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Resumen

Las Redes Neuronales Generativas Adversariales (Generative Adversarial Networks, en

inglés) son un tipo de redes neuronales de inteligencia artificial usadas dentro del apren-

dizaje profundo (Deep Learning) que permiten la generación de nuevos datos a partir de

ejemplos.

Este tipo de redes pueden crear nuevos tipos de datos, como imágenes, videos o

música, tan reales que sea imposible de distinguir si la muestra fue creada desde cero por

un algoritmo o fue generada por alguna persona.

En esta tesis resolvemos si las redes generativas adversariales pueden crear series de

tiempo con resolución diaria como si fueran datos reales y aśı poder tomar en consideración

qué se espera en ese d́ıa. Cada muestra generada ayudará a contemplar las interrupciones

en la enerǵıa debido las intermitencias del clima.

Usaremos datos de series de tiempo de: casi dos años de datos de irradiancia solar

y temperatura ambiente, y casi un año de datos de velocidad de viento. Cada una de esas

series tiene sus propias caracteŕısticas y por ello creamos una red para cada una de ellas

que sea capaz de modelar los patrones y perturbaciones diarias.

Los resultados obtenidos fueron satisfactorios porque se logró capturar la dinámica,

la función de distribución, y las fluctuaciones debido al clima, de cada serie de tiempo.

Palabras Clave— Redes neuronales, modelos generativos, GAN, series de tiempo, apren-

dizaje profundo.



Abstract

Generative Adversarial Networks are a type of neural networks in artificial intelligence

model, found in deep learning and allow generating new samples from examples. This type

of neural networks can create new types of data, such as images, videos o music, so realistic

that it is impossible to distinguish if the sample was entirely computer generated or was

made by a person.

In this thesis we answer the question if generative adversarial networks can gen-

erate daily time series as if actually happened and taking into account what is expected on

that day. Each generated sample will help to anticipate the interruption on the energy due

to the fluctuations of weather conditions.

We will use three different time series: approximately two years of daily samples of

solar irradiance and ambient temperature, and almost a year of daily data for wind speed.

Each of these time series has its own features and thus we will design a different models for

each model to be capable of replicate the daily patterns and disturbances.

The obtained results were successful because it was possible to capture the dy-

namics, the function probability distribution, and the fluctuations due to the weather for

each time series.

Keywords— Neural networks, generative model, GAN, time series, deep learning.
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Chapter 1

Introduction

1.1 Time series

A time series is a time-ordered sequence of observed values of a variable made at

equally spaced time intervals, represented as a vector of values [x1, x2, x3, · · · , xN ] [Palit

and Popovic, 2006]. Time series are found in many fields, such as economics, sociology,

meteorology, medicine, seismology, oceanography, geomorphology, astronomy, etc. [Granger

et al., 2014]. Time series analysis helps to detect regularities in the observations of a variable,

determines a suitable model, or exploit all information included in this variable to better

predict future developments, [Kirchgassner and Wolters, 2008].
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Figure 1.1: Dataset from ambient temperature.

Time series forecasting is currently a very important research area, due to the

importance of prediction and understand information about the phenomena in many fields.

Applications range from natural phenomena such as wind speed, ambient temperature,

1
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solar irradiance, etc., to anthropic phenomena like stock price, electric energy consumption,

etc. Time series forecasting is an area in which past observations of the same variable are

collected and analyzed to develop a model the describes the underlying relationship. The

model is then used to extrapolate the time series into future scenarios [Zhang, 2003].

Over the past several decades, many studies have been conducted to develop in-

novative forecasting approaches and improve their accuracy. In general, these models can

be categorized into three types: statistical models, artificial intelligence models and hybrid

models [Xu et al., 2019].

Statisticians and econometricians tend to rely on autoregressive integrated moving

average (ARIMA) and derived or related models, while the artificial intelligence community

mainly looks at neural networks, either using multilayer perceptrons or recurrent networks

[Lemke and Gabrys, 2010].

After fitting a time series model, one can evaluate it with forecast fit measures. The

researcher may subtract the forecast value from the observed value of the data at that time

point and obtain a measure of error. The statistics used to describe this error are similar

to the univariate statistics just mentioned, except that the forecast is often substituted for

the average value of the series.

Time series analysis normally mix several methods to work with time series data,

in order to extract potentially useful information oriented to pursue two main goals:

Determination of the time series behavior. Identification of the important parame-

ters and characteristics, which adequately describe the time series behavior, and

Time seres forecasting. Forecasting the future values of the time series, depending on

its actual and past values. Even

Both of these goals require the time series model identification. As soon as the

model is identified, it can be exploited to interpret the time series behavior. The model can

also be used to forecast its future values.
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1.2 Artificial neural networks

According to [Khashei et al., 2008] and [de Oliveira et al., 2000], artificial neural

networks approach has been suggested as an alternative technique to time series forecasting,

and this approach has gained immense popularity in the last few years. Artificial neural

networks try to recognize regularities and patterns in the input data, learn from experience

and then provide generalized results based on their previous knowledge.

The main artificial neural network used is in forecasting problems are the Multi-

layer perceptrons (MLPs). These models are characterized by a network of three types

of layers (input, hidden and output), they consist of neurons arranged in layers in which

every neuron is connected to all neurons of the next layer [Shirvany et al., 2009]. This feed

forward neural network model in fact performs a non-linear functional mapping from the

past observations of the time series to the future value.

Two of the main types of neural networks used to solve the forecasting task are:

• Recurrent neural networks [Géron, 2017], and

• Time lagged neural networks [Adhikari and Agrawal, 2013].

This thesis proposes the use of the generative adversarial networks created by

[Goodfellow, 2017].

1.3 Generative adversarial networks

Generative adversarial networks are algorithmic architectures that use two neural

networks, competing one against the other in order to generate new synthetic instances of

data that can pass for real. They are widely used for voice, image, or video generation

[Langr and Bok, 2019].

The two different neural networks used in a generative adversarial network, are

generator G and discriminator D. The first one is responsible for the generation of

synthetic data, and the discriminator function is to judge the quality of the generated data

and provide feedback to the generator [Takahashi et al., 2019].
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The discriminator learns using traditional supervised learning techniques, dividing

inputs into real or fake classes; meanwhile the generator must learn to create samples that

are drawn form the same distribution as the training data, i.e., the generator captures the

probability distribution of the underlying process that produce the original data.

1.4 Problem statement

This thesis proposes the use of generative models, specifically the use of genera-

tive adversarial networks [Goodfellow et al., 2014] to generate plausible scenarios.

A fundamentally different approach to forecasting is scenario-based forecasting.

The aim of this approach is to generate forecasts based on plausible scenarios. In contrast

to other forecasting techniques where the resulting forecast is intended to be a likely out-

come, each scenario-based forecast may have a low probability of occurrence [Hyndman and

Athanasopoulos, 2018].

Building forecast based on scenarios allows a wide range of possible forecasts to

be generated, for example “best” or “worst” case scenarios are presented and allow the

decision makers to understand the results.

Given a data set of time series with similar characteristics (as high ambient tem-

perature or low solar irradiance), the generative adversarial networks are able to create a

scenario with those same characteristics. This way we can model the patterns of the time

series.

1.5 Objectives

The main objetive from this thesis is to use generative adversarial networks to

create a model capable of make plausible scenarios with minimum error based on previous

data. Generated scenarios should be capable of describing the same stochastic processes

as training samples and exhibiting a variety of different modes representing all possibles

variations and patterns seen during training.

In particular, this thesis aims to solve the following problems:
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• Design and develop algorithms capable of training the generative adversarial neural

networks from the real data.

• Generate a competitive method to forecast, and

• Compare it against the state of the art methods for time seres forecasting.

1.6 Justification

Renewable energies, such as wind power, solar energy or hydraulic energy, are

sources of clean, inexhaustible and increasingly competitive energy. They differ from fossil

fuels principally in their diversity, abundance and potential for use anywhere on the planet,

but above all in that they produce neither greenhouse gases – which cause climate change –

nor polluting emissions. Their costs are also falling at a sustainable rate, whereas the general

cost trend for fossil fuels is in the opposite direction in spite of their present volatility.

However, if more renewable energies are introduced, the power grid system might

be destabilized due to the fluctuations of weather conditions. To keep the power grid

system stable even when we introduce more renewable energy to the grid, we need to

predict the output of renewable energy and compensate the fluctuations by thermal power

plants, hydroelectric power plants, and/or batteries [Bigdeli, 2016].

