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Resumen

El fenémeno de la luz se ha estudiado durante muchos afios, desde la dispersiéon Compton
hasta la dispersion luz por luz en la Teoria Cudntica de Campos. En el formalismo estandar
de la Teoria Cudntica de Campos, con el uso de las reglas de Feynman, podemos calcu-
lar varias de estas interacciones, como la polarizacion del vacio, que implica dos fotones
unidos a un lazo fermidnico, e incluso trabajar con la dispersion de cuatro fotones. En
particular, este dltimo proceso se ha estudiado en el formalismo estandar en varios limites.
El objetivo de esta tesis es calcular la amplitud a un lazo en el vacio bajo el marco del
formalismo linea de mundo para la QED escalar. Como la amplitud es finita, debido a
la invariancia de norma, todas las divergencias involucradas deben desaparecer. Los re-
sultados mostrados estdn escritos en términos de funciones como polilogaritmo y para el
resultado final, hemos realizado integracion numérica. Como algunas de las ventajas de
utilizar el formalismo linea de mundo podemos mencionar que el resultado no depende
del ordenamiento elegido para las piernas externas, ni de la suma de diagramas de Feyn-
man, también se eliminan algunas divergencias UV, que en el formalismo estidndar deben
cancelarse entre diferentes diagramas. La perspectiva para el futuro es pasar a la QED de
espinores y generalizar el resultado a un orden de bucle superior.

Palabras clave: Formalismo Worldline, Invarianza de Norma, Formula Maestra de
Bern-Kosower, Teoria Cuantica de Campos, Amplitud de Dispersion.
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Abstract

The phenomenon of light has been studied for many years, from Compton scattering to
light-by-light scattering in Quantum Field Theory. In the standard QFT formalism, with
the use of Feynman’s rules, we can calculate several of these interactions, such as vacuum
polarisation, which involves two photons attached to a fermionic loop, and even work with
four-photon scattering. Particularly the latter process has been studied in the standard for-
malism in various limits. The aim of this thesis is to calculate the amplitude for one-loop
order in vacuum under the framework of worldline formalism for scalar QED. Since the
amplitude is finite, due to gauge invariance, all divergences involved must vanish. The
results shown are written in terms of functions as polylogarithm and for the final result,
we have performed numerical integration. As some of the advantages of using the world-
line formalism we can mention that the result does not depend on the ordering chosen for
the external legs, nor the sum of Feynman diagrams, also some UV divergences, which
in the standard formalism must cancel between different diagrams, are eliminated. The
perspective for the future is to pass to spinor QED and generalise the result to higher loop
order.






Introduction

From the beginning, mankind has had an intrinsic curiosity about its environment and how
it works. As a consequence of this curiosity, people tried to explain in different ways,
how nature works and its rules, from magic and esoteric ideas until the most important
development; science, and more specifically, physics. As physicists, our task is to observe,
describe, model, make predictions, test them and write these rules of nature with only the
purpose of having a better understanding of the universe in all the possible ways, from the
macroscopic scale to the smallest one. As the first areas of physics, also called Classical
Physics, we can find Mechanics, Thermodynamics, Electrodynamics, and Optics, these ar-
eas were able to explain several phenomena; just to mention some examples, Mechanics
explains how the earth moves around the sun, Thermodynamics explains the transformation
of energy into heat and vice versa with the postulation of the three laws of Thermodynam-
ics, Electromagnetism and Optics into Maxwell’s equations encrypt how light has a relation
with electromagnetic fields.

In classical physics we have different approaches to the theory, for example, we have
Newtonian mechanics, Lagrangian mechanics, Hamiltonian mechanics, etc. These ap-
proaches are equivalent to each other, the difference is in how they do it.

Newton’s mechanics by characterizing physical systems by their position, velocity and
acceleration as time-dependent functions and with the help of Newton’s three laws, allow
us to find the equations of motion and integrate them, particularly, the second Newton’s
law: dp

F =ma = I (1)
On the other hand, Lagrangian mechanics is founded on the stationary action principle,
defining a function called the Lagrangian:

L = L(Qi, Qi, t) = T - ‘/’ (2)

where ¢;, g; are the generalised coordinates, and the velocities respectively for the i-particle,
T is the kinetic energy and V the potential energy of the system, we can define a functional
called the action functional:

S[ql = f L(gi . Dt 3)

1

1
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Now, imposing that S be stationary:
68 =0, “4)

where the symbol delta is the virtual displacement of the system, we can find that the
equations of motion for the Lagrangian function are given by:

d (oL\ 0L
—52)-7 =0, )
di\og:]  0q;

which are called Euler-Lagrange equations of motion. Knowing the Lagrangian function,
the associated equations of motion can be found and eventually integrated to explicitly find
the solution to our problem. For Hamiltonian mechanics, we can pass from Lagrangian

mechanics by doing a Legendre transformation:

H:H(Qi,piat):ZPiQi_L:T+‘/, (6)

where p; is the canonical momentum of the i-particle. What we can do with these ap-
proaches is to analyze different theories, for example for a free particle, we have the la-

grangian:
1
L= quz, (7)

which leads to the equation of motion:

=0 ®)

Another example, now involving special relativity, is the relativistic free particle:

L= -m "%, ©)

which leads to the equations of motion:
#=0 (10)

And as a last example, classical electrodynamics can be described with a lagrangian density
function as follows:

1 :
L= —ZFWF‘” + JuAu, (11)
where F,, are the electromagnetic tensor components, A, the components of the vector

potential and j, the four current components. Since this is a lagrangian density, we have to
integrate over the coordinates:

L:jﬁ%L (12)
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From equation 11, we can obtain Gauss’s Law and Ampere Law for classical electrody-
namics, and the rest from Bianchi’s identity, which can be written as:

0 F" +0,F" +0,F’" =0 (13)
We can write Maxwell equations in terms of the electromagnetic tensor F,:
0 F" = pgJ”

1
d, (ES”W(SFY(;) 0 (14)

We can notice that they are linear in fields and sources:

V.-E = £

€0
V.-B =0

OB
VXE = ——

ot

OE

VxB = ,Lt()J+,Ll()EO— (15)

ot

But even with these powerful tools and their accomplishments, Classical Physics areas
have a lot of limitations. For example, they cannot explain the movement of Mercury
around the sun or the UV catastrophe in the black body radiation. For years, scientists
were looking for different ways to solve these limitations of the theory, for example re-
doing Classical Physics and the partial solution to the problem. Resulting from of these
attempts we get two of the most important areas for modern physics, General Relativity
and Quantum Mechanics. The first is in charge of the geometry and dynamics of space-
time, meanwhile the second is in charge of the microscopic world and its probabilistic
behavior.

For these approaches, we pass from classical ideas to more general ideas, for example,
in General Relativity now the space and the time are a single element of the universe and
we pass from 3-vector and time representation to 4-vector including the time as another
coordinate. For Quantum Mechanics due to the nature and scales, now we cannot think in
a deterministic approach. We pass from absolute measurements to probabilities, and the
coordinates now pass to linear operators and states for our systems:

x(f) = %, |x), (16)
p(t) = p,|p). (17)

The operators and states are defined in a linear space with a positive norm, called Hilbert
space €. The operators are maps into our Hilbert space, i.e. they map from 7 — 7.
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Their action on the states return to us eigenvalues as follows:
A|A) = alA) (18)

The operators that give us physical information of the system have a particular property,
their eigenvalues are always real numbers and they are called hermitian operators. There are
commutation relations between operators, for example between position and momentum
operators:

[x,pl=in, [£X]1=0, [p,pl=0. (19)

This process of changing our classical variables to operators and states into Hilbert space
is known as canonical quantization. With the operators, we can now define other physical
quantities, for example, the hamiltonian:

A2

p

HGE, p) = oot V(). (20)

Now the time evolution of the quantum system is given through the Schroedinger equation:

N 0
Hly) = ihgtlw = Ely), 21

where we can identify the energy of the system. Also, we have the uncertainty principle
wich express that now we have a fundamental limit to the precision of measurements to
certain set of variables, for example in the case of position and momentum:

h
.0y 3, (22)

where o, 0, are the standard deviation of position and momentum respectively.

With the passage of time, Quantum Mechanics opened the way to new theories as Quan-
tum Field Theory which involves the relativistic behaviour for particles that Quantum Me-
chanics do not take into account, for example, introducing the idea of path integral for a
relativistic particle. Another important contribution from QFT is Quantum Electrodynam-
ics, which predicts some phenomena that Classical Physics were not able to predict, for
example, the principal topic of this thesis, light by light scattering.

Beyond the appearance of QFT and its advantages, we can suggest new ways to present
old ideas, in Richard Feynman’s words, “There are, therefore, no fundamentally new re-
sults. However, there is a pleasure in recognizing old things from a new point of view”
[1]. Since the microscopic world is non-deterministic, we cannot know precisely how the
processes are taking place; What we can do, is to suppose about how they are and start the
job with reasonable ideas. This fact allows us to imagine and propose all kinds of processes
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that can occur virtually, and that new theories and formulations allow us to describe that in
turn coincide with observations and experiments.

Light by Light Scattering

Light was a mystery for physicists for centuries, its nature, its properties, its interactions
and particularly, the idea of light as a wave or a particle. This mystery evolves at the
same time as science was, and now we know that actually light has a duality between both
behaviours. Before starting with the light by light scattering, we need to talk about one
of the more incredible works involving the light phenomena, the Compton scattering [2],
observed for the first time in 1923 by Arthur H. Compton. The nature of this process was
not understood, but it was studied with the mathematical tools of the era by Compton.
The experiment consists of X-rays with energy around 17keV, striking a graphite target,
there occurs Compton’s scattering which is the interaction of an incoming photon and an
electron, taking as result the scattering of another photon and another electron. After that,
the scattered X-ray photons pass through a slit, this only avoids certain photons scattered
at a selected angle and sends them to an ionization chamber. In the chamber, it is possible
to measure the total energy over time and not just the energy of a single scattered photon.

Ionization chamber
X-ray tube

Graphite target

Figure 1: Compton’s experiment

As result of this experiment, Compton finds that the wavelenght shift of scattered pho-
tons is: I
Al = —(1 — cos 0), (23)
c

e
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where 6 is the scattering angle, m, is the electron rest mass, 4 is the Planck constant, and ¢
is the speed of the light.

k= (w,w sing,0,w cosb)

Before: After:
ANNNND ()
k= ((1), (1)2) P = (mea 0)

Figure 2: Compton scattering in the lab frame

Equation 23 can be derived from relativistic kinematics, working in the lab frame and
finding the energy of the final photon:

m = pr=(p+k-kY=p*+2p-(k-k)-2k -k (24)
= m? +2my(w — ') - 2w (1 — cos ), (25)
thus, it is easy to find that:
1 1 1
— ——=—(1-cosb), (26)
oW m,

and this is equivalent to equation 23, changing w with the relation for photon’s energy
w= % we can check that they are the same.

k k' kK k

e e e e

Figure 3: Feynman Diagrams for Compton Scattering

Eventually with the introduction of QFT methods and Feynman diagrams, it was possi-
ble to re-calculate with the new technology. One of this contributions is the calculation of
the scattering matrix elements i M defined by:

iM = sum of all connected, amputed diagrams (27)
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We can work out i M at tree level from diagrams in figure 3 for Compton scattering:

YR 2Ty Hy + 2y
2p -k -2p -k

iM = —ie’e,(K )&, (kya(p’) [ ] u(p)- (28)

The rest of the computation for the Compton scattering is straightfoward. Furthermore,
summing over spins and photon porlarizations, we can compute the cross section in the lab
frame:

’

L2 sin’ 9] . (29)
w w

do na? (w' )2

dcosf m? \w

The last equation is the spin-averaged Klein-Nishina formula [3]. As we can notice, the
application of QFT to well-studied processes brings us new information and allows us to
explore other interesting cases, for example, high-energy behaviour or the opposite case,
the low-energy limit. This limit give us the Thompson cross section which is essentially
what Compton was sensitive to see in his experiment.

But this is just the beginning of the story, after that, several photon-photon processes
were studied. There is no light by light scattering in free Maxwell theory for electromag-
netic fields, this is because Maxwell’s equations are linear in the fields and the sources, as
we can notice from equations 15, thus the principle of superposition holds. On the other
hand using Quantum Mechanics and QFT, introducing the creation of virtual particles pairs
we can allow these kinds of effects. This means that photons interact with virtual particles
in a vertex with a fermionic loop, following the process, the virtual particles annihilate one
to each other in another vertex creating a photon, we can see figure 4 where this picture is
illustrated.

Figure 4: Perturbative expansion in the low-energy limit of the unormalized EH lagrangian.
In equation 30, the second and third factors remove the vacuum expectation of the field and
the vacuum polarization diagrams.

This interaction was calculated for the first time by W. Heisenberg and H. Euler in
1936[4], from the one-loop effective lagrangian for spinor QED in a constant classical
electromagnetic background:

%(eT)Z?‘ - 1. (30)

Len = -5 tan(eaT’) tanh(ebT) 3

1 « d_Te_ o (eaT)(ebT)
871'2 0 T‘3
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Here a and b are given by:

&2 = /?~2+g2_}" b= \F2+ G+ F. (31

And the electromagnetic Lorentz invariants quantities:

1 1 1 _
F = 1 W = —E(E2 -B?, G= ZFWFW =-E-B (32)

Later in the same year, Weisskopf found an analog expression for scalar QED[5]:

1 f“’ dT _sz[ (eaT)(ebT)

Lw = 1672 Fe

1
, , + —(eT)*F —1|. 33
sin(eaT’) sinh(ebT) 6(€ ) ] (33)
In this case for the expansion, we shall have extra diagrams, due to the existence of the
seagull vertex, we shall discuss this in chapter 2. We can expand this lagrangian in the
low-energy limit obtaining:

- o er 1 e_ztr[Fz] €_4L 4, 1 2712
jo‘ dT (4r) “e (T3+12 7 +36 [F]+8(tr[F DIT). (34)

t
10"
We shall derive this formula eventually. We can notice the appearence of powers of traces
of F, this implies the existence of light by light interaction. About these lagrangians, Gerald
V. Dunne conducts a thorough analysis including further applications[6].

Going ahead into history, the limit of low-energy photons calculation was performed by
H. Euler and B. Kockel around 1935-1936[7, 8]. They found the cross section in relation

to the wavelenght:
o\t 1
~ (—mzcz) = (35)

2 . . . e
where @ = #-. In the same year, the opposite case, the high-energy limit, was computed by
A. Akhiezer et al[9]. They found that the integral cross section is:

o ~ ac? (5)2 (36)

here a is a constant difficult to calculate. On the other hand, they also show the differential
cross section in the case for small angles:

2
do = 8ra’ (5) (log 0)*dQ, 37)

with 6 the scattering angle and dQ the solid angle.
Eventually, in 1950, Karplus and Neuman carry on with the treatment for the light by
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light scattering amplitude for arbitrary on-shell kinematics.This means that their results
are valid for both high and low energy cases. Also, they analyze the vacuum polarization
case[10, 11], focusing in the pair creation, writing their results in terms of all the polar-
izations possibilities. In the same way, they analyze some particular cases, as low energy
limit and right angle scattering. This process is called vacuum polarization because, the
fermionic loop divides the incoming photon into an electron-positron pair, and they act as
an electric dipole that polarizes the vacuum just as a capacitor.

Figure 5: Vacuum polarization diagram

As a result of this polarization, we can appreciate is a partial screening effect of the
electric field, in other words, the electric field will be weaker than would be expected if
the vacuum were empty. Around 1964 De Tollis using dispersion relations calculates the
amplitude obtaining a more compact result[12], however, those two results are equivalent.

L x

(a) Delbriick scattering (b) Photon splitting (c) 4-photon scattering

Figure 6: Light by light processes

Light by light scattering studies increase in number and complexity; a process called
Delbriick scattering appears, this involves four photons interacting, in figure 6 a) is repre-
sented in a diagram. There, photons with the cross are photons produced by an external
field that is treated semi-clasically*, whereas the photons without the cross are true quan-
tized photons that we take as the scattering ones. In the Delbriick scattering case, the
external field is the Coulomb field. It was predicted in 1933[13] and observed for the first

“It is not quantized.
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time in 1953 [14], and measured under different conditions in 1973 [15] and recently in
2017 with the ATLAS detector at the LHC was found evidence of the light by light scatter-
ing in heavy ion collisions[16]. For more details about measurement of those phenomena,
we can mention the work of Scharnhorts [17], where he compiles in detail the experiments
made over the years and also includes different perspectives of the theory behind. But this
is not the only possible four-photon process, also we have the photon splitting and the four-
photon scattering as we show in figure 6, for the first process we have only one interacting
photon, and for the second it occurs totally in vacuum.

