clave: Arabidopsis thaliana, raices laterales, complejo Mediador, auxinas,

acido jasmonico.






2. ABSTRACT

The root system architecture is a major determinant of water and nutrient
acquisition, interaction with rhizosphere microorganisms, and stress tolerance in
plants. The Mediator complex is a conserved multiprotein complex, which acts as
an adaptor between transcription factors and the RNA polymerase Il. Loss-of-
function mutations in PHYTOCHROME AND FLOWERING TIME1 (PFT1)IMED25,
a component of Mediator complex, increase primary and lateral root growth as well
as lateral and adventitious root formation, by affecting cell division and elongation.
In contrast, PFT1/MED25 overexpression reduces these responses, suggesting
that PFT1/MED25 is an important element of meristematic cell proliferation and cell
size control in both lateral and primary roots. Analysis of auxin-responsive gene
expression markers showed that PFT1/MED25 negatively regulates auxin transport
and response gene expression, as evidenced by increased and decreased
expression of the auxin-related reporters PIN-FORMED1 (PIN1)::PIN1::GFP (for
green fluorescent protein), DR5:GFP, DR5:uidA, and BA3:uidA in pft1-2 mutants
and 35S:PFT1 seedlings, respectively. However, no alterations in endogenous
auxin levels could be found in pft7-2 mutants or in 35S:PFT1-overexpressing
seedlings. Detailed analysis of DR5:GFP, DR5:uidA, and BA3:uidA activity in wild-
type, pft1-2, and 35S:PFT1 seedlings in response to indole-3-acetic acid,
naphthaleneacetic acid, and the polar auxin transport inhibitor 1-N-
naphthylphthalamic acid indicated that PFT1/MED25 principally regulates auxin
transport and response. Taken together, these results provide compelling
physiological, molecular and genetic evidence for a role for PFT1/MED25 as an
important transcriptional regulator of root system architecture through auxin-related
mechanisms in Arabidopsis. This work opens a research field to determinate the
participation of Mediator complex subunits on root morphogenetic programs as well

as multiples environmental cues.






3. INTRODUCCION

Las raices de las plantas son Organos que tipicamente se encuentran
debajo de la superficie del suelo, en donde crecen y responden a una amplia
variedad de barreras y estimulos ambientales. Las raices no solo proporcionan
apoyo estructural a la parte aérea de las plantas, sino ademds, establecen
interacciones bidticas y abioticas con la rizésfera y modulan la adquisicién de agua
y nutrientes, los cuales son vitales para su crecimiento. Asi, el crecimiento global
de las plantas depende de un 6ptimo crecimiento, desarrollo y funcionamiento de
la raiz. Por lo tanto, es de suma importancia estudiar y entender los mecanismos,
fisiologicos, celulares y moleculares involucrados en los procesos que son
regulados por las raices. La mayoria de las especies de plantas, poseen un
sistema radicular altamente complejo, por lo que la caracterizacion de los
mecanismos basicos de su desarrollo son dificiles de abordar. Gran parte del
conocimiento que se tiene hasta la fecha sobre el desarrollo de la raiz, ha sido
mediante el uso del organismo modelo Arabidopsis thaliana. La raiz de
Arabidopsis posee una organizacién celular sencilla y puede crecer bajo
condiciones de laboratorio, lo cual facilita su analisis. El sistema radicular de
Arabidopsis esta formado por una raiz primaria, raices laterales, raices adventicias
y pelos radiculares. El desarrollo de la raiz primaria inicia durante la embriogénesis
a través de un grupo de células embrionarias llamado hipofisis. Posteriormente,
este grupo de células formaran el centro quiescente (QC, por sus singlas en
inglés), el cual activara procesos de division celular para dar lugar al meristemo de
la raiz primaria. De manera opuesta, la iniciacion de raices laterales es un proceso
post-embrionario, el cual consiste en la activacién de un grupo determinado de
células del periciclo, las cuales se dividen asimétricamente para formar primordios
de raices laterales (PRL), quienes mediante eventos de divisiones celulares
periclinales y anticlinales formaran las raices laterales (RL) (Malamy y Benfey,
1997).

El desarrollo de las plantas esta regulado por factores fisiolégicos internos y

sefales ambientales, los cuales regulan la division, la expansion, la diferenciacion



y la muerte celular. Para controlar su desarrollo, las plantas producen compuestos
de diferente identidad quimica, llamados reguladores del desarrollo vegetal o
fitohormonas, los cuales estan involucrados en los diferentes procesos celulares
(Tabla 1). Se sabe que las auxinas participan practicamente en cada aspecto del
desarrollo de las plantas, incluyendo, la regulacion del sistema radicular. La auxina
principal es el acido indol acético (AlA), la cual desempefia una funcion esencial
en los procesos de formacién de raices laterales (Casimiro et al., 2003; De Smet
et al., 2006; Fukaki et al., 2007). La aplicacion de AIA o auxinas sintéticas como el
acido naftalen acético (ANA) estimulan la formacion de RL, mientras que
tratamientos con inhibidores del transporte polar de auxinas como el &cido N-
naftiltalamico (NPA, por sus siglas en inglés) las bloquean (Casmiro et al., 2001).
Los sitios de biosintesis de auxinas proveen del regulador a todos los tejidos, su
transporte genera un gradiente o acumulacién local y finalmente la percepcién o
respuesta afectara el desarrollo de las plantas. A distancias cortas, las auxinas
son transportadas célula-célula mediante transportadores de influjo y eflujo (Friml,
2003). Los transportadores de eflujo de auxinas PIN, dirigen el transporte
requerido para mantener un maximo de auxinas en el desarrollo de la raiz. Se
sabe que alteraciones sobre la expresion de los PINs pueden afectar la actividad
meristematica de la raiz, la diferenciacion del tejido vascular, las respuestas a
gravedad y la organogénesis de la raiz (Blilou et al., 2005).

Una vez que las sefiales son percibidas y procesadas por las plantas se
activa una cascada de transduccion de sefales que culmina con el proceso de
transcripcion. Durante la transcripcion, un gran nimero de proteinas participan, las
cuales deben de funcionar en sincronia. En eucariontes, las proteinas principales
involucradas son: la holoenzima RNA polimerasa Il (Pol 1), los factores
transcripcionales generales (GTFs, por sus siglas en inglés), los factores
trancripcionales de uniébn a ADN, y recientemente, se identifico el complejo
Mediador. El complejo Mediador esta formado por varias subunidades proteinicas
ubicuas en la mayoria de los eucariontes, el cual transmite diferentes sefales a
través de factores transcripcionales hacia la RNA polimerasa Il para modular la

expresion génica. Se ha reportado que subunidades del complejo Mediador estan



involucradas en respuestas asociadas a procesos de desarrollo, de estrés abiodtico
y de defensa. Sin embargo, hasta hace poco se desconocia el papel del complejo
Mediador en los programas del desarrollo de la raiz asi como los mecanismos

celulares y moleculares por los cuales actua (Raya-Gonzalez et al., 2014).

4. ANTECEDENTES

4.1. Arabidopsis thaliana como modelo de estudio.

Gran parte de los avances que actualmente existen en el conocimiento acerca
de los mecanismos fisiol6gicos, celulares, bioquimicos y moleculares que
controlan el desarrollo de las plantas, se han realizado utilizando al modelo
biolégico Arabidopsis thaliana. Arabidopsis es una planta que pertenece a la
familia Brasicaceae, la cual tiene numerosas ventajas. En primer lugar es pequefia
(30 cm) y féacil de manipular en el laboratorio, ademas, es posible generar
mutantes en un tiempo corto (6-8 semanas). Existen bancos de semilla dedicados
a generar mutantes de adquisicion por catdlogo mediante el tratamiento con
organismos biologicos, sustancias quimicas o radiaciones. Arabidopsis posee
alrededor de 27,500 genes, que en conjunto comprende un genoma pequefo
comparado con el de otras angiospermas, por lo que facilita los métodos de
clonacion para aislar los genes definidos por las mutaciones.

El crecimiento de la raiz primaria, la formacion de raices laterales, el
crecimiento y desarrollo de los pelos radiculares, la elongacién de las células y la
actividad del meristemo apical son marcadores biolégicos sencillos de analizar
pero eficientes en la identificacion de nuevos mecanismos de sefializacion en
plantas (Scheres y Wolkenfelt, 1998).



Tabla 1. Funcién de los principales reguladores del desarrollo vegetal (Modificado de
Morquecho-Contreras y Lépez-Bucio, 2007).

Reguladores del _ .
crecimiento Estructura quimica Funciones en la planta
Regulan respuestas tréficas a
CHCOOH
| 2 la luz y gravedad, la
Auxinas N arquitgctura general de la raiz
y follgje, el desarrollo vascular
.. . L. y el crecimiento en cultivo de
Acido indol acético tejidos.
»\)\,OH Regulan la division celular,
N senescencia de la  hoja.
it N Controlan la proliferacion de
Citocininas rﬂ:l\l/[ D las células madre en los
N° N meristemos, y regulacion de
Cinetina la actividad auxinica. -
OH
O Regulan la elongacion vy
. . diferenciacion celular
HO '
Brasinoesteroides & la germinacién de la semilla
HO o y la tolerancia al estres.
Brasinolido
Regula la senescencia de
) hojas y flores, la maduracion
: HZCCHZ de frutos y desencadena
Etileno
respuastas a factores de
Eti estrés bidtico y abidtico.
leno
Regula el crecimiento, la
. . germinacién de la semillg,
Giberelinas promueve la fipracion y el
Acido giberélico crecimiento del fruto.
Regula la domancia vy
\ maduracion de la semillg,
ACidO abscicico o OF GOOH tolerancia a. §?quia‘ respuestas
] a estres abidlico y controla la
Acido abscicico apertura de estomas.
COOH Regula respuestas de defensa a
hongos necrétrofos, respuestas
Acido j asmonico - anti-hervivoria. Esta involucrado
0 en procesos de fertilidad y el
Acido jasmonico desarrollo del sistema radicular,

4.2. Desarrollo de la raiz de Arabidopsis.

Desde una perspectiva del desarrollo, la raiz de Arabidopsis representa un

modelo sencillo y adecuado para las investigaciones sobre procesos



morfogenéticos en las plantas. Un numero pequefio de células madre generan
todos los tipos celulares a través de divisiones estereotipicas seguidas de una
expansion y diferenciacion celular. Debido a que el crecimiento de la raiz de
Arabidopsis es indeterminado, estos procesos son continuos. El crecimiento de la
raiz primaria ocurre en el meristemo apical de la raiz (RAM, por sus siglas en
inglés). EI RAM produce células en dos direcciones, produce una capa de tejido
llamado cofia, que abarca el extremo distal de las raices. La cofia protege a la
punta de la raiz a medida que crece a través del suelo. Este tejido percibe y
procesa los estimulos ambientales y modula la direccion del crecimiento de la raiz
en funcion de la gravedad (gravitropismo), luz (fototropismo), obstaculos
(tigmotropismo), gradientes de temperatura (termotropismo), humedad
(hidrotropismo), nutrientes y otras sustancias quimicas (quimiotropismo)
(Hasenstein y Evans 1988; Ishikawa y Evans 1990; Okada y Shimura, 1990).
Durante el desarrollo de la raiz, la planta activa procesos de muerte celular
programada para inducir la separacion de células de la cofia (Hawes et al., 2000;
Driouich et al., 2013). Estas células corresponden a células del borde de la raiz, y
su produccién, entre otros factores, correlaciona con asociaciones micorrizicas
dentro de la raiz. Las especies de plantas que son altamente propensas a ser
colonizadas, liberan a la rizésfera un gran numero de células del borde de la raiz,
a diferencia de aquellas con menor probabilidad. Diversos estudios indican que el
namero de células del borde de la raiz se incrementa en respuesta a multiples
estimulos, incluyendo patégenos, diéxido de carbono, metales, tipo de suelo, y
metabolitos secundarios (Zhao et al., 2000; Cannesan et al., 2011; Hawes et al.,
2012). Ademas, las células del borde de la raiz son capaces de atraer o repeler
microorganismos patdégenos, incluyendo nematodos, bacterias, y oomicetos
(Cannesan et al., 2011; Hawes et al., 2012). Lo que indica que la cofia posee una
gran versatilidad para responder a las diferentes sefiales ambientales.

El RAM también produce células que contribuyen a la estructura de la raiz. El
sistema radicular es una estructura formada por diferentes tejidos celulares, la
epidermis, el cortex, la endodermis, el periciclo y los haces vasculares (Fig. 1). Las

células que forman los diferentes tejidos se producen a partir de cuatro células



madre (células iniciales) localizadas en el apice de la raiz (Dolan et al., 1993).
Internamente y en contacto con las células iniciales se encuentra un numero
pequefio de células llamado QC (Fig. 1). Diferentes reguladores clave de la
identidad del QC han sido caracterizados (Di Laurenzio et al., 1996; Aida et al.,
2004; Sarkar et al., 2007). Uno de ellos es el factor de transcripcion WUSCHEL-
RELATED HOMEOBOX5 (WOX5) el cual es necesario para mantener el estado
indiferenciado de las células cercanas al QC (Sarkar et al., 2007). Otros elementos
importantes que controlan la identidad de QC y la actividad de meristemo apical de
la raiz son: SHORT-ROOT (SHR), SCARECROW (SCR) y PLETHORAl1y 2 (PLT1
y 2) (Di Laurenzio et al., 1996; Helariutta et al., 2000; Sabatini et al., 2003; Aida et
al., 2004). SHR y SCR son factores de transcripcion requeridos para el desarrollo
del patron radial de la raiz. SHR es expresado en las células de la estela y puede
moverse hacia las células vecinas. Para el caso de SCR, los dominios de
expresion son la endodermis y el QC (Helariutta et al.,, 2000). La pérdida de
funcion de SHR o SCR resulta en el desarrollo de una raiz primaria corta, la cual
es deficiente en mantener la actividad del mersitemo y del QC, indicando que la
via de sefalizacion dependiente de SHR/SCR regula la identidad del QC y la
actividad de las células del nicho. Ademas, se sabe que los genes PLTs son
reguladores importantes del desarrollo de la raiz (Aida et al., 2004). Alteraciones
en la expresion de PLT1 y PLT2 afecta los marcadores del QC, el desarrollo de
los pelos radiculares y el desarrollo de la cofia, indicando que se requiere una
correcto funcionamiento de PLTs para mantener la actividad del QC. EI QC
presenta poca actividad mitética, sin embargo, su funcién principal es la de
mantener la organizacion de las células adyacentes. A medida que va creciendo la
raiz, la zona de division celular (zona meristematica) dara paso a una fase de
expansion celular que marca el final de la zona meristematica y el inicio de la zona
de elongacion (Fig. 1). Una vez que incrementan su tamafo, las células se
diferencian en su forma y funcion final, este proceso esta evidenciado por la
aparicion de pelos radiculares, células epidérmicas especializadas en la captura
de agua y nutrientes. Por otra parte, mediante eventos de division celular en el

periciclo, se forman las raices laterales, 6érganos que incrementan la superficie
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total de exploracion del suelo y contribuyen con un mejor anclaje. A pesar del
conocimiento que se tiene de los procesos morfolégicos que se llevan a cabo en la
raiz, poco se sabe acerca de los mecanismos celulares y moleculares que

participan en la regulacion del sistema radicular de las plantas.

Figura 1. Esquema representativo de la estructura celular de la raiz de Arabidopsis thaliana.
(A) El &pice de la raiz de Arabidopsis consiste de tres diferentes zonas de crecimiento. En orden a
partir de la punta del meristemo apical, la zona de divisién celular activa; la zona de elongacion
(ZE) celular, en donde las células crecen rapidamente; y la zona de diferenciacion (ZD), en donde
las células crecen lentamente y son diferenciadas en estructuras, como los pelos radiculares. A
nivel de tejido, la raiz de Arabidopsis estd compuesta de capas de células arregladas
concéntricamente (de afuera hacia adentro), la epidermis, el cortex, la endodermis, el periciclo y los
tejidos vasculares de la estela. (B) Corte transversal de la raiz en la zona de elongacién muestra la
organizacion circunferencial y radial de la raiz. La posicion de las filas celulares de los tricoblastos
y atricoblastos es indicado. (D) Corte transversal de una zona inmadura de la raiz mostrando la
organizacion celular de las filas de células. (MA) Mersitemo apical. (MB) Meristemo Basal
(Modificado de Overvoorde et al., 2010).
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4 .3. Raices laterales.

La formacion de la raiz ocurre mediante organogenesis de novo, siendo las
raices laterales la principal determinante del sistema radicular. Generalmente, la
formacion de raices laterales inicia cerca del meristemo apical de la raiz primaria y
emergen en la zona de diferenciacion (Figs. 2 y 3). El desarrollo de una raiz lateral
inicia a partir de células del periciclo, las cuales experimentan divisiones celulares
asimétricas altamente coordinadas para generar diversidad celular y formacion de
tejidos celulares. El conocimiento acerca de los mecanismos regulatorios en la
formacion de raices laterales ha incrementado considerablemente (De Smet et al.,
2006; Péret et al., 2009). En Arabidopsis, a partir de analisis celulares basados en
marcadores, se ha revelado que las raices laterales se desarrollan a partir de
células fundadoras del periciclo, las cuales son re-activadas y un primordio de raiz
lateral es iniciado (De Smet et al., 2012). Las células fundadoras toman lugar en el
meristemo basal, en donde existe oscilacion del flujo de auxinas y destino celular
(De Smet et al., 2007; Moreno-Risueno et al., 2010; Laskowski, 2013; Van Norman
et al., 2013). Posteriormente, las células fundadoras son sometidas a divisiones
asimétricas altamente coordinadas para dar lugar a un PRL. Divisiones celulares
periclinales subsecuentes formaran un PRL en forma de domo, el cual
eventualmente emerge de la raiz primaria parental (Fig. 3) (Malamy y Benfey,
1997; Himanen et al., 2002; Benkova y Bielach, 2010; Dastidar et al., 2012; Smith
y De Smet, 2012). En Arabidopsis, las raices laterales pueden desarrollarse en
cualquier posicion respecto a los polos del xilema, pero nunca se desarrollan en
posicion de los polos del floema (Beeckman et al., 2001; De Smet et al., 2006;
Parizot et al., 2008). Esta fuerte asociacion con el polo del xilema es apoyada por
el fenotipo de la mutante lonesome highway (lhw), la cual presenta sélo un polo
del xilema y forma raices laterales de forma unilateral (Parizot et al., 2008). Sin
embargo, en la mutante wooden leg (wol), la cual carece de floema, se forman
raices laterales de manera indistinta a la silvestre (Parizot et al., 2008). Hasta la
fecha, no es claro como los polos del xilema y el floema determinan las células

que formaran raices laterales. No obstante, las células del periciclo de ambos
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polos presentan diferencias en cuanto a tamafo, estructura, proteinas especificas
y la expresion de genes (De Smet et al., 2006; Parizot et al., 2008).

La iniciacion de raices laterales esta correlacionada con la curvatura de la
raiz. Las raices laterales se forman en el lado convexo de la curva de la raiz
primaria, aun cuando esta se haya realizado de manera manual, explicando el
patron de formacién de raices lateral izquierda-derecha (De Smet et al., 2007;
Ditengou et al., 2008; Laskowski et al., 2008; Lucas et al., 2008; Raya-Gonzalez et
al., 2012). Los giros de la raiz primaria y el subsecuente patron de formacion de
raices laterales sugiere que fuerzas mecanicas actian sobre las células del
periciclo y/o células vecinas en respuesta a estimulos ambientales, que son
determinantes en la iniciacion de las raices laterales (Laskowski et al., 2008;
Richter et al., 2009; Raya-Gonzélez et al., 2012). El estudio de la induccién de
raices laterales en respuesta a un estimulo mecanico sobre la raiz primaria nos da
una idea de las respuestas que experimenta la planta a medida que su sistema
radicular se desarrolla en el ambiente (Raya-Gonzalez et al., 2012).

La formacion de raices laterales estd regulada por una red compleja de
factores moleculares y diferentes reguladores del desarrollo vegetal (Nibau et al.,
2008). La via de sefalizacion de las auxinas tiene una funcion esencial para la
activacion de las células del periciclo, la iniciacion de divisiones celulares, la
formacion y el desarrollo del PRL y la emergencia de una raiz lateral (De Smet,
2012). En contraste a las auxinas, la citocininas reprimen la formacion de raices
laterales mediante el bloqueo de la iniciacion de novo del PRL e indirectamente
afectando el transporte polar de auxinas (Laplaze et al., 2007; Osmont et al., 2007;
Bielach et al., 2012). El acido abscisico (ABA) actia como un antagonista durante
la iniciacion de las raices laterales (Signora et al., 2001; De Smet et al., 2003;
Fukaki y Tasaka, 2009; Guo et al., 2009). Ademas del papel directo en la iniciacion
de raices laterales, el ABA regula el balance entre las auxinas y las citocininas y
asi inhibe indirectamente la formacién de raices laterales (Shkolnik-Inbar y Bar-
Zvi, 2010; Guo et al., 2012). El etileno regula la respuesta a auxinas y reprime la
formacion de raices laterales (Vandenbussche y Van Der Straten, 2007; Negi et
al., 2008, 2010; Lewis et al., 2011; Muday et al., 2012). Para el caso del acido
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jasmonico (AJ), se ha encontrado que promueve la formacion de raices laterales y
modula el posicionamiento de estas a través de su receptor COI1 a través de un
mecanismo dependiente a la sefializacion por auxinas (Sun et al., 2009; Raya-
Gonzalez et al., 2012). El acido giberélico, los brasinoesteroides y las
estrigolactonas afectan la formacion de raices laterales interactuando con la
sensibilidad y el transporte de auxinas (Bao et al., 2004; Kapulnik et al., 2011;
Ruyter-Spira et al.,, 2011). Otras moléculas como el 6xido nitrico, las N-acyl-L-
homoserinas lactonas (AHL) y las alcamidas, las cuales se han considerado como
nuevos reguladores del desarrollo, promueven la formacion de raices laterales a
través de mecanismos dependientes e independientes a la sefalizacion por
auxinas (L6pez-Bucio et al., 2007; Ortiz-Castro et al., 2008; Méndez-Bravo et al.,
2010; Morquecho-Contreras et al., 2010).

Figura 2. Cambios morfologicos durante el proceso de formacidon y desarrollo de raices
laterales. Las raices laterales se originan de la raiz primaria a partir de células del periciclo (A).
Los siete estados del desarrollo de PRL (en nimeros romanos [Malamy y Benfey, 1997]) se
muestran en (B) asi como el establecimiento del maximo de auxinas, demostrado por el marcador
DR5:uidA (gradiente azul). [D]. Las barras de escala representan 20 um (Modificado de Péret et al.,
2009).
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4.4. Los pelos radiculares.

Los pelos radiculares son extensiones cilindricas de las células epidérmicas de
la raiz, los cuales son esenciales en la toma de agua y nutrientes, en la interaccion
con organismos de la rizosfera y en el anclaje de la planta. En Arabidopsis, los
pelos radiculares tienen aproximadamente 10 um de diametro y pueden llegar a
medir 1 mm o mas de longitud. Estas estructuras han atraido mucha atencion
debido a que proveen numerosas ventajas para estudios de desarrollo, biologia y
fisiologia celular (Schiefelbein y Somerville, 1990). La presencia de los pelos
radiculares en la superficie de la raiz los hace facil de ser visualizados y
accesibles para diferentes manipulaciones experimentales. Es importante
mencionar que los pelos radiculares no son esenciales para la viabilidad de las
plantas, lo cual permite el analisis de todo tipo de mutantes que estén alteradas en
el desarrollo y la funcidn de estas estructuras.

Durante el desarrollo de la raiz primaria surgen dos tipos celulares en la
epidermis, las células que forman pelos radiculares (tricoblastos, células H) y las
células que no forman pelos (atricoblastos, células N) (Fig. 3). La epidermis de la
raiz de Arabidopsis se produce a partir de un grupo de 16 células iniciales durante
la embriogénesis (Dolan et al., 1994; Scheres et al., 1994). En las células hijas
ocurren divisiones transversales en la regidn meristematica de la raiz y esas
divisiones sirven para generar células adicionales dentro de la misma fila (Baum y
Rost, 1996). La epidermis de la raiz de Arabidopsis es similar a otros miembros de
la familia de las Brassicaceae, ya que presenta un patron dependiente de la
posicion de las células H y N. Las células que forman los pelos radiculares se
encuentran espaciadas intercelularmente entre dos capas de células corticales,
mientras que las células N estan presentes sobre una sola capa cortical (Fig. 3).
Debido a que la raiz primaria de Arabidopsis consistentemente posee 8 filas de
células corticales, hay 8 filas de células H y aproximadamente 10-14 filas N (Dolan
et al., 1994; Galway et al., 1994). La simple correlacion entre la posicion celular y

la diferenciacion del tipo celular implica que existen eventos de comunicacién
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célula-célula, los cuales son criticos para el establecimiento de la identidad celular
en la epidermis de la raiz.

Diversos estudios fisiologicos, genéticos y moleculares han identificado a un
grupo de genes asociados a la regulacion de la diferenciacion celular epidérmica.
Mutaciones en WEREWOLF (WER), TRANSPARENT TESTA GLABRA (TTG),
GLABRAS3 (GL3)/ENHANCER OF GLABRA (EGL3), y GL2 causan la formacion de
pelos radiculares en cada una de las filas epidérmicas, lo que implica que WER,
TTG, GL3/EGL3 y GL2 promueven la diferenciacion de las células N y/o reprimen
la formacion de los pelos radiculares (Galaway et al., 1994; Di-Cristina et al., 1996;
Masucci y Schiefelbein, 1996; Lee y Schiefelbein, 1999; Bernhardt et al., 2003).

WER codifica un factor de transcripcion tipo MYB de la clase R2-R3 (Lee y
Schiefelbein, 1999). TTG codifica una proteina pequefia con dominios WD40
repetidos. TTG es capaz de interactuar fisicamente con los activadores de
transcripcion hélice-vuelta-hélice (bHLH) GL3 y EGL3 (Bernhardt et al., 2003). GL3
y EGL3 también interacttan fisicamente con WER (Bernhardt et al., 2003; Song et
al., 2011). GL2 codifica un factor de transcripcidén expresado preferencialmente en
células N dentro de la zona mersitematica y de elongacion celular (Masucci y
Schiefelbein, 1996). La expresion de GL2 es influenciada por WER, GL3/EGL3 y
TTG (Fig. 3).

Otros genes como CAPRICE (CPC) regulan el destino celular de la epidermis
de una manera diferente. La mutante cpc produce un numero reducido de pelos
radiculares (Wada et al., 1997). Se ha demostrado que la mutante g/2 es epistatica
a cpc, lo que sugiere que CPC participa en la via WER/TTG/GL3/EGL3/GL2 como
regulador negativo de GL2. Interesantemente, CPC es capaz de moverse de una
célula a otra durante el desarrollo de la raiz (Kurata et al., 2005; Kang et al., 2013)
(Fig. 3). Ademas de CPC, diferentes proteinas tipo MYB como son TRIPTYCHON
(TRY) y ENHANCER OF TRY and CPC1 han sido reportadas por presentar
redundancia funcional parcial (Schellman et al., 2002; Kirik et al., 2004; Simon et
al., 2007; Serna, 2008; Wang et al., 2010).

El gen SCRAMBLED (SCM) difiere de los genes mencionados previamente,

debido a que la mutacion altera la distribucion de las filas de células H y N (Kwak
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et al., 2005). SCM codifica un receptor con actividad de cinasa y dominios ricos en
leucina (LRR-RLK), la cual puede estar regulando la especificidad del tipo celular y
por lo tanto el destino celular. Toda esta informacion indica que el destino celular
de las células H y N asi como la formacion y desarrollo de los pelos radiculares
estd regulado estrictamente por una red compleja de factores de transcripcion
(Fig. 3).

Resultados de numerosos experimentos farmacoldgicos y genéticos indican
qgue las auxinas y el etileno promueven la formacién y el desarrollo de los pelos
radiculares. Tratamientos con el precursor de etileno, 1-amino-cyclopropano-1-
acido carboxilico (ACC, por sus siglas en inglés) induce la formacion de pelos
radiculares ectopicos (Tanimoto et al.,, 1995). Ademéas, mutaciones en
CONSTITUTIVE TRIPLE REPONSE (CTR1), el cual regula negativamente la via
de sefalizacion del etileno, también lleva a la formacién de pelos radiculares
ectopicos (Dolan et al., 1994; lkeda et al., 2009). Se sabe que la sefializacion por
auxinas esta implicada en el desarrollo de pelos radiculares. Al igual que el ACC,
la aplicacion de la auxina AIA promueve la formacion de los pelos radiculares y
mutaciones en genes asociados a la sefalizacion por auxinas AUXIN
RESISTANT2 y 3 (AXR2 y 3), SOLITARY ROOT (SLR) afectan el desarrollo de
los pelos radiculares (Mizra et al., 1984; Wilson et al., 1990; Leyser et al., 1996).
Mutaciones en ROOT HAIR DEFECTIVE6 (RHDG6), un factor de transcripcion
bHLH, afecta la formacién de pelos radiculares, pero su fenotipo puede ser
restaurado por la aplicacion de ACC o AlA en el medio de crecimiento (Masucci y
Schiefelbein, 1994). Ademas del etileno y las auxinas, otras hormonas pueden
afectar la formacién de pelos radicular. La aplicacién de GR24, una estrigolactona
sintética, incrementa la longitud de los pelos radiculares, posiblemente modulando
la expansion celular regulada por auxinas (Kapulnik et al., 2011). Finalmente, la
aplicacion de AJ promueve el crecimiento de los pelos radiculares de una manera
dependiente de la dosis, interactuando con las vias de sefializacién de etileno y
auxinas (Zhu et al., 2006). Lo que indica que la diferenciacion celular epidérmica
puede estar influenciada por diferentes vias hormonales y por multiples sefiales

ambientales.
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Fig. 3. La diferenciacion de los pelos radiculares es dependiente de una comunicacién
intercelular. Una sefial producida por las células corticales es detectada por el receptor
SCRAMBLED (SCM). En células H, esta sefial a través de SCM regula negativamente la expresion
del factor de transcripcion WEREWOLF (WER) . En células N, el gen WER no es expresado y la
proteina WER interactta con GLABRA3 (GL3), ENHANCER OF GLABRA3 (EGL3), y
TRANSPARENT TESTA GLABRA (TTG), las cuales regulan positivamente la expresiéon de
CAPRICE (CPC) y GLABRA2 (GL2). EL movimiento de CPC a partir de células N y H previene la
formacion del complejo WER-GL3-EGL3-TTG1 en el futuro tricoblasto y consecuentemente,
conduce a la represion de GL2. Ademas de su regulacion genética, GL2 es también dependiente
de modificaciones epigenéticas, tal como la acetilacién de K9 y de histonas H3. EL movimiento de
GL3 a partir de las células N y H es necesario para mantener la formacioén del complejo WER-GL3-
EGL3-TTG1 debido a que la expresion de GL3 y EGL3 es regulada negativamente por el complejo
WER-GL3-EGL3-TTGL1 en células N (Modificado de Libault et al., 2010).

4.5. Los reguladores del desarrollo vegetal.

EL crecimiento y desarrollo vegetal involucra la integracion de varias
seflales ambientales y endogenas, las cuales junto con el programa genético
intrinseco determinan la forma de la planta (Gray, 2004). Diferentes moléculas
organicas pequefias denominadas fitohormonas o reguladores del crecimiento son

responsables de cada aspecto del desarrollo vegetal, desde la embriogénesis

18



hasta la senescencia. El control del desarrollo se realiza modulando la division, la
expansion, la diferenciacion y la muerte celular. De esta manera se regulan
diferentes procesos morfogenéticos incluyendo la germinacion de la semilla, la
configuracion de la arquitectura de la planta, la floracion, la maduracién de frutos y
el desprendimiento de las hojas (Bishopp et al., 2006).

En los ultimos afios, se ha generado una gran cantidad de informacion
acerca del conocimiento en la biologia vegetal, incluyendo nuevos
descubrimientos en las areas de la biosintesis, el transporte, la percepcion y la
respuesta a hormonas. En general, los reguladores del crecimiento vegetal estan
presentes en baja concentracion y pueden actuar localmente, cerca del sitio de
sintesis, o incluso en tejidos distantes. La lista de los regulares del crecimiento ha
incrementado, en donde se incluyen a las auxinas, las citocininas, las giberelinas,
acido abscisico, el etileno, los brasinoesteroides, el acido salicilico, el &cido
jasmonico, las N-acil etenolaminas, el glutamato, el éxido nitrico y algunos lipidos
como las alcamidas y las AHLs (Lopez-Bucio et al., 2007; Morquecho-Contreras y
Lépez-Bucio, 2007; Santner et al., 2009; Méndez-Bravo et al., 2010; Morquecho-
Contreras et al., 2010). Practicamente, cada aspecto del desarrollo de las plantas
es regulado por los diferentes reguladores del crecimiento. Se sabe que un
programa del desarrollo puede ser influenciado por uno o por mudltiples
reguladores del crecimiento, lo que nos habla de la gran versatilidad de estos
compuestos para controlar la morfogénesis y las respuestas a estrés bibtico y

abidtico en la plantas.

4.6. Las auxinas.

La palabra auxina que en griego significa “crecer” se usa como un nombre
genérico para un grupo de moléculas importantes en las plantas, las cuales
también estan presentes en humanos, animales y microorganismos. El AlA es la
auxina predominante en las plantas y es una fitohormona bien documentada

capaz de modular un gran numero de programas del desarrollo.
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En general, los efectos de las auxinas dependen de la concentracion, ya
que en concentraciones bajas promueven el crecimiento induciendo la elongacion
de hipocotilos, de tallos y raices, en tanto que en concentraciones elevadas los
efectos son opuestos inhibiendo la elongacion celular. Ademas del AlA, existen
otras auxinas naturales y sintéticas capaces de regular diversos procesos del
desarrollo.

Las auxinas son de gran importancia en el desarrollo de la raiz, incluyendo
la formacion y emergencia de raices laterales, la organizacion del mersitemo y la
respuesta gravitropica. La biosintesis de auxinas ocurre tanto en la parte aérea de
la planta como en la raiz, principalmente en las regiones meristematicas y en
aquellas con crecimiento activo como las hojas jévenes, cotiledones y en los
primordios de las raices, siendo dichos tejidos los de mayor capacidad biosintética
de este compuesto. Estudios genéticos y bioquimicos indican que el AIA es
sintetizado a partir de dos vias metabdlicas, la dependiente y la independiente de
triptofano (Trp) (Korasick et al., 2013; Tivendale et al., 2014). Los principales
precursores del AlA son: el acido indol-3-piravico (IPyA, por sus siglas en inglés),
el indol-3-acetaldoxima (IAOx), el indol-3-acetonitrilo (IAN), el indol-3-acetamida
(IAM), y el indol-3-acetaldehido (IAAId). La via del IPyA es considerada la principal
via de biosintesis de auxinas (Zhao, 2012). La familia de las enzimas
TRIPTOFANO AMINOTRANSFERASAS DE ARABIDOPSIS (TAA) convierte el
triptéfano en IPyA (Stepanova et al., 2008; Tao et al., 2008; Yamada et al., 2009),
y la familia de las enzimas YUCCA (YUC) convierte el IPyA en AIA (Mashiguchi et
al., 2011; Stepanova et al., 2011; Won et al., 2011; Dai et al., 2013), creando una
conversiéon sencilla en dos pasos de Trp a AlA. La via dependiente de IAOx es
principalmente activada en la produccién de compuesto de defensa y sélo una
pequefia porcion es convertida a AlA (Zhao et al., 2002; Sugawara et al., 2009).
Se ha sugerido un menor papel para la via IAOx en la produccion de AIA. Sin
embargo, las mutantes superrot1 y superrot2 presentan una hiperacumulacion de
IAOx resultando en un incremento de los niveles de AlA (Mikkelsen et al., 2004),
sugiriendo que al menos, bajo determinadas condiciones, la via del IAOx es

importante para la produccion de AlA.
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Existen diversas formas de almacenamiento de AIA inactivo, incluyendo
conjugados de AlA, los cuales pueden ser rapidamente convertidos a AlA libre
para regular la homeostasis de auxinas (Korasick et al., 2013). Estas formas de
almacenamiento de auxinas pueden influir en la sensibilidad, el transporte y la
acumulacion de auxinas (Cohen y Bandurski, 1982) y a su vez regular diferentes
programas del desarrollo, como son: la elongacion del hipocotilo, la expansion de
los pelos radiculares, la formacion de raices laterales, la actividad del meristemo
de la raiz, entre otros (Strader et al., 2010, 2011). Esto indica que estas formas de
almacenamiento de auxinas son necesarias para un correcto desarrollo vegetal
bajo condiciones especificas de crecimiento. Por lo tanto, se requiere un mayor
esfuerzo para entender las condiciones en que en las plantas se activa la
biosintesis de auxinas de novo o su conversion a las formas de almacenamiento
gue incrementan o disminuyen los niveles de auxina libre.

Una vez que las auxinas son producidas, son movilizadas hacia sus sitios
blancos a través de dos vias principales: la primera de transporte rapido, desde los
tejidos jovenes del follaje hacia los tejidos de demanda en la raiz. Este tipo de
distribucion de auxinas se realiza a través del floema (Friml, 2003). La otra via
implica el transporte lento, importante en la distribucién de auxinas a distancias
mas cortas. En este Ultimo, el transporte ocurre célula a célula y requiere de
proteinas especializadas. Una caracteristica de este tipo de transporte es que su
direccionalidad estd estrictamente controlada dentro de un tejido mediante la
localizacion diferencial de transportadores membranales.

El AIA al ser un acido débil puede encontrarse en forma protonada o no
protonada dependiendo del pH. ElI pH apoplastico es ~5.5 favoreciendo que las
moléculas del AIA se encuentren en su forma disociada (AIA’) en un ~83%, y en
su forma protonada (AIAH) en un ~17% (Zazimalova et al., 2010). Esta ultima
forma se puede difundir libremente hacia el interior de la célula (difusién pasiva) o
a través del transportador de entrada AUXIN RESISTANT1/LIKE AUX1
(AUX1/LAX) (Zazimalova et al., 2010). Sin embargo, una vez dentro de la célula el
cambio de pH del medio favorece la forma disociada del AIA- casi en su totalidad,

por lo que las moléculas en dicha forma, requieren de un mecanismo de transporte
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activo a través de multiples proteinas de las familias PIN-FORMED (PIN) y ATP-
BINDING CASSETTE SUBFAMILY (ABCB, por sus siglas en inglés) (Peer et al.,
2011) (Fig. 4). La diversidad de los fenotipos mostrados por la mutantes afectadas
en los diferentes miembros de la familia AUX/LAX revelan distintas funciones para
esos transportadores. La actividad de AUX1 es necesaria para las respuestas a
gravedad (Bennett et al., 1996; Marchant et al., 1999), el desarrollo de los pelos
radiculares (Grebe et al., 2002; Jones et al., 2009) y la filotaxis (Reinhardt et al.,
2003; Bainbridge et al., 2008). La mutante /ax3 presenta una menor emergencia
de raices laterales, mayor numero de primordios y una represion en la expresion
de enzimas que modifican la pared celular (Swarup et al., 2008), sugiriendo que
LAX3 modifica la pared celular en respuesta a auxinas, para la separacion de las
células corticales y la emergencia de las raices laterales. Esto indica que los
transportadores de influjo de auxinas son criticos para el transporte polar de
auxinas y son esenciales en diversos aspectos del desarrollo vegetal.

Los miembros de la familia PIN y ABCB regulan el eflujo de auxinas (Fig. 4).
Las proteinas PIN son transportadores de auxinas controladas por un gradiente y
son especificas de las plantas. Cada una de las 8 proteinas PIN presentan una
localizacion distinta y especifica. En los tejidos de la raiz, PIN1 se expresa en
células de la estela, endodermis y del periciclo (Friml et al., 2002b; Blakeslee et
al., 2007). PIN2 es localizado en células corticales y epidérmicas (Muller et al.,
1998; Blakeslee et al., 2007) y en la capa lateral de la raiz (Friml, 2003), mientras
que PIN3 esta presente en el periciclo y la columela (Friml et al., 2002a). PIN4 se
expresa en el mersitemo de la raiz (Friml et al., 2002b) y PIN7 en la estela y
columela (Blilou et al., 2005). Los patrones de expresion especificos y la
localizacion polar de las proteinas PIN son necesarios para una distribucion
diferencial de auxinas y asi se regulan los diferentes programas del desarrollo
vegetal (Zazimalova et al., 2010).

La localizacion polar de las proteinas PIN requiere de endocitosis y el
reciclado selectivo hacia la membrana plasmatica (Geldner et al., 2001; Kleine-
Vehn y Friml, 2008). EL reciclado de los PIN permite una rapida relocalizacion en

respuesta a sefiales ambientales o de desarrollo (Lofke et al., 2013). Por su parte
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los transportadores ABCB, incluyendo ABCB1l, ABCB4, ABCB19, y ABCB21
regulan el eflujo de AIA (Geisler et al., 2005; Lewis et al., 2007) (Fig. 4). El
transportador ABCB4 se localiza en la membrana plasmética y compartimentos
endomembranales de la raiz (Terasaka et al., 2005; Cho et al., 2007). ABCB4 y
ABCB21 pueden funcionar tanto como transportadores de eflujo e influjo,
dependiendo de las concentraciones de auxinas internas (Yang y Murphy, 2009;
Kamimoto et al., 2012; Kubes et al., 2012).

Figura 4. Transporte de auxinas. Las axinas pueden ser movilizadas de sus sitios de biosintesis
a través de dos mecanismos. (A) Distribucion de auxinas via floema a partir de sitios fuente (hojas
jovenes y yemas florales) hacia la raiz. (B y C) Modelo quimiosmaético del transporte polar de
auxinas basado en la diferencia de pH entre el apoplasto (pH 5.5) y el citoplasma (pH 7). La auxina
protonada (AIAH) puede difundir libremente a través de la membrana plasmatica lipidica o ser
transportada por los transportadores de influjo AUX1/LAX al interior de la célula. En el citosol, el
AIAH es disociado y atrapado en el interior de célula en su forma desprotonada (AIA"). ElI AIA-
puede salir de la célula por la accion de los transportadores de eflujo tipo ABCB o PIN. La
localizacion celular polar de los transportadores determina la direccionalidad del flujo de auxinas
intercelular (Modificado de Robert y Friml, 2009).
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Una vez que el AIA es sintetizado y movilizado hacia sus sitios blanco, su
percepcion puede ser controlada por dos vias de sefializacion independientes: (1)
A través de la via dependiente de TRANSPORT INHIBITOR RESPONSE1/AUXIN
SIGNALING F-BOX (TIR1/AFB) y (2) a través de AUXIN BINDING PROTEIN1
(ABP1). Aunque la via de TIR1 esta bien documentada (Chapman y Estelle, 2009),
poco se sabe acerca de la via de ABP1.

La via de sefalizacion dependiente de TIR1/AFB controla la respuesta
transcripcional a las auxinas. En concentraciones bajas de auxinas, las proteinas
AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) reprimen la actividad de los factores
de transcripcion AUXIN RESPONSE FACTOR (ARF) (Chapman y Estelle, 2009).
Cuando los niveles de auxinas se incrementan, la proteina F-box TIR1/AFB
interactda con una proteina AUX/IAA para forma el co-receptor de auxinas y unir
auxinas (Dharmasiri et al., 2005; Kepinski y Leyser, 2005; Chapman y Estelle,
2009). La proteina F-box TIR1/AFB participa en un complejo ubiquitin ligasa Skp1-
Cullin-F-box (SCF) E3 para ubiquitinar a las proteinas represoras AUX/IAA y ser
degradadas via proteosoma 26S (Fig. 5). Esta degradacion de AUX/IAA permite
gue los ARF activen la transcripcion de genes de respuesta a auxinas (Ramos et
al., 2001; Zenser et al., 2001; Dreher et al., 2006). Esta interaccion ligando-
receptor permite una cascada transduccional muy corta para facilitar una rapida
respuesta transcripcional de respuesta a auxinas (Fig. 5).

En Arabidopsis existen 29 proteinas AUX/IAA y seis TIR/AFBs que pueden
dimerizarse para formar co-receptores de auxinas. Interesantemente, diferentes
combinaciones de AUX/IAA-TIR1/AFB presentan diferentes afinidades por una u
otra auxina, incluyendo tanto naturales como sintéticas (Calderén-Villaobos et al.,
2012; Lee et al.,, 2014; Shimizu-Mitao y Kakimoto, 2014). Esta diferencia de
afinidades, probablemente, es un mecanismo por el cual las auxinas regulan una
amplia variedad de las respuestas de la planta y los diferentes aspectos del
desarrollo. Por otra parte, Arabidopsis presenta 22 proteinas ARF, de las cuales 5
activan la transcripcibn, mientras que el resto actian como represores
transcripcionales (Guilfoyle y Hagen, 2007). Estudios recientes sugieren que los

ARFs y los AUX/IAA pueden multimerizarse, mas que interactuar en una
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dimerizacion sencilla (Korasick et al., 2014; Nanao et al., 2014), sugiriendo que la
formacion del complejo ARF-AUX/IAA puede incorporar otras proteinas ARF y
AUX/IAA diferentes para regular finamente las respuesta a auxinas.

ABP1 ha sido estudiado desde los 70s (Hertel et al., 1972), pero hasta hace
poco fue aceptado como receptor de auxina. En esta via, la auxina es percibida
fuera de la membrana plasmatica por ABP1 (Shiy Yang, 2011; Sauer et al., 2013).
ABP1 esta anclada a la membrana plasmética e interactia con el C-TERMINAL de
la proteina PEPTIDE-BINDING PROTEIN (CBP1) (Shimomura, 2006) y esta a su
vez interactua con la proteina TRANSMEMBRANE KINASE (TMK) de una manera
dependiente de auxinas (Xu et al., 2014). ABP1 y las auxinas son requeridos para
la activacion de dos proteinas RHO-LIKE GTPASES OF PLANTS (ROP), ROP2 y
ROP6 (Xu et al.,, 2010). Sin embargo, el mecanismo exacto entre la uniéon de
ABP1 con las auxinas, la actividad de TMK y la activacion de ROP no han sido

dilucidados.
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Figura 5. Modelo para la activacion transcripcional mediado por auxinas. En bajas
concentraciones de auxinas, los factores de transcripcion AUXIN RESPONSE FACTORS (ARF)
unidos a los promotores de los elementos de genes de respuesta a auxinas, se encuentran
formando un complejo con las proteinas AUX/IAA. La actividad del promotor esta reprimida por la
actividad de las proteinas AUX/IAA y co-represores transcripcionales. En altas concentraciones de
auxinas, el AIA se une al complejo SCF™R1 esto incrementa la afinidad para la unién de los
AUXI/IAA al complejo SCFTR! y asi activar el proceso de ubiquitinacion. Al ser degradadas las
proteinas AUX/IAA por el proteosoma 26S, permite que los ARF se encuentren libres para la
expresion de genes de respuesta a auxinas.

4.7. El &cido jasmaonico (AJ).

A lo largo de su ciclo de vida, las plantas se encuentran constantemente
sometidas a estrés bidtico y abidtico. Una de las fitohormonas encargadas de
regular este tipo de respuestas es el AJ. El AJ y su derivado volatil metil jasmonato
son considerados las formas activas debido a sus efectos fisiolégicos y su
abundancia en las plantas (Santino et al., 2013).

La biosintesis del AJ es un proceso enzimatico, el cual se lleva a cabo en

tres diferentes compartimentos celulares, el plastido, el peroxisoma y el citosol. El
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primer paso en la sintesis de AJ ocurre en el plastido mediante la accion de una
fosfolipasa para la liberacion del acido a-linoleico a partir de fosfolipidos de la
membrana. Posteriormente, el acido a-linoleico es oxidado por la accion de la 13-
lipoxigenasa (13-LOX) generando el 13-hydroperoxy (Vick y Zimmerman 1983;
Bell y Mullet 1993, Bannenberg et al., 2009). EL genoma de Arabidopsis codifica
para seis lipoxigenasas, de las cuales, tres de ellas (LOX2, LOX3, y LOX4) han
sido asociadas con la produccion de AJ (Bell y Mullet 1993; Caldelari et al., 2011).

En el plastido, el OPDA (&cido cis-(+)-12-oxofitodienoico es convertido a AJ a
través de varios ciclos de [B-oxidacibn mediante reacciones enzimaticas de
oxidacion, hidratacion vy tidlisis. Posteriormente, en el citosol el AJ sufre diferentes
modificaciones para formar las diferentes formas activas.

El sistema de ubiquitin-proteosoma es el regulador central del censado y
sefalizacion de esta fitohormona. Similar al de auxinas, éste consiste de un
complejo SCF, el cual funciona como una E3 ubiquitin ligasa, en donde la proteina
F-box CORONATINE INSENSITIVE (COI1) reconoce una proteina blanco la cual
es ubiquitinada y posteriormente degradada por el proteosoma. Las proteinas
reconocidas como blancos por el complejo SCF©"! son miembros de la familia
JASMONATE ZIM DOMAIN (JAZ). La degradacion de JAZ permite la liberacion de
los factores transcripcionales como MYC2, el cual se une a elementos en
promotores de genes de respuesta a AJ para iniciar la transcripcion (Fig. 6). Como
componentes finales en la via de sefalizacion, se encuentran los co-represores
TOPLESS (TPL) y proteinas relacionadas a TPL, que interactian con la proteina
de andamiaje “NOVEL INTERACTOR OF JAZ” (NINJA) (Pauwels et al., 2010)

(Fig. 6).
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Figura 6. Activacion transcripcional mediada por &cido jasmdnico (AJ). En baja concentracion
de la forma activa JA-lle (jasmonoil-isoleucina), los represores JAZ se unen a los factores de
transcripcion tipo MYC2 y son reclutados co-represores, incluyendo NINJA y TOPLESS (TPL) para
reprimir la expresion de genes de respuesta a AJ. Por otro lado, en alta concentracion de JA-lle, la
union de JA-lle con el componente E3 ubiquitin ligasa SCFC°" facilita la unién de complejo JAZ-
NINJA-TPL. Como resultado las proteinas JAZ son ubiquitinidas y subsecuentemente degradas en
el proteosoma 26S, permitiendo la liberacién de los FT tipo MYC2 y ocurre la activacién de la
transcripcion de genes de respuesta a AJ.

EL AJ tiene un papel central en el desarrollo y la reproduccion de las
plantas (Creelman y Mullet, 1997; Wasternack, 2007; Browse, 2009). Algunos de
los procesos fisiologicos en donde el AJ ha sido involucrado son: desarrollo floral,
induccion de senescencia, inhibicion del crecimiento, maduracion de frutos,
formacion de tricomas y desarrollo de pelos radiculares (Santino et al., 2013). El
AJ también ha sido descrito como un regulador importante de la morfogénesis de
la raiz. En Arabidopsis, la aplicacion de AJ inhibe el crecimiento de la raiz
primaria, afectando tanto la division como la elongacion celular (Staswick et al.,
1992; Feys et al., 1994; Yan et al., 2007; Zhang y Turner, 2008; Raya-Gonzalez et

28



al., 2012) (Fig. 7). EL AJ promueve la formacion de raices laterales directamente
induciendo la expresion del gen ANTRANILATE SYNTASE1 (ASA1) y la
acumulacion de proteinas PIN2 (Sun et al., 2009, 2011). En nuestro grupo de
trabajo encontramos que el AJ inhibe el crecimiento de la raiz primaria y la
formacion de raices laterales de una manera dependiente de la concentracion
(Fig. 7). Esta respuesta fue acompafiada por un incremento en la formacion de
primordios de raices laterales. Ademas, determinamos que el receptor del AJ,
COI1 esta implicado en la formacion de RL en respuesta a jasmonatos, en el
posicionamiento de las RL y la emergencia de RL en respuesta a estimulos
mecanicos (Raya-Gonzalez et al., 2012) (Fig. 7). Esto indica que el AJ ademas de
ser un factor clave en la activaciébn de respuestas de defensa, también es un

regulador importante en diferentes programas del desarrollo vegetal.
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Figura 7. Participacién del AJ y su receptor COI1 en la arquitectura del sistema radicular de
Arabidopsis. (A) El AJ afecta el crecimiento de la raiz primaria y promueve la formacién de raices
laterales. (B) Desarrollo de raices laterales en plantulas silvestres Col-0 y mutantes coi7-1
afectadas en el receptor de AJ, en respuesta a un estimulo gravitatorio. (C) Raices laterales
emergidas después de un estimulo mecanico. La raiz primaria de Col-0 y coi1-1 fueron dobladas y
se dejaron crecer por 12 h. (D) Desarrollo de un PRL después de un estimulo gravitatorio en
plantulas DR5:uidA y coi1-1/DR5:uidA. Las flechas indican desarrollo de una RL y asterisco (*)
marca una ausencia de RL (Modificado de Raya-Gonzalez et al., 2012).

4.8. El complejo Mediador.

EL proceso de transcripcion es un proceso que es llevado a cabo por un

gran nimero de proteinas actuando de manera sincronizada. En eucariontes, las
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proteinas involucradas en la transcripcion son la Pol I, los GTFs, los factores de
transcripcion (TFs, por sus siglas en inglés) de union a ADN y el complejo
Mediador (Med). Este ultimo es un complejo multiproteinico integrado por hasta 30
subunidades, cuya funcién predicha es actuar como puente entre la Pol Il y los
TFs de union a ADN presentes dentro de la célula (Kim et al., 1994; Koleske y
Young, 1994). Mediante la unién distal entre los activadores/represores, los GTFs
y la Pol Il al promotor de los genes blanco, Med modula de manera especifica y
controlada las sefales celulares para iniciar la transcripcion (Malik y Roeder, 2005)
(Fig. 8).