With the growing penetration of renewable energy sources in power systems, it

becomes increasingly important to characterize their inherent variability and uncertainty

[Qiao et al., 2021]. One way to try to mitigate energy fluctuations due to weather, is to

create a time series scenario in order to model when will be an energy interruption, and so

can take an informed decision [Conejo, 2010].

Generative adversarial networks are able to imitate pictures or human voice, and it

is possible that GANs can also imitate the time series behavior and make an extrapolation

on the data. Therefore we believe we can use them to generate a realistic scenario for time

series.
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1.7 Chapter description

This thesis is composed of five chapters.

Chapter 2 Deep Learning. Describes the theoretical foundations of machine learning

and neural networks. In this chapter we’ll build on these foundations to give the core

concepts of deep networks.

Chapter 3 Generative Adversarial Networks. Introduce what are the Generative Ad-

versarial Networks (GANs) and provide a high-level explanation of how they work.

GANs consist of two separate neural networks (the Generator and the Discriminator),

and the networks are trained through a competitive dynamic.

Chapter 4 Experiments and Results. Presents the scenarios generated with our scheme,

along with the comparison with the real data.

Chapter 5 Conclusions. Presents a summary of the results and recommendations for

future work regarding the subject.



Chapter 2

Deep Learning

This chapter builds the foundations of machine learning and neural networks, and

use them to give the core concepts of deep learning. This is useful when describing generative

modeling and how to use it to generate time series scenarios.

2.1 Artificial neural networks

One family of Machine Learning (ML) models are Artificial Neural Networks

(ANNs); they have been around for at least 50 years. Many important architectural ad-

vances were made in the mid-1980s and early 1990s; however, the interest in this type of

model lost interest because the data and time needed to get good results were too big.

Deep learning emerged in earlys 2000s along with the expansion of computational power

and development of new optimization algorithms able to deal with big data. Deep learning

models won many important machine learning competitions [Patterson and Gibson, 2017].

While inspired by the human brain and how its neurons interact with each other,

ANNs are not meant to be realistic models of the brain. Instead, they are inspired by it,

allowing us to draw analogies between a very basic model of the brain and how we can

mimic some of its behavior through artificial neural networks.

A biological neuron is an excitable unit that can process and transmit information

via electrical and chemical signals; a biological neural network is composed of, approxi-

mately, 86 billion neurons connected to many other neurons.

7
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There are two main properties of artificial neural networks that follow the general

idea of how the brain works. First is that the most basic unit of the neural network is the

artificial neuron (or node). Artificial neurons are modeled on the biological neurons of the

brain, and like biological neurons, they are stimulated by inputs. These artificial neurons

pass on some, but not all, information they receive to other artificial neurons, often with

transformations.

Second, much as the neurons in the brain can be trained to pass forward only

signals that are useful in achieving the larger goals of the brain, we can train the neurons

of a neural network to pass along only useful signals.

One of the first neural network model came from [McCulloch and Pitts, 1943].

This network was a binary classifier, capable of recognizing two different categories based

on some input. The problem was that the weights used to determine the class label for a

given input needed to be manually tuned by a human.

Then, in the 1950s the seminal Perceptron algorithm was published by Rosenblatt

[Rosenblatt, 1958], this model could automatically learn the weights required to classify an

input (no human intervention required). An example of the Perceptron architecture can be

seen in Figure 2.1, we can see it forms and acyclic and directed graph. Using perceptron

architecture with the automatic training procedure formed the basis of Stochastic Gradient

Descent (SGD) which is still used to train very deep neural networks today [Rosebrock,

2017]

The most well-known, and simplest to understand neural network, is the feed-

forward multilayer perceptron (MLP). It has an input layer, one or many hidden layers,

and a single output layer. Each layer can have a different number of neurons and each layer

is fully connected to the adjacent layer. The connections between the neurons in the layers

form an acyclic graph, see Figure 2.2.

Feed-forward multilayer neural networks are universal approximators, if given

enough nodes they are capable of approximating any function [Csáji, 2001]. It is gener-

ally trained by a learning algorithm called backpropagation learning . This algorithm uses

gradient descent on the weights of the connections in a neural network to minimize the

error on the output of the network. Although, backprogation can stuck in local minima, in
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Figure 2.1: An example of the simple Perceptron network architecture that accepts a number of inputs,

computes a weighted sum, and applies a step function to obtain the final outcome.

Figure 2.2: A multi-layer, feedforward network architecture with an input layer (3 nodes), two hidden layers

with 3 nodes each, and an output layer with 2 nodes.

practice it generally performs well [Patterson and Gibson, 2017].

2.2 Deep learning

It is difficult to define what deep learnings is, because it has changed forms over

the past years. One of the first attempts to define it was “a neural network with more than
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two layers”, another attempts to define it are:

• “Deep learning is a particular kind of machine learning that achieves great power and

flexibility by learning to represent the world as a nested hierarchy of concepts, with

each concept defined in relation to simpler concepts, and more abstract representations

computed in terms of less abstract ones” [Goodfellow et al., 2016].

• “A neural network with a large number of parameters and layers in one of four funda-

mental network architectures: unsupervised pretrained networks, convolutional neu-

ral networks, recurrent neural networks, or recursive neural networks” [Patterson and

Gibson, 2017].

• “Deep learning is a class of machine learning algorithm that uses multiple stacked

layers of processing units to learn high-level representations from unstructured data”

[Foster, 2019].

A deep artificial neural network consists of a series of stacked layers. Each layer

contains units, that are connected to the previous layer’s units through a set of weights.

Deep artificial neural networks can have any number of hidden layers. For example, ResNet

[He et al., 2015] designed for image recognition, contains 152 layers.

2.3 Discriminative and generative models

Machine learning algorithms, such as neural networks, are great at recognizing

patterns in existing data and using that insight for tasks such as classification and regression,

this is called discriminative modeling.

In discriminative modeling, we are interested in developing a model to predict

a class label given an example of inputs variables, i.e., use the training data to find a

discriminant function f(x) that maps each sample x onto a class label [Bishop, 2006].

Discriminative models gave the correct category to a sample. The model learns

the conditional probability of the target variable given the input variable P (Y |X = x), e.

g., logistic regression or linear regression. These models focus on modeling the boundary

between classes.
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A generative model describes how a dataset is generated, in terms of a probabilistic

model. By sampling from this model, we are able to generate new data. A generative model

must also be probabilistic rather than deterministic [Ahirwar, 2019]. This type of model

must include some random element that influence the individual samples generated by the

model.

Generative models understand how the data was created in order to generate new

data. The model learns the joint probability distribution of the input variable and the

output variable P (X,Y ) = P (X|Y )P (Y ); if the model wants to predict something, it uses

the Bayes theorem and computes the conditional probability of the target variable given

the input variable P (Y |X) =
P (X,Y )

P (X)
.

The distribution P (Y |X = x) for the discriminative models is the natural distribu-

tion for taking input x and producing an output Y (classification). Using generative models

to learn the distribution P (X,Y ), we can generate likely output given a certain input.

The advance on generative models over discriminative ones is that we can use them

to create new instances of data, because the model learns the distribution function of the

data itself, which is not possible using a discriminator.

In 2014 Ian Goodfellow and colleagues [Goodfellow et al., 2014] at the University

of Montreal, first published the Generative Adversarial Networks, or GANs. This technique

has enable computers to generate realistic data by using two separated neural networks

[Langr and Bok, 2019].

Figure 2.3 shows how far the machine data generation has advanced thanks to

GANs on the synthesis of human faces. Before the GANs were invented, back to 2014, the

best that machines could produce were blurred images, and even that was celebrated as

groundbreaking success. After three years, by 2017, advances in GANs enable computers

to generate fake faces whose quality rivals high-resolution portrait photographs.

The website ThisPersonDoesNotExist.com, created by Philip Wang, a software

engineer at Uber, uses the chip designer Nvidia to create an endless stream of fake portraits

(Figure 2.4). The algorithm behind it is trained on a huge dataset of real images, then uses

a GAN to fabricate new examples.

https://thispersondoesnotexist.com/
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Figure 2.3: Progress in human face generation made by GANs. Image taken from “The Malicious use of

Artificial Intelligence: Forecasting, Prevention and Mitigation” by Miles Brundage et al. [Brundage et al.,

2018].

Figure 2.4: Images taken from the site ThisPersonDoesNotExist.com.