For this thesis, we shall focus on the four-photon scattering problem in the framework
of worldline formalism, particularly in scalar QED, this means that we are going to work
with a scalar loop instead of a fermionic loop.

The general structure of this thesis is:

e In Chapter 1, we study the standard Quantum Field Theory, the Feynman rules, and
how to apply them to the light by light scattering in the framework of scalar QED.

e In Chapter 2, afterward, we shall approach the formalism where we shall work out
our problem; the worldline formalism.

e In Chapter 3, we show the full amplitude for the four-photon scattering in the world-
line formalism and we carry on with the calculations.

o In Chapter 4, we present our conclusions and perspectives for future work.



Chapter 1
Standard QFT and Scalar QED

The aim of this chapter is to show the standard formalism methods to calculate scattering
amplitudes. This includes a quick review of Feynman diagrams and their rules. Succeeding,
we shall be able to work out special cases for light by light scattering, such as tadpoles,
vacuum polarization, and the three-photon scattering, introducing here an important and
general result; Furry’s theorem.

1.1 Quantization of the Klein-Gordon Field

1.1.1 Classical Field Theory

First, we consider a system that requires a scalar field ¢(x) to describe it, this field ¢(x)
may be a real or complex field. In the case of a complex field, ¢(x) and ¢*(x) are treated
as independent fields, or we can treat a complex field as a pair of real fields, thus for the
following calculations, we shall consider ¢(x) as a real field. Now we have to introduce a
Lagrangian density:

L(,0,9). (1.1)

This density has a relation with the Lagrangian:

L(t) = f d’xL($,0,9). (1.2)

With this density, we can define the action functional S [¢|Q]:

S[lQ] = f d*xL(¢,09), (1.3)

where Q is an arbitrary region of the four-dimensional space-time continuum. Just as in
classical mechanics, to get the equations of motion, we need to do a local variation on the

11
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field:
¢(x) = ¢(x) + 5¢(x), (1.4)

This variations 0¢(x) vanish on the surface boundary of the region I', i.e Q. Now we are
going to demand that the variation on the action has a stationary value:

oS [¢lQ2] = 0. (1.5)
By doing this, we will get the Euler-Lagrange equations of motion for a scalar field:

oL \ or
O (a@,qﬁ)) "o "

In the case that we have N scalar fields, we shall have N equations of motion. Next we can
do is to define a momentum density conjugate to ¢(x):

(1.6)

n(x) = % (L.7)

With this now we are able to define our Hamiltonian and its respective density:

H= f d*xH(x) = f Ex[n(x)(x) = L(¢, Du9)]. (1.8)

Thinking in the phase space formalism we can define Poisson brackets from the symplectic
form: 5 5 5 5
ghen = [ dix| S 08 28 0], (19)
0p(x) or(x)  5¢(x) Om(x)

where the simbol 6 refers to functional differentiation. With the relations:

S) o, er(x)
so0 0T S

we can find the fundamental Poisson brackets:

=8(x—x), (1.10)

{p(x), 1) pp. = 6 (x = x')
{¢(0), (XN pp. = {m(x), w(x")}pp. = 0 (1.11)

Defining the phase-space variables:

1n(x) = (¢(x), 7(x)), (1.12)
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the fundamental Poisson brackets can be represented as:

n.nlps = Q. (1.13)

With Q the symplectic form matrix:

0 1
Q= (_]1 0). (1.14)

1.1.2 The Klein-Gordon Equation

Considering the Lagrangian density:

(0.9 - m*¢?), (1.15)

| =

L(¢, 8u¢) =

and using 1.6, we will get:
@+ m*)$(x) = 0, (1.16)

where O = 9,0* is the d’ Alembert operator and m should be interpreted as a mass, this can
be notice from introducing the plane wave decomposition for the Klein-Gordon field into
the equations of motion. Equation 1.16 is the Klein-Gordon equation. We can notice easily

that the conjugate momentum is 71(x) = ¢(x) and the Hamiltonian:

_ 3 _ s |1, 1 2, 150
H—fdxﬂ—fdx[zﬂ +2(V¢)+2m¢. (1.17)

1.1.3 Canonical Quantization

The solutions to the Klein-Gordon equation are plane waves, and we can expand them into
Fourier space:

&p .
= | 53¢ : 1.1
(X, 1) f ¢ 0.0 (1.18)
By replacing this field in equation 1.16, we get:
|07 + (pP” +m»)| 6(p, 1) = 0. (1.19)

We can notice that this last equation is the same for a harmonic oscillator, with frequency:

wp = VIpP> + m?. (1.20)
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Taking advantage, we can model our Klein-Gordon field as a harmonic oscillator; writing
the Hamiltonian for a single field mode:

.1 1 .
H==-p>+ —w*d*. 1.21
P +2w¢ (1.21)

As in quantum mechanics, we can write ¢ and p in terms of ladder operators:

¢ = - (a+ah), (1.22)
w
p=-i %(& —ah). (1.23)

Now we can re-write the Hamiltonian 1.21 in terms of the ladder operators with the help of
equations 1.22 and 1.23:

n : 1
H:w(&'&+—). (1.24)

As we know, the eigen-states of H are |n), with |0) as the ground state with energy %w. Itis

easy to find that the eigen-states |n) = (a')"|0) have eigen-values w (n + %) Also we have
the commutation relations:

6, p]1 =i, [H,a'l=wa', [H a]=-wa. (1.25)

Now we are ready to go ahead with second quantization for the Klein-Gordon field.

1.1.4 Field Operators and Commutators

Next, we want to promote the Klein-Gordon field to an operator. The Klein-Gordon field
operator is analogous to equation 1.22 but now we are going to split it into two contribu-
tions, the positive and negative frequency parts as:

dp 1

2n)* \2w,

$(x) = (ape™> + aje ™). (1.26)

And for equation 1.23 we have:

d3p » w ip-x —ip-X
n(x) = f(zﬂ)g(_’)wfjp(apep —a;e P ) (1.27)
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The decomposition into plane waves is because they satisfy the Klein-Gordon motion equa-
tion 1.19. Now we can re-write our Hamiltonian with the equations 1.17, 1.26 and 1.27 :

d’ 1
H = f(sz;wp (az)ap + 3 [ap,a;]). (1.28)

The second term is actually, proportional to 6(0), this is due to the sum of all zero-point
energies. This term is expected and we can ignore it, because in the measurements, we
are only working with energy differences from the ground state. It can be demostrated that
now, in analogy to equation 1.11, we have the following commutation relations:

[¢(x), n(x")] = io(x—x),
[¢(x), ¢(x")] [7(x), m(x")] = 0. (1.29)

And for the Hamiltonian, we have the next commutation relations:
[H.ap] = —wpay,  |H.q}| = wpa. |ap.al| = 2m)*6(p - p). (1.30)

In order to give an interpretation for the field operator in equation 1.26, we define the state
p) = w/2a)pa;,|0> as a momentum state with the following properties:

wplp) = VIpI* + m?|p), (1.31)

plp), (1.32)

Hip)
Plp)

where P is the total momentum operator defined by:

. 3 &Ip ...

P= —fd xn(x)Ve(x) = f(zTPpapap. (1.33)
Taking the inner product (0|¢(x)|p):
dp 1
2n)* \Pwy

We notice that analogous to the non-relativistic quantum mechanics, equation 1.34 is the
wavefunction of the state |p) for a single particle. Following with important calculations,
we can make our operators time depending in the Heisenberg picture as usual:

(Olp()lp) = (0| f (aye™ ™ +al,e™ ™) \2wyal 0y = ™. (1.34)

P(x) = p(x, 1) = e"p(x)e " (1.35)
n(x) = n(x, 1) = e'n(x)e . (1.36)
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Now with equation 1.35 we can compute an important commutator that we shall use in the
next section:

1900- 0] f 2ny ,/—zw f G e (@ @) faa ™ g

p 1
(2n)? 2wy

(eip-(x—X’) _ eip-(x—x/)) ) (1.37)

This equation is called the Klein-Gordon function or Pauli-Jordan function, and is a com-
mutator, not a propagator. We shall discuss the propagators in the next section.

1.1.5 Green’s Functions and Propagators

To calculate the Green’s function for the Klein-Gordon field, we shall work with the inho-
mogeneous Klein-Gordon equation:

(@+mH)G(x — x') = —is*(x — x'), (1.38)

where G(x — x’) is the Green’s function. The Fourier transform of G(x — x") is given by:
G(x-x)= f Lp o) (1.39)

20 . .

Recalling a definition of the delta function:

S(x—x') = f %eﬂwﬁ')- (1.40)
By substituting those functions into equation 1.38 we obtain:
(-p* + m)G(p) = —i. (1.41)
Solving for G(p): .
G(p) = m. (1.42)

Going back to equation 1.38 and replacing G(p):

d*p i

— ~ip (T 1.43
Qay p> —m? (149

G(x—-x) =
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If we assume that xo — x{; > 0, we can split the integrals into:

Gx-x) = f &P o) f T dpy— ) (1.44)
) o (o) - w2

The last integral has poles at py = *wp, using the Feynman prescription we can shift the
poles by a factor of —ie, focusing only in the last integral:

00

i

li—{% oo 4po (P0)? — (wp — i€)? e, (199
We notice that:
(Po)* — (wp — i€)* ~ p§ — W* + i€ + O(€7). (1.46)
Integrating by the residue theorem:
00 i ~ipo(x"-x'*)
lim | by (’wp —e 0 = 2n82—po. (1.47)
Returning to equation 1.45:
, Lp e P / ,
Gx—-x')= G 2p0 = (0lgp(x)p(x")|0)  for xp — x;, > 0. (1.48)
For xy — x; < 0, similarly we have:
Grmxy= [ L2 06060010y for xo — x, < 0. (1.49)
(27m)* 2po

Now we define the Klein-Gordon Feynman propagator as:

Ap(x = x') 0(x” — x*)0lp(x)p(x)I0) + O(x" — x")0l(x")(x)]0)

(OIT ($(x)p(x"))[0). (1.50)

Equation 1.50 defines the time ordering symbol. This symbol acts moving the object with
the latest time to the left and so on, with no penalty for commutation. Thereupon, with
equations 1.48, 1.49 and 1.46 we can express the Klein-Gordon Feynman propagator as:

d*p i

~ip- (=) 1.51
Qn)* p> —m? + iee ’ (1.51)

Ap(x —x') =
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and we can recognize the Klein-Gordon propagator in momentum space:

Ar(p) = —— (1.52)

pr—m? +ie’

this last equation is the expression we shall use for the propagation of virtual particles, in
other words, that expression is for the internal lines in our Feynman’s diagrams.

1.2 Functional Formulation of QFT

It is well known that one of the important applications of QFT is the calculation of scat-
tering amplitudes for several processes. To perform these calculations, we need to learn
Feynman’s diagrams and their rules. Because of that, we shall present the path integral
and functional methods to derive Feynman rules. It is true that there are different theories
where we can find Feynman’s rules, as ¢* or Yukawa’s theory. In this work, our interest is
to present the Feynman rules in scalar QED.

1.2.1 Path Integrals
From quantum mechanics we know the form of the propagator function:
Axi x5 T) = Cxgle™ ), (1.53)

where T = t; — t; is the total propagation time. Considering Hamiltonians of the simple
form:

| .
H=—p*+V(&%), (1.54)
2m

we can split the equation 1.53 into a product of N factors and inserting N — 1 completeness
relations:

xple™™ T 1xsy = (xpl(e ™R x) = (eple N1 R - e R ;)
N-1 N .

f (]—[ dka [ Jeole ™ e, (1.55)
k=1 k=1

where xp = x;, xy = xyand € = % Now we introduce the identity for momentum eigen-
states:

Axi, x5 T)

d
1= [ iy (1.56)
JT
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and we obtain:

= N dp | »
= [ (015 oot s

Evaluating the matrix elements by expanding the exponential into Taylor series:
(Pele Py = (pil(L = i€ (R, p) + - xics). (1.58)
And now assuming the simple form 1.54 for the Hamiltonian up to order €, we compute:
<pk|e—ieﬁl(2,ﬁ)|xk_l> — <pk|xk_l>e—ieH(pk,xk,.) — o Pkt pieH (Prxi1) (1.59)

Going back to equation 1.57:

N-1 N
A i l—[ dx l—l @ e“ﬂ:ll”@‘”(xk—hpk)
N—oco k 27T

k=1

Il
5

f Dx(t)Dp(1)eS™P!, (1.60)

with S [x, p] the discretized classical action in phase space:

lf
S[x, pl = f dt(px — H(x, p)). (1.61)

The integral over p can be performed if we assume Hamiltonians as 1.54, completing the
square in equation 1.60 and integrating we get:

N
2

, =)
elfziv:l[%’ A V)

A

Il
f:
5 B8
—_—
—1r
QU
=
=
N
—_
a\s
m
N —

f Dx(t)e"S1, (1.62)

Equation 1.62 is the path integral in configuration space. In the case of a scalar field, we
need to remember equation 1.17 and then we shall have:

(@l gy(x)) = f D@Dre' b ' xmb=3m =3 TP Vo). (1.63)
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With restrictions for ¢,(x) at x° = ¢; and ¢, (x) at x° = ty. We can compute the integral over
m by completing the square obtaining:

(Br@le M |pa(x)) = N f D1, (1.64)

where N is a normalization factor and S [¢, d,¢] is given by:

'y 'y 1
S[g, 9.1 = f d'xL(¢) = f d“X(E(ﬁucb)z—V(@) (1.65)

Equation 1.64 tell us, we need to integrate over all the possible intermediate configurations
for the scalar field between the time interval from #; until 7.

1.2.2 Correlation Functions and Generating Functionals
We define a correlation function for » scalar fields as:
G, = (QIT{pu(x1)Pr(x2) - - - Pr(x,)}€2). (1.66)

Where we projected the states |¢,) and (¢,| into the vacuum state |QQ) by taking the limit
T — oo(1 —ie). Explicitly in terms of the path integral:

[ Dpp(xpxs) - - b, )eiS169:6
(QIT{¢u(x1)Pu(x2) - - - du(x,)}€Q) = lim 9(@)

T—oo(1—i€) 9(b) iS [4.0,0]
$(a) D¢€ !

. (1.67)

We would like to have an easier way to evaluate this integral, because of that we define a
generating functional Z[J]:

Z[J] = fD¢eifd4x[ﬁ(¢)+J(X)¢(X)]’ (1.68)

where J is an arbitrary source. Now we are able to re-write equation 1.67 in terms of Z[J]
as follows:

’ [J1| . (1.69)

f Degla)plx) - $On)e 0 = ()" o= s 2T
n J=

Here the 6 refers to functional diferentiation, and after that we need to remove the source J
evaluating it at zero. The functional differentiation is defined by:

sJ(x)

4 ’ . o 4 7 ’ N
570 0'(x—x") Equivalent to 5700 fd X' J(xXNP(x") = p(x) (1.70)
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With equation 1.69 we can express the correlation fuction in terms of the generating func-
tional:
(_l)n 6}1

(QUT (G032 - o)) = = i s ZU| (1.71)
n J=0

Where Z, = Z[J = 0]. With this last result we can perform more complex correlation
functions only taking derivatives of the source J.

1.3 Scalar QED

Previously we studied how to quantize a free scalar field, the Klein-Gordon field. In this
section, we shall analize the structure of the scalar field theory attached to an electromag-
netic field. This theory is also known as scalar QED and it is the main theory for this
work.