El descubrimiento del complejo Mediador ocurri6 mediante estudios de
sistemas de transcripcion in vitro, en donde la actividad transcripcional Unicamente
fue restaurada por la adicién de un cultivo celular crudo, pero no por la adicion de
cualquiera de los componentes previamente conocidos del sistema transcripcional
(Flanagan et al., 1991). Posteriormente, se aislé un complejo conformado de
aproximadamente 20 proteinas el cual fue necesario para restablecer la actividad
transcripcional y nombrado como el complejo Mediador (Kim et al., 1994). Desde
su descubrimiento en Saccharomyces cerevisiae, las proteinas que conforman el
complejo Mediador han sido identificadas en casi todos los eucariontes (Boube et
al., 2002; Bourbon et al., 2004; Bourbon, 2008). Estructuralmente, el complejo
Mediador esta integrado por cuatro dominios conservados, incluyendo un dominio
cinasa (Dotson et al., 2000). ElI complejo Mediador es un regulador global de la
expresion de genes, y como tal, es considerado como un GTF (Ansari et al., 2009;
Takagi y Kornberg, 2006). Sin embargo, lo que distingue al complejo Mediador de
otros GTFs (con la posible excepcion de TFIID) es su alto grado de flexibilidad
estructural y su composicion diversa de proteinas (Malik y Roeder, 2010).
Consistente con su capacidad para activar la transcripcion, se ha establecido que
el Mediador es el principal sitio de union de los TFs de union a ADN dentro del
complejo de iniciacion de la transcripcion (TIC, por sus siglas en inglés) (Borggrefe
y Yue, 2011). Evidencia experimental indica que el Mediador activa la
transcripcion, en parte, actuando como un puente entre los TFs de unién a ADN, la

RNA Pol Il, los GTFs y otros componentes del complejo transcripcional (Fig. 8).
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Debido a esto, el Mediador puede ser requerido para la transcripcion de todos los

genes. Dado el papel fundamental del Mediador en la transcripcion génica, se ha

propuesto que alteraciones a nivel de transcripcion o de funcion de las

subunidades individuales del Mediador podrian llevar a defectos en la expresion

global de genes y afectar diversos programas esenciales del desarrollo. Se sabe

que diversas subunidades del Mediador son esenciales para un correcto

crecimiento y desarrollo en organismos como Drosophila, pez zebra, raton y

Caenorhabditis elegans (Tabla 2).

Tabla 2. Efectos de mutaciones en subunidades del complejo Mediador (Modificada de
Hentges, 2011).

Subunidad Crrganismo Fenotipo mutante

MED1 Ratén Insuficiencia plancental, hemorragias ¥ necrdsis en higado, ¥ crecimiento retardado.

MEDS Drosophila Letalidad en estado larvaric.

MED12 C. elegans Alleraciones en |3 division celular.

MED12 Pez zebra Delectos el en desarrollo del cerebo, e higado. Deficil &n la diferenciacién celular
neuronal, defectos cardiovasculares, y desarrollc anormal del oida,

MED12 Raton Desregulacion de genes Nanog en celulas del tallo embrionario, defectos en el
desarrollo del sisterma cardiaco.

MED12 Arabidopsis Alleracién en el desarrollo embrionario y en la divisidn celular, defectos en el
desarrollo de hojas y morfogénesis.

MED13 C. glegans Letalidad embricnal.

MED13 Arabidopsis Alleracion en el desarrollo embrionario y en la division celular, defectos en el
desarrollo de hojas y morfogénesis.

MED14 Pez zekbra Delfecto en células de la retina.

MED15 Drosophila Perdida de |as venas y reduccion en el tamano de las alas.

MED21 Ratén Arresto en el desarrollo del blastocito.

MED23 C.elegans Letalidad en el estada larvaric.

MED23 Ratén Defectos en el sistema circulatorio.

MED24 Pez zebra Alleracion en el sistema nervisoso.

MED24 Ratén Hipeplasia cardiaca, defectos en el desarrollo vascular v desarrollo celular.

MEDZ28 Células MIH3T3 y C2812 Defectas en la expresion de genes del musculo liso.

MED31

Ratén

Alterarion en la proliferacion celular y retrasa en el dasarrollo.

La participacion del Mediador en el crecimiento y desarrollo vegetal se

demostré inicialmente a partir del analisis de la mutante med74 (Autran et al.,
2002). MED14/STRUWWELEPETER (SWP) regula el desarrollo del meristemo y
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controla la duracién de la proliferacion celular. Los genes CENTER CITY (CCT) y
GRAND CENTRAL CITY codifican las subunidades MEDIATOR12/MED12 vy
MED13, respectivamente. Mutaciones en MED12/CCT y MED13/GCT afectan el
desarrollo embrionario (Gillmor et al., 2010). Ademas, MED13 fue identificado
como un regulador de PINOID (PID) y designado como MACCHI-BOU2 (MAB2)
(Ito et al., 2011). Mutaciones en MED13/MAB2 conllevan al desarrollo de
cotiledones aberrantes como resultado de un defecto en la respuesta auxinica. Asi
mismo, mutantes med21 homocigotas presentan letalidad embrionaria (Dhawan et
al.,, 2009). Recientemente, se reportd que mutantes afectadas en MED18
desarrollan sépalos, pétalos y estambres anormales, posiblemente debido a una
expresion reducida o ectépica de AGAMOUS (AG), APETALA1 (AP1) y
PISTILLATA (PI) (Zheng et al., 2013).

MED25/PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25
(PFT1/MED25) es una subunidad que estd involucrada en diversos procesos
biologicos. MED25 regula el desarrollo de organos florales modulando la
proliferacion y la expansion celular (Xu y Li, 2012), el crecimiento y formacion de
pelos radiculares a través de la regulacion en la produccidén de especies reactivas
de oxigeno (ROS, por sus siglas en inglés) (Sundaravelpandian et al., 2013). Un
estudio reciente revel6 que MED25 est& involucrado en el crecimiento de la raiz
primaria y la formacion de raices laterales (Raya-Gonzalez et al., 2014). El
transporte y la respuesta a auxinas estan incrementadas en las raices de las
mutantes pft1/med25, sugiriendo un mecanismo regulado por auxinas mediado por
MED25 (Raya-Gonzalez et al., 2014). MED8 también fue reportado como un
elemento asociado a la diferenciacion de los pelos radiculares. Sin embargo, no
mostré ninguna participacion en la regulacion de la arquitectura radicular
(Sundaravelpandian et al., 2013; Raya-Gonzélez et al., 2014).

Al igual que en procesos del desarrollo, se sabe que el complejo Mediador
tiene un papel importante en respuestas de defensa. Mutantes afectadas en
MED25 presentan susceptibilidad al ataque de hongos necrétrofos, pero muestran
resistencia a hongos hemibiétrofos que infectan la raiz, esto debido a una

desregulacion de la via de sefalizacion del AJ (Kidd et al., 2009). Diversos
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estudios han reportado una interaccion directa entre MED25 y los factores de
transcripcion involucrados en la respuesta a AJ, MYC2 y ETHYLENE REPONSE
FACTOR1 (ERF1), revelando una via de respuestas de defensa mediada por
MED25 (Ou et al., 2011; Chen et al.,, 2012). De manera similar, mutantes en
MED18 y MED21 son susceptibles a hongos necrotrofos (Dhawan et al., 2009; Lai
et al.,, 2014). Otras subunidades como MED14, MED15 y MED16 regulan la
expresion de genes de defensa dependientes de la via de sefializacion del acido
salicilico (AS) (Canet et al., 2012; Wathugala et al., 2012; Zhang et al., 2013).

Recientemente, se reportdé que las subunidades del médulo cinasa del
Mediador, incluyendo MED12, MED13, CDK8 y CycC regulan las respuestas de
defensa (Zhu et al., 2014). CDK8 afecta respuestas de defensa mediadas por AJ.
Mutantes en MED12, MED13 y CycC son suceptibles o resistentes a diferentes
patdgenos.

Las plantas perciben e integran diferentes sefiales ambientales, como
temperatura, sequia, salinidad e intensidad de luz, por diferentes vias regulatorias.
MED16 es una subunidad que integra multiples sefiales de estrés abidtico y esta
involucrada en la tolerancia al estrés por frio y en la homeostasis del hierro (Knight
et al.,, 2009; Yang et al., 2014). MED16 interactia con MED25 para regular la
homeostasis de hierro, ya que ambas subunidades controlan la expresion de
genes que son activados en respuesta a la deficiencia como IRON REGULATED
TRANSPORT1/IRT1 y FERRIC CHELATE REDUCTASE DEFECTIVE2IFRO2.
Ademas, se ha mostrado que MED25 regula respuestas a estrés salino y de
sequia (Elfving et al., 2011).

Estos resultados indican que cada una de la subunidades del complejo
Mediador pueden estar participando en diferentes procesos. Es de esperarse que
subunidades individuales del Mediador reconozcan y respondan a un subgrupo de
los ~1500 factores transcripcionales presentes en el genoma de Arabidopsis. Por
lo tanto, determinar cuales factores transcripcionales interactian con cada

subunidad sera un avance importante en la biologia molecular de las plantas.
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Figura 8. Papel del complejo Mediador en la transcripcion. La activacion transcripcional
involucra multiples pasos. (A) La via de activacion es iniciada por uno o mas activadores
transcripcionales que se unen a sus sitios en regiones regulatorias del gen. Estos factores reclutan
una serie de co-activadores de la cromatina, los cuales pueden modificar covalentemente los
nucleosomas en residuos especificos de histonas. (B) La cromatina sufre modificaciones
covalentes mediadas por acetilaciéon (Ac) y metilacion (Me). Posteriormente, los activadores
reclutan al complejo Mediador, el cual consiste de un nudcleo y un modulo cinasa. (C) El complejo
de pre-iniciacién de la transcripcién es ensamblado y consiste de varios GTFs (TFIIA, TFIIB, TFIID,
TFIE, y TFIIH) y la Pol Il y la iniciacién de la transcripcion requiere del complejo Mediador re-
estructurado, que resulta de la pérdida del mdédulo cinasa. Una vez que la transcripcion es iniciada,
el complejo transcripcional, incluyendo el Mediador, se mantienen en el promotor del gen para
facilitar rondas de transcripcion (Modificado de Malik y Roeder, 2010).
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5. JUSTIFICACION

Las plantas responden y se adaptan a las diferentes sefiales ambientales a
través de un estricto control de la transcripcion. Se ha considerado al complejo
Mediador como un factor de transcripcion general. PFT1/MED25, una subunidad
del complejo Mediador esta involucrada en procesos asociados a respuestas a
defensa y en diferentes programas del desarrollo vegetal. Sin embargo, se
desconoce su participacion en la regulacion de la arquitectura radicular y la
relacion con las diferentes vias hormonales (ej. auxinas), asi como los
mecanismos celulares y moleculares por los cuales actia. El estudio de
PFT1/MED25 mediante el uso de lineas mutantes y transgénicas de Arabidopsis

thaliana permitira entender la funcién de este elemento en dichos procesos.

6. HIPOTESIS

La subunidad PFT1/MED25 regulan el desarrollo de la raiz a través de la

sefalizacion por auxinas en Arabidopsis thaliana.

7. OBJETIVOS

7.1. Objetivo general.

Determinar la participaciéon de PFT1/MED25 en el desarrollo de la raiz y la

respuesta a auxinas en Arabidopsis thaliana.

7.2. Objetivos especificos

1. Caracterizar el efecto de la mutacién y sobre-expresion de la subunidad

PFT1/MED25 sobre el sistema radicular de Arabidopsis thaliana.
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Analizar el efecto de diferentes reguladores del desarrollo vegetal sobre las
diferentes lineas mutantes y transgénicas afectadas en PFT1/MED25 de
Arabidopsis.

Evaluar la expresion de marcadores de genes involucrados en la
sefalizacion, transporte, y respuesta a auxinas y marcadores del ciclo
celular en plantas mutantes y transgénicas afectadas en PFT1/MED25 de
Arabidopsis.

Determinar los niveles de AIA en plantulas silvestres, mutantes y

transgénicas afectadas en PFT1/MED25.
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8. RESULTADOS

Los principales resultados generados durante la realizacion del presente proyecto

se presentan en los siguientes capitulos:

8.1. CAPITULO |

Raya-Gonzalez, J., Ortiz-Castro, R., Ruiz-Herrera, L.F., Kazan, K., Lépez-Bucio,
J. (2014). PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25 regulates
lateral root formation via auxin signaling in Arabidopsis. Plant Physiol 165:880-894.

8.2. CAPITULO I

Raya-Gonzalez, J., Pelagio-Flores, R., Lopez-Bucio, J. (2012). The jasmonate
receptor COI1 plays a role in jasmonate-induced lateral root formation and lateral
root positioning in Arabidopsis thaliana. J Plant Physiol 169:1348-1358.
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8.1. CAPITULO |

PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25
Regulates Lateral Root Formation via Auxin
Signaling in Arabidopsis!/IW!

Javier Raya-Gonzalez, Randy Ortiz-Castro, Le6én Francisco Ruiz-Herrera, Kemal Kazan,
and José Lépez-Bucio*

Instituto de Investigaciones Quimico-Biolégicas, Universidad Michoacana de San Nicolds de Hidalgo, Ciudad
Universitaria, CP 58030 Morelia, Michoacan, Mexico (J.R.-G., R.O.-C., L.F.R.-H., ]J.L.-B.); and Commonwealth
Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia,
Queensland 4067, Australia (K.K.)

Root system architecture is a major determinant of water and nutrient acquisition as well as stress tolerance in plants. The Mediator
complex is a conserved multiprotein complex that acts as a universal adaptor between transcription factors and the RNA
polymerase II. In this article, we characterize possible roles of the MEDIATORS (MEDS8) and MED25 subunits of the plant Mediator
complex in the regulation of root system architecture in Arabidopsis (Arabidopsis thaliana). We found that loss-of-function mutations
in PHYTOCHROME AND FLOWERING TIMEL1 (PFT1)/MED25 increase primary and lateral root growth as well as lateral and
adventitious root formation. In contrast, PFT1/MED25 overexpression reduces these responses, suggesting that PFT1/MED25 is an
important element of meristematic cell proliferation and cell size control in both lateral and primary roots. PFT1/MED25 negatively
regulates auxin transport and response gene expression in most parts of the plant, as evidenced by increased and decreased
expression of the auxin-related reporters PIN-FORMED1 (PIN1)::PIN1::GFP (for green fluorescent protein), DR5:GFP, DR5:uidA,
and BA3:uidA in pft1-2 mutants and in 355:PFT1 seedlings, respectively. No alterations in endogenous auxin levels could be found
in pft1-2 mutants or in 35S:PFT1-overexpressing seedlings. However, detailed analyses of DR5:GFP and DR5:uidA activity in wild-
type, pft1-2, and 355:PFT1 seedlings in response to indole-3-acetic acid, naphthaleneacetic acid, and the polar auxin transport
inhibitor 1-N-naphthylphthalamic acid indicated that PFT1/MED25 principally regulates auxin transport and response. These
results provide compelling evidence for a new role for PFT1/MED25 as an important transcriptional regulator of root system
architecture through auxin-related mechanisms in Arabidopsis.

The indeterminate growth of the plant root system
through continuous cell division and elongation pro-
cesses can be profoundly affected by nutrient and water
availability as well as various stress conditions, such as
extreme temperatures, drought, and/or salt stress
(Lépez-Bucio et al., 2003; Malamy, 2005). Therefore, the
plasticity of the root system is of critical importance for
the plant to compete for resources and adapt to con-
stantly changing growth conditions. The Arabidopsis
(Arabidopsis thaliana) root system architecture, which
consists of a primary root, lateral roots, and root hairs,
determines the exploratory ability of roots in the soil.
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Lateral roots initiate from a few pericycle cells that ac-
quire the attributes of founder cells and then divide
asymmetrically to give rise to lateral root primordia
(LRP), which continue to grow and eventually emerge
from the primary root (Dubrovsky et al., 2000, 2008).
Finally, the new apical meristem is established and takes
over the control of the growth of mature lateral roots
(Malamy and Benfey, 1997).

The phytohormone auxin (indole-3-acetic acid [IAA])
plays an important role during all stages of lateral root
formation (Casimiro et al., 2003; De Smet et al., 2006;
Fukaki et al., 2007). Application of IAA or synthetic auxins
such as naphthaleneacetic acid (NAA) stimulates lateral
root formation (Celenza et al., 1995), whereas treatment
with polar auxin transport inhibitors prevents lateral root
initiation (Casimiro et al.,, 2001; Himanen et al., 2002).
Consistently, Arabidopsis mutants with increased auxin
levels, such as rooty and its alleles aberrant lateral root for-
mation1 and superroot1, have increased numbers of lateral
roots (Boetjan et al., 1995; Celenza et al., 1995; King et al.,
1995), while mutants such as AUXIN RESISTANT1 (aux1),
AUXIN RESPONSET (axr1), DARK OVEREXPRESSION OF
CABI (docl), SOLITARY ROOT1, and AUXIN-RESPONSE
FACTORS?7/19, with defective auxin transport, perception,
and/or signaling, show reduced lateral root formation
(Lincoln et al., 1990; Gil et al., 2001; Swarup et al., 2001;
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Fukaki et al., 2002). Auxin is unique among plant hor-
mones in being actively and directionally transported
from the place of synthesis in young apical parts to distant
tissues. The auxin-efflux regulators PIN-FORMED (PIN)
are crucial for auxin distribution throughout the plant.
PIN proteins have been shown to mediate various de-
velopmental processes. For instance, vascular tissue and
flower development is regulated by PIN1 (Galweiler et al.,
1998), tropisms are regulated by PIN2 and PIN3 (Friml
et al., 2002b), and the patterning of the root is regulated
by PIN4 (Friml et al., 2002a).

Auxin can interact with other plant hormones to or-
chestrate root development. Recently, it has been found
that CORONATINE-INSENSITIVEL (COI1), the jas-
monic acid (JA) receptor, is required to mediate lateral
root formation in response to JA, a canonical defense
signal, thus indicating the participation of downstream
signaling components integrating the responses of two
or more plant hormones into plant organogenesis
(Raya-Gonzalez et al., 2012).

The Mediator complex is a large multiprotein complex
conserved in all eukaryotes, from yeast to human. Me-
diator acts as a bridge between the RNA polymerase II
complex and the myriad transcription factors present
within the cell (Kim et al., 1994; Koleske and Young,
1994). Mediator fine-tunes diverse regulatory inputs and
presents a balanced output to the RNA polymerase II to
initiate transcription by binding to distal activators/
repressors as well as general transcription factors at the
promoter site (Malik and Roeder, 2005). In Saccharomyces
cerevisiae, Mediator is composed of 25 subunits, of which
22 are at least partially conserved among eukaryotes
(Boube et al., 2002; Bourbon et al., 2004). Specific Medi-
ator subunits are required for growth and development
in organisms such as Drosophila melanogaster, zebrafish,
mouse, and Caenorhabditis elegans (Lehner et al., 2006;
Wang et al., 2006; Loncle et al., 2007; Jiang et al., 2010).

Plant growth is regulated by both cell number and cell
size, which in turn are controlled by coordinated cell
proliferation and expansion events during organogenesis
(Mizukami, 2001; Sugimoto-Shirasu and Roberts, 2003).
Recently, the participation of the Mediator complex in
plant organ size control and cell differentiation was evi-
denced through the identification of 21 conserved and six
putative plant-specific Mediator subunits in Arabidopsis
and the analysis of Arabidopsis mutants defective in
MEDIATOR14 (MED14) and MED25 (Autran et al., 2002;
Xu and Li, 2011; Sundaravelpandian et al., 2013). Prior to
its identification as Mediator subunit 14, STRUWWEL-
PETER was found to regulate cell number and shoot
meristem development (Autran et al., 2002). Arabidopsis
MED25 was originally identified as PHYTOCHROME
AND FLOWERING TIME1l (PFT1), a nuclear protein
acting in a photoreceptor pathway that induces flowering
in response to suboptimal light conditions (Cerdan and
Chory, 2003). In addition, Arabidopsis mutants compro-
mised in the kinase module of the Mediator complex,
MED12, MED13, and CYCLIN-DEPENDENT KINASES,
all show developmental phenotypes due to altered cell
differentiation (Wang and Chen, 2004; Gillmor et al., 2010;
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Ito et al., 2011). The med12 and med13 mutants are affected
in the transition of embryos from globular to heart stage,
due to a delay in the expression of KANADII and
KANADI? transcription factors during early development
(Gillmor et al., 2010). The effect of the med13 mutation on
cell differentiation has also been explained by a defective
response to the hormone auxin (Ito et al., 2011). Even
though MED8 and MED25 play important roles in JA
signaling, stress responses, and plant development such
as root hair formation and flowering time, at present,
possible roles of these and other Mediator complex sub-
units on root system architecture and auxin signaling are
unknown.

In this study, we tested the possible participation of
MEDS and PFT1/MED25 subunits of Mediator in root
development and auxin signaling in Arabidopsis. While
med8 mutants did not show any evident alteration of root
architecture, the pft1 mutants had increased primary root
growth and root branching. Analysis of the cell cycle
marker CycBI:uidA, cell size measurements, auxin
transport, and auxin-responsive reporter gene expression
in pft1-2 and 355:PFT1 seedlings before and after treat-
ments with IAA, NAA, and the auxin transport inhibitor
1-N-naphthylphthalamic acid (NPA) further indicated
that the Mediator subunit PFT1/MED25 acts as a nega-
tive regulator of cell proliferation, lateral root formation,
auxin transport, and auxin-responsive gene expression in
Arabidopsis.

RESULTS

The PFT1/MED25 Subunit of Mediator Regulates Root
Architecture in Arabidopsis

To determine the participation of the two subunits of
Mediator, MED8 and PFI1/MED?25, as regulators of
Arabidopsis root architecture, we compared root growth
phenotypes of the wild type (Columbia-0 [Col-0]), pft1-2
and med8 single mutants, the pft1 med8 double mutant, as
well as pft1-1 mutants that were transformed with a ge-
nomic copy of PFT1 (G1 complementation line [gPFT1];
Cerdan and Chory, 2003) and PFT1/MED25 over-
expression seedlings (355:PFT1). The seedlings were
grown on agar-solidified 0.2X Murashige and Skoog
(MS) medium, and primary root lengths and lateral root
numbers and lengths were quantified 8 d after germi-
nation. We found that pft1-2 and pft1 med8 seedlings had
longer primary roots than wild-type seedlings, whereas
med8 and gPFT1 plants were not affected in primary root
growth (Fig. 1A). In contrast, 355:PFT1 plants had shorter
primary roots than wild-type plants (Fig. 1A). Interest-
ingly, pft1-2 and pft1 med$§ seedlings showed nearly 2-fold
increases in lateral root numbers and lateral root lengths
when compared with wild-type, gPFT1, and med8 seed-
lings (Fig. 1, B-D). In contrast, 355:PFT1 seedlings
showed fewer and shorter lateral roots than wild-type
and gPFT1 seedlings (Fig. 1, B-D). An increase in pri-
mary root growth and lateral root formation in pft1-1,
pft1-2, and pft1-3 mutants relative to the wild type
was confirmed in additional experiments (Supplemental
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Figure 1. PFT1/MED25 regulates root
system architecture in Arabidopsis. Wild-
type (Col-0), pfti-2, gPFT1, 35S.PFTI,
med8, and pftl med8 seeds were ger-
minated and seedlings were grown for
8 d on agar-solidified 0.2X MS medium.
A, Primary root length. B, Lateral root
number. C, Lateral root length. Root traits
were scored as indicated in “Materials
and Methods.” Error bars represent se
from 30 seedlings. Different letters indi-
cate statistical differences at P < 0.05. D,
Photographs of representative wild-type
(Col-0), pfti-2, gPFT1, 35S:PFT1, med8,
and pft1 med8 seedlings. Note that an
opposite response is seen in lateral root
formation and lengths between the
pft1-2 mutant and PFTT-overexpressing
seedlings. The experiment was repeated
twice with similar results. Bar = 1 cm.
[See online article for color version of
this figure.]

Fig. S1). Together, these results indicate that PFT1/MED25
regulates root system architecture in Arabidopsis.
Adventitious roots originate from stem tissue and
provide an increased ability for the plant to explore soil
for water and nutrients. To evaluate the participation of
PFT1/MED25 and MEDS in adventitious root formation,
we obtained stem explants from wild-type, pft1-2, 35S:
PFT1, med8, and pft1 med8 seedlings grown in dark con-
ditions. These explants were cultured for 5 d over the
surface of petri plates containing agar-solidified 0.2X MS
medium, and both first- and second-order adventitious
roots were quantified. In these experiments, pft1-2 and pft1
med8 seedlings had 2- and 5-fold increases in first- and
second-order adventitious root numbers, respectively,
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when compared with wild-type seedlings, while the for-
mation of second-order adventitious roots was drastically
reduced in 355:PFT1 seedlings (Supplemental Fig. S2).
These results suggest that PFT1/MED25 also regulates
processes associated with adventitious root development
in Arabidopsis.

PFT1/MED25 Controls Cell Division and Elongation

Primary root growth depends on two basic processes:
cell division in the root apical meristem and elongation of
divided cells that subsequently leave the root meristem
(Blilou et al., 2002). Because root architecture was altered
in pftl mutants, we next explored the role of PFT1/
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MED25 on cell division and elongation of primary and
lateral roots. For this aim, we crossed pft1-2 and 355:PFT1
plants with Arabidopsis plants expressing the cell cycle
marker CycBI:uidA (Colén-Carmona et al., 1999), which
monitors cell cycle progression in the root meristem. We
found that pft1-2/CycB1:uidA root meristems contain 40%
more dividing cells than wild-type meristems, as revealed
by the increased numbers of blue spots in the GUS ex-
pression domain of pft1-2/CycB1:uidA primary root mer-
istems (Fig. 2, A and D), which were also larger than
CycBl:uidA and 35S:PFT1/CycBl:uidA root meristems
(Fig. 2B). In contrast, 35S:PFT1/CycB1:uidA seedlings had
fewer dividing cells and smaller root meristems than
CycB1:uidA seedlings (Fig. 2, A, B, and D). Contrasting
expression of CycB1:uidA was also observed in emerged
lateral roots of pft1-2/CycBl:uidA and 35S:PFT1/CycBI:
uidA seedlings (Supplemental Fig. S3). To determine the
involvement of PFT1/MED25 in cell elongation, we
measured fully developed cortical cells of the primary
and lateral roots of CycBIl:uidA, pft1-2/CycBl:uidA, and
355:PFT1/CycB1:uidA seedlings and found that cortical
cells of pft1-2/CycB1:uidA seedlings were, on average, 15%
longer than those of CycBl:uidA seedlings (Fig. 2C;
Supplemental Fig. S3). In contrast, cortical cells of 35S:
PFT1/CycBl:uidA seedlings were significantly shorter
than those of pft1-2/CycB1:uidA seedlings (Fig. 2C). Taken
together, these data indicate that PFT1/MED25 acts as a
repressor of cell division and elongation during primary
and lateral root growth in Arabidopsis.

PFT1/MED25 Regulates LRP Development through
Auxin Signaling

To understand the role played by PFT1/MED25 during
lateral root formation and its possible relationship with
auxin signaling, which regulates this organogenesis pro-
cess, we analyzed LRP originating from the primary roots
of wild-type, pft1-2, and 35S:PFT1 seedlings, according to
Malamy and Benfey (1997). In 7-d-old pft1-2 roots, the
number of stage I and II LRP were 2-fold higher than in
wild-type roots (Fig. 3), suggesting that pft1-2 primary
roots are more branched because they produce more de
novo LRP from pericycle cells. Given that lateral root
formation is a process regulated by auxin signaling, we
then evaluated the expression of the auxin-responsive
marker DR5:uidA during LRP development in DR5:uidA,
pft1-2/DR5:uidA, and 355:PFT1/DR5:uidA seedlings. DR5:
uidA expression in pft1-2/DR5:uidA seedlings was stronger
at all LRP developmental stages and in mature lateral
roots than in DR5:uidA and 355:PFT1/ DRb5:wuidA seed-
lings (Supplemental Figs. S4 and S5). These data suggest
that PFT1/MED25 modulates lateral root formation by
regulating auxin signaling during LRP development.

PFT1/MED25 Regulates Auxin-Responsive Reporter Gene
Expression in Roots and Shoots

Auxin signaling has been implicated in many devel-
opment processes in both root and shoot systems. To
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Figure 2. PFT1/MED25 represses cell division and elongation in pri-
mary root apical meristems. Wild-type (Col-0), pft1-2, and 35S:PFT1
Arabidopsis seeds harboring the CycB1:uidA gene construct were ger-
minated and seedlings were grown for 7 d on agar-solidified 0.2X MS
medium. A, Number of GUS-positive spots per root meristem. B and C,
Meristem length (B) and cortical cell length (C) were scored as indicated
in “Materials and Methods.” D, Primary roots of young seedlings were
stained for GUS activity and cleared to show the expression of CycB1:
uidA. Photographs show representative individuals from 15 GUS-
stained seedlings. Error bars represent st from 15 GUS-stained seedlings
analyzed. Different letters indicate means statistically different at P <
0.05. The experiment was repeated two times with similar results. Bar =
100 um. [See online article for color version of this figure.]

determine whether PFT1/MED25-mediated alterations in
auxin responses could also occur in other plant tissues, we
evaluated reporter gene activity in wild-type as well as
pft1-2 and 35S:PFT1 seedlings harboring the DR5:GFP,
DRb5:uidA, or BA3:uidA gene construct. First, seedlings
harboring the DR5:GFP construct were grown for 7 d on
agar-solidified 0.2X MS medium with or without 60 nm
IAA, and different parts of the plants, including root tips,
vascular tissues, and root/shoot transition zones, were
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Figure 3. PFT1/MED25 modulates LRP formation. Wild-type (Col-0),
pft1-2, and 35S:PFT1 Arabidopsis seeds were germinated and seed-
lings were grown for 7 d on agar-solidified 0.2 X MS medium and the
development of root primordia was evaluated. A, LRP per plant. B, LRP
density (LRP per cm). LRP stages were recorded according to Malamy
and Benfey (1997). Error bars represent st from 15 GUS-stained
seedlings analyzed. Different letters indicate statistical differences
at P < 0.05. The experiment was repeated two times with similar
results.

analyzed by confocal microscopy. GFP expression was
higher in pft1-2/DR5:GFP but lower in 355:PFT1/DR5:GFP
in all three regions analyzed (Fig. 4). Exogenous auxin
further induced GFP expression in pft1-2/DR5:GFP and
DRb5:GFP, while no such induction was evident in 358S:
PFT1/DR5:GFP seedling roots (Fig. 4). We next analyzed
the DRb5:uidA-driven GUS activity in cotyledons, young
leaves, shoot meristems, the stem/root transition zone,
and the primary root tip. GUS activity was present in the
primary root tip region and in leaves of untreated DR5:
uidA seedlings (Supplemental Fig. S6). However, an in-
crease in GUS activity was evident in most tissues of pft1-
2/DR5:GUS seedlings, including cotyledons, petioles, the
stem/root transition zone, lateral roots, and primary root
tips. In contrast, GUS activity was much lower in 355:PFT1
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seedlings than in DR5:GUS and particularly in pft1-2/
DR5:GUS in all tissues analyzed (Supplemental Fig. S6).

PFT1/MED25 Regulates the Auxin Response

The observation of contrasting root growth pheno-
types resulting from the loss and gain of PFT1/MED25
function, together with the contrasting expression of
auxin reporter genes in pft1-2 and 355:PFT1 seedlings,
suggest a role for PFT1/MED25 in the auxin signaling
pathway. As IAA is a major regulator of root architec-
ture, PFT1/MED25-mediated effects in root development
could be due to potential alterations in auxin biosynthe-
sis, auxin transport, and/or auxin response. To deter-
mine whether pft]1 mutants could overaccumulate auxin,
we first measured free IAA levels in wild-type, pft1-2,
and 355:PFT1 whole seedlings by gas chromatography-
mass spectrometry. No significant differences in auxin
accumulation were observed between wild-type, pft1-2,
and 355:PFT1 seedlings (Supplemental Fig. S7), sug-
gesting that PFT1/MED?25 is not a regulator of auxin
biosynthesis.

To assess whether the observed root phenotypes could
be due to changes in auxin-responsive gene expression,
we performed experiments with wild-type, pft1-2, and
355:PFT1 seedlings harboring the DR5:uidA or BA3:uidA
gene construct after treatments with IAA. Arabidopsis
seedlings were grown for 7 d on 0.2X MS medium so-
lidified with agar and then transferred to liquid 0.2X MS
medium supplemented with either the solvent only or
different concentrations of IAA and incubated for 8 h at
22°C. In solvent-treated DR5:uidA seedlings, GUS ex-
pression was present in leaves and primary roots (Fig. 5).
As expected, DR5:uidA seedlings treated with IAA
showed a dose-dependent increase in GUS activity (Fig. 5).
In contrast, the GUS activity in response to IAA was
higher and lower in pft1-2/DR5:uidA and 355:PFT1/DRb:
uidA seedlings, respectively, than in DR5:uidA (Fig. 5).

We further evaluated the IAA response in wild-type,
pft1-2, and 355:PFT1 seedlings harboring the BA3:uidA
marker. We found that this marker is strongly expressed
in petioles and vascular tissues of pft1-2/BA3:uidA seed-
lings under standard growth conditions (Supplemental
Fig. S8). In response to IAA, pft1-2/BA3:uidA even
showed a stronger GUS activity than the wild type in
petioles, vascular tissues, and primary root elongation
zones (Supplemental Fig. S8). In contrast, 355:PFT1/BA3:
uidA seedlings showed a weaker GUS activity than BA3:
uidA in petioles and primary roots both in the absence of
any treatment and in response to IAA (Supplemental Fig.
S8). These results indicate that PFT1/MED25 modulates
the auxin response in Arabidopsis.

PFT1/MED25 Affects Lateral Root Formation
in Response to Auxin

Auxin has been shown to inhibit the elongation of the
primary root and to stimulate lateral root formation,
whereas auxin transport inhibitors (e.g. NPA) antagonize
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Figure 4. PFT1 modulates auxin-responsive gene expression. Wild-type, pft1-2, and 355:PFT1 seeds harboring the DR5: GFP gene
construct were germinated and seedlings were grown for 7 d in agar-solidified 0.2X MS medium and then transferred for 8 h to
liquid medium supplemented with or without IAA. Photographs show representative individuals of at least 15 seedlings analyzed
by confocal microscopy. Note that pft7-2 and 355:PFT1 seedlings show stronger and weaker DR5: GFP reporter expression, re-
spectively, than wild-type seedlings in all regions analyzed. Bars = 100 um. [See online article for color version of this figure.]

lateral root formation (Blakely et al., 1988; Muday and
Haworth, 1994; Casimiro et al., 2001). To determine
whether auxin transport is an important determinant of
the root developmental changes mediated by PFI1/
MED25, we evaluated root architectural responses of
wild-type, pft1-2, and 355:PFT1 seedlings grown on petri
plates containing 0.2X MS medium supplied with low
concentrations of NAA, a synthetic auxin that enters the
root cells via diffusion. Primary root growth was simi-
larly inhibited in wild-type and pft1-2 seedlings in re-
sponse to 5 to 30 nM NAA (Fig. 6A). Interestingly, pft1-2
seedlings showed an increased response to NAA, as
evidenced by 2- to 3-fold increases in the number and
density of lateral roots in all evaluated NAA concentra-
tions (Fig. 6, B-D). In contrast, in response to NAA, 35S:
PFT1 seedlings produced lower numbers and density of
lateral roots than wild-type and pft1-2 seedlings (Fig. 6,
B-D). When the lateral root data are normalized to the
value obtained in the untreated control for each geno-
type, the fold increases in lateral root numbers appear
clearly different in all three genotypes, with a nearly
2-fold higher relative lateral root formation in pft1-2
seedlings than in the wild type (Fig. 6C). Together, these
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observations suggest that PFT1/MED25 regulates peri-
cycle cells to divide in response to auxin.

PFT1/MED25 Regulates the Expression and Distribution of
the Auxin Transporter PIN1

Auxin positively influences the PIN family of auxin
transporters in a tissue-specific manner through an
AUX/IAA-dependent signaling pathway (Vieten et al.,
2005). PIN1 and PIN2 play important roles in lateral root
formation and auxin-mediated gravitropism, respectively
(Benkova et al.,, 2003). To test whether PFT1/MED25
could regulate primary root growth and/or lateral root
formation through differential expression of PIN1 or
PIN2, we analyzed the spatial pattern of PIN1 and PIN2
localization in wild-type, pft1-2, and 355:PFT1 seedlings.
In primary roots of seedlings expressing PIN1::PIN1:GFP
(Vieten et al., 2005), the GFP fluorescence was detected in
the stele and endodermis cells (Fig. 7A). In pft1-2 primary
roots, the GFP fluorescence was stronger than in PINT:
PIN1:GFP and extended toward the root differentia-
tion zone (Fig. 7B), while in 355:PFT1 seedlings, GFP
fluorescence was weaker than in PIN1::PIN1:GFP and
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Figure 5. Effects of IAA on auxin-responsive reporter gene expression in wild-type, pft1-2, and 355:PFT1 seedlings. Wild-type,
pft1-2, and 35S:PFTT seeds harboring the DR5:uidA gene construct were germinated and seedlings were grown for 7 d in agar-
solidified 0.2X MS medium and then transferred for 8 h to liquid medium supplemented with or without IAA. Photographs show
representative individuals of at least 15 GUS-stained seedlings analyzed. Note that pft7-2 and 355:PFT1 seedlings show stronger
and weaker GUS activity, respectively, than wild-type seedlings. Bars = 200 um. [See online article for color version of this figure.]

pft1-2/PIN1::PINI:GFP and remained somewhat re-
stricted (Fig. 7C). An analysis of PIN1 localization dur-
ing lateral root initiation showed that in wild-type
plants, stage V and VII primordia displayed the typical
localization of PIN1 in most external cell layers, while
increased and decreased PIN1 expression was evident in
stage V and VII primordia of pft1-2/PIN1::PIN1:GFP and
355:PFT1/PIN1::PIN1:GFP seedlings, respectively (Fig. 7,
D-I). In contrast to the differential expression of PIN1 in
pftl, PIN2 expression was similarly detected in cortex
and epidermal cells of wild-type, pft1-2, and 355:PFT1
primary roots (Supplemental Fig. S9). These findings
suggest that PFT1/MED25 specifically regulates the ex-
pression and distribution of the PIN1 auxin transporter.

PFT1/MED25 Modulates the Response of Root
Architecture to NPA

To further analyze the participation of PFT1/MED25
in auxin transport, we evaluated the effects of the polar
auxin transport inhibitor NPA on root architecture in
wild-type, pft1-2, and 355:PFT1 seedlings. Arabidopsis
seedlings were grown side by side for 8 d on agar plates

886

containing 0.2X MS medium supplied either with 0.25
to 4 um NPA or without NPA.

NPA at 4 um inhibited primary root growth approxi-
mately 60% in wild-type seedlings when the data for root
lengths were normalized to the values obtained in their
untreated counterparts. Relative to the response we ob-
served in wild-type seedlings, pft1-2 seedlings showed
reduced responses to 2 and 4 um NPA (Fig. 8A), while
355:PFT1 seedlings had a wild-type-like response (Fig.
8A). As expected, NPA dramatically inhibited lateral root
formation in wild-type seedlings (Fig. 8, B-D). However,
lateral root formation in pft1-2 seedlings was less sensi-
tive while in 355:PFT1 seedlings it was more sensitive to
NPA than in the wild type. Together, these contrasting
responses of pftl-2 and 355:PFT1 seedlings to an IAA
efflux inhibitor in terms of both primary root growth and
lateral root formation suggest a role for PFT1/MED25 in
modulating auxin transport and response.

Root Architectural Responses of pftl and coil
Mutants to JA

Recent reports have shown that PFT1/MED25 is re-
quired for JA-mediated defense gene expression (Kidd
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et al., 2009). Because JA affects both auxin signaling and
root architecture (Raya-Gonzalez et al., 2012), it was im-
portant to test the function of PFT1/MED25 in JA-mediated
root architecture regulation. Primary root growth and
lateral root formation were analyzed in wild-type, pft1-2,
and coil-1 seedlings grown side by side. In these experi-
ments, pftl-2 showed a wild-type-like phenotype in its
relative response to JA inhibition of primary root growth
(Fig. 9, A and B). Also, a similar increase in lateral root
numbers to wild-type seedlings in response to 4 um JA
was evident in pft1-2 seedlings (Fig. 9, C-E). In contrast, as
expected, coil-1 seedlings were highly resistant to primary
root inhibition and lateral root promotion by JA (Fig. 9, B
and E). Thus, these data show that PFT1/MED?25 likely
acts independently of the jasmonate receptor COI1 and JA
to regulate lateral root formation in Arabidopsis.

DISCUSSION
PFT1/MED25 Plays a Role in Root Development

The root system, which plays an important role in
anchoring the plant to the soil and in water and nutrient
acquisition, exhibits an amazing architectural diversity
manifested through changes in root hair, lateral root, and
adventitious root formation and primary root growth
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Figure 6. Effects of NAA on root system
architecture of wild-type (Col-0), pfti-2,
and 35S:PFT1 seedlings. Arabidopsis
seeds were germinated and seedlings
were grown for 7 d with or without
NAA. A, Relative primary root growth.
B, Lateral root number. C, Relative lat-
eral root formation (fold induction). D,
Lateral root density. Primary root lengths
at 0 nm NAA were 26 mm for Col-0, 30
mm for pft1-2, and 19 mm for 35S:PFT1.
Error bars represent st from 15 seedlings.
Different letters indicate statistical differ-
ences at P < 0.05. The experiment was
repeated two times with similar results.

(Lépez-Bucio et al., 2003; Nibau et al., 2008). Engineering
of the root architecture of crop plants can be of value for
increasing plant stress tolerance, but this requires a
thorough understanding of complex and interacting en-
dogenous and exogenous factors that control individual
aspects of root system configuration.

In this study, we investigated possible roles of MED8
and PFT1/MED25 Mediator subunits as regulators of
the root system architecture of Arabidopsis seedlings.
To the best of our knowledge, the Mediator complex
has not been implicated so far in lateral root develop-
ment and auxin signaling, despite its requirement as
an essential component of gene transcription in all
eukaryotes. Our results show that while med8 single
mutants had root architecture similar to wild-type
seedlings, the loss and gain of function of PFT1/MED25
showed opposite effects on lateral and adventitious root
development and on primary root growth, indicating that
PFT1/MED25 functions as a key modulator of cellular
processes that control root architecture configuration.

The root phenotypes observed in pfi1-2 and 355:PFT1
seedlings correlated with changes in CycBI1:uidA expres-
sion and cell expansion in primary and lateral roots (Fig. 2;
Supplemental Fig. S3). Therefore, it is plausible that PFT1/
MED25 regulates root development by inhibiting cell di-
vision and expansion in the roots. Through microarray
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Figure 7. PINT expression in wild-type, pfti-2,
and 35S:PFT1 seedlings. PINT::PINT::GFP, pftl-
2/PINT::PINT::GFP, and 35S:PFT1/PINT::PINT::
GFP seeds were germinated and seedlings were
grown on agar-solidified 0.2X MS medium. Seven
days after germination, the seedlings were stained
with propidium iodide and analyzed by confocal
microscopy. A to C, Primary root apical meri-
stems. D to F, Stage V LRP. G to I, Stage VII LRP.
Representative photographs of primary roots and
LRP are shown (n = 10). Note the increase and
decrease of PINT::PINT::GFP in pft1-2 and 35S:
PFT1 backgrounds, respectively. Bars = 100 pm.
[See online article for color version of this figure.]

Stage V
LRP

LRP

analyses conducted on wild-type and pft1 roots, Sundar-
avelpandian et al. (2013) found that the genes implicated
in growth- and cell cycle-associated processes were dif-
ferentially expressed between pft1-2 and wild-type seed-
lings. For instance, the genes associated with the indole
butyric acid-related processes were found to be differen-
tially expressed in pft1 roots. In the light of our results, this
is of particular interest, as genetic evidence in Arabidopsis
suggests that indole-3-butyric acid converted into IAA by
peroxisomal B-oxidation plays an important role in root
hair formation and other developmental events by regu-
lating cell expansion (Strader et al., 2010). Recently, Xu and
Li (2011), through the use of transgenic Arabidopsis plants
harboring the MED25 promoter:GUS fusion (pMED25::
GUS) construct, showed that MED25 is expressed
throughout the plant. The expression of PFT1/MED?25 in
roots is particularly relevant to our findings, which suggest
that both cell proliferation and elongation are affected by
PFT1/MED25 in the Arabidopsis root system. Also, given
that PFT1/MED25 was first described as a positive regu-
lator of shade avoidance and later as a regulator of basal
defense and abiotic stress responses (Cerdan and Chory,
2003; Backstrom et al., 2007; Wollenberg et al., 2008; Kidd
et al., 2009; Elfving et al., 2011; Chen et al., 2012), it seems
likely that PFT1/MED25 represents a molecular node for
the integration of distinct environmental and develop-
mental cues.

The PFT1/MED25 protein is highly conserved across
diverse eukaryotes. Remarkably, MED25 in other eu-
karyotes is also associated with several developmental
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processes. For example, the RNA interference-mediated
suppression of MED25 expression in D. melanogaster re-
sults in the failure of extension of some axons that affect
the embryonic nervous system (Koizumi et al., 2007). In
zebrafish, morpholino-mediated knockdown of MED25
induces palatal malformation, suggesting an important
role for MED25 in cartilage development (Nakamura
et al., 2011). Remarkably, through the characterization of
mutants and complemented and overexpressing lines of
PFT1/MED?25, we obtained evidence in this study that
PFT1/MED25 functions in the development of organs
and tissues ubiquitous to plants, such as lateral and ad-
ventitious roots.

PFT1/MED25 Is a Negative Regulator of LRP Development

Lateral root formation is initiated when the pericycle
cells respond to auxin and acquire the status of founder
cells and, through subsequent asymmetric cell divisions,
give rise to new LRP (Boerjan et al., 1995; Malamy and
Benfey, 1997; Dubrovsky et al., 2008). The loss of PFT1/
MED25 function leads to the formation of increased
numbers of LRP, particularly in stages I and II. In contrast,
the overexpression of PFT1/MED25 resulted in decreased
primordium formation (Fig. 3). These results indicate that
PFT1/MED25 modulates root branching in Arabidopsis
by inducing the de novo formation of LRP from pericycle
cells. Kidd et al. (2009) showed that pft]1 seedlings form
more rosette leaves than wild-type plants. In plants, lateral
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root formation and leaf development are both regulated
by auxin. Increased and reduced lateral root formation in
pftl-2 and 35S:PFT1 seedlings, respectively, were corre-
lated with alterations in DR5:uidA-driven reporter gene
activity detected in all stages of LRP and emerged lateral
roots (Supplemental Fig. 54). Benkova et al. (2003) showed
that auxin accumulates at developing primordia. Subse-
quently, an auxin gradient is established with its maxi-
mum at the tip of the forming lateral root, in which the
auxin transporter PIN1 plays an important role (Benkova
et al., 2003). Therefore, both increased distribution of auxin
from producing cells and efficient transport by PIN1 may
explain why the pft1-2 mutant shows accelerated lateral
root formation and greater proliferative capacity in peri-
cycle cells than wild-type seedlings. Our results indicate
that PFT1/MED25 negatively regulates lateral root initia-
tion and development, probably by modulating an initial
step required for the establishment of an auxin response
maximum in lateral root founder cells.

PFT1 Modulates Auxin-Inducible Gene Expression

The plant growth hormone auxin has been implicated
in regulating many developmental and cellular processes
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Figure 8. Effects of NPA on root ar-
chitecture in wild-type (Col-0), pfti-2,
and 35S:PFT1 seedlings. Arabidopsis
seeds were germinated and seedlings
were grown for 8 d with or without
NPA. A, Relative primary root growth.
B, Lateral root number. C, Relative lat-
eral root formation. D, Lateral root
density. Primary root lengths at 0 um
NPA were 38 mm for Col-0, 40 mm for
pfti-2, and 27 mm for 35S:PFT1. Error
bars represent se from 15 seedlings.
Different letters indicate statistical dif-
ferences at P < 0.05. The experiment
was repeated three times with similar
results.

by altering basic patterns of gene expression (Kende and
Zeevaart, 1997). The availability of well-established
auxin markers such as DR5:GFP, DR5:uidA, and BA3:
uidA provides important genetic tools to study the in-
volvement of auxin signaling in plant development, as
different markers show different sensitivities to endoge-
nous and applied auxins. Importantly, we found differ-
ential expression of all three markers, DR5:GFP, DRb:
uidA, and BA3:widA, in pftl-2 and 35S5:PFT1 seedlings
(Fig. 4; Supplemental Figs. S5 and S6). These results in-
dicate that PFT1/MED25 might regulate either auxin
distribution and/or response. PFT1/MED25 was initially
identified as a nuclear protein that acts in the phyto-
chrome B pathway that induces flowering in response to
suboptimal light conditions. pftI mutants display defects
in hypocotyl elongation under both red and far-red light
conditions (Cerddn and Chory, 2003). The involvement
of auxin in photomorphogenesis, including the shade
avoidance response, has long been known (Shinkle et al.,
1998; Steindler et al., 1999; Gil et al., 2001). It is note-
worthy that axr1, doc1/tir3, and other auxin-related mu-
tants with altered responses to light and shade avoidance
manifest important alterations in root system architec-
ture, including root hair and lateral root formation
(Lincoln et al., 1990; Pitts et al., 1998; Lépez-Bucio et al.,
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Figure 9. Effects of JA on root development of
wild-type (Col-0), pfti-2, and coil-1 seed-
lings. Wild-type and pft1-2 seeds were ger-
minated and seedlings were grown for 4 d on
0.2X MS medium, and homozygous coil-1
seedlings were selected from a coil-1/COIT
segregating population in medium supple-
mented with 4 um JA. A, Four-day-old seed-
lings were transferred and grown side by side
over the surface of 0.2X MS agar plates sup-
plied or not with 4 um JA, and primary root
growth was measured every 2 d. B, Relative
primary root growth in response to 4 um JA. C,
Lateral root number. D, Relative lateral root
formation. Error bars represent s& from 15
seedlings. Different letters indicate statistical
differences at P < 0.05. E, Photographs of
representative wild-type, pfti-2, and coil-1
seedlings illustrating the phenotype in re-
sponse to JA. Relative primary root growth
and lateral root formation were analyzed 8 d
after transfer to JA. The experiment was re-
peated three times with similar results. Bar =
1 cm. [See online article for color version of
this figure.]

2005). The expression of AXR1 is localized to zones of
active cell division and elongation and in epidermal cells
that differentiate the root hairs. This expression pattern is
correlated with a defect in root hair elongation observed
in axr]l mutant seedlings (Pitts et al., 1998; del Pozo et al.,
2002). Therefore, it is possible that the altered auxin re-
sponses observed in the pftI mutant could contribute to
developmental phenotypes such as altered flowering
time, response to light quality, and root development.
Through an analysis of the microarray data reported
by Kidd et al. (2009), we identified several auxin-associated
genes, such as ANTHRANILATE SYNTHASE1 (ASAI),
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TRYPTOPHAN SYNTHASE BETA-SUBUNIT2, CHO-
RISMATE MUTASES3, several auxin-responsive GH3 family
genes, IAA17, AUX/IAA, an amino acid permease, and a
gene similar to AUX1 that were differentially expressed
between wild-type and pft1 seedlings. Although our anal-
yses did not show any alteration in free auxin levels in the
pft1-2 mutants (Supplemental Fig. S57), the gene expression
data are overall in agreement with the detailed experiments
reported here, with the plants expressing well-established
auxin reporters in pft1 and 355:PFT1 backgrounds.

The phytohormone JA is a crucial component of the
plant defense signaling system. JA and its metabolites,
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collectively called jasmonates, are lipid-derived signals
produced during defense responses against insects and
pathogens but also under exposure to ozone, UV light,
wounding, and other abiotic stresses (Wasternack,
2007). Reduction in root growth and carbon allocation
patterns in several plant species upon mechanical
wounding or by herbivory was ascribed to JA. In
Arabidopsis, treatment with jasmonates strongly in-
hibits primary root growth and promotes lateral root
formation (Sun et al., 2009; Raya-Gonzalez et al., 2012).
JA promoted lateral root formation through auxin
biosynthesis and transport by directly inducing the
auxin biosynthesis gene ASAI1 (Sun et al, 2009).
Emerging evidence suggests that jasmonate and auxin
signaling contain many common components (for re-
view, see Cuéllar Pérez and Goossens, 2013). How-
ever, the exact cellular/tissue responses to jasmonates
during Arabidopsis root system remodeling are cur-
rently not understood. Given the involvement of
PFT1/MED?2S5 in the regulation of both JA (Kidd et al.,
2009) and auxin responses (this study), it was impor-
tant to test the function of this protein in JA-mediated
root architecture. A comparison of the root architecture
of wild-type, pft1-2, and coil-1 seedlings indicates that
the increased lateral root formation in pft1-2 is likely
independent of COI1 and JA signaling, in which a loss-
of-function mutation in COI1 renders the plants highly
resistant to JA in both primary root growth inhibition
and lateral root formation (Fig. 9).

It is worth noting that auxin itself positively feeds back
on PIN gene expression in a tissue-specific manner
through an AUX/IAA-dependent signaling pathway.
Vieten et al. (2005) suggested a positive effect of IAA on
PIN1 expression. Our data suggest that both auxin re-
sponse and transport rather than auxin accumulation
might be important factors involved in root system re-
modeling in pft] mutants. Indeed, an analysis of the
spatial pattern and abundance of PIN1 localization in the
wild type, pft1-2, and 355:PFT1 revealed an increased
GFP fluorescence in the stele and endodermal cells of
pft1-2 primary roots (Fig. 7, A-C) and in LRP (Fig. 7,
D-I). In contrast, PIN2 was detected only in the cortex
and epidermal cells in a similar manner in wild-type,
pft1-2, and 355:PFT1 primary roots (Supplemental
Fig. S9). These findings suggest that PFT1/MED25
regulates the expression and distribution of the PIN1
auxin transporter and may explain why pft1 seedlings
show an amplified response to exogenous auxin based
on enhanced auxin-responsive gene expression and as-
sociated root developmental phenotypes. These results
are also informative in explaining why pft1 seedlings are
more resistant than the wild type and 355:PFT1 to NPA-
mediated inhibition of lateral root formation.