2.4 Chapter conclusions

This chapter, introduced the canonical feed-forward artificial neural networks. In-

spired by networks of biological neurons, feed-forward networks are the simplest artificial

neural networks. They are composed by an input layer, one or many hidden layers, and an

output layer. We also introduced the field of generative modeling, an important branch of

machine learning that complements the more widely studied discriminative modeling.

https://thispersondoesnotexist.com/


Chapter 3

Generative Adversarial Networks

Ian Goodfellow of Google Brain presented a tutorial entitled “Generative Adver-

sarial Networks” to the delegates of the Neural Information Processing Systems (NIPS)

conference in Barcelona [Goodfellow, 2017]. The ideas presented in the tutorial are now

regarded as one of the key turning points for generative modeling and have spawned a wide

variety of variations on his core idea that have pushed the field to even greater heights.

Generative adversarial networks present a way of training a generative model by

framing the problem as a supervised learning problem with two networks: the generator

model that we train to generate new examples, and the discriminator model that tries to

classify examples as either real (from the domain) or generated. The two models are trained

together in a zero-sum game, adversarial, until the discriminator model is fooled about half

the time, meaning the generator model is generating realistic examples.

Some interesting applications of GANs to help develop an intuition for the types

of problems where GANs can be used and useful are:

Image generation. Generative networks can be used to generate realistic images after

being trained on sample images, as shown at [Goodfellow et al., 2014, Radford et al.,

2016, Karras et al., 2018, Brock et al., 2019].

Text-to-image synthesis. Generating images from text descriptions is an interesting use

case of GANs [Zhang et al., 2017a, Reed et al., 2016b, Reed et al., 2016a].

13
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Face aging. An age-cGAN network can generate images at different ages, which can then

be used to train a robust model for face verification [Antipov et al., 2017, Zhang et al.,

2017b].

Anomaly Detection. MIT researchers proposed an unsupervised anomaly detection ap-

proach named TadGAN, that allows time series reconstruction and effectively flag

anomalies in the data [Geiger et al., 2020, Luer et al., 2019].

3.1 Generative adversarial networks

Generative adversarial networks (GANs) are an exciting and rapidly changing

field, delivering on the promise of generative models in their ability to generate realistic

examples across a range of problem domains [Brownlee, 2019] and store knowledge within

it as the learn the pattern of the true data distribution and try to generate new samples

that look like the samples from this true data distribution.

In generative adversarial networks (GANs), we use a generator, G, to produce

new samples, and we use a discriminator, D, to tell if a given sample is an original training

sample or it has been produced by the generator. Both models, G and D, work in an

“adversarial” setup, i.e., they compete with each other and eventually both of them are

improving in their tasks.

The term adversarial points to the game-like, competitive dynamics between the

two models that constitute the GAN framework. The generator’s goal is to create samples

that are indistinguishable from the real data in the training set. The discriminator’s objec-

tive is to distinguish the fake examples produced by the generator from the real examples

coming from the training dataset. The two networks are continually trying to outwit each

other: the better the generator gets at creating convincing data, the better the discriminator

needs to be at distinguishing real examples from the fake ones.

A GAN consists of a generator (G) and a discriminator (D), both are feed-forward

neural networks, since the adversarial modeling framework is most straightforward to apply

with weights θG and θD respectively [Goodfellow et al., 2014]. The bottom left corner of
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Figure 3.1 shows the theoretical1 distribution function of the original data; on the top left

corner, is the normal distribution (although we can choose any other distribution) from

where we will sample randomly data, z, to feed the generator and obtain G(z) which will

have the same domain of the original data. Finally, both, the generated data and the

original data, will be the input to the discriminator and this will provide the probability of

belonging to the original data.

Figure 3.1: Structure of a generative adversarial network.

The discriminator tries to maximize the chances of detecting fake data, but the

generator tries to fool the discriminator, i.e., both the generator and the discriminator are

playing a two-player minimax game. This kind of framework is optimized by the following:

• The generator, G, is optimized to generate data that deceives the discriminator D,

and

• The discriminator, D, is optimized to distinguish the source of the input, namely the

generator G or realistic dataset.

In more technical terms, the generator’s goal is to produce examples that capture

the characteristics of the training dataset, so much so that the samples it generates look

1The real distribution is unknown. All we know is a finite set of samples drawn from the theoretical
distribution.



3.1. Generative adversarial networks 16

indistinguishable from the training data. The generator can be thought of as an object

recognition model in reverse. Object recognition algorithms learn the patterns in images to

discern an image’s content [Langr and Bok, 2019]. Instead of recognizing the patterns, the

generator learns to create them essentially from scratch; indeed, the input into the generator

is often no more than a vector of random numbers.

The generator learns through the feedback it receives from the discriminator’s

classifications. The discriminator’s goal is to determine whether a particular example is real

(coming from the training dataset) or generated (created by the generator). Accordingly,

each time the discriminator is fooled into classifying generated image as real, the generator

knows it did something well. Conversely, each time the discriminator correctly rejects a

generator-produced image as generated, the generator receives the feedback that it needs

to improve.

The discriminator continues to improve as well. Like any classifier, it learns from

how far its predictions are from the true labels (real or generated). So, as the generator gets

better at producing realistic-looking data, the discriminator gets better at telling fake data

from the real, and both networks continue to improve simultaneously. The next section will

construct the value function to be minimize and maximize.

3.1.1 Loss function

The adversarial game previously described, can be formalized by minimax of a

target function between the discriminator function D : Rn → [0, 1] and the generator

function G : Rd → Rn. The generator G turns random samples z ∈ Rd from the normal

distribution N(0, 1) into generated samples G(z). The discriminator D tries to tell them

apart from the training samples coming from the (empirical) real distribution γ, while G

tries to make the generated samples as similar in distribution to the training samples. The

target loss function proposed by [Goodfellow et al., 2014] is:

V (D,G) = Ex∼γ ln [D(x)] + Ez∼N(0,1) ln [1−D(G(z))] (3.1)

where E denotes the expectation with respect to a distribution specified in the subscript.
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Generative adversarial networks solve the minimax problem

min
θG

max
θD

V (D,G) = min
θG

max
θD

(
Ex∼γ ln [D(x)] + Ez∼N(0,1) ln [1−D(G(z))]

)
(3.2)

For a given generator G, max
θD

V (D,G) optimizes the discriminator D to reject

generated samples G(z) by attempting to assign high values to samples from the distribution

γ and low values to generated samples G(z). Conversely, for a given discriminator D,

min
θG

V (D,G) optimize G so that the generated samples G(z) will attempt to confuse the

discriminator D into assigning high values [Wang, 2020].

The first term in equation (3.2) is the expectation of the discriminator output when

the input came from the real data distribution; and the second term is the discriminative

predictions when the inputs came form the false data.

At the end of the minimax game, the generator and discriminator interaction

translate to a more general objective for the whole GAN architecture. That is, to make

the real and generated data distributions very similar, i.e., trying to get the generated

distribution as close as possible to the real distribution. During this whole training process,

the discriminator is trying to delineate the real and fake distribution as much as possible,

whereas the generator is trying to make the generated distribution look more like the real

samples, see Figure 3.2.

3.1.2 Training algorithm

The GAN training algorithm involves training both the discriminator and the

generator model in parallel. Algorithm 3.1 shows how GAN training works.

First, a batch of random points from the latent space must be selected for use as

input to the generator model to provide the basis for the generated samples (lines 2 and 3

from Algorithm 3.1).

Then a batch of samples from the training dataset must be selected for input to

the discriminator as the original samples, line 4.

Using both original and generated samples, we associate labels 1 and 0 to each

original and fake sample respectively. The samples are passed into the discriminator to get
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Real
distribution

f(x)

x

Generator

Figure 3.2: The, theoretical, real distribution (green) and the normal distribution (blue). The generator tries

to minimize the distances between the two distribution (red line) while the discriminator tries to distinguish

between samples.

predictions and use the labels and cost function to calculate the loss (line 5). The gradient

of the cost function with respect of the discriminator’s parameters tell us how to change

each parameter to most efficiently increase the loss function by Equation (3.3) (line 6).

∇θd
1

m

m∑
i=1

(
ln [D (xi)] + ln [1−D (G(zi))]

)
(3.3)

In order to update the generator model, we sample another batch of random noise

and transform them with the generator to get the generated samples (lines 7 and 8). The

objective is only to update the generator’s parameters by Equation (3.4) (line 10); this is

done by taking the gradient of the loss function with respect to these parameters (line 9).