1.3.1 Lagrangian for Scalar QED
For scalar QED, we have the Lagrangian:
1 * *
L= —ZFWF‘” + (D) (D'¢) — m*¢* ¢, (1.72)
where D, is called covariant derivative and it is defined as:
D,¢ = 0,¢ + ieA,d. (1.73)

We can notice that now we have added a electromagnetic term to the scalar theory studied
before. This lagrangian can be expanded as:

L= _% FoF* — ¢"(0 + m*)p — ieA, [¢7(0"¢) — (3 ¢")p] + €A, A" (1.74)

Its equations of motion are:

(@ +m*)¢
(O +m*)p*

—2ieA, 8¢ + *A AN, (1.75)
2ieA,'¢" + 2 A, A Y. (1.76)

We can realize from the linear term in e that the charge of ¢* is the opposite of ¢, but they
have the same mass.
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1.3.2 Symmetries of Scalar QED

We have introduced the Lagrangian for QED and now we are going to analyze its symme-
tries. There is a global symmetry in the scalar field:

6 — e, (1.77)

where « is a constant parameter. This symmetry is a rotation in the complex scalar field
and it is called gauge invariance. This field theory admits a conserved current, that we can
compute with Noether’s theorem:

_ 0L 64,
L 0(0upn) Sa

Ju = —i(@0P" — ¢*0,p) — 2eA, 0", (1.78)

here n represents each of the two fields ¢ and ¢*, also % = —i¢ and % = i¢*. This current is
conserved because of the global phase symmetry. Here we can notice that in the lagrangian
1.74, the linear term in A, is just —eA,, j*:

—ieA, [¢" (0 D) — (00" )p] + CAA G = —eA, . (1.79)

Now we can promote this global symmetry to a local symmetry. In order to do it, @ will be
a function of the coordinates, i.e. a(x):

¢ — e, (1.80)
but this change does not leave the derivatives invariant:
8,0 — 0,7 V) = VG, ¢ — ieT " Mpd,a(x). (1.81)
Then, it is necessary to define the covariant derivative as we showed before:
D,¢ = 0,¢ + ieA,¢. (1.82)
That derivative demands a change into the vector field A,,:
A, — A, + 0a(x). (1.83)
With this, now the covariant derivative transforms just as the field does:
D, — D, . (1.84)

All these transformations together let the lagrangian invariant. As such, the lagrangian for
scalar QED in equation 1.72, is gauge invariant under both global and local symmetries
showed above.
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1.3.3 Feynman Rules in Scalar QED

Inserting equation 1.74 into the generating functional 1.68, splitting into free part and in-
teraction part, expanding into series in powers of e and taking the Fourier transform for the
interaction vertices, we get two different vertices:

e From the term —ieA, [¢*(0¢) — (0 ¢*)¢], we can find the vertex with incoming scalar
particle, incoming scalar anti-particle, outgoing photon

BNANNNN = —le(p, — P))

e And from the quadratic term e?A,A¥|¢|*, we can find the vertex with incoming scalar
particle, outgoing scalar anti-particle, two outgoing photons, also called seagull ver-
tex

And we have the propagators for scalar particles and photons, choosing Feynman’s gauge
we get:

e Propagator for scalar particle

——----@® = 5>
i hd pr-m?+is

e Propagator for photon

k i
— UMy
NNNNNeY =
H v k2+ig

Just as a reminder, it is necessary to impose momentum conservation in each vertex, and
integrate over each undeterminated momentum. Now, for external legs:
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Ingoing scalar particle
Ingoing scalar anti-particle
Ingoing photon

Outgoing scalar particle

Outgoing scalar anti-particle

N

“w

\

;r(}---«----:l

Outgoing photon
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1.3.4 Ward Identity for Scalar QED

First, we have to recall the matrix elements M, which depends on each of the polarizations
as follows:
M =g M". (1.85)

Where M* transforms as a 4-vector. As we see above, there are polarizations for the incom-
ing photons, represented by &, and the conjugate for the outgoing photons. We can analyze
how the matrix elements change by applying a gauge transformation of the form:

g, — &, +cky, (1.86)

with ¢ a constant and k, the momentum of the photon. Doing a gauge transformation to the
polarizations and matrix elements we get:

eM' — (g, + ck,)M™. (1.87)

Where M* — M'™™ = A¥,M”. This last equation requires that the product k,M* = 0,
because the matrix elements are invariant under a gauge transformations. The expression:

k,M* =0, (1.88)

is called the Ward Identity on-shell and it tell us that we can change the polarization vector
by its momentum vector and then the result must be zero. This identity is a manifestation
of the gauge invariance. As we see previously, the scalar QED lagrangian is invariant
under the change A, — A, + d,a(x), which in the momentum space directly imply that
g, — &, + ck, is also a symmetry for scalar QED.

1.4 Scattering Amplitudes For Light-by-light Processes In
QFT

In this section we are going to present easier cases for light by light processes, as one-
photon scattering®, vacuum polarization and the three-photon scattering, in scalar QED for
standard QFT.

1.4.1 Tadpoles

The one-photon diagram is also known as the tadpole, its representation is as we show in
the figure 1.1.

“This is the vacuum expectation of the field, but here we interpret as the self-scattering of one photon.
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q

/’4\\
/ \
kou —s . \
I
ANNNNG ,
\ /

A\
S

Figure 1.1: Tadpole diagram

Applying the Feynman rules for scalar QED at one-loop level, we get:

dPq (2q + kY
2m)P g% —m? + ie

iM = —i*2m)P 6P (k)ee, (k) f ( (1.89)

The linear term in g integrates to zero, since the integrand is odd under a parity transforma-

tion. Thus we only have the integral:

K-
g* —m? +ie

2 DD qu
—-i-2m)"o (k)egﬂ(k)f(zﬂ)D (1.90)

From the application of momentum conservation at the vertex, we get the 6°(k), this tell us
that all the momentum components of the incoming photon are zero. Thus, the integral of
equation 1.90 is zero, in other words, the tadpole diagram in vacuum gives no contribution.

1.4.2 Vacuum Polarization

The two-photon case is a special process, it is called vacuum polarization. The figure 1.2
represents the process into the two possible diagrams in scalar QED.

P N -
kyy —s / Vo— kv ! \\1
ANNNNS AONNNNN | |
\\ /// —> . ’/// —>
e ANNNNAARNANNNN -~
q+k k,u k,v

Figure 1.2: Vacuum polarization diagrams

Applying the scalar QED Feynman rules for both diagrams, we get:

(2q + kY'(2q + k)" 2"
(g +k)?> —m? +ie)(p>* —m?> +ie) p*—m?+ie

. . d”
iM = e, (k) k) f (27T;]D . (1.91)
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The rest of the calculation consists of introducing Feynman parameters and performing a
Wick rotation, afterwards we integrate over all the variables’. The result is:

;2

1
iIM= —— e, (e’ (k) 1% - k| f dx(2x — 1) (m(
0

2 x(1- 2 1
m?* — x( x)k)+

(47'[)2 An YE — E )
(1.92)
where vy is the Euler constant and we can notice that there is a divergent part equal to:
fe” |7k — | ! (1.93)
(4rm)? 3e '

We can appreciate the appearence of the transversal projector. This process is not consid-
ered light-by-light scattering, because is more like a correction to the photon propagator,
or in other words, it is the self-energy process for the photon mediated by a virtual pair
of particle-antiparticle. About the divergence in equation 1.93, we can handle it by field
strength renormalisation.

1.4.3 Three-photon Scattering and Furry’s Theorem

Now going ahead, we treat the case of three-photon scattering. Figure 1.3 represents the
possible diagrams for this process with the first kind of vertex in scalar QED.

q q
A —— kv A — k3,0
. . CNANNANN
kyu —— / Y ki —— / R
/Aq+k2 ANNNNG lAq+k3
" — ko T — kv
C[+k1 3 q+k1 >

Figure 1.3: Feynman diagrams for three photon scattering with the first kind of vertex

Working out the first diagram we get:

d’q (2q+k) (2g + ky)” (2q + ki + kp)7
2m)P g —m? + i€ (q + kp)> — m? + ie (g + ky)> — m? + i€
(1.94)

iM= (—i€)38ﬂ(k1)8i(k2)8fr(k3)f(

"To see how the process can be done, we recommend to check Peskin and Schroeder Chapter 6.
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And for the second diagram:

dq  (2q + k) (29 + k3)” (2q + ki + k3)"
M = (—ie)s, (k)& (k *kf
: (=ie) gulkn)e, (ko)e, (ks) Q)P g*> —m? + ie (q + k3)*> —m?* + ie (g + ky)> — m? + i€
(1.95)
Doing a change of variables ¢ = —(¢’ + k;) for the second diagram, we are changing the

flux of momentum in the loop. As result of this, we transform the integrand of equation
1.94 into minus the integrand of the equation 1.95, and the total sum is zero. We have no
contribution from these diagrams.

Now we have represented the diagrams of the seagull vertex in figure 1.4. Each diagram

q q
Lo ks, o PR ki p
/, \\\ /’ \\\
ki —— \ koy —— ! \ .
ANNNN +1 permutation

\ ] \ 12
\\ ,, \\ /,

\\"', kz,V \N""/ kg,O'

q+k \ q+k \ ‘

Figure 1.4: Feynman diagrams for three photon scattering with the seagull vertex

is zero by itself, for example, if we compute the first diagram we get:

dPq (2q+ k) 2ie’n™
2mP ¢? —m? + ie (q + ky)> — m? + ie

iM = (—ie)e,(ky)e, (ky)e, (k3) f ( (1.96)
Changing the flux of momentum again with the same change of variables, we shall obtain
minus the integrand of equation 1.96, but we are still working the same diagram, this means
the diagram must be zero. Now it is clear that we have no contribution from three photon
scattering, and this can be generalized to a theorem called Furry’s theorem. This theorem
tell us that from any N—photon scattering, with N an odd number, we shall get zero as
result for the scattering amplitude. We shall prove this in the worldline formalism in next
chapter.

1.4.4 Four-photon Scattering

At this point, we are not going to compute the integrals, we are just going to show how
obtain the integral representation for the different diagrams of the four-photon scattering
processes.

In the figure 1.5, we can see represented the diagrams plus permutations* of the external

#There are 6 permutations for this kind of diagram.
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3

q
kg —— 4. —— k0
NNNNNS ONNNNN

/ \

q+kT Lq+ ks + permutations
ky,y — > —— 3,4
q-+ k] + k2

Figure 1.5: Four photon scattering diagrams with the first kind of vertex

legs, working out the first diagram we get:

| . iy [0 gk
l/\/(1 = (_le)4sﬂ(kl)8v(k2)8/l(k3)8<r(k4)f(27z.)qD qZ_qmz-li-iE

Qg + ke)° Qq+2%ks+ k) (2q+ 2k + k)
(q+k)>—m?+ie(q+ki+k)?—m?+ie(qg+k)?>—m?+ie

(1.97)

Where the index 1, is a label for the diagram and not a tensor index. As we can see, this
integral is not trivial to do, and we are not computing it. For the seagull vertex we have
represented in figure 1.6 the diagrams plus permutations®.

q q
kla,u —_— ,—4~ k3,ﬂ kl,/-l ,*4~ k3,/l
ANNNNS N ! N

1 1
\
\ I}

g+k Y + permutations
\

ANANNNS, o . .
ky, — T ky, ks, T ky,
»Y q+k1+k2\ “a 2 /q+k1+k2\ -
Figure 1.6: Four photon scattering diagrams with the seagull vertex

Applying Feynman’s rules for the first diagram:

| . L d’q (2 +ky)
le = (—le)zsy(kl)8V(k2)81(k3)80'(k4)f(zﬂ)qD q2 _m2 .IF/;E

2ie’n™? 2qg + 2k, + ky),

1.98
(q+ ki +k)?> —m? +ie(qg+k)?—m?+ie (1.98)
For the second diagram:
dq  2ie*n"” 2ie’*n!
M = g,(k))e,(k *k*kf 1.99
M = ekeka)eika)es k) Q)P g* —m? +ie(q+ ki + kp)> — m? + i€ (1.99)

SThere are 3 permutations for each kind of diagram.
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Again, we are not going to calculate the integrals, this is just to ilustrate how Feynman’s
rules works for these diagrams. What we can do is the analysis for the superficial degree of
divergence. We can do this by counting powers of momentum in the integral expressions
for the amplitude. For example, if we take equation 1.97 and we count the different combi-
nations of powers in g, we will obtain zero as the highest power in ¢, this result let us know
that perhaps there are divergences of kind In A, with A a cutoff in the momentum space.
The remaing combinations, will give us negative numbers and that means the finiteness of
the rest of integrals. The same argument holds for equations 1.98 and 1.99.

Now the question in the air is: How do we know that the complete amplitude is finite?.
The answer is quite simple, and it is due to gauge invariance and Ward identity. Now in our
case for the four photon scattering the identity takes the form:

KK EDK Myyora = 0, (1.100)

since we have four polarizations, for each of our four photons, here each supra-index is
to indicate the number of the photon. Moreover, Ward’s identity is held for any of the
polarizations. 4

kD My = 0, (1.101)

Now we can change any photon polarization by its momentum vector and sum all the
contributions for the complete amplitude:

KO M) + M) + M, + permutations) = 0 (1.102)

after that, the amplitude must vanishes. It can be demostrated that summing over all dia-
grams, we can cancel the divergent part of each diagram by applying the Ward identity!.

TWe recommend to check Peskin and Schoesder, Chapter 10, problem 10.1.
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Worldline Formalism

The beginnings of path integrals were born as an alternative way to represent non-relativistic
quantum mechanics by Richard Feynman[ 1, 18]. This formulation is completely equivalent
to those offered by Dirac and Schroedinger, but from a functional point of view. As time
went by, it was by analysing this new representation for quantum mechanics that different
ways of encompassing QFT were obtained, and this allowed new formulations to be ex-
plored. The worldline formalism was born precisely as a first quantized approach to QFT,
using the formulation of path integrals over relativistic particles trajectories, and proposing
a different way of performing the calculations offered by Feynman diagrams.

Its history begins with Feynman and his path integral representation, suggesting a first
quantised particle path integral representation of the propagator in scalar and spinor QED,
but it is not really developed the idea of worldline formalism[1, 18, 19]. Eventually, the
use of this representation brought about other approaches to interesting problems, such as
the work of Affleck et al[20], in which they study the asymptotics of perturbation theory
in electromagnetic backgrounds using a semi classical approach. Later, Bern and Kosower
use string theories to derive a master formula for field theory amplitudes from the infinite
tension limit[21, 22, 23]. They note that the final results do not depend on string theory
details. Moving forward in time, we come across a paper published by Strassler[24], in
which we can see how he developed Feynman’s work into what is now called the world-
line formalism, recovering the Bern-Kosower formulae from a point particle path integral
representation within field theory. These methods were shown to be more efficient for the
calculation of one-loop amplitudes in gauge theories, showing several advantages over the
standard formalism and quickly there were articles where we can find a broad of applica-
tions of it[25, 26, 27, 28, 29, 30, 31]. Currently, most of the details about modern notation,
examples and applications are into Christian Schubert report[32] and the update to that
report[33].

Now, our task is to show how this formalism works and how to apply it to our calcula-
tions for light by light scattering processes.

31
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2.1 The One-loop N-photons Amplitudes

The one-loop effective action, in scalar QED, is given by the Det of the kinetic operator as
follows:

I'[¢, Al = InDet™ ' [=(d + ieA)? + m?] = =TrIn[—(0 + ieA)* + m*]. 2.1)
Now, recalling the integral representation of In:

In(A/B) = f ) d?T(e_BT — 7, (2.2)
0

and representing the Tr in x-space, we get:

I[¢, Al = f wdTT f d”x(xlexp {~T[m* - (9 + ieA)*1} |x). (2.3)
0

Notice that, in the loop, our boundary conditions allow us to write:

x(T)=x
f dPx f Dx = f Dx. (2.4)
x(0)=x x(0)=x(T)

Thus, the worldline respresentation of the one-loop effective action is given by:

“dT T e
rscal[A] — f _e—sz f Dxe—fo dT(%x2+lex~A(x)). (25)
o T X(T)=x(0)
Choosing our background Maxwell field as the sum of N plane waves:
N
Aux) =) eye™, 2.6)
i=1

1

this defines a polarization &; and momentum k; for each photon. Just taking the terms linear
in each of the N plane waves, we obtain the representation of the N - photon amplitude in
terms of photon vertex operators:

= dT -
Fscal [k19 8]; “ee , kN, SN] = (—le)N f _e—sz f Dxe_ j(; dT%xz
o T x(0)=x(T)

x VY

scal

[ki, 1]+ VI Tk, enl, 2.7)
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we can notice that the expansion of the interaction term left the free kinetic term in the
worldline action. Here the photon vertex operator is given by:

T
VY [k, €] = f dre - (1), (2.8)
0

scal

At this point, we have to be careful about the constant functions of the the bosonic kinetic
operator, also called zero modes. In these terms, the kinetic term vanishes, corresponding
to a zero eigenvalue, having as a consequence that we cannot invert the kinetic operator. We
can treat them by choosing String Inspired boundary conditions, by doing this, we change
to an orthogonal Hilbert space to the zero mode and there the kinetic term is invertible.
First, we change the trajectories by a fluctuation g(7):

X =+ (1), (2.9)

and now we have to integrate over x;, and the fluctuation variable:

f Dx = f d® x, f Dq(7). (2.10)

For these conditions, we have fixed a point in the center of mass of the loop as we show in
figure 2.1, defined by:

T

Figure 2.1: String Inspired zero mode fixed point

1 T
xg = —f drx (7). (2.11)
0

Integrating over 7 the new trajectories, we shall find the conditions for g(7):

T
f drq"(t) = 0. (2.12)
0

These boundary conditions are called String Inspired. Performing the integral over xj

produces the energy-momentum conservation factor and the remaining integral over Dq is
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gaussian form, integrating it, we obtain the Bern-Kosower master formula for scalar QED:

® dT T
Fealki &15. . sky, ey = (i) 2m)°6(Y k) f Ol f dr;
0 izi Jo

N
1 . 1.
X exp{z |:§Gijk,‘ . kj - iG,‘jSi . kj + EG,‘jS,‘ . 8]']}

L=l 162N

(2.13)

Where G;; = G(t;, 7;) is called worldline Green’s function for SI boundary conditions:

(Tl - Tj)2
G, 7)) = |ni—7jl- T (2.14)
. T; Tj
G(ti,tj)) = sgn(r;—71;)—2 , (2.15)
.. 2
G(ti, 7)) = 20(ti—71))— T (2.16)

and the dot is the derivative of G;; respect to the first variable. We can notice a factor of —%,
this factor is due to the transformation we did to treat the zero mode, which modifies our
Hilbert space and it has no effect because of equation 2.12 in the Hilbert space of functions
orthogonal to the zero mode.