PFT1 Regulates Lateral Root and Root Hair Formation
through Different Mechanisms

Auxin is important for a multitude of physiological
processes and regulates plant development through its
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biosynthesis and transport. The ability of plant cells
to respond to this phytohormone in an appropriate
manner is also critical for auxin-mediated plant devel-
opment (Okushima et al, 2007). Our analysis by gas
chromatography-mass spectrometry revealed that PFT1/
MED?25 is unlikely to be involved in general auxin bio-
synthesis (Supplemental Fig. S7). The activity of the DR5:
GFP and DR5:uidA markers may not necessarily reflect
global auxin levels but the sensitivity of tissues to [AA or
other auxins (Benkové et al., 2003). Our results suggest
that auxin distribution and/or response could be in-
volved in the activation of auxin-inducible genes in-
volved in lateral root formation modulated by PFT1/
MED?25. Detailed analysis of DR5:uidA and BA3:uidA in
the wild type, pft1-2, and 35S:PFT1 in response to IAA
revealed that pftl-2 and 355:PFT1 were more sensitive
and resistant, respectively, to auxin (Fig. 5; Supplemental
Fig. 58). This indicates that PFT1/MED25 modulates the
auxin response rather than auxin biosynthesis and auxin
transport through the regulation of the PIN1 auxin
transporter. This hypothesis is supported by the finding
that pftl-2 and 355:PFT1 seedlings had opposite re-
sponses to NAA during lateral root formation (Fig. 6).
The increased and reduced NAA responses shown by
pft1-2 and 355:PFT1 seedlings, respectively, suggest that
PFT1/MED25 is a key element that controls pericycle cell
activation during lateral root formation, which is modu-
lated by the auxin signaling pathway. Similarly, 355:PFT1
seedlings showed developmental alterations and auxin-
responsive gene expression consistent with a decreased
auxin transport that correlates with their increased sen-
sitivity to NPA (Figs. 46 and 8). This suggests that
PFT1/MED25 might be involved in auxin transport,
possibly by mediating the transcriptional regulation and/
or distribution of PIN1 (Fig. 7).

In a recent work, Sundaravelpandian et al. (2013)
reported that PFT1/MED25 controls root hair differen-
tiation through reactive oxygen species distribution. Both
pft1-2 and pft1-3 Arabidopsis mutants showed a short-
root-hair phenotype that was correlated with perturba-
tions in hydrogen peroxide and superoxide distribution.
Supply of hydrogen peroxide or potassium cyanide
rescued the pftl mutant phenotype, indicating that
PFT1/MED25 regulates root hair differentiation through
reactive oxygen species. The short-root-hair phenotype
of pftl mutants could be reproduced in our research.
Furthermore, we also found that 35S:PFT1 shows the
opposite phenotype, with root hairs longer than wild-
type and pftl seedlings (Supplemental Fig. S10). Con-
sidering the positive effect of auxin on root hair growth
(Pitts et al., 1998), the short-root-hair phenotype of pft1
mutants indicates that the role of PFT1/MED25 in epi-
dermal cell differentiation most likely occurs through an
auxin-independent mechanism.

In conclusion, our results have shown that (1) gain and
loss of PFT1/MED25 function lead to opposite responses
in primary root growth and lateral and adventitious root
development; (2) PFT1/MED25 negatively regulates cell
division and elongation processes that are important in
modulating the configuration of the root system; (3)
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PFT1/MED25 regulates auxin-responsive gene expres-
sion during LRP development; and (4) PFI1/MED25
modulates auxin responses to endogenous and sup-
plied auxin and in lateral root formation, which seems to
be independent from JA signaling. Emerging evidence
indicates that PFT1/MED25 plays multiple roles in a
number of essential plant processes, including light sig-
naling and flowering time (Cerdan and Chory, 2003;
Wollenberg et al., 2008; Iiigo et al., 2012; Klose et al.,
2012), JA-mediated pathogen defense (Kidd et al., 2009),
organ growth (Xu and Li, 2011), abiotic stress (Elfving
et al., 2011), and JA and abscisic acid signaling (Cevik
et al., 2012; Chen et al., 2012). This is consistent with the
expectation that individual Mediator subunits recognize
and respond to a subset of the approximately 1,500
transcription factors present in the Arabidopsis genome.
Therefore, determining which transcription factor(s) in-
teracts with PFT1/MED25 to coordinate auxin responses
in pericycle cells should provide important information
about the roles of PFT1/MED25 and the Mediator
complex in root morphogenesis.

MATERIALS AND METHODS
Plant Material and Growth Conditions

Arabidopsis (Arabidopsis thaliana) Col-0, the transgenic Arabidopsis lines 355:
PFT1 (Cerdén and Chory, 2003), CycB1:uidA (Colén-Carmona et al., 1999), DRb5:
uidA (Ulmasov et al., 1997), DR5:GFP (Ottenschléger et al., 2003), BA3:uid A (Oono
et al., 1998), PIN1::PIN1::GFP (Benkova et al., 2003), and PIN2::PIN2::GFP (Blilou
et al, 2005), and the mutant lines pftl-1 (Cerdan and Chory, 2003), pft1-2
(SALK_129555), pft1-3 (SALK_059316), med8 (SALK_092406), pft1 med8 (Kidd
et al., 2009), and coil-1 (Feys et al., 1994) were used for the experiments reported
here. To generate the wild type, pft1-2, and 35S:PFT1 lines expressing auxin re-
porter gene constructs, crosses were made between the respective lines, and the
lines homozygous for both loci were used in subsequent experiments. Seeds were
surface sterilized with 95% (v/v) ethanol for 5 min and 20% (v/v) bleach for
7 min. After five washes in distilled water, seeds were germinated and grown on
agar plates containing 0.2X MS medium. The MS medium (Murashige and Skoog
Basal Salts Mixture; catalog no. M5524) was purchased from Sigma. Phytagar
(commercial grade) was purchased from Gibco-BRL. Plates were placed vertically
at an angle of 65° to allow root growth along the agar surface and to allow
unimpeded aerial growth of the hypocotyls. Plants were placed in a plant growth
chamber (Percival AR-95L) with a photoperiod of 16 h of light/8 h of darkness,
light intensity of 300 umol m > s, and temperature of 22°C.

Chemicals

TIAA, NAA, and NPA were purchased from Sigma and dissolved in di-
methyl sulfoxide. In control treatments, the solvents were used in equal
amounts as present in the greatest concentration of each compound tested.

Analysis of Growth

Arabidopsis root system and primary root meristem integrity were analyzed
with a stereoscopic microscope (Leica MZ6). All lateral roots emerged from the
primary root and observed with the 3X objective were taken into account for
lateral root number data. Images were captured with a Samsung SCC 131-A
digital color camera adapted to the microscope. Primary root length was deter-
mined for each root using a ruler. Lateral root number was determined by
counting the lateral roots per seedling, and lateral root density was determined
by dividing the lateral root number value by the primary root length values for
each analyzed seedling. For all experiments with wild-type and mutant lines, the
overall data were statistically analyzed using the SPSS 10 program. Univariate
and multivariate analyses with Tukey’s posthoc test were used for testing the
differences in growth and root development responses. Different letters were
used to indicate means that differ significantly (P < 0.05).

892

Determination of the Developmental Stages of LRP

LRP were quantified 7 d after germination. Seedling roots were first cleared
to enable primordia at early stages of development to be visualized and
counted. Each primordium was classified according to its stage of develop-
ment as reported by Malamy and Benfey (1997). The developmental stages are
as follows. Stage I, LRP initiation. In the longitudinal plane, approximately
eight to 10 short pericycle cells are formed. Stage II, the primordium is divided
into two layers by a periclinal division. Stage III, the outer layer of the pri-
mordium divides periclinally, generating a three-layer primordium. Stage IV,
a primordium with four cell layers. Stage V, the primordium is midway
through the parent cortex. Stage VI, the primordium has passed through the
parent cortex layer and penetrated the epidermis. It begins to resemble the
mature root tip. Stage VII, the primordium appears to be just about to emerge
from the parent root.

Histochemical Analysis

For histochemical analysis of GUS activity, Arabidopsis seedlings were in-
cubated overnight at 37°C in a GUS reaction buffer (0.5 mg mL ™' 5-bromo-4-
chloro-3-indolyl-8-p-glucuronide in 100 mm sodium phosphate, pH 7). The
stained plants were cleared and fixed with 0.24 N HCl in 20% (v/v) methanol and
incubated for 60 min at 62°C. The solution was substituted by 7% (w/v) NaOH in
60% (v/v) ethanol for 20 min at room temperature. Plants were dehydrated with
ethanol treatments at 40%, 20%, and 10% (v/v) for a 24-h period each and fixed in
50% (v/v) glycerol. The processed roots were placed on glass slides and sealed
with commercial nail varnish. For each marker line and each treatment, at least 15
transgenic plants were analyzed.

Propidium Iodide Staining and GFP Detection

For fluorescent staining with propidium iodide, plants were transferred
from the growth medium to 10 mg mL ™" propidium iodide solution for 1 min.
Seedlings were rinsed in water and mounted in 50% (v/v) glycerol on mi-
croscope slides. The same sample was recorded separately at wavelengths
specific to both propidium iodide fluorescence, with a 568-nm excitation line
and an emission window of 585 to 610 nm, and GFP emission, with a 500- to
523-nm emission filter (488-nm excitation line), using a confocal microscope
(Olympus FV1000), after which the two images were merged to produce the
final image.

Free IAA Determination

The determination of IAA was from whole plants grown on agar-solidified
0.2X MS medium for 10 d, and free IAA was quantified as described by Edlund
et al. (1995).

Supplemental Data
The following materials are available in the online version of this article.
Supplemental Fig. S1. PFT1/MED25 mutations affect root architecture.

Supplemental Fig. S2. PFT1/MED25 modulates adventitious root devel-
opment.

Supplemental Fig. S3. PFT1/MED25 represses cell division and elongation
in lateral roots.

Supplemental Fig. S4. PFT1/MED25 regulates auxin-responsive gene ex-
pression in young roots.

Supplemental Fig. S5. PFT1/MED25 modulates auxin responses in whole
plants.

Supplemental Fig. S6. PFT1/MED25 is involved in auxin responses in
roots and shoots.

Supplemental Fig. S7. IAA contents in Col-0, pft1-2, and 35S5:PFT1
seedlings.

Supplemental Fig. S8. PFT1/MED25 modulates auxin sensitivity.
Supplemental Fig. S9. PFT1/MED25 regulates PIN2 auxin transporter.
Supplemental Fig. S10. PFT1/MED?25 is involved in root hair formation.
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Supplemental Fig S1. PFT1 mutations affect root architecture in Arabidopsis. WT (Col-0),
pftl-1, pftl-2 and pftl-3 Arabidopsis seedlings were germinated and grown for 8 days on
agar solidified 0.2X MS medium. (A) Primary root length. (B) Lateral root number. Error
bars represent standard errors from 15 seedlings. Different letters indicate statistical
differences at P<<0.05. (C) Photographs of representative WT (Col-0), pftl-1, pftl-2 and
pftl-3 seedlings are shown. The experiment was repeated three times with similar results.
Scale bar = 1 cm.
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Supplemental Fig. S2. PFT1/MED25 is involved in adventitious root development in
Arabidopsis. WT (Col-0), pftl-2, 35S:PFT1, med8 and pftl med8 Arabidopsis seedlings
were germinated and grown in darkness for 5 d on the surface of agar plates containing
0.2X MS medium and hypocotyls explants were obtained. Hypocotyls explants were
transferred to 0.2X MS medium and 6 d after the transfer adventitious root formation
recorded. (A) Adventitious root numbers. (B) Second order adventitious root numbers.
Error bars represent standard errors from 15 seedlings. Different letters indicate statistical
differences at P<0.05. (C) Photographs of representative WT (Col-0), pftl-2, 35S:PFT1,
med8 and pftl med8 seedlings. The experiment was repeated two times with similar results.
Scale bar = 1 cm.
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Supplemental Fig. S3. PFT1/MED2S5 represses cell division and elongation in lateral root
meristems. WT (Col-0), pftl-2 and 35S:PFT1 Arabidopsis seedlings harboring the
CycB1:uidA gene construct were germinated and grown for 7 days on agar solidified 0.2X
MS medium. (A) Number of GUS positive spots/root meristem. (B) Meristem lengths and
(C) Cortical cell lengths were scored. (D) Lateral roots were stained for GUS activity and
cleared to show the expression of CycBl:uidA. Photographs show representative
individuals from at least 15 GUS-stained seedlings. Error bars represent standard errors
from 15 GUS-stained seedlings analyzed. Different letters indicate means statistically
different (P<0.05). The experiment was repeated two times with similar results. Scale bar
=100 pm.
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Supplemental Fig. S4. DR5:uidA expression in lateral root primordial (LRP) in WT, pft1-2
and 35S:PFT1 seedlings. Arabidopsis seedlings were grown 7 d on agar solidified 0.2X MS
medium. The LRPs from DR5:uidA expressing WT, pftl-2, and 35S:PFT1 seedlings
stained twelve hours for GUS activity are shown. LRP stages were recorded according to
Malamy and Benfey (1997). Note that GUS activity from DR5:uidA is stronger in LRPs
and emerged lateral roots from pftl-2 than WT, whereas an opposite response is seen in
35S:PFT1 primordia The photographs show representative individuals of at least 15-GUS
stained seedlings analyzed. The experiment was repeated twice with similar results. LR=
Lateral root. Scale bar = 100 um.
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Supplemental Fig. S5. DR5:uidA expression in WT, pftl-2 and 35S:PFT1 whole
seedlings. DR5:uidA, pftl-2/DR5:uidA and 35S:PFT1/DR5:uidA Arabidopsis seedlings
grown for 9 days on agar plates containing 0.2X MS medium were stained twelve hours for
GUS. Photographs are representative individuals of at least 15 GUS stained seedlings. Note
opposite response between pftl-2 and 35S:PFT1 seedlings on DR5:uidA expression and
LRP formation. The experiment was repeated three times with similar results.
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Supplemental Fig. S6. Auxin-regulated reporter gene expression in WT, pftl-2 and
35S:PFT1 seedlings. DR5:uidA, pft1-2/DR5:uidA and 35S:PFT1/DR5:uidA Arabidopsis
seedlings were grown for 7 days on agar solidified 0.2X MS medium and stained twelve
hours for GUS. Photographs show representative individuals of at least 15 GUS-stained
seedlings analyzed. Note that pftl-2 and 35S:PFT1 seedlings show stronger and weaker
GUS activity, respectively, than WT seedlings. Scale bar = 200 pum.

61



Supplemental Fig. S7. Determination of IAA content from WT (Col-0), pftl-2 and
35S:PFT1 Arabidopsis seedlings by GC-MS. Arabidopsis seedlings were germinated and
grown for 10 days in 0.2X MS medium and harvested for IAA quantification as explained
in Materials and Methods.
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Supplemental Fig. S8. Effects of IAA on auxin-responsive reporter gene expression in
WT, pftl-2 and 35S:PFT1 Arabidopsis seedlings. WT, pftl-2 and 35S:PFT1 seedlings
harboring the BA3:uidA gene construct were germinated and grown for 7 d in agar-
solidified 0.2X MS medium and then transferred for 8 h to liquid medium either without
IAA or supplemented with increasing IAA concentrations before stained for GUS activity.
Photographs are representative individuals of at least 15 GUS-stained seedlings. Scale bar =
200 pm.
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PIN2::PIN2::GFP pft1-2/PIN2::PIN2::GFP  35S:PFT1/PIN2::PIN2::GFP

Supplemental Fig. S9. PIN2 expression in WT, pftl-2 and 35S:PFT1 seedlings.
PIN2::PIN2::GFP, pft1-2/PIN2::PIN2::GFP and 35S:PFT1/PIN2::PIN2::GFP were
germinated and grown on agar solidified 0.2X MS medium. Seven days after germination
the seedlings were stained with PI and analyzed by confocal microscopy to visualize the
PIN2 expression in primary root apical meristem. Representative photographs of primary
roots from 10 seedlings analyzed. Scale bar = 100 pm.
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Supplemental Fig. S10. PFT1/MED25 is involved in root hair formation in Arabidopsis.
WT (Col-0), pftl-2, 35S:PFT1, med8 and pftl med8 Arabidopsis seedlings were
germinated and grown for 4 days on agar solidified 0.2X MS medium. (A) Root hair length
(B) Root hair number/mm, (C) Representative photographs of root hairs in WT and
Mediator mutants. Data from A and B are from 50 root hairs analyzed from the primary
roots of 10 independent seedlings. The experiment was repeated three times with similar
results. Scale bar =200 pum.
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ABSTRACT

Jasmonic acid (JA) regulates a broad range of plant defense and developmental responses. COI1 has been
recently found to act as JA receptor. In this report, we show that low micromolar concentrations of JA
inhibited primary root (PR) growth and promoted lateral root (LR) formation in Arabidopsis wild-type
(WT) seedlings. It was observed that the coil-1 mutant was less sensitive to JA on pericycle cell activation
to induce lateral root primordia (LRP) formation and presented alterations in lateral root positioning
and lateral root emergence on bends. To investigate JA-auxin interactions important for remodeling
of root system (RS) architecture, we tested the expression of auxin-inducible markers DR5:uidA and
BA3:uidA in WT and coil-1 seedlings in response to indole-3-acetic acid (IAA) and JA and analyzed the
RS architecture of a suite of auxin-related mutants under JA treatments. We found that JA did not affect
DR5:uidA and BA3:uidA expression in WT and coil-1 seedlings. Our data also showed that PR growth
inhibition in response to JA was likely independent of auxin signaling and that the induction of LRP
required ARF7,ARF19,SLR, TIR1,AFB2,AFB3 and AXR1 loci. We conclude that JA regulation of postembryonic

root development involves both auxin-dependent and independent mechanisms.

© 2012 Elsevier GmbH. All rights reserved.

Introduction

The capacity of plants to survive adverse environmental con-
ditions depends on a remarkable repertoire of growth and
developmental changes to shape their basic body plan and opti-
mize their metabolism to given biotic and abiotic demands. The root
system (RS) exhibits an amazing diversity of architectures through
changes in root hair, lateral root (LR) and adventitious root for-
mation, which play an important role in anchor to the soil and
in water and nutrient acquisition (L6pez-Bucio et al., 2003; Nibau
et al., 2008).

LR formation, which occurs throughout the life cycle of the
plant, is a major determinant of root system architecture that
increases branching and the root exploratory capacity. LRs initiate
from pericycle founder cells that undergo coordinated cell division
programs giving rise to LR primordia (LRP) (Malamy and Benfey,
1997; Dubrovsky et al., 2008). The newly formed LRP will continue

Abbreviations: BR, brassinosteroids; CK, cytokinin; 2,4-D, 24-
dichlorophenoxyacetic acid; IAA, indole-3-acetic acid; JA, jasmonic acid; LR,
lateral root; LRP, lateral root primordia; NAA, naphthaleneacetic acid; NPA, N-(1-
naphthyl)-phthalamic acid; PR, primary root; RS, root system; RSA, root system
architecture; TIBA, 2,3,5-triiodobenzoic acid; WT, wild-type.

* Corresponding author.

E-mail addresses: javierrayagonzalez@gmail.com (J. Raya-Gonzélez),

pelagio1085@hotmail.com (R. Pelagio-Flores), jpbucio@umich.mx (J. Lépez-Bucio).

0176-1617/$ - see front matter © 2012 Elsevier GmbH. All rights reserved.
http://dx.doi.org/10.1016/j.jplph.2012.05.002

to grow, eventually emerging through the adjacent endodermis,
cortex, and epidermal layers of the primary root (PR). Finally, a
new apical meristem is established that controls the production of
cells required for growth of LRs (Swarup et al., 2008; Fukaki and
Tasaka, 2009).

Little is known about the mechanisms that control LR develop-
ment. However, accumulating evidence indicates that LR initiation,
the establishment of the meristem and LR emergence are regu-
lated independently (Fukaki and Tasaka, 2009). The plant hormone
auxin (indole-3-acetic acid [IAA]) is an important long- and short-
distance signal that controls multiple developmental processes in
the RS through changes in cell division, elongation and/or differ-
entiation (Chapman and Estelle, 2009; Vanneste and Friml, 2009;
Kieffer et al., 2010). IAA plays an important role during each
stage of LR formation (De Smet et al., 2006; Fukaki et al., 2007;
Dubrovsky et al., 2008; Fukaki and Tasaka, 2009). Application of
IAA or synthetic auxins such as 2,4-dichlorophenoxyacetic acid
or naphthaleneacetic acid stimulates LR formation (Celenza et al.,
1995; Woodward and Bartel, 2005), whereas polar auxin trans-
port inhibitors such as N-(1-naphthyl)-phthalamic acid (NPA) and
2,3,5-triiodobenzoic acid prevent LR formation (Casimiro et al.,
2001; Himanen et al., 2002). Consistently, Arabidopsis mutants
with increased auxin levels, such as rooty and its alleles aberrant
lateral root formationl and superroot1, have increased number of
LRs (Boerjan et al., 1995; Celenza et al., 1995; King et al., 1995),
while mutants defective on auxin transport, perception, or signal-
ing, including aux1, axr1, tir3, slr and arf7/arf19, show reduced LR
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formation (Lincoln et al., 1990; Gil et al., 2001; Swarup et al., 2001;
Fukaki et al., 2002). Interestingly, recent information suggests a link
between root waving and LR initiation, which depends on gravit-
ropism/thigmotropism. Reorientation of PR growth in response to
gravity (gravitropism) or touch stimuli (thigmotropism) depends
on auxin fluxes, which are connected with LR formation (De Smet
et al., 2007; Laskowski et al., 2008; Lucas et al., 2008). When roots
bend, the concentration of IAA increases along the outside of the
bend. In addition, a complex auxin flux pattern is generated that
further enhances IAA levels through localized reflux loops. The
auxin importer-AUX1-and efflux transporters-PIN2,3,7-are known
to be regulated by auxin. AUX1 overexpression enhances the auxin
maxima that specify the LR founder cells at the bend, while down-
regulation of PIN proteins modulates the spacing of LRs along the
PR axis (Laskowski et al., 2008).

Plant hormones operate in a complex framework of interact-
ing responses rather than through isolated linear pathways. This
hormonal crosstalk network can be modulated by a multitude of
signals from developmental or environmental origins. Whereas
auxin is a key hormone for LR development, other hormones are
also involved in LR formation acting as positive or negative regu-
lators. For example, cytokinin negatively regulates LR initiation (Li
et al., 2006; Laplaze et al., 2007; Kuderova et al., 2008). In contrast,
brassinosteroids promote LR formation acting synergistically with
auxin (Bao et al., 2004).

The phytohormone jasmonic acid (JA) is a crucial component of
the plant defense signaling system. JA and its metabolites, collec-
tively called jasmonates, are lipid-derived signals produced during
defense responses against insects and pathogens (Stintzi et al.,
2001; Kessler et al., 2004; Li et al., 2005; Browse and Howe, 2008)
but also under exposition to ozone, UV light, wounding, and other
abiotic stresses (Wasternack, 2007). Reduction in root growth and
carbon allocation patterns in several plant species upon mechanical
wounding or by herbivory was ascribed to JA. In Arabidopsis, treat-
ment with JA inhibits PR growth, which was likely due to the arrest
of mitosis (Staswick et al., 1992; Feys et al., 1994; Yan et al., 2007;
Zhang and Turner, 2008). JA also promotes LR formation by directly
inducing the auxin biosynthesis gene anthranilate synthase1 (ASA1)
and/or by modulating endocytosis and plasma membrane accu-
mulation of the PIN2 protein (Sun et al., 2009, 2011). This opens
the possibility that jasmonates can impact LR formation on two
levels. First, during LR initiation, and secondly, affecting the emer-
gence of LRs from the PR. It is also tempting to speculate that an
increase in JA levels is perhaps induced by mechanical stimula-
tion or gravity-induced root waving, which has been reported to
promote LR formation (De Smet et al., 2007; Ditengou et al., 2008;
Laskowski et al., 2008; Lucas et al., 2008), or in response to localized
auxin maxima, as auxin has been recognized to induce ]JA biosyn-
thesis (Tiryaki and Staswick, 2002; Hoffman et al., 2011). Currently,
the exact cellular/tissue responses to jasmonates during the remod-
eling of RSA are not well understood.

Several Arabidopsis mutants that are deficient in jasmonate
biosynthesis or signaling have been isolated and characterized
including the coronatine insensitivel (coil), jasmonic acid resistant1
(jar1) and auxin resistantl (axrl) (Berger, 2002; Wasternack,
2007; Browse, 2009). Among these, the coil-1 mutant, which was
isolated by its insensitivity to JA and coronatine in PR growth
inhibition, has been shown to be defective in JA responses in most
plant organs (Feys et al.,, 1994; Devoto et al., 2005), consistent
with its role as a jasmonate receptor (Yan et al, 2009). The
resistance of axr1 to both JA and auxin in root growth indicates
that these regulators interact in modulating developmental pro-
cesses (Tiryaki and Staswick, 2002). Additional commonalities
exist between perception mechanisms of jasmonates and auxin.
They both use as receptor an SCF-type E3 ubiquitin ligase with
a specific F-box protein for each hormone, COI1 for jasmonate
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and TIR1 or the closely related proteins AFB1, AFB2 and AFB3 for
auxin (Santner et al., 2009). Although one of the most dramatic
effects of applied JA on plants is the inhibition of PR growth,
the signaling mechanisms by which jasmonates regulate other
aspects of RSA, such as LR formation and patterning merit further
research.

In the present work, we investigated the effects of JA on RSA
of Arabidopsis seedlings. We provide evidence that JA inhibits PR
growth and regulates LR formation in a dose-dependent manner.
The LR responses correlated with an induction of LRP formation.
To investigate the role of JA in modulating the environmental reg-
ulation of LR growth, we performed experiments to compare the
LR patterning and induction of LR development on bends between
Arabidopsis wild-type (WT) and coil-1 seedlings. We also tested the
responses of WT and coil-1 lines expressing the auxin-responsive
marker constructs DR5:uidA and BA3:uidA and analyzed the root
architectural responses to JA in a variety of Arabidopsis mutants
defective in auxin transport and signaling. Our results show that
the COI1 locus is involved in jasmonate-induced LR formation,
LR positioning and LR emergence on root bends in Arabidopsis
seedlings.

Materials and methods
Plant material and growth conditions

Arabidopsis (Arabidopsis thaliana Col-0), the transgenic Ara-
bidopsis lines CycB1:uidA (Colén-Carmona et al., 1999), DR5:uidA
(Ulmasov et al., 1997), BA3:uidA (Oono et al., 1998), pLOX2:uidA
(Jensenetal.,2002) and mutant lines, coi1-1 (Feys et al., 1994), axr1-
3 (Lincoln et al., 1990), aux1-7 (Picket et al., 1990), axr2-1 (Timpte
etal., 1994), axr4-1 (Hobbie and Estelle, 1995), tir1/afb2/afb3 (Parry
etal., 2009), arf7-1/arf19-1 (Wilmoth et al., 2005), slr (Fukaki et al.,
2002) and eir1-3 (Luschnig et al., 1998), were used for the dif-
ferent experiments. Seeds were surface sterilized with 95% (v/v)
ethanol for 5min and 20% (v/v) bleach for 7 min. After five washes
in distilled water, seeds were germinated and grown on agar plates
containing 0.2x MS medium. The MS medium (Murashige and
Skoog Basal Salts Mixture, catalog no. M5524) was purchased from
Sigma. Phytagar (commercial grade) was purchased from Gibco-
BRL. Plates were placed vertically at an angle of 65° to allow
root growth along the agar surface and to allow unimpeded aerial
growth of the hypocotyls. Plants were placed in a plant growth
chamber (Percival AR-95L) with a photoperiod of 16 h of light/8 h
darkness, light intensity of 300 wmol/m~2/s~1, and temperature of
22°C.

For transfer experiments, wild-type (WT) (Col-0) seeds were
first sterilized and germinated on 0.2x MS medium as described
above. For coil-1 mutant selection, 500 seeds from a coil-1/COI1
segregating population were screened for sustained PR growth in
agar solidified MS 0.2x medium supplemented with 4 uM jas-
monic acid (JA) by placing seeds on 100 cm? nutrient agar plates
(20 seeds per plate). The seeds were distributed in two rows on the
agar surface at a density of 1seed/cm, stratified at 4°C for 48 h,
and then incubated at 22°C. Putative JA resistant mutants with
long PRs were selected and transferred to plates with the different
treatments.

Chemicals

JA and indole-3-acetic acid (IAA) were purchased from Sigma.
IAA was dissolved in dimethyl sulfoxide (DMSO), whereas JA was
dissolved in ethanol. In control seedlings, we added the solvents
in equal amounts as present in the greatest concentration of each
compound tested.
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Analysis of growth

Arabidopsis RS and PR meristem integrity were analyzed with
a stereoscopic microscope (Leica, MZ6). All LRs emerged from the
PR and observed with the 3 x objective were taken into account for
LR number data. Images were captured with a Samsung SCC 131-
A digital color camera adapted to the microscope. PR length was
determined for each root using a ruler. LR number was determined
by counting the LRs per seedling, and LR density was determined
by dividing the LR number value by the PR length values for each
analyzed seedling. For transfer assays, the PR length and LR num-
ber and density were determined from the tip to the marked site
of PR when the transfer was made. For all experiments with WT
and mutant lines, the overall data were statistically analyzed using
the SPSS 10 program. Univariate and multivariate analyses with
Tukey’s post hoc test were used for testing differences in growth
and root development responses. Different letters were used to
indicate means that differ significantly (P<0.05).

Determination of developmental stages of lateral root primordia
(LRP)

LRPs were quantified 7 d after germination. Seedling roots were
first cleared to enable LRPs at early stages of development to be
visualized and counted. Each LRP was classified according to its
stage of development as reported by Malamy and Benfey (1997).
The developmental stages are as follows, Stage I: LRP initiation. In
the longitudinal plane, approximately 8-10 ‘short’ pericycle cells
are formed. Stage II: the LRP is divided into two layers by a peri-
clinal division. Stage III: the outer layer of the primordium divides
periclinally, generating a three-layer primordium. Stage IV: an LRP
with four cell layers. Stage V: the LRP is midway through the parent
cortex. Stage VI: the LRP has passed through the parent cortex layer
and has penetrated the epidermis. It begins to resemble the mature
root tip. Stage VII: the LRP appears to be just about to emerge from
the parent root.

Histochemical analysis

For histochemical analysis of GUS activity, Arabidopsis seedlings
were stained and incubated overnight at 37°C in a GUS reaction
buffer (0.5 mg mL~! 5-bromo-4-chloro-3-indolyl-B-p-glucuronide
in 100mM sodium phosphate, pH 7). The stained plants were
cleared and fixed with 0.24 N HCl in 20% methanol (v/v) and incu-
bated for 60 min at 62 °C. The solution was substituted by 7% NaOH
(w/v) in 60% ethanol (v/v) for 20 min at room temperature. Plants
were dehydrated with ethanol treatments at 40, 20 and 10% (v/v)
for a 24 h period each, and fixed in 50% glycerol (v/v). The processed
roots were placed on glass slides and sealed with commercial nail
varnish. For each marker line and for each treatment, at least 20
transgenic plants were analyzed.

Results
JA regulates Arabidopsis RS architecture

Previous reports have shown that JA regulates PR growth
(Staswick et al., 1992) and LR formation (Sun et al., 2009). How-
ever adetailed connection between these developmental responses
is still lacking. To determine whether PR growth inhibition was
an important factor inducing de novo LR formation, we evaluated
the effects of different JA concentrations in Arabidopsis seedlings
(Col-0) germinated and cultivated 12 days on agar-solidified Petri
plates supplied with 0.2x Murashige and Skoog (MS) medium.
We found that low JA concentrations from 0.25-to-1 wM JA that

modestly inhibited PR growth (10-to-20%) strongly increased (two-
to-three-fold) the number of emerged LRs per seedling (Fig. 1A and
B). Concentrations of 4 wM JA or higher inhibited 80% PR growth
compared to solvent-treated seedlings but LR formation decreased
when compared with 0.25 uM JA (Fig. 1A and B). The LR density
(LR number per cm PR) increased in a dose-dependent way by JA
(Fig. 1C), giving rise to a shift in RSA from a long PR with a low num-
ber of LRs to a short and more branched RS in JA-treated seedlings
(Fig. 1E).

Interestingly, the length of LRs increased by 40% at 1 and 2 uM
JA but decreased at 4 uM or greater JA concentrations (Fig. 1D and
E).

PR growth depends on two basic developmental processes: cell
division in the root apical meristem and elongation of cells that
leave the root meristem (Blilou et al., 2002). To determine if JA
could inhibit PR growth affecting any of these processes, we tested
the responses of Arabidopsis roots to this compound by using the
mitotic reporter CycB1:uidA line, which monitors cell cycle pro-
gression in the root meristem (Doerner et al., 1996). Arabidopsis
transgenic seedlings expressing CycB1:uidA were grown in 0.2 x MS
medium supplied with the solvent (control) or with 1 and 4 uM JA.
In solvent-treated seedlings, a patchy pattern of expression was
observed in the PR meristem (Fig. S1). In plants subjected to treat-
ments with 1 and 4 uM JA, GUS expression in the PR tip decreased
compared with control plants (Fig. S1). Next, we quantified the
length of the PR meristem in the same seedlings. At these simi-
lar developmental stages, 4 .M JA decreased 50% the length of the
meristem, compared with control plants (Fig. S1). To determine
the effects of JA on cell elongation, we measured fully developed
cortical cells of the PR. In seedlings treated with 4 uM JA, cortical
cell length was 45% reduced when compared with control plants
(Fig.S1). These results show that JA may affect PR growth by inhibit-
ing both cell division and elongation.

coil-1 seedlings are defective in LRP development in response to JA

To understand the role played by the jasmonate receptor COI1
during LR formation, we investigated the effects of JA on LRP devel-
opment in WT and coi1-1 seedlings. An experiment was performed,
in which 4day-old WT and homozygous coil-1 seedlings were
transferred to 0.2 x MS agar-solidified medium supplemented with
the solvent only or with 2 wM JA. Firstly, we analyzed LRP forma-
tion in both lines previous to transfer. It was found that coil-1
mutant seedlings developed a lower number of stage I LRP than
WT seedlings (Fig. 2A), indicating that COI1 is important for pericy-
cle cell activation. Two days after transfer to 2 WM JA, WT seedlings
showed an increase in LRP stages [-V. In contrast, JA was unable to
activate the same LRP stages in coi1-1 mutants (Fig. 2B). Inresponse
to JA treatment, the LR density increased with time in WT seedlings
but not in coi1-1 mutants (Fig. 2C). These results indicate that COI1
is an important signaling component involved in LRP formation
under normal growth conditions and in response to JA.

coil-1 mutants are defective in LR positioning

LRs are spaced along the PR axis in a regular left-right alternat-
ing pattern that correlates with gravity-induced waving (De Smet
etal., 2007; Laskowski et al., 2008; Lucas et al., 2008). To determine
whether the mutation in COI1 alters the LR formation pattern,
we analyzed the left-right alternating pattern in WT (Col-0)
and coil-1 seedlings. To investigate the correlation between PR
growth and LR formation, the seedlings were transferred 4 days
after germination from 0.2x MS medium to the same medium
solidified with 1.5% agar and grown with an inclination angle
of 45°. The PRs of coil-1 seedlings grew faster than those of WT
seedlings. This effect was evident 4-to-6 d after transfer (Fig. 3A).
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Fig. 2. Effect of JA on LR development in WT and coil-1 seedlings. WT seedlings
were germinated and grown for 4d on 0.2x MS medium and homozygous coil-1
seedlings were selected from a coi1-1/COI segregating population in medium sup-
plemented with 4 wM JA. (A) LRP density in four-day-old WT and coil-1 seedlings
prior to transfer. (B) LRP density in WT and coi1-1 seedlings two days after transfer

Interestingly, in Arabidopsis WT seedlings 6days after transfer,
most LRs were formed on top of PR bends, with the wavy growth
resulting in a left-right alternation pattern of equal distribution
in both sides of the PR as previously reported by De Smet et al.
(2007) (Fig. 3B and C). Moreover, coil-1 seedlings showed an
alteration in the pattern of LR formation, in which LRs predom-
inantly appeared to one side of the PR (63.9% right/36.1% left)
(Fig. 3B and C). This uneven positioning of LRs resulted in a clear
deviation from the right-left alternation pattern observed in WT
seedlings.

To determine whether the uneven distribution of LRs in coil-
1 mutants could be due to the presence of LRP arrested in
development between emerged LRs, we performed a LRP anal-
ysis in DR5:uidA and in coil-1/DR5:uidA seedlings. Interestingly,
WT DR5:uidA seedlings form a few LRP between emerged LRs,
whereas in the coil1-1/DR5:uidA line most LRPs remained dormant
at this stage, and failed to emerge from the PR (Fig. S2). This
explains why later in development coil mutants develop high num-
ber of emerged LRs but with uneven distribution along the PR
axis.

coil-1 mutants are defective in development of LRs on bends

Both waving and the gravitropic response in root are mediated
by differential growth. This causes a reorientation of the root tip
toward the gravity vector and results in root bending. It has been
demonstrated that in Arabidopsis LR initiation can be induced by
either gravitropic curvature or by the transient bending of the PR by
hand (Ditengou et al., 2008). We next tested whether changing the
direction of root growth by rotating plants through an angle of 135°
affects LR formation in WT and coil-1 seedlings by determining
the emerged LRs after gravistimulation for 96 h. We observed the
initiation of a LR at the convex side of the gravity-induced curve
in WT seedlings as previously reported by Ditengou et al. (2008)
(Fig.4A). However, coil-1 seedlings that were grown side by side in
the same plate with the WT failed to form LRs after gravistimulation
(Fig. 4A). We also tested LR initiation by transient manual bending.
When 10-day-old WT roots were bent with fine forceps through
135° and left to grow for 120 h after root bending, LR emergence
was observed in 40% of plants (n=50) (Fig. 4B). Under our growth
conditions, coil-1 roots were also defective in this response with
only 20% of roots forming LRs on the curves (Fig. 4B). We performed
a LRP analysis in DR5:uidA and in coi1-1/DR5:uidA seedlings at the
convex side of the gravity-induced curve. It was found that most LRP
that were formed in WT DR5:uidA seedlings in response to gravity
were active and emerged from the PR. However, in coi1-1/DR5:uidA
seedlings many LRPs remained arrested in development inside the
PR (Fig. 4C).

coil-1 mutants show normal auxin-responsive gene expression

Auxins are a class of phytohormones that regulate PR growth
and promote LR formation. To test whether JA could alter auxin-
regulated gene expression and in this way affect RSA, we conducted
analyses of the expression of the B-glucuronidase (GUS) reporter
gene in Arabidopsis lines harboring the DR5:uidA and BA3:uidA gene
constructs. WT and coil-1 seedlings harboring the marker con-
structs were grown for 7 d in agar solidified 0.2x MS supplemented
with the solvent (control), 1 WM IAA or 4 uM JA, and incubated

to fresh 0.2x MS media supplied with the solvent (control) or with 2 uM JA. (C)
Kinetics of emerged LR density in WT and coil-1 seedlings 2, 4 and 6 days after
transfer to 0.2x MS media supplemented with the solvent (control) or with 2 uM
JA. Values shown represent the means of 20 seedlings + SD. Different letters indi-
cate means statistically different (P < 0.05). The experiment was repeated twice with
similar results.
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for 12h at 22°C. As previously reported (Ulmasov et al., 1997),
in solvent-treated DR5:uidA seedlings, GUS expression was absent
from cotyledons and leaves and was expressed primarily in the
root tip region (Fig. 5A and D). DR5:uidA seedlings treated with a
concentration of 1 wM IAA showed strong GUS activity through-
out the plant (Fig. 5B and E), whereas seedlings treated with 4 uM
JA showed a GUS activity similar to solvent-treated plants (Fig. 5C
and F). coil-1/DR5:uidA seedlings showed a similar GUS expres-
sion pattern both in shoots and in roots (Fig. 5G-L). Untreated
BA3:uidA seedlings did not show detectable levels of GUS activity
(Fig. 5M and P), similarly to results reported by Oono et al. (1998),
whereas when treated with 1 wM IAA, they showed GUS expression
mainly in the petioles of the cotyledons and in the root elonga-
tion zone (Fig. 5N and Q). GUS expression in BA3:uidA seedlings
treated with JA was undetectable (Fig. 50 and R). This pattern
of expression remained unchanged in coil-1/BA3:uidA seedlings
(Fig. 55-X). As a further control, we tested GUS expression in WT
and coil-1 Arabidopsis lines harboring the pLOX2:uidA gene con-
struct, which has been shown to be activated by JA (Jensen et al.,
2002). As expected, JA clearly induced pLOX2:uidA expression in
shoots in WT but not in coil-1 seedlings (Fig. S3). These results
indicate that JA did not affect the general auxin-response in WT or
in coil mutants.

Effect of JA on RS architecture in auxin-related Arabidopsis
mutants

To evaluate at the genetic level the role played by selected
auxin-related loci in JA responses, we compared the PR growth and
LR formation of WT (Col-0) seedlings and auxin-related mutants
in response to JA treatment. Two types of auxin-related mutants
were used: (i) mutants defective in auxin signaling including
tirl/afb2/afb3, arf7-1]/arf19-1,slr,axr2-1 and axr1-3, and (ii) mutants
defective in auxin transport including aux1-7, eirl and axr4-1.
Treatments with 4 WM JA caused 70% inhibition in PR growth
in WT seedlings compared to solvent-treated seedlings (Fig. 6A).
In media lacking JA, all mutant lines tested showed longer PRs
compared to WT plants. When WT and mutant seedlings were
grown under 1 or 4 uM JA treatments, a similar inhibition in root
growth was observed depending on the JA treatment, with excep-
tion of axri-3, which was less inhibited (Fig. 6A and Fig. S4).
In solvent-treated medium, the triple mutant tir1/afb2/afb3, dou-
ble mutant arf7-1/arf19-1 and the sir mutant showed PRs lacking
LRs. Interestingly, all these mutant lines showed no LR induc-
tion in JA treatments, indicating an important role for auxin in
pericycle cell activation in response to JA (Fig. 6B). A reduction
in LR formation in response to JA was also evident in the auxin
and JA resistant mutant axr1-3 (Fig. S3). In contrast, the auxI-
7, eirl and axr4-1 showed strong induction of LR formation in
response to JA (Fig. 6B). Given the fact that JA inhibits both cell
division and elongation, the possibility was open that some LRs
could be initiated but failed to develop. To test this possibil-
ity, we performed experiments to analyze LRP formation in WT,
tirl/afb2/afb3 and arf7-1]/arf19-1 seedlings in response to 1M
JA. We found that tirl/afb2/afb3 and arf7-1/arf19-1 mutants did
not increase LRP formation after JA treatment (Fig. 6C and D).
Together, these data suggest that JA interacts with or act down-
stream of the canonical auxin-signaling pathway to promote LR
initiation.

of representative WT and coil-1 seedlings illustrating LR formation six days after
transfer. Values shown represent the means of 20 seedlings + SD. Different letters
indicate means statistically different (P<0.05). The experiment was repeated twice
with similar results. Scale bar =500 pm.
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Fig.4. LR formation after a change of gravity vector and root bending in WT and coi1-1 mutants seedlings. (A) LR development after gravistimulation for 96 h; Ten-day-old WT
and coil-1 seedlings grown on agar plates were rotated through 135°. (B) LRs emerged in six-day old WT and coi1-1 seedlings with PRs bent and left to grow for 120 h after root
bending. Arrows indicates fully developed LRs, asterisk (*) marks the absence of emerged LRs. (C) LRP development after gravistimulation in DR5:uidA and coil-1/DR5:uidA
seedlings. The assays were done as described by Ditengou et al. (2008). Similar results were obtained in two independent experiments (n =6 plates). Scale bar =500 pm.

Discussion
JA induces changes in RS architecture in Arabidopsis

The RS shares with the shoot the basic body plants and the
pathways that are essential for organogenesis and growth (Veit,
2004). The site of LR initiation seems to depend on correct auxin
transport to perycicle cells in the PR (Dubrovsky et al., 2000; L6pez-
Bucio et al., 2005), whereas the final architecture of the roots is
coordinated by hormonally regulated processes that affect cell divi-
sion, elongation and differentiation (Casson and Lindsey, 2003).
Although IAA is considered the major plant growth-regulating sub-
stance underlying RSA adjustment, the discovery of novel signals
such as jasmonates affecting PR growth and LR formation has been
a recent goal in plant biology. In a previous report, we determined
an important role of JA in LR development in our analysis of the
decanamide root resistant1 (drr1) Arabidopsis mutant (Morquecho-
Contreras et al., 2010). The drr1 mutant was isolated in a screen
for identifying Arabidopsis mutants that fail to inhibit PR growth
when grown under a high concentration of N-isobutyl decanamide,
a plant alkamide very active in modulating RSA. Detailed charac-
terization of LRP development in WT and drr1 mutants revealed
that DRR1 is required at an early stage of pericycle cell activation
to form LRP. When grown both in vitro and in soil drr1 mutants
showed dramatically increased longevity and reduced hormone
and age dependent senescence, which were related to reduced LR
formation when exposed to stimulatory concentrations of JA. These
results provided genetic evidence indicating that alkamides can be

perceived by plants to modulate RSA and senescence-related pro-
cesses possibly by interacting with JA signaling and that JA is an
important signal for LR development (Sun et al., 2009; Morquecho-
Contreras et al., 2010).

The question of whether JA affect plant growth by influenc-
ing cell elongation or cell division has been a matter of debate.
Evidence from cell culture studies and wounding of Arabidopsis
plants suggests that plant growth inhibition mediated by JA occurs
through a block in mitotic cell division, while wounding does not
seem to affect leaf cell size (Swiatek et al., 2004; Zhang and Turner,
2008). In contrast, it has been shown that the requirement of jas-
monate for pollen viability is not at the level of meiosis but at
later stages (Devoto et al., 2002). Our results show that the reduc-
tion of PR elongation observed in JA-treated seedlings is a complex
process that involves a decrease in both cell elongation and cell
division (Fig. S1). JA likely affected cell division in the meristem
as a consequence of reduced mitotic activity as observed using
the CycB1:uidA reporter gene. A reduction in cell number in plants
with high levels of endogenous jasmonates has been previously
reported, and this effect was associated with altered expression of
CycB1;1 in the shoot apical meristem (Zhang and Turner, 2008).

COI1 regulates JA effects on RSA and is an important element in LR
development

The F-box protein COI1 acts as a JA receptor, which directly
binds to JA-isoleucine (JA-Ile) (Xie et al., 1998; Yan et al., 2009).
The coi1-1 null mutants are male-sterile, display insensitivity to JA
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Fig. 5. Effect of JA and IAA on auxin-inducible gene expression in WT and coil-1 seedlings. (A-L) 12-h GUS staining DR5:uidA and coil-1/DR5:uidA Arabidopsis seedlings that
were grown for 7d on agar plates containing 0.2x MS medium supplemented with the solvent (control) or 1 uM IAA or 4 uM JA. (M-X), 12-h GUS staining BA3:uidA and
coil-1/BA3:uidA seedlings that were grown for 7 d on agar plates containing 0.2 x MS medium supplemented with the solvent (control) or 1 wM IAA or 4 wM JA. Photographs
are representative individuals of at least 15 stained seedlings. The experiment was repeated three times with similar results. Scale bar =200 pm.
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Fig. 6. Effects of JA on PR growth and LR development in WT seedlings and auxin-related mutants. Arabidopsis WT and tir1/afb2/afb3; arf7-1/arf19-1, slr, axr2-1, axr1-3, aux1-7,
eirl, and axr4-1 triple, double or single mutant seedlings, respectively, were germinated and grown for 12d in 0.2 x MS medium supplemented with the solvent (control),
1 M or 4 wM JA. (A) PR length. (B) LR density. (C) LRP stage density. (D) Total LRP density. Values shown represent the means of 20 seedlings & SD. Different letters indicate
means statistically different (P<0.05). The experiment was repeated twice with similar results.

in PR growth assays and show susceptibility to insect attack and
pathogen infection (Feys et al., 1994; Xie et al., 1998; Reymond
et al., 2000). Although the resistance of coil-1 to jasmonates on PR
growth is well characterized, the role played by this receptor dur-
ing the induction of LRs by JA remains elusive. Special attention
was devoted to the induction of LRs by JA, which apparently occurs
without requiring PR growth arrest (Fig. 1). Interestingly, the for-
mation of LRs was induced at stages I-V, whereas a minor alteration
was observed at later stages of development (Fig. 2), indicating that
JA exerted its effects mostly on the initiation of LRP.

Our results showed that coil-1 seedlings are very resistant to
LR formation in response to JA (Fig. 2), which suggests that COI1 is
required for the JA-induced signal transduction events in pericycle
cells to form LRP. Although a reduced capacity of coil-1 mutants
to form LRs when compared to WT seedlings was evidenced under

normal growth conditions or in response to JA treatments, it should
be noted that the capacity of this mutant to develop LRs under nor-
mal growth conditions is similar to that observed for WT seedlings
(Fig. 3). Intriguingly, the total number of emerged LRs, which is
spaced along the main axis in a regular left-right altering pat-
tern changed in coil-1 mutants when compared to WT seedlings
(Fig. 3). This suggests that COIT might be an element required for
the emergence of LRs. Through the characterization of the anthrani-
late synthase1 (asal) mutant, which is defective in JA-induced LR
formation, Sun et al. (2009) showed that in addition to promoting
auxin biosynthesis through transcriptional activation of the ASA1
gene, JA negatively regulates auxin transport through the reduction
of PIN1 and PIN2 protein levels in the plasma membrane. The coor-
dinated regulation of auxin transport/response by JA may account
for the initiation of LRs in response to JA.
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COI1 is involved in LR growth on bends

The phytohormone auxin is a key regulator of PR growth and
LR development. It has been demonstrated that basipetal and
acropetal auxin transport are required during the initiation and
emergence phases of LR development acting as an instructive sig-
nal (Casimiro et al., 2001; Bhalerao et al., 2002; Swarup et al., 2008;
Dubrovsky et al., 2008).

Recent information has shown that bending causes the initi-
ation of LRs (Ditengou et al., 2008; Laskowski et al., 2008; Lucas
et al,, 2008). The earliest observable event during this process was
a change in PIN1 localization in differentiating xylem cells. The
signaling events between the bending stimulus and PIN1 relocal-
ization are currently unknown. However, based on the bending
response of an arf7/arf19 double mutant that normally forms no
LRs but do so upon bending when the root tip is removed, Ditengou
et al. (2008) have suggested that the bending stimulus is auxin-
independent or acts downstream of arf7/arf19 to specify LR identity.
Our results that the coil-1 is defective on induction of LRs on bends
are consistent with an important role of JA in RSA responses to root
bending (Fig. 4). In this particular response, analysis of LRP forma-
tion on bends shows that the coi1-1 mutants develop LRP, which
are however, unable to emerge from the PR. Two additional lines of
evidence indicate that JA is an important signal for LR formation:
(i) the dose-dependent increase in LR numbers by JA treatments,
and (ii) the failure of JA to induce auxin-inducible gene expres-
sion. Interestingly, JA was unable to activate the auxin-response
markers DR5:uidA and BA3:uidA in the shoot system or in PR tips
(Fig. 5). Moreover, when these markers were movilized into the
coil-1 background, no further changes in expression were docu-
mented. These data indicate that JA is not a general inducer of auxin
responses in the plant and provide support to the conclusion by
Sun et al. (2009) that JA likely regulates LR development by specifi-
cally affecting auxin responses at earlier stages of LRP formation. In
this context, JA and auxin may act in concert to modulate devel-
opmental processes. To address this question, we evaluated the
impact on auxin response when JA and IAA are combined by using
the DR5:uidA line. JA neither reduces nor activates auxin-inducible
gene expression when supplied together with IAA (Fig. S5). From
these results we hypothesize that the JA-auxin crosstalk may cre-
ate a fine regulatory network whose net outputs largely depend on
the action of specific phytohormone combinations rather than on
the independent activities of separate hormones.

JA require a canonical auxin signaling pathway for inducing LR
development

Auxin is perceived by direct binding to the TRANSPORT
INHIBITOR RESPONSE1 (TIR1) protein, a member of a small fam-
ily of F-box proteins (Dharmasiri et al., 2005; Kepinski and Leyser,
2005). This interaction accelerates the Skp1, Cdc53/Cullin1, F-box
protein ubiquitin ligase-catalyzed degradation of Aux/IAA repres-
sor proteins, allowing de-repression of auxin regulated genes by
auxin response transcription factors ARFs (Gray, 2004). To deter-
mine whether the TIR1 family of auxin receptors and ARFs are
involved in Arabidopsis responses to JA, we analyzed PR growth
and LR formation in response to JA in WT (Col-0) Arabidopsis
seedlings, in tir1/afb2/afb3 triple mutants in arf7-1/arf19-1 double
mutants, and in slr, axr2-1, axr1-3, aux1-7, eirl and axr4-1 single
mutants, which are well known for their resistance to auxin in
PR growth. Seedlings from all mutant lines showed similar inhi-
bition in PR growth by JA treatment, with exception of sir and
axr1-3, which showed significant resistance when compared to
WT seedlings (Fig. 6A and Fig. S4). Interestingly, the increase in
both LR and LRP formation observed in WT seedlings when treated
with JA was clearly reduced in tir1/afb2/afb3, arf7-1/arf19-1 and
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slr mutants (Fig. 6A-D and Fig. S4).These results clearly show the
dependence of an intact auxin signaling pathway for JA-induced LR
formation.

In summary, we have provided evidence that RSA changes
induced by JA in Arabidopsis including enhanced LR formation,
LR positioning and induction of LR emergence on bends operate
through the COI1 locus. We also documented the role of auxin
signaling in PR and LR responses to JA, which indicate that JA mod-
ulates postembryonic root development through auxin-dependent
and independent effects. Whether environmental signals such as
water and nutrient availability or biotic factors may affect RSA
through increased JA biosynthesis and/or signaling is currently
under investigation.
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Fig. S1.

Effects of JA on cell division and elongation. CycB1:uidA A. thaliana seedlings
were grown 12 d on 0.2x MS medium supplemented with the indicated
concentrations of JA. (A) Plants were stained for GUS activity and cleared to show
gene expression of CycB1:uidA and cell size. (B) Meristem length. (C) Cortical cell
length. Data points represent the mean + SD (n = 30). Photographs show
representative individuals from at least 15 stained plants. The experiment was
repeated twice with similar results. Different letters indicate means statistically
different (P < 0.05). Scale bar = 100 um.
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Fig. S2.

LRP development in DR5:uidA and coil-1/DR5:uidA seedlings. Seedlings were germinated
and grown for 4 d on 0.2x MS medium and homozygous c0il-1/DR5:uidA seedlings were
selected from a c0il1-1/COI segregating population obtained from outcrossing the coil-1
mutant with a DR5:uidA plant in medium supplemented with 4 uM JA. Four-day-old
seedlings were transferred and grown side by side over the surface of 0.2x MS agar plates
and stained for GUS activity. Photographs of DR5:uidA and coil-1/DR5:uidA seedlings
illustrating the formation of LRP and mature LRs four days after transfer. Photographs
were taken to individual seedlings from a total of 20 seedlings that were stained. Scale

bar =300 pum.
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Fig. S3.