∇θg
1

m

m∑
i=1

ln [1−D(G(zi))] (3.4)

3.1.3 Problems with GANs

While GANs are a major breakthrough for generative modeling, they are also

notoriously difficult to train. GANs are difficult to train because both the generator and

the discriminator are trained simultaneously in a minimax game. This means that improve-

ments to one model come at the expense of the other model. The goal of training two
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Algorithm 3.1: Train GAN(Generator, Discriminator, n epochs,

batch size)

1 for i = 1 to n epochs do

// Update the discriminator

2 z = Get Noise Vectors(size=batch size)

3 generated samples = Generator(z)

4 original samples = Get Real Samples(size=batch size)

5 Loss g, Loss d = Discriminator([real samples, generated samples])

6 Discriminator.UpdateWeights([Loss g, Loss d])

// Update the generator

7 z = Get Noise Vectors(size=batch size)

8 generated samples = Generator(z)

9 Loss g = Generator(generated samples)

10 Generator.UpdateWeights(Loss g)

11 end

models involves finding an equilibrium point between the two competing concerns. It also

means that every time the parameters of one of the models are updated, the nature of the

optimization problem that is being solved is changed.

Convergence Failure. Typically, a neural network fails to converge when the model loss

does not settle down during the training process. In the case of a GAN, a failure

to converge refers to not finding an equilibrium between the discriminator and the

generator, see Figure 3.3. The likely way that you will identify this type of failure is

that the loss for the discriminator has gone to zero or close to zero. In some cases,

the loss of the generator may also rise and continue to rise over the same period.

Mode collapse. A mode collapse refers to a generator model that is only capable of gen-

erating one or a small subset of different outcomes, or modes. Here, mode refers to an

output distribution, e.g. a multi-modal function refers to a probability distribution

with more than one local maximum probability peak. With a GAN generator model,
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Figure 3.3: Convergence failure refers to not finding an equilibrium between the discriminator and the

generator.

a mode failure means that the vast number of points in the input latent space result

in one or a small subset of generated samples.

Columns from Figure 3.4 show a heatmap of the generator distribution after increasing

numbers of training steps. The final column shows the data distribution (a toy 2D

mixture of Gaussians dataset). The top row shows training for a GAN without mode

collapse, its generator quickly spreads out and converges to the target distribution.

The bottom row shows a GAN training with mode collapse, the generator rotates

through the modes of the data distribution. It never converges to a fixed distribution.

Figure 3.4: Taken from Unrolled Generative Adversarial Networks by Luke Metz, et. al. 2017.
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Vanishing gradients. If the discriminator is too good, then generator training can fail

due to vanishing gradients During backpropagation, the gradient flows backward, from

the final layer to the first layer. As it flows backward, it gets increasingly smaller.

Sometimes, the gradient is so small that the initial layers learn very slowly or stop

learning completely. In this case, the gradient does not change the weight values of

the initial layers at all, so the training of the initial layers in the network is effectively

stopped.

Certain activation functions, like sigmoid function Figure 3.5, encloses a large input

space into a small input space between 0 and 1.Therefore, a large change in the input

of the sigmoid will cause a small change in the output. Hence, the derivative becomes

small.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
0.0

0.2

0.4

0.6

0.8

1.0
Sigmoid function and its derivative

Sigmoid
Derivative

Figure 3.5: The gradient could be very small and does not change the weights of the layers.
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3.2 Wasserstein GAN

The Wasserstein GAN (WGAN) was one of the first big steps toward stabilizing

GAN training. With a few changes, Arjovsky et al., were able to show how to train GANs

that have the following two properties:

• A meaningful loss metric that correlates with the generator’s convergence and sample

quality.

• Improved stability of the optimization process.

Specifically, the paper introduces a new loss function for both the discriminator

and the generator. Using this loss function instead of binary cross entropy results in a more

stable convergence of the GAN.

3.2.1 Wasserstein loss

To train the GAN discriminator, we calculate the loss when comparing class esti-

mation for real samples pi = D(xi) to the response yi = 1, and estimations for generated

samples pi = D(G(zi)) to the response yi = 0. Therefore for the GAN discriminator,

minimizing the loss function (Equation 3.1) can be written as:

max
θD

(
Ex∼γ [lnD(x)] + Ez∼N(0,1) ln [1−D(G(z))]

)
(3.5)

To train the GAN generator, we calculate the loss when comparing predictions for

generated samples pi = D(G(zi)) to the response yi = 1. Therefore for the GAN generator,

minimizing the loss function (Equation 3.1) can be written as:

min
θG

(
Ez∼N(0,1) ln [D(G(z))]

)
(3.6)

The Wasserstein loss requires 1 and −1 as labels, rather than 1 and 0. Also, the

sigmoid activation was removed from the final layer of the discriminator, so that predictions

pi are no longer constrained to fall in the range [0, 1], but instead it can now be any number

in the range (−∞,∞). For this reason, the discriminator in a WGAN is usually referred to

as a critic. The Wasserstein loss function is the defined as follows:
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L = − 1

n

n∑
i=1

yipi (3.7)

To train the WGAN critic, we calculate the loss when comparing predictions for

a real sample pi = D(xi) to the response yi = 1 and predictions for generated images

pi = D(G(zi)) to the response yi = −1. Therefore for the WGAN critic, minimizing the

loss function can be written as:

max
θD

(
Ex∼γ [D(x)]− Ez∼N(0,1) [D(G(z))]

)
(3.8)

To train the WGAN generator, we calculate the loss when comparing predictions

for generated samples pi = D(G(zi)) to the response yi = 1. Therefore for the WGAN

generator, minimizing the loss function can be written as:

min
θG

(
Ez∼N(0,1)D (G (z))

)
(3.9)

The main differences between Wasserstein loss and Binary Cross-Entropy (BCE)

loss is that, the discriminator under the BCE loss outputs a value between 0 and 1, while

in W-loss will output any number. Additionally, the structure of the cost function is very

similar, but W-loss does not have any logarithms within it, and that is because it is a

measure of how far the prediction of the critic for the real (D(x)) is from its prediction

from the generated D(G(z)). The critic is no longer bounded, and just trying to separate

the two distributions as much as possible, and as result, the critic is allowed to improve

without degrading its feedback back to the generator. This occurs because, it does not

have a vanishing gradient problem, and this mitigates against mode collapse, because the

generator always gets useful feedback.

3.2.2 The Lipschitz constraint

As the Wasserstein loss does not restrict the output with a sigmoid function, the

loss can therefore be very large. The authors of the paper [Arjovsky et al., 2017] show that

for the Wasserstein loss function to work, the critic needs to be a 1-Lipschitz continuous
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function. We say the critic is 1-Lipschitz continuous if it satisfies the following inequality

for any two input samples, x1 and x2:

|D(x1)−D(x2)|
|x1 − x2|

≤ 1 (3.10)

Here, |x1 − x2| is the absolute difference between two samples and |D(x1)−D(x2)|

is the absolute difference between the discriminator predictions. Essentially, we requiere a

limit on the rate at witch the predictions of the critic can change between two samples, i.e.,

the absolute value of the gradient must be at most 1 everywhere.

Figure 3.6 shows an example of a 1D Lipschitz continuous function. Let f : R→ R

(black curve), f(·) is 1-Lipschitz continuous because for all x in its domain, the norm of its

gradient is, at most, 1; graphically we can plot two lines (with slopes m = 1 and m = −1)

and the function remains entirely inside those lines (green area).
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Figure 3.6: There exists a double region (green area) such that wherever it is placed on f(x), the black

curve, the function always remains entirely inside.

This condition on the critics neural network is important for W-Loss because it

assures that the W-Loss function is not only continuous and differentiable, but also that it

does not grow too much and maintain some stability during training.

There are two main methods to enforce one Lipschitz continuity on the critic,

namely weight clipping and gradient penalty.

3.2.3 Weight clipping

With this method the weights of the critics neural network are forced to take

values between a fixed interval. After the weights were updated during gradient descent,

this method will clip any weights outside of the desired interval.
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Basically that means the weights over that interval, either too high or too low,

will be set to the maximum or the minimum amount allowed. Arjovsky, et al., show how

it is possible to enforce the Lipschitz constraint by clipping the weights of the critic to lie

within a small range, [−0.01, 0.01], after each training batch.

This method has a downside: If the clipping parameter is large, then it can take a

long time for any weights to reach their limit, thereby making it harder to train the critic

till optimality. If the clipping is small, this can easily lead to vanishing gradients when the

number of layers is big.