Usually, in our calculations we shall do a rescaling for the worldline Green’s function
7; = u; T, with these changes the functions take the form:

(Ti—Tj)2

7 = Tl —ujl = Qi = u;)’]. (2.17)

Gij=lti—7jl -
And G,’j:

. T, —T;
Gij = sgn(t; = 7)) = 2( /)

= Sgn(ui - I/tj) - 2(”, - I/t]) (218)

We are not treating G;;, because in all our calculations, we shall integrate by parts to replace
them for G;;. Equation 2.13 represents the full N-photon amplitude without the need of
summing over permutations of the photon legs, we only need to choose a value for N and
perform the integrals, in other words, these integrals automatically include that sum over
the permutations of the external legs. We can expand the exponential in equation 2.13 in
certain specific way to define the polynomials Py as follows:

exp {-}

£1€2°EN

, C 1 &
= (—Z)NPN(G,'J', G,‘j) exXp [5 Z G,‘jki : kJ] . (219)

ij=1
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Integrating by parts to eliminate the contributions involving G;; we obtain new polynomials
called Qy. This Q representation brings to us some advantages over the P and the standard
QFT representations:

e It is a more compact representation. As we see in the last chapter, the calculation
for four photon scattering is not a small equation, also we have to sum over all the
permutations for the external legs. Here, we only have to use the master formula with
N =4.

e The integrand is homogeneous. The P representation has G;; terms, now with the Q
representation, we get rid of all the second derivatives terms and instead we have N
factors of G;; and N factors of external momentum.

e We can pass to spinor QED with the application of the replacement rule:

GilizGi2i3 e GiNil - Giliz e GiNi1 - GFiliz U GFiNil’ (220)

where Gp;j is the fermionic worldline Green’s function, and it is given by:

GFij = Sgl’l(Ti — Tj) (221)

These Qy, let us define new structures that we will recognize, for example the photon
field-strength tensor associated to the photon with momentum k; and polarization vector &;:

F = el — £k (2.22)

With the trace of products of this tensor, we can define another structure called a Lorentz-
cycle Z,(iyi, . . . iy):

1
Etr( an) (2.23)

tr(“ fl-j]. (2.24)
j=1

Here, Z, is the transversal projector and Z, is the generalization to n-points. Another im-
portant structure is called a one-tail defined as:

Z5(ij)

Z,(iyiy .. . 1y)

T(a) = Gug, - ki (2.25)

At this point, it is important to mention why we expect to write the amplitude in terms of
all this previous structures. The reason is coming from Ward identity and gauge invariance.
As we saw in the last chapter, we are looking for structures invariant under Lorentz trans-
formations in the polarizations. In this case, the photon field strength tensor, the Lorentz
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cycles and the terms involving tails are invariants under these transformations, for example,
taking the strength field tensor:

1 = Ko = ey = Ke(e + ) — (o K = K+ R — £~ KR = [ (2.26)

This last equation makes clear that the Lorentz cycles are invariant too, because they are
written in terms of the strength tensor. On the other hand, the terms with tails are also
invariant under the integral; the integrand transforms as a total derivative which vanishes
around the loop. To see this fact, we need to take the complete term and apply the transfor-
mation as we did in the last equation.

In order to show how this formalism works, we are going to calculate the particular
cases we have studied before for standard QFT.

2.2 Advantages of Worldline Formalism

Between the several advantages of worldline formalism over standard QFT and Feynman
diagrams representation, we can mention:

e Itis explicitly gauge invariant.
e The effective action is written as a one-dimensional path integral.

e The master formula represents the complete amplitude, we don’t need to add permu-
tations as in Feynman diagramatic representation.

e The integral can be performed to any order in the gauge coupling®.
e Avoid the usual algebra required from Feynman diagrams.
e It has been extended to a number of other field theories.

e In the framework of scalar QED, we don’t need to worry about the existence of the
seagull vertex. The diagrams involving it, are included into the master formula.

2.3 Scattering Amplitudes For Light-by-light Processes In
Worldline Formalism

For this section, we are going to present the results in a new way. We shall begin with
the vacuum polarization and afterwards, we present Furry’s theorem in this formalism. To

“The meaning of this statement, is just that in principle, we can choose an arbitrary number of external
photons.
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finish, we present the complete four-photon scattering amplitude and in the next chapter
we shall show how to treat this problem.

2.3.1 Vacuum Polarization

For N = 2 in the master formula and expanding the exponential, we get:

Dscallka, €13 k2, €2] (—ie)’ (2m) 6(ky + k) f —(47TT)_D/2 T

X f dr, f dry(—i)? PyeCrhike, (2.27)

Where P, is given by:
P, = G1281 'k2G2182 k- 61281 * &2 (2.28)
Doing an integration by parts we can obtain Q,
0> = Glszl(Sl kagy - ki — &1 - &2k - ka). (2.29)

Imposing momentum conservation, we can set a unique momentum k := k; = —k,, and
introducing Q, into equation 2.27 we get:

1—‘scal[ka 81;32] = (27T)D81 : Hscal + &2, (230)

(A .
where IT_, is given by:

I (k)

sca

(8K — kHk”) f —(47rT)-D/2 i

X f dr f dT2G12G21€ G12k (231)

Re-scaling to the unitary circle by introducing an dimensionless parameter 7; = T'u;, and
fixing the zero in the second vertex operator, due to the translation invariance in the loop,
leading us to u, = 0, u; = u:

G(ty, 1) =Tu(l —u), G(r1,73) =1-2u. (2.32)

Now we can re-write equation 2.31 as:

2

dT
H/:Cle (4 )D/2 (6/1Vk2 k,ukV)f —1112TT2 D/2f du(l _ 21/!) e—Tu(l u)k (2 33)
0
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Performing the integral over 7

2
W ¢

v v D ! D_
scal — _W(&J kz — Kk ha (2 - E)L du(l — 2u)2[m2 +(1 - M)Mk2]2 2. (2.34)

It is important to notice that if we try to substitute D = 4, equation 2.34 is divergent.
To solve this problem, we are going to introduce a small parameter € into the dimension
D = 4 — 2¢. Doing this and expanding around € = 0, we pass to the result showed in
equation 1.92.

2.3.2 Furry’s Theorem

To show how Furry’s theorem works in the worldline fomalism we need to remember the
Bern-Kosower master formula for N = 3 where Qs appears:

< dT
Lscalki, €15k, €2, k3, 3] = (—i€)3(2ﬂ)D5(2ki)f 7(47TT)_%€_'"2T X
0
T T T '
Xf dt f def dr3(=i)’ 03(Gi)exp (Giaky - ky + Gisky - ks + Gazks - k3)
0 0 0
(2.35)

We calculate Q3 using the expansion in equation 2.19 and integrating by parts, splitting it
into two contributions:

G12GuGait(fifofs),
| o1 Lo 1
G12G21§tf(f1f2)T(3) + G13G31§tr(f1f3)T(2) + G23G32§tr(f2f3)T(l). (2.36)

0
03

Expanding the tails in Q3:

.. . . 1
Q; = G12Gai(Gies - ki + Ggs - k) tr(fifo) +

+

L. . . 1
G13G31(Gr& - ki + Gzey - kS)Etr(fl]%) +

+

L ) 1
G23G3(Grag) - ko + Gi3eg 'k3)§t1’(f2f3)~ (2.37)
Let’s see the structure of G;; with the rescaling 7; = ;T

C T iy = =) 238)

Gij=lti—7jl - T
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And Gij:

. (T,‘ — Tj)
T

Gij = Sgl’l(Tl' — Tj) - 2 = sgn(u,- — l/lj) - 2(14, - I/tj). (239)

Notice that, there are three G in each term of Q3, we need to exploit this property to cal-
culate the integral. We know G; is a periodic and even function in the interval [0, 1], this
means it will be invariant under the transformation u; — (1 — u;). The consequence is in

Gij, if we perform this transfomation, it brings us an extra minus sign, for example:
G12 = sgn(u] —u) — 2(”] —U) > sgn(—u1 + I/lz) - 2(—1/[1 +up) = —G]Q. (240)
Taking the first term Qg we can see its transformation:

03 = GuGuGaiu(fifofs) > -0 (2.41)

Since the trace of the f functions does not depend on u;. Also, this happens with Q% because
the existence of three G in all the terms, so we can convince ourself of the transformation
Q3 — —Q;. But here we are dealing with the same argument for the same integral, this
means that the only possible result for the integral is zero. We can generalize this result for
any odd N, but it does not work for even numbers, this is because an even number brings
to us an even quantity of minus signs wich is equal to +1.

2.3.3 Four-photon Scattering

At this point, we have to treat the four-photon scattering problem. In order to do that, using
the master formula with N = 4 and expanding P, from 2.19, integrating by parts to obtain
Qy4, we shall get the following expression:

Qs = Qi+Qi+Q;+07
Y= G(1234) + G(1243) + G(1324)
Q) = G(23)T(4) + GR3HT(1) + GB41)T(2) + G(412)T(3)
QF = G(U2QT(34) +GU3)T(24) + GIHT(23) + G3)T(14) + GRHT(13) + GBHT(12)
2 = G(12)G(34) + G(13)G(24) + G(14)G(23)
(2.42)
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Where there are a new kind of structure called N-cycle, and the previously mentioned one-
tail and a new kind of tail called two-tail:

G(ij,iy...iy) = G,-l,,-zG'izi3 ... G,-N,-IZ(iliT “en) (2.43)
Ta) = Gue,-k (2.44)
. . 1. . .
T(Clb) = Garga : kersgb : ks + EGabSa : 8b(Z Garka : kr - Z Gbskb . ks)
r,53(r,8)#(b.a) r#b s#a
(2.45)

However, despite the fact that this representation is compact and very organized, it could be
optimized into a better structure where we separate the information of the tails and Lorentz-
cycles into more general objects and the information about the worldline Green’s function
in another one. We shall discuss this in the next chapter.



Chapter 3

Four-photon Scattering in the Worldline
Formalism

3.1 A First Example: The Scalar Case ¢°

In order to show how the method works, we shall begin with a similar calculation for N = 4
in the scalar case ¢3. In this theory, the master formula is simpler than scalar QED, but for
educative purpose it will be enough. First of all, the amplitude representation for the one-
loop scalar N-point is given by:

2P (&5 ).
In(ki - ky) = 2((#))1)/26(Zk,-)lmk1---km

i=1

oodT T T
f —T_D/ze_szf d7'1~~-f dtyexp
o T 0 0

Here we must make an important clarification, regarding the integrand for the scalar case,
we can appreciate that G;;’s do not appear in it. This makes the calculations easier to
perform, unlike the case for scalar QED, in which, as we will see later on, we will have the
appearance of these functions. Doing the rescaling 7; = u;T, we get:

Iy -+ )

o
chijk,--kj]. 3.1)

ij=1

Iy = f AT pv-np it f 1 du; ...duyexp|T i lG,,k,- : kj]. (3.2)
o T 0 i,j=1 2
Henceforth, we shall denote the exponential argument as:
T 4
A= > Gijki-k;. (3.3)

ij=1

41
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Choosing N = 4 in equation 3.2, we get:

R ~ 4T :
i, :f _T4‘D/Ze‘m2rf duy ...duge. (3.4)
o T 0

3.1.1 The Mandelstam Variables

For the current calculations, we shall study the on-shell case, thus it will be useful to intro-
duce the Mandelstam variables:

s = —(ky + k)%,
t = —(k; + k3%,
u=—(ky +ks)*. (3.5)

In order to have only photons as external particles, the Mandelstam variables must satisfy
s+t+u=mi+m;+m;+mj=0. (3.6)
Recalling the Green functions G;;:
Gij = |lwi—ujl— - u;)’ (3.7)

Writing A in terms of the variables u; and the Mandelstam variables:

T
A= ~3 [(G12 + G23)s + (Gi3 + Gt + (Gia + Go3)u] . (3.8)

In terms of the explicit functions G;; and the Mandelstam variables:

T
A= —5[(|M12| + 2uiuy + luzg| + 2uzug)s  +  (lugs| + 2ugus + |ugs| + 2urus)t

+ (|u14| + 2u1u4 + |I/£23| + 2142113)14]. (39)

Here is necessary to remark the notation u;; = u; —u;. Also, it is important to notice that the
condition for the Mandelstam variables removes the quadratic terms for u;. This is good
for our integrals, because the quadratic integrals in a finite interval of integration give us
error functions and they are not good functions for our calculations. Instead, we have linear
terms in u; and the integral is tractable in our interval.
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3.2 Integration of the Amplitude

Our task 1s now to perform the integrals in equation 3.4, with the exponent A in equation
3.9. In order to do that, we shall start integrating over u4, fixing the ordering for the legs
uy > up > uz and split the integral over u, into four contributions:

1 U3 U Ui 1
f du4 = f du4 + f dI/t4 + f dlxi4 + f du4. (310)
0 0 u3 uy u

Is then easy to see the result for the integrals:

U3
eAdl/[4 — 1 {e(l—u13)u23ST _ e(l—u1)u23ST+u3u12uT}
0 T'luzzs — uypu]
175} 1
f eAdu4 — {eu12u23tT _ e(l_ul3)u235T}
u3 T[(l/t23 - l)S - u12u]

i)
f eAdu4 = 1 {e(l—uls)ulzuT _ eu12u23tT}
u Tluyzs + (1 — upn)u]

2

U] 1
f eAdl/[4 — {e(l—ul)u23sT+u3u12uT _ e(l—u13)u12uT} ,
u

) Tuxzs — ujou]

(3.11)

we can notice an important fact on the integrals, the contributions from u4 = 0 and uy = 1
vanishes, this is something expected because we are integrating a periodic function around
the loop, whereby u4 = 1 and u, = 0O are identified as the same point. We can add the four
contributions and group by the same exponential factor, re-writing in terms of G;; and G,
as follows:

1
f eNduy
0

{ _ 2 _ + i 2 i }e;(GIS‘*’GB—G]Z)ST
T[s — Gsu — Gat] T[s + Gsu + Gat]

{ _ 2 i + i 2 i }e;(GIZ"’GZ}_GB)tT
T[t - G23S — Gy u] T[t+ G23S + Gy u]

{ _ 2 _ + i 2 i }eé(G12+G13—G23)MT.
T[u— Gt — Gy35] Tlu+ Gt + Gi35]
(3.12)

Writing our result in terms of G;; and G, ; we manifest translation invariance and we can
take advantage of it, by doing u; = 0 and choosing one of the remaining orderings u; > u,
or u, > uy. It is important to notice that we can pass from one to another by the change:

ui— 1 -1 (3.13)
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This transformation reverses the flow of proper time in the loop. We can take only one
of the orderings and multiply by a factor of two, instead of calculate both options. Doing
u3 = 0 and performing the integral over T:

1 2 2
: : + : :
m? — 1(Gi3 + Ga3 — Gpo)s {[S - Gaiu—Gant]  [s+Guu+ G32t]}

1 2 2
: : + : -
m? — (G2 + Go3 — Gp3)t {[f —Gus—Goul  [t+Gaus+ G21M]}

1 2 2
: : + - : .
m? — 3(G12 + Gi3 — G3)u {[M -Gt -Gisl [u+Gpt+ G13S]}
(3.14)

Doing u; = 0 and choosing u; > u,, we can integrate over u,, from O to u;. We shall
calculate only the integral for the s-sector and we can obtain the rest of results from it by
the cyclic permutations s — ¢ — u — 5. Using partial fraction decomposition, we get:

_osU—uy)uy

ful du2 _ In (1 > ) —1In (—i)
o (m?—s(1 = upuy) (suy — uppu) m?t + (1 — uy)u; su

iy 1 In ((;::1‘);) —In (1 S(uy—Dug )
L (m2 — s(1 —u)un) (s(1 — o) + uppu) — m2t+ (1 — uy)?s® — (1 — uy)uy st
(3.15)

The last integral can be performed by completing the square into the denominator and again
splitting in partial fractions, after that we can apply the formula:

fa’xw:ln(x+b)ln(x+a)+Li2(x+b). (3.16)

x+a a—->b b-a

Where Li,(x) is known as the Dilogarithm function®.