Effect of JA and IAA on JA-inducible gene expression in WT and coil-1 seedlings.
Twelve-hour GUS staining of pLOX2:uidA and coil-1/pLOX2:uidA Arabidopsis seedlings
that were grown for 7 d on agar plates containing 0.2x MS medium supplemented with the
solvent (control) or 1 uM IAA or 4 uM JA. Photographs are representative individuals of at

least 15 stained seedlings. The experiment was repeated three times with similar results.
Scale bar = 200 um.
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Fig. S4.

Effects of JA on RSA in WT Arabidopsis (Col-0) seedlings and auxin-related mutants
axrl-3 and arf7-1/arf19-1. WT and mutant seedlings were germinated and grown side by
side for 12 d in 0.2x MS medium supplemented with the solvent (control) or 1 uM JA and
representative photographs from at least 5 independent plates are shown. The experiment
was repeated two times with similar results. Scale bar = 1 cm.
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Fig. S5.

Effect of JA and IAA on auxin-inducible gene expression. Twelve-hour GUS staining of
DR5:uidA Arabidopsis seedlings that were grown for 7 d on agar plates containing 0.2x MS
medium supplemented with the solvent (control), 1 uM [AA, 4 uM JA or a combination of
IAA and JA. Photographs are representative individuals of at least 15 stained seedlings.
The experiment was repeated three times with similar results. Scale bar =200 pm.
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9. DISCUSION, CONCLUSIONES Y PERSPECTIVAS

El crecimiento de las plantas depende en gran medida del funcionamiento
de su sistema radicular, ya que las raices no sélo proporcionan apoyo estructural a
la parte aérea, sino ademas, establecen interacciones bidticas en la rizésfera y
modulan la adquisicion de agua y nutrientes (Lépez-Bucio et al., 2003). Las
plantas regulan la arquitectura del sistema radicular a través de cambios en el
crecimiento de la raiz primaria, la formacion de raices laterales y adventicias y la
formacion y crecimiento de los pelos radiculares, mediados por programas de
division y elongacion celular (Fig. 1 y 2) (Nibau et al., 2008). Estudiar los
mecanismos celulares y moleculares responsables del desarrollo radicular en
respuesta a las diferentes sefiales ambientales, permitirA conocer la compleja
interaccidn que ocurre entre los factores enddgenos y exdgenos que controlan
aspectos individuales de la arquitectura radicular.

Los diferentes aspectos del desarrollo de las plantas se encuentran
regulados por fitohormonas, las cuales a través de mecanismos de sefalizacion
activan/reprimen la expresion de genes. Recientemente, en diferentes organismos
eucariontes, incluyendo plantas, se encontr6 un componente adicional de la
maquinaria transcripcional, el complejo Mediador (Fig. 8). Existen reportes en
donde se ha mostrado la participacion de subunidades del complejo Mediador en
diferentes procesos del desarrollo y respuestas de defensa en plantas (Kidd et al.,
2011). Sin embargo, a pesar de la importancia del Mediador en la regulacién de la
expresion génica se desconoce su participacion en el desarrollo de la raiz y la
interaccién con los diferentes reguladores del desarrollo vegetal. Mediante analisis
de lineas mutantes, lineas transgénicas y lineas reporteras, se estudi6 la
participacion de diferentes subunidades del Mediador en la configuracion del
sistema radicular, asi como la interaccion con diferentes vias hormonales en
Arabidopsis thaliana. Evidencia experimental indica que mutantes afectadas en
MEDS8 no presentan alteraciones en el sistema radicular, mientras que la pérdida y
ganancia de funcion de PFT1/MED25 causan efectos opuestos en el desarrollo de

raices laterales y adventicias, asi como en el crecimiento de la raiz primaria y el
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crecimiento y desarrollo de los pelos radiculares (Raya-Gonzalez et al., 2014).
Estos datos indican que PFT1/MED25 funciona como modulador clave de
procesos celulares que controlan la configuracion del sistema radicular. El fenotipo
de la raiz observado en plantas pft1 y 35S:PFT1 correlaciona con cambios en la
expresion del marcador del ciclo celular CycB1:uidA y la expansion celular en raiz
primaria y raices laterales (Raya-Gonzalez et al., 2014). Analisis de la expresion
global de genes realizados en plantas silvestres y mutantes pft1 arrojaron genes
diferencialmente regulados, involucrados en el crecimiento y el ciclo celular
(Sundaravelpandian et al., 2013). Esto sugiere que PFT1/MED25 regula el
desarrollo de la raiz modulando procesos de division y elongacion celular.
Inicialmente, PFT1/MED25 fue descrito como un regulador positivo de respuestas
de evasion por sombra, y posteriormente, como un regulador basal de respuestas
de defensa y estrés abidtico (Cerdan y Chory, 2003; Backstrom et al., 2007;
Wollenberg et al., 2008; Kidd et al., 2009; Elfving et al., 2011; Chen et al., 2012),
sugiriendo que actla como un nodo molecular para la integracién de diferentes
sefales ambientales y de desarrollo.

El gen MED25 esta altamente conservado en todos los organismos
eucariontes. En otros eucariontes, se ha descrito que MED25 tiene un papel muy
importante en procesos de desarrollo y defensa. La represion de MED25 en D.
melanogaster afecta la extension de axones del sistema nervioso central (Koizumi
et al., 2007). Mutantes en MED25 provocan mal formaciones en el pez zebra
(Nakamura et al., 2011). En humanos, se ha descrito que MED25 puede
interactuar con el activador transcripcional del virus del herpes symplex VP16,
actuando como una barrera para la infeccién y propagacion viral (Mittler et al.,
2003). En nuestro trabajo, través de la caracterizaciéon de lineas mutantes y
sobreexpresoras de PFT1/MED25, se obtuvo evidencia de que PFT1/MED25
modula respuestas de desarrollo en plantas.

La formacion de raices laterales inicia cuando células del periciclo responden a un
maximo de auxinas, adquiriendo el estado de células fundadoras, las cuales a
través de divisiones celulares subsecuentes formaran un primordio (Boerjan et al.,

1995; Malamy y Benfey, 1997; Dubrovsky et al., 2008). La ganancia y pérdida de
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funcion de PFT1/MED25 causan fenotipos opuestos en la formacion de
primordios, particularmente en los estados | y Il. Estos datos indican que
PFT1/MED25 regula la induccion de novo de PRL a partir de células del periciclo.
El andlisis del marcador de genes de respuesta a auxinas, DR5:uidA, sobre el
desarrollo de PRL, mostr6 que las lineas mutantes y sobreexpresoras pft1-2, y
35S:PFT1 presentaron una expresion diferencial con respecto a la linea tipo
silvestre (Raya-Gonzalez et al., 2014). Benkovéa et al. (2003) encontré que las
auxinas se acumulan en el PRL. Posteriormente, un maximo de auxina mediado
principalmente por el transportador PIN1, es establecido en la punta del primordio
para inducir el crecimiento de la raiz lateral. Por lo tanto, la expresion diferencial
de los marcadores de respuesta y transporte a auxinas las lineas pft1-2 y
35S:PFT1 explican el fenotipo en la formacién de raices laterales. Estos
resultados indican que PFT1/MED25 puede regular la respuesta y/o la distribucion
de auxinas.

PFT1/MED25 fue inicialmente identificado como una proteina nuclear que
participa en la via dependiente de fitocromo B para inducir la floracion en
respuesta a condiciones de luz sub-6ptimas. Las mutantes pft1 presentan defectos
en la elongacién del hipocotilo en respuesta a deficiencia de luz roja y roja-lejana
(Cerdan y Chory, 2003). La participacion de las auxinas en los procesos de
fotomorfogénesis y evasion por sombra ha sido bien documentada (Shinkle et al.,
1998; Steindler et al., 1999; Gil et al., 2001). Se sabe que mutantes como axr1,
doc1/tir1, asociadas a la sefializacion por auxinas, estan afectadas en la respuesta
a luz y evasion por sombra, pero ademas presentan alteraciones en su sistema
radicular, incluyendo la formacion de raices laterales y el desarrollo de los pelos
radiculares (Lincoln et al., 1990; Pitts et al., 1998; L6pez-Bucio et al., 2005).
Posiblemente, la respuesta auxinica alterada en la mutantes pft7-2 contribuya a su
fenotipo en el desarrollo de la raiz. Mediante un analisis de la expresion global de
genes reportado por Kidd et al (2009), se identificaron diversos genes
diferencialmente regulados en la mutante pft7-2 asociados a la respuesta auxinica.
Algunos de ellos como ANTHRANILATE SINTASE (ASA71), TRYPTOPHAN
SYNTHASE BETA SUBUNIT, CHORISMATE MUTASE3, son genes de respuesta
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temprana a auxinas de la familia GH3, 1AA17, AUX/IAA, entre otros. Aun cuando
no fueron observadas alteraciones en los niveles de AIA en las lineas pft1-2 y
35S:PFT1, los datos son consistentes con la expresion de genes y la respuesta de
los diferentes marcadores de auxinas en pft1-2 y 35:PFT1 (Raya-Gonzéalez et al.,
2014). Esto indica que la respuesta y el transporte a auxinas, mas que la
acumulacion del AlA, pueden ser los factores responsables que afectan el sistema
radicular en las mutantes pft1. Con base en lo anterior, el andlisis espacial y
temporal in vivo del transportador de eflujo de auxinas, PIN7::PIN1::GFP en
plantulas tipo silvestre, pft1-2 y 35S:PFT1, revelaron un incremento en la
fluorescencia de GFP en células de la estela y endodermis de la raiz de pft1-2.
Estas observaciones, sugieren que PFT1/MED25 regulan la expresion y
distribucion del transportador de auxinas PIN1, lo cual explica porque la mutante
pft1 muestra una respuesta amplificada a auxinas exdgenas (Raya-Gonzalez et
al., 2014).

La actividad de los marcadores DR5:uidA y DR5:GFP permiten monitorear
la sensibilidad de los tejidos a AIA y otras auxinas, lo cual no necesariamente
correlaciona con los niveles de auxinas (Benkova et al., 2003). El andlisis de la
expresion de DRb5:uidA, DR5:GFP y BA3:uidA en plantas tipo silvestre, pft1-2 y
35S:PFT1 en respuesta al AlA, revelaron que las plantas pft1-2 y 35S:PFT1 fueron
mas sensibles o resistentes, respectivamente, a auxinas (Raya-Gonzalez et al.,
2014). Estos datos son consistentes con la respuesta de pft1-2 y 356S:PFT1 al
efecto del ANA en la formacion de raices laterales (Raya-Gonzalez et al., 2014).
La hipersensibilidad y resistencia mostrada por pft1-2 y 35S:PFT1,
respectivamente, al efecto del ANA, indican que PFT1/MED25 es un regulador
clave que controla la activacion del periciclo para la formacién de raices laterales,
el cual es modulado via sefalizacion por auxinas. En concordancia con nuestros
resultados, Sundaravelpandian et al. (2013) reporté que PFT1/MED25 controla la
diferenciacion de los pelos radiculares a través de la distribucion de las especies
reactivas de oxigeno. Plantas mutantes pft1-2 presentan pelos radiculares mas
cortos y menos abundantes que la linea silvestre, mientras que 35S:PFT1

presenta un fenotipo opuesto (Raya-Gonzalez et al., 2014). Esto indica que PFT1
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regula de manera positiva la formacion de pelos radiculares, posiblemente a través
de un mecanismo independiente a la sefalizacion por auxinas.

El AJ es un regulador del crecimiento esencial en la activacion de
respuestas de defensa en las plantas. Se ha reportado que el AJ y sus
metabolitos, llamados jasmonatos, no soOlo se sintetizan durante respuestas de
defensa ante el ataque por patégenos, insectos y herbivoros, sino que también en
respuestas a estrés abidtico (Waasternack, 2007). En Arabidopsis, tratamientos
con jasmonatos, inhiben el crecimiento de la raiz primaria, promueven la formacion
de raices laterales y de pelos radiculares, afectando tanto la division como la
elongacion celular (Sun et al., 2009; Raya-Gonzélez et al., 2012; Raya-Gonzélez
et al., 2014). Se ha reportado que el AJ puede regular el desarrollo de la raiz a
través de mecanismos dependientes e independientes a la sefializaciéon por
auxinas. La formacion de raices laterales inducida por el AJ, involucra la
participacion de auxinas, a través del gen asociado a la biosintesis de auxinas
ASA1 (Sun et al., 2009; Raya-Gonzéalez et al., 2012). Sin embargo, para el caso
del crecimiento de la raiz primaria, probablemente, el AJ actla de manera
independiente (Raya-Gonzalez et al., 2012). Existe evidencia que indica que el
mecanismo de sefializacion de auxinas y AJ comparten algunos de sus elementos
(Cuéllar Pérez y Goosens, 2013). Esto sugiere que las respuestas de auxinas y AJ
a nivel transcripcional pueden estar reguladas por componentes en comun.
PFT1/MED25 participa en la sefializacién de AJ y auxinas (Kidd et al., 2009; Raya-
Gonzélez et al., 2014), sugiriendo que PFT1/MED25 puede actuar como nodo
para la integracién de estas dos vias de respuesta a hormonas. El andlisis del
efecto del AJ sobre el sistema radicular en plantas silvestres y mutantes pft1-2 y
coi1-1 indica que PFT1/MED25 es independiente de COI1 y la sefializacion por AJ
en el crecimiento de la raiz primaria y la formacion de raices laterales.

En conclusion, los datos presentados muestran que: (i) la pérdida y
ganancia de funcion de PFT1/MED25 induce respuestas opuestas sobre el
crecimiento de la raiz primaria y la formacion de raices laterales y adventicias; (ii)
PFT1/MED25 modula la configuracion del sistema radicular, regulando de manera

negativa la division y la elongacion celular; (iii) PFT1/MED25 regula la expresion
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de genes de respuesta a auxinas en el desarrollo de PRL; (iv) PFT1/MED25 regula
respuestas dependientes de auxinas endogenas y exdgenas en la formacion de
raices laterales; (v) PFT1/MED25 regula el desarrollo de la raiz a través de un
mecanismo independiente a la sefializacion por AJ.

Con base a las conclusiones resulta claro que PFT1/MED25 esta
involucrado en multiples procesos de desarrollo y de respuesta a estrés bidtico y
abiotico, a través de integrar e interactuar con diversos factores transcripcionales
para responder a las diferentes sefales celulares. Esto es consistente, ya que el
genoma de Arabidopsis codifica para ~1500 factores transcripcionales, los cuales
responden a las diferentes sefales a través de la interaccion con subunidades
especificas del complejo Mediador. Por lo tanto, una perspectiva de este trabajo
seria determinar los genes blanco de PFT1/MED25, lo que indudablemente

generard informacion valiosa acerca de su funcidon sobre el desarrollo de la raiz.
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Abstract

Alkamides are fatty acid amides of wide distribution in plants, structurally related to N-acyl-L-homoserine lactones (AHLs)
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tested by inoculating Arabidopsis detached leaves with conidiospores and evaluating disease symptoms and fungal
proliferation. N-isobutyl decanamide application significantly reduced necrosis caused by the pathogen and inhibited
fungal proliferation. Arabidopsis mutants jar1 and coil altered in JA signaling and a MAP kinase mutant (mpk6), unlike
salicylic acid- (SA) related mutant eds16/sid2-1, were unable to defend from fungal attack even when N-isobutyl decanamide
was supplied, indicating that alkamides could modulate some necrotrophic-associated defense responses through JA-
dependent and MPK6-regulated signaling pathways. Our results suggest a role of alkamides in plant immunity induction.
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Introduction

Plants continuously respond to abiotic and biotic stress by
adjusting their metabolism and activating diverse intracellular and
systemic responses. Biotic stress induced by pathogens triggers
complex signaling cascades regulated by hormones once an
mvader has been detected. Three main phytohormones have
been classically recognized as essential components of responses
triggered by pathogens, namely salicylic acid (SA), jasmonic acid
(JA) and ethylene (ET). Hormonal-dependent pathways result in
the expression of defense-related genes such as those encoding
pathogenesis-related (PR) proteins, and the production of
antimicrobial secondary metabolites [1]. These responses are
assisted by reactive molecules, such as nitric oxide (NO) and
reactive oxygen species (ROS) that function both, as signaling
components of transcriptional and metabolic readjustment and as
antimicrobial substances [2]. Lifestyle of pathogens largely
determines the effectiveness of a plant-induced response to combat
the pathogen challenge. The SA-dependent signaling pathway is
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often considered to be effective against pathogens that derive
nutrients from living hosts cells (biotrophs), and JA/ET pathways
against pathogens that derive nutrients from dead cells (necro-
trophs), although, the persistence of defense responses and the
disease outcome are determined by complex networks of
interactions between multiple hormone signaling pathways [3].
Lipids have a key role in maintaining the fluidity and structural
integrity of all cell membranes. Additionally, lipids and various
fatty acid derivatives have been described to act as signaling
molecules in response to diverse environmental cues [4]. Structural
features of fatty acids, such as the chain length and their
unsaturation degree, determine their function and biological
activity by altering membrane lipid composition [3]. Exogenous
and endogenous mono- and poly-unsatured fatty acids (PUFAs)
alter plant gene expression and metabolism, thus impacting the
plant-microbe and plant-herbivore interactions [5,6]. For instance,
alterations in enzymatic machinery that regulates production of
cellular unsaturated fatty acids alter the SA- and JA-mediated
defense signaling. A reduction in the endogenous levels of oleic
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acid (18:1) caused by mutation of a gene encoding STEAROYL-
ACYL CARRIER PROTEIN-DESATURASE, increases the
expression level of PR genes in a SA-dependent way, but at the
same time, reduces expression of a subset of JA-dependent
response genes and decreases resistance to Botryris cinerea in
Arabidopsis [7]. A kind of PUFAs that impact plant defense
responses are the eicosapolyenoic acids, which are produced and
released by several species of oomycete plant pathogens.
Specifically, exogenous application of arachidonic acid (20:4) to
Arabidopsis and  tomato  (Solanum  lycopersicum) plants induces
expression of general-stress responsive genes, increases endoge-
nous JA levels and confers resistance against the necrotrophic
fungi Botrylis cinerea [8]. Based on this evidence, it has been
proposed that lipids and their derivates have transorganismal
signaling activity, and that their dependent pathways are
conserved throughout the evolutive history of organisms [8].
Commonly, the full range of biological effects triggered by PUFA
signals, are carried out by their metabolism into more potent
substances, the oxylipins. Oxylipins are a diverse class of lipid
metabolites that include fatty acid hydroxiperoxides, hydroxy-, oxo-
, or keto-fatty acids, volatile aldehydes, or mostly, jasmonates (JAs)
[9]. JAs act as regulatory molecules in metabolic and developmental
processes, as well as in defense responses [10,11,12]. They rapidly
accumulate by wounding, insect attack and necrotrophic pathogen
infection [13]. JA is synthesized through a series of reactions
involving lipoxygenases (LOXs), allene oxide synthases (AOSs),
allene oxide cyclases (AOGs) and 12-oxophytodienoate reductases
(OPRs). Then, JA is further modified to produce JAs, for example,
as conjugates with various lipophilic amino acids such as isoleucine
(Ile) produced by a jasmonate amino acid synthetase, encoded by
JASMONATE RESISTANTI (JARI). The JA signal (JA-Ile) is
perceived by an intracellular receptor, the F-box protein COIl,
which plays a key role in JA signaling [14], and is required for the
majority of the JA-mediated responses described to date, such as
fertility, secondary metabolite biosynthesis, pest and pathogen
resistance, and wound responses [15]. COIl is an E3 ubiquitin
ligase that catalyzes the ubiquitination of proteins destined to
degradation via the proteosome-mediated pathway. COIl activates
a signal transduction pathway that culminates in the transcriptional
activation or repression of JA-responsive genes. The cor/ mutant is
resistant to JAs and to the Pseudomonas syringae toxin coronatine. The
essential role of JAs in plant immunity is also evidenced by JA-
related mutant phenotypes, for example both jar! and coi/ show an
enhanced susceptibility to necrotrophic pathogens [16,17]. In
addition, protein phosphorylation and dephosphorylation have
important roles in JA signaling. The mitogen-activated protein
kinase (MAPK) cascade, which is one of the major signal
transduction pathways in plants, as well as other eukaryotes, has
been found to be regulated by JA to modulate JA-dependent gene
expression [17]. In Arabidopsis, three MAPKs (MPK3, MPK4 and
MPKG6) have been implicated in defense against pathogens
[18,19,20]. MPK6 functions as substrate of at least four MAPK
kinases (MKK2, MKK3, MKK4 and MKKS5) in response to
different stimuli, including developmental, microbial or environ-
mental cues. Once phosphorylated, MPK6 activates several
transcriptional regulators, such as members of the WRKY, MYC
and ERF gene families. Particularly, but not exclusively, the
MKXK3-MPKG6 cascade is activated in response to JA and both,
positively and negatively regulates the expression of JA-related
genes [17,21]. Concordantly, the MAR3-knockout mutant mkk3 and
cot] had an altered activation of MPKG6 in response to JA. Moreover,
mutations in MPK6 compromise the accumulation of antifungal
phytotoxin camalexin in response to infection with Botiytis cinerea

[17,22].
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An additional class of lipids conserved among different
kingdoms with signaling functions in plants is the fatty acid
amides group, including the plant-, fungal- or animal-produced N-
acylamides (alkamides), N-acylethanolamines (NAEs), and the N-
acyl-L-homoserine lactones synthesized by Gram-negative bacte-
ria. Compounds representative of these three classes of lipids have
been shown to modulate seedling development in Arabidopsis and to
affect plant biomass production in a dose-dependent way,
indicating a strong biological activity [23,24,25]. NAEs are
compounds with aminoalcohol linked as an amide to the fatty
acid, which accumulate in seeds of higher plants, including cotton,
corn, soybean, tomato, pea and Arabidopsis, and decrease during
germination [26]. Pioneering research on fatty acid amides
showed that NAE production in plants is associated to defense
responses. NAE 14:0 accumulates in tobacco leaves treated with
fungal elicitors, and exogenous application of this NAE is able to
induce expression of defense-related genes [27]. Moreover, the
ectopic overexpression of a plant fatty acid amide hydrolase
(FAAH), an enzyme that degrades NAEs, renders Arabidopsis plants
more susceptible to both host and non-host bacterial pathogens
[28]. N-acyl-L-homoserine lactones (AHLSs) are structural analogs
of NAEs and alkamides, that are produced by Gram negative
bacteria and participate in the cell-to-cell communication process
commonly referred to as quorum-sensing (QS). Interestingly,
plants have the genetic machinery to perceive and respond to
AHLs. The presence of AHL-producing bacteria in the rhizo-
sphere of tomato induces SA- and JA-dependent defense
responses, conferring resistance to the fungal pathogen Alternaria
alternata [29]. Moreover, the application of purified AHLs to
Medicago truncatula and  Arabidopsis plants results in differential
transcriptional changes in roots and shoots, affecting expression of
genes potentially involved in immune responses and development
[30,31]. Interestingly, FAAH knockouts and overexpressors
Arabidopsis lines are more sensitive and tolerant, respectively, to
the root inhibitory effects of AHLs, in a similar fashion to their
response to exogenous NAEs and alkamides, while an alkamide
resistant mutant termed decanamide resistant root 1 (drrl) showed
decreased root responses to alkamides and AHLs [25,32].

Alkamides comprise over 200 related compounds and they have
been found in several plant families: Aristolochiaceae, Asteraceae,
Brassicaceae, Convolvulaceae, Euphorbiaceae, Menispermaceae,
Piperaceae, Poaceae, Rutaceae, and Solanaceae, reviewed in
[33,34]. Some traditional medicinal plants produce these second-
ary metabolites during their life cycle in response to several stress
conditions to mediate, among other processes, plant chemical
defense against plant competitors or microbial and herbivorous
predators [35]. Several species from the genus Fchinacea accumu-
late unsaturated alkamides ranging from 12 to 18 carbon atoms in
response to JAs [36,37]. These unsatured alkamides are also active
in mammals; they activate immune responses in alveolar
macrophages from rats, in concert with a sustained production
of NO, a canonical messenger in plant and animal defense
responses [38,39]. Alkamides have also been identified in insects,
such as Mlinolenoyl-L-glutamine, present in oral secretions of the
tobacco hornworm (Manduca sexta), which is able to elicit defensive
responses in plants by inducing volatile chemicals that attract
predators and parasites of the attacker [40]. The wound-induced
JA production is amplified by application of these oral secretions in
Nicotiana attenuata leaves, indicating a reciprocal crosstalk between
JAs- and alkamides-related signal pathways [41]. To date,
however, there is no direct evidence as to whether alkamides
can switch JA production and its transcriptional targets.

The short-chain alkamide affinin from the “gold-root™ Heliopsis
longipes has been reported to have antimicrobial activity inhibiting
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in vitro growth of some plant microbial pathogens, including
bacteria and fungi [35]. To explore the structure-activity
relationships of alkamides, we previously evaluated the root
developmental responses of Arabidopsis seedlings to application of a
group of affinin-derived natural and/or synthetic fatty acid amides
with similar chain length [42]. We found that A-isobutyl
decanamide, a C:10 saturated alkamide that is naturally produced
in Acmella radicans [43] and Cissampelos glaberrima [44], was the
most active compound in inhibiting primary root growth and
stimulating lateral root formation. Interestingly, root developmen-
tal alterations induced by N-isobutyl decanamide were related to a
sustained increase in nitric oxide (NO) production and required
the activity of the DRRI protein [45].

To further understand the molecular responses to fatty acid
amides, in this work we performed whole-genome transcriptional
profiling of Arabidopsis thaliana seedlings in response to N-isobutyl
decanamide. Our results show the activation of defense-related
gene expression, concomitant to an increase in JA accumulation
and in the expression of JA-responsive and senescence-associated
genes. Moreover, N-isobutyl decanamide application to mature
Arabidopsis leaves conferred resistance against fungal necrotizing
pathogen Botrytis cinerea in a process involving JA-dependent
signaling.

Results

Transcriptomic profiling of Arabidopsis in response to

N-isobutyl decanamide

To characterize at the transcriptional level the molecular
responses of Arabidopsis to N-isobutyl decanamide, Col-0 WT
secedlings were germinated and grown for 6 d on 0.2x MS
medium and then transferred to fresh medium supplied with or
without 60 uM of N-isobutyl decanamide to directly compare their
effect on whole-genome transcriptional profile after 1, 3, 7 and
14 d of treatment (Figure S1) employing a two-channel long-
oligonucleotide microarray platform (see Methods).

According to a stringency level of FDR 0.05 (fold change =2), a
total of 1,281 genes showed differential expression in at least one of
the four sampled time points. The complete list of differentially
expressed genes is provided in Table S1. Among differentially
expressed genes, 727 were found to be up-regulated and 554
down-regulated by MN-isobutyl decanamide (Figure 1A). Only 22
from the 727 induced genes and 33 down-regulated genes were
common to all time points evaluated (Figure 1B). Of these
overlapping genes, highest expression values were reached on the
seventh day of Misobutyl decanamide treatment (Figure 1C).
Analysis of expression patterns by agglomerative hierarchical
clustering showed that the number of differentially regulated genes
increased from day 1 to day 7 after treatment and then decreased
at day 14 (Figure 1C).

In addition to the statistical methods described (see Materials
and Methods), validation of microarray data was achieved by real-
time quantitative PCR (qQRT-PCR) of 15 randomly chosen genes,
including up- and down-regulated genes. These experiments were
carried out using RNA extracted from an independent batch of
control and treated plants than those used for microarray analysis
experiments. qRT-PCR gene expression profiles obtained for the
analyzed loci were quite consistent with those generated by the
microarray analysis (Figure S2).

Functional categories of genes up-regulated by

N-isobutyl decanamide
Differentially expressed genes were classified into functional
categories according to the Munich Information Center for

@ PLoS ONE | www.plosone.org

165

Alkamide-Regulated Transcriptional Networks

Protein Sequences classification (MIPS) using the FunCat database
[46]. The categories “Metabolism™ (290 genes), “Storage protein”
(16 genes), “Cellular transport, transport facilities and transport
routes” (161 genes), “Cell rescue, defense and virulence” (189
genes), “Interaction with the environment” (165 genes), “Systemic
interaction with environment™ (92 genes), “Cell fate” (31 genes)
and “Biogenesis of cellular components” (90 genes) were identified
as significantly over-represented MIPS categories among N-
isobutyl decanamide responsive genes (Table S2). Most of these
genes belong to defense- and stress-related categories, including
subcategories belonging to the “Metabolism” set such as,
‘Metabolism of glutamate, polyamines, nitrogen and related
groups, chitin and others polysaccharides, and secondary metab-
olism’ (Table S2).

When we performed functional categorization per day of
treatment, we found that the highest percentage of genes in every
category was represented at the seventh day (Figure 2A). Two
remarkable over-represented categories identified were “Cell
rescue, defense and virulence” and “Systemic interaction with
environment” (Figure 2A). Detailed analyses of these two
categories showed significant overrepresentation of the ‘stress
response’, ‘disease, virulence and defense’, ‘detoxification’, ‘plant/
fungal specific systemic sensing and response’ and ‘animal systemic
sensing and response’ subcategories (Figure 2B). Within these
subcategories, we found 70 genes involved in oxygen and radical
detoxification, 75 genes involved in hormone-related responses
(auxin, ethylene, cytokinin and abscisic acid), and particularly,
genes encoding enzymes involved in JA synthesis and associated
responses (Table S2; Figure 3). Additional differentially regulated
genes encoded proteins related to biotic stress, including different
secreted pathogenesis-related proteins (PR) such as chitinases and
glucanases (At4g07820, At2g19990, At2gl14610, At3g57260,
At3g04720, Atlg75040, At2g19970, At2g14580, At4g33720 and
At2g14580) (Table S1). Overrepresentation of biotic stress-related
categories can be appreciated more clearly in the functional
categorization of N-isobutyl decanamide-induced genes (Figure 2C).
These results suggest that alkamides are likely involved in triggering
defense-associated responses in Arabidopsis.

General defense responses but not salicylic acid
biosynthesis are activated by N-isobutyl decanamide

Because N-isobutyl decanamide increased the transcript level of
a wide class of PR genes, we examined its effect on the production
of salicylic acid (SA) and signaling molecules related to local and
systemic responses in defense processes. SA is a phenolic hormone
whose activity is required to successfully respond against several
different invading pathogens [47] and their biosynthesis succeeds
in association with changes in redox homeostasis producing
reactive oxygen species (ROS) such as superoxide and hydrogen
peroxide (HyOo) [48]. In turn, SA and HyOy release is
accompanied by another reactive signalling molecule, nitric oxide
(NO). Whole-transcriptional profiling regulated by AN-isobutyl
decanamide showed that PATHOGENESIS-RELATED] (PRI,
At2g14610), a marker for SA signaling, and overall defense
responses [49,50,51] increased its transcript level by 7.5-fold at day
7 (Table S1). However, none of the genes encoding enzymes
related to SA biosynthesis were significantly up-regulated.
Moreover, N-isobutyl decanamide did not appear to significantly
affect the overall SA content despite an observed induction of the
PR1:GUS reporter-gene expression (Figure 3A &B), suggesting that
N-isobutyl decanamide-mediated gene expression of PRI occurred
independently of SA accumulation.

It is well documented that some stress-associated molecules,
such as ROS, play signaling roles as second messengers in
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Figure 1. Overview of N-isobutyl decanamide responsive genes in Arabidopsis seedlings. Number of genes (vertical axis) Up-regulated
(red) and Down-regulated (blue) by N-isobutyl-decanamide treatment at 1, 3, 7, and 14 d.a.t. (A). Edwards-Venn diagrams showing common or
distinct responsive genes identified at every time evaluated (B). The number of genes up- or down-regulated in a single condition is shown in bold
letters. The number of genes regulated at all sampled-times are shown in bold italic font. Agglomerative hierarchical clustering of differentially
expressed genes at every sampled times (C). Clustering was performed using the Smooth correlation and average linkage clustering in GeneSpring
GX 7.3.1 software (Agilent Technologies®). Blue color indicates Down-regulated, red Up-regulated and white unchanged values, as shown on the

color scale at the right side of the figure.
doi:10.1371/journal.pone.0027251.g001

developmental and defense process. Among the MN-isobutyl
decanamide differentially expressed genes, at least 70 belonging
to the functional group “oxygen and radical detoxification” were
regulated by alkamide treatment (Table S2), having their highest
expression level at days 3 and 7 after transfer. Up-regulated genes
included ten peroxidases (At4g08780, At5g06730, At4g08770,
At5g06720, At5g58390, At5g05340, At2g18150, At3g49960,
At3g49110 and At2g18140), two thioredoxin H-type TH8 and
TH7 (At1g69880, Atlg59730) and a glutaredoxin (At5g40370),
two glutathione peroxidases ATGPX4 and ATGPX6 (At2g48150,
At4g11600), five FAD-binding oxidoreductases (Atlg26410,
At1g26380, At1g26390, Atl1g26400 and Atlg26420), the catalase
CAT3 (At1g20620) and HYDROPEROXIDE LYASEI (At4gl15440)
(Table S1 & S2). Given this overrepresentation, we decided to
explore whether ROS accumulation coincided with the increase in
transcript level of the group of oxygen and radical detoxification
genes. We detected hydrogen peroxide (HyOy) production in situ
in Arabidopsis seedlings that were transferred for 7 d from MS 0.2 x
medium to a medium containing N-isobutyl decanamide. At this
stage the seedlings were treated with 3,3-diaminobenzidine (DAB),
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which in the presence of peroxidases polymerizes as soon as it
comes into contact with HyOy, forming a brown precipitate.
Leaves from N-isobutyl decanamide-treated seedlings clearly
showed an increase in HyOy (Figure 3C) and NO production
(Figure 3D) when compared to solvent-treated seedlings. Overall,
these results suggest that general defense-associated responses
elicited by N-isobutyl decanamide appear to be related to both
hormonal and oxidative stress response.

Endogenous levels of JA and their corresponding

transcripts are induced by N-isobutyl decanamide
Virtually all genes encoding for biosynthetic enzymes for JA
production were regulated by N-isobutyl decanamide (Figure 4A).
Canonical JA-dependent inducible genes involved in JA signaling
and response pathways showed predominantly induction profiles
(Figure 4C). Among them CORONATINE-INDUCED3 (CORI3,
At4¢23600), NAC DOMAIN-CONTAINING PROTEINSI (ATAF2/
ANAC081, At5g08790), FASMONATE-ZIM-DOMAIN  (FAS1/

JAZ10, Atbgl13210), ETHYLENE RESPONSE FACTORZ (ERF2,
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Figure 2. Functional classification of Arabidopsis genes differentially expressed in response to A-isobutyl decanamide treatment.
Categorization of 1,281 genes regulated by treatment was obtained according to the Munich Information Center for Protein Sequences classification
(MIPS) classification using FunCat database (http://mips.helmholtz-muenchen.de/proj/funcatDB/) and Arabidopsis annotation. Statistically significant
categories were identified by using a hypergeometric method and Bonferroni correction with a cutoff of p-value >0.05 (A). MIPS defense-related
subcategories significantly represented (B). Percentages relate to total differentially regulated genes per sampled times. The average transcriptional
change of all induced genes in overrepresented functional categories was also calculated along time of treatment (C).

doi:10.1371/journal.pone.0027251.g002

At5g47220), VEGETATIVE STORAGE PROTEIN2 (VSP2,
Atb5g24770), LIPID TRANSFER PROTEINS (LTP3, LTP2 and
LTP, At5g59320, At2g38530, and At4g12490, respectively) and
the SENESCENCE-ASSOCIATED GENE13 (SAG13, At2g29350)
sustained high expression values through our temporal kinetic
experiment. The genes CORII (Atlgl9670), JAZ8 (Atlg30135),
ERF4 (At3g15210) and PHYTOALEXINE DEFICIENT3 (PADS3,
At3g26830) showed increased expression from basal levels to
induced expression levels. Four PLANT DEFENSIN genes
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PDF1.2a, PDFI1.1, PDFI1.2b and PDFI.2¢c (At5g44420,
Atlg75830, At2g26020, At5g44430) and a chitinase (BASIC
CHITINASE, At3g12500) ranged from repression to induction
values (Figure 4B). However, all of them, in a similar way to the
genes of the JA biosynthetic pathway, were overexpressed at day 7
after alkamide treatment (Figure 4A &B).

To determine whether increase in the transcript level of JA-
related genes correlated with changes in endogenous levels of JA,
we quantified, by gas chromatography coupled to mass spectrom-
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Figure 3. Effects of N-isobutyl decanamide on defense-related
metabolite production and PR7 expression. Arabidopsis seedlings
were grown for 6 days on N-isobutyl decanamide-free medium and
transferred to control plates with or without N-isobutyl decanamide for 7
additional days. Salicylic acid (SA) accumulation was determined by
measuring free and conjugated SA by GC-MS (A). Benzoic acid was used
as internal standard, data are means of three independent experiments
+ SD. Transgenic Arabidopsis line carrying PR1:GUS was stained for GUS
expression (B). Detection of hydrogen peroxide (H,O,) was made by
staining leaves from control and treated seedlings with DAB (C). Images
were captured with a Nomarski microscope. Nitric oxide (NO) from leaves
of control and treated seedlings was detected by analyzing fluorescent
signal of DAF-2DA with a confocal microscope (D). All photographs are
representative individuals from at least 9 seedlings analyzed.
doi:10.1371/journal.pone.0027251.g003
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etry (GC-MS), JA accumulation in seedlings treated with the
solvent or 60 pM N-isobutyl decanamide . A nearly two-fold
increase in JA level was observed in response to alkamide
treatment (Figure 5A), indicating that the effects of this alkamide
on gene expression might be mediated, at least in part, by
increasing JA production in the plant. To gain further insight into
the transcriptional activation of JA-dependent responses to N-
isobutyl decanamide, transgenic seedlings containing a chimeric
gene in which the LOX2 promoter is fused to the GUS reporter
gene (LOX2:GUS) were treated with 30 and 60 uM N-isobutyl
decanamide, and GUS histochemical analysis performed in 7 d-
old seedlings. Interestingly, increased expression of this marker
was observed throughout the shoot in alkamide-treated seedlings
in a dose-dependent manner (Figure 5B).

Because a concentration of 30 uM MN-isobutyl decanamide was
able to induce LOXZ2 expression, we evaluate the expression levels
of JA-responsive transcripts by qRT-PCR in seedlings treated for 7
days with this alkamide concentration. Among the biosynthetic
genes, we focused on genes encoding the LOX2 and LOX3
lipoxigenases, ALLENE OXIDE SYNTHASE (AOS) and ALLENE
OXIDE CYCLASE? (AOC2) enzymes, and OPDA REDUCTASE3
(OPR3). We also examined the expression levels of the JA-
inducible genes jAZ8, VSP2 and ERF2. All tested genes were
induced by MN-isobutyl decanamide application more strongly than
JA itself (Figure 5C). It has been reported that JA-responsive gene
expression occurs in a short time after JA perception [52]. For this
reason, the JA insensitive mutant coronatine insensitivel (coil-1) was
employed as negative control to determine if an intact JA signaling
pathway was required for the long-term (7 days) response. As
shown in Figure 5C, most tested genes either did not respond or
were repressed in response to JA or to N-isobutyl decanamide
treatment in the coi/-/ mutant.

Additionally, we evaluated local activity of N-isobutyl decana-
mide to induce transcriptional activation of defense-related genes
in fully developed leaves, which were excised and incubated for
24 h in media supplemented with 30 uM MN-isobutyl decanamide.
Alkamide-treated leaves showed increased expression of the
LOX2:GUS reporter gene in a dose-dependent manner as
compared to untreated controls (Figure S3A). Moreover, the
relative expression level of OPR3, VSP2 and PAD3 genes was at
least two-fold higher in treated wild-type leaves than in the
controls (Figure S3B). These results show that at least some
transcriptional networks modulated by MN-isobutyl decanamide are
active even in detached tissue.

N-isobutyl-decanamide confers resistance to fungal
necrotizing pathogen Botrytis cinerea

JA accumulation and JA-responsive gene expression analyses
suggest that N-isobutyl decanamide may function as a potential
defense-inducing factor. To determine whether N-isobutyl decan-
amide could effectively activate defense mechanisms that lead to
pathogen resistance, we tested the responses of leaves from 20 d-
old Arabidopsis plants to the necrotrophic pathogen Botrytis cinerea.
In these experiments, again, fully developed leaves were
transferred 24 h to agar plates supplied with 30 uM MN-isobutyl
decanamide or with the solvent as control. A 10 pl droplet of B.
cinerea spores was inoculated on the leaf surface and disease
symptoms evaluated 3, 4 and 5 days after inoculation (d.a.i.). In
leaves transferred to control medium and inoculated for 3 days,
the fungus induced necrotic lesions in over 90% of inoculated
leaves (Figure 6A), whereas in MN-isobutyl decanamide leaves
treated only 10% presented necrotic lesions (Figure 6A). Four
d.a.i., it was found that 100% of the control leaves showed necrotic
lesions, whereas in MN-isobutyl decanamide-treated leaves, around
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Figure 4. JA-related pathways are transcriptionally induced by A-isobutyl decanamide. Simplified representation of JA biosynthetic
pathway, genes and metabolites are illustrated (A). Fold-change values of JA-biosynthetic and -responsive pathway genes differentially expressed
with N-isobutyl decanamide treatment (A, B). Data from microarray expression profiles are shown in the color scale from blue to red.

doi:10.1371/journal.pone.0027251.9g004

15% and 60% of infected leaves showed necrotic lesions at fourth
and fifth d.a.i., respectively. It is important to note that lesions in
control leaves five d.a.i. were of about 6 mm in diameter, whereas
in alkamide-treated leaves, the lesions had a diameter between 0.8
and 1.5 mm (Figure 6B). Visual inspection showed that after 5-d of
inoculation, solvent-treated leaves inoculated with the pathogens
presented generalized necrotic lesions spanning half or more the
surface of the leaf, while MN-isobutyl decanamide-treated leaves
manifested significantly reduced symptoms (Figure 6C). We
monitored hyphal growth of the pathogens by direct microscopic
observation of stained mycelium in infected leaves. We found that
disease symptoms in solvent-treated leaves at day 3 after
inoculation were accompanied by prolific mycelium growth. In
contrast, N-isobutyl decanamide treatment inhibited fungal growth
over leaf surfaces, as compared to the control (Figure 6C). On the
basis of these findings, it can be concluded that MN-isobutyl
decanamide treatment renders enhanced resistance to B. cinerea in
Arabidopsis leaves.

To determinate if the reduced leaf damage and fungal growth
inhibition observed in alkamide-treated leaves could be the result
of a direct toxic effect of MN-isobutyl decanamide on the fungal
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pathogen tested, we evaluated the antifungal activity of N-isobutyl
decanamide on B. cinerea mycelial growth by inoculating mycelia
disks on Petri plates containing PDA media supplemented with the
solvent or with increasing concentrations of alkamide. Although
120 uM' MN-isobutyl decanamide inhibited mycelium growth by
approximately 15%, any lower concentration had no significant
effect (Figure S4). Indicating that plant defense responses elicited
by MN-isobutyl decanamide, and no an antifungal activity were
responsible of pathogen proliferation over inoculated leaves.

JA signaling is required for the N-isobutyl
decanamide-induced resistance to B. cinerea

To test whether JA signaling is involved in the M-isobutyl
decanamide-induced increased resistance to necrotrophic fungal
infection of Arabidopsis leaves, we evaluated the responses of
Arabidopsis JA-related mutants jasmonic acid resistant! (jarl), coronatine
insensitivel (coil-1), a mutant defective at the MITOGEN-ACTIVAT-
ED PROTEIN KINASEG (MPE®) locus, which has been found to be
critical in defense responses to B. cinerea [22], and the SA-related
mutant enhanced disease symptoms16 (eds16/sid2-1). Fully developed
leaves from Col-0 wild-type (WT) and mutant plants were pre-
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Figure 5. Levels of JA and their corresponding transcripts are enhanced by N-isobutyl decanamide. N-isobutyl decanamide-dependent
accumulation of JA was determined by GC-MS from three biological replicate samples (A), data are means of three independent experiments = SD,
asterisks denote a significant difference from control seedlings (P=<0.05). Transgenic Arabidopsis seedlings expressing GUS under the regulation of the
JA-induced LOX2 promoter (LOX2:GUS) were grown for 7 days on solidified medium supplied with the solvent (control) or with 30 and 60 uM N-
isobutyl decanamide, and then stained for GUS expression (B). Quantitative real-time PCR (qRT-PCR) analysis of nine JA-responsive genes using Cy
value of ACT2/7 as internal expression reference (C). Relative expression values were normalized with endogenous levels from each transcript in Col-0
control seedlings. Bars represent = SE from three independent biological replicates, and there were four technical replicates for qRT-PCR assay.

doi:10.1371/journal.pone.0027251.g005

incubated for 24 hours with 30 uM MN-isobutyl decanamide or with
the solvent as control and then, inoculated with a droplet of 5x10°
spores/ml B. cinerea spores on the surface. WT' and eds/ 6 leaves
showed decreased disease symptoms when treated with N-isobutyl
decanamide, unlikely jar!, mpk6 and coil-1 leaves, which presented
symptoms similar to solvent-treated controls, and, therefore, were
not responsive to the alkamide-activated resistance (Figure 7A & B).
Similarly, fungal growth, assessed by quantitative PCR amplifica-
tion of Actin A DNA of B. cinerea [53], was significantly enhanced in
the jarl, mpk6 and coi -1 mutant leaves, but restricted in the WT and
eds16 with the N-isobutyl decanamide treatment (Figure 7C).

In order to qualitatively analyze the damage caused by the
pathogen, infection was estimated by recording a range of severity
of disease symptoms (from no symptoms, to severe tissue
maceration). For this purpose, we placed leaves from WT and
mutant plants on 0.7% agar plates supplied with solvent or N
isobutyl decanamide for 24 hours. Then, leaves were immersed
into B. cinerea spores solution and transferred to N-isobutyl
decanamide-free agar plates. As shown in Figure 7D, three
d.a.i., lesion severity was higher in the jarl, mpk6 and coil-1
mutants than in WT leaves, even when they received MN-isobutyl
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decanamide pre-treatment. As expected in the WT, disease
symptoms decreased when the alkamide was supplied. Unlike
JA-related mutants, eds!6/sid2-1 leaves displayed reduced injuries
with MN-isobutyl decanamide pretreatment, as compared to those
observed for the corresponding untreated controls (Figure 7D).

All together, these results show that MN-isobutyl decanamide-
induced resistance to B. cimerea in Arabidopsis W'T leaves is due to
the induction of defense programs that require an intact JA
signaling pathway.

Discussion

Lipids, besides being important structural molecules in living
systems, function as modulators of a multitude of signal
transduction pathways evoked by environmental and develop-
mental stimuli. Alkamides belong to a novel class of lipid signals
that regulate morphological processes in plants [23]. Recent
findings provided evidence of a widespread distribution of
structurally related lipid amide signals in evolutionary distant
organisms, including the animal, fungal and plant-produced NAEs
and the bacterial quorum-sensing AHL regulators [54,33].
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Figure 6. N-isobutyl decanamide confers protection against
Botrytis cinerea attack. Leaves from 20 day-old plants grown in soil
were pre-incubated 24 h on solvent (control, white squares), or 30 uM
N-isobutyl decanamide containing plates (black squares), transferred to
decanamide-free plates and then inoculated with a 10 ul droplet of B.
cinerea spores (5x10° conidiospores/ml). The percentage of leaves with
necrotic symptoms at 3, 4 and 5 days after inoculation was determined
(A). Bars mean = SE of 30 inoculated leaves from two independent
experiments. Tissue damage caused by B. cinerea was measured at 5
days after inoculation (B). Data points represent average lesion size *
SE from 30 independent leaves, asterisks denote a significant difference
from control leaves (P=0.05) as determined by t test. Representative
inoculated leaves at 5 days after inoculation were imaged (C, top
panels) and trypan blue-stained, inoculation sites are shown (C, bottom
panels).

doi:10.1371/journal.pone.0027251.g006

The central idea of this work was to explore the transcriptional
responses in Arabidopsis to alkamides and ascertain its relevance in
activating long-term defense responses. Toward this goal, we
performed a global transcription profile of Arabidopsis response to
N-isobutyl decanamide (Figure S1).

Our results establish that exogenous application of MN-isobutyl
decanamide triggers profound physiological changes in Arabidopsts,
with activation of developmental and defense- and stress-related
genes (Table S1; Figures 2 & 3). Interestingly, treatment with N-
isobutyl decanamide resulted in an increase in the endogenous
levels of JA (Figure 5), a lipid phytohormone known to be central
in activation of plant defense responses to a range of biotic
challengers, including herbivores, insects, necrotrophic fungi and
oomycetes [55,56,57]. These results are consistent with previous
reports showing that NAEs induce LOXs activity and JA
accumulation [58,59]. NAEs comprise a group of bioactive
signaling lipids naturally present from fungi to plants to mammals
that share structural and functional relationship with alkamides. In
mammals, anandamide (NAE 20:4) acts as an endogenous ligand
for cannabinoid receptors and plays different physiological roles
including the modulation of neurotransmission in the central
nervous system [60], synchronization of embryo development [61]
and vasodilation [62]. Interestingly, arachidonic acid (AA, 20:4) a
precursor of anandamide in mammals has been shown to posses
important signaling roles in plant stress and defense networks
trough production of JA and the activation of JA-dependent
transcripts [8]. These results indicate that lipid signals biochem-
ically related to alkamides and NAEs could regulate the same or
similar signaling pathways.

Previously, Teaster and coworkers [63] conducted microarray
analyses to identify transcriptional targets of plant NAE 12:0 in
4 d-old Arabidopsis seedlings. We found a set of 171 differentially
expressed genes by N-isobutyl decanamide, whose expression was
also reported as regulated by NAEs, including ABA-responsive
genes (At3g02480, At5g53820) and germin-like genes (At5g38910,
At5g39550, At5g39180, At5g39110, At5g39190) (Table S1). Our
results indicate that although important differences in plant age,
concentrations of compounds and time of exposure already exists
when comparing our expression analysis results with those
reported for NAE 12:0, common genes were found to be up-
regulated by the two compounds, indicating commonalities in the
transcriptional responses elicited by NAE 12:0 and MN-isobutyl
decanamide. One of the first indications that plant fatty acid
amides indeed participate in plant-pathogen interactions was the
observation that NAEs accumulated in the growth media of
tobacco suspension cells and leaves after application of the fungal
elicitor xylanase. Indeed, exogenous NAE application triggered
the expression of the PHENYLALANINE AMMONIA LYASE gene
(PAL), which has been implicated in plant defense against
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Figure 7. Effect of JA-related mutations on disease resistance response induced by N-isobutyl decanamide. (A-C) Disease symptoms
on detached 20 day-old leaves at 4 days after drop inoculated with a 5 pl droplet as described in the legend for Figure 6 from wild-type (Col-0) plants,
JA-related mutants jar1, coil-1 and mpké, and the SA-deficient mutant eds16/sid2-1. Images show necrotic lesions (A), mean lesion size (B) and, in (C),
fungal growth. The data show the qPCR amplification of B. cinerea ActinA relative to the Arabidopsis ACT2/7 gene. (D) Leaves from 20 day-old wild-
type and mutant plants were pre-incubated 24 h on solvent (control), 30 or 60 uM N-isobutyl decanamide containing plates, dipped into a B. cinerea
inoculum of 5x10° spores/ml, transferred to decanamide-free plates and then incubated. Disease symptoms were scored 3 days post-inoculation,
graphical representation of disease rating (upper panel) caused in leaves was determined as percentage of leaves showing no symptoms (white bars),
chlorosis (grey bars), necrosis (dark grey bars), or severe tissue maceration (black bars). Data values represent one of two independent experiments
that gave similar results, 15 leaves were employed per treatment in each assay.

doi:10.1371/journal.pone.0027251.g007

pathogens [64,27]. Morcover, the ectopic overexpression of
FAAH, a NAE-metabolizing enzyme, renders Arabidopsis seedlings
more susceptible to both host and non-host bacterial pathogens
[28,65]. However, it remains to be determined whether NAE
application can actually confer improved resistance of plants to
pathogens.

Upon MN-isobutyl decanamide treatment, several JA-related
genes such as PDFs (At2g43510, At5g44420, Atlg75830,
At2g26010), VSP2 (At5g24770), JAZI0 and JAZS8 (At5gl13210,
Atlg30135), were induced, with a maximum at day 7 after
alkamide treatment (Figure 4), which correlates with the up-
regulation of several genes encoding enzymes involved in JA
biosynthesis and with a two-fold increased JA level (Figure 4).
Similar long-term gene induction patterns and JA increase have
been described in Medicago truncatula plants inoculated with the
pathogenic soilborne fungus Phymatotrichopsis omnivora, which has a
very broad host range and infects almost 2,000 dicotyledonous
species. Transcriptomic analysis of this interaction provided
evidence that JA production is sustained and prolonged, inducing
expression of genes encoding for LOXs, AOC2, OPR3, OPRS5,
OPR12, and wound-inducible serine proteinase inhibitors (PII) at
3 and 5 days after inoculation [66]. We show that MN-isobutyl
decanamide treatment conferred protection against B. cinerea
attack to Arabidopsis leaves (Figure 6). In contrast to wild-type and
the SA-related mutant eds!6/sid2-1, all three jarl, coil and mpk6
Arabidopsis mutants, whose gene products are involved in JA
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sensitivity and signaling, failed to resist B. cuerea attack when
N-isobutyl decanamide was supplied (Figure 7), suggesting that
N-isobutyl decanamide-conferred resistance to necrotrophic fungi
requires an intact JA signaling pathway.