Not only is this trying to do 1-Lipschitz continuity enforcement, this might also

limit the critic too much. Or on the other hand, it might actually limit the critic too little

if we do not clip the weights enough.

3.2.4 Gradient penalty

A much softer way to enforce the critic to be 1-Lipschitz continuous is with the

gradient penalty. All we need to do is to add a regularization term to the loss function, as

indicated by Equation (3.11):

min
θG

max
θC

Ex∼γ [D(x)]− Ez∼N(0,1) [D(G(z))]︸ ︷︷ ︸
Original critic loss

+λEx̂∼δ

[(
||∇x̂D (x̂)||2 − 1

)2]︸ ︷︷ ︸
Gradient penalty

. (3.11)

We implicitly define δ sampling uniformly along straight lines between pairs of

points sampled from the real data distribution γ and the generator distribution N(0, 1)

[Gulrajani et al., 2017]. This is motivated by the fact that the original optimal critic

contains straight lines with gradient norm 1 connecting coupled points form γ to N(0, 1) .

It is intractable to calculate this gradient everywhere during the training process,

so instead the WGAN-GP evaluates the gradient at only a handful of points. To ensure a

balanced mix, we use a set of interpolated samples that lie at randomly chosen points along

lines connecting the batch of real samples to the batch of fake samples pairwise, as shown

in Figure 3.7a.

What the regularization term on Equation (3.11) does to the W-loss function, is
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(a) Sampling uniformly along straight lines
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(b) Interpolation for one real time series

scenario and one generated.

Figure 3.7: Interpolation between real and generated samples.

that it penalizes the critic when its gradient norm is higher than one. λ is just a hyperpa-

rameter value of how much to weigh this regularization term against the main loss function,

and x̂ is an interpolated sample (Figure 3.7b).

The gradient penalty loss measures the squared difference between the norm of

the gradient of the predictions with respect to the input samples and 1. The model will

naturally be inclined to find weights that ensure the gradient penalty term is minimized,

thereby encouraging the model to conform to the Lipschitz constraint (see Algorithm 3.2).

Algorithm 3.2: Gradient Penalty(Discriminator, real samples, gener-

ated samples)

1 ε = U [0, 1]

2 interpolated = ε · real samples + (1− ε) · generated samples

3 pred = Discriminator(interpolated)

4 grads = Discriminator.UpdateWeights([pred])

5 norm = Norm(grads)

6 return (norm− 1)2

Algorithm 3.3 shows the implementation of the Wasserstein loss with gradient

penalty, where D represents the discriminator (critic) and G represents the generator.
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Algorithm 3.3: WGAN GP(Generator, Discriminator, n epochs,

batch size, n critic, λ)

1 for i = 0 to n epochs do

// Update the discriminator:

2 for j = 0 to n critic do

3 z = Get Noise Vectors(batch size)

4 generated = Generator(z)

5 real = Real Samples(batch size)

6 gp = Gradient Penalty(Discriminator, real, generated)

7 loss = Discriminator(generated) - Discriminator(real) + λ gp

8 Discriminator.UpdateWeights(loss)

// Update generator:

9 z = Get Noise Vectors(batch size)

10 generated = Generator(z)

11 G model.UpdateWeights(Discriminator(generated))

3.3 Inception score

Deep generative models are powerful tools that have produced impressive results

in recent years, but unlike other deep learning neural networks models that are trained with

a loss function until convergence, a GAN generator model is trained using the discriminator.

Both the generator and discriminator are trained together to maintain an equilibrium.

As such, there is no objective loss function used to train the GAN generator model

and no way to objectively assess the progress of the training and the relative or absolute

quality of the model from loss alone.

The advances made by the GANs have been for the most part empirically driven

[Barratt and Sharma, 2018], and it is common to periodically generate and save samples

during the model training process and use subjective human evaluation on the generated

samples in order to both evaluate the quality of the generated samples and to select a final
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generator model.

An early adopted example of an objective evaluation method for GAN generated

samples is the Inception Score (IS) proposed by Tim Salismans, et al. in their 2016 paper

titled “Improved Techniques for Training GANs”.

3.3.1 Definition

The Inception Score (IS) is an objetive metric for evaluating the quality of gen-

erated samples. It involves the use of a pre-trained neural network model for classification

to classify the generated samples. The pre-trained neural network is used to compute the

probability of the sample belonging to each class over a large number of generated samples.

These predictions are then summarized into the inception score.

The score measures two things simultaneously:

• Diversity: the samples should have variety, and

• Quality: each sample distinctly looks like something specific.

Inception score has a lowest value of 1 and a highest value of the number of classes

supported by the classification model; in this thesis the model we will use supports three

classes, and as such, the highest inception score on this thesis is three.

3.3.2 Calculation

The inception score is calculated by first using a pre-trained neural network to

predict the class probabilities for each generated sample. These are conditional probabilities,

e.g. class label conditional on the generated sample. Samples that are classified strongly as

one class over all other classes indicate a high quality. As such, the conditional probability

of all generated images in the collection should have a low entropy [Salimans et al., 2016].

The entropy is calculated as the negative sum of each observed probability multi-

plied by the log of the probability. The conditional probability captures our interest in the

quality.
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Entropy = −
n∑
i=1

pi ln(pi) (3.12)

To capture our interest in a variety of samples, we use the marginal probability.

This is the probability distribution of all generated samples. We would prefer the sum of

all the values from the marginal probability distribution to have a high entropy.

Combining these two elements by calculating the Kullback-Leibler (KL) diver-

gence, between the conditional and marginal probability distribution for all the generated

samples. Finally, the metric proposed at [Salimans et al., 2016] is:

IS(G) = exp

(
Ex∼pgKL

(
p (y|x) ||p (y)

))
(3.13)

where x ∼ pg indicates that x is a sample taken from pg, KL (p(y|x)||p(y)) is the KL-

divergence between the distributions p(y|x) and p(y), p(y|x) is the conditional class distri-

bution, and p(y) is the marginal class distribution. The exp in the expression is there to

make the values easier to compare.

3.3.3 Implementation

The samples are split into several groups (Salismans et al., used 10 groups), and

the inception score is calculated on each group of images, then the average is reported.

The calculation of the IS on a batch of samples involves first using the neural

network to classify and calculate the conditional probability for each sample (p(y|x)). The

marginal probability is then calculated as the average of the conditional probabilities for

the images in the batch (p(y)).

The KL divergence is calculated for each sample as the conditional probability

multiplied by the log of the conditional probability minus the log of the marginal probability:

KL divergence = P (y|x)
[

log p(y|x)− log p(y)
]

(3.14)

The KL divergence is then summed over all samples and averaged over all classes

and the exponent of the result is calculated to give the final score [Salimans et al., 2016].

Algorithm 3.4 implements the official inception score used when reported in several

papers that use the score.
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Algorithm 3.4: Inception Score(p yx, n split)

1 scores = list()

2 n part =

p yx.length[0]

n split


3 n part = Floor(p yx.length / n split)

4 for i = 1 to n split do

5 subset ← p yx[i · n part : (i+1) · n part]

6 p y ← Mean(p yx)

7 kl d ← p yx · (Log(p yx) - Log(p y))

8 sum kl ← Sum(kl d)

9 avg ← Mean(sum kl)

10 IS score ← Exp(avg)

11 scores.append(is score)

12 end

13 return Mean(scores)

3.4 Chapter conclusions

In this chapter we explored the implementation of the generative adversarial net-

works [Goodfellow et al., 2014], some of their most common problems, and a some theoret-

ical changes in order to improve the results by enforcing the constraint 1-Lipschitz: weight

clipping [Arjovsky et al., 2017] and gradient penalty [Gulrajani et al., 2017]

All GANs are characterized by a generator versus discriminator (or critic) archi-

tecture, with the discriminator trying to distinguish between real and fake samples, and

the generator aiming to fool the discriminator. By balancing how these two adversaries are

trained, the GAN generator can gradually learn how to produce similar samples to those in

the training set.



Chapter 4

Experiments and Results

The main goal of a GAN is to solve the question: If we have a data set of similar

objects, such as, a collection of images of handwritten 5’s, or images of bees, or images of

airplanes, can we artificially generate similar objects? [Wang, 2020].