3.3 Optimized Representation of the Four Photon Scatter-
ing Amplitude

As we saw in the last chapter, there is a Q-representation for the four-photon scattering
amplitude. But it could be improved by defining a new set of structures where we can
detach the information of the tails and cycles and also define another structure, where we
have the worldline Green’s function information. In order to do this, we need to define a

*See appendix A.
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new kind of tail, called improved one-tail:

T(D)e = T(i)e" — &, (%w) 3.17)

where 7; is a reference vector and e® is the same as in equation 2.19. It is important to
realize that the introduction of the total derivative integrates to zero around the loop, which
is why we can introduce it without changing our answer. It can be demostrated that we can
express this improved tail as:
e ok
Tx(i) = ZGU%. (3.18)

J#i i+ ki

Also, by adding total derivative terms to the two-tail, we can define a short two-tail:

i "Ry

1 .
T(ij)e” = T(pe? + e &0 — & kie; - kdi(Gue")

. 1 .
- & kiSi : kraj(G,-re(')) + (58[ . Sjk,' . kj - & kij . k,) (6, - c')j)(G,-je(‘))] .

(3.19)
And also, it can be demostrated that we can write it as:
.. . . kr : fa ' fb : ks
T, = G,,Gps————. 3.20
i) = ), GriGn= = (3.20)

r,s#a,b

We can notice that now the tails split into a factorized part which only involves photon mo-
mentum and the photon field strength tensor, and other with the derivatives of the Green’s
functions. With the help of this new information, we can re-write the Q-representation into
a new one with a better organization:
o =T +T2 41O 417 470
scal —

scal scal scal scal scal’

(3.21)
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(1) _ scal (€)] scal (n scal (€))]
Uiwr = TamaT o + Tioan T 243 + Tason T 1304y
(2) _ scal 2) scal 2) scal )
scal 1—‘(12)(34)T(12)(34) + l—‘(13)(24)71(13)(24) + r(14)(23)T(14)(23)’
(3) _ scal B)rs scal (€ scal B)r2
Dowt = Z F(123)iT(123)i + Z F(234)iT(234)i + Z F(341)iT(341)i +
i=1,2,3 =234 i=3.4,1 i=4,1,2
(4) _ scal (4) scal (4)
Viea = Z pie i Z LipiiTinir
i<j i<j
(5) _ scal 1 (5) scal (5)
rscal - Z r(ij)ijT(i Jij + Z lﬂ(ij)jiT(ij) it
i<j i<j
The tensors 7" are given by:
T Z(1234)
(1234) )
)
T(12)(34) Z(12)Z(34),
B)rs ry - fa ki
T(123)[ Z(IZS)W,
ki-fs- fi-
@) 1°J3° Ja
T(12)11 Z(12)—k3 s ,
ki fs- fi-k
) _ 1°J3 Ja Ko
T(12)12 = Z(lZ)W

Each I is given by:

4 “dT _, b ! ! .
¢ Df —T4_2e_m2Tf du1~~-f duwff"’l(G,-j)eA
@mz Jo T 0 0

4
Where A = £ Z Gijk; - kj and the terms y*“/(G;;) are:

ij=1

rscal —

Yz = G12G23G34Gy

scal

Yanay = 6126216363
l . . . .
Y = G12G23G31Gy;
l . . . .
Yoy = GnGaGiGy

scal

Yaniz = G12G21G13G 4

rscal .T(3)’3

(412)i~ (412)i°

(3.22)

(3.23)

(3.24)

(3.25)

Our task is to integrate the terms in equation 3.22 with the usage of equations 3.24 and

3.25.
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3.4 Integration of the Amplitude

Now, we are going to integrate one structure of each I'**’. The procedure for the integration
is as follows:

e Integrate over uy, splitting the integral from O to 1 into four contributions.

e Sum all the previous contributions and re-write the result in terms of G;; and G; j to
make clearer translational invariance around the circle.

o Integrate over T'.

e Due to the translational invariance, we have the freedom to set any u; variable equals
to zero, this is not affecting the final result. In our case, to conserve the symmetry
between sectors, we are going to do zero a different variable for each one, we shall
discuss this point later.

e Integrate over one of the two remaining variables, depending on which integral is
easier to perform.

e Integrate over the last variable. This last step shall be made numerically, this is due
to the difficult to integrate analytically functions as PolyLog(n, x).

e For this last numeric integration, we are going to attach a Mathematica file to this
thesis, where the integration is done.

We shall begin from the easiest structure and we shall finish with the most difficult one.

3.4.1 Integration of y(23)

For the current integration we begin by using the ordering 1 > u; > up, > uz > 0. This
ordering is not special from the rest of options, the particular reason to choose it, is the
form of the structure and the quantity of u, appearing. As we mention before, we are going
to split the integral into four contributions:

1 U3 U Uy 1
f du4 = f du4 + f dI/l4 + f dlxi4 + f du4. (326)
0 0 u3 u u

In this way, we are covering the whole circle. The first calculation we can perform is the

uy integral for y{5y -

i i
G12G3G3y f Gy e duy = GGG f (041 — 2uqy)eduy. (3.27)
0 0

See appendix A.
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Which involve powers of uy in its structure, but they are linear in this variable. By writing
explicitly the G,;, and by now dropping off the prefactor G1,G23G31, it is straightforward to
show that:

13
f G41€Adu4 = { i — 1 + 2 }e(l—um)uzssT
0 Tluzss —uipul  T?[upss — uppul?

2u; — 1 2

(1—uy)ux3sT+usupuT
+ ) > e
Tluxzs —upu] — T[uzzs — uypu]

2”12 - 1 2 } uppuxstT
e
T(uzz — 1)s — ujul T2[(M23 — 1)s —upul?

2ui3 =1 2 }e(l—L413)M23ST
Tl(u23 — 1)s — uspu] TZ[(uzs — 1)s — upul?

Ul X A _ 21/[12 - 1 2 upux3tT
j,; Gue dus = { Tlups + (1 —upul  T?lugps + (1 —“12)“]2}6

U2
G41€Adu4 =

(1 —u 3)“ ZMT
> > e ! !

2 e(l—u13)u|2uT
T[u23s —upu]  T?[uz3s — uppul?
2u; — 1 2
+
T'Tuyzs — upu] TZ[M23S - Mlzbl]2

1
2 A
G41€ du4 =

} e(l—ul Yupz ST +usupuT

(3.28)
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As in the scalar case, we notice that the contributions from us = O and u4 = 1 vanishes.
We can write this integral in terms of the Green’s functions G;; and G, as follows:

) .
) 2G 8
f G41€Adu4 = {— : D : + : :
0 Tls — Gyiu—Gypt]  T?[s — Gyu— Gxpt)?
B 2G13 _ . 8 ‘ }e;(cmcz_g—cn)ﬂ
T[s + G3u + Gat] TZ[S + G3u + ngt]z
{ 2G 1, 8
+ - " " + " n
T[t—Gps—Guul T?[t— Gays — Gyul?
_ 2612 i _ i 8 i }eé(G12+G23—G13)tT
T[t+ Gys + Gou] T2[l +Gys + Gzlu]z

2 8
+ - " " + " "
{ Tlu—-Gpt—Gizsl  T?[u— Gt — Giss)?

i 2 i _ i 8 i }eé(G12+Gl3—Gz3)uT
Tlu+ Gt + Gizs]  T?u+ Gt + Gizs)?

(3.29)

From now, we are going to call to the first part of equation 3.29 s-sector, the second ?-
sector and to the third u-sector, this is due to the Mandelstam variable appearing in the
exponential factor. Equation 3.29 makes explicit the translation invariance in proper-time.
In the next step, we shall do a variable u; equals to zero, and perform the integral over T'. It
is important to notice that the integrals with % are trivial to do, but the integrals with factors
% need a special treatment, because if we attempt to integrate these terms directly, we get
a divergent result. The general structure of the 7" integral is:

“dTl _, o B
f TT“_?ﬁe_AT (330)
0

The procedure is to re-write the integral using the definition of the gamma function. By do-
ing a variable change y = AT and choosing D = 4 — 2¢, to avoid and control the divergence
near to a pole, we will have as result:

“dT B
f _T4—%ﬁe—AT — Aa—e—ZBr(z —a+ 6) (331)
0

In our case, for a = 2:
< dT B
f —T“-?T—e-AT = A“BI(¢) (3.32)
0
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Expanding around the pole e:
1
A™*BI'(¢e) = B[— — (yg + InA)] + O(e) (3.33)
€
Where yp is the Euler constant. It is important to remark the fact that as result of evaluating

at € = 0, all the divergences 1/e must vanish, since the amplitude is finite. Now we can do
the integral over T for equation 3.29 we get:

-2G13 { 1 N 1 }
mz—%(G13+G23—G12)s S—G31M—G32t S+G31M+G32I

N -2G1» { 1 N 1 }
mz—%(G12+G23—G13)t t—ngS—Gmu I+G23S+G21M

) 1 1
+ : : - : :
mz_%(G12+G13—G23)u{M—G]zt—Gl3S M+G121+G13S}

-8 8 1
+ { . . + . . }ln(m2 - =(G13+ G —G)s)
[S - G311/l - G32t]2 [S + G31M + G32f]2 2
-8 8 1
+ { . . + . . }111(”12 = (G + Gy —G))
[l - G23S - C;let]2 [f + G23S + Gz]l/t]z 2
-8 8 1
+ { - ; + - - }ln(m2 = (G2 + Gi3 — Ga3)u).
[M—Glzl—Gl_O,S]z [M+G121‘+G13S]2 2

(3.34)

Now, the next task is to perform another integral, but for any of the three remaining vari-
ables. Once, reinstated the missing G’s, each of the lines is individually invariant under the
transformation u; — 1 —u;, giving us the two terms in brackets are exchanged, this is called
inversion symmetry. As we saw before, we recover translational invariance and that let us
choose one of the variables equals to zero. Also, the inversion symmetry above lets us fix
u3 = 0 and one of the orderings u; > u, or u, > u; and multiply by a global factor of 2
because of our choosing. Now our integral will be:

qu] Sf(uy, ux)dus,. (3.35)
0

In our case, to conserve the symmetry between sectors, our choosing is set u3 = 0 and
u; > up for s-sector, u, = 0 and u; > wus for t-sector and u; = 0 and u, > wus for u-
sector. However, choosing any other ordering and variable that is made zero does not affect
the result due to translational invariance. This way to perform the integrals will be used
in all the remaining structures. Analogous to the scalar case, the integrals are made by
decomposition into partial fractions and integrate term by term.
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3.4.2 Spurious Poles

To calculate the penultimate integral, we will encounter some spurious poles and it is nec-
essary to control them. The method used to avoid them is described below.

Consider from partial fraction decomposition of the #-sector in equation 3.34, we obtain
the next term:

—8s2u? + 12s2u% — 65%u; + 5> — 16stuA1' + 16stu? - 4stu% - 161‘214‘11 + 16t2u? - 4t2u%

s(m2s + stu% — stu; + tzuf - t2u1) (—suy + susz — tuy)
(3.36)
We can notice that there is a pole in:
s+1

wy = Ly (3.37)
S

To avoid it, we are going to split our integral into two intevarls surrounding the divergence:

S+t

U ‘Tu1—e U1
f du3 = f du3 + f dl/tg, (338)
0 0 Sty +e

s

and after that we can expand the result in powers of € around zero, obtaining with this
the result controling the pole, this process is called Cauchy principal value method. If
we decide not to control the divergence, we shall obtaing a divergent result or a complex
number as result for the last integral, by avoiding it, the result will be a finite real number.

At this point, we are ready to compute the integral over the penultimate variable and
due to the extent of the result, it is shown in Appendix B. Once done, we can take the
expression for the last integral and calculate it by numerical methods, since the complexity
of the functions we choose that Mathematica must decide which is the best method to
integrate. We shall discuss the numeric part eventually.

3.4.3 Integration of y[5 |

scal

For the integration of y{5},,,

we are going to have:

! !
G12G21G13f Gy eduy = G12G21G13f (041 — 2ugy)eduy. (3.39)
0 0

We can realize that the integrals for u4 and T are exactly the same for the previous structure.
This means that we do not need to do new integrals and the result is given by equation
3.34. To calculate the rest of integrals, we have to take back the prefactor G1,G»G3, and
perform the integral over one of the variables, following the same argument of conserve
symmetry between sectors. We have to make it clear that the final result will be different
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from the previous structure because of the prefactor. Again, we present the result for this
last integral in Appendix C.

3.4.4 Integration of y75 ,

The first calculation we can perform is the u,4 integral for y(’l‘gé)z'

i i
G12G1Gi3 f Gpetduy = G12GGis f (042 — 2usr)e™duy. (3.40)
0 0

By writing explicitly the G;; and by now dropping off the prefactor G1,G,;G13, it is straight-
forward to show that:

U3 _
f G42€Adu4 = { Zux — 1 + 2 } e(1-u13)uzssT
0 Tluxzs —upu]  T?[ups — uppul?

2uy — 1 2

+ }e(l—Ltl)u23sT+u3u]2uT
Tluxzs — Mlzu] T?[uz3s — urpu)?

. 2
G42€Adu4 = 3 2} uiu3tT
T{(up — 1)5 - ulzu] T*[(u23 — 1)s — ujpul

2uy; — 1 2 }e(l—um)uzasT
T(ux3 — 1)S — ujpu] TZ[(M23 — 1)s — upul?

ur A B 2 upux3tT
fuz Guetdus = {T[uzzs + (1 —upul  T?luszs + (1 - u12)”]2}e

TTuxzs + (1 — uyp)ul TZ[M23S + (1 — upp)ul?

2u; — 1 2 el 1-umunul
Tlunss — uppu]l  T2[uz3s — uppul?

2M2 - 1 2 e(l—ul)u23sT+u3u12uT
Tupss — upu] TZ[M23S - Mlzu]2

2up — 1 2 }e(luls)ulzuT

1
* A
G42€ dl/t4 =

(3.41)
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Again, we can notice that the contributions from u4 = 0 and u4 = 1 cancel one to each
other. Now, writing this integral in terms of G;; and G, i

. .
) 2G 8
f G42€Adu4 = {— : = : + : -
0 Tls — Gyiu—Gypt]  T?[s — Gyu— Gxpt)?
B 2G23 _ . 8 ‘ }e;(cmcz_g—cn)ﬂ
T[s + G3u + Gat] TZ[S + G3u + ngt]z

2 8
+ - " " + " "
{ T[t—Gas—Guul T*t—Gys— Goul?