Responses of plants to necrotrophic pathogens involve multiple
intermediates in signal transduction and anti-microbial responses,
which includes nitric oxide (NO) and reactive oxygen species
(ROS) [67]. The production and accumulation of reactive oxygen
species ROS, primarily superoxide (Oo-) and hydrogen peroxide
(Hy0Oy), during the course of a plant-pathogen interaction has long
been recognized. Evidence suggests that the oxidative burst and
the cognate redox signaling engaged subsequently, may play a
central role in the integration of a diverse array of plant defense
responses [68,69]. One well studied effect of oxidative burst is the
induction of hypersensitive response (HR) mechanism, where the
tissue at the infection site dies and in turn confines the pathogen
growth preventing its spreading [70]. In our microarray analysis,
we identified several potential components of the ROS signaling
pathway, including scavenging enzymes catalases and ascorbate
peroxidases, as well as at least 20 cytochrome P450 genes,
including the antifungal gene CYP71B15/PAD3, which plays a key
role in camalexin production and resistance against necrotrophic
pathogens [71] (Figure 4B & Table S1). Activation of these genes
correlated with accumulation of hydrogen peroxide (HyOy) and
NO in M-sobutyl decanamide-treated leaves (Figure 3). We
propose that alkamides might influence plant-pathogen interac-
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tions by affecting the level of other lipids or by modulating the
levels of second messengers involved in signal transduction to these
lipids such as Ca®', NO, and/or ROS. In a developmental
context, the relationship between NO and alkamides pathways in
Arabidopsis was recently investigated, mitotic activation of pericycle
cells from seedlings roots induced by N-isobutyl decanamide
occurred in parallel and in a dependent way to NO synthesis [45].
However, whether NO mediates the defense responses to
alkamides remains to be clarified.

Our previous research revealed a genetic interaction of
alkamides and senescence responses mediated by the DRRI locus
in Arabidopsis [32]. Leaf senescence is a metabolic active process
controlled by a genetic program [72,73]. Interestingly, ultra-
structural changes in senescing cells are accompanied by
production of several metabolites that may influence interactions
with other organisms. For example, antimicrobial compounds
often accumulate in senescing tissues, preventing diseases [74]. In
agreement with this, many senescence genes are transcriptionally
up-regulated by MN-isobutyl decanamide, i.e. PR genes, SAG genes
(At2g29350, Atdgl7670, At5g47060), a member of TCP family
(Atbg40070), and JA-related genes. It is tempting to speculate that
MN-isobutyl decanamide can be recognized as a senescence-induced
signal, thus influencing developmental and defense programs
involving JA signaling and possibly other additional signaling/
metabolic pathways regulated by NO, ROS and/or MAPK
messengers.

N-isobutyl decanamide share structural similarity to N-decanoyl
homoserine lactone (C:10 AHL) [25], a member of the bacterial
quorum-sensing signals, which have been found to alter root
development and activate defense responses in different plant
species [30,29,25]. An interesting hypothesis is that small lipid
signaling based on plant fatty acid amides and/or AHLs might be
part of an ancestral inter-kingdom communication system between
plants and their associated bacteria. Our data thus expand the
repertoire of signaling lipid molecules known to trigger plant
defenses and provide evidence that alkamides interact with the JA
pathway. The use of alkamides and bacterially produced fatty
amides in pathogen resistance by acting as defense elicitors in
plants shows great potential towards application of these
compounds to combat pathogen pests.

Materials and Methods

Plant material and growth conditions

Arabidopsis thaliana ecotype Col-0 was used for all experiments
unless indicated otherwise. Col-0, transgenic LOX2:GUS [75] and
PRI:GUS, and mutants jar! [16], mpk6 [76], coil-1 [77] and eds16/
sid2-1 [78] seeds were surface sterilized with 95% (v/v) ethanol for
5 min and 20% (v/v) bleach for 7 min. After five washes in
distilled water, seeds were germinated and grown on agar plates
containing 0.2X MS medium. Plates were placed vertically at an
angle of 65° to allow root growth along the agar surface and to
allow unimpeded growth of the hypocotyl into the air. For plant
growth, we used a plant growth cabinet (Percival Scientific
ARO95L, Perry, IA), with a photoperiod of 16 h of light, 8 h of
darkness, light intensity of 300 pmol/m-2/s-' and temperature of
22°C. After grown for 6 days, plants were transferred to control or
N-isobutyl decanamide containing solid MS medium for different
times.

Homozygous coi/-1 seedlings were selected by screening a
heterozygous population in agar solidified MS medium supplied
with 5 uM JA (Sigma Chemical Co., St. Louis), seedlings resistant
to root inhibition were transferred to soil baskets and leaves from
20 d-old were detached for i vitro pathogenicity assays.
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Synthesis of N-isobutyl decanamide

N-isobutyl-decanamide was obtained by catalytic reduction of
affinin, the most abundant alkamide present in Heliopsis longipes
(Gray) Blake (Asteraceae) roots as described before [23].

Experimental design and microarray platform

For microarray analyses a dye balanced modified loop design
was implemented. Four biological replicates representing each
sampling point were obtained by pooling in a 1:1 proportion shoot
and root purified RNA from 120 randomly chosen seedlings. This
experiment involved a total of sixteen sets of microarray
hybridizations, including direct and dye swap comparisons
between treatments as well as across time points for the same
treatment. This design allowed us to determine differences in gene
expression between MN-isobutyl decanamide-treated and control
seedlings, and whether the differences were time dependent. The
Arabidopsis Oligonucleotide Array version 3.0 from The Arizona
University was used to carry out this study. Array annotation and
composition are available at http://ag.arizona.edu/microarray.
RNA isolation, fluorescent labeling of probes, slide hybridization
and washing were performed as described previously in [79].
Slides were scanned with an Axon GenePix 4100 scanner at a
resolution of 10 pm adjusting the laser and gain parameters to
obtain similar levels of fluorescence intensity in both channels.
Spot intensities were quantified using Axon GenePix Pro 5.1
image analysis software.

All microarray data is MIAME compliant and the raw data has
been deposited in the Gene Expression Omnibus database (GEO),
accession number GSE12107, as detailed on the MGED Society
website http://www.mged.org/ Workgroups/ MIAME/miame.html.

Normalization and data analysis

Raw data were imported into the R 2.2.1 software (http://
www.R-project.org). Background correction was done using the
method ““substract” whereas normalization of the signal intensities
within slides was carried out using the “printtiploess’” method [80]
using the LIMMA package (www.bioconductor.org). Normalized
data were log?2 transformed and then fitted into mixed model
ANOVAs [81] using the Mixed procedure (SAS 9.0 software, SAS
Institute Inc., Cary, NC, USA) with two sequenced linear models
considering as fixed effects the dye, time, N-isobutyl-decanamide
treatment and time X M-isobutyl-decanamide treatment. Array
and array x dye were considered as random effects. The type 3 -
tests and p-values of the time X N-isobutyl-decanamide treatment
and AN-isobutyl-decanamide treatment were also carried out.
Model terms were explored and significance levels for those terms
were adjusted for by the False Discovery Rate (FDR) method [82].
Estimates of the expression differences were calculated using the
mixed model. Based on these statistical analyses, the spots with
tests with an FDR less or equal to 5% and with changes in signal
intensity between MN-isobutyl decanamide treatment and control
seedlings of 2.0-fold or higher were considered as differentially
expressed.

Expression analysis by qRT-PCR

Total RNAs were isolated from Arabidopsis plants using TRIzol
reagent (Invitrogen). Primer design (Tm, 60-65°C) was per-
formed using Primer Express Software, Version 3 (Applied
Biosystems); full sequences from each primer are shown in Table
S3. ¢cDNA templates for PCR amplification were prepared from
all samples by using reverse specific primers and SuperScript II1
reverse transcriptase (Invitrogen) according to the manufacturer’s
instructions. Each reaction contained c¢cDNA template from
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~30 pg total RNA, 1 x SYBR Green PCR Master Mix (Applied
Biosystems) and 500 nM forward and reverse primers. Real-time
PCR was performed in an ABI PRISM 7500 sequence detection
system (Applied Biosystems) under the following thermal cycling
conditions: 10 min at 95°C followed by a total of 40 cycles of 30 s
at 95°C, 30 s at 60°C and 40 s at 72°C. For qRT-PCR, relative
transcript abundance was calculated and normalized with respect
to ACTIN2/7 to minimize variation in ¢cDNA template levels,
with the solvent-treated (control) and control Col-0 samples
acting as calibrators (for microarrays validation assay for and JA
responsive genes assay respectively). Data shown represent mean
values obtained from at least three independent amplification
reactions; the SE of the Cps averaged 0.1, demonstrating the high
precision of the assays. All calculations and analyses were
performed using 7500 Software v2.0.1 (Applied biosystems) and
the 27 22T method [83]. Amplification efficiency for the primer
sets was determined by amplification of cDNA dilution series
(1:5). The values obtained not change significantly between
different ¢cDNA smaples, and were always higher than 0.90.
Specificity of the RT-PCR products was followed by a melting
curve analysis with continual fluorescence data acquisition during
the 65-95°C melt.

Analysis of JA levels

250 mg of freshly harvested plant tissues were chilled in liquid
nitrogen and JA extraction was performed as in [84] using
dihydrojasmonate as internal standar, derivatized with chloro-
form/N,N-diisoprpyl-etylamine 1:1. In order to analyze the
samples by GC/MS the extract was added with 10 ul of PFBr
and 200 pl of cloroform: N, N-diisopropilethilamine (1:1) then
incubated at 65°C. for 1 h. When cooled, the solvent was
evaporated to dryness and resuspended in 100 ul methanol.
Samples were analyzed in a gas chromatograph (Agilent
Technologies 7890A) equipped with a capillary column J&W
DB-1 (60 mx250 umx0.25 um) coupled to a mass selective
detector (Agilent 5973 Series MSD). Using an autosampler
7683B Series. 2 pl of the sample was injected in a splitless way.
Operating conditions were: injector temperature 250°C; the oven
temperature was programmed as: initial temperature 150°C for
3 min then increasing at the rate of 4°C per min to a final
temperature of 280°C maintained for 20 min. Helium was used as
carrier gas with a constant flow of 1 ml/min. The MS was set to
scan from 40 to 600 uam in Synchronous SIM/Scan mode for
selectively monitor the following ions for jasmonic acid derivative:
141, 181, 390, and 392. MS temperatures were: Source 230°C,
MS Quadrupole 150°C.

Microscope Analyzes

For histochemical analysis of transgenic lines LOX2:GUS and
PRI:GUS, 7 d-old transgenic seedlings expressing these marker
constructs were incubated at 37 °C in a GUS reaction buffer
(0.5 mg/ml of 5-bromo-4-chloro-3-indolyl-B-D-glucuronide in
100 mM sodium phosphate, pH 7.0). The stained seedlings
were cleared by the method of Malamy and Benfey [85].
For each treatment, at least 9 transgenic plants were analyzed.
A representative plant was chosen for each treatment and
photographed using the Nomarski optics on a Leica DMR
microscope.

Hy0Oy production was detected by the endogenous peroxidase-
dependent staining procedure using 3,3-diaminobenzidine (DAB)
uptake [86]. Control, 15 and 30 uM MN-isobutyl decanamide-
treated 7 d seedlings were placed in a solution of 1 mg mL™"
DAB, pH 3.8, and incubated in dark for 2 h. Subsequently, were
immersed in boiling 96% (v/v) ethanol for 10 min and then stored
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m 96% (v/v) ethanol. For each treatment, at least 9 treated-
seedlings were analyzed. A representative plant was chosen for
cach treatment. HyOy production was visualized as a reddish-
brown precipitated coloration and photographed using the
Nomarski optics on a Leica DMR microscope.

Nitric Oxide (NO) was monitored by incubating Arabidopsis
seedlings with 10 pM of the fluorescent probe 4,5-diaminofluor-
escein diacetate (DAF-2DA) [87] in 0.1 M Tris=HCI (pH 7.4).
Treated seedlings were incubated for 2 h in the dark, and washed
three times for 20 min with fresh buffer. Fluorescence signals from
at least 9 treated and control leaves were detected using a confocal
laser scanning microscope (model BX50, Olympus), and moni-
tored with an argon blue laser with an excitation line from 488 to
568 nm and an emission window from 585 to 610 nm.

Fungal growth and plant inoculation

Pathogenesis assays were modified from [88]. Botrytis cinerea was
grown on agar PDA medium (PhytoTechnology) for 7-12 days at
22° Ciin darkness. Spores were collected with distilled water. Col-0
superficially sterilized seeds were germinated and grown in MS-
agar medium into 100 ml flasks with transparent lid. At 20 days
after germination, rosette leaves were placed in Petri dishes with
60 uM of MN-isobutyl decanamide containing medium or medium
supplied with the solvent. Inoculation was performed by placing a
5ul drop of a suspension of 5x10° conidiospores/ml on the
surface of leaves. The samples were incubated at 22°C. and
analyzed at a further 3, 4 and 5 d period after inoculation.
Susceptibility was evaluated by microscopic observation of
necrotic symptoms under a dissecting microscope (Leica MZ6)
connected to a digital color camera (Samsung SCC-131A). The
percent of necrotic leaves was scored for 30 independent
inoculated leaves. The disease symptoms on inoculated leaves
and fungal growth over leaves was estimated by trypan blue
staining and further cleared with chloral hydrate and the extension
of necrotic lesions (lesion diameter) measured at 4 d after
moculation. For mutant inoculation, leaves from soil grown adult
plants were incubated in agar solution supplied with solvent
(ethanol) or A-isobutyl decanamide during 24 h prior to
inoculation by leaves immersion into solution of 5x10° conidio-
spores/ml.

Supporting Information

Figure S1 Experimental design for microarray analysis.
6 day-old Arabidopsis Col-0 seedlings were grown on MN-isobutyl
decanamide-free medium and then transferred to control medium
(A) supplied with the solvent, or to 60 pM MN-isobutyl decanamide-
containing medium (B). Pictures were taken 14 days after transfer
(d.a.t.). Modified loop design including 4 independent replicates
evaluated at 1, 3, 7, and 14 d.a.t. (C). A total of 16 slides were
employed. Each replicate was conformed by at least 120
transferred seedlings, which were harvested from four independent
plates.

(TTF)

Figure S2 Validation of microarray results via gRT-
PCR. Quantitative real-time PCR analysis was performed for 15
genes in Arabidopsis (Col-0) seedlings, under the same conditions
used for microarray analysis (1, 3, 7 and 14 days of treatment with
60 uM  N-isobutyl decanamide). Fold-change (control to M-
isobutyl-decanamide) expression for the indicated selected genes
in a log? scale is shown. Expression ratios obtained by microarray
experiments (A). Estimates of the differences of expression levels
were calculated using the mixed model as described in methods.
Expression ratios obtained by gRT-PCR (B). RQ (relative
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quantification number) was obtained from the equation QAAC

where AACq represents AC(control) - AC(MN-isobutyl decana-
mide 60 uM). Each Ct was previously normalized using the
expression levels of ACT2/7 as internal reference. Expression
levels were obtained from four independent replicates, every set of
oligonucleotides had an efficiency greater than 99%. Standar
deviations were less than 0.1 arbitrary units.

(TIF)

Figure 83 Local induction of defense genes by N-
isobutyl decanamide on detached leaves. Leaves from 20
day-old transgenic LOX2:GUS or WT (Col-0) plants grown in soil
were detached and incubated 24 h on solvent (control, white
squares), or 30 uM N-isobutyl decanamide containing plates (black
squares), transferred to decanamide-free plates and then analized.
(A) Dose-response assay with leaves from transgenic Arabidopsis line
carrying LOX2:GUS were stained for GUS expression 24 h after
transference to agar plates. (B) qRT-PCR analysis of the JA-
responsive genes OPR3 and VSP2, and the camalexin biosynthetic
marker PAD3 using Cr value of ACT2/7 as internal expression
reference. Relative expression values were normalized with
endogenous levels from each transcript in Col-0 control seedlings.
Bars represent = SE from three independent biological replicates
from 30 leaves each one, and from four technical replicates for the
assay.

(TIF)

Figure S4 Effect of N-isobutyl decanamide on Botrytis
cinerea mycelial growth. B. cinerea mycelium excised from a
solid culture in Petri dishes was transferred to potato dextrose agar
dishes supplemented with N-isobutyl decanamide at the concen-
trations indicated. Radial growth of the fungus was measured 24,
48 and 72 h after inoculation (A). Data means average radial
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Abstract

Mitogen-activated protein kinase (MAPKSs) cascades are signal transduction modules highly conserved in all eukary-
otes regulating various aspects of plant biology, including stress responses and developmental programmes. In this
study, we characterized the role of MAPK 6 (MPKG®6) in Arabidopsis embryo development and in post-embryonic root
system architecture. We found that the mpk6 mutation caused altered embryo development giving rise to three seed
phenotypes that, post-germination, correlated with alterations in root architecture. In the smaller seed class, mutant
seedlings failed to develop the primary root, possibly as a result of an earlier defect in the division of the hypophysis
cell during embryo development, but they had the capacity to develop adventitious roots to complete their life cycle.
In the larger class, the MPKG6 loss of function did not cause any evident alteration in seed morphology, but the embryo
and the mature seed were bigger than the wild type. Seedlings developed from these bigger seeds were characterized
by a primary root longer than that of the wild type, accompanied by significantly increased lateral root initiation and
more and longer root hairs. Apparently, the increment in primary root growth resulted from an enhanced cell produc-
tion and cell elongation. Our data demonstrated that MPK6 plays an important role during embryo development and
acts as a repressor of primary and lateral root development.

Key words: Arabidopsis, embryo development, MAP kinases, MPKB, plant signalling, root development.

Introduction

Mitogen-activated protein kinase (MAPK) cascades are
signal transduction modules that are highly conserved in
eukaryotes (Zhang et al., 2006). A MAPK module con-
sists of at least three kinases: a MPKKK, a MPKK, and
a MPK, which activate downstream targets by phospho-
rylation. The last kinase of the module, a MPK, is able to

phosphorylate several substrates, including transcription
factors, to regulate gene expression (Andreasson and Ellis,
2009). MAPKs are known regulators of biotic and abiotic
stress responses, hormone perception, and developmental
programmes (Colcombet and Hirt, 2008; Suarez-Rodriguez
et al., 2010).

Abbreviations: CPR, cell production rate; DAG, days after germination; IAA, indole-3-acetic acid; LR, lateral root; LRP, lateral root primordium; MAPK, mitogen-acti-
vated protein kinase; MPKB, Arabidopsis thaliana mitogen-activated protein kinase 6; NO, nitric oxide; PD, proliferation domain; PR, primary root; RAM, root apical

meristem; RH, root hair; TD, transition domain.
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The Arabidopsis genome encodes 20 different MPKs
(MAPK Group, 2002), from which MPK3, MPK4, and
MPKG6 play important roles both in stress and developmental
responses (Colcombet and Hirt, 2008). In particular, MPK6
has been found to participate in bacterial and fungal resist-
ance (Nubhse et al., 2000; Asai et al., 2002; Menke et al., 2004;
Wan et al., 2004; Zhou et al., 2004; Zhang et al., 2007), in
mutualistic interactions (Vadassery et al., 2009), in priming
of stress (Beckers et al., 2009), and in regulation of plant
architecture (Bush and Krysan, 2007; Miiller ez al., 2010).

Functional redundancy is common among MAPKs.
Particularly, MPK3 and MPK6 participate in biotic and abi-
otic stress resistance as well as in developmental processes
(Lee and Ellis, 2007; Hord et al., 2008; Lampard ez al., 2009;
Liu et al, 2010). MPK4/MPK6 and even MPK3/MPK4/
MPKG6 have been shown to act redundantly in osmotic, touch,
wounding, and defence responses (Ichimura er al., 2000;
Droillard et al., 2004; Meszaros et al., 2006; Brader et al.,
2007). MPKs are proposed to act through common down-
stream targets and upstream activators (Feilner ez al., 2005;
Merkouropoulos et al., 2008; Andreasson and Ellis, 2009;
Popescu et al., 2009), but the interaction of these pathways is
poorly understood. The MPK®6 loss-of-function mutant dis-
plays alterations in the embryo and early root development,
indicating that, at least for these processes, the function of
this kinase cannot be substituted by any other MPK (Bush
and Krysan, 2007; Miiller et al., 2010; Wang et al., 2010).

The first evidence demonstrating that MPK6 (and/or
MPK3) is involved in embryo development was reported by
Wang et al. (2007), who showed that mpk3” mpk6~~ double
mutants die at the embryo stage and a viable double mutant
(mpk6™~ MPK3RNAI) is developmentally arrested at the cot-
yledon stage. In a different study, Bush and Krysan (2007)
reported that several development programmes are influ-
enced by MPK6. In that work, it was observed that mpk6
null mutant alleles had defects in anther and embryo devel-
opment, and displayed reduced male fertility. The observed
mpk6 phenotypes display variable penetrance, probably influ-
enced by the growth conditions. Additionally, mutations in
the MPK6 gene have been linked to protrusion of the embryo
detected in about 7% of the seeds from an mpk6 homozygous
population (Bush and Krysan, 2007).

Post-embryonic root development is regulated by multi-
ple plant hormones, nutrient availability, and environmental
signals (Fukaki and Tasaka, 2009; Lépez-Bucio et al., 2003).
The primary root (PR) originates from the embryo and gives
rise to many lateral roots (LRs) during vegetative growth,
and each of these will produce more LRs. The quantity and
placement of these structures among other factors determine
the root system architecture (RSA), and this in turn plays a
major role in determining whether a plant will survive in a
particular environment (Casimiro ez al, 2003; Dubrovsky
and Forde, 2012). A further adaptation to increase water and
nutrient absorption is performed by root hairs (RHs). These
are long tubular-shaped epidermal cell extensions covering
roots and increase their total absorptive surface (Datta ez al.,
2011). Auxin (indole-3-acetic acid, IAA) is recognized as the
key hormone controlling both RSA and RH development,

whereas cytokinins are regulators of PR growth and LR for-
mation (Fukaki and Tasaka, 2009; De Smet et al., 2012).

Current challenges are focused on determining the signal-
ling events for which cell identity regulators are connected
with hormone receptors to coordinate stress and devel-
opment responses. Recently, MPK6 was proposed to be
involved in early root development, possibly through altering
cell division plane control and modulating the production of
second messengers, such as nitric oxide (NO) in response to
hydrogen peroxide (Miiller e al, 2010; Wang et al., 2010).
It was observed that mpk6-2 and mpk6-3 mutants produced
more and longer LRs than wild-type seedlings after applica-
tion of a NO donor or H,O, (Wang et al., 2010). However,
the hormonal responses underlying these root alterations
and the role of MPK6 in these processes are still unknown.
Thus, independent data support the participation of MPK6
in both shoot and root development, but no relationship
has been established between embryo and root phenotypes
in mpk6 mutants, nor the impact of earlier root develop-
ment alterations in the configuration of post-embryonic root
architecture.

In this study, we provided physiological and molecular
evidence that seedlings defective in two independent mpk6
mutant alleles showed three distinct classes of seed pheno-
type, which correlated with alterations in cell division and
elongation processes that affected root architecture. These
alterations were independent of MPK3. These data indicate
that MPK6 is an essential component of early signalling
processes linked to proper embryo development and mainte-
nance of Arabidopsis RSA.

Materials and methods

Additional details are available in Supplementary Methods at JXB
online.

Plant material and growth conditions

Arabidopsis thaliana Heyhn wild-type and mutant plant lines were
in the Columbia-0 (Col-0) ecotype. MPK6 (At2g43790) T-DNA
insertion lines (SALK_073907 and SALK_127507) were obtained
from the Salk T-DNA collection (Alonso et al., 2003) and provided
by TAIR (http://arabidopsis.org). Both mutant lines were described
previously as mpk6-2 and mpk6-3 (Liu and Zhang, 2004). The
MPK3 T-DNA insertion line (SALK_151594), was kindly donated
by Dr Shuqun Zhang from Missouri University, USA (Wang e? al.,
2007). The transgenic line ABI4::GUS (Séderman et al., 2000) was
kindly provided by Dr Ruth Finkelstein from the University of
California, USA. This marker gene was introduced into the mpko6-
2 background by crossing homozygous plants. Surface-sterilized
seeds were incubated at 4 °C for 3 d to break dormancy and then
grown on agar (0.8%, w/v, Bacto™ Agar, BD Difco, Sparks, MD,
USA) solidified 0.2x MS medium (Caisson, Laboratories, Noth
Logan, UT, USA) with 1% (w/v) sucrose. Kinetin and TAA were
purchased from Sigma (Sigma-Aldrich, St Louis, MO, USA) and
added to the medium at the indicated concentration. Seedlings
were grown on vertically oriented Petri dishes maintained in growth
chambers at 21 °C under a 16:8h light:darkness photoperiod under
105 pmol m™2 s7! light intensity. For seed production, plants were
grown in Metro-Mix 200 (Grace Sierra, Milpitas, CA, USA) in a
growth room at 23 °C under a 16/8 h photoperiod and a light inten-

sity of 230 pmol m2s71.
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Embryo analysis

Wild-type and mpk6-2 mutant embryos were processed as described
previously (Ugartechea-Chirino et al, 2010). Briefly, ovules were
dissected from the silique and punched with a needle in order to
favour contact between the embryos and the staining solutions.
Embryos were fixed for 1-7 d with 50%, v/v, methanol, 10%, v/v,
acetic acid. They were rinsed and incubated at room temperature
for 30—45min in 1% periodic acid. After a second rinse, they were
incubated for 2h in pseudo-Schift’s reagent (1.9 g of sodium meta-
bisulfite in 97ml of H,O and 3ml of 5M HCI with 0.1 mg ml™' of
propidium iododide). Embryos were rinsed again and transferred to
a drop of chloral hydrate (80 g of chloral hydrate in 30 ml of H,O)
on a microscope slide. Excess chloral hydrate was removed, and the
embryos were mounted in Hoyer’s solution (30g of gum arabic,
200 g of chloral hydrate, 20 g of glycerol in 50 ml of H,O). Mounted
embryos were cleared in Hoyer’s solution for at least a week before
confocal imaging.

Seed size analysis

Dry seeds were measured individually using ImagelJ (http://rsb.info.
nih.gov/ij) with a set scale tool to establish a 1 mm reference on a
micrometer image taken with a Nikon SMZ1500 stereomicroscope
equipped with a digital SIGHT DS-Filc camera. Seed stereomicro-
scope images were then analysed with ImageJ using the 1 mm refer-
ence. Seed weight was obtained by weighting a batch of 100 seeds
placed in Eppendorf tubes in an analytical balance.

Growth analysis

Photographs of representative seedlings were taken with an EOS
REBEL XSi digital camera (Canon, Tokyo, Japan). The growth of
PRs was registered using a ruler. LR number was determined count-
ing all LRs emerged from the PRs under the Nikon SMZ1500 ster-
eomicroscope. LR density, LR primordium (LRP) density, length
of cortical cells, LR initiation index, length of root apical meristem
(RAM), length of proliferation domain (PD), length of transition
domain (TD), and number of cells in the PD (NCpp) were deter-
mined on cleared roots as described previously (Dubrovsky ez al.,
2009; Dubrovsky and Forde, 2012; Ivanov and Dubrovsky, 2013).
Position of the most distal (rootward) LRP and the most distal LR
as well the number of LRPs in the LR formation and the branch-
ing zones was determined on cleared root preparations under a
Zeiss Axiovert 200M microscope (Zeiss, Oberkochen, Germany),
equipped with differential interferential contrast optics. Cortical
cell length was determined for 10 cells per root on cleared prepa-
rations using an ocular micrometer. Images of RHs and etiolated
seedling images were taken under a Nikon SMZ1500 stereomicro-
scope equipped with a digital SIGHT DS-Filc camera. RH den-
sity (number of RHs mm™') and RH length were determined from
roots mounted in H,O on microscope slides and observed under a
Zeiss Axiovert 200M microscope. Cell production rate (CPR) was
calculated with the equation CPR=V1", where ¥ (um h™) is the
rate of root growth during the last 24h before the termination of
the experiment and /., (um) is the length of fully elongated corti-
cal cells, whereas cell-cycle duration (7, hours) was calculated with
the equation T=(NCppXxLxIn2)/V! in accordance with Ivanov and
Dubrovsky (1997). This method is applicable to steady-state growing
roots. One condition of steady-state growing roots is a linear increase
in the root length. We analysed root growth during the last 24h in
seedling samples 5 and 8 d after germination (DAG) and found that
at both time points the growth in both the mutant and the wild-type
was stabilized (see Results). Another condition was a constant num-
ber of cells in the meristem (Ivanov and Dubrovsky, 1997). As the
transition domain of the RAM has not been defined previously, the
number of meristematic cells in the cited work corresponds to the
NCpp in the current study. To verify if the NCpp, was constant dur-
ing the analysed time periods, we estimated this parameter in sam-
ples at 7, (24 h prior to termination of the experiments) and found

no statistical differences in the NCpp, within the same genotype at ¢,
and at final time points. This preliminary analysis permitted us to
apply the above equation for estimation of average cell-cycle time
in the PD. Criteria for defining the PD and TD have been described
(Ivanov and Dubrovsky, 2013). Briefly, the PD comprises cells that
maintain proliferation activity and the TD comprises cells that have
very low probability of cell proliferation but grow at the same rate
as cells in the PD and have not yet started rapid elongation. As no
marker lines have yet been proposed to identify these domains, we
determined the domains based on relative changes in the cell lengths
analysed on cleared root preparations. In the PD, the cell length
commonly varies no more than 2-fold, and in the TD cells are longer
than the longest cells in the PD. The distance from the quiescent cen-
tre to the point where a cortical cell becomes longer than the long-
est cell in the PD was considered to be the border between the PD
and the TD. In the elongation zone, the cell length starts steadily to
increase simultaneously in all tissues. The point where this increase
can be observed was defined as the distal (rootward) border between
the TD and elongation zone. All measurements were done with an
ocular micrometer.

All experimental data were analysed statistically with SigmaPlot
11 (Systat Software, San Jose, CA, USA). Student’s 7-test or Tukey’s
post-hoc test were used for testing differences in growth and root
developmental responses, as indicated. The number of independ-
ent experiments in each case is indicated in the corresponding figure
legend.

Results

Mutation of the MPK6 gene causes three distinct and
Stable seed phenotypes

Through a careful phenotypic analysis of two independent
mpk6 T-DNA insertion null mutant lines (SALK_073907 and
SALK_127507) (Supplementary Fig. S1A at JXB online), we
corroborated that the protruding embryo phenotype, previ-
ously described by Bush and Krysan (2007), was present in
the homozygous seed populations from both mutant alleles.
Closer inspection of the seeds from these mutants showed
three segregating phenotypically distinctive classes. In the
larger class (~70%, mpk6wb/wild-type-like bigger seeds) the
lack of MPK®6 did not cause any evident alteration in seed
morphology, but the seeds were significantly bigger than
those from wild-type plants (Figs 1C and 2). The second class
(~23%, mpko6rs/raisin-like seed phenotype) included seeds
with rough coats (Fig. 1D). Finally, the smaller class (~7%,
mpk6bs/burst seed phenotype) included seeds with protrud-
ing embryos from the seed coat (Fig. 1E). It is important to
point out that the rough coat phenotype was not uniform, as
we observed some seeds that looked more affected than oth-
ers (Fig. 1D). However, in this study, all of them were pooled
together within the same class. In contrast to the heterogene-
ous phenotype of the rough coat seeds, the other two seed
phenotypes were clearly recognized. To determine whether all
three mpk6 seed phenotypes were linked to the M PK6 muta-
tion, we performed crosses between a homozygous mpk6-2
mutant with pollen from wild-type (Col-0) plants. In the F1
progeny of these crosses, no phenotypic alterations were evi-
dent. Interestingly, in seedlings from all three different seed
classes obtained from mpk6 homozygous mutant populations,
MPKG6 activity was absent, and this was observed consistently
in at least three subsequent generations of homozygous mpk6
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mpk3

mpk6

Wild-type bigger seeds (wb)

Raisin seeds (rs)

Fig. 1. MPK6 mutation causes three different seed phenotypes. (A, B) Seeds from wild-type plants (Wt, Col-0) (

Burst seeds (bs)

A) and mpk3 mutant (B)

are shown for comparison to stable and distinguishable mpk6 mutant seed phenotypes. (C) Seeds resembling the wild type but with a
bigger seed phenotype (mpk6whb). (D) Seeds displaying a rough coat raisin-like seed phenotype (mpkeérs). (E) Embryos protruding from
the seed coat burst seed phenotype (mpk6bs), described previously by Bush and Krysan (2007). For the pictures, seeds from each
class were pooled, but the proportion of each phenotype, obtained from 1000 analysed mpk6 seeds through several generations, is

indicated. Bars, 500 pm.

seedlings from the referred seed phenotypes (Supplementary
Fig. S1B).

For a better inspection of seed structure, a pABI4::GUS
transgene encoding f-glucuronidase (GUS), expressed in
embryos (Bossi er al, 2009; Séderman er al., 2000), was
introduced into the mpk6-2 homozygous line. We found
that in homozygous mpk6 pABI4::GUS F3 populations, all
three seed phenotypes were present (Supplementary Fig. S2,
at JXB online). Previous studies have demonstrated redun-
dancy between MPK6 and MPK3 (Lee and Ellis, 2007;
Hord et al., 2008; Lampard et al., 2009; Liu et al., 2010).
However, a null mpk3 mutant allele (SALK_100651) did not
display any distinguishable seed phenotype when grown side
by side with wild-type or mpk6 seedlings (Figs 1B and 2),
nor was the exacerbated MPK3 activity on mpk6 seedlings
(Supplementary Fig. S1B) able to compensate the mpk6 phe-
notypes. Therefore, we concluded that the defects observed
in seed morphology were caused specifically by a mutation
in MPK6 and they were apparently independent of MPK3.

mpk6 seed phenotypes are linked to root
developmental alterations

To analyse whether the observed alterations in mpk6 seeds
affected post-germination development, we compared the
early seedling growth of wild-type and mpk6 homozygous
mutant populations. Initially, we included mpk3 seeds in our
analysis, but we did not find any phenotypic alteration in mpk3
mutant seeds or root seedlings (data not shown). Inspection

of seedlings at 2 DAG demonstrated that it was possible to
differentiate three different root phenotypes within the mpk6
seedlings. Around 70% of the population analysed displayed
PRsof greater length than WT seedlings (longer root; mpk6ir).
Additionally, roughly 20% of the seedlings displayed short
roots (mpk6sr), whereas around 10% of the seedlings did not
develop PRs (minus roots; mpk6mr) (Fig. 3A, B). Although a
previous report has already documented defects in root for-
mation in the mpk6-2 (SALK_073907) mutant (Miiller et al.,
2010), no further analysis of these morphological altera-
tions in the root architecture or their relationship with ear-
lier embryonic alterations was performed. Interestingly, the
proportion of each of the three root phenotypes correlated
with those proportions observed from the seed phenotypes
described previously (Figs 1C-E and 3A), suggesting that
they may be related.

To analyse if mpk6 mutant seed phenotypes had any effect
on the post-germination development, the different classes of
seed from this mutant were separated and germinated indepen-
dently. The root morphology from each seed population was
then compared with that of wild-type seedlings. Surprisingly,
a high proportion of the mpk6bs seeds germinated in vitro,
indicating that, in spite of the protrusion from the seed coat,
these embryos were viable (Fig. 3C). However, around 80%
of these germinated seedlings failed to develop PRs and most
of them died a few days after germination. Those seedlings
that survived all developed adventitious roots (Fig. 3C, inset)
and were able to complete their life cycle and produce seeds.
The progeny from these mpk6bs seedlings segregated again

126

GTOZ ‘P2 Isnbny uo 1s9nb Ag /Bio'sfeuinolploxo-gx|y/:dny woly pspeojumoq


http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/ert368/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/ert368/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/ert368/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/ert368/-/DC1
http://jxb.oxfordjournals.org/

Role of MPK®6 in Arabidopsis seed and root development | 173

*
A) 600, * B) 350 C) 3o
P<0.001 P<0.001 P<0.001
300F T
500+ 251
= T = .
(=)}
2501
= 400} = E 5ol L
- - £
? = 200} 5
S 300f = o 1.5F
2 o 150F =
gl
(0] @ o
o 200f O ®© 1.0)
) ) 100} 8
100} 50l 0.5f
0 : 0 ' 0.0 !
Col-0 mpkéwb mpk3 Col-0  mpk6wb mpk3 Col-0  mpk6wb mpk3

Fig. 2. mpk6 mutant produces seeds bigger than the wild-type. The mpk6 seeds were longer (A), wider (B), and heavier (C) than wild-
type (Col-0) and mpk3 seeds. Error bars represent the mean +standard error (SE) from 500 seedlings analysed at each line. Asterisk
indicates Student’s t-test statistically significant differences at P values indicated.

Fig. 3. mpk6 mutant displays three different root phenotypes. The mpk6 mutant displayed three root phenotypes each related to the
seed morphology: seedlings lacking PR (minus root; mpkémr), seedlings with short roots (mpkésr), and seedlings with PR longer than
wild-type root (mpk6lr). (A) Proportion of 6 DAG seedlings in each mpk6 root mutant class.(B) PR length in 2 DAG wild-type (Wt) and the
three mpk6 root mutant classes seedlings. Notice that in this developmental stage the root length of the later mpk6Ir phenotype is similar
to that of the wild-type. Error bars represent the mean+SE from data obtained from three independent experiments, each performed with
120 (A) or 100 (B) seedlings. Different letters on the bars indicate Tukey’s post-hoc test statistical difference at £<0.001. (C) Seedlings
lacking PR (minus root) developed from mpk6bs seeds (mpk6bs/mr); some of these seedlings were able to produce adventitious roots
(white arrow). (D) Seeds at 6 DAG mpk6rs (rs/sr) and mpk6wb (wb/Ir) develop shorter and longer PRs compared with the wild-type roots.
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Fig. 4. mpk6 mutant has altered primary root development,

more LRs and higher LR density. (A) Primary root length changes
with time. Starting from 5 DAG, statistically significant differences
were observed between wild-type (Wt) and mpkéwb/Ir PR length.

into all three seed phenotypes shown in Fig. | with similar
proportions (data not show). Marked differences were also
observed in root development of the seedlings derived from
the mpk6wb and mpk6rs seed types when compared with
wild-type seedlings. Seedlings at 6 DAG derived from mpkors
displayed shorter roots than the wild-type, and those derived
from mpk6wb had longer roots (Fig. 3D). In particular, ana-
lysing the rate of growth of the PR of mpk6wb/Ir, we found
that, starting from 5 DAG, it was greater in the mutant than in
wild-type seedlings (Fig. 4A). The data described so far clearly
demonstrated that MPK6 plays an important role in root
development and that these root phenotypes are linked with
particular seed phenotypes. Besides a longer root, mpk6wb/
Ir seedlings grown in vitro also clearly developed more LRs
(Fig. 4B). We next decided to explore the participation of
MPKG6 in LR development, quantifying the number of LRs
and LR density in mpk6wb/lr and wild-type plants. These
analyses demonstrated that mpk6wb/lr seedlings contained a
higher number of LRs and a greater LR density in the root
branching zone (Fig. 4C, D). These data indicated that MPK 6
acts as a negative regulator of LR formation.

mpk6 mutant has embryo development defects

The longer root phenotype of the mpk6wb/lr mutant could
be a result of differences in germination time compared
with that of wild-type. We found that this was not the case,
as both wild-type and mpk6wb seeds had similar germina-
tion times (data not shown) and similar root length during
the first days after germination (Figs 3B and 4A). Thus an
alternative hypothesis is that the short-root phenotype and
the inability to form PRs are associated with defects during
embryo development and do not represent alterations in the
vegetative root developmental programme. To test this idea,
we analysed the morphology of a total of 239 mpk6 embryos
representing all stages of embryonic development from two
independent experiments (Fig. 5). During early embryo-
genesis, the suspensor uppermost cell is recruited to the
embryo proper and acquires hypophyseal identity (Jiirgens,
2001). Mutant lines defective in generating this cell lineage
often produce rootless seedlings (Peris ez al, 2010; Jeong
et al., 2011). Microscopic analyses of early mpk6 embryos
showed ectopic divisions in the suspensor at the time when

Error bars represent the mean +SE from 30 seedlings analysed at
each indicated DAG. The experiment was repeated three times
with similar results. Asterisk indicates Student’s t-test statistically
significant differences at P<0.001. (B) Representative photograph
of wild-type and mpk6wb/Ir 8 DAG seedlings. Notice that mpk6wb/
Ir seedlings had longer PRs, and more and longer LRs than the
wild-type seedlings. (C, D) LR number (C) and LR density (D) were
obtained from the root branching zone of wild-type and mpkéwb/
Ir mutant. Error bars in (C) represent the mean +SE from 60
seedlings analysed at 8 DAG from three independent experiments
and in (D) represents the mean +SE from 12 seedlings at 6 DAG
from two independent experiments. Asterisk indicates Student’s
t-test statistically significant differences at £<0.001.
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50 pm

Fig. 5. mpk6 cell organization is affected throughout embryonic development. Cell organization in wild-type (Col-0) and mpk6 embryos.

(A, B) Representative two- to four-cell (A) and eight-cell (B) wild-type embryos during their first three rounds of cell divisions. (C) Two-cell
mpk6 embryo showing ectopic periclinal cell division in the uppermost suspensor cell (arrow). This embryo failed to establish the transversal
cell division plane necessary to generate an eight-cell embryo proper. (D) Wild-type heart-stage embryo. (E-G) Immature mpk6 embryos
showing arrested development at the heart (E), torpedo (F), or bent cotyledon (G) stages. (H) mpk6 embryo with complete embryonic
organogenesis at the bent cotyledon stage. (I, J) Representative mpk6 (I) and wild-type (J) embryos at mature stage. Propidium iodide
pseudo-Schiff staining of the cell wall (red) was carried out according to Ugartechea-Chirino et al. (2010). Bars are as indicated.

the hypophyseal cell should be specified. Seven out of 23
embryos observed between the one-cell and globular stages
had ectopic divisions either in the suspensor or in the
embryo proper (Fig. 5C). Later during development, 24% of
the embryos were arrested at the heart stage embryo and did
not proceed to develop hypocotyl and root (Fig. 5E), while
18% showed arrested development but developed hypocotyl
and root (Fig. 5SF-G) and 71% achieved complete embry-
onic organogenesis by the bent cotyledon stage (Fig. SH).
Interestingly, at the mature stage, mpk6 embryos seemed
to be bigger than the wild-type (Fig. 51, J). Considering
that mpk6 developed several short siliques, with few seeds
and many abortion events (Supplementary Fig. S3 at JXB
online), we estimated that the frequency of these mpk6

embryo developmental patterns correlated roughly with the
frequencies observed for the burst, the raisin-like and the
bigger phenotypes of mature seeds, respectively.

MPKE6 is involved in the control of RSA

RSA is an important trait determining plant productivity. At
present, little is known about the intrinsic mechanisms that
control root growth and branching. To analyse the role that
MPK6 has over RSA, we performed experiments to compare
PR growth, LR formation, and RH development in wild-type
and mpk6 mutants. As they apparently do not have embryo
alterations that can affect the post-germination development,
to do this analysis we used only the big seed phenotype that
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was also associated with long roots (mpk6wb/Ir). LR number
and length were important determinants of RSA and both
were affected in the mpk6wb/lIr mutant (Fig. 4C, D). LRs
develop from the parent root through the specification of
pericycle founder cells. After activation, these cells undergo
repeated rounds of cell division leading to the formation of a
LRP that eventually emerges as a new LR (Laskowski ez al.,
1995; Malamy and Benfey, 1997; Dubrovsky et al., 2001).
A strict analysis of LR development must take into account
all LR initiation events (Dubrovsky and Forde, 2012). Thus,
the densities of all LR initiation events (LR and LRP) in the
branching zone and in the branching zone plus LR formation
zone (the latter comprises the root portion from the most root-
ward primordium to the most rootward emerged root) were
also analysed. As shown in Fig. 6A, B, both the LR and LRP
densities were significantly higher in the mpk6wb/lr mutant
than in wild-type roots. As the fully elongated cortical cells
in the mpk6wb/Ir mutant could be longer than those from the
wild type, the cell length in the LR formation zone (Fig. 6C)
and the LR initiation index (Fig. 6D) were also evaluated.
The latter parameter permits evaluation of LR initiation on
a cellular basis and estimates the number of LR initiation
events per root portion comprising 100 cortical cells of aver-
age length in a file (Dubrovsky ez al., 2009). This analysis also
confirmed that LR initiation was significantly higher in the
mpk6wb/Ir mutant compared with wild-type seedlings. These
data together strongly supported the conclusion that MPK6
acts as a negative regulator of LR initiation in Arabidopsis.

RHs differentiate from the root epidermal cells in a cell-
position-dependent manner, increasing the total surface of
roots (Tominaga-Wada et al., 2011). Based on our previous
results, we were interested to determine the effect of the M PK6
mutation on RH differentiation. As shown in Fig. 7, the total
number of RHs was significantly increased in the mutant
compared with wild-type seedlings (Fig. 7A, B). These data
indicated that the loss of function of MPK6 resulted in more
and longer RHs. Moreover, we also found that the length of
RHs in two different zones of the PR (2-3 and 5-7mm root
portions from the root tip) was also increased in the mpk6wb/
Ir mutant (Fig. 7C). These data also showed an important
role of MPKG6 in the differentiation and subsequent growth
of RHs.

mpk6 primary root growth alterations are multifactorial

Cell division, elongation, and differentiation are closely
linked cellular processes that determine PR growth. The
RAM comprises two different zones: the PD, where high cell
proliferation activity and a relatively slow growth takes place,
and the TD, where cell proliferation probability is low but cell
growth is maintained at a similar level to that found in the PD
(Ivanov and Dubrovsky, 2013). After cells leave the RAM,
they enter into the elongation zone, where rapid cell elonga-
tion takes place. To elucidate the contribution of cell division
and elongation to the longer root phenotype of the mpk6wb/
Ir mutant, a detailed morphometric analysis of both PD and
TD was conducted on 5 DAG plants. We observed that, while
the size of the TD in the mpk6wb/lr mutant was 45% greater
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Fig. 6. The mpk6éwb/Ir mutant has increased LR initiation. LR
formation in wild-type (Wt) and mpkéwb/Ir seedlings. (A) Density
of LRs and LRP in the primary root branching zone. (B) Density of
LRs and LRP in branching and in LR formation zones. (C) Cortical
cell length in the LR formation zone. For each individual root,

10 fully elongated cortical cells were measured. (D) LR initiation
index in the LR formation zone. Error bars represent mean +SE
of 23 roots from two independent experiments. Asterisks mark
Student’s t-test significant differences at the P values indicated.

than that in the wild-type, the PD was 9% greater in the
mpkowb/Ir mutant (Table 1). We also found that the number
of cells, the rate of root growth, the fully elongated cell length,
and cell production were also increased in mpk6wb/lr PRs
compared with those of wild-type (Table 1 and Fig. 8A-C).
A significant decrease (13%) in cell-cycle duration over time
(5-8 DAG) was found in mutant seedlings (Student’s z-test at
P<0.001), whereas in the wild type, no changes in cell-cycle
duration were found during the same period (Fig. 8D). These
results indicated that both cell production and cell elonga-
tion have a significant impact on the accelerated root growth
found in the mpk6wb/Ir mutant.
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Fig. 7. The mpkéwb/Ir mutant develops more and longer RHs. (A) RHs formed along ~1 cm from the tip of the PR from representative
6 DAG seedlings. Bars, 1mm). (B) The RH density in 6 DAG seedlings from 2-3 and 5-7 mm root segments measured from the root tip.
(C) Comparative quantification of RH length in the same root segments as in (B). Error bars represent the mean £SE from 30 seedlings
in three independent experiments. Asterisks mark Student’s t-test significant differences at the P values indicated.

Table 1. Wild-type (Col-0) and mpkéwb/Ir RAM comparative analysis

Genotype RAM length (um) Difference (%) TD length (um) Difference (%) PD length (um) Difference (%) NCpp

Difference (%)

Col-0 355+39 -
mpkéwb/lr 438 +47* 23

142+20 -
206+18* 45

21319 -
232+29" 9

37.3+£2.7 -
456.7+4.6" 22

Combined data were used from two independent experiments (n=24).
*Student’s t-test significant differences at P<0.001.
**Student’s t-test significant differences at P <0.019.

Discussion

MPK®6 is essential for embryogenesis and root
development

The central role that MAPK signalling has over different
aspects of plant development is well accepted (Andreasson
and Ellis, 2009; Suarez-Rodriguez et al., 2010). However, the
dissection of the particular function of each of the MAPK
proteins has been difficult due to the partial redundancy
among them. Using a genetic strategy, MPK6 has been asso-
ciated with pathogen resistance (Menke et al., 2004) and
anther, inflorescence, embryo, and root development (Bush
and Krysan, 2007; Miiller et al., 2010; Wang et al., 2010).

In particular, with respect to embryo and root development,
previous analysis focused on embryo protruding seeds (Bush
and Krysan, 2007), short-root seedlings (Miiller ez al., 2010),
and LR development in response to NO treatment (Wang
et al., 2010). In this work, we performed a detailed analysis
of seed morphology and its correlation with root develop-
ment in mpk6 mutants. Three phenotypic classes of seed
were identified in the progeny of homozygous mpk6 plants,
including seeds with a normal appearance but bigger than
wild-type seeds, seeds with rough coats, and seeds with pro-
truding embryos, each giving rise to seedlings with totally
different root growth and development patterns (Figs 1-4).
A previous work reported that the mpk6 mutant displayed a
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Fig. 8. Quantitative analysis of the wild-type (Wt) and mpk6wb/Ir primary root growth and development. (A—C) Comparison between
wild-type and mpk6wb/Ir of root growth rate (A), length of fully elongated cells (B) and cell production rate (C) from 5 DAG seedlings.
Error bars represent the mean +SE from 24 seedlings in two independent experiments. (D) Cell-cycle duration (7) in wild-type and
mpkéwb/Ir at 5 and 8 DAG. In 5 DAG seedlings, T is the mean +SE from 24 roots in two independent experiments. In 8 DAG seedlings,
T is the mean +SE from 12 roots in one experiment. Asterisks indicate Student’s t-test significant differences at the P values indicated.

reduced fertility phenotype with variable penetrance depend-
ing on growth conditions, but the environmental variable
affecting that phenotype remained to be determined (Bush
and Krysan, 2007). However, the seed and root phenotypes
reported here were reproducible in at least four generations
of the progenies of homozygous MPK6 from two independ-
ent null alleles (SALK_073907 and SALK_127507) grown
under conditions of 21 °C, long days (16/8 h light/dark), 105
pmol m~2s! of light intensity, and 45-60% of relative humid-
ity at ~1580 m above sea level.

Between 500 and 1000 Arabidopsis loci have been related
to embryo-defective phenotypes (Meinke e al., 2009), and
several of these include members of the MAPK cascade.
For example, mutations in the MPKKK4 (YDA) protein
kinase gene cause defects in embryo development (http://
www.seedgenes.org). Since the identification of YDA as a
gene required for embryonic cell fates, it has been suggested
that a MAPK signalling pathway is involved in Arabidopsis
embryogenesis (Lukowitz et al., 2004). Interestingly, the yda/

emb71 ethyl methanesulfonate heterozygous mutant, affected
in the YDA gene (Atlg63700), displays a similar embryo-
protruding phenotype to that observed in mpk6 (Lukowitz
et al., 2004; Meinke et al., 2009). MPKKK4 and MPK6 are
components of a common MAPK cascade involved in regu-
lation of the embryo (Bush and Krysan, 2007) and in sto-
mata developmental programmes (Wang et «al., 2007). The
yda mutant has defects in hypophysis development similar
to that observed in mpk6bs mutants (Fig. 5) (Lukowitz et al.,
2004; Meinke et al., 2009). The phenotypes observed during
early embryogenesis suggest that MPK6 acts as a repressor of
cell proliferation involved in the establishment of embryonic
polarity (Fig. 5C). This MPK®6 role seems to be maintained
throughout development because the mpk6 mature embryos
that achieved complete organogenesis were larger than their
wild-type counterparts (Fig. 51, J). The molecular and cel-
lular mechanisms regulating seed development and size are
complex (Sun et al, 2010). Potential targets (transcription
factors) and activators (leucine-rich repeat receptor kinases),
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but not MAPKs were previously involved in that process
(Sun et al., 2010). The data from this study further confirm
that both YDA and MPKG6 are components of a MAPK
cascade involved in the regulation of the embryo develop-
mental programme, as already proposed (Bush and Krysan,
2007). The components acting up- and downstream of these
MAPKs remain to be identified. In addition, our data sup-
port the suggestion that the failure to form a PR and the
short-root phenotypes are consequences of mpk6 mutant
embryo development defects. Therefore, without consider-
ing the pleiotropic effects caused by embryo defects, the PR
phenotype that can be directly associated with the loss of
MPKG6 function is a long PR. Notably, this mpk6 long PR
was observed previously (Takahashi ez al., 2007), and in the
Arabidopsis Hormone Database (http://ahd.cbi.pku.edu.cn)
MPKG is included as one of the 79 genes related to a long-
root phenotype.

Previous analysis made on mpk6 short-root seedlings
showed that the loss of MPK6 function resulted in a slight
but significant reduction in the number of LRs, suggesting
that MPKG6 is a positive regulator of LR formation (Miiller
et al., 2010). In contrast, the data shown here using only mpk6
mutants germinated from seeds without embryo damage dem-
onstrated that the longer PRs had increased numbers of LRs
and RHs (Figs 4 and 7). These apparent contradictory results
could be explained from the different seed classes produced
in the mpk6 mutant progenies. These observations highlight
how critical is to perform detailed analyses of the phenotypes
associated with a gene mutation in different organs and under
strictly controlled growth conditions.

MPKE is a negative regulator of primary root growth

The comparisons of the RAM TDs and PDs and the fully
elongated cell lengths between wild-type and mpk6 mutant
roots revealed that both cell division and elongation are
altered in PRs of mpk6 mutant (Table 1 and Fig. §8). Moreover,
the number of cells in the mpk6wb/lr PD was also higher com-
pared with that in the wild type (Fig. 6) and correlated with
lower cell-cycle duration in this mutant (Fig. 8), supporting
an important role of MPK6 in controlling cell proliferation
and suggesting that its loss of function has a direct conse-
quence in the long-root phenotype. For more than a decade,
experimental evidence has supported the involvement of
MAPKSs in the regulation of cell-cycle progression in yeast
(Gustin et al., 1998; Strickfaden et al., 2007), animals (Aliaga
et al., 1999; Rodriguez et al., 2010), and plants (Calderini
et al., 1998; Jonak et al., 2002; Suarez-Rodriguez et al., 2010).