GANs have shown a great potential to replicate the probability distribution of the

original data in order to generate new artificial samples that “look like” the original. Figure

4.1 shows samples from digit 5 taken from the MNIST data set [Deng, 2012], bees drawings

taken from Google Draws [Jongejan et al., 1999] and airplanes from CIFAR-10 data set

[Krizhevsky et al., ]. For each set of images, the five images on the left were taken from the

training set, and the three on the right was produced by a GAN .

Data Real Generated

set samples samples

MNIST

Quick Draw

CIFAR-10

Figure 4.1: On each of the data set, the five samples from the mid column were taken from the original data

set, and the one on the right are synthetic samples made from the generator.

31



4.1. Time series description 32

By gathering similar objects, one GAN can learn the probability distribution and

generate a sample with the same (or approximately the same) probability distribution. So,

will create sets of time series with similar characteristics in order to produce a new sample,

this way if a sunny day is forecast for tomorrow we will be able to produce a sample that

look like a sunny day.

This chapter provides a detailed overview of the conducted experiments. Section

4.1 describes the time series used in this thesis and how they were group in order to create

sets with the same features. Section 4.2 will describe how to create a GAN and how to

train it in order to produce resemble data.

4.1 Time series description

In this thesis we used three different time series: solar irradiance, ambient tem-

perature and wind speed. Figure 4.2 show the data have daily patterns, that lead us to

think we can group the data into daily scenarios.

The data from the solar irradiance and ambient temperature were taken form the

weather station at Morelia, Michoacán. Both series have 1-minute resolution data, and we

have 600 days of data. The data from wind speed was taken from the weather station at

Cointzio, Michoacán. This time series has 60-minute resolution data, and we have 357 days

of data.

Starting from the whole time series data, we rearrange the time series in order

to have daily data shape. This way our data takes into account the fluctuations due to

weather conditions for each day. Figure 4.3 shows (on the top) the original data over seven

days, and also (on the bottom) show two different daily samples.

The first step in order to group samples, was to fix the time resolution. The

original samples, from solar irradiance and ambient temperature, are 1-minute resolution,

this means 1440 values per day. Although we could create scenarios with that resolution,

we used 10-minute, 30-minute and 60-minute resolution.

From the daily life it is know there are days with more solar irradiance than others,

as well as there are days where the wind speed is lower than others. In this sense, we can
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(a) Solar irradiance time series with 1-minute resolution.
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(b) Ambient temperature time series with 1-minute resolution.
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(c) Wind speed time series with 60-minute resolution.

Figure 4.2: Solar irradiance, ambient temperature and wind speed original time series.

group the daily samples into groups with different values, e.g., low, mid and high values.

From visual inspection, the first day on Figure 4.3 (red curve) have lower solar

irradiance than day four (blue curve). This way, we could classify each sample and assign

them one label each, e.g., day one could be classify as low solar irradiance while day four

could be mid solar irradiance.

In order to group the data into low, mid and high values, we use the trapezoidal

rule, Equation (4.1), to approximate the Area Under the Curve (AUC) , and thus to classify

accordingly.

A ≈ 1

2

(
y0 + 2

n−1∑
i=1

yi + yn

)
(4.1)

By using Equation (4.1) we created three different groups, each with similar char-

acteristics according to the range. However, besides defining groups by AUC, we also used
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Figure 4.3: The time series data were grouped in order to form daily time series.

the K-means algorithm to create three groups with similar characteristics in the hyper-

dimensional space.

Figure 4.4 summarize how we group the time series data. The first step was to fix

the time resolution (only for solar irradiance and ambient temperature) in order to perform

different experiments. Next, we create the training sets so that each one of them has similar

characteristics to each other, by using two criteria to cluster data: area under the curve

and the K-means algorithm.

4.2 Experiment description

Once we have group the time series data, we need to construct an adversarial

neural network for each group in Figure 4.4 to produce new samples. The generator will

transform vectors from the normal distribution into a sequence that should resemble the

real samples; and the critic should compute the Wasserstein distance.
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Figure 4.4: The time series data was subsampled with three different time resolutions, and after we use one

criterion (area or K-means) to create the scenarios.

From our experiments, we determined that the generator will use a mixture of

rectifier linear activations, batch normalization and a linear layer. The generator’s inputs

is a noise vector sampled from the normal distribution, the hidden layers will be a group of

dense, batch normalization and leaky ReLU layers; the output layer is a dense layer with

hyperbolic tangent as activation function, and shape equal to the time series resolution, see

Figure 4.5.
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Figure 4.5: The generator receives a noise vector and transform it into a sequence that should have the same

characteristics as the real samples.

Instead of using a discriminator to classify, or predict, the probability of generated

sample as being real or fake, the Wasserstein GAN changes or the discriminator model with

a critic that scores the “realness” or “fakeness” of a given sample.

The critic used in our experiments also use a rectifier linear activation and dropout

layers, but batch normalization should not be used because batch normalization creates

correlation between images in the same batch, which makes the gradient penalty loss less

effective [Foster, 2019]. The critic’s inputs are samples taken from the real data as well

from the generated data; the hidden layers are a stack of dense, leaky ReLU and dropout

layer; finally, the output will produce one single real number, see Figure 4.6.

Figure 4.6: The critic on a Wasserstein GAN scores the “realness” of a given sample.

Once we have defined our generator and critic, we implement the WGAN-GP

model: For each epoch, we will perform the following stapes as laid out in Algorithm 3.3

from page 27.

1. Train the generator and get the generator’s loss,
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2. Train the critic and get the critic’s loss,

3. Calculate the gradient penalty,

4. Multiply this gradient penalty with a constant weight factor,

5. Add the gradient penalty to the discriminator loss.

4.3 Solar irradiance

By plotting the data as daily samples we can observe there are different levels of

solar irradiance, that leads us to think we can create scenarios according to how much solar

irradiance we would expect. Figure 4.7 shows six different real days: the two from the left

seem to have more area under the curve, while the two from the right seem to have lower.
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Figure 4.7: The area under the curve of solar irradiance per day varies every day. There are days on which

the solar irradiance are greater (plots on the left), and there are days on which is lower (plots on the right).

First, we fixed the time resolution into 10, 30 and 60 minutes, then we will per-

formed two sets of experiments for each time resolution: we used Equation (4.1), to calculate

the area under the curve for each day, and thus classify the samples on three categories:

high, mid, and low irradiance; and we used K-means to create another three different groups.
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4.3.1 10-minute resolution

Subsampling every day into 10-minute resolution produces samples with 144 mea-

surements per day. The results are described below:

Area under the curve. The values of the area under the curve from solar

irradiance from the original samples range from 8,298 to 43,906 W/m2. We created three

different scenarios according to low, mid and high solar irradiance.

After training we generated 3,000 samples (1,000 for each group) and calculated

the area under the curve from the generated samples and the most of them have area within

the correct range. Table 4.1 summarize the results for the solar irradiance data grouped by

area under the curve.

Using the inception score for these samples we obtained 2.19, where the maximum

possible value is 3. Figure 4.8 shows three examples for each group.
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Figure 4.8: Generated samples for solar irradiance 10-minute resolution.

K-means. Grouping the data using K-means algorithm, we created three groups

for the time series: classes 0, 1 and 2. We trained a WGAN for each class and then, we use

the computed clusters centers to assign the class of the generated samples, and thus verify
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if they belong to the correct class. Using the inception score to validate these samples, they

score 2.57 over 3. Table 4.1 summarizes the results.

Actual Predict class

class Low Mid High

Low 92.5% 7.5 % 0.0%

Mid 13.1% 85.3% 1.6%

High 0.2% 9.3% 90.5%

Area under the curve

Actual Predict class

class Class 0 Class 1 Class 2

Class 0 98.8% 0.76 % 0.44%

Class 1 3.52% 94.3% 2.18%

Class 2 0.86% 2.17% 96.97%

K-means

Table 4.1: Results for 10-minute resolution solar irradiance.
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4.3.2 30-minute resolution

Analogously to section 4.3.1, we grouped the samples according to their area under

the curve in high, mid, and low solar irradiance; and using the K-means algorithm we created

three classes with K-means.

Area under the curve. The values of the area under the curve range from 2,638

to 14,745 W/m2. The results are summarized in Table 4.2. Figure 4.9 shows three examples

for each group. The inception score for the generated samples is 2.73 over 3.
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Figure 4.9: Generated samples for solar irradiance 30-minute resolution.

K-means. Using the K-means algorithm we grouped the data into three classes,

and calculating the inception score we obtained 2.83 over 3. Table 4.2 summarizes the

results after training.