_ 2 _ _ i 8 i }e%(G12+G23—G13)tT
T[t+ G23S + Gy u] T2[t + G23S + Gz]l/t]z
{ 2G1, 8
+ - ; + - ;
Tlu— Gt —Gizs]l  T?*u— Giat — Gizs]?
?Gu ‘ 3 . 8 ‘ }eg(c;mc]_g—cz_g)ﬂ
Tlu+ Gt + Gizs] T2[u + Gt + G13S]2

(3.42)

As we did before, we are going to integrate over 7, following the same procedure, the
integrals % are easy to perform, but for integrals involving % we shall use formula 3.33.
Doing the calculations, we obtain:

—2Goy3 { 1 N 1 }
m? — %(GB + Gy —Glz)S S—G31M—G321 S+G31M+G321

-2 1 1
mz—%(G12+G23—G13)I{I_G23S_G2]u t+Gl3S+GZIM}

+ 2G12 { ! + ! }
m? — %(GIZ + G13 — G23)1/l u-— G12f - G13S u-+ G12t + G13S

-8 8 1
+ : : + : : In(m® = =(G13 + Gozs — G1»)s
{[s—Gglu—GntP [s+Gslu+Gszr]2} ("= 5(Gn + G = G)s)
-8 8 1
+ { . . + . . }111(m2 — —(G1a+ Gz — G3)0)
[t - G23S - G211/l]2 [t + G23S + G21l/l]2 2
-8 8 1
. . + : : In(m* — =(G1y + Gz — Go3)u
{[M—Glzf—G13S]2 [M+G12I+G13S]2} ( 2( . . =)

(3.43)

At this point, we are going to take back the prefactor and integrate over one of the variables.
The results are shown in Appendix D.
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3.4.5 Integration of y;3 .,

scal .
(12)(34)°

The next calculation we can perform is the u, integral for y
. . 1 . . . 1
G12Gyy f G3Gapeduy = (_1)2(G12)2f (034 — 2usg) e duy. (3.44)
0 0

Writing explicitly the G;; and by now dropping off the prefactor (G1,)?, it is straightforward
to show that:

“aeo 1 -4 8
GG eAdu = + + e(l—M13)M23sT
f(; o ! {T[u23s —upul  T?[uyss —uppul*  T3[upzs — u12u]3}

+{ _(2u3 - 1)2 n 2—4(21/{3 - 1) ; 4 . = - } e(l—ul)u235T+u3u12uT
Tluyss —upu]l — Tugzs — ujpul* T [uxzs — ujpu]
e . (21/[23 - 1)2 —4(21/[23 - 1) 8
G G Ad = + + upux3tT
L e il {T[(m “ s —uul | T2[(uzs — s —unul? Tz — Vs — unul | ©

{ -1 4 8 } st
+ + + el TH13)u23S
Tl(uxs — s —uppu]l  T?[(uz — 1)s —uppu]>  T3[(upz — 1)s — uppul?

e . (21/{23 - 1)2 4(2Lt23 - 1) 8
GG izeduy = + + urpup3tT
fuz Whae G {T[M23S (L= uul * T?ugss + (L= urul  Tluzss + (1 —upul | ©
4 (2M13 - 1)2 " —4Qu;z — 1) _ 8 (I=u3)uroul
Tlups + (1 —upul - T?{upzs + (1 —upul>  T3[uzzs + (1 = upp)ul’?
1 2
. R —(2u13 - 1) 4(2M13 - 1) -8 _
G34Gize™duy = + + (1=u13)urouT
ful uhae Al {T[u23s “upul | Turss —upul | T[uzss —uppul | ©
+ (2’”3 - 1)2 + 4(2”3 - 1) + 8 e(l—ul)u23sT+u3u12uT.
Tluzss —uipu] — T?[uxzs —uppul®>  T3[uzzs — upul?

(3.45)
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Summing the contributions, we can write this integral in terms of the Green’s functions
Gij and G;; as follows:

|
. 2 -16 64
f G34G43€Adu4 = { : : + ; ; + : -
0 Tls— Gaiu—Gypt]l  T?s—Guau—Gunt]*>  T3[s—Gyu—Gut]?

+ 2 L o }eé(G”*GBG”)ST
T[s + Gsu + Gat] TZ[S + Gau+ G32t]2 T3[S + Gau + G32l]3
2(Gp)? )
+ { E e o
Tt — Gys — Gou] Tz[t —Gy3s — G21u]2 T3[t —Gyps — G21u]3
ZFG23)2 . N —.16G23 ‘ N ' 64 ' }e;(Gmng—Gl;)zT
Tt + Gyzs + Gou] T2[l + Gys + Gzll/t]z T3[l + Gy3s + G21u]3
{ 2(G13) 16G 13 64
+ - : + : - + ; -
Tlu— Gt — Gizs] TZ[M -Gt — G13S]2 T3[u —Gat — G13S]3
2(.G13)2 ' + _'16G13 ' + .64 : }eé(G12+G13—G23)MT.
Tlu+ Gt + Gi35] Tz[u + Gat + G13S]2 T3[Lt + Gat + G13S]3

(3.46)

Equation 3.46 is taking us back in the case where we have not fixed which of the permuta-
tions of the photons we are working on. In the next step, we shall perform the integral over
T, as before, we are going to use equation 3.31 but now with a = 2, 3:

“dT , » B
f — T2 =T = A“BI(e)
0

T T2
~ 4T B
f i e R A ()| (3.47)
o T T3

Expanding around the pole e:

A“BI'(¢)

Q

B[é —(y+1InA)] + O(e)

A'"¢BI'(e - 1)

X

AB[—% +y-1+1InA]+O(e) (3.48)
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Now we can do the integral over T for equation 3.46 we get:

2 1 1
- - + - :
m? — %(GB + Goy3 —Glz)S {S—G31u—G321 S+G31M+G32t}
N 2(G)? { 1 N 1 }
m? — %(G12+G23 —G13)t t—ngs—G21u t+G23s+G21u

N 2(G13)? { 1 N 1 }
m? — %(G12+G13 —G23)I/t M—Gml—Gw,S M+G12I+G]3S
32(G3 + Goz — Gyo)s N 32(G13 + Goz — Gyo)s

" [s — G31u — Gt [s + Gy1u + Gt

N 32(Gia + Gas — Ga)t N 32(Gia + Gaz — G3)t
[t — Gys — Gyul? [t + Gys + Goul?

N 32(Gia + Gz — Go3)u N 32(Gia + Gz — Go3)u
[u— Gat — Gi3s)? [u+ Giat + Gi3s)?

. { 16 . 16 N 64(m* — 3(G13 + G2z — G12)s)
[s — Gyiu— Gt [s+ Gau+ Gpt]? [s — Gy u — Gyt

64(m? — (G5 + G3 — G1o)s 1
+ ( 2(. b - 12)5) In(m* — =(G13 + Gy — G1p)s)
[s + G3ju + Gpt)? 2

. —16Gy; . 16Gos3 N 64(m* — 3(G1p + Gz — G13)1)
[t — G23S — Gglu]z [t + G23S + Gzlu]z [t + G23S + Gz]MP
64(m* — (G + Go3 — G3)t 1
+ ( 2(. 2 .23 13) ) ll'l(l’l’l2 - —(G12 + G23 - G13)l')
[t — Gozs — Gyul? 2
s —16G13 . 16G 15 N 64(m* — 1(G12 + G13 — Ga3)u)
[u — Glgl — G13S]2 [u + Glzt + G13S]2 [u + Glgl + G13S]3

64(m* — (G2 + G13 — Go3)u) 1
+ . . In(m? — =(G1 + G153 — G3)u 3.49
0 Coi— G ( 2( 12 13 23)Ut) (3.49)

And again, we are going to do a variable u; equals to zero conserving the symmetry between
sectors and performing the integral. Due to the size of the result, we show it in Appendix
E.
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3.4.6 Integration of y(%;,

scal .

The first calculation we can perform is the uy integral for y/j7;,:

1 1
G12G f G34Gyetduy = GG f (034 — 2u34) (041 — 2ugy)e™duy. (3.50)
0 0

Writing explicitly the G;; and by now dropping off the prefactor G1,Gas, it is straightfor-
ward to show that:

N Qups — 1 41 = uy3) 8 )
GG Ad — + _ (1—u13)ux3sT
f(; uhane il {T[u23s —upul  T*uys —upul®>  T3[uxzs — ujpul? ¢
i (2141 - 1)(2143 - 1) 4 4(141 + Uz — 1) + 8 (1=up)uz sT+uzuiouT
Tuyzs — ujoul T?[uyzs — upul>  T3[uxzs — uppul®
L 2upy — 1)up; — 1 4(ups — 8
f GauGare™duy = {( up — 1)Quyz — 1) - (U3 — upn) - 3}eu12u231T

u3 T[(u2s — 1)s —uppu]l  T*[(uz — 1)s — uppu] T [(u3 — 1)s — uppu]
+{ 2uy3 — 1 + 4uys " 8 }e(l—MIB)MZSST

Tl(ups — 1)s —uppu]  T?[(u3 — 1)s —uppul>  T3[(up3 — 1)s — uppul®

"o 23 — 1) Quyp — 1 4(urp — 8
f G34G416Adu4 — {_( U3 )uiy ) + - (u12 — uz3) . n . 3}eu12u23tT

u Tluxzs + (1 —upp)u]  T*[uxs + (1 —upp)ul T [uxzs + (1 — upn)ul
N 1 —2u3 + duy; _ 8 e(1-uz)uroul

Tluszs + (1 —uipul  T*uzzs + (1 —up)ul> T3 upss + (1 — up)ul?

1

. . 1- 21/t13 4(1 - I/£13) 8 _

G34Gae™duy = + + (1=u13)uruT
ful ahne il {T[Mzzs “ o] T2[uys — upul | Tluzss — el |

+ _(2’”1 - 1)(21/[3 - 1) + 4(1 —uy — I/l3) _ 8 e(l—ul)u23ST+u3u12uT‘
Tupss — upul T?[uxzs — uppul>  T3[uzzs — urpul?

(3.51)
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Adding up all contributions, we can write last equation in terms of the Green’s functions
G;; and G;; as follows:

{_ 2613 L 814Gy 64
Tls — Gsiu—Gxpt]l T?[s—Gsiu—Gypt]?  T3[s - Gyu— Gnt)?
T[s+Gyu+Gspt]  T?[s+Giu+ Gnt]>  T3[s+ Giu+ Gypt]?
N { 2¢12G23 . N 8(G'.12 - G2§) B ' 64 '
T[t—Gys—Guul T2t - Gaus—Gyul> T3[t—Gys— Grul?
N 2@12(;23 . 3 8(G.1z - Gzé) 3 ‘ 04 ‘ }e;(G12+G23—GI3)zT
T[t+ Gys + Goyul T2t + Gas+Gyul?> T3[t+ Gys + Goul?
B wiow
Tlu—-Gpt—Gizs] T?*u—-Gppt—Gizsl*> T3u—- Gt —Gzs]?
2G5 8(1 + Gy3) 64

T[M+Glzl+G13S] TZ[M+G12Z+G]3S]2 T3[M+G]2f+G13S]3

} e%(G12+G13—G23)uT

(3.52)



3.4. Integration of the Amplitude 59

By using equations 3.48, we can do the integral over T for equation 3.52 we get:

2M13 - 1 { 1 + 1 }
m? —ups(1 —upz)s \uazs —upu (U3 — 1)s — upu

Qui = DQup3 = 1) { 1 1 }

+
m? — uyoupst upt—(I—wz)s (1 —wuz)s+ 1 —up)t

+ 2l/tl3 -1 1 + 1
m* —upp(1 —uin)u \uost — (1 —wiz)u uost + ugzu

8 -wm3z) 8uss B 8uyy
[tass — uppul*  [(ups — s —upul*  [uss + (1 — up)ul?
{_ 40 —wuz) 8(m? — (1 — u13)un3s) _ dus
(U235 — uroul? (U35 — u1oul’? [(u23 — 1)s — uypoul?

8(m* — (1 — u13)un3s) )
[(I/t23 - 1)5 — ”12M]3 }ln(m - (1 - I/t13)u23s)

{_ A(uiy — up3) N 8(m? — uyaupst) N A(uiy — uz3)
[uzzs + (1 —up)ul®>  [uzs + (1 —up)ul®  [(u2z — 1)s — ujpul?

+

8(m* — uyupst)

- 1 ) t
[(up3 — 1)s — M12M]3} n(m UipUo3t)

N {_ 4(1 = uy3) N 8(m? — (1 — uy3)uppu) B 4uys
[Ua3s — upul? [uzzs — upul? [uazs + (1 — upp)ul?
8("12 — (1 = u3)uiou)

2
C lups+ (1 = up)ul? }ln(m = (I —ui3)upu) (3.53)
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We can express last equation in terms of G;; and G;;:

-2G3 1 1
m? — %(GB + Gy —Gpo)s {S — G3u — Gyt s+ Gau + Gazf}
N 2G1,Ga; { 1 + 1 }
m?> = 2(Gio + Gy — Ga)t |t —Gazs —Goyu 1+ Gozs + Gou

. 261 { 1 I }
mz—%(G12+G13—GQ3)u M—Glzt—G13S M+G12I+G13S
-32(G13 + G — G)s N -32(G13 + G — Go)s

[S - G31u — G32t]3 [S + G31u + G321‘]3
N =32(Gi2 + Gz — G3)t N =32(Gi2 + Gz — Gi3)t
[t — G23S — G21M]3 [t + G23S + G21u]3
N -32(G12 + Gi3 — Gp)u N -32(G12 + Gi3 — Gp)u
[Lt — Glzl — G13S]3 [u + Glzt + G13S]3
~ { 8(1 + G13) . 8(1 — G13) N 64(m* — 3(G13 + G2 — G1o)s)
[s — Gyiu — Gt]*  [s+ Gyu+ Gyt]? [s — G3iu — Gt

64(m* — L(G13 + Gy — Gi)s !
. ( 5(Gi3 + G —Gn2) )}1n(m2 = 5(Gi3 +Ga3 = G)s)

[s+ G311/t + G32t]3

—8(612 - G23) + 8(G12 — ng) + —64(1’}12 - %(GIZ + G23 - G13)t)
[t — G23S — G21u]2 [+ G23S + G21u]2 [+ G23S + G21u]3
—64(m* — 2(G12 + Gaz — G13)0) 1
+ 2 . In(m* — =(G2 + Gaz — G13)1)
[t = Gozs — Gyul? 2

B { 81-Gu) . 814G | 64(m* — 1(G12 + G13 — Ga3)u)

[M—Glzf—GBS]Z [M+G12I+G]3S]2 [M+G12Z+Gl3S]3
64(m* — 3(G12 + G13 — G3)u)
[u — Gt — G35

1
}ln(m2 - 5(G12 + G153 — G)u) (3.54)

With equation 3.54, we can now take back the prefactor and integrate over the penultimate
variable. The result is shown in Appendix F.

3.5 Numerical Integration

As mentioned above, integrating over the last variable is the best strategy because we would
analytically obtain the complete result for the amplitude. Unfortunately, the complexity of
functions such as Li,, the size of the results obtained and the possible appearance of spu-
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rious poles are impediments to such integration. This is why we have decided to perform
the last integral numerically. Once the results with false poles had been regularised, we
decided that Mathematica should decide the best numerical method to calculate each inte-
gral. At this point, spurious poles appear again, but this time on the last variable. These
spurious poles are not removed in the same way as the previous ones, on the contrary, they
are removed by matching terms containing the same degree of divergence but with opposite
sign. To see this, the divergent results must be expanded in series around the two possible
points of divergence, i.e. u; = 0 or u; = 1 which in effect, due to the inversion symmetry, are
identified as the same point. Looking which terms contain the same degree of divergence
we can add them and the divergence will be removed. In the Mathematica file attached to
the thesis, we have cancelled the divergences for all structures.

As a last comment for the numerical part, we have to mention that Mathematica has
limitations in its computational power when performing some operations and that is why
the results shown, although correct, cannot cover all the values for the mass and the Man-
delstam variables.