Regulation of plant cell division and growth is associated
with microtubule reorganization, which is assisted with the
action of microtubule-associated proteins. Previous reports
have shown that some microtubule-associated proteins are
regulated by reversible phosphorylation through MAPK
cascades (Komis ez al, 2011). For example, a MAPK from
M. sativa (MKK3) is indispensable for spindle microtubule
reorganization during mitosis (Bogre e al., 1999) and the
Arabidopsis MPK4 has been shown to be essential for the cor-
rectorganization of microtubules throughthe phosphorylation

of microtubule-associated protein 65-1 (Beck ez al, 2010).
Additionally, the Arabidopsis MPK 18 has been demonstrated
to interact physically with a dual-specificity MAPK phos-
phatase (PROPYZAMIDE HYPERSENSITIVE 1/PHSI)
to conform to a reversible phosphorylation/dephosphoryla-
tion switch that regulates cortical microtubule formation
(Walia et al., 2009). Phosphorylation of a MAP3K (NPK1)
by cyclin-dependent kinases has been proposed to be criti-
cal for the appropriate cytokinesis progression in Arabidopsis
(Sasabea et al., 2011). Expression of MPK6 has been shown
to be strong in both the RAM PD and TD, specifically dur-
ing the pre-prophase band and in the phragmoplast, where
it controls cell division plane specification (Miiller et al.,
2010). Epigenetic modifications like methylation or deacety-
lation of histones have also been suggested to regulate root
development (Fukaki ez al., 2006; Krichevsky et al., 2009).
Interestingly, in animal systems, MAPK mediates histone
phosphorylation, which in turns drives acetylation of histone
H3, impacting on gene transcription (Clayton et al., 2000). It
remains to be addressed whether a similar regulatory mecha-
nism operates in plant systems.

MPKE regulates LR initiation

RSA is determined primarily by the spatio-temporal regula-
tion of lateral root initiation events (Bielach er al., 2012).
Mutants having increased number of LRs are relatively
infrequent compared with those with reduced number of
LRs (De Smet et al., 2006), although an increased number
of LRs does not necessary indicate an increase in LR ini-
tiation (Dubrovsky and Forde, 2012). The participation of
MAPK cascades in LR formation was documented by the
phenotypes observed in mutants of MPK4 and its upstream
activator MEKK1-1, both displaying from a slight to a
severe reduction in LR density (Nakagami ez al., 2006; Su
et al., 2007). Previous studies have also shown that MPK3
and MPKG6 are activated in response to the same signals as
MEKK1/MPK4, supporting a possible role of these kinases
in the LR development programme (Ichimura et al., 2006;
Suarez-Rodriguez et al., 2007). However, our results demon-
strated that the role of MPK6 in LR development is oppo-
site to that of MPK4 (and MEKK1). The observation that
the mpk6wb/lr long PR phenotype is accompanied by an
increase in LR initiation (Figs 4C, D and 6), fully demon-
strated that MPK6 acts as a negative regulator of LR ini-
tiation. The clearest examples of increased LR initiation
are the mutants related to auxin homeostasis and signalling
(Zhao, 2010). CEGENDUO, a subunit of SCF E3 ligase, has
a negative role in auxin-mediated LR formation (Dong ef al.,
2006). MAPK cascades have been found to directly or indi-
rectly affect auxin signalling (Mockaitis and Howell, 2000;
Takahashi er al., 2007), which could alter LR formation.
Cytokinin is a negative regulator of LR initiation. Decreased
endogenous cytokinin concentration in protoxylem-adjacent
pericycle cells results in increased LR initiation; in contrast,
when the cytokinin concentration in these cells is increased,
LR initiation is repressed (Laplaze et al., 2007). In this
context, the mpk6 mutant shows a phenotype of decreased
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endogenous cytokinin content. Altogether, these findings
highlight the complexity of the MAPK cascades in root
morphogenesis. However, an increase in cell production in
the PR meristem and increased LR initiation in mpk6wbl/lr
both indicate a link between cell proliferation and its regula-
tion by MPK6. Stress and development responses are tightly
coordinated by MPKs, but their interaction is still poorly
understood. As few research studies have focused on the
interplay between development and environmental stresses,
our findings highlight the power of studying root processes
in terms of unravelling MPK signalling interactions.

MPK®6 is important for RH formation

Our data also demonstrated that MPK6 is a negative reg-
ulator of RH development, as its mutation resulted in an
increase in the number and size of RHs (Fig. 7). Multiple cel-
lular factors regulate RH growth and development, includ-
ing vesicle exocytosis, calcium (Ca**) homeostasis, reactive
oxygen species and cytoskeleton modifications (Cardenas,
2009). Ca** is a universal second messenger, which, through
interactions with Ca®" sensor proteins, performs important
roles in plant cell signalling (Batistic and Kudla, 2012).
These sensor proteins include calmodulins, calmodulin-like
proteins, Ca?*-dependent protein kinases, calcineurin B-like
proteins, and their interacting kinases, among others. Several
genes implicated in RH differentiation have been identified;
one of them, OXIDATIVE SIGNAL INDUCIBLE 1 (OXII)
from Arabidopsis, is required for MPK6 activation by reac-
tive oxygen species (Rentel er al, 2004). The MPKKKI
(MEKKI1) also has been involved in reactive oxygen species
homeostasis (Nakagami et al., 2006) and apparently, together
with MKK2 and MPK4/MPKS6, constitutes a MAPK cas-
cade that participates in several stress responses (Ichimura
et al., 2000). In alfalfa, stress-induced MAPK (SIMK), an
Arabidopsis MPK6 orthologue, performs an important role
in RH tip growth (Samaj e al., 2002). The alfalfa SIMK pro-
tein seems to be a positive regulator of RH growth, as treat-
ment of plants with the MAPK inhibitor UO126 resulted
in aberrant RHs, whereas the overexpression of SIMK in
tobacco induced a rapid growth of these cells (Samaj ez al.,
2002). These results contrast with our observations of the
function of MPK6 and highlight a specific role of each mem-
ber of the MAPK cascade in a particular developmental
process.

Possible role of MPK6 in hormone responses

As the precise mechanism underlying the root developmen-
tal alterations in mpk6 seedlings is still unknown, we hypoth-
esized that mpk6wbl/lr root architectural phenotypes might
result from altered responses to auxins or cytokinins, as these
hormones control RSA (Perilli ez al., 2012). Thus, to deter-
mine whether MPK6 could affect PR responses to auxins
or cytokinin, we evaluated the PR growth of wild-type and
mpk6wb/lr mutant seedlings in response to the exogenous
addition of TAA and kinetin. We observed that, at low con-
centrations of IAA (0.03-0.125 pM) and kinetin (0.25-2 pM),

mpkowb/Ir was slightly insensitive and slightly hypersensitive,
respectively, to the inhibitory effects of these hormones on PR
growth. However, these differences were not clear at higher
concentrations (0.25-0.5 nM TAA and 4-16 pM kinetin)
of both hormones (Supplementary Fig. S4 at JXB online).
These assays showed that mpk6wb/lr PR is not insensitive to
the exogenous addition of these two plant growth regulators,
suggesting that the observed root length differences in the
mpk6 mutant cannot be explained by different sensitivities to
auxin or cytokinins. This observation agrees with the finding
that the root growth-inhibition response to several hormones
of the MPKKK mutant yda, which acts upstream of MPK6,
is normal (Lukowitz et al., 2004).

In summary, the results presented here indicate that MPK6
is a negative regulator of at least three developmental pro-
grammes in the root, namely PR growth, LR formation, and
RH development, which probably occurs through regulation
of cell division and elongation processes. Understanding the
signalling events regulated by MPK6 activity during root
development will ultimately require identification of the up-
and downstream components, as well as the signal (or combi-
nation of signals) turning on and off phosphorylation of the
MAPK cascade and impacting on RAM behaviour.

Supplementary data

Supplementary data are available at JXB online.
Supplementary Methods.
Supplementary Figure S1. mpk6 is a null mutant.
Supplementary Figure S2. mpk6 seed phenotypes are stable.
Supplementary Figure S3. mpk6 siliques are shorter than
wild type and contain many aborted seeds.
Supplementary Figure S4. Effect of auxin and cytokinins
on primary root growth.
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Arabidopsis thaliana MAP kinase 6 mutation causes three different seed
phenotypes correlated with alterations in cellular processes affecting root
architecture

Lopez-Bucio J. S., Dubrovsky, J. G., Raya-Gonzalez J., Ugartechea-Chirino, Y.,
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A AL

Supplementary Methods

Plant genotyping

Total RNA was isolated using TRIZOL® (Invitrogen™, Carisbad, CA) from freezing
tissue and the first-strand cDNA was synthesized using 3 ug of RNA in a volume of 30
uL containing 50 mM Tris-HCI, pH 8.3, 75 mM KCI, 3 mM MgCl;, 5 mM DTT, 2 mM
deoxynucleotide triphosphate mixture, 5 mM oligo(dT) primer, 10 units of RNase
inhibitor (Invitrogen™), and 100 units of Moloney murine leukemia virus reverse
transcriptase (Invitrogen™) for 1 h at 42 °C. To inactivate the enzyme the samples were
incubated at 92 °C by 10 min. One microliter of the first-strand reaction was used for the
genotypic analysis of the plant lines under study. The amplification reaction was
performed containing 0.2 mM of each deoxynucleotide triphosphate, 0.5 mM of each
primer, 10 mM Tris-HCI, pH 8.8 at 25 °C, 50 mM KCI, 0.08% Nonidet P-40, 2.5 mM
MgCl,, and 1 unit of Tag DNA polymerase (MBI/Fermentas, Hannover, MD). Thirty
cycles of amplification were performed in a PTC-200 Peltier thermal cycler (MJ
Research, Waltham, MA), each having 30 s of denaturation at 94 °C, 40 s of annealing at
56 °C, and 1 min of extension at 72 °C. The specific set of primers for each amplification
reaction was as follows: 5’-CTTCCGCCGTAAAAGC-3" (forward) and 5’-
GTCCCAGCACCACAGG-3’ (reverse) for UBI6 (At2g47110), 5-
ATCTTTATGGAGCTTATG-3’ (forward) 5’-CCGTATGTTGGATTGAG-3’ (reverse)
for MPK3 (At3g45640) and 5’-CGAGTCACTTCTGAGAG-3’ (forward) and 5’-
TTGCTGATATTCTGG-3’ (reverse) for MPK6 (At2943790). PCR products were
analyzed on 1% agarose gels.

Protein extraction and kinase assays

Seedlings were ground in liquid nitrogen, homogenized in buffer containing 250 mM
sorbitol, 50 mM HEPES-BTP (pH 7.8), 10 mM NaF, 5 mM DTT, 1 mM EDTA, 1 mM
KCI, 1 mM NazgVO, 1 mM PMSF and 40 pg/ml of protease inhibitor cocktail (Roche
Applied Science, Indianapolis, IN), then centrifuged at 12,000 x g 20 min at 4°C. The
crude extracts were stored at —70°C. Protein concentration in the extracts was estimated
with Bradford protein assay kit (Bio-Rad, Hercules, CA) using BSA as a standard. The
in-gel Kkinase assay was performed as previously described (Zhang & Klessig 1997).
Briefly, 50ug of protein extracted from plant tissue were fractionated on a 10% SDS-
polyacrylamide gel containing 0.25 mg/ml myelin basic protein (MBP, Sigma) as
substrate for the kinases. After electrophoresis, the gel was washed three times with 25
mM Tris (pH 7.5); 0.5 mM DTT,; 0.1 mMNa3V04; 5mM NaF; 0.5 mg/ml BSA; 0.1%
(vol/vol) Triton X-100 for 30 min each at room temperature. Proteins in the gel were then
renatured by incubating the gel in 25 mM Tris (pH 7.5); 1 mM DTT; 0.1 mM NazVO,
and 5 mM NaF at 4°C overnight, with three changes of buffer. The kinase reactions were
then carried out by incubating the gel in 30 ml of buffer containing 25 mM Tris (pH 7.5);
2 mM EGTA; 12 mM MgCly; 1mM DTT; 0.1 mM NazVOy; 200 nM ATP, and 50uCi of
[y-?P]JATP (>4,000 Ci_mmol; 1 Ci = 37 GBq), for 60 min at room temperature. To
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remove free *P, the gel was extensively washed at room temperature with several
changes of 5% (wt/vol) trichloroacetic acid and 1% (wt/vol) NaPPi until *2P-radioactivity
in the wash solution was barely detectable. The gel was dried under vacuum on Whatman
3MM paper and used to expose a Kodak XAR-5 film. Prestained size markers (Bio-Rad,
Hercules CA) were used to calculate the size of kinases. As loading control 20ug of
proteins from the same extracts used for kinase assays were fractionated in a 10% SDS-
polyacrylamide gel and stained with Coomassie Brilliant Blue dye.

P-glucuronidase histochemical activity

Expression of the GUS reporter gene (Jefferson et al., 1987) was detected by incubating
Arabidopsis imbibed seeds or in vitro grown seedlings, in histochemical assay buffer
(100 MM NaH,PO,4 and Na,HPO, mix, pH 7; 0.5 mM potassium ferrocyanide; 0.5 mM
potassium ferricyanide; Na,EDTA pH 8.0; 0.1% Triton X-100 and 0.1% 5-bromo-4-
chlorium-3-indolyl-b-D-glucuronic acid), at 37 °C during the indicated time. Chlorophyll
was removed with 70% ethanol for several hours. Seedlings were cleared according to
Malamy and Benfey (1997) with some modifications (Dubrovsky et al., 2006), and then
mounted in 50% glycerol on microscope slides. Histochemically stained or unstained
seeds and seedlings were analyzed using stereoscopic (Nikon SMZ1500) and
transmission (Nikon EclipseE600) microscopes equipped with a digital camera (Nikon
SIGHT DS-Filc, Nikon Corporation, Tokyo, Japan).

Figure Legends

Supplemental Figure S1. mpk6 is a null mutant.

A) Genotyping of the plants under study. RT-PCR analysis of RNAs from wild-type (Wt,
Col-0), mpk3-1 (SALK_151594), mpk6-2 (SALK_073907) and mpk6-3 (SALK_127507)
lines, previously characterized (Liu and Zhang, 2004; Wang et al., 2007). The gene
fragment amplified in each case is indicated. UBI6 corresponds to the ubiquitin-6
(AT2G47110) Arabidopsis gene. All the PCRs were made with the same cDNA from the
indicated plant lines. B) In-gel kinase assays were conducted with total protein extracts
from wild-type (Wt/Col-0), F1 progeny of mpk6 x Col-0, F2 seedlings from three seed
phenotypes (mpk6bs, mpkérs, mpkéwb) and mpk3, 6DAG seedlings. Notice that whereas
MPKG6 activity is evident on heterozygous F1 progeny, no MPK6 activity could be
detected on mpk6 seedling with seed phenotypes described here. A Coomassie Brilliant
Blue Gel (CBBG) is shown as loading control.

Supplemental Figure S2. mpk6 seed phenotypes are stable.

A) Representative mpk6 x pABI4::GUS silique containing the three mpké classes of
seeds (wb/wild-type bigger; rs/raisin-like and bs/burst seed) is shown. B) Segregating
seed phenotypes and histochemical GUS activity on the F3 mpk6 x pABI4::GUS
seed protruding embryos are shown. In the picture the GUS positive
burst-seeds are over represented, but each phenotype was present in a
proportion similar to that observed in the homozygous mpk6é mutant line (~70, ~23 and
~7%, respectively). Scale bars =1 mm.

Supplemental Figure S3. mpké siliques are shorter than wild-type and contain many
aborted seeds. Comparison between wild-type (Wt, Col-0) and mpk6 homozygous line
of: A) The length of siliques, B) The number of seeds per siliqgue and C) Seeds aborted
per silique. The Error bars represent SE from 10 siliques along the stem of 5 independent
plants (n= 50 for each). Asterisk marks Student's t-test significant differences at P
indicated. D) Representative photograph of wild-type (Wt, Col-0) and mpk6 siliques. An
abortion event, apparently frequent on mpkeé siliques, is highlighting (arrow). Scale bars =
1 mm.
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Supplemental Figure S4. Effect of auxin and cytokinins on primary root growth
Primary root length inhibition caused by the indicated concentrations of: A) ldol-3Acetic
Acid (IAA) and B) kinetin over wild-type (Wt, Col-0) and mpk6wb/Ir seedlings. Data
were recorded from 8 DAG seedlings growing in media supplemented with the
corresponding hormone. The percentages of root growth inhibition were calculated taken
PR length of seedlings growing in basal medium as 0% of inhibition. Values are mean *
Standard Error (n = 15). Different letters represent Tukey’s post-hoc test significant
differences (P<0.05). The experiment was repeated three times with similar results.

Supplementary Figures

Supplemental Figure S1.
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Supplemental Figure S2.

Supplemental Figure S3.

141



100
[ ] wt a 2
B mpkewb/ir
g0l bc DB
k) cd
o d
&
48]
E 60 .
O
"'6 e
o
S a0t
:_§ f
= g
3 20
0 | ] ] ]
0.03 0.06 0.125 0.25 0.5
IAA (UM)
100 -
[ wvt
Bl mpk6whbir , @
- 80 B
S
o b
b
=)
g 60 c c ©
E cd
© de
c del
2 a0t g
0
= fg
=]
S~ 20 fgn
h
0 | | | | | |
0.25 05 1 2 4 8 16
Kinetin (uM)

Supplemental Figure S4.

142



E New Phytologist

The volatile 6-n-pentyl-2H-pyran-2-one from Trichoderma
atroviride regulates Arabidopsis root morphogenesis via
auxin signaling and ETHYLENE INSENSITIVE 2 functioning.

Journal:

New Phytologist

Manuscript ID:

Draft

Manuscript Type:

MS - Regular Manuscript

Date Submitted by the Author:

n/a

Complete List of Authors:

Garnica-Vergara, Amira; Universidad Michoacana de San Nicolas de
Hidalgo, Instituto de Investigaciones Quimico Bioldgicas

Barrera-Ortiz, Salvador; Universidad Michoacana de San Nicolas de
Hidalgo, Instituto de Investigaciones Quimico Bioldgicas

Mufioz-Parra, Edith; Universidad Michoacana de San Nicolas de Hidalgo,
Instituto de Investigaciones Quimico Bioldgicas

Raya-Gonzalez, Javier; Universidad Michoacana de San Nicolas de Hidalgo,
Instituto de Investigaciones Quimico Bioldgicas

Macias-Rodriguez, Lourdes; Universidad Michoacana de San Nicolas de
Hidalgo, Instituto de Investigaciones Quimico Bioldgicas

Ruiz-Herrera, Ledn; Universidad Michoacana de San Nicolas de Hidalgo,
Instituto de Investigaciones Quimico Bioldgicas

Lopez-Bucio, José; Universidad Michoacana de San Nicolas de Hidalgo,
Plant Molecular Biology

Key Words:

Arabidopsis, Trichoderma, Auxin, Ethylene, Root development

J)LARONE"

Manuscript submitted tollﬂgw Phytologist for review




Page 1 of 38

10

11
12
13
14

15
16

17

18

19

20

21

22
23

Title: The volatile 6-n-pentyl-2H-pyran-2-one from 7Trichoderma atroviride regulates
Arabidopsis root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2

functioning.
Full names of authors:

Amira Garnica-Vergara, Salvador Barrera-Ortiz, Edith Mufoz-Parra, Javier Raya-
Gonzalez, Lourdes Macias-Rodriguez, Ledn Francisco Ruiz-Herrera and José¢ Lopez-

Bucio*

Instituto de Investigaciones Quimico-Bioldgicas, Universidad Michoacana de San
Nicolas de Hidalgo. Edificio B3, Ciudad Universitaria. C. P. 58030, Morelia,

Michoacan, México.

*Correspondence: José Lopez-Bucio. Instituto de Investigaciones Quimico-Biologicas,
Universidad Michoacana de San Nicolas de Hidalgo. Edificio B3, Ciudad Universitaria.
C. P. 58030 Morelia, Michoacan, México. Telephone 5 443 3265788, fax: (443)
3265788. E-mail: jbucio@umich.mx.

Total word count for the main body of the text (Introduction, Materials and Methods,

Results, Discussion, and Acknowledgements): 4900 words
Introduction: 974 words

Materials and Methods: 1149 words

Results: 1326 words

Discussion: 1399 words

Acknowledgements: 46 words

Number of figures: 8 (six in color); Number of tables:1; No supporting information is

included.

Manuscript submitted tollzﬁvv Phytologist for review



24

25
26
27
28

29
30
31
32
33
34
35

36
37
38
39
40
41

42
43

44

45

46
47

Summary

Plants interact with root microbes via chemical signaling, which modulates competence
or symbiosis. Although several volatile organic compounds (VOCs) from fungi may
affect plant growth and development, the signal transduction pathways mediating VOC

sensing are not fully understood.

6-pentyl-2H-pyran-2-one (6-PP), is a major VOC biosynthesized by Trichoderma spp.
likely involved in plant-fungus cross-kingdom signaling. Using microscopy and
confocal imaging, the effects of 6-PP on root morphogenesis were correlated with
DR5:GFP, PINI:GFP, PIN2:GFP, PIN3:GFP and PIN7:GFP gene expression. A
genetic screen for primary root growth resistance to 6-PP in wild-type seedlings and
auxin and ethylene-related mutants allowed identification of genes controlling root

architectural responses to this metabolite.

Trichoderma atroviride produced 6-PP, which promoted plant growth and regulated
root architecture inhibiting primary root growth and inducing lateral root formation. 6-
PP modulated expression of PIN auxin-transport proteins in a specific and dose
dependent manner in primary roots. 7/RI, AFB2 and AFB3 auxin receptors and ARF7
and ARF19 transcription factors influenced the lateral root response to 6-PP, whereas

EIN2 modulated 6-PP sensing in primary roots.

These results indicate that root responses to 6-PP involve components of auxin transport

and signaling and the ethylene-response modulator EIN2.

Running title: Fungal-plant cross-kingdom signaling via 6-pentyl-2H-pyran-2-one.

Keywords: Trichoderma, auxin, ethylene, root development, phytostimulation, 6-

pentyl-2H-pyran-2-one.
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Introduction

Providing healthy food sources, grains, fuels and fiber to an ever increasing global
population is one of the greatest challenges of this century. New techniques and
products are needed for sustainable crop productivity without damaging soil and water
resources. The Trichoderma genus includes species that naturally associate with plant
roots and are considered highly versatile beneficial fungi (Mukherjee et al., 2013;
Harman et al., 2004; Harman, 2011). Amongst their different attributes, 7richoderma
spp. benefit agricultural activities acting as biofungicides, in bioremediation of soils
contaminated with metals or chemical wastes, or eliciting plant development and
defense (Chang et al., 1986; Bjorkman et al, 1998; Bjorkman, 2004; Vargas et al.,
2009, Velazquez-Robledo et al., 2011; Samolski et al., 2012; Pereira et al., 2014; Zhao
et al., 2014). These fungi produce plant growth promoting compounds, which have the
capacity to increase photosynthesis, biomass production or elicit developmental
programs via regulation of gene expression (Chacon er al., 2007; Shoresh & Harman,
2008; Vargas et al., 2009, 2011, Harman, 2011; Rubio et al, 2012; Studholme et al.,
2013; Pereira et al., 2014; Martinez-Medina et al., 2014).

T. virens and T. atroviride produce the auxins indole-3-acetic acid (IAA), indole-3-
ethanol (IET), indole-3-acetaldehyde (IALD) and indole-3-carboxaldehyde (ICALD).
These compounds stimulate cell division, elongation and/or differentiation processes,
ultimately increasing growth and yield of the plant host (Contreras-Cornejo et al., 2009,
2011). The role of auxins from 7richoderma in plant morphogenesis was investigated in
detail in Arabidopsis thaliana by Contreras-Cornejo and coworkers (2009). Fungal
colonization of Arabidopsis roots induced the expression of the auxin-inducible gene
marker DR5:GUS and increased development of lateral roots and root hairs. It was
found that mutations in genes involved in auxin transport or signaling including 4AUX1,
BIG, EIRI and AXRI, reduced the beneficial effects of Trichoderma on biomass
production and root branching. Interestingly, supplementation of all identified
Trichoderma auxins to Arabidopsis seedlings showed a dose-dependent effect on
biomass production, increasing yield in small amounts (nM range) but repressing
growth at higher concentrations (mM range). In particular, application of indole-3-
carboxaldehyde inhibited primary root growth, induced adventitious root formation and

increased camalexin concentration in leaves, thus suggesting a possible connection of
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auxin signaling with defense and development (Contreras-Cornejo et al., 2011). Recent
research has further highlighted the critical role of auxin production by Trichoderma not
only in phystostimulation under standard growth conditions but also under stress
imposed by abiotic factors (Mastouri et al., 2010, 2012; Rawat et al., 2013, Contreras-
Cornejo et al., 2014b; Hashem et al., 2014).

The relationship between fungal produced auxins and root developmental programs
elicited by Trichoderma was found to depend on Mitogen Activated Protein Kinase
(MAPK) signaling (Contreras-Cornejo et al., 2015). Cocultivation of Arabidopsis roots
with 7. atroviride modulated lateral root growth and root hair formation and increased
MPKG6 activity, likely depending of ethylene (ET) and auxin signaling. It was also
found that ET, IAA and IAAld produced by the fungus induced MPK6 activity, while
auxin-inducible DR5:GUS gene expression was concomitantly enhanced in Arabidopsis
mutants defective in the Constitutive Triple Response I (CTR1) protein, a negative
regulator of the ethylene response pathway, which is thought to function as a MAP
kinase (MAPK) kinase kinase. Detailed analysis of root hair and lateral root responses
to T. atroviride in Arabidopsis WT seedlings and ethylene-related mutants etrl, ein2
and ein3 showed that the effect of ET on root morphogenesis was apparently mediated
by an auxin-ethylene crosstalk involving MPK6, which fine-tunes seedling growth and
development in response to Trichoderma (Contreras-Comnejo 2015). In consequence,
MPKG6, and its MAP kinase associated cascade, likely involving CTR1 and other
components still to be identified, seems to be a regulation node to maintain and/or

amplify the hormonal effects underlying plant development and/or defense.

The production of bioactive metabolites in Trichoderma spp. is strain-dependent and
along with auxins include volatile and non-volatile substances such as sesquiterpenes,
6-n-pentyl-2H-pyran-2-one (6-PP), gliotoxin, viridin, harzianopyridone, harziandione
and peptaibols (Vinale er al, 2008; Reino et al, 2008). Exposure of Arabidopsis
seedlings to VOC blends emitted by Trichoderma increased root branching and biomass
production and accelerated flowering (Hung et al., 2013; Contreras-Cornejo et al.,
2014b). Harzianolide and 6-PP promoted growth of pea (Pisum sativum) stems and
tomato (Lycopersicum esculentum) and canola (Brassica napus) seedlings. Tomato
plants sprayed with 6-PP had increased biomass and a highly branched root system,
which may account for improved water and nutrient acquisition (Vinale et al., 2008).

This information suggests that some Trichoderma metabolites may be interpreted by
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plants as trans-kingdom signals to modulate plant morphogenesis, but currently, little is
known about the cellular, genetic and molecular mechanisms by which plants sense

these fungal metabolites.

Because 6-PP is involved in many developmental processes of fungal growth and
emerges as a plant bioactive metabolite (Vinale et al., 2008), it is important to uncover
molecular components specific to root architecture remodeling and its relationship with
plant genetic programs. Here, we show that Trichoderma atroviride produces 6-PP,
whose levels increase in co-cultivation with Arabidopsis seedling. Supplying
Arabidopsis seedlings with 6-PP enhanced shoot and root biomass production in a dose
dependent manner and improved root branching. 6-PP induced an auxin response in
primary root tips and in young lateral root primordia and differentially modulates
expression of auxin transporters PIN1, PIN2, PIN3 and PIN7. A genetic screen for 6-PP
resistance established that this compound required auxin receptors TIR1, AFB2 and
AFB3 and downstream transcription factors ARF7 and ARF19 to stimulate lateral root
development. Intriguingly, strong primary root growth resistance to 6-PP was conferred
by a loss of function mutant of the ethylene response regulator EIN2, which indicates
that root response to 6-PP did not occur constitutively in all tissues but rather showed
clear preference for specific root tissues and signaling components. The plant response
to 6-PP further uncovered the contribution of an specific component in the ethylene
pathway in root architectural remodeling and highlights the complex network of

signaling molecules involved in fungal-plant interaction.
Materials and Methods
Plant materials and growth conditions

Arabidopsis (Arabidopsis thaliana) Col-0 ecotype, the transgenic Arabidopsis lines
DRS5:GFP (Ottenschldger et al., 2003), PINI::PINI1::GFP (Benkova et al., 2003),
PIN2::PIN2::GFP (Blilouet et al., 2005), PIN3::PIN3::GFP (Zadnikova et al., 2003),
PIN7::PIN7::GFP (Blilouet et al., 2005) and the mutant lines axr/-3 (Lincoln et al.,
1990), auxi-7 (Picket et al., 1990), tiri/afb2/afb3 (Parry et al., 2009), arf7-1/arf19-1
(Wilmoth et al., 2005), eirl (Roman et al., 1995), etrl (Hua & Meyerowitz, 1998), ein2
(Guzman & Ecker, 1990), ein3 (Chao et al, 1997), were used for the different

Manuscript submitted tollzl%vv Phytologist for review



147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

experiments. Seeds were surface sterilized with 95% (v/v) ethanol for 5 min and 20%
(v/v) bleach for 7 min. After five washes in distilled water, seeds were germinated and
grown on agar plates containing 0.2x MS medium. The MS medium (Murashige and
Skoog Basal Salts Mixture), was purchased from Sigma. Phytagar (commercial grade),
was purchased from Gibco-BRL. Plates were placed vertically at an angle of 65° to
allow root growth along the agar surface and unimpeded aerial growth of the
hypocotyls. Plants were placed in a plant growth chamber (Percival AR-95L), with a
photoperiod of 16 h of light/8 h of darkness, light intensity of 300 pmol m? s, and
temperature of 22 °C.

Fungal growth and plant inoculation experiments

Trichoderma atroviride (formerly T. harzianum) IMI 206040 was used. An inoculum of
1 x 10° spores was placed at 5 cm from Arabidopsis primary roots germinated and
grown 4 days on agar plates containing MS 0.2x medium. The plates, which included
10 Arabidopsis seedlings each, were arranged in a completely randomized design into a
Percival AR95L growth chamber. After 3 and 5-days of co-cultivation, determinations

of 6-PP accumulation and plant growth were done.
Effect of 6-PP on plant growth and development

6-PP was purchased from Sigma, and dissolved in ethanol. To investigate whether 6-PP
could have an effect on Arabidopsis growth, the compound was supplied at different
doses (0, 50, 75, 100, 125, 150, 175, and 200 puM), to the plant growth medium. In
control seedlings, we added ethanol in equal amounts as present in the greatest
concentration of the compound tested. The Petri plates with 30 plants under different
treatments were placed on a Percival AR95SL growth chamber for 10 days to estimate
biomass production.

Arabidopsis root system and primary root (PR) meristem integrity were analyzed with a
stereoscopic microscope (Leica, MZ6 Leica, Microsystems). All lateral roots (LRs)
emerged from the PR were counted at 30x magnification. Images were taken with a
Samsung SCC 131-A digital color camera adapted to the microscope and processed

with the Zeiss Axio Vision 4AC software (Carl Zeiss). PR length was determined for
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each root using a ruler. LR density was determined by dividing the LR number value by

the PR length values for each analyzed seedling.
Propidium iodide staining and GFP detection

For confocal microscopy, solvent- or 6-PP-treated transgenic Arabidopsis seedlings,
were transferred from the growth medium to 10 mg mL™" propidium iodide solution for
I min. Seedlings were rinsed in water and mounted in 50% (v/v) glycerol on
microscope slides. The same sample was recorded separately at wavelengths specific to
both propidium iodide fluorescence, with a 568 nm excitation line and an emission
window of 585-610 nm, and GFP emission, with a 500-523 nm emission filter (488 nm
excitation line and emission detected at 505-550 nm), using a confocal microscope
(Olympus FV1000), after which the two images were merged to produce the final

image.
Determination of developmental stages of lateral root primordia (LRP)

LRP were quantified 6d after germination. Seedling roots were first cleared to enable
LRP at early stages of development to be visualized and counted. Each LRP was
classified according to its stage of development as reported by Malamy and Benfey
(1997). The developmental stages are as follow, Stage I: LRP initiation. In the
longitudinal plane, approximately 8—10 ‘short’ pericycle cells are formed. Stage II: the
LRP is divided into two layers by a periclinal division. Stage III: the outer layer of the
primordium divides periclinally, generating a three-layer primordium. Stage IV: an LRP
with four cell layers. Stage V: the LRP is midway through the parent cortex. Stage VI:
the LRP has passed through the parent cortex layer and has penetrated the epidermis. It
begins to resemble the mature root tip. Stage VII: the LRP appears to be just about to

emerge from the parent root.
Analysis of VOCs and 6-PP determinations
The VOCs released by T. atroviride were analyzed in Petri dishes containing 0.2x MS

medium with a SPME technique and gas chromatography-mass spectrometry (GC-MS).
The compounds were collected for 1 h with a blue SPME fiber (PDMS/DVB) (Supelco,
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Inc., Bellafonte, PA, U.S.A.) and desorbed at 180 °C for 30 s in the injector port of a
gas chromatograph (Agilent 7890B; Agilent, Foster City, CA, U.S.A.), equipped with a
MS detector 5977A from Agilent and Mass Hunter Workstation Software for data
acquisition and processing. A free fatty acid-phase capillary column (HP-FFAP) (30 m
x 0.25 mm L.D., film thickness of 0.25 pm) was used. Operating conditions used helium
as the carrier gas (1 ml/min), detector temperature of 250 °C. The column was held for
1 min at 60 °C, and then programmed to rise at a rate of 3 °C per minute to a final
temperature of 180 °C, which was maintained for 1 min. Three independent
determinations were made. The mass fragments were analyzed using electron impact
ionization at 70 eV and a scan rate of 1.9 scan s '. Fragments were read from 40 to 450
Da, and data was evaluated using total ion count (TIC). The chromatograms of the
eluted compounds were deconvoluted and their mass spectra matched with those of the
NIST 11 mass spectral database.

The identification of 6-PP was performed by comparison of retention time and the mass
spectra from an authentic standard with those obtained in the sample. To estimate the
amount of 6-PP produced by T. atroviride from 3 and 5 days of growth and during the
interaction T. atroviride — A. thaliana, we constructed an external calibration curve
using 6-PP standard following a similar method established by Polizzi ef al. (2011). A
diluted solution of 6-PP in ethanol was prepared. Petri dishes were filled with 0.2x MS
medium; upon cooling of the agar, a piece of foil (1 cm’) was placed on the top with
different concentrations (10 pM to 10 mM) of 6-PP. The Petri plates were immediately
closed and sealed with parafilm and analyzed under the same conditions used for the

fungal samples. A good linearity of the calibration curve (r*=0.999) was found.
Data Analyses

For all experiments with WT and mutant lines, the overall data were statistically
analyzed using the SPSS 10 program. Univariate and multivariate analyses with
Tukey’s post hoc test were used for testing differences in growth and root development
responses. Different letters were used to indicate means that differ significantly (P <

0.05).
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Results

6-PP is the most abundant compound within the VOCs profile of Trichoderma

atroviride

Previous reports have shown the VOCs profile from 7. atroviride grown in potato
dextrose agar (PDA), malt extract agar (MEA), or biomalt medium (BM) (Keszler et al.,
2000; Stoppacher ef al., 2010; Siddique ef al., 2012; Jelén et al., 2014; Lee et al., 2015).
All this research identified the compound 6-PP within the corresponding VOCs profile.
To assess the possible roles of 6-PP during interaction of 7. atroviride with plants, in
this study we analyzed the VOCs emitted from 7. atroviride from 5d fungal colonies
growth in Petri plates supplied with MS 0.2x-agar solidified medium. This medium was
chosen because it is commonly used for Arabidopsis growth and the effects of plants on
6-PP could then be evaluated. Table 1 shows that 6-PP is the major compound within
VOC:s profile (57.94 %) from T. atroviride. This compound is an alkyl lactone, with an
unsaturated six membered ring containing one oxygen atom and a ketone functional
group. The isomer found in 7. atroviride according with GC-MS analysis is denoted as
2-pyrone, with an alkyl group at the 6-position (Fig. 1a). The identification of 6-PP was
made by comparison with retention time (37.21 min) and mass spectra from standard
(Fig. 1b) with those obtained from 7. atroviride colonies (Fig. 1c).

To determine whether plant interaction could affect 6-PP production by the fungus, we
next estimated 6-PP amounts in the plates containing single 7. atroviride colonies or at
3 and 5 days of direct interaction with Arabidopsis seedlings. It was observed that 6-PP
emission increased with time (Fig 1d). Interestingly, at 5 d of interaction with plants,
when fungi had physical contact with the root system, the emission of the compound
increases by 40% as compared to the level registered for single colonies (Fig. 1d). At
this stage, an induction of root branching by 7. atroviride was evident (Fig. le),

indicating the possible participation of 6-PP in the lateral root formation process.

6-PP increases biomass production and promote root branching in Arabidopsis

seedlings

To investigate the plant growth-regulating activity of 6-PP, we tested the effects of

increasing, low micromolar doses of this compound in Arabidopsis (ecotype Columbia,
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Col-0) seedlings, germinated and grown on Petri plates containing agar-solidified 0.2x
Murashige and Skoog (MS) medium. The seedlings were treated with ethanol (control
treatment) or with 50-200 pM 6-PP dissolved in ethanol. After 10 days of growth in
medium supplied with 50-to-175 uM 6-PP, a roughly two-fold increase in shoot, root
and total plant biomass was observed (Fig. 2a—c). In contrast, the greatest concentration
(200 pM) of the compound did not increase biomass accumulation (Fig. 2a-c).
Representative photographs of plates illustrating the biostimulation potential of 6-PP are
shown in Fig. 2d-g. Noteworthy, 6-PP treatments increased both lateral root number and
density in a dose-dependent manner, while an inhibition of primary root growth was
determined from 125 pM onwards (Fig. 3a-c). We next analyzed the stages of lateral
root primordium (LRP) development affected by 6-PP by quantifying the number of
stage I-to-VII LRP originating from primary roots of 6 d.a.g seedlings treated with the
solvent or with 150 uM 6-PP, this latter treatment strongly increases LR density (Fig.
3c¢). We found that the stage distribution of LRPs was clearly modulated by treatment
with 6-PP. In particular, LRP stages I-VI, which describes young LRPs were
significantly decreased in 6-PP-treated seedlings (Fig. 4a). In contrast, emerged LR
number was induced 2 or 3-fold by 6-PP in seedlings at 4 and 6 d.a.g, respectively (Fig.
4b). The total number of LRP per seedling decreased in response to 6-PP treatments
(Fig. 4c), whereas the LRP density, did not significantly differ among treatments (Fig.
4d). These data indicate that 6-PP likely increases lateral root branching by inducing the
emergence of pre-formed LRP from pericycle cells and accelerating the growth of

lateral roots.
6-PP regulates primary and lateral root development through auxin signaling

Lateral root development is tightly correlated with auxin signaling (Fukaki et al., 2007).
To understand the role played by 6-PP in root system architecture remodeling and its
possible relationship with auxin signaling, we analyzed the expression of the auxin
responsive marker DR5::GFP in primary root tips, lateral root primordia and emerging
lateral roots in transgenic Arabidopsis seedlings expressing this marker and exposed to
75 and 150 uM 6-PP. DR5::GFP expression was slightly increased in primary root tips
at 150 uM or higher 6-PP concentrations (Fig. 5a-c), which coincided with decreased
root growth (Fig. 3a). Concomitantly, an analysis of DR5::GFP expression at stage II

and V lateral root primordia and in emerging lateral roots showed an enhanced auxin-
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inducible expression in the vasculature of primary roots and in developing primordia
(Fig. 5d-1), as well as in emerging lateral root tips (Fig. 5j-1). These data indicate that 6-

PP affects auxin signaling during primary and lateral root development.
6-PP modulates the expression and distribution of auxin transporters in primary roots

Auxin is transported through the PIN family of auxin proteins, which are expressed in a
tissue-specific manner (Vieten et al, 2005). To test whether 6-PP could regulate
primary root growth and/or lateral root formation through differential expression of PIN
family of auxin transporters, we analyzed the pattern of PIN1, PIN2, PIN3 and PIN7
localization in primary roots and lateral root primordia of seedlings expressing
PINI::PIN1::GFP, PIN2::PIN2::GFP, PIN3::PIN3::GFP, and PIN7::PIN7::GFP. In
seedlings grown in medium lacking 6-PP, GFP fluorescence driven by PIN1, PIN3 and
PIN7 was detected mainly in the stele of primary roots (Fig. 6a, g and j). In contrast,
PIN2 expression was detected in the cortex and epidermal cells (Fig. 6d). In transgenic
seedlings expressing all these four markers supplied with 75 uM 6-PP the GFP
fluorescence was strongly increased (Fig. 6b, e, h and k), whereas when treated with
150 uM 6-PP the opposite effect was observed for PIN1, PIN 2 and PIN7 expression as
shown by decreased GFP florescence (Fig. 6¢, f and 1). In marked difference with the
other PIN transporters, PIN3 localization in response to 150 uM 6-PP still displayed a
strong expression in the stele (Fig. 6i). These findings suggest that 6-PP affects the
expression and distribution of the PIN auxin transporters in primary roots and that root
responses to 6-PP did not occur in all tissues but rather showed clear preference for

specific tissues and transport components.

Effect of 6-PP on primary and lateral root development of auxin-and ethylene related

Arabidopsis mutants

Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis
(Ivanchenko et al., 2008). To further define whether there is a crosstalk between auxin
and ethylene in controlling root responses to 6-PP, we analyzed the response of WT and
Arabidopsis triple, double or single mutants affected in genes related to auxin transport
or response (tirlafb2afb3, arf7arf19, axri-3, auxI-7, and eirl) and ethylene response

(etrl, ein2, and ein3) to 6-PP treatments. To test the involvement of auxin in primary
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and lateral root response to 6-PP, Arabidopsis WT and mutant lines were grown in 0.2x
MS medium supplemented with 150 uM 6-PP and primary root growth and lateral root
formation analyzed 10 days after germination. It was found that all five auxin-related
mutants tested showed WT responses to 6-PP in terms of primary root growth inhibition
(Fig. 7a). In contrast, an induction of lateral root formation was lacking in tirlafb2afb3,
arf7arfl9, axri-3, auxI-7, while eirl seedlings showed increased lateral root formation
in response to 6-PP (Fig. 7b and c).

In opposition to auxin, ethylene has been found to repress lateral root formation (Lewis
et al., 2011). Therefore, we focused our analysis of root response to 6-PP considering
primary root growth. Interestingly, the ein2 mutant was clearly resistant to primary root
growth inhibition even at growth-repressing concentrations of 150 uM 6-PP (Fig. 8a).
This resistance was confirmed in a dose-response curve of growth from 75 to 200 uM 6-
PP (Fig. 8b, c). Together, these data indicate that auxin signaling components mediate
the lateral root responses to 6-PP while EIN2 is a crucial component mediating the

primary root growth inhibition to this fungal signal molecule.
Discussion

This study uncovers a novel mechanism by which Trichoderma atroviride could
promote plant growth and root branching via production of 6-PP. Recently, the
production of auxins and auxin precursors has been reported from several Trichoderma
species. In addition, over 180 secondary metabolites have been characterized up to date,
representing different classes of chemical compounds. These compounds can be
classified as volatiles, diffusible compounds and peptaibols (Gams & Bisset, 1998;
Reino et al., 2008; Stoppacher et al., 2010).

The current work builds on previous observations that fungal released volatiles
increases biomass production and lateral root formation (Hung et al., 2013; Contreras-
Cornejo et al., 2014c). T. viride, T. harzianum, and T. koningii are able to produce 6-PP
(6-pentyl-a-pyrone), which plays a role in biocontrol of phytopathogens such as B.
cinerea, R. solani, and F. oxysporum and a strong relationship exists between the
biosynthesis of this metabolite and the biocontrol ability of the producing strains
(Scarselletti and Faull, 1994; Worasatit et al, 1994). Interestingly, 6-PP may be
involved in cross-kingdom signaling as plants are able to respond to 6-PP increasing

growth and producing more branched root systems (Vinale et al., 2008). 6-PP is to our
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knowledge the first non-auxin-like natural molecule that induces lateral root formation,

but its mechanism of action has not been previously examined.

To understand the possible role of 6-PP in phytostimulation, we first monitored 6-PP
production by Trichoderma atroviride as part of the blend of volatiles emitted by single
fungal colonies alone or in interaction with Arabidopsis seedlings. GC-MS analysis
showed that the production of 6-PP was induced by the presence of plants, which
indicates its possible role in Trichoderma-plant interactions. For instance, a recent
report showed that tomato plants elicited the production of harzianic acid (HA) but
negatively modulated the biosynthesis of its analogue iso-HA, suggesting that different
forms of the same metabolite have specific roles in the molecular mechanism regulating
the Trichoderma-plant interaction (Vinale et al, 2014). Very little is known about the
mechanisms of 6-PP biosynthesis. Mutation in a G alpha subunit gene TGAl of
Trichoderma atroviride leads to decreased 6-PP production, continuous sporulation and
elevated internal cAMP levels, which correlates with loss of mycoparasitic and
antagonistic properties against Rhizoctonia solani, Botrytis cinerea, and Sclerotinia
sclerotiorum during direct confrontation (Reithner ef al., 2005). The transcription factor
ThCTF1 also regulates the biosynthesis of 6-PP in 7. harzianum. Thctfl mutants
affected the yellow pigmentation and coconut aroma attributed to 6-PP production
observed in the wild-type strain and affected its antimicrobial activity (Rubio et al.,
2009). Although the interaction of Trichoderma strains defective of 6-PP production
with plants remains to be investigated, one possibility is that such strains may still
stimulate plant growth and lateral root formation as these might be able to produce
auxins, alternatively, the net effect on root branching may rather depend on the balance
of auxin/6-PP production and release by Trichoderma. Our data clearly anticipate the
existence of Trichoderma species and/or strains that promote growth without producing

auxins, being 6-PP another critical factor in phytostimulation.

6-PP clearly improved shoot and root growth and total biomass production of
Arabidopsis seedlings, which was related to changes in root morphogenesis. Lateral
root formation is a critical factor for water and nutrient acquisition and is an essential
trait for plant adaptation to soil heterogeneity. The mechanism of lateral root formation
is directly or indirectly related to primary root growth inhibition, which is mediated by

the synergistic action of ethylene and auxin signaling (Ruzicka et al., 2007; Stepanova
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et al., 2007; Strader et al., 2010; Swarup et al., 2007). Contreras-Cornejo et al. (2015)
showed that the short root phenotype of mutants defective on CONSTITUTIVE
TRIPLE RESPONSE 1 was likely caused by auxin being accumulated in primary root
tips and that both auxin and ethylene signaling are important for Trichoderma-induced
root hair and lateral root formation. Lateral root development consists of two successive
steps: lateral root initiation and lateral root emergence from the parent root, which are
controlled by auxin fluxes mediated by PIN family membrane transporters (Zazimalova
et al., 2010). To further explore the mechanisms of auxin and ethylene crosstalk in
response to 6-PP, we tested the effects of 6-PP concentrations that either promote (75
puM) or repress (150 pM) primary root growth on the expression of DR5:GFP auxin-
inducible marker. Interestingly, GFP fluorescence slightly increased in the root tip in
response to 6-PP treatment, consistent with an auxin-like activity of this compound.
Similarly, we observed enhanced DRS5:GFP fluorescence after 6-PP treatment in the
lateral root forming regions of roots, particularly in the vascular tissue and during lateral
root primordium development, which further indicates an activation of auxin signaling
during the lateral root initiation program. The structure/activity relationship of auxin
signaling with small molecules has been extensively investigated. More than 200
natural or synthetic auxinic compounds have been identified, including the bacterial
cyclodipeptides cyclo(L-Pro-L-Val), cyclo(L-Pro-L-Tyr), and cyclo(L-Pro-L-Phe).
These small molecules possess weak auxin activity and were able to activate auxin-
response gene markers in the Arabidopsis root system (Ortiz-Castro et al., 2011). An
interesting possibility is that 6-PP could interact with the TIR1 auxin receptor, or with

receptors from the same gene family, thus acting as auxin signal mimics.

IAA enters cells through the action of influx carriers such as AUXIN RESISTANT 1
(AUX1) and Like AUX (LAX1, 2 and 3) (Bennett et al., 1996; Marchant et al., 2002;
Swarup et al, 2008), and moves to adjacent cells via efflux proteins such as PIN
FORMED 1 (PIN1) and ATP BINDING CASSETTE B 19/P-GLYCOPROTEIN
19/MULTIDRUG RESISTANT 1 (ABCB19/PGP19/MDR1) (Galweiler et al., 1998;
Noh et al, 2001). Defects in AUX1, LAX3, PIN1, PIN2 and ABCB19 decrease
initiation and/or elongation of lateral roots or negatively affect root gravitropism due to
reduced auxin transport (Benkova et al., 2003; Marchant et al., 2002; Swarup et al.,
2008; Wu et al., 2007). Changes in the abundance and localization of auxin transport

proteins may define the growth of primary roots or the initiation of lateral roots (Raya-
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Gonzélez et al., 2014). Our results that 6-PP increased auxin-induced gene expression in
the root apex, and in regions of lateral root initiation suggest that 6-PP affects root
development by altering auxin distribution. Consistently with this idea, PIN1, PIN2 and
PIN7-GFP fluorescence was increased or decreased after 6-PP treatment, respectively,
indicating the possible role of PIN transporters in 6-PP root responses. At high 6-PP
concentrations (i.e. 150 uM), localized depletion of fluorescence of PIN1- and PIN7-
GFP, normally found below the primary root meristem was evidenced. These results
suggest that 6-PP treatment increased PIN transporter expression at low doses, resulting
in elevated auxin transport to the sites of lateral root initiation to drive lateral root
growth, whereas higher concentrations repress primary root growth likely blocking
expression of PIN1 and PIN7. The increased lateral root branching associated with
elevated expression of auxin transporters is not surprising, as recent studies have shown

that auxin positively regulates PIN1 and PIN2 expression (Raya-Gonzalez et al., 2014).

To analyze whether the TIRI family of auxin receptors and downstream signaling
components are involved in Arabidopsis responses to 6-PP, we evaluated primary root
growth and lateral root formation in response to this metabolite in WT (Col-0)
Arabidopsis seedlings and in tirlafb2afb3, arf7arfl19, axri-3, auxI-7, and eirl triple,
double, and single mutants, respectively. In solvent-treated WT seedlings, 6-PP
decreased primary root length in WT and all five auxin-related mutants. Interestingly,
the increase in LR formation observed in WT seedlings when treated with 6-PP was
clearly reduced in tirlafb2afb3, arf7arf19 and auxI-7 mutants. Additional experiments
testing primary root growth responses to 6-PP in WT and ethylene related mutants etr1,
ein2 and ein3 revealed that this compound similarly inhibited primary root growth in
WT, etrl and ein3 lines, whereas ein2 was resistant to primary root growth inhibition by
6-PP, which was further confirmed in a kinetic experiment monitoring primary root
growth in response to a wide range of 6-PP concentrations. These results showing the
involvement of 6-PP in root development add to the emerging functions of fungal
molecules in plants. Based on their auxin-like activity and the involvement of ein2 in its
signaling pathway, 6-PP can be regarded as a broad-spectrum molecule used to
modulate both root growth and defense responses, and thus represent a novel compound
enabling cross-kingdom communication. Manipulating 6-PP-dependent fungal-plant

signaling and 6-PP biosynthesis in Trichoderma may be a promising strategy for
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development of fungal inoculants to enhance crop yields and plant protection in

Arabidopsis and crop plants.
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Figure legends

Fig. 1 Molecular characterization and production of 6-pentyl-2H-pyran-2-one (6-PP) by
T. atroviride IMI 206040. (a) Chemical structure of 6-PP showing the major fragment
ions (m/z) of electron ionization mass spectra. (b) Total ion chromatogram and mass
spectra from commercial standard (6-PP, Rt =37.21 min). (c). Total ion chromatogram
of VOCs from the fungus, indicating the presence of 6-PP at Rt of 37.21 min. 6-PP was
identified by comparison of mass spectra according with the NIST 2011 library and
from commercial standard. (d) Estimation of 6-PP content in 7. atroviride and A.
thaliana — T. atroviride interaction system. (e) Representative photographs of the fungal

colonies 3 and 5 d of growth and during the interaction with plants. Scale bar = 1 cm.

Fig. 2 Effect of 6-n-pentyl-6H-pyran-2-one (6PP) on plant biomass production.
Arabidopsis (Col-0) seedings were germinated and grown for 12 d under increasing 6-
PP concentrations. (a) Shoot biomass. (b) Root biomass. (¢) Total biomass. (d)
Representative photographs of seedlings grown in 0.2x MS medium or (e) in 0.2x MS
medium supplemented with 75, (f) 125, and (g) 175 uM 6-PP. Photographs show
representative plates, each treatment included three plates. Data from a-c show means +
SD from three groups of 30 seedlings that were recovered from the medium, excised at

the root/shoot junction, and weighed using an analytical scale. Different letters represent
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means statistically different at the 0.05 level. The experiment was repeated three times

with similar results. Scale bar =1 cm.

Fig. 3 6-PP regulates Arabidopsis root system architecture. Arabidopsis (Col-0)
seedlings were germinated and grown for 10 d under increased 6-PP concentrations. (a)
Primary root length. (b) Number of emerged lateral roots. (c¢) Lateral root density
(number of emerged lateral roots per cm). Values represent the means of 30 seedlings +
SD. Different letters represent means statistically different (P < 0.05). The experiment

was repeated three times with similar results. Scale bar = 1 cm.

Fig. 4 Effect of 6-PP on LR development in Arabidopsis. WT (Col-0) seedlings were
germinated and grown for 2, 4 and 6d on 0.2x MS media supplemented with the solvent
(control) or 150 uM 6-PP. (a) LRP per plant in four-day-old seedlings. (b) Kinetics of
emerged LR in seedlings grown during 2, 4 and 6 days. (c) Total LRP per plant. (d)
LRP density in four-day-old seedlings. Error bars represent SE from 15 GUS-stained
seedlings analyzed. Different letters indicate statistical differences at P < 0.05. The

experiment was repeated two times with similar results.