4.3.3 60-minute resolution

The last group of scenarios for solar irradiance were made by subsampling every

original sample into 60-minute resolution, i.e., one value for each hour of the day.
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Actual Predict class

class Low Mid High

Low 96.5% 3.5% 0.0%

Mid 7.1% 92.4% 0.5%

High 0.7% 7.2% 92.1%

Area under the curve

Actual Predict class

class Class 0 Class 1 Class 2

Class 0 97.5% 2.5% 0.0%

Class 1 3.4% 94.3% 2.3%

Class 2 5.2% 3.3% 91.5%

K-means

Table 4.2: Results for 30-minute resolution solar irradiance.

Area under the curve. The values of the area under the curve range from 1,325

to 7,519 W/m2. The results are summarized in Table 4.3. The inception score for the

generated samples is 2.83 over 3; two samples for each group are shown in Figure 4.10.
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Figure 4.10: Generated samples for solar irradiance 60-minute resolution.

K-means. By grouping using the K-means algorithm, we get an inception score

of 2.44 over 3.
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Actual Predict class

class Low Mid High

Low 96.3% 3.7% 0.0%

Mid 0.1% 92.0% 7.9%

High 0.1% 4.9% 95.0%

Area under the curve

Actual Predict class

class Class 0 Class 1 Class 2

Class 0 96.33% 3.40% 0.27%

Class 1 0.04% 96.44% 3.52%

Class 2 0.41% 5.18% 94.41%

K-means

Table 4.3: Results for 60-minute resolution solar irradiance.

4.4 Ambient temperature

Analogously to section 4.3 Solar irradiance, by plotting the time series we can

to group the data into how much warm, or cold, is one day. Figure 4.11 shows two days

with high temperature (plots on the left) and two days with low temperature (plots on the

right).
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Figure 4.11: The area under the curve per day varies on each day. There are day on which the ambient

temperature are greater (plots on the left), and there are day on which is lower (plots on the right).

As well as with the solar irradiance time series, we also create the train sets

according to the time resolution (10, 30, and 60 minutes), and after we use the area under
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the curve and the K-means algorithm to create the groups (as Figure 4.4).

4.4.1 10-minute resolution

Subsampling every day with 1,440 measurements into 10-minute resolution, will

produce samples with 144 measurements per day.

Area under the curve. Figure 4.12 shows three generated samples for each

group. The inception score for the generated samples is 2.89 over 3.
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Figure 4.12: Generated samples for ambient temperature 10-minute resolution.

K-means. By grouping using the K-means algorithm, we get an inception score

of 2.88 over 3.

4.4.2 30-minute resolution

Subsampling every day with 1440 measurements into 30-minute resolution, will

produce samples with 48 measurements per day.

Area under the curve. Figure 4.13 shows three generated samples for each

group. The inception score for the generated samples is 2.35 over 3.
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Actual Predict class

class Low Mid High

Low 99.97% 0.03% 0.0%

Mid 0.0% 98.09% 1.91%

High 0.0% 0.05% 99.95%

Area under the curve

Actual Predict class

Class 0 Class 1 Class 2

Class 0 99.77% 0.23% 0.00%

Class 1 2.78% 97.17% 0.05%

Class 2 0.00% 0.0% 100.0%

K-means

Table 4.4: Results for 10-minute resolution ambient temperature.
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Figure 4.13: Generated samples for ambient temperature 30-minute resolution.

K-means. By grouping using the K-means algorithm, we get an inception score

of 2.77 over 3.

4.4.3 60-minute resolution

Subsampling every day with 1440 measurements into 60-minute resolution, will

produce samples with 24 measurements per day.

Area under the curve. Figure 4.14 shows three generated samples for each
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Actual Predict class

class Low Mid High

Low 96.86% 3.13% 0.01%

Mid 0.13% 94.06% 5.80%

High 0.00% 2.20% 97.8%

Area under the curve

Actual Predict class

class Class 0 Class 1 Class 2

Class 0 99.4% 0.6% 0.00%

Class 1 0.62% 97.69% 1.69%

Class 2 0.00% 2.44% 97.56%

K-means

Table 4.5: Results for 30-minute resolution ambient temperature.

group. The inception score for the generated samples is 2.67 over 3.
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Figure 4.14: Generated samples for ambient temperature 60-minute resolution.

K-means. By grouping using the K-means algorithm, we get an inception score

of 2.68 over 3.
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Actual Predict class

class Low Mid High

Low 99.93% 0.06% 0.00%

Mid 0.00% 100% 0.00%

High 0.00% 0.00% 0.00%

Area under the curve

Actual Predict class

class Class 0 Class 1 Class 2

Class 0 99.95% 0.05% 0.00%

Class 1 0.40% 97.38% 2.22%

Class 2 0.00% 0.00% 100%

K-means

Table 4.6: Results for 60-minute resolution ambient temperature.

4.5 Wind speed

This time series does not have 1-minute resolution, instead have hourly data.

Because of this time resolution, we could not make groups with 10 and 30-minute resolution

as in sections 4.3 Solar irradiance and 4.4 Ambient temperature. We could only group the

data by area under the curve and the K-means algorithm with 60-minute resolution.

Figure 4.15 shows the plots of six samples. As we can observe, the plots on the left

have more area under the curve than the plots on the right. As in previous experiments, we

group the training sets according to the area under the curve, and then we used K-means

to perform another set of experiments.

4.5.1 60-minute resolution

Area under the curve. Figure 4.16 shows two generated samples for each group.

The inception score for the generated samples is 2.77 over 3.
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Figure 4.15: Classifying the original samples according to the area under the curve.
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Figure 4.16: Generated samples for wind speed 60-minute resolution.
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K-means. By grouping using the K-means algorithm, we get an inception score

of 2.77 over 3.

Actual Predict class

class Low Mid High

Low 82.26% 17.73% 0.0%

Mid 7.13% 92.13% 0.73%

High 0.20% 10.0% 89.8%

Area under the curve

Actual Predict class

class Class 0 Class 1 Class 2

Class 0 99.52% 0.43% 0.05%

Class 1 0.01% 81.85% 18.14%

Class 2 0.05% 0.27% 99.68%

K-means

Table 4.7: Confusion matrix for 60-minute resolution wind speed.

4.6 Chapter conclusions

After the whole set of experiments we can affirm our WGANs with gradient

penalty, can replicate the patterns of the time series. By visual inspection we can vali-

date the generated samples include the fluctuations of weather as the real samples, and

thus we can create plausibles scenarios.

Besides the visual inspection, we calculate the inception score (as detailed in sec-

tion 3.3 from page 27) to really have a quantitative measure to assess the generated samples.

Table 4.8 shows the inception score obtain for our scenarios. Note that the score is slightly

better when we group the time series by K-means.

Time Solar irradiance Ambient temperature Wind speed

resolution AUC K-means AUC K-means AUC K-means

10-minute resolution 2.120 2.511 2.898 2.884 − −

30-minute resolution 2.731 2.835 2.352 2.771 − −

60-minute resolution 2.834 2.445 2.673 2.688 2.773 2.777

Table 4.8: Results for the Inception Score for all the scenarios.



Chapter 5

Conclusions

This chapter summarizes the characteristics of the data, the results obtained in

Chapter 4, interpretation of results as well as some ideas that may serve to conduct future

research.

5.1 General conclusions

We started this thesis with three different time series: solar irradiance, ambient

temperature, and wind speed. From the data, we created samples for each day and grouped

these samples to create a training set with the same characteristics (as shown in Figure 4.4

from page 35).

Once we have the different training set, we train a WGAN architecture so the

generator will be able to replicate the distribution from the original data.

We were able to produce realistic synthetic days according to different scenarios.

Having data at 1-minute resolution, allowed us to subsampling the time series data and

create different scenarios for different purposes (although we could also generate a scenario

with 1 minute resolution).

Scenario generation can help model the uncertainties and variations in renewables

generation, and it is an essential tool for decision-making in power grids with high pene-

tration of renewables. This thesis proved WGANs performs well for scenario generation for

solar irradiance, ambient temperature, and wind speed.

49



5.1. General conclusions 50

Figure 5.1 shows one scenario for each time series. Figure 5.1a shows one real

and one generated scenario, Figure 5.1b the two scenarios are from ambient temperature,

and Figure 5.1c shows scenarios for wind speed. From visual inspection we can notice the

generated samples are quite similar to the real samples.