3.6 Expansion of the Weisskopf Lagrangian

At this point, it is possible that we have the natural question, How do we know that the
calculations performed so far are correct? To answer this question, we have a interesting
check, the case of the scalar QED in a constant electromagnetic background. As we men-
tion in the introduction, there is a version for the scalar QED lagrangian, also called the
Weisskopf lagrangian. This lagrangian can be expanded in the low-energy limit. Doing
it, we obtain the corresponding factors to the contributions from four photon scattering as
well, vacuum polarization and the tadpole. We shall focus on the coeficients for four pho-
ton scattering. First of all, we have to expand the lagrangian. Recalling the re-normalized
Weisskopf lagrangian for scalar QED:

£ = 1 f‘x’ dT _sz[ (eaT)(ebT)
0

1 2
= | 7 + —(eTF - 1]. (3.55)

sin(eaT’) sinh(ebT) 6

The two last terms in brackets from last equation, re-normalize the lagrangian, without
them the lagrangian is un-normalized and it is the lagrangian we are going to work out. It
can be demostrated that for a constant external field in four dimensions, we can re-write
the un-normalized Weisskopf lagrangian in the worldline formalism as [32]:

< dT in(eFT
W = f 7(47TT)_26_'"2Tdet_1/2 [%] . (3.56)
0 e
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Now, we have to remember the identity In(det(-)) = tr(In(-)), this identity allows us to wite
the previous det as:

i | Sin(eFT) | 1 sin(eFT)
det [—eFT = exp 2tr In —rr (3.57)

The next step is to expand the argument of the In into series in powers of eFT":

sin(eFT) (eFT)*> (eFT)*
In| ————]=In{1- B 3.58
n( eFT ) n( 6 120 (3:58)
Neglecting the higher terms than (eFT)* and expanding the In:
(eFT)*> (eFT)* (eFT)*> (eFT)* 1 ((eFT)* (eFT)* :
In|l- ~ |- - = - . (359
n( 6 120 6 120 ) 2\ 6 120 (3:59)
Taking only the terms untill 4th order:
1 sin(eFT) 1 (eFT)* (eFT)*
——tr|{ln{———=||| = ——tr|— - . 3.60
ex”[ 2r(“( oFT ))] ex”[ 2r( 6 180 (3.60)

Expanding the exponential:

(eFTY (eFT)* 1 !
o [2 ( 6 180 )] ~ 1+ Sul(eFT) ] + s trl(eF )Y + ﬁ(tr[(eFT) 12
(3.61)

Substituting last equation into 3.6, we obtain:

00 2 4
f dT (47)2 -’"T(Tl3 leztr[f ] %[%t [F*]+ < (tr[Fz])] ) (3.62)
0

Taking only the term of order ¢*#, and performing the integral over T':

4
W [Etr[FA'] + —(U[F)) ] (3.63)

We obtain the result for the low-energy limit. In order to compare with our calculation in
worldline formalism, we shall decompose the field F in terms of the field strength tensors
of the individual photons as follows:

="+ "+ "+ 1. (3.64)

These terms correspond to four-photon scattering.
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From now on, we shall omit the indices ¢ and v. The next step is to calculate the traces
appearing in equation 3.62, computing tr(F?):

tr[ F?)

tr[(fi+ o+ i+ 00 - (it ot i+ o)
20t fi - fol + el fy - Sl +telfy - fal +[fo - fal + [ f5- fu]). (3.65)

Computing the square of last equation and taking the multilinear terms:

([F?1)* = 8trlfi - foltelfs - fal + 8ulfi - flulfo - ful + 8ulfi - faltrlfo- S5l (3.66)

Recalling the Lorentz-cycle we have defined in the Chapter 2, we can write the traces as
follows:

tr(fifi) = 22,(ij), (3.67)

substituting into equation 3.66, we get:
(tr[F?1)* = 327,(12)Z,(34) + 322,(13)Z,(24) + 322,(14)Z,(23) (3.68)

Replacing in the last term of equation 3.63, we obtain:

et 1 et
———— | =[] | = ——— [2:(12)Z,(34) + Z,(13)Z,(24) + Z,(14)Z,(23
T [8< t[F2)) ] S 2127064 + Z2(1312:04) + Z(4%(23)]
(3.69)
Following the same steps for tr(F*), we get:
a[F*] = 8tlfy - fo- fa- fal +8ULfi - f3- fo- fal + 8Ulfi - fa- fo- 5] (3.70)
For these traces, we have the following expression in terms of Lorentz-cycles:
tr (fififeft) = Zaijhd), (3.71)
substituting in the trace:
tr[F*] = 8Z4(1234) + 8Z,(1324) + 8Z,(1423) (3.72)

Replacing in the first term of equation 3.63, we obtain:

4 4

e 1 a| e
36(4n)2m’ [I_Otr[F ]] = —45(47r)2m4 [Z4(1234) + Z4(1324) + Z4(1423)] (3.73)

To compare this results, we have to go back into equation 3.22, and we shall notice, there
are terms involvipg the same Lorentz-cycles with our struct}lres .Fgl"géét) and F‘(’{gm) plus
permutations. It is not necessary to calculate every permutation, it is enough to compare

only one structure, in our case, we have already calculated those involving Z(1234) and
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Z(12)Z(34), thus we are going to use them. In the next section, we shall compute the same
limit for our previous results.

3.6.1 Expansion of y(2)34)

To expand the structure I'(;2)34), we have two options. The first one is to expand the result
we found in equation 3.46 and then integrate over 7. After that we have to choose the last
ordering u; > u, or u, > u;. Due to this choice, we have to multiply by a factor of 2 instead
of calculate both cases. The second option is to take the result in equation 3.49 which is
already integrated over 7" and the rest of the calculation is equal as before. However, these
methods are equivalent and it is easier to perform the expansion from equation 3.49. Taking

back the prefactor (G1»)?, expanding equation 3.49 in the low-energy limit, i.e. 1/m — 0,
-4

and only taking the terms m™, we get:
Qui = 1)
—_—. 3.74
3m* 3-74)
Integrating over u, from O to u;:
“(Quyy — 1) 4u? — 6ut + 3uy
—du; = . 3.75
‘fo 3m* = om* (-75)
And finally integrating over u; from O to 1, we get:
V43 — 6u? + 3uy 1
1 1
= 3.76
fo‘ Om* T 18me (3.76)

Taking back all the terms comming from the optimized representation in equations 3.22 and
3.24, also taking into account the factor of 2 from the ordering choice, we get the result:

4

m [Z,(12)Z,(34)] . (3.77)

This result is consistent with the expansion of Weisskopf lagrangian.

3.6.2 Expansion of (1234

Just as before, we shall follow the same strategy. Taking back the prefactor G,G»3, ex-
panding equation 3.54 in the low-energy limit and taking only the terms m~*, we get:

—2Quiz — DQuy — D(ud —uy + §)
- :

(3.78)

m
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Integrating over u, from O to u,

fm —2Qui; — 1)Quy 4— D2 —uy + %)duz _ ~u(6uj — 6uy + 1)£2u% — 6u; + 3). (3.79)
0 m Om
The last integral over u; from O to 1:
1 2 2
u(6uy — 6uy + 1)2uy — 6uy + 3) 1
- du, = . .
fo Om? 7 90m* (550

Again, with help of equations 3.22 and 3.24, also taking into account the factor of 2 from
the ordering choice, we get the result:

4

e
W [Z4(1234)], (3.81)

which is consistent with the calculated from the Weisskopf lagrangian.

3.6.3 Numerical Approximation

Into the Mathematica file attached to the thesis, we can approximate in the same limit,
but it is necessary to do it properly. Instead of choosing m as a large number, we have
chosen to make m = 1 and we have made the Mandelstam variables s, t and u very small,
this choice is due to the computational power of mathematica, which does not allow to
choose extremely high values for m. As a result, the analytically calculated coefficients are
obtained except for a small error that is reduced depending on how small the values for the
Mandelstam variables are.

(a) Approximation for y(j234) (b) Approximation for y(j234)

Figure 3.1: Numeric approximation in the low-energy limit

The graphics in figure 3.1, we have chosen s = 3/a,t = —=2/a and u = —1/a, where a
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is a changing parameter and as it gets larger, it gets closer to the low-energy limit. Again,
due to the computational power of Mathematica, we have used a between 0 and 1000. In
the graphic for y(12)34) We can notice the approximation to the factor of é, and for (1234 to

the factor of %, both calculated before.

3.6.4 Higher Order Corrections

Furthermore, we can compute higher terms in the expansion, for example at order m 5, for

each structure:

Structure Correction m™°
=
Y(123)1 3780
S
Ya)11 540
S
Ya2)12 945
S
Y(12)34) s
_t
Y(1234) 1390

These corrections of higher order correspond to derivatives of F terms in the Weisskopf
lagrangian, particularly this terms m ™ are corrections for second derivatives of F. In our
expansion, we cannot compare results, because we have used a constant background field

and terms involving derivatives vanish.



Chapter 4

Conclusions and Perspectives

First of all, we would like to give a quick overview of the thesis. Throughout the de-
velopment of this work, we have encountered a number of obstacles and challenges not
originally expected. While it is true that the optimised representation for four photon scat-
tering is more compact than the simple substitution in the Bern-Kosower master formula
for scalar QED and better structured than the Q representation, it did not mean that the
calculations were simpler or more straightforward than in the previous cases, this is to be
expected, since the result is known to involve various hypergeometric functions and es-
sentially we are rewriting these in terms of In, Li, and integrals thereof. We can start by
noting that one of the biggest complications was the integration over T. We knew from
naive analysis that this integral should be finite, but at first it seemed not to be, until after
implementing the regularisation of the divergence with the help of the gamma function.
Another important thing to note is the difficulty of some of the structures. In a way, we can
say that although the y(123); structure was the simplest to realise, symmetry was lost due to
the appearance of G;; functions in the integrand, a weight that quickly reflected the inability
to use symmetry between the Mandelstam variables. This effect disappear when we sum
over the permutations for each tensor structure, doing that in the final result we recover the
symmetry between Mandelstam variables by the cyclic permutations s — ¢t — u.

Eventually, with integration over the remaining u; variables, the problem was to choose
the most efficient strategy. Initially the idea was that due to the symmetry of the structures,
following the same method as for the scalar case ¢3 would be sufficient. Sooner or later,
we realised that this strategy would not work because of the number of times the different
variables u; appeared in each integral. Many combinations were tried and the one that was
presented was the one that seemed to be the most efficient of all the possibilities, always
trying to preserve the symmetry between sectors.

Moving on to the numerical integration part, we had difficulties with the methods for
performing such integrations. Some algorithms proved to be more efficient than others
in performing some integrals, but there was no single method that integrated the whole
amplitude. Within this same section, we first obtained complex numbers as a result of the

67
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numerical integrals, which is not consistent with the definition of the amplitude, this is
relate to the fact that we were not dealing correctly with the divergences. This was because
within the workings of numerical integration, we attributed this to the presence of In and
Li>(x) in our results, causing the software to have to choose different branches for each
integral. Solving this problem was even more difficult than the rest of the work.

For purposes of getting the most out of this thesis and as a good check, it was decided
to perform the expansion of the Weisskopf lagrangian and check that the more complicated
structures, y(1233) and y(1234), were correctly realised. In that respect, we can mention that
indeed, our calculations are in agreement with the low energy expansion of the Lagrangian.

With all this in our hand, we can conclude a few things. One of the questions possibly
on the table is, why calculate this amplitude? It is true that it has been approximated and
studied in other theories as spinor QED and approaches to quantum field theory, but not
into the framework of scalar QED and not using the same representation and above all,
under the worldline formalism. Also, previously, it was not known how difficult it would
be to perform the rough calculations that have been done here. We now know that using this
representation for the amplitude is not entirely efficient and this opens the door to present
new proposals for the way in which the amplitude is organized in terms of the master
formula and the worldline Green’s functions. Within this time, but remaining out of the
scope of this work, the use of generating functions has been considered, thus avoiding such
a direct calculation involving integrals containing G;; in the integrand and thus trying that
in the end the result is in terms of partial derivatives with respect to the sources A;. Now
with the appreciation of the results of this thesis, it is considered that it is a better option
and it is worth exploring that possibility.

Within the future work, it is clear that it is interesting to study the step to spinor QED
with the use of the replacement formula given in equation 2.20. We do not yet know
what kind of implications this has on the integrals we have already calculated here, but
we suspect that the introduction of the fermionic worldline Green’s function, which is a
sign function of the parameters, may simplify some of the integrals and remove some of
the divergences we have faced. Even with this, we do not rule out that similar difficulties
as the ones we have presented here may arise. In the other hand, it will be interesting to
compute the last integral analytically, and explore different strategies to integrate difficult
functions as Li,(x). About the expansion in the low-energy limit, it will be interesting to
calculate higher orders, to get derivative corrections in the Weisskopf lagrangian. Thinking
in the phenomenology and experiments coming in next years, it would be attractive to
convert the amplitude into a cross section in order to compare with experimental results,
even though scalar QED is not a physical theory it is interesting to investigate whether it
would be possible to measure this process at current or future experimental facilities. And
finally, it would be interesting to increase the number of loops, since everything here has
been calculated for one loop order.



Appendix A

Polylogarithm Function

In this appendix, we show the definitions for PolyLog(n,z). This function is called poly-

logarithm, and it can be defined as:
PolyLog(n,z) = Z =

In the case n = 2:

kS % In(1 - 1)
PolyLog(2,z7) = Z 2 f ;
k=1 z

Another notation for this function is:

PolyLog(n, z) = Li,(2)

A.1 Proofforn =2

(A.1)

dt (A.2)

(A.3)

To proof that equation A.2 is correct, we are going to introduce the Taylor series for In(1—7)

in the integral. Recalling the series:

ln(l—t):—zz

k=1

Setting it into equation A.2, we shall get the desired result:
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(A.4)

0 00
=35 (A.5)







Appendix B

Integral Over Penultimate Variable for
Y(123)1

In this appendix, we show the result of the integration over the penultimate parameter for
Ya23)1- Here we have changed the last variable for x, that remains to be integrated over, just
to make it clear at the moment of reading.

(1= 2x)2 (4m?s(x = D+ 4m* + s2(x = 1?Q2x = 1) (in (m? + 50— Dx) = In(m?)) (1 =2x)% (s2(1 = 20 + 250 (227 = 2x+ 1) + 21 = 22)) In (- £)
+

(x-1) (mz(x +u) + su(x — l)x) (mz(s +u)+ s(x—1)(s+ ux)) (s +u)? (mz(x +u) + su(x — l)x)

(=202 (2@x = 3) + 2su (202 —dx + 1) +12(1 - 20)) In ($58) (1 - 202 (P @x = ) + 4st2® + 4222) In (- 51;)
N (s + w2 (m2(s + 1) + s(x = 1)(s +ux)) - 52 (m2s + 1(x = (s + 1)
. (1= 202 (2@ = 1) + st(x = D+ 42 (= 12) In (A=) L 202 (dne(x = D+ dm + 2= 12@x = D) (In () = In (m? + o(x — 1))

52 (m2s + 1(x = D(sx + 1(x = 1)) (x = 1) (m2s + €x = DxCs + 1) (m2s + 10x = D(sx + 1x = 1))

. 8xQr-1 Qx— 1)(12(1 -2 + 20 (222 = 2x+ 1) + (1 - 2x))(ln(—t) — In(-u)) . Qx— |>(z2(| —2x) + 2 (2,\‘2 —4x+ 1) +12(2x = 3)) (In(ex + u) — In(u — ux))

u(x = 1)(1 + u) (t+ w2 (m2(t + u) + tu(x — 1)x) (1 + u)? (mz(/ + 1) + u(x = 1)(ex + )

2x-1 (4m2 u(x — Dx + am* + uz(x - 1)2(2)( - l)) (2m2(t +u) +u(x— 1)(2tx + u)) (ln (mz) —In (m2 +u(x — l)x))
* w?(x-1)2 (m2(r +u) + tu(x — l)x) (mz(r +u) +u(x — 1)(tx + u))

8x(2x — 1)(s — u) (Li2 ( (Hu)’/”’;(:;:)x?])x) —Lip ( ((:f:):l;::):::l:) + (— In (m2 +s(x — l)x)) In (— migiﬁ) +In (mz) ln(% ))
! v}

8(2x — 1)(s(x - 2) — ux) (—Li2 ((Hu)m;”j:(";““’ﬂ(m) ) +Lip (“(jntz‘:j i Z)i;(*:)])) +1In (i + s(x = 1)a)In (- %) ~In(m?)In ( % ))
* (s +u)3

22 (P2 2 —an 1) —20) S5 S el ) )
* (s+u)?

2(2x - 1)(s2(l —2x) + 2su (2x2 —2x+ l) +u?(1 - 2x)) (u ((s +u) (7712 + s(x — l)x) In (m2 + s(x — l)x) + SZ(X — DxIn(u(—x)) — sz(x - Dx ln(a’x)) +m%sln (mz) (s+ u))
- sux(s + u)3 (mz (s+u) + su(x — l)x)

22x - ])(s2(2x -1+ 45132 + 4t2x2) (—sztxz In (m2 +1(x— l)x) + s2txIn (m2 +H(x - l)x) —m?s%1In (mz +H(x — l)x) —s2x%1n (m2 +1(x— l)x))
* Stx(s+1) (mz.y +1(x — Dx(s + t))
N 2(2x - ])(sz(Zx -1+ Astx? + 412 xz) (xtz)rln (mz +1(x— 1)){) —m2stin (mz +t(x— I)x) +m?stIn (mz) +1522 In(x(s + 1)) — st2x2 In(—1x) + s2x2 In(x(s + 1)))

.r3t)r(x +1) (m2 s+t(x— Dx(s+ t))
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22x = (52 2x = 1) + 4stx? + 4252) (= xIn(x(s + 1) + s2xIn(=1x) = st?xIn(x(s + 1) + 13 (~22) In(=1x) + 13 x In(—1x))

$3tx(s + 1) (m25 +t(x — D)x(s + r))

2 24 1(x- 1) 2 (e _
8x(2x — 1)(5+2t)(7uz( s )+Li2( s{r e 12) )+1n(m2 (- 1);()111(7%)71'nm(m2 + W))

sm2+1(s+0)(x—1)x sm2+i(s+1)(x—1)x m2 s+1(x—1)x(s+1)

3

8x(2x — 1)(s +26) (7 In (m2) In (M) il (m? + 1(x - l)x))

m= s+1(x—1)x(s+1)

53

m2sin(m?)  s(m?+e(e-1)x) In(m? +1(x-1)x)
—SX+HH(=x)+1 + (x=1)

202x - 1)(s2(2x — 1) +4st(x = Dx+ 42 (x — 1)2)( —t(x = D In(=sx + 1(=x) + 1) + t(x — 1) In(t — t:())

53 (m2s + 10x = D(sx + 1(x = 1))

2 -
8(2x — I)(sx + 21(x — 1)) (—Liz ( nls )+Lia ( oo i) ) In(m? + 1 - 1) m(%) = In () in A Dlsr= ) ))

sm2 +1(x—1)(1(x—1)+5x) sm2+1(0x—1)(1(x—1)+5x) m2 s+1(x—1)(sx+1(x—1)) m2 s+1(x—1)(sx+1(x~1))

3

2 2 bu(x—1)x 2 (- Dx _
8x<2xf1><r—u)(uz( il )—Liz("*‘”(’” il ”))Hn(mm(xf1>x)(7m(M))mm(muw))

(t+uym2 +1u(x—1)x (t+uym2 +tu(x=1)x m2 () +u(x—1)x

(t + u)?