Fig. 5 6-PP modulates auxin-responsive gene expression in the lateral root formation
zone. DR5:GFP seeds were germinated and grown on agar-solidified 0.2x MS medium
or supplemented with 75 or 150 uM 6-PP. Five days after germination, the seedlings
were stained with propidium iodide and analyzed by confocal microscopy. Photographs
show representative individuals of at least 10 seedlings. (a-c) Primary root apical
meristems. (d-f) Stage II LRP. (g-i) Stage V LRP, (j-1) Emerged LR. Note that 6-PP
treatments increase DRS5:GFP reporter expression in the lateral root formation zone.

Bars = 100 pm.

Fig. 6 Expression of auxin efflux transporters in response to 6-PP in primary roots.
PINI::PINI1::GFP, PIN2::PIN2::GFP, PIN3::PIN3::GFP and PIN7::PIN7::GFP
seedlings were germinated and grown in media with the solvent only or supplied with
75 or 150 uM 6-PP. Four days after germination, the seedlings were stained with
propidium iodide and analyzed by confocal microscopy. (a-c), Primary root of
PINI::PINI1::GFP, (d-e) PIN2::PIN2::GFP, (g-i) PIN3::PIN3::GFP and (j-])
PIN7::PIN7::GFP. Representative photographs of primary roots are shown (n = 10).
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Note the increase of PIN3::PIN3::GFP expression is proportional to the increase of 6-
PP treatments. Bars = 100 um.

Fig. 7 6-PP requires components of auxin response and transport to modify Arabidopsis
root system architecture. Arabidopsis WT and tirl/afb2/afb3, arf7-1/arf19-1, axri-3,
aux1-7 and eirl, triple, double or single mutant seedlings, respectively, were germinated
and grown for 10 d in 0.2x MS medium supplemented with the solvent (control) or 150
uM 6-PP. (a) PR length. (b) LR number. (c) Representative photographs of Arabidopsis
seedlings grown in the indicated 6-PP treatment. Values shown represent the means of
15 seedlings = SD. Different letters indicate means statistically different (P < 0.05). The

experiment was repeated twice with similar results.

Fig. 8 EIN2 is necessary for 6-PP-modulated primary root growth. Arabidopsis WT and
etrl-1, ein2-1, and ein3-1 ethylene related mutant seedlings, were germinated and
grown for 10 d in 0.2x MS medium supplemented with the solvent (control) or 150 pM
6-PP. (a) PR length. (b) Primary root growth of ein2 mutants in response to increasing
concentrations of 6-PP (c). Representative photographs of seedlings grown (Col-0 and
ein2 grown side by side) in the indicated 6-PP treatment. Values shown represent the
means of 15 seedlings + SD. Different letters indicate means statistically different (P <

0.05). The experiment was repeated twice with similar results.
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565  Table 1. Volatile organic compounds produced by Trichoderma atroviride 5d of growth
566 in 0.2x MS medium and analyzed by SPME-GC-MS.

Normalized amount of volatile

Compounds compound (%)
1,3-Octadiene 1.24 £0.17
2-Heptanone 7.17+£0.83
3-Octanone 11.4+£1.17
2-Nonanone 1.11+0.08
3-Octanol 1.08 £0.05
1-Octen-3-o0l 6.82 +£2.15
a-Bergamotene 5.51£0.11
2-Undecanone 1.72 +£0.13
3-Methyl-1-octene 0.88 +0.04
B-Sesquiphellandrene 1.49 £ 0.15
Unknown (a 204 m.w. sesquiterpene) 0.86 = 0.08
Unknown (a 204 m.w. sesquiterpene) 1.71 £ 0.18
Unknown (a 204 m.w. sesquiterpene) 1.07 £ 0.09
6-Pentyl-2H-pyran-2-one (6-PP) 57.94+£2.70

567

568 Compounds were tentatively identified on the basis of NIST 11 MS Spectral library

569  searches. Mean values + standard errors of the sum of three independent

570  determinations.

571

572
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Fig. 1 Molecular characterization and production of 6-pentyl-2H-pyran-2-one (6-PP) by T. atroviride IMI
206040. (a) Chemical structure of 6-PP showing the major fragment ions (m/z) of electron ionization mass
spectra. (b) Total ion chromatogram and mass spectra from commercial standard (6-PP, Rt = 37.21
min). (c). Total ion chromatogram of VOCs from the fungus, indicating the presence of 6-PP at Rt of 37.21
min. 6-PP was identified by comparison of mass spectra according with the NIST 2011 library and from
commercial standard. (d) Estimation of 6-PP content in T. atroviride and A. thaliana - T. atroviride
interaction system. (e) Representative photographs of the fungal colonies 3 and 5 d of growth and during
the interaction with plants. Scale bar = 1 cm.
300x246mm (300 x 300 DPI)
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Fig. 2 Effect of 6-n-pentyl-6H-pyran-2-one (6PP) on plant biomass production. Arabidopsis (Col-0) seedings
were germinated and grown for 12 d under increasing 6-PP concentrations. (a) Shoot biomass. (b) Root
biomass. (c) Total biomass. (d) Representative photographs of seedlings grown in 0.2x MS medium or (e) in
0.2x MS medium supplemented with 75, (f) 125, and (g) 175 uM 6-PP. Photographs show representative
plates, each treatment included three plates. Data from a-c show means * SD from three groups of 30
seedlings that were recovered from the medium, excised at the root/shoot junction, and weighed using an
analytical scale. Different letters represent means statistically different at the 0.05 level. The experiment
was repeated three times with similar results. Scale bar = 1 cm.
210x360mm (300 x 300 DPI)
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Fig. 3 6-PP regulates Arabidopsis root system architecture. Arabidopsis (Col-0) seedlings were germinated
and grown for 10 d under increased 6-PP concentrations. (a) Primary root length. (b) Number of emerged
lateral roots. (c) Lateral root density (number of emerged lateral roots per cm). Values represent the means
of 30 seedlings = SD. Different letters represent means statistically different (P < 0.05). The experiment
was repeated three times with similar results. Scale bar = 1 cm.
116x352mm (300 x 300 DPI)
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Fig. 4 Effect of 6-PP on LR development in Arabidopsis. WT (Col-0) seedlings were germinated and grown for
2, 4 and 6d on 0.2x MS media supplemented with the solvent (control) or 150 pM 6-PP. (a) LRP per plant in
four-day-old seedlings. (b) Kinetics of emerged LR in seedlings grown during 2, 4 and 6 days. (c) Total LRP
per plant. (d) LRP density in four-day-old seedlings. Error bars represent SE from 15 GUS-stained seedlings
analyzed. Different letters indicate statistical differences at P < 0.05. The experiment was repeated two
times with similar results.
205x189mm (300 x 300 DPI)
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Fig. 5 6-PP modulates auxin-responsive gene expression in the lateral root formation zone. DR5:GFP seeds
were germinated and grown on agar-solidified 0.2x MS medium or supplemented with 75 or 150 uyM 6-PP.
Five days after germination, the seedlings were stained with propidium iodide and analyzed by confocal
microscopy. Photographs show representative individuals of at least 10 seedlings. (a-c) Primary root apical
meristems. (d-f) Stage II LRP. (g-i) Stage V LRP, (j-1) Emerged LR. Note that 6-PP treatments increase
DR5:GFP reporter expression in the lateral root formation zone. Bars = 100 um.
45x75mm (300 x 300 DPI)
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Fig. 6 Expression of auxin efflux transporters in response to 6-PP in primary roots. PIN1::PIN1::GFP,
PIN2::PIN2::GFP, PIN3::PIN3::GFP and PIN7::PIN7::GFP seedlings were germinated and grown in media
with the solvent only or supplied with 75 or 150 pM 6-PP. Four days after germination, the seedlings were

stained with propidium iodide and analyzed by confocal microscopy. (a-c), Primary root of PIN1::PIN1::GFP,
(d-e) PIN2::PIN2::GFP, (g-i) PIN3::PIN3::GFP and (j-1) PIN7::PIN7::GFP. Representative photographs of
primary roots are shown (n = 10). Note the increase of PIN3::PIN3::GFP expression is proportional to the
increase of 6-PP treatments. Bars = 100 um.
40x106mm (300 x 300 DPI)
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Fig. 7 6-PP requires components of auxin response and transport to modify Arabidopsis root system
architecture. Arabidopsis WT and tirl/afb2/afb3, arf7-1/arf19-1, axrl-3, aux1-7 and eirl, triple, double or
single mutant seedlings, respectively, were germinated and grown for 10 d in 0.2x MS medium
supplemented with the solvent (control) or 150 uM 6-PP. (a) PR length. (b) LR number. (c) Representative
photographs of Arabidopsis seedlings grown in the indicated 6-PP treatment. Values shown represent the
means of 15 seedlings £ SD. Different letters indicate means statistically different (P < 0.05). The
experiment was repeated twice with similar results.
232x351mm (300 x 300 DPI)
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Fig. 8 EIN2 is necessary for 6-PP-modulated primary root growth. Arabidopsis WT and etrl-1, ein2-1, and
ein3-1 ethylene related mutant seedlings, were germinated and grown for 10 d in 0.2x MS medium
supplemented with the solvent (control) or 150 uM 6-PP. (a) PR length. (b) Primary root growth of ein2
mutants in response to increasing concentrations of 6-PP (c). Representative photographs of seedlings
grown (Col-0 and ein2 grown side by side) in the indicated 6-PP treatment. Values shown represent the
means of 15 seedlings + SD. Different letters indicate means statistically different (P < 0.05). The
experiment was repeated twice with similar results.
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Abstract

During plant development, cells interpret positional information and translate it
into patterned cell differentiation. The epidermis differentiates into several types
of specialized cells, giving rise to the seed coat in the embryo, root hairs in roots
and trichomes in shoots. ALTERED MERISTEM PROGRAM 1 (AMP1) encodes
a glutamate carboxypeptidase involved in embryo development, plant growth
and phytohormone homeostasis. Here, we show that AMP1 plays a pleiotropic
role in epidermal tissue differentiation. AMP1 mutants defective in two
independent alleles (amp71-10 and amp1-20), show increased frequency of
embryo abortion, low seed production and retarded germination. They also
display four distinct and stable seed phenotypes defined as “regular”, “raisin”,
“‘irregular” and “burst” seeds, which are related to an altered seed coat
differentiation program. We further analyzed the trichome and root hair
phenotypes of wild-type and all four amp7-10 seed classes and found that
amp1 seedlings produce less trichomes per leaf, and short or bifurcated root
hairs in primary roots. Our data suggest that AMP1 is necessary for the normal

seed coat and embryo establishment during seed development and plays an

important role in epidermal cell differentiation in roots and leaves.
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Introduction

Plant form and function require specialization of cells through acquisition of
distinct morphological, biochemical and physiological properties. The epidermis
is the protective outer layer of clonally related cells covering all plant organs at
most developmental stages. It is composed of cells that differentiate in
adaptively significant frequencies and patterns (Glover 2000; Javelle et al.
2011). The embryo seed coat and seedling epidermis arise from the outer cell
layer during embryogenesis. The leaf and stem epidermis originate after
germination from the shoot apical meristem, while the root epidermis develops
from the root apical meristem. Epidermal differentiated cells include stomatal
guard cells, which allow gas exchange, trichomes that protect the aerial parts
from herbivores, and root hairs that increase the root surface area for water and
nutrient uptake (Ishida et al. 2008; Casson and Hetherington 2010; Bruex et al.

2012).

Seeds ensure the propagation of angiosperms via embryo protection and
geographical dispersion. Seed development initiates after a double fertilization
event that gives rise to the three major components of the seed, i) the embryo,
which comes from egg cell fertilization, ii) the endosperm, which comes from
central cell fertilization and provides supply of nutrients to the developing
embryo, and iii) the seed coat, which originates from maternal integuments and
act as a mechanical and protective barrier (Haughn and Chaudhury 2005;
Dekkers et al. 2013). After fertilization, cell division begins yielding an apical
and a larger basal cell, the apical cell continues dividing to finally produce the
hypocotyl, the shoot meristem and cotyledons. The basal cell divides

horizontally producing the suspensor, whose hypophyseal cell participates in
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the formation of the embryonic root meristem (Breuninger et al. 2008; Lau et al.
2012; Locascio et al. 2014). The final seed size, weight and form are
coordinately determined by endosperm development, growth of the embryo and
differentiation of the integuments (Berger et al. 2006; Zhou et al. 2009). The
proper embryo development depends on an adequate provision of sucrose and
nutrients by the endosperm and seed coat; if endosperm development fails or
transport of sucrose via the seed coat is affected, embryo development does
not proceed normally (Hehenberger et al. 2012; Lafon and Kéhler 2014; Chen
et al. 2015). Genetic analysis suggests that the endosperm produces a signal
that initiates the differentiation of the integuments to produce the seed coat
(Berger et al. 2006; Ingouff et al. 2006; Figueiredo and Kohler 2014). Few loci
have been implicated in the development of the seed coat in Arabidopsis,
including APETALA 2 (AP2) and TRANPARENT TESTA GLABRA 1 (TTG1)
which regulates elongation of seed coat cells, protoanthocyanidin (PA) and
mucilage biosynthesis (Debeaujon et al. 2000; Orozco-Arroyo et al. 2015).
Moreover, TTG1 and AP2 loss of function causes limited and prolonged cell
proliferation of endosperm, respectively, indicating an endosperm-seed coat
cross-talk during seed development (Koornneef 1981; Koornneef et al. 1982;

Jofuku et al. 1994; Figueiredo and Kohler 2014).

Following germination, the plant epidermis plays important structural and
adaptive roles. In primary and lateral roots, epidermal cells differentiate into two
cell types following a file-specific program, root-hair cells, also named
trichoblast or H (Hairy) cells, and non-hair cells, termed atrichoblasts or N (Non
hair) cells. Trichoblasts are commonly located between two cortical cells and

are thought to control root hair determination and differentiation via differential
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signal exchange (Rerie et al. 1994; Masucci et al. 1996; Ishida et al. 2008;
Libault et al. 2010). TTG1 and GLABRA 2 (GLZ2) transcription factors are
important regulators of root hair specification controlling the expression of
genes that modify the cell wall composition, such as CELLULOSE SYNTHASE
5 (CESA5) and XYLOGLUCAN ENDOTRANSGLUCOSYLASE 17 (XTH17)
(Tominaga-Wada et al. 2009; Libault et al. 2010). After root hair specification,
several processes including cytoskeleton dynamics, vesicle trafficking and ion
and metabolite exchange regulate the polarized growth of root hairs (Rerie et al.
1994; Masucci et al. 1996; Ishida et al. 2008; Libault et al. 2010). In leaves,
some epidermal cells differentiate as trichomes, which act in defense against
herbivores, in protection against UV light, and in production of protective
chemicals (Hulskamp et al. 1994; Pattanaik et al. 2014). In Arabidopsis,
trichome cells are three branched structures, whose specification depends on a
signaling network involving GLABRA 3 (GL3), GLABRA 1 (GL1) and TTG1

(Pattanaik et al. 2014).

Plant growth regulators control epidermal cell differentiation thoroughly. Auxin,
ethylene (ET), cytokinin (CK), abscisic acid (ABA) and gibberellin (GA) signaling
pathways play crucial roles in seed development, dormancy and germination.
Phytohormones regulate both root hair and trichome development via changes
in expression of genes encoding transcription factors, enzymes and structural
components, such as cellulases and expansins required to achieve the final
morphology and function of epidermal cells (Hulskamp et al. 1994; Ishida et al.
2008; Pattanaik et al. 2014). Although seed coat differentiation, root hair and
trichome development rely on the expression of a common set of genes, very

little is known about the specific role of each gene product in generic cell
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patterning specification. Mutations that affect the correct differentiation of
generic epidermal cells usually leads to lethality, while defects in specialized
epidermal cell types often interfere with plant growth and / or development
without causing lethality (Javelle et al. 2011). This may explain why little is
known about the molecular mechanisms sustaining the differentiation of generic
epidermal cells during embryogenesis, while an increasing body of information
of the control of trichome, stomata and root hair development is accumulating

(Ishida et al. 2008; Casson and Hetherington 2010; Bruex et al. 2012).

ALTERED MERISTEM PROGRAM 1 (AMP1) encodes an endoplasmic
reticulum membrane-localized glutamate carboxypeptidase involved in several
developmental processes in plants. Mutations in Arabidopsis AMP1 gene cause
large-scale alterations in phenotype including abnormal embryo development,
altered number of cotyledons, de-etiolation in dark grown seedlings, increased
leaf initiation, dwarfing, earlier flowering, semi-sterility and increased cell
proliferation (Chaudhury et al. 1993; Mordhorst et al. 1998; Nogué et al. 2000a,
b; Vidaurre et al. 2007; Kong et al. 2015). These alterations have been related
to increased levels of endogenous CKs, along with altered ABA and nitric oxide
signaling and cell cycle gene expression (Griffiths et al. 2011; Arc et al. 2013;
Shi et al. 2013 a,b). In this study, we provide evidence that AMP1 has a key
role in the development of three different epidermal cell types, namely the seed
coat, root hairs and trichomes, suggesting a primary role of this glutamate
carboxypeptidase not only in coordinating embryo development to the formation
of the seed coat, but also in post-embryonic epidermal cell differentiation

programs.
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Materials and methods

Plant material and growth conditions

Arabidopsis (Arabidopsis thaliana) ecotypes Columbia (Col-0), Landsberg
erecta (Ler) and Wassilewskija (Ws), and the single, double and triple mutant
lines amp1-10 (SALK _021406), amp1-20 (SALK 138749), cre1-12 (Inoue et al.
2001), ahk2-2 (Ueguchi et al. 2001), ahk3-3 (Ueguchi et al. 2001), det2-1
(Chory et al. 1991), rpn12 (Smalle et al. 2002), ein2 (Guzman and Ecker 1990),
ein3 (Chao et al. 1997), etr1 (Bleecker et al. 1988), eto3 (Woeste et al. 1999),
ctr1 (Kieber et al. 1993), Atnoat (Guo et al. 2003), niatnia2 (Wilkinson and
Crawford 1993), jar1 (Tiryaki and Staswick 2002), pft1-2 (Raya-Gonzalez et al.
2014), aux1-7 (Pickett et al. 1990), axr2-1 (Wilson et al. 1990), sir1 (Fukaki et
al. 2002), arf7arf19 (Okushima et al. 2007), tiriafb2afb3 (Parry et al. 2009), abi1
(Leung et al. 1997), abi2 (Leung et al. 1997), abi3 (Nambara et al. 1992), abi4
(Finkelstein et al. 1998), abi5 (Finkelstein 1994) and drr1 (Morquecho-Contreras
et al. 2010) were used for the experiments reported here.

Seeds were surface sterilized with ethanol 95%, sodium hypochlorite 20% for 5
and 7 minutes, respectively, and then washed five times with 1 ml sterile
distilled water and incubated for 7 days at 4 °C. The seeds were plated into
0.2X solidified MS medium containing MS basal salts (Murashige and Skoog
Basal Salts Mixture, Sigma-Aldrich, St Louis MO), 1% agar (Phytagar Gibco-
BRL) and 1% sucrose (Sigma-Aldrich, St Louis MO) and incubated in a plant
growth chamber (Percival AR-95L) at 22 °C with a photoperiod of 16h light/ 8h

darkness under light intensity of 105 pmol/m-?/s.
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Seed coat analysis

The seed phenotype analysis was performed using a stereoscopic microscope
MZ6 (Leica Microsystems). Seed phenotypes of amp1 mutant were classified
and photographed with a camera adapted to the microscope (Cyber-shot DSC-
S75; Sony Electronics), and the seed length and width were determined with
ImageJ program (Wayne Rasband National Institutes of Health, USA). For the
analysis of the seed coat, dry WT and amp7-10 seeds were covered with a
copper layer and analyzed and photographed using a Jeol JSM-7600F field
emission scanning electron microscope, equipped with a Bruker X-Flash6/30

camera.

Seed germination assays

For germination assays, mature seeds from WT and the four amp7-10 mutant
classes were sterilized and plated into 0.2X MS medium and/or the same
medium supplemented with 1 uM GA, and incubated in a plant growth chamber

to register germination at the time when radicle was completely emerged.

Trichome, root hair and silique analyses

Arabidopsis WT and amp7-10 mutant seeds were surface disinfected and

plated as described above and then grown into a plant growth chamber

(Percival AR-95L). Root hairs were analyzed from primary roots of 7 day-old

seedlings and trichomes were counted and photographed from 14 day-old
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leaves. For embryo development analysis, WT and amp7 mutant seedlings
were grown in Petri plates for 12 days and then transferred to soil until fruit
production. 10 siliqgues were dissected with a needle and the developing seeds
and embryos photographed with a stereoscopic microscope (MZ6, Leica
Microsystems), and with a DM5000B differential contrast microscope,

respectively.

Mucilage detection

Dry seeds of Arabidopsis WT and amp1 mutants were incubated in 1 ml 50 mM
EDTA at 1000 rpm during 2 h, and then incubated in agitation in 0.01% (w/v)
Ruthenium Red at 1000 rpm during 1 h. Stained seeds were mounted on glass
slides and analyzed and photographed with an optic microscope DM5000B

(Leica Microsystems) using Differential Interference Contrast (DIC) microscopy.

Embryo analysis

Arabidopsis WT and amp1 embryos were dissected from the silique using a
needle and then incubated for two days in Hoyer’s solution (prepared as
described in Seed Genes Project database; http://www.seedgenes.org). After
clearing, the seeds were analyzed and photographed by DIC microscopy in a

DM5000B optic microscope (Leica Microsystems).
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Results and discussion

AMP1 mutation affects fruit size and seed production driving Arabidopsis

plants to produce four phenotypically distinctive seed classes

Seed development is an important agricultural and adaptive trait. An analysis of
Arabidopsis WT (Col-0) and amp1-10 mutants grown in soil showed that amp1
siliques were 65% shorter than WT, which correlated with decreased seed
production and ovule fertilization (Supplementary Fig. S1). To analyze seed
viability, we obtained several seed pools from individual homozygous amp1-10
and amp1-20 mutants and compared with WT seeds. Surprisingly, both amp1
mutant alleles exhibited four segregating phenotypically distinctive seed classes
not previously described for these mutants (Fig. 1a-e and Supplementary Fig.

tE 11 L1

S2), including seeds that we defined as “regular”, “raisin”, “irregular” and “burst”.
In the first class (~80% amp17-10/regular seeds), the loss-of-function of AMP1
caused slight alterations in seed morphology (Fig. 1b and Supplementary Figs.
S2-S3). The second class (~8% amp7-10/raisin seeds) included seeds with
rough coats (Fig. 1¢ and Supplementary Figs. S2, S3). The third class (~10%
amp1-10/irregular seeds) had alterations in shape, seed coat structure and
pigmentation (Fig. 1d and Supplementary Figs. S2, S3), whereas the smaller
class (~2% amp1-10/burst seeds phenotype) included seeds with protruding
embryos (Fig. 1e and Supplementary Figs. S2, S3). An AMP1 overexpressing
line AMP1 OX2 showed normal seed phenotypes both in form and size

whereas amp7-10 mutants developed smaller and thinner seeds

(Supplementary Figs. S3, S4). These data show that although the loss of
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function in AMP1 affects seed form and size higher AMP1 levels did not disrupt
normal seed morphogenesis.

Since most phytohormones are known to participate in seed development, we
tested whether the seed phenotype of amp? mutants could be observed in
Arabidopsis mutants affected in auxin, ET, CK, ABA, nitric oxide (NO) and
jasmonic acid (JA) signaling pathways. Dry seed screening, considering form,
width and length, of cre1-12, ahk2-2, ahk3-3, det2-1, rpn12, ein2, ein3, etr1,
eto3, ctr1, Atnoa1, nialnia2, jar1, pft1-2, sag13, aux1-7, axr2-1, sir1, arf7arf19,
tirtafb2afb3, abil1, abi2, abi3, abi4, abi5 and drr1, homone-related mutants,
revealed that the abi5 and tirfafb2afb3 single and triple mutants, respectively,
were longer than WT seeds (Supplementary Fig. S5). However, none of the
above mentioned mutants showed the seed phenotypes already found in the

amp1 mutants.

AMP1 seeds show defects in seed coat structure and mucilage production

The outer cell layer of Arabidopsis seeds consists of polygonal structures that
form a donut-shaped pocket with a volcano-shaped central elevation known as
columella, which results from deposition of mucilage between the primary cell
wall and protoplasm (Windsor et al. 2000; Volodymyr and Borisjuk 2014). To
determine if AMP1 modulates seed morphology through modifications on seed
coat cells, we performed an ultra-structure scanning electron microscopy
analysis on mature WT and amp7-10 seeds. This analysis revealed the
characteristic polygonal cells with thickened radial cell walls and well-defined

columella in WT seeds (Fig. 2a, b, c). In contrast, the seed coat of the four
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different amp1-10 seed classes exhibited unusual epidermal cells (Fig. 2d-0).
Although no significant differences in size were evident, “regular” and “raisin”
seeds showed more robust columellas than the WT (Fig. 2f, i, p, q), whereas
“burst” seeds had an abnormal organization of seed coat cells, lacking well-
defined cell walls and columellas (Fig. 2m, n, o, p, Q).

Mucilage mainly consists of pectin, which contains large amounts of
galacturonic acid and rhamnose, and low amounts of monosaccharides such as
arabinose, galactose, glucose, xylose and mannose forming complex
polysaccharides (Voiniciuc et al. 2015). Seed mucilage content can be
estimated via ruthenium red staining, which reveals the acidic biopolymers
found in the seed coat (Hanke and Northcote 1975). A ruthenium red staining
assays on WT seeds revealed inner and outer domains, the inner domain was
defined by a characteristic magenta color, which radiates out from the mucilage
pocket, whereas the outer mucilage domain is defined by an unstained halo
surrounding the inner layer (Fig. 3a, b ,c). The staining assay in amp1-10
‘regular’ and “raisin” seeds showed similar staining patterns as in WT seeds
(Fig. 3d-i), but in the “irregular” and “burst’ seeds, regions without mucilage
staining could be observed (Fig. 3j-0), indicating a direct link between amp1
seed phenotypes and the proper formation of the mucilage capsule during seed

development.

Relationship between seed coat and embryo development in Arabidopsis

ampl mutants

Some amp1 embryos are affected during globular stage, producing new organs
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with cotyledon identity via ectopic cell divisions (Vidaurre et al. 2007). This was
further confirmed through an analysis of embryo development in which amp1-10
mutants with “regular” seed coats commonly developed embryos with three
cotyledons (Fig. 4a-s). These abnormal embryos were able to fill the seed and
the development of the seed proceeded normally, giving rise to testas with
phenotype similar to the WT (Fig. 4b-j, I-t). A more detailed microscopic analysis
of mature amp7-10 seeds, revealed that “irregular’ seeds contained embryos
arrested at early stages during their development (Fig. 5e-h). Other “irregular”
seeds apparently lacked embryos (Fig. 5c, d), while “burst” seeds often included
cell masses protruding from the seed coat (Supplementary Fig. S6). In most
cases, an altered embryo development in amp7-10 mutants correlated with

defective seed testas (Fig. 5¢-j).

Altered seed shape in ampl mutants correlates with viability

AMP1 has been involved in seed dormancy, germination and ABA responses
(Griffits et al. 2011; Shi et al. 2013b). To determine if the seed coat alterations
of amp?1 mutants could be related to viability, we compared germination
frequencies between WT and amp1 seeds. WT seeds started germination 24 h
after sown and reached 100% around 32 h. On the other hand, amp1 seeds
with “regular” phenotype germinated earlier than the WT, but showed
decreased viability as about 25% of the seeds did not germinate (Fig. 6).
“Raisin”, “irregular” and “burst” amp1 seeds also germinated earlier than WT,

but only around 40%, 15% and 8% of seeds, respectively were able to

germinate. Since gibberellic acid (GA) induced germination (Ullah et al. 2002;
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Holdsworth et al. 2008), we tested if GA addition could normalize germination in
amp1 seeds. Indeed, GA promoted germination of both WT and amp1 “regular’
seeds but failed to restore germination in “raisin”, “irregular” and “burst” amp1

seeds (Fig. 6). These results indicate that amp1 seeds have decreased viability,

which is apparently related to altered seed coat and embryo development.

AMP1 is involved in post-embryonic shoot and root epidermal cell

differentiation

The plant epidermis plays important roles during post-embryonic development.
Trichomes are specialized epidermal cells formed on leaf and stems that protect
the aerial parts from herbivores. Root hairs also are specialized epidermal cells
developed in primary and lateral roots that play a critical role in water and
nutrient acquisition (Javelle et al. 2011).To determine if AMP1 could have a
function in differentiation of root and shoot epidermal cells, we compared root
hair and trichome formation in 7 and 14 day-old WT and amp? seedlings,
respectively. Compared with WT (Col-0), amp1 seedlings germinated from
regular” and “raisin” seeds produced 50% less trichomes per leaf (Fig. 7a-k).
Trichome production was even lower (75%) in seedlings from “irregular’ and
“burst” seeds (Fig. 7k). Additionally, amp1 produced abnormal trichomes, which
fail to branch (Fig. 71). When comparing root hair development in WT and amp1
seedlings, no alterations in root hair density were evident, but interestingly, the
root hair length decreased in amp1 seedlings (Fig. 8a-0) and some of these root

hairs were abnormally bifurcated (Fig. 8k-m, p). These results suggest that
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AMP1 plays an important role in epidermal cell differentiation, not only during

seed coat development, but also in trichome and root hair differentiation.

Discussion

Genes controlling cell differentiation are important for coordinating the activities
of specialized tissues and organs, mutations in these genes can cause large-
scale changes in the structure of an organism. Mutation of AMP1 leads to
several defects in embryo development, germination, photomorphogenesis,
shoot apical meristem, flowering and hormonal responses (Chaudhury et al.
1993; Helliwell et al. 2001; Saibo et al. 2007; Vidaurre et al. 2007; Griffiths et al.
2011; Shi et al. 2013b). In this work, we performed a detailed analysis of seed
morphology in two amp?7 mutant alleles (amp7-10 and amp1-20) and
established a correlation between defective embryo development, seed coat
structure and viability. Four phenotypic seed classes were identified in the
progeny of homozygous amp1 seedlings, including seeds with “regular” (WT)
appearance along with seeds showing rough or very irregular coats and with
protruding embryos. The alterations in seed structure and embryo development
were reproducible in at least four generations of homozygous AMP1 plants and
could be traced back to early seed development in siliques from amp1 plants
showing the reported phenotypes of altered shoot development and early
flowering (Chaudhury et al. 1993; Vidaurre et al. 2007; Griffiths et al. 2011; Shi
et al. 2013b). Thus, we conclude that amp1 seed phenotypes are genetically
stable and apparently they are related to the previously reported embryo

defects in this mutant.
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Arabidopsis seed development is controlled by several genes, including FUSCA
3 (FUS3), ABSCISIC ACID INSENSITIVE 3 (ABI3), LEAFY COTYLEDON 1 and
2 (LEC1, 2), AP2, TTG1 and GL2. All four abi3, lec1, lec2, and fus3 mutants are
severely affected in seed maturation (Baumlein et al. 1994; Parcy et al. 1997;
Nambara et al. 1995; Braybrook et al. 2006; Chiu et al. 2012; Koornneef 1981,
Koornneef et al. 1982; Jofuku et al. 1994). To the best of our knowledge, none
of these mutants display the amp? seed coat phenotypes described here.
Scanning electron microscopy analysis of epidermis of amp1 seeds revealed
that “raisin”, “irregular” and “burst” classes of amp7 seeds had a deformed
surface, which is phenotypically similar to the wrinkled 1 (wri1) mutant defective
in an APETALA 2/ETHYLENE RESPONSIVE ELEMENT BINDING (AP2/EREB)
transcription factor involved in seed storage metabolism (Focks and Benning
1998; Cernac and Benning 2004). Any possible relationship between WRI1 and
AMP1 cannot be excluded based on the similarity of seed phenotypes. Another
interesting connection between defective embryo development, seed coat
specification and sugar transport was recently revealed from characterization of
Arabidopsis mutants defective on sucrose transporters SWEET11, 12, and 15.
The corresponding mutants exhibited specific tissue and temporal expression
patterns in developing seeds, and a sweet11;12;,15 triple mutant showed
severe seed defects, including retarded embryo development, reduced seed
weight, and reduced starch and lipid content that result in a “wrinkled” seed
phenotype similar to that of amp1 “raisin” or “irregular” seeds. In sweet11;12;15
triple mutant, starch accumulates in the seed coat but not in the embryo,
implicating SWEET mediated sucrose efflux in the transfer of sugars from seed

coat to embryo. An open possibility waiting to be demonstrated is that AMP1
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could regulate SWEET family sucrose transporters for sugar portioning to
embryos and in this way affect the seed developmental program.

Previous research documented that mutation in the MITOGEN ACTIVATED
PROTEIN KINASE 6(MPK6) affects seed morphology and embryo development
leading to formation of three distinct seed phenotypes including rough seed
coats and seeds with protruding embryos, which correlate with defects in
seedling root development (Lopez-Bucio et al. 2014). Here, taking into account
previous findings by Chaudhury et al. 1993, and our analysis of embryo
development in WT and amp7-10 mutants, we propose that the absence of
embryos in some “irregular” seeds of amp1 is likely explained because of a
failure in the fertilization process of egg and/or central cell. Abortion events
were observed in amp1 siliques, particularly from “irregular’ seeds, as these
contained embryos with retarded growth or lacked an embryo. In contrast, the
analysis of less affected “regular” amp1 seeds confirmed that this mutation
causes an exaggerated activity of the shoot apical meristem, yielding embryos
with three cotyledons likely due to CK overproduction (Chaudhury et al. 1993;
Nogué et al. 2000a).

The closest AMP1 homologous protein is a human glutamate carboxypeptidase
I (GCPII), which is up-regulated in many tumors but its role in cancer
development or the cell cycle is currently unknown (Hlouchova et al. 2012). It is
possible that the abnormal divisions during embryo development in amp1
embryos arose through changes in the proteins controlling the plant cell cycle,
but this hypothesis needs to be verified experimentally. The Arabidopsis mature
seed coat consists of epidermal cells that produce mucilage and its proper

development is important to seed dispersion, water retention and embryo
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protection (Arsovski et al. 2010; Haughn and Western 2012). During
germination, the mucilage is hydrated to form a gelatinous capsule composed
by two layers: an inner one strongly adhered to the coat and another water-
soluble. Using electronic scanning microscopy and ruthenium red staining, we
determined that amp7 seed coats are defective not only in epidermal cell
structure, but also in formation of mucilage pocket. amp1 “irregular” and “burst”
phenotypical classes have areas of mucilage pocket thinner than the WT, and
in some seed areas the mucilage layers are missing. Interestingly, the outer
layer increased its size in “regular” amp1 seeds suggesting that AMP1 is
important for correct differentiation of the seed coat. Mutations on MUM genes
cause defects in both mucilage production and chemical seed composition
(Western et al. 2001). In particular, the MUM4 gene is necessary for columella
formation. MUM4 encodes an enzyme implicated in rhamnose biosynthesis and
is thought to be regulated by GL2 and TTG (Western et al. 2004). One
interesting possibility arising from our previous and current data is that AMP1
could regulate the expression and/or activity of master transcription factors
regulating seed coat development or genes acting downstream such as MUM4.
The similar seed phenotypes caused by mutations in MUM4, AMP1 and MPK6
raises the significant question about the identity of the growth regulator
mediating both seed coat and embryo development defects. To address this
question, we compared the seed phenotypes of WT, amp?1 and 27 hormone-
related mutants. None of these mutants showed the amp? seed phenotypes
described here, suggesting that AMPT1 controls seed development
independently of the classical hormonal pathways, which evidently regulate

other aspects of seed development, dormancy or germination. Our observations
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further suggest a possible genetic link with MAPK signaling. Mutations in the
MPKKK4 (YDA) protein kinase gene cause defects in embryo development
resulting in protruding embryos similar to those observed in mpk6é and amp1
mutants (Lukowitz et al. 2004). Besides, MPKKK4 and MPK6 are components
of a common MAPK cascade involved in regulation of the embryo (Bush and
Krysan 2007), stomata (Wang et al. 2007) and root hair development (Lopez-
Bucio et al. 2014), indicating their important role in more generic epidermal
developmental programs.

Germination begins with water uptake by the seed and proceeds to radicle
emergence through the epidermis. The embryo, seed coat and endosperm
coordinately regulate seed dormancy and germination, independently or
synergistically depending of the plant species (Bewley 1997). In a previous
report, treatments with GA improved by 60% amp? germination (Griffits et al.
2011). The data from “regular” amp1 seeds are in agreement with this previous
report. However, GA failed to normalize seed germination of most amp1 seeds
with “raisin”, “irregular” and “burst” phenotypes, suggesting that the seed coat
defects in these mutants likely occur independently of GA signaling and that
seed germination did not proceed because the embryos failed to develop.

In Arabidopsis, some common genes are involved in the production of seed
mucilage, root hair and trichome development, including TTG71 and GL2
(Walker et al. 1999; Rerie et al. 1994). ttg7 and g/2 mutants lack the mucilage
pocket in the seed coat, moreover, the trichomes and root hairs are defective in
these mutants. This prompted us to investigate whether amp? mutants could
have any developmental alteration during trichome and root hair development.

The amp1 mutants had reduced numbers of trichomes on leaves, which were
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shorter and less branched than the WT. In contrast, when compared to WT
seedlings, amp1 mutants developed short, abnormally branched root hairs.
Together, these observations support a pleiotropic function of AMP1 on generic
epidermal cell differentiation programs. The opposite phenotypes of trichomes
and root hairs observed in amp1 mutants can be explained because epidermal
differentiation processes in leaves and roots are controlled by the same sets of
genes but in opposite way. One gene cassette regulates trichome cell fate;
another cassette regulates root hair organization. In the leaf epidermis TTG,
GL2 and an upstream myb family factor (GL7 or CAPRICE, CPC) induce
trichome differentiation. In roots, TTG, GL2 and CPC are used to block root hair
differentiation (Benfey 1999; Schiefelbein 2003). Lin and Schiefelbein (2001)
found that the GL2 expression starts in the protoderm stage during embryo
development and concluded that the cell pattern of trichomes and root hairs are
established early during embryogenesis. Indeed, GL2 and TTG1 are required
for both mucilage synthesis and columella formation. From these evidences, it
Is tempting to speculate that AMP1 could regulate GL2 and/or TTG expression
impacting the generic epidermal processes during the embryogenesis and post-
embryonic development.

In summary, our results suggest that AMP1 serve in the differentiation of
epidermal cells from the embryo, root and leaf. Future studies to examine AMP1
gene expression and function in Arabidopsis mutants with seed coat and
epidermal phenotypes such as yoda and mpk6 could shed much light on MAPK

signaling involved in generic epidermal patterning.
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Figure legends

Fig. 1. AMP1 mutation causes four different seed phenotypes. Seeds from wild-
type plants (Col-0) are shown in (a). (b-e) amp7-10 mutant seeds that were
collected from individual homozygous plants and separated according to the
seed phenotype using a dissection microscope: (b) Seeds with phenotype
similar to WT (“regular”). (c) Seeds resembling raisins (“raisin”). (d) Seeds with
clearly collapsed coats (“irregular”). (e) Seeds with embryos protruding from the

seed coat (“burst”). Scale bar= 500 um.

Fig. 2. AMP1 mutation affects seed coat structure. Dry seeds were covered with
a copper layer and observed with a scanning electron microscopy. (a-c) Seed
phenotype of Arabidopsis WT (Col-0). Note hexagonal epidermal cells with
thickened radial cell walls and volcano-shaped columella at the center of each
cell. (c) Close-up of WT seed coat. amp?1 mutant seed photographs with
‘regular” (d-f), “raisin” (g-i), “irregular” (j-I) and “burst” (m-0) phenotypes.
Raisin, irregular and burst amp 1 phenotypes show altered seed coat shape and
columella structure. (p) Diameter of mucilage pocket. (q) Columella area
(measured from electronic micrographs using the image J program). Error bars
represent SD from 30 seeds analyzed. Different letters indicate statistical
differences at P<0.05. This analysis was performed from three individual amp1

seed harvests with similar results.
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Fig. 3. The mucilage capsule of seeds is altered in amp1 mutant. Arabidopsis
WT and amp7-10 mutant seeds were staining with ruthenium red and observed
in a Leica DM5000B microscope. The mucilage capsule from WT (Col-0) seeds
shows the characteristic outer and inner domains, the inner region stained in
magenta color radiates out from the mucilage pocket and the outer, unstained
mucilage domain covers the inner layer. The coat of “irregular” and “burst’
amp1 seeds show decreased mucilage capsule width in some areas of the
seed coat. Scale bars indicated in (a-c), are the same for all photographs in a

column.

Fig. 4. amp1 embryos are affected in development. Arabidopsis WT (Col-0)
embryos at different developmental stages are shown: globular (a); pre-heart
(c); heart (e), cotyledon (g) and blend (i) stages. amp7-10 mutant embryos are
shown in (k), (m), (0), (q) and (s) panels. WT and amp7-10 embryos in the
same file were taken from siliques at a similar stage of development. To the
right of each embryo picture a close up of the corresponding seed coat is
shown. All the pictures were taken using Nomarsky optics. Scale bars indicated

in (a), (b), (k) and (I) are for all pictures within the same column.

Fig. 5. Halted embryo development and defective seed testa in amp71 mutants
appear to be related. Arabidopsis WT (Col-0) and amp1 seeds were taken from
the same silique and clarified with chloral hydrate. WT embryos and their
corresponding seed coats are shown (Col-0; a, b), amp7-10 mutant (c-i

embryos; d-j seed coats). Note that defective embryo development in amp7-10
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“‘irregular” seeds seems to be related to an altered seed testa. Scale bar

indicated in (a) is the same in all the pictures.

Fig. 6. Seed germination in WT amp1 mutants. Arabidopsis WT (Col-0) and
amp1 seeds were collected from individual plants. amp7 seeds were grouped
according to the different seed phenotypes: Seeds were sown on 0.2X MS
medium or the same medium supplemented with 1 uM gibberelic acid (GA).
Beginning at 16 hours, the percentage of germination (radicle protrusion) was
evaluated every 4 h during 16 h. Note the germination percentages of all seed
classes of amp1 mutant are lower and that GA fails to rescue the germination of

“irregular” and “burst” seeds.

Fig. 7. Trichome development is affected in amp? mutant. Trichomes of
Arabidopsis WT (Col-0) and amp1 seedlings germinated and grown on 0.2X MS
medium were analyzed using a stereomicroscope. Seedling (a, c, e, g, i) and
leaf close up (b, d, f, h, j) phenotypes of WT (a,.b) and amp? mutant (c-j), are
shown. Scale bars shown in (a, b) are the same for the corresponding column.
Arrows in (d, h) are used to show abnormal trichomes. Note that besides the
evident reduction in the number of trichome per leaf (k), an abnormal trichome
branching (without branches or less branched than WT) is observed in all amp1
seedling classes (l). Error bars represent SD from 10 leaves analyzed. Different
letters indicate statistical differences at P<0.05. The experiment was repeated

three times with similar results.
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Fig. 8. Root hair development is affected in amp? mutant. Root hairs of
Arabidopsis WT (Col-0) and amp1 mutant seedlings were scored 7 days after
germination from a primary root using a stereomicroscope (a-j) or mounted on
slides and visualized with the Nomarsky optics (k-m), then measured with
image J program (http://imagej.nih.gov/ij/). Root hairs from WT (a, b), amp1
“regular’ seeds (c, d), “raisin” seeds (e, f), “irregular’ seeds (g, h), or “burst’
seeds (i, j), are shown. Arrows in (d, f, j) are used to show small (f) and
branched root hairs (d, j). Representative photographs of WT (k) and small (1),
and branched root hairs (m) from amp1 mutant seedlings using Nomarsky
optics, are shown. Root hair density (number of root hairs/mm of root), length
and percentage of normal, small and branched root hairs from each amp1 seed
classes are plotted in (n, 0, p) panels, respectively. Error bars represent SD
from 10 plants analyzed. Different letters indicate statistical differences at

P<0.05. The experiment was repeated three times with similar results.
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epidermal cell differentiation programs. A detailed characterization of ampl mutants defective in
two independent alleles (amp1-10 and amp1-20), show increased frequency of embryo abortion,
low seed production and retarded germination. They also display four distinct seed phenotypes
related to an altered seed coat differentiation program. We further analyzed the trichome and
root hair phenotypes of wild-type and all four amp1-10 seed classes and found that amp1
seedlings produce less trichomes per leaf, and short or bifurcated root hairs in primary roots. Our
data suggest that AMP1 is necessary for the normal seed coat and embryo establishment during
seed development and plays an important role in epidermal cell differentiation in roots and
leaves.
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Abstract

During plant development, cells interpret positional information and translate it into
patterned cell differentiation. The epidermis differentiates into several types of
specialized cells, giving rise to the seed coat in the embryo, root hairs in roots and
trichomes in shoots. ALTERED MERISTEM PROGRAM 1 (AMP1) encodes a
glutamate carboxypeptidase involved in embryo development, plant growth and
phytohormone homeostasis. Here, we show that AMP1 plays a pleiotropic role in
epidermal tissue differentiation. AMP1 mutants defective in two independent alleles
(amp1-10 and amp1-20), show increased frequency of embryo abortion, low seed
production and retarded germination. They also display four distinct and stable
seed phenotypes defined as “regular”, “raisin”, “irregular” and “burst” seeds, which
are related to an altered seed coat differentiation program. We further analyzed the
trichome and root hair phenotypes of wild-type and all four amp7-10 seed classes
and found that amp1 seedlings produce less trichomes per leaf, and short or
bifurcated root hairs in primary roots. Our data suggest that AMP1 is necessary for

the normal seed coat and embryo establishment during seed development and

plays an important role in epidermal cell differentiation in roots and leaves.
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Summary

The Root System Architecture (RSA) of a plant is regulated by extrinsic and
intrinsic signals, plays an essential role in plant adaptation to biotic and abiotic
factors. Glutamate (L-Glu) affects root gravitropism, primary root growth and
lateral root formation, which are important RSA determinants. However, the
underlying genetic mechanisms involved in this modulation are poorly
understood. Mitogen-activated protein kinases (MAPKs) are key signaling modules
that respond to various extracellular stimuli that regulate developmental
programs. Even so, it is the protein-reversible phosphorylation, catalyzed by
kinases and phosphatases that ultimately provide the regulatory framework
underlying most biological processes. Here, we employ a combination of genetic
and biochemical strategies to show that Mitogen Activated Protein Kinase 6
(MPK6) and MAP Kinase Phosphatase 1 (MKP1) are involved in the control of RSA
alterations triggered by L-Glu. We used gel-based phosphorylation assays to reveal
a rapid and dose-dependent effect of L-Glu on MPK3 and MPK6 activities in wild-
type Arabidopsis seedlings. Moreover, we found that the loss-of-function of MPK6
results in a decreased primary root growth inhibition and gravitropic response to
L-Glu. These defects are related to an altered root cap structure and statocyte
accumulation in the columella cells. In contrast, the loss-of-function of MKP1
results in the opposite phenotypes. Our data highlight the role of MKP1 and MPK6
as components of a MAPK signaling pathway, controlling root and gravitropic

responses to glutamate.

Key words: Arabidopsis, glutamate, MPK6, MKP1, root development, gravitropism.
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45  Significance statement

46 e The function and components of glutamate signaling pathways in plants have just

47 begun to be elucidated. Here, we use a combination of genetic and biochemical
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INTRODUCTION

Root System Architecture (RSA), which plays an essential role in plants’ capture of
mineral nutrients and water, is highly regulated by extrinsic and intrinsic factors
such as hormones, nutrients and environmental signals (Kerk et al. 2002; Lépez-
Bucio et al. 2003; Malamy 2005; Fukaki and Tasaka 2009). Although nitrate is the
principal source of nitrogen for plants and its concentration limits root growth and
development, other organic forms of N, represented mainly by amino acids, also
contribute to plant nutrition and impact the RSA (Forde and Clarkson 1999; Zhang
and Forde 2000; Forde and Lea 2007; Zhang et al. 2007). Recent evidence has
demonstrated that Glutamate (L-Glu), which is best known for its role as a
neurotransmitter in the mammalian nervous system, is an emerging signaling
molecule in plants (Walch-Liu et al. 2006b; Dawe et al. 2014; Forde 2014a). The
supply of L-Glu to Arabidopsis thaliana seedlings alters the RSA by inhibiting
primary root (PR) growth and promoting lateral root (LR) formation, which results
in a shorter and more branched root system (Walch-Liu et al. 2006a; Forde
2014b). PR growth inhibition has been related to an agravitropic response,
decreased root cell proliferation and differentiation of cells at the root tip (Forde et
al. 2013 ). The search for molecular signaling components involved in glutamate-
mediated responses in plants has resulted in the identification of a family of
glutamate-related receptors (GLR) that are apparently involved in transducing the
glutamate signal for root developmental responses (Kim et al. 2001; Lacombe et al.
2001; Kang and Turano 2003; Kang et al. 2004; Kang et al. 2006; Forde and
Roberts 2014). In rice, the single Osglr3.1 knockout mutant displays a short root
phenotype caused by an arrest in cell division and the death of root meristem cells

(Li et al. 2006). In contrast, Arabidopsis mutations of the AtGLR3.2 and AtGLR3.4
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genes resulted in an increased number of LR primordia, supporting the idea that
these factors negatively regulate LR initiation (Vincill et al. 2013). A limited root
agravitropic response was recently reported for the atglr3.3 single mutant,
indicating a possible role of the AtGLR3.3 in mediating root gravity perception
(Miller et al. 2010). These data show that some members of the GLR family play
important non-redundant roles in the control of root development.

In mammals, signal transduction downstream of the GLR receptors involves
protein phosphorylation cascades (Wang et al. 2007b). A recent report showed
that an evolutionarily conserved MAP3K in Arabidopsis (MEKK1) plays a key role
in glutamate signaling, eliciting changes in the RSA (Forde et al. 2013 ). Thus, these
data provide compelling evidence for the existence of a glutamate signaling
pathway analogous to that of animals’ systems (Tapken et al. 2013). However,
additional elements participating in the plant glutamate sensing and signaling
pathway still remain to be uncovered.

Mitogen Activated Protein Kinases (MAPKs) are key signaling modules that
mediate responses to various extracellular stimuli and regulate diverse plant
developmental programs (Asai et al. 2002; Bush and Krysan 2007; Colcombet and
Hirt 2008; Fiil et al. 2009). MPKs are the terminal components of the MAPK
modules, comprising three kinases (MP3K/MP2K/MPK) that follow a sequential
activation by phosphorylation. MPK6 is one of the twenty encoded MPKs in the
Arabidopsis genome (MAPK Group 2002; Suarez-Rodriguez et al. 2010). MAP
kinases have overlapping substrates and upstream activators, resulting in
functional redundancy at different levels (Andreasson and Ellis 2009). In
particular, MPK3 and MPK6 act redundantly in processes such as ethylene

biosynthesis, pathogen signaling and stomata development (Asai et al. 2002; Liu
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and Zhang 2004; Djamei et al. 2007; Kanaoka et al. 2008; Lampard et al. 2008).
However, in some cases the activity of MPK6 cannot be compensated by any other
MPKs, as suggested by profound alterations in embryo and root development
displayed by the Arabidopsis mpk6 mutant (Bush and Krysan 2007; Lopez-Bucio et
al. 2014). Mutations in the MPK6 gene cause three different seed phenotypes that
correlate with alterations in RSA (Lépez-Bucio et al. 2014). A small proportion
(~7%) of mpk6 mutant seedlings failed to develop the PR, possibly as a result of an
earlier defect in the division of the hypophysis during embryo development.
Another small (though larger) group (~23%) had a short primary root, while the
most prevalent group (~70%) had a longer primary root and an increased LR
formation when compared to wild-type (WT) seedlings (Lépez-Bucio et al. 2014).
Although MAP kinases regulate numerous developmental processes, it is the
protein reversible phosphorylation, catalyzed by these kinases and their
phosphatase partners, which finally provides the regulatory framework
responsible for most biological processes (Bartels et al. 2010). Several
phosphatases are able to inactivate various components of MAPK cascades (Keyse
2008; Bartels et al. 2009). Biochemical and genetic studies have revealed that the
MKP1, a dual specificity serine-threonine and tyrosine phosphatase, physically and
genetically interacts with MPK6 and MPK3 to regulate their activity in vivo (Ulm et
al. 2001; Ulm et al. 2002), thus representing a good candidate mediating RSA via
MPK6 dephosphorylation.

In this report, by comparing the gravitropic response and RSA of the mpké6 and
mkpl mutants with those of WT in response to glutamate, we provide
physiological and molecular evidence that the activities of these kinase and

phosphatase are involved in the control of root architecture alterations triggered
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by glutamate. Our data suggest that MKP1 and MPK6 are components of a

glutamate signaling pathway controlling both root gravitropism and RSA.

RESULTS

L-Glu inhibits primary root growth and affects root gravitropism of
Arabidopsis WT seedlings

To confirm previous reports of the role of glutamate in modulating root
developmental responses (Walch-Liu et al. 2006a; Forde and Walch-Liu 2009), and
to establish an experimental system for further analysis of glutamate responses,
Arabidopsis WT seedlings (Col-0) were grown on an agar-solidified MS media
supplemented with different L-Glu concentrations. A dose-dependent effect on PR
growth was observed seven days after germination (DAG) in seedlings in
treatments of 100 to 600 uM L-Glu. The L-Glu caused between 15 and 60%
inhibition on PR growth (Figure 1a). Additionally, the supply of 400 uM of L-Glu
results in a clear increase of PR curvature (skewing), probably as a result of defects

in the PR gravity response (Figures 1b & c).

L-Glu induces MPK6 and MPK3 activities

To determine the possible role of MAPKs in modulating root developmental
responses to glutamate, an in-gel phosphorylation assay was used to determine
changes in the myelin basic protein phosphorylation activity in WT seedlings
grown in media supplemented with increasing L-Glu concentrations. Interestingly,
a dose-response effect of L-Glu was evidenced, with a maximum activity of both
MPK3 and MPK6 at 400 uM Glu, which decreased afterwards (Fig. 2a). To evaluate

the temporality of the L-Glu effect on the activity of MPKs activities, 10 DAG WT
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seedlings were grown on basal media and then transferred to liquid basal media
either without or supplemented with 200 or 400 uM L-Glu for 30 min. As shown in
Figure 2b, exposure of seedlings to L-Glu for a short time period was sufficient to
induce MPK6 and MPK3 activities. As MKP1 has been demonstrated to be a
regulator of MPK6 activity (Ulm et al. 2002), we next explored if L-Glu inductive
effect is affected by the loss-of-function of this phosphatase. Short time induction
experiments (30 min) showed that MPK6 and MPK3 activities were induced by L-
Glu in mkp1 mutant seedlings (Fig. 2c). Taken together, these results show that the
activity of MPK6 and MPK3 are induced by L-Glu, therefore they might be involved

in the signaling pathway that controls plant responses to this amino acid.