In summary, the results illustrate presented in Chapter 4 shows that generative

adversarial networks with gradient penalty can generate new daily scenarios with high

quality that capture the intrinsic features of the original data (including range, fluctuations,

patterns, etc.), and not to simply memorize the training data.
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(a) Solar irradiance scenarios. The black curve

is the real sample, and the red one is a generated

sample.
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(b) Ambient temperature scenarios. The black

curve is the real sample, and the blue one is a

generated sample.
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(c) Wind speed scenarios. The black curve is

the real sample, and the green one is a generated

sample.

Figure 5.1: Scenario comparison. The curves on black correspond to real samples from solar irradiance,

ambient temperature and wind speed, respectively. We can see, the generated scenario has the same shape

as the real sample.
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5.2 Future work

Finally, we present some ideas that may serve as areas of potential research, and

may lead to fruitful results:

5.2.1 Use deep convolutional GANs

We implemented a WGAN with gradient penalty whose generator and critic were

simple feed-forward neural networks. Despite the simplicity, many of the generated scenarios

that the generator produced after being fully trained were convincing (as shown in Figure

5.1).

We believe we can create more plausible scenarios with a more powerful network

architecture. Instead of simple feed-forward networks, both the generator and the critic

can be implemented as convolutional neural networks (CNNs, or ConvNets). The resulting

GAN architecture is know as Deep Convolutional GAN [Foster, 2019].

Figure 5.2: Encoding map of Gramian Angular Fields. [Wang and Oates, 2015] transformed a sequence into

a polar coordinate system and calculate its Gramian Angular Summation/Difference Fields.
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5.2.2 Forecasting and missing data

We can use these generated scenarios to obtain missing data and for the forecasting

task. If given daily scenario with some missing data, or if we want to forecast the next values,

we could generated a scenario similar enough to the real data and use the generated data

to find the missing data, or to make predictions, see Figure 5.3.
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(a) The generated scenario (red) resembles the true data (black), and we can find a good approx-

imation to the missing values (green) and make a forecast prediction (blue).
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(c) From the generated scenario we can

forecast the next values of the time series.

The blue points shows the actual values.

Figure 5.3: Given a scenario for time series (black dots) we can find missing values and make forecasting

prediction.
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[Géron, 2017] Géron, A. (2017). Hands-On Machine Learning with Scikit-Learn and Ten-

sorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learn-

ing. Adaptive Computation and Machine Learning series. MIT Press.



References 55

[Goodfellow, 2017] Goodfellow, I. J. (2017). NIPS 2016 tutorial: Generative adversarial

networks. CoRR, abs/1701.00160.

[Goodfellow et al., 2014] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-

Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial net-

works.

[Granger et al., 2014] Granger, C., Newbold, P., and Shell, K. (2014). Forecasting Economic

Time Series. Elsevier Science.

[Gulrajani et al., 2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and

Courville, A. (2017). Improved training of wasserstein gans.

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for

image recognition.

[Hyndman and Athanasopoulos, 2018] Hyndman, R. and Athanasopoulos, G. (2018). Fore-

casting: principles and practice. OTexts.

[Jongejan et al., 1999] Jongejan, J., Rowley, H., Kawashima, T., Kim, J., and Fox-Gieg, N.

(1999). Quick, draw! the data.

[Karras et al., 2018] Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018). Progressive

growing of gans for improved quality, stability, and variation.

[Khashei et al., 2008] Khashei, M., Hejazi, S. R., and Bijari, M. (2008). A new hybrid

artificial neural networks and fuzzy regression model for time series forecasting. Fuzzy

Sets and Systems, 159.

[Kirchgassner and Wolters, 2008] Kirchgassner, G. and Wolters, J. (2008). Introduction to

Modern Time Series Analysis. Springer.

[Krizhevsky et al., ] Krizhevsky, A., Nair, V., and Hinton, G. Cifar-10 (canadian institute

for advanced research).

[Langr and Bok, 2019] Langr, J. and Bok, V. (2019). GANs in Action: Deep learning with

Generative Adversarial Networks. Manning Publications.



References 56

[Lemke and Gabrys, 2010] Lemke, C. and Gabrys, B. (2010). Meta-learning for time series

forecasting and forecast combination. Neurocomputing, 73.

[Luer et al., 2019] Luer, F., Mautz, D., and Bohm, C. (2019). [ieee 2019 international

conference on data mining workshops (icdmw) - beijing, china (2019.11.8-2019.11.11)]

2019 international conference on data mining workshops (icdmw) - anomaly detection in

time series using generative adversarial networks.

[McCulloch and Pitts, 1943] McCulloch, W. S. and Pitts, W. (1943). A logical calculus of

the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 5.

[Palit and Popovic, 2006] Palit, A. and Popovic, D. (2006). Computational Intelligence in

Time Series Forecasting: Theory and Engineering Applications. Advances in Industrial

Control. Springer London.

[Patterson and Gibson, 2017] Patterson, J. and Gibson, A. (2017). Deep Learning: A Prac-

titioner’s Approach. O’Reilly Media.

[Qiao et al., 2021] Qiao, J., Pu, T., and Wang, X. (2021). Renewable scenario generation

using controllable generative adversarial networks with transparent latent space. CSEE

Journal of Power and Energy Systems, 7(1):66–77.

[Radford et al., 2016] Radford, A., Metz, L., and Chintala, S. (2016). Unsupervised repre-

sentation learning with deep convolutional generative adversarial networks.

[Reed et al., 2016a] Reed, S., Akata, Z., Mohan, S., Tenka, S., Schiele, B., and Lee, H.

(2016a). Learning what and where to draw.

[Reed et al., 2016b] Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., and Lee, H.

(2016b). Generative adversarial text to image synthesis.

[Rosebrock, 2017] Rosebrock, A. (2017). Deep Learning for Computer Vision with Python:

Starter Bundle. PyImageSearch.

[Rosenblatt, 1958] Rosenblatt, F. (1958). The perceptron: A probabilistic model for infor-

mation storage and organization in the brain. Psychological Review, 65.



References 57

[Salimans et al., 2016] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford,

A., and Chen, X. (2016). Improved techniques for training gans.

[Shirvany et al., 2009] Shirvany, Y., Hayati, M., and Moradian, R. (2009). Multilayer per-

ceptron neural networks with novel unsupervised training method for numerical solution

of the partial differential equations. Applied Soft Computing, 9.

[Takahashi et al., 2019] Takahashi, S., Chen, Y., and Tanaka-Ishii, K. (2019). Modeling fi-

nancial time-series with generative adversarial networks. Physica A: Statistical Mechanics

and its Applications, 527:121261.

[Wang, 2020] Wang, Y. (2020). A mathematical introduction to generative adversarial nets

(gan).

[Wang and Oates, 2015] Wang, Z. and Oates, T. (2015). Imaging time-series to improve

classification and imputation.

[Xu et al., 2019] Xu, S., Chan, H. K., and Zhang, T. (2019). Forecasting the demand of the

aviation industry using hybrid time series sarima-svr approach. Transportation Research

Part E: Logistics and Transportation Review, 122.

[Zhang, 2003] Zhang, G. (2003). Time series forecasting using a hybrid arima and neural

network model. Neurocomputing, 50.

[Zhang et al., 2017a] Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., and

Metaxas, D. (2017a). Stackgan: Text to photo-realistic image synthesis with stacked

generative adversarial networks.

[Zhang et al., 2017b] Zhang, Z., Song, Y., and Qi, H. (2017b). Age progression/regression

by conditional adversarial autoencoder.


	Conferences Papers
	Resumen
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Introduction
	Time series
	Artificial neural networks
	Generative adversarial networks
	Problem statement
	Objectives
	Justification
	Chapter description

	Deep Learning
	Artificial neural networks
	Deep learning
	Discriminative and generative models
	Chapter conclusions

	Generative Adversarial Networks
	Generative adversarial networks
	Loss function
	Training algorithm
	Problems with GANs

	Wasserstein GAN
	Wasserstein loss
	The Lipschitz constraint
	Weight clipping
	Gradient penalty

	Inception score
	Definition
	Calculation
	Implementation

	Chapter conclusions

	Experiments and Results
	Time series description
	Experiment description
	Solar irradiance
	10-minute resolution
	30-minute resolution
	60-minute resolution

	Ambient temperature
	10-minute resolution
	30-minute resolution
	60-minute resolution

	Wind speed
	60-minute resolution

	Chapter conclusions

	Conclusions
	General conclusions
	Future work
	Use deep convolutional GANs
	Forecasting and missing data


	References