Root developmental responses to L-Glu in mpk3, mpk6 and mkp1 mutants
The prevalent mpk6 mutants have been shown to have a longer PR than WT
seedlings (Lopez-Bucio et al. 2014) and previous work has shown redundant
functionality between MPK6 and MPK3 in different plant developmental and stress
responses (Hord et al. 2008; Wang et al. 2008; Beckers et al. 2009; Liu et al. 2010;
Gonzalez Besteiro et al. 2011; Meng et al. 2013). In addition, we observed that the
mkp1 mutant in Col-0 background (mkp1/Col-0) (Bartels et al. 2009) shows clear
root phenotypes (Figure 2a/Control (C) condition; Supplemental Figures S1a and
Supporting Figures S4a and S4b/Control (C) conditions).

Thus, considering the well-supported MPK3/MPK6 functional redundancy, and the
contrasting mpk6 and mkpl root phenotypes, we analyzed in more detail the
effects of glutamate over root development in those cognate mutants. In a first set
of experiments, WT, mpk6 and mkp1 seedlings were germinated and grown in

basal MS media for four days, then five seedlings from each genotype were
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transferred either to the same basal MS media or to MS media supplied with
increasing L-Glu concentrations (100, 200 and 400 pM). The PR growth and the
percentage of PR growth inhibition of each condition was evaluated seven Days
After Transfer (DAT). Our data shows that L-Glu has a clear dose-dependent
inhibitory effect on the PR growth in both mkp1 and WT seedlings resulting in a PR
growth inhibition of 80% and 45%, in the presence of 400 pM of L-Glu,
respectively (Fig 3a and 3b). In contrast, when compared to mkpl and WT
seedlings, the mpk6 mutant displays a clear insensitivity to L-Glu.

A representative picture of plants grown on basal media shows that the mpké6 PR is
longer than the wild-type PR, whereas the roots of mkp1 seedlings, even if curved
to the left side of the plate, were shorter than the WT (Figure 3a and Supporting
Figures S1a & S1c). In these pictures, it is evident that the differential sensitivity of
mkp1 and mpk6 mutants to 400 pM of L-Glu (Supporting Figures S1b & S1d). The
results of these experiments support the idea that MPK6 and MKP1 are
components of the glutamate signaling pathway involved in PR growth and root
gravitropism.

As the mpk6 mutant is in Columbia (Col-0) background, an additional experiment
was performed using an mkpl mutant allele introgressed into Col-0 ecotype
(Bartels et al. 2009). Since different Arabidopsis ecotypes display natural variation
in their L-Glu sensitivity (Walch-Liu et al. 2006b), and some mpk1 phenotypes are
exclusively apparent in the Col-0 accession, but not in the mkpl original
Wassilewskija (Ws) ecotype (Bartels et al. 2009), we also tested the L-Glu
sensitivity of the mkpl in the Ws genetic background (mkp1/Ws). In the
Supporting Figure S2, it can be appreciated that in comparison with its WT

background the mkp1/Ws mutant PR displays a skewing phenotype similarly to
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the one observed in the same allele in the Col-0 background (Fig. 3a) as well as a
hypersensitivity to L-Glu for PR growth inhibition and root apical meristem (RAM)
damage. From these observations, we concluded that the effects of L-Glu on the
mkp1 mutant are genetically stable.

We next performed experiments to compare the root responses of WT and mpk3
mutant seedlings to glutamate. Although MPK3 activity is induced in the presence
of L-Glu (Fig. 3), mpk3 mutant seedlings are slightly more sensitive to the L-Glu-
induced PR growth inhibition and showed similar gravitropic response than WT
seedlings (Supporting Figure S3). Therefore, we conclude that MPK6 most likely

functions independently of MPK3 activity to modulate the PR responses to Glu.

Glutamate affects root gravity responses in mpk6 and mkp1 mutants

Gravity has major effects on both the form and overall length of the root system,
resulting in a differential growth. It has been reported that glutamate is perceived
specifically at the primary root tip inhibiting mitotic activity in the RAM, where
gravity is sensed and where MPK6 has recently been demonstrated to play
important functions (Morita, 2010; Lopez-Bucio et al. 2014). To investigate the
possible roles of MPK6 and MKP1 on root gravity responses to glutamate, WT,
mpk1 and mpké6 seedlings were germinated and grown for seven days in basal MS
media on vertically oriented Petri dishes. Then, four seedlings of each plate were
transferred to the same basal MS media or MS media supplemented with 400 uM
L-Glu, and grown during two additional days after 90° rotation of the plate. The
curvature response followed by the root growth in each condition was registered
(Figure 4a). In these gravity response assays, we found that the root curvature of

the mpk1 and mpk6 mutants in the presence of L-Glu are clearly contrasting. In the
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WT seedling the presence of 400 puM L-Glu changed the curvature from 89°+2 to
111°+3, confirming that L-Glu affects the root gravitropic response. In contrast, in
the same conditions mpk6 mutants did not significantly change the growth angle,
from 82°+1 in the absence to 88°+1 in presence of L-Glu. On the other hand, mpk1
mutant seedlings exposed to L-Glu resulted in changes of the curvature from 99°+2
to 127°+1, indicating an L-Glu hypersensitivity (Figure 4b). Hypersensitivity of
mkp1 to L-Glu is also supported by the pronounced curvature of its PR in the
presence of L-Glu, even in the absence of rotation (Supporting Figure S$4).
Together, these observations indicate that the increase in root curvature response
caused by L-Glu depend, at least partially, on protein
phosphorylation/dephosphorylation events mediated by MPK6 and MKP1
proteins.

Sedimentation of the amyloplast is an early key step in root gravitropic response
(Wolverton et al. 2011). Given the contrasting performance of mkp1 and mpké6 root
mutants in the presence of L-Glu, we decided to analyze their root cap and
statocyte structures in response to 200 and 400 pM L-Glu. Figure 5 shows that
whereas 400 uM Glu treatment only has a slight effect on root cap structure and
statocyte accumulation in mpké root tips, it clearly damages root cap structure and
decreases statocyte accumulation in mkp1 seedlings. Notably, the effects of L-Glu
on statocyte accumulation in WT seedlings, is lighter than those on mkp1, but
stronger than those on mpké6. Interestingly, root exposure to low L-Glu
concentrations (100 puM), which inhibits only around 10% of the PR growth
(Figure 1a), clearly affected the curvature response in the mkp1 seedlings, whose
roots exhibit an affected gravitropic growth with only a slight effect over statocyte

integrity (Figures 6a and 6b). This L-Glu concentration has only mild effects on WT
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and mpké6 seedlings. These observations support the notion that statocyte
functionality and root cap structure are key components of the L-Glu effects on
gravitropism and growth of PR, and that these effects involve MPK6 and MKP1

functions.

DISCUSSION

The results presented in this report establish a role of the MPK6 and MKP1
proteins in regulating PR growth and root gravitropic responses to glutamate. It
was shown that the presence of this amino acid causes a rapid dose-dependent
induction of the activity of MPK3 and MPK6, suggesting that both kinases
participate in the glutamate signaling pathway. Even though MPK3 and MPK6
activities were induced by L-Glu, we observed that the primary roots of mpk3
mutants are slightly oversensitive to L-Glu treatment when compared to WT
plants, whereas the primary roots of mpk6 mutants are clearly insensitive to
glutamate effects. These data favor the idea that MPK6 activity plays a positive role
for the primary root responses to glutamate, while MPK3 activity may be a
negative factor in mediating this response. As recent data demonstrated that the
kinase activity of MEKK1 is dispensable for glutamate root architectural responses
(Forde et al. 2013 ) a future path of this research field should be to focus on
identifying the MPKKs and MPKKKs working upstream of MPK6.

MPKG6 is a target of the MKP1 phosphatase, thus it was possible that the mutation
in this latter gene should result in an over-activation of MPK6. Interestingly, the
mkpl mutant had the opposite root phenotype of the mpk6 mutant; that is, a
shorter primary root and the production of lesser lateral roots and hairy roots

than WT plants. Also, mkp1 is more sensitive to L-Glu treatments, all phenotypes
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being consistent with an increased MPK6 activity. However, our in-gel kinase
assays demonstrated that this is not exactly the case. The mkp1 mutants preserve a
basal MPK6 activity, which increases with L-Glu supply. Therefore, the high
sensitivity of the mkpl mutants to L-Glu cannot be directly associated with an
increased MPK6 activity. Since MAPK cascades are part of complex signaling
networks, the participation of other phosphatases still to be identified involved in
the control of plant response to glutamate via MAPK signaling cannot be dismissed
(Xu and Zhang 2015). Interestingly, using an inactive version of MEKK1, it was
demonstrated that the kinase activity of this enzyme is not required for glutamate
signaling (Forde et al. 2013). Since MEKK1 activity is necessary for the response to
pathogens (Rasmussen et al. 2012), it was then speculated that both pathogen and
glutamate responses could be acting through the same signaling pathway (Forde et
al. 2013). In the case of pathogen responses, it was demonstrated that a flagellin
elicitor peptide (flg22) treatment results in a MPK3, MPK4 and MPK®6 induction,
while MPK4 induction is dependent of MPKK1 activity, the induction of MPK3 and
MPKG6 is independent of this MAP3K activity, as registered in a mekkl mutant
background (Rasmussen et al. 2012). The activity of an iGluR (ionotropic
glutamate receptor)-like channel controlling MAMP (microbe-associated
molecular patterns)-triggered by Ca2* influx, was associated with a low-level
glutamate-mediated induction of MPK3, MPK4 and MPK®6 kinases (Kwaaitaal et al.
2011). Altogether these observations support the involvement of a MAPK cascade
(including MPK®6) in the plant glutamate signaling pathway.

The accumulated evidence supports the proposal that glutamate-mediated root
response may include glutamate receptors, MEKK1, and MPK6 and MKP1, but the

way they interact, as well as the role of other yet unknown factors remains to be

13
SUBMITTEI%%/IE«NUSCRIPT



©CoO~NOUITA,WNPE

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

The Plant Journal

investigated in the future. A possible factor involved in this signaling pathway is
the Protein Tyrosine Phosphatasel (PTP1), which has been reported to physically
interact with MPK6 and works in coordination with MKP1 to repress plant defense
responses (Gupta and Luan 2003; Bartels et al. 2009;). Another candidate is the
Toll Interleukin 1 Receptor/Nucleotide Binding/Leucine Rich Repeat (TIR-NB-
LRR) receptor-like resistance gene homolog Suppressor of NPR1-1, Constitutivel
(SNC1), which has been identified as a natural modifier of MPK1 (Li et al. 2007;
Bartels et al. 2009;)

The importance of gravity on plant growth has been recognized for centuries, as
already described by Charles Darwin, who even recognized the root cap as an
essential element for root gravitropism (Chen et al. 1999). Currently, the
biochemical signaling pathway and the molecular mechanism behind root gravity
responses remain to be defined. It is tempting to speculate that the inhibitory
effect that L-Glu has on primary root growth could be related to altered gravitropic
responses. Thus, taking advantage of the contrasting phenotypes between mkp1
(hypogravitropic) and mpké6 (hypergravitropic) mutants, we investigated this
hypothesis. Genetic and molecular evidences support two hypotheses about the
sensing mechanism of gravitropism: the starch-statolith hypothesis, which
propose that amyloplasts in the gravity-sensing cells (statocytes) function as
statoliths determining the gravity vector and triggering the intracellular signaling
cascade controlling gravitropic responses. In contrast, the Cholodney-Went
hypothesis postulates that gravity induces a lateral auxin transport resulting in an
asymmetrical auxin distribution that controls organ bending (Driss-Ecole et al.
2003; Morita and Tasaka 2004; Hashiguchi et al. 2013; Rigas et al. 2013). As

statocytes are key players in gravity sensing, we focused our analysis on the
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statocyte content of root columella cells and performed analysis of root gravity
responses to L-Glu, clearly affecting the gravitropic response (Fig. 4), and this was
related to statocyte/statolit integrity (Figs. 5 & S2). L-Glu effects in gravitropism
were less and more pronounced on the mpk6 and mkp1 mutants, respectively. The
mpk6 mutant was hypergravitropic and insensitive to L-Glu inhibition of PR
growth whereas mkp1 mutants, which are hypogravitropic under standard growth
conditions, showed an exacerbated agravitropism in response to L-Glu, including
disruption of statocyte/statolit structure (Fig. 5). Our observations suggest that
MPKG6 is a positive modulator of the L-Glu gravitropic effect. In contrast, MKP1
enzymatic activity could be acting as a negative modulator of the gravitropic
response directed by L-Glu. Besides, our results also support the existence of an
alternative mechanism of gravity sensing, independent of starch and probably
located outside the root cap (Morita 2010; Baldwin et al. 2013), as a concentration
of L-Glu having very little effect on statocyte/statolit integrity is still capable of
altering gravitropism, which is especially noticeable in the mkp1 mutants (Fig. 6).
Several factors, including the cytoskeleton and the auxin and Ca** intracellular
levels, have been related to gravitropism (Morita 2010; Hashiguchi et al. 2013;
Toyota and Gilroy 2013), but to the best of our knowledge this is the first time that
glutamate sensing via MKP1 and MPK6 activities have been associated with this
process. The precise function of each of these factors, as well as the possible
crosstalk between them, remains to be determined in the future. It is interesting
that MAP kinase modules and their related phosphatases have been reported to
participate in the signaling pathway of several factors controlling gravitropism
(Bartels et al. 2010), but no interaction has been established between these

different signaling pathways to control such processes.

15
SUBMITTEI%%/@NUSCRIPT



©CoO~NOUITA,WNPE

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

The Plant Journal

Another interesting observation from our analysis is the fact that the statocytes in
the mpk6 mutant are bigger in size than the WT plants. As it has been reported that
conditions that result in larger amyloplasts are associated with greater
gravisensitivity (Vitha et al. 2007), it is very suggestive that this statocyte structure
may be responsible for the hypergravitropic behavior of the mpk6 mutant.

The changes in root architecture induced by glutamate might be explained by a
possible interaction between glutamate and auxin signaling. The auxin transporter
mutant aux1-7 is slightly insensitive to L-Glu (Maher and Martindale 1980; Walch-
Liu et al. 2006b), but conversely two mutants on the AXR1 locus resulted in L-Glu
hypersensitive (Lincoln et al. 1990; Walch-Liu et al. 2006b), while other auxin
responsive mutants tested did not show alterations in L-Glu responses Walch-Liu
et al. 2006b). As clearly auxin relocalization mediated by auxin efflux carriers
(Brunoud et al. 2012) is involved in differential cell elongation required to
gravibending (Kleine-Vehn et al. 2010; Baldwin et al. 2013), a process in which,
according to the results presented here, the glutamate, the kinase MPK6 and the
phosphatase MKP1 also participate, the possible relationship between these
elements deserves further analysis

The signaling pathway behind the plant responses to glutamate is just beginning to
be elucidated, therefore, the identification of the genes and proteins mediating L-
Glu sensing, such as MPK6 and MKP1, represent an important advance in

understanding small molecule and amino acid signaling in plants.

EXPERIMENTAL PROCEDURES
Plant material and growth conditions

Arabidopsis thaliana Heyhn Columbia-0 (Col-0) and Wassilewskija (Ws) wild-type
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ecotypes were used as controls. The mpk6-2 line (SALK 073907) in Col-0
background (Liu and Zhang 2004) was obtained from the Salk T-DNA collection
(Alonso et al. 2003). mpk3 mutant T-DNA insertion line (SALK_151594) in Col-0
background (Wang et al. 2007a), was kindly donated by Dr. Shuqun Zhang from
Missouri University. The mkpl mutant in the Ws ecotype (Ulm et al. 2001) was
kindly donated by Dr. Scott C. Peck from Missouri University. The mkp1 mutant
introgressed into the Col-0 ecotype (Bartels et al. 2009) was kindly donated by Dr.
Marina A. Gonzalez Basteiro from the Dr. Roman Ulm Laboratory (University of
Geneva, Switzerland). All seed were surface sterilized and incubated at 4°C for
three days to break dormancy, then grown on agar (0.8% w/v Bacto™ Agar BD
DIFCO, Sparks, MD) solidified 0.2X MS medium (Caisson, Laboratories, Inc., North
Logan, UT) with 1% (w/v) sucrose. L-Glutamic Acid was purchased from Sigma
(Sigma-Aldrich Corporation St. Louis, MO) and added to the medium at the
indicated concentration. Seedlings were grown on vertically oriented Petri dishes
maintained in growth chambers at 21°C under a 16:8 h light:darkness photoperiod
with 105 pmol m-2 s-1light intensity.

For gravitropism experiments, seedlings were germinated and grown for seven
days on vertically oriented Petri dishes as previously described, then the front root
growth was marked and the Petri dishes were rotated 902 and maintained under
the same growing conditions. The angle of root growth was registered two days

later with a protractor.

In-Gel Kinase Assay
Seedlings were ground in liquid nitrogen and homogenized in extraction buffer

(250 mM sorbitol, 50 mM HEPES-BTP pH 7.8, 10 mM NaF, 5 mM DTT, 1 mM EDTA,
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1 mM KCl, 1 mM Na3V04, 1 mM PMSF and 40 pg/ml of protease inhibitor cocktail
[Roche Applied Science, Indianapolis, IN]), then centrifuged at 12,000 x g 20 min at
4°C. Protein concentration in the extracts was estimated with Bradford protein
assay kit (Bio-Rad, Hercules, CA) using BSA as a standard. The in-gel kinase assay
was performed as previously described (Zhang and Klessig 1997). Briefly, 50 pg of
protein extracted from plant tissue were fractionated onto a 10% SDS-PAGE gel
containing 0.25 mg/ml myelin basic protein (MBP, Sigma), as substrate for the
kinases. After electrophoresis, the gel was washed three times with 25 mM Tris pH
7.5; 0.5 mM DTT; 0.1 mM Na3zVOs4; 5 mM NaF; 0.5 mg/ml BSA; 0.1% (v/v) Triton X-
100 for 30 min each at room temperature. Proteins in the gel were renatured by
incubating the gel in 25 mM Tris pH 7.5; 1 mM DTT; 0.1 mM Na3VOsand 5 mM NaF
at 4°C overnight. The kinase reactions were carried out by incubating the gel in 30
ml of kinase buffer (25 mM Tris pH 7.5; 2 mM EGTA; 12 mM MgCl2; 1 mM DTT; 0.1
mM NazVO4 200 nM ATP, and 50 pCi of [y-32P]ATP [>4,000 Ci_mmol; 1 Ci = 37
GBq]), for 60 min at room temperature. To remove free 32P, the gel was washed at
room temperature with several changes of 5% (w/v) trichloroacetic acid and 1%
(w/v) NaPPi until the 32P-radioactivity in the wash solution was barely detectable.
The gel was dried and used to expose a Kodak XAR-5 film. Pre-stained size markers
(Bio-Rad, Hercules CA) were used to calculate the molecular weight of the kinases.
As a loading control, 20pg of proteins from the same extracts used for kinase
assays were fractionated in a 10% SDS-PAGE and stained with Coomassie Brilliant

Blue dye.

Statocyte staining

To analyze the statocyte structure the roots were fixed overnight with 4% (v/v)
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paraformaldehyde (Sigma-Aldrich) in 0.025 M phosphate buffer pH 7.2, then
treated with Lugol’s solution (1:2 w/w, iodine:potassium iodide, pH 4.0-4.5) by 10
seconds and quickly rinsed with water. Finally, the roots were mounted in water
on microscope slides and immediately analyzed using a transmission microscope
(Nikon EclipseE600) equipped with a digital camera (Nikon SIGHT DS-Filc, Nikon

Corporation, Tokyo, Japan).
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FIGURES
Figure Legends

Figure 1. Glutamate affects Arabidopsis primary root development. a)
Primary root length inhibition caused by L-Glu. Data were obtained from 7-DAG
seedlings growing in MS media supplemented with the indicated L-Glu
concentrations. The percentages of root growth inhibition were calculated taken
PR length of seedlings growing in basal medium as 0% of inhibition. Values are
the mean # Standard Error (n = 15) of three biological independent experiments.
Different letters represent Tukey’s post-hoc test significant differences (P<0.05).
In b and c, representative 7-DAG seedlings growing in basal MS media (Control)
or MS basal media supplemented with 400 uM L-Glu, are shown. Notice that

besides root growth inhibition, L-Glu treatment drives waiving and skewing.

Figure 2. Glutamate induces MPK3 and MPK®6 activites. In-gel kinase assays
were conducted with 30 pg of total protein extracts from seedlings under the
following conditions: (a) 7-day-old wild-type (Col-0), germinated and grown on
MS basal media supplemented with the indicated L-Glu concentration. c) wild-

type (Col-0) 7-days old seedling grown on MS basal media, and transferred to the
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indicated L-Glu concentration for 30 minutes. In a and b, mpk3 and mpké6 are
total protein extracts from 7-day-old seedlings germinated and grown on MS
basal media. (d) 7 day-old mkpl seedlings grown on MS basal media and
transferred to the indicated L-Glu concentration for 30 minutes. Coomassie
Brilliant Blue stained gels (BB) are shown as loading controls for each assay. The
gels are representative of three biologically independent experiments with

similar results.

Figure 3. Primary root responses to glutamate are altered in mkp1 and
mpk6 mutants. Seeds from wild-type (Col-0), mpk6 and mkpl mutants were
germinated and grown for 5 days on MS basal media, and then transferred to
same media supplemented with the indicated L-Glu concentrations. Primary root
length (a) and root growth inhibition (b) were measured and calculated 5 days
after transfer. Values are the mean # Standard Error (n = 30) of three
independent replicates. The percentages of root growth inhibition were
calculated taken PR length of seedlings growing in basal medium as 0% of
inhibition (Control in b). Different letters represent Tukey’s post-hoc test

significant differences (P<0.05).

Figure 4. Glutamate affects gravitropic response. Wild-type (Col-0), mpk6 and
mkpl mutants seedlings subjected to gravitropism stimuli, as described in
Materials and Methods, on MS basal media (Control) and MS basal media
supplemented with 400 uM L-Glu. a) Representative pictures of wild-type and
mutants seedlings behavior in each condition at the end of the experiment.
Arrows indicate the representative angle formed in each plant line after

gravistimulation. b) The schemes shown at the bottom of each picture represent
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the angle of root growth in relation to the gravity vector of the indicated plant
line for each experimental condition. The angle marked in each case is the
average * Standard Error of 16 roots for each seedling type from tree

independent experiments.

Figure 5. Glutamate affects statocyte structure. Wild-type (Col-0), mpk6 and
mkp1 mutants seedlings were germinated and grown side by side during 7-days
on MS basal media (C) or MS basal media supplemented with 200 or 400 uM L-
Glu. After treatment seedlings were collected and their roots were stained with
Lugol’s solution to analyze the statocyte structure. Representative photographs
of root tips of different plant lines in each experimental condition are showed.
The experiment was repeated three times with similar results (n=15). Scale bars

=100 pm.

Figure 6. mkp1 mutant is hypersensitive to glutamate. Wild-type (Col-0),
mpk6 and mkpl mutants seedlings were germinated and grown side by side
during 7-days on MS basal media supplemented with 100 pM L-Glu. Following
the treatment the seedlings were collected and their roots stained with Lugol
solution to analyze the statocyte structure. Representative photographs at 10X
(left) and 40X (right) magnifications of root tips from indicated seedling in each
condition are showed (a). The experiment was repeated three times with similar
results (n=15). In (b), a picture of a representative Petri dish of the described

experiment is shown. Scale bar =100 pm.
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Figure 1. Glutamate affects Arabidopsis primary root development. a) Primary root length inhibition caused
by L-Glu. Data were obtained from 7-DAG seedlings growing in MS media supplemented with the indicated
L-Glu concentrations. The percentages of root growth inhibition were calculated taken PR length of seedlings
growing in basal medium as 0% of inhibition. Values are the mean £ Standard Error (n = 15) of three
biological independent experiments. Different letters represent Tukey’s post-hoc test significant differences
(P<0.05). In b and c, representative 7-DAG seedlings growing in basal MS media (Control) or MS basal
media supplemented with 400 pM L-Glu, are shown. Notice that besides root growth inhibition, L-Glu
treatment drives waiving and skewing.
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Figure 2. Glutamate induces MPK3 and MPK6 activites. In-gel kinase assays were conducted with 30 ug of
total protein extracts from seedlings under the following conditions: (a) 7-day-old wild-type (Col-0),
germinated and grown on MS basal media supplemented with the indicated L-Glu concentration. c) wild-type
(Col-0) 7-days old seedling grown on MS basal media, and transferred to the indicated L-Glu concentration
for 30 minutes. In a and b, mpk3 and mpk6 are total protein extracts from 7-day-old seedlings germinated
and grown on MS basal media. (d) 7 day-old mkp1 seedlings grown on MS basal media and transferred to
the indicated L-Glu concentration for 30 minutes. Coomassie Brilliant Blue stained gels (BB) are shown as
loading controls for each assay. The gels are representative of three biologically independent experiments
with similar results.
79x155mm (72 x 72 DPI)
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Figure 3. Primary root responses to glutamate are altered in mkpl and mpk6 mutants. Seeds from wild-type
(Col-0), mpk6 and mkpl mutants were germinated and grown for 5 days on MS basal media, and then
transferred to same media supplemented with the indicated L-Glu concentrations. Primary root length (a)
and root growth inhibition (b) were measured and calculated 5 days after transfer. Values are the mean +
Standard Error (n = 30) of three independent replicates. The percentages of root growth inhibition were
calculated taken PR length of seedlings growing in basal medium as 0% of inhibition (Control in b). Different
letters represent Tukey’s post-hoc test significant differences (P<0.05).
80x168mm (72 x 72 DPI)
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Figure 4. Glutamate affects gravitropic response. Wild-type (Col-0), mpk6 and mkpl mutants seedlings
39 subjected to gravitropism stimuli, as described in Materials and Methods, on MS basal media (Control) and
40 MS basal media supplemented with 400 pM L-Glu. a) Representative pictures of wild-type and mutants
41 seedlings behavior in each condition at the end of the experiment. Arrows indicate the representative angle
42 formed in each plant line after gravistimulation. b) The schemes shown at the bottom of each picture
43 represent the angle of root growth in relation to the gravity vector of the indicated plant line for each
44 experimental condition. The angle marked in each case is the average * Standard Error of 16 roots for each
45 seedling type from tree independent experiments.

151x166mm (72 x 72 DPI)

SUBMITTE[}J}I@NUSCRIPT



©CoO~NOUITA,WNPE

The Plant Journal

':-t‘-"'-’l‘" ”

T

-
¥ v 3

Figure 5. Glutamate affects statocyte structure. Wild-type (Col-0), mpk6 and mkpl mutants seedlings were
germinated and grown side by side during 7-days on MS basal media (C) or MS basal media supplemented
with 200 or 400 uM L-Glu. After treatment seedlings were collected and their roots were stained with Lugol’s
solution to analyze the statocyte structure. Representative photographs of root tips of different plant lines in
each experimental condition are showed. The experiment was repeated three times with similar results
(n=15). Scale bars = 100 ym.
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37 Figure 6. mkpl mutant is hypersensitive to glutamate. Wild-type (Col-0), mpk6 and mkpl mutants
38 seedlings were germinated and grown side by side during 7-days on MS basal media supplemented with 100
39 MM L-Glu. Following the treatment the seedlings were collected and their roots stained with Lugol solution to
40 analyze the statocyte structure. Representative photographs at 10X (left) and 40X (right) magnifications of
41 root tips from indicated seedling in each condition are showed (a). The experiment was repeated three times
42 with similar results (n=15). In (b), a picture of a representative Petri dish of the described experiment is
shown. Scale bar =100 pm.
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Mitogen Activated Protein Kinase 6 and MAP Kinase Phosphatase 1 are
involved in the Arabidopsis root responses to glutamate.

Loépez-Bucio, J. S., Lopez-Bucio, J., Raya-Gonzalez, J., Ramos-Vega, M., Leon, P. and
Guevara-Garcia, A. Al

Supporting Information

Supporting Figure S1. Glutamate primary root growth inhibition and skewing on
mkpl and mpk6 mutants. Pictures correspond to representative Petri dishes with
10-DAG seedlings growing in basal MS media (Control) (a and c)) and MS basal
media supplemented whit 400 pM L-Glu (b and d). The experiment was repeated
three times with similar results. Notice that besides root growth inhibition L-Glu
treatment drives waiving and skewing of wild-type (Col-0) and mkp1 mutant, but
mpké6 is less sensitive to these L-Glu effects. Moreover, in control conditions it is
clear that the roots of mpk6 and mkp1 mutants are longer and shorter that wild
type (Col-0), respectively.

1 Corresponding author: aguevara@ibt.unam.mx
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Supporting Figure S2. Effects of Glutamate on mkp1/Ws mutant. In a, b and c
representative Petri dishes with 10-DAG mkpl1/Ws (Wassilewskija genetic
Backgroud) mutant and wild-type (Ws) seedlings growing side by side in basal MS
media and MS basal media supplemented whit 200 and 400 uM L-Glu, respectively,
are showed, Scale bars= 1lcm. In d and e representative stereo microscopy
photographs of root tips of wild-type (Ws) and mkp1/Ws 7-DAG seedlings,
respectively, grown in MS basal media supplemented whit 200 uM L-Glu and
stained with Lugol’s solution are showed. Scale bars= 1um. Notice the dramatic
effect that L-Glu have over the mkp1/Ws root apical meristem in general and over
statocyte structure in particular. In f, a comparison between root growth
inhibitions caused by 200 and 400 pM L-Glu on wild-type (Ws) and mkp1/Ws
mutant is showed. Data were recorded from 7-DAG seedlings growing in media
supplemented with the indicated L-Glu concentration. The percentages of root
growth inhibition were calculated taken PR length of seedlings growing in basal
medium as 0% of inhibition. Values are mean # Standard Error (n = 15). Star
marks indicate Student's t-test significant differences at P<0.001.
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Supporting Figure S3. Effects of glutamate on mpk3 mutant. a) Comparison
between root growth inhibitions caused by 400 puM L-Glu on wild-type (Col-0) and
mpk3 homozygous line. Data were recorded from 10-DAG seedlings growing in
media supplemented with 400 puM L-Glu. The percentages of root growth inhibition
were calculated taken PR length of seedlings growing in basal medium as 0% of
inhibition. Values are mean # Standard Error (n = 15). Star marks Student's t-test
significant differences at P=<0.001. In (b) and (c) representative Petri dishes with
7-DAG wild-type (Col-0) and mpk3 mutant seedlings growing side by side in basal
MS media and MS basal media supplemented whit 400 uM L-Glu, respectively, are
showed.
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Supporting Figure S4. Glutamate drives skewing. mpk6 and mkpl mutants
and wild-type (Col-0) seedlings were germinated and grown side by side during 7-
days on MS basal media (C) and MS basal media supplemented with 400 uM L-
Glu in Petri dishes maintained in vertical position. Representative
stereomicroscopy photographs of primary root of the indicated plant lines at 0.63
X (a) and 2.5 X (b) magnifications in each condition are showed. The gravity vector
(arrow) is showed as reference. Scale bars are indicated.
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Resumen

Los jasmonatos son compuestos lipidicos de las plantas que median respuestas de
defensa y también participan en el desarrollo, la reproduccion y el metabolismo. Re-
cientemente, se ha involucrado al acido jasmonico (AJ) en la modulacion de la arqui-
tectura de la raiz. Sin embargo, su mecanismo de accién aun se desconoce. En las
hojas en respuesta a una herida se induce la acumulacién de 6xido nitrico (ON), lo
que sugiere que la produccion de dicha molécula podria estar conectada con la sefa-
lizacion del AJ. EI ON se encuentra presente en las plantas participando como men-
sajero en diferentes procesos fisioldgicos y del desarrollo que incluye la muerte
celular programada, lainduccion de genes de defensay la regulacion de la arquitectu-
raradicular. Nuestras investigaciones han demostrado que el ON participa en la regu-
lacién del sistema radicular en Arabidopsis thaliana. En esta revision se discute el uso
de A. thaliana como modelo y el potencial que presenta para el aislamiento y caracte-
rizacion de mutantes involucradas en la sefalizacion por AJ y ON para entender los
mecanismos de accion de estas moléculas y la interaccién entre ellas en las plantas.

Palabras clave: acido jasmonico (AJ), 6xido nitrico (ON), Arabidopsis thaliana.
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Abstract

Jasmonic acid and nitric oxide signaling during development of Arabidopsis
thaliana

Jasmonates are lipid compounds of plants that mediate defense responses, develop-
ment, reproduction, and metabolism. Recently, jasmonic acid (JA) has been involved
to actin the modulation of root architecture. However, its mechanism of action remains
unknown. In leaves, leaf damage by herbivory or injury causes accumulation of nitric
oxide (NO), indicating that NO may participate in defense responses associated with
JA. ONis presentin plants acting as a second messenger in various physiological and
developmental processes including programmed cell death, induction of defense ge-
nes and root growth. Our research has shown that NO participates in the regulation of
root system architecture in Arabidopsis thaliana. In this review, we discuss the impor-
tance of using A. thaliana as a model research and the identification of mutants defec-
tive in the processes regulated by JA and NO towards a better understanding of the
mechanisms of action of these molecules and their interaction in plants.

Key words: Jasmonic acid (JA), nitric oxide (NO), Arabidopsis thaliana.

Introduccion

Las plantas son organismos sésiles que se adaptan y responden a los cambios am-
bientales mediante la produccién de un gran nimero de compuestos quimicos tanto difusi-
bles como volatiles. Entre dichos metabolitos, las hormonas vegetales juegan un papel
importante en la fisiologia de la planta (Avanci et al., 2010). Los jasmonatos son fitorregula-
dores que modulan respuestas de estrés y del desarrollo (Li et al., 2004; Bucha-
nan-Wollaston et al., 2005; Glazebrook 2005; Howe y Jander, 2008; Browse 2009) Esto
ocurre mediante una reprogramacion de la expresion génica a gran escala (Mandaokar et
al., 2006). Sin embargo, no se han determinado los mecanismos fisioldgicos y celulares por
los cuales los jasmonatos controlan dichos procesos. Recientemente, se determiné la parti-
cipacion del 6xido nitrico (ON) en la respuesta del AJ al estrés por heridas (Wuinsche et al.,
2011). EI ON es un segundo mensajero involucrado en diferentes procesos celulares y fisio-
I6gicos en las plantas, incluyendo el cierre de estomas (Neill et al., 2002), la floracion (He et
al., 2004) y la germinacion (Beligni y Lamattina, 2000). Ademas, el ON modula la expresion
de genes involucrados en las vias de sefializacion de otras hormonas. En A. thaliana se ha
observado que el ON regula la expresion de genes que participan en la sintesis y respuesta
a jasmonatos (Orozco-Cardenas y Ryan, 2002). Sin embargo se desconocen las posibles
interacciones entre los jasmonatos y el ON en otros programas de desarrollo, por ejemplo,
durante el desarrollo de la raiz.
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Jasmonatos

El 4cido jasmonico y sus metabolitos se conocen colectivamente como jasmonatos.
Estas son moléculas importantes en la sefializacion por efecto del estrés bidtico y abidtico.
Los jasmonatos pertenecen a una familia de oxilipinas, acidos grasos con uno o mas atomos
de oxigeno derivados de la oxigenacion enzimatica de 4cidos grasos tri-insaturados de 16 y
18 carbonos. El jasmonato mejor caracterizado es el acido jasmonico (AJ) el cual puede ser
modificado por conjugacion y metilacién y se ha reportado que juega un papel crucial en la
reproduccion (Avanci et al., 2010). El metil jasmonato (MeJA) es un compuesto volatil que
media la comunicacion intracelular y entre diferentes plantas, modulando respuestas de de-
fensa. Por otra parte, el jasmonoil-isoleucina (JA-lle) es la forma activa de la molécula impli-
cada en la sefalizacién de los jasmonatos en hojas y posiblemente en las flores de
Arabidopsis (Acosta y Farmer, 2010) (Fig. 1).
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Figura 1.- Estructura de los jasmonatos y su funcion en las plantas. El metil jasmonato es un compuesto volatil que partici-
pa en sefales entre plantas en respuesta a herbivoria, mientras que el jasmonoil-Isoleucina y el acido jasmonico son los
compuestos que activan la inmunidad vegetal contra insectos y regulan el desarrollo.

Biosintesis de los jasmonatos

La sintesis de jasmonatos ocurre principalmente en las hojas, donde los acidos gra-
sos son liberados de la membrana plasmatica de los plastidos por accion de enzimas fosfoli-
pasas y desaturasas. El acido graso sufre reacciones de oxigenacion, oxidacion y ciclacion
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por medio de una lipoxigenasa (LOX2), la aleno 6xido sintasa (AOS) y la aleno 6xido ciclasa
(AOC), respectivamente. Asi se forma el acido 12-oxo-fitodiendico (OPDA), principal pre-
cursor de los jasmonatos, el cual se exporta hacia el peroxisoma, unico organulo donde ocu-
rre la B-oxidacion, reduciéndose por la enzima acido oxo-fitodiendico reductasa 3 (OPR3).
Posteriormente, este compuesto es sometido a tres ciclos de R-oxidacién para producir el
acido jasmonico (AJ). El AJ es exportado al citosol por un mecanismo desconocido donde
ocurren las diferentes reacciones metabolicas que daran origen a los distintos jasmonatos
(Wasternack 2007) (Fig. 2). Entre las principales transformaciones del AJ se encuentra la
metilacion en el carbono 1 (C1), para producir el compuesto volatil metil-jasmonato (MeJA),
el cual esta involucrado en la senalizacién entre plantas. Otra modificacion relevante es la
conjugacion del grupo carboxilo al aminoacido isoleucina para formar el jasmo-
noil-isoleucina (JA-lle). En A. thaliana, el JA-lle se sintetiza por una enzima codificada por el
gen JAR1. Las mutantes en el locus jar1 se caracterizan por una respuesta disminuida al AJ
(Zhangy Turner, 2008). Estos resultados indican que el JA-lle es una sefal primaria impor-
tante para las respuestas de defensa y desarrollo.

Figura 2.- Via de sintesis de
los jasmonatos. La sintesis
de los jasmonatos ocurre a
partir del 4cido a-linolénico.
Se muestran las principales
enzimas de la via (Modifica-
da de Browse 2009).
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Baja concentracion niracellar
de jasmonatos

e

Figura 3.- El complejo SCF®" es re-

querido para la sefializacion de jas-
monatos. El complejo SCF“"esta
formado por la proteina de la familia
SKP1 ASK1, la proteina de la familia
de las CULINAS CULLI y la de la
caja F COI1. La union de jasmo- z 4
noil-Isoleucina (JA-Ile) al receptor Ala concentracion intracelslar
CORONATINE-INSENSITIVE1 0% Jatmasies

(COI1) promueve la union de los re-
presores de jasmonatos ZIM-Domain
(JAZ) y su ubiquitinacion, resultando
asi en la liberacion del factor de
transcripcién MYC2 y la transcrip-
cion de genes de respuesta a jasmona-
tos (Modificado de Santner y Estelle,
2009).

Seinalizacion de los jasmonatos

Los jasmonatos y las auxinas, a pesar de ser compuestos quimicamente diferentes,
comparten algunos elementos en las vias de sefalizacion para su percepcion y respuesta
en las células (Santner y Estelle, 2009). TIR1 es una proteina tipo F-box que funciona como
uno de los receptores en la sefializacion de auxinas. Existen cerca de 700 genes que codifi-
can para proteinas tipo F-box en A. thaliana. La mutante de A. thaliana denominada corona-
tine-insensitive1 (coi1) permitié definir el papel de los jasmonatos en el crecimiento de la
planta (Feys etal., 1994). La coronatina es una fitotoxina relacionada estructural y bioldgica-
mente con el Ja-lle. La mutante coi1 antes mencionada es resistente tanto a la coronatina
como al MeJA y su principal caracteristica es la esterilidad masculina. COI1 codifica para
una proteinatipo F-box estrechamente relacionada con TIR1, lo que sugiere que al igual que
los represores auxinicos ampliamente estudiados, la respuesta a los jasmonatos implicaria
la degradacién de un grupo de represores de los jasmonatos conocidos como JAZ que po-
seen el dominio ZIM dependiente de SCF®'"" (Santner y Estelle, 2009). El complejo multi-
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proteico SCF pertenece al tipo E3 ubiquitina ligasa que media la ubiquitinacion de proteinas
para su degradacion por el proteosoma 26S. Dicho complejo contiene varias proteinas
F-box que se unen directamente con el blanco de la ubiquitinacion. COI1 se une a las protei-
nas JAZ, que actuan como reguladores negativos de la transcripcion de genes de respuesta
a jasmonatos, las cuales interactuan con el factor de transcripcion tipo bHLH (héli-
ce-vuelta-hélice basica) MYC2 interfiriendo con la funcion de este activador transcripcional
(Chini et al., 2007). Una gran cantidad de genes JAZ son auto regulados en respuesta a jas-
monatos, indicando un mecanismo de retroalimentacién negativa. Analisis bioquimicos han
mostrado que la coronatina se une al complejo COI1-JAZ con alta afinidad, donde el jasmo-
nato conjugado a isoleucina (JA-lle) es la molécula activa (Fonseca et al., 2009). Por lo tan-
to, el complejo SCF°°" sirve como receptor para el JA-lle para estabilizar la interaccion
entre la proteina tipo F-box y su sustrato, lo cual permite la degradacion del represor JAZ y la
liberacion del factor de transcripcion MYC2, ocurriendo entonces la activacion de los genes
de respuesta a jasmonatos (Fig. 3) (Katsir et al., 2008).

Funciones de los jasmonatos

Inmunidad vegetal

La sefalizacién por jasmonatos es esencial para la activacion de las respuestas de
defensa en plantas en contra de insectos y herbivoros (Browse 2005). La sintesis de jasmo-
natos se activa por herbivoria, que comunmente dafa a las hojas y otros tejidos, asi como
por heridas causadas por un daifno mecanico. Esto ocurre mediante la induccion de cientos
de genes que codifican para proteinas para la sintesis y percepcioén de los jasmonatos, asi
como proteinas implicadas en el flujo de iones y en la adaptacion al estrés en general (Rey-
mond et al., 2000). La produccion de jasmonatos induce la formacion de tricomas en hojas,
los cuales confieren proteccion a la lamina foliar (Yan et al., 2007; Yoshida et al., 2009). Otra
funcion esencial de los jasmonatos es en la activacion de la inmunidad en contra de patoge-
nos que se alimentan de tejidos muertos como es el caso de algunos hongos necrotréficos
(Browse 2009), o de ciertas bacterias que causan enfermedades a la planta (Gutjahry Pasz-
kowski, 2009).

Regulacion del desarrollo

Los jasmonatos AJ y MeJA son esenciales para la maduracion del polen, la elonga-
cion de los filamentos de los estambres y la apertura de los estambres que permite la libera-
cion del polen (Delker et al., 2006). Existe una evidencia clara de lo anterior, sustentada en el
fenotipo de las flores en las mutantes de Arabidopsis afectadas en la sintesis de AJ y en el
receptor de jasmonatos COI1, que muestran esterilidad masculina. La mutante coi1 es inca-
paz de producir polen viable (von Malek et al., 2002). Otro proceso importante del desarrollo
en la que participan los jasmonatos es la regulacion de la arquitectura de la raiz. El trata-
miento de plantas de A. thaliana con AJ causa el acortamiento de la raiz primaria y promueve
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la formacioén de raices laterales. Adicionalmente, se ha observado que las mutantes afecta-
das en los componentes de la sintesis y de la transduccion de sefiales dependientes de
COI1 presentan una reduccion en el crecimiento de la raiz primaria (Wasternack 2007). La
participacion del MeJA en la formacion de raices laterales, esta relacionada con la biosinte-
sis de auxinas dependiente del gen ANTHRANILATE SYNTHASE o1 (ASA1)y la atenua-
cion en el transporte de auxinas al disminuir los niveles de expresion de los transportadores
de eflujo de auxinas PIN1y PIN2 (Sun et al., 2009). Otra actividad biolégica de los jasmona-
tos es lainduccioén de la senescencia (Schommer et al., 2008),la cual se atribuye a la regula-
cion de genes que codifican para proteinas de mantenimiento de los cloroplastos y de
sintesis de carbohidratos (Wasternack 2007).

Oxido nitrico

El 6xido nitrico (ON) es un radical libre debido a que contiene un electron desaparea-
do que se sintetiza en los animales por una familia de enzimas denominadas 6xido nitrico
sintasas (NOS) a partir de L-arginina. ElI ON tiene una gran importancia biolégica en anima-
les en la neurotransmision, la vasodilatacion, la respuestainmune y en la regulacion del con-
sumo de oxigeno en la mitocondria (Stuehr et al., 2004).En anos recientes, el ON se ha
implicado en la sefalizacidn en plantas durante la xilogénesis, la apoptosis, la defensa con-
tra patdgenos, la floracion, el cierre de los estomas y el gravitropismo (Neill et al., 2003).
También se ha reportado que el ON participa en la modulacion de la expresion de genes que
codifican proteinas para la biosintesis de AJ y para la interaccidn con otras rutas hormonales
incluyendo las del acido abscisico, citocininas y etileno (Orozco-Cardenas y Ryan, 2002;
Correa-Aragunde et al., 2006), para la fotosintesis y la apoptosis (Polverari et al., 2003).

Sintesis de 0xido nitrico

Las vias de sintesis del 6xido nitrico pueden ser clasificadas como oxidativas o reduc-
toras. La produccién de ON por la nitrato reductasa es una reaccién reductora; mientras que
las que ocurren a partir de L-arginina o poliaminas son rutas oxidativas (Kapuganti et al.,
2010). La via reductora conduce a la produccion de ON dependiente de nitrito (NO2) como
sustrato primario, el cual es producido a partir del nitrato (NO3) por la nitrato reductasa (NR).
La NR se encuentra en el citosol. El fenotipo de la doble mutante nia1 nia2 de Arabidopsis
muestra que la NR esta involucrada en la apertura estomatica, la activacion de enzimas an-
tioxidantes, la sefalizacién por patégenos, el desarrollo floral, el estrés osmatico, asi como
la formacion de raices laterales inducida por auxinas (Benamar et al., 2008; Kolbert et al.,
2008). También se ha documentado la produccion de ON por una proteina membranal
(NiINOR) y por la reduccion del nitrito en la membrana interna de la mitocondria probable-
mente via la citocromo ¢ oxidasa y/o reductasa (Kapuganti et al., 2010). Las vias oxidativas
de produccién del ON comprenden una actividad parecida a la de la 6xido nitrico sintasa
(NOS), la cual podria utilizar como substrato poliaminas e hidroxilaminas. Esta actividad se
ha descrito en cloroplastos y peroxisomas y es importante para el desarrollo de laraiz y la
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embriogénesis, toxicidad por cadmio y estrés por drogas (Jasid et al., 2006; Tun et al., 2006;
Corpas et al., 2009) (Fig. 4).

Figura 4.- Biosintesis de ON en plantas. E1 ON puede ser sintetizado por dos vias, la via dependiente de nitrito que involu-
cra una ruta enzimatica en la que las nitrato reductasa (NR) y la reductasa de nitrito a ON (NiNOR) catalizan la sintesis del
ON y otra ruta no enzimatica que comprende reacciones quimicas de reduccion. La via atin no caracterizada dependiente de
L-arginina implica la participacion de una enzima similar a la 6xido nitrico sintasa (NOS) y otra ruta no descrita que utiliza
poliaminas (PAs) como sustrato (Modificada de Besson-Bard et al., 2008).

Percepcion del ON y transduccion de la sefial en plantas

Aunque hasta la fecha no se ha identificado ninguin receptor de ON, por su naturaleza,
este radical es muy reactivo y puede interactuar con numerosas proteinas. En células ani-
males, la guanilil ciclasa soluble (sGC) tiene un papel fundamental en la sefializacion de ON,
donde este ultimo se une al dominio hemo de la sGC estimulando la liberacién del monofos-
tato de guanosina ciclico (cGMP) que a su vez activa distintos blancos celulares. Enlas plan-
tas, estudios farmacoldgicos usando inhibidores del ON como el 2-fenil-4,4,5,5-tetrametil
imidazol-1-oxi-3-6xido (PTIO) o el 2-(4-carboxifenil)-4,4,5,5 -tetrametilbimidazol- 1- oxi- 3-
6xido (cPTIO) hanimplicado al cGMP y a la sefializacion por acido abscisico (ABA) rio abajo
del ON en células guardia de los estomas (Neill et al., 2003). EI ON induce un incremento de
cGMP y activa cascadas de sefalizacién que modulan la expresion génica (Grun et al.,
2006). Una molécula esencial rio abajo del cGMP es la ADP ribosa ciclico (CADPR). En célu-
las animales, la cADPR estimula la liberacion de Ca®* intracelular, activando al receptor ria-
nodina (RYR) de los canales de calcio y es posible que un mecanismo de sefalizacion
similar ocurra en plantas. En tabaco, el CADPR eleva la expresion genética de la fenilalanina
amonio liasa (PAL)y la proteina 1 relacionada con patogénesis (PR-1), que es sensible a los
inhibidores del RYR. Los dos genes antes mencionados también son regulados por el ON y
los antagonistas de cADPR reducen la expresiéon de PR-1. EI ON causa un incremento en
los niveles de Ca®" libre, por lo tanto podria actuar a través del cGMP, cADPR y ca* para
promover el cierre de estomas inducido por ABA. La inhibicién por cPTIO durante este pro-
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ceso inducido por ABA lleva a la inactivacion de los canales de K* dependientes de Ca** ya
la activacion de los canales de CI, lo que implicaria fuertemente al ON y el Ca®* en la casca-
da de senalizacion por ABA (Neill etal., 2008). En animales, la S'nitrosilacion es un mecanis-
mo de modificacion post-traduccional que regula numerosos procesos de senalizacion y
vias metabdlicas. En plantas, se ha reportado que la S-nitrosilacion de proteinas juega un
papel importante en la sefializacion del ON. En extractos de cultivos de células de Arabidop-
sis tratados con glutatién S-nitrosilado (GSNO), se han aislado-proteinas que contienen
grupos S-nitrosilados (S-ON) que estan involucradas con el estrés oxidativo, sefalizacion,
estructura celular y metabolismo (Lindermayr et al., 2005). También es posible que el ON in-
teractue nitrando residuos de tirosina a través de especies reactivas de nitrégeno como el
anion peroxinitrito (ONOQO") y el didxido de nitrogeno (NO;) que se forman durante el meta-
bolismo del ON en presencia de especies reactivas de oxigeno y centros de metales de tran-
sicion. La nitracion de tirosina de proteinas enddégenas ha sido demostrada en lineas
antisentido de tabaco para la nitrato reductasa (NiR) donde se observaron cantidades incre-
mentadas de ON (Morot-Gaudry-Talarmain et al., 2002). Estudios recientes mostraron la
participacion de la proteina cinasa 6 activada por mitégenos (MAPKG) en la sefalizacion por
ON, donde se encontré que la MAPKEG y la nitrato reductasa (NIA2), interactuan in vitro e in
vivo. En dicha interaccion MAPKG fosforila a NIA2, aumentando la produccion de ON, lo que
finalmente condujo a cambios morfoldgicos en el sistema radicular de Arabidopsis (Wang et
al., 2010).

Interaccion de los jasmonatos con el ON

Diferentes evidencias han implicado al ON como un modulador en respuestas a heri-
das y/o estrés mecanico (Garces et al., 2001). En jitomate, la generacion de H,O, inducido
por herida inhibié la producciéon de ON y la expresion de genes para la sintesis de acido jas-
monico. Por otra parte, se ha reportado que el ON tiene un papel fundamental en la regula-
cion de la expresion de genes de defensa inducidos por herida durante la patogénesis
(Orozco-Cardenas y Ryan, 2002). Estudios realizados en hojas de Arabidopsis mostraron
que en respuesta a heridas y a tratamientos con AJ, se incremento la concentracion de ON,
lo que proporcioné una evidencia del posible entrecruzamiento entre el AJ y el ON (Huang et
al., 2004). Actualmente se sabe que tanto el AJ como el ON estan involucrados en el desa-
rrollo de la arquitectura de la raiz de Arabidopsis thaliana acortando la longitud de la raiz pri-
maria e incrementando el numero de raices laterales (Campos-Cuevas et al., 2007; Sun et
al., 2009; Méndez-Bravo et al., 2010). Sin embargo, se desconoce la interaccion entre estas
moléculas de sefalizacion en la regulacion de la arquitectura radicular de Arabidopsis, por lo
cual seria de gran interés obtener informacion al respecto debido a que ambas moléculas re-
gulan procesos similares en el desarrollo de la raiz.
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Conclusiones

Los jasmonatos son hormonas ampliamente estudiadas principalmente por su partici-
pacioén en la inmunidad vegetal, en la adaptacién al estrés biético y abidtico y como regula-
dores de diversos aspectos del crecimiento y desarrollo de las plantas (Santner y Estelle,
2009). Como se ha evidenciado, el ON interactda con el AJ en las respuestas de defensa y
por heridas. Con las mutantes de A. thaliana como herramienta nuestro grupo reporté la par-
ticipacion de los genes NIA1y NIA2 durante la formacion de raices laterales inducida por al-
camidas (Méndez-Bravo et al., 2010). El aislamiento y caracterizacién de la mutante
decanamide resistant root1 (drr1), revel6 posteriormente que el AJ interactda con las alca-
midas en los procesos de senescencia y desarrollo de laraiz y que esta mutante es resisten-
te a la inhibicién del crecimiento de la raiz primaria por el ON (Méndez-Bravo et al., 2010).
Estos resultados muestran el enorme potencial que tiene A. thaliana para investigaciones en
las vias de sefializacion donde se cuenta con informacion escasa. Actualmente estamos in-
vestigando las posibles interacciones entre el ON y el AJ sobre la arquitectura radicular de
Arabidopsis thaliana, evaluando la participacion del 6xido nitrico en la via de sefalizacion de
jasmonatos mediante herramientas genéticas y farmacoldgicas que nos permitiran esclare-
cer los mecanismos celulares y moleculares implicados en la interaccion del AJ y el ON.
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