8x(2x — 1)(t — u) (ln (mz) In (%) —irln (mz + u(x — l)x))

(t+u)?
) 2 o @rw(m? +ue-1x) 2(-1y2 -
_ _ _ m=(t+u) _ _ 2 _ _ u“(x—1y 2 u(x—1)(tx+u)
82x = Dlx - ulx 2))(le((Hu)mzﬂt(uﬂx)(.x—l)) le((1+u)m2+u(u+1x)(xfl) In(m? + ux = 1z)in m2 (t+u)+u(x—1)(1x+10) +in(m )ln(m2(1+u)+u(x—l)(1x+u))

(t + u)®

n(m?) (-0~ D(in(m?)-Int(1-x)+w)
2 2 2 -
22(1 = x) - (20 - 201 - x)) + 2 (2(1 —02—4(1-x)+ 1) +u?2(1 - x) - 3)) (- T * w0 D

(t +u)3

ul —X)— In(u—u(l—x; —nmz Ul —X)— —X, nmz Ul —X)— —X,
2(2(1—x)—1)(t2(l—2(1—x))+2tu(2(1—x)2—4(1—x)+1)+u2(2(1—x)—3))( ((1=)-1)(In=u(1-2)~In(m? +u((1-x)-1)(1-v))) . In(m?+u((1-x)-1)(1 )))

2 (t+u)+u((1=x) = 1)(t(1=x)+) u=u(T=x)

(t+u)?

(2x — r —2x)+2tu(2x" = 2x+ 1)+ uw =2x))(tFuxIn{m* + u(x — Dx)+ m~t= In{m* + u(x — 1)x) — t“uxIn(m” + u(x — )x) + tu"x* In(m~ | + tu=x* In| - =
202x = D) (A1 = 2x) + 20 (222 = 2x + 1) + u?(1 = 20)) (P ux® In (m? + u(x - 1), 22 1n (m? + u(x - 1), 2uxIn(m? + u(x = 1) 2x2 In(m? 22 In(- 45
m

tux(t + u)3 (mzt +m2u + tux? — tux)

22x = 1) (A1 = 22) + 20 (202 = 2x + 1) + u2(1 - 2x) (tuzxz In (1 + u(x = 1)x) = e xIn (m?) - tulen( —Xz) - x1n (m? + u(x - l)x))

_
m

tux(t + u)3 (mzt +m2u + tux? — tux)

2(2x - ])(tz(l —2x) + 2tu (sz - 2x+ 1) + u2(1 - Zx)) (mztuln (;712 +u(x — l)x) +m2tuln (mz) +m2u®1n (mz) — 252 In(u(—x)) + tulen(u(—x)))

B.1)
tux(t + u)3 (1712t +m2u + tux? — tux)
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Appendix C

Integral Over Penultimate Variable for
Ya2)11

In this appendix, we show the result of the integration over the penultimate parameter for
uy for yqoyi:

S+ux

(1-2x)?2 (2;;12 +25x% = 3sx + 5)2 (In (1112) —1In (mz + s(x — l)x)) (s(l —2x)% = 2ux + u)z In (—%) a1- 2,\')2(;(3 —2x) +u)? ln( 3’”) @x=1)3(s+2tx) In (— ﬁ)
+ +

(x— 1)(m2(s +u) + su(x — I)x) (mz(s +u)+ s(x—1)(s+ ux)) (s +u)? (mz(.r +u) + su(x — I)x) N (s +u)? (mz(s +u)+ s(x—1D(s+ ux)) K (mz.v +t(x — Dx(s + 1))

(2x = D3(s + 20(x = D)(In(sx + 1(x — 1)) = In(e(x — 1)) . 1Qx = 1) (2m? + 202 = 3t + 1) (In () = In (m? + 1(x = 1)x)) L= 2202(t2x = 1) — w)(In(=u) — In(~1))

+
K (/112 s+ t(x— 1)(sx+1(x— I))) (mzx +1(x— Dx(s + {)) (m2.v +1(x — 1)(sx + 1(x — l))) (t+u) (mz(t +u) + tu(x — l)x)
~ (1= 2x)2(t2x = 1) + w)(In(ex + u) — In(u — ux)) N (1-2x)? (2m2 +u(x — l)) (21712(1 +u) + u(x — D(2tx + u)) (ln (m2 +u(x — l)x) —In (mz))
(t+u) (mz(l +u) +ulx— D)(tx + u)) u(x — 1)(»12(1 +u) + tu(x — l)x) (mz(t +u) +u(x— D)(tx + u))
8(s(1 - 202 — 2ux +u) L 2 (s+4) J Ly (e be)e) (m? + stx— D) In SRR S, B (m2)1n(%)
’ 2\ CromZ+suGr—Dyx 2\ GruomZ+sute—x AT 2 (st suCe—x 2 (st sue—)x
+
(s +u)?
. w2 (s+u) (P st N ) I 212 ) ( sCe=1)(su) )
82— Dis2x =3 —u) (_le ((.\'+u)m2+.\(.\+ux)(xfl| L | e unin ) 0 (m? + s(x = 1)) n - s ) 1 (m?)n m2 (s 5(x—1)(s+10x)
(s+u)?

22x = 1)(-2sx + s + u)2 (u ((s +u) (mz + s(x — I)x)]n (m2 + s(x — l)x) + .€2(x — DxIn(u(-x)) — sz(x - l)xln(sx)) +m?sln (mz) (s+ u))

+
sux(s + u)3 (mz(s + u) + su(x — I)x)
o 7712
! 5| n(m?) stxe=1) '“( R str=D(In(s—s)-In(m2+s(-1)x))  In(m?+5(r-1)x)

2= DEG-29+w (_ S Y s (s ) m2 (s 5(x—1)(5-+10x) * s=5x

+
(s +u)?

2(1 - Zx)z(s + 2tx) (.vzrxz In (m2 +1(x — l)x) — s2txIn (m2 +1(x — l)x) +m?s%In (m2 +H(x— l)x) + 5232 In (m2 +1(x— l)x) — st2xIn ()712 +1(x— l)x))

+
S2tx(s + 1) (mz: +1(x— Dx(s + t))

2(1 = 222 (s + 20x) (st In (m? + 0 = Dx) = m2 st n () = 22 In(a(s + 1) + 51222 In(—1))

+
$2tx(s + 1) (mzs +t(x— Dx(s + t))
2(_Li 2

2(1 = 2002(s + 212) (~s22 In(a(s + 1) + PxIn(x(s + 1) = s2xIn(=1) + s2xIn(x(s + 1) + P2 In(~1x) = Pxln(-rx)) 41 =22 (-le ( T ))

+ +
s2tx(s + 1) (mzs +t(x— Dx(s + t)) 52
2
oy [ s(mPei-na) 2 o[ 2e-by . 2 H=Da(sn) ) _ 2 ( (= 1)x(s+1) ) ; 2 e

4(1 - 2x) (L12 (7””2“( rremrid AL (m? + tx = 1)x)In e | i (m®+ LEH) — i (2 ) In e evped R (m® + 1x - 1)x)

+ 2
5 m2sin(m?)  s(m?10e=1)x) Infm? +1(x= 1))

2(1 = 2x)%(s + 2t(x — 1)) G- =) +t(x — 1) In(=sx + t(—x) + 1) — t(x — 1) In(r — tx)

+

52 (m2s +t(x — D)(sx + 1(x — l)))

2

2 x—1 212 _ —

4(1 - 222 (7Li2 ( v ) +Lip ( s +itx-1) ) +1In (mz +1(x l)x) ln(ir (x-1) ) —In (mz) ln(izr('Y Disxttx-1)) ))
m

sm2 +1(x=1)(1(x=1)+5x) sm2 +1(x—1)(1(x—1)+5x) m2 s+1(x=1)(sx+1(x—1)) SHO=1(sx+(x-1))

2
52
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2(2x - 1)2(2tx —t—u) (tzuxz In (mz +u(x — l)x) +m?21n (mz +u(x — l)x) — 2uxln (m2 +u(x — l)x) +t2x2 In (mz) +tux In (— %))
m

tux(t + u)? (mzt +m2u + tux? — tu)c)

2(2x - 1)2(2tx —t—u) (tu2x2 In (m2 +u(x — l)x) —t*xIn (mz) —tu’xIn (— %) —t*xIn (mz +u(x — 1),\') +m2tuln (mz +u(x — l)x))
m

+
tux(t + )2 (m2t + m2u + tux — tux)
. 2 [ @rw(m? +u(e-1)x)
2 m=(t+u) _

2025 = 12t~ 1 = ) (m2tudn () + m2a? In () = 122 InGu(-x)) + e xInGu(-x)) 4 =29 (le((Hu)mzﬂu(x—l)x) L'Z( (e x

+ +
tux(t + )2 (m2t + m2u + tux — tux) (t+u)?
2 !
2 2 u=(x—1)x . 2 tu(x—1)x 2 tu(x—1)x . 2

4(1 = 2x) (+1n(m +u(x — I)x)(—ln(m))+mln(m + T)+ln(m )ln(m)—m]n(m +u(x — l)x))

B (t +u)?
1-)
21— 21 201 b n(m?) . “(“"‘)"““(‘fl( mt) +") w((1-2)~1)(Inu=u(1-2)~In(m? +u((1-2)~1)(1-))) N In(m? +u((1-x)-1)(1-x))
(1= 200 = )70QA =0 = D+ 0| g * v D(—em m2 (t+u)+u((1-2)~1)(e(1=x)+1) u-x-1)
4
(t +u)?
2 G 2 bu(x=1): 2192 Dex
401 - 207 [Lin ) iy (+u)(2m +u(x-1)x) i+ uCe - D) n(~ 5 -1y +1n(m2)ln( ERTES IS )
(t+u)ym= +u(u+x)(x—1) (t+u)ym= +u(u+tx)(x—1) m=(t+u)+u(x—1)(tx+u) m= (t+u)+u(x—1)(tx+u) ©n

+ .

(t +u)?






Appendix D

Integral Over Penultimate Variable for
Y(12)12

In this appendix, we show the result of the integration over the penultimate parameter for
Ya2)12:

8(1 — 2x)x 2x-1) (2m2 +s(x - 1)) (Zm2 28522 = 3sx + 5)2 (log (m2 + s(x — l)x) —log ()712)) Qx—1D)(2sx+ s+ u)z(s —2ux + u)log (— %)
+ +

(x = 1)(s +u)? 5= 12 (m2(s + ) + su(x = Dx) (m2(s + ) + s(x = (s + ux)) (s + )% (m2(s + u) + su(x = 1)x)

@x = 1)(s(3 = 22) + 2 (s + u2x - 1)) log ( $7%) LU= 2:)2(s + 2tx)(log(s + 1) — log(=1)) L= 2x)2(s + 21(x — 1)(log(sx + t(x — 1)) — log(t(x — 1)))

(s +u)3 (mz(.r+ u)+ s(x— (s + ux)) s(mz.H—/(x— I)x(.v+1)) s(mZ.H—/(x— D(sx +t(x — 1)))

(1-2x)? (2/112 +20x2 = 3tx + !) (Zmzx +1(x — 1)(2sx +1(2x — l))) (lﬂg (mz) —log (m2 +1(x— l)x)) @x-13@2x-1)- w)(log(—u) — log(~1)

+ +
1(x— l)(m2 s+ t(x— Dx(s + r)) (mzs +t(x — D)(sx + t(x — l))) (t+u) (mz(t +u) + tu(x — l)x)
. (2x = 13(tQ2x = 1) + w)(log(tx + u) — log(u — ux)) N u2x -1y (21112 +u(x — l)) (log (m2 +u(x — l)x) —log (mZ))
(t+u) (mz(t +u) +u(x — )(tx + u)) (m?-(t +u) + tu(x — l)x) (mz(t +u) +u(x— D)(tx + u))
2 ) m?(s+u) - { (PG ) s 2 B PG B 2 ( su(x=Dx )

8(s(1 ~ 20" ~2ux +u) (71"2 ( GronZrsuenx ) T H2 | sy ) T 108 (m? + st = 1)x) log prorpemveTpT (m?)10g 2 (st sue—)x

+
(s +u)?
. (s ) [P st D) 2 _ R LTC O U 2 (M)
82— D(s2x-3) “)( Liz ((.\'+u)m2+.\(.\+ux)(xfl] L | et | T 108 (m® + s~ 1) og P (m?) 108 s+t (=) (s+105)
(s+u)’

22x = 1)(-2sx + s + u)2 (u ((s +u) (m2 + s(x— I)x) log (m2 + s(x — I)x) + 52 (x — Dxlog(u(—x)) — sz(x - l)xlog(sx)) +m?s log (mz) (s+ u))

+
sux(s + u)3 (mz(x +u) + su(x — I)x)
o[ log(m?)  sx-1)(log(m?)-log(s+ux)  sx-1)(log(s—s)-log(m? +sx-1)x))  log(m?+s(x=1)x)

22x= DG =29 + uy (_ sux s D 2 (st (o ) (s+10%) * s=sx

+
(s+u)

2(1 - 2x)2(s + 2tx) (sztxz log (mz +1(x— I)x) - sztxlog (m2 +1(x— 1),\') +m?s? log (m2 +t(x— l)x) + 5252 log (mz +t(x— I)x) - stleog (m2 +t(x— l)x))

+
S21x(s + 1)(m2.v +t(x — Dx(s + I))

2(1 - 2)()2(s + 2tx) (mz.rl log (m2 +t1(x— l)x) —m?st log (mz) —instx? =322 log(x(s + 1) + s2x2 log(tx) — s2x2 log(x(s + 1) + ins?x + t3x10g()((s +1) — st2x lng(lx))

+
S2tx(s + 1) (mzs +t(x— Dx(s + r))
2
0 R s s(m?+1(x-1)x)

2(1 = 2x)2(s + 2tx) (stleog(x(s +1)) —in3x2 + 132 log(1x) + i x—x l()g(tx)) 41 -2y (4“'2 ( 2 (s +1)(—Dx ) +Liy ( 2 +1(s+0)(x—1)x

+ +
S2tx(s + 1) (mzx +1(x — D)x(s + [)) 52
v 2 20 Dx ; 2, Hx=Dx(s+0)) _ 2 ( H(x—Dx(s+1) ) i 2 _

4(1 - 2x) (log (m +1(x— l)x) log( Py T inlog (m + 5 ) log (m )log p T Y + inlog (m +1(x l)x)

+
2
m2slog(m?)  s(m2+t(x=1)x) log(m? +t(x—1)x

2(1 - 2){)2(s +2t(x — I))( A.Y+I(X(*|)) - ( 1()/‘71() ) +t(x — 1) log(—sx + t(—x) + 1) — t(x — 1) log(t — lx))

+

52 (/112 s+ H(x = 1)(sx +t(x — 1)))
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2 2 41(x-1)x 2 (x-1y2 (st
41— 207 (—Liz( m2s )+Liz( s(m*+(x-1)x) )+log(m2 - 1) log( 2-1) )—log(mz)log( - Doxtita- 1) ))
P

sm2 +1(x—1)(1(x—1)+sx) sm2 +1(x=1)(1(x~1)+sx) m2 s+1(x—1)(sx+1(x—1)) s+I(x—1)(sx+i(x—1))

52

2(2x — 1)2(2tx —t—u) (t2ux2 log (m2 +u(x — l)x) +m?i? log (mz +u(x — l)x) —2ux log (mz +u(x — l)x) + X2 log (mz) +u?x? log (7 %) + P x? log (m2 +u(x — l)x))
m

tux(r + u)? (mzt +m2u + tux? — tux)

2(2x - 1)2(2tx —t—u) (—tuleog (mz) - tuleog (— % ) —tulx log (m2 +u(x — l)x) +mtu log (m2 +u(x — l)x) +mtu log (mz) +m2u? log (mz) — X2 log(u(—x)) + tuleog(u(—x)))
m

tux(t + u)? (mzt +m2u+ tux? — tux)

2 2 fu(x-1)x 2 (- - _
41— 202 (Liz( i) )7Li2(“+“’(”' rulx )r))+log(m2+u(x— 1)x)(7 1og(7“ (=D ))+iﬂlog(m2+ 7‘“%:““")+1og(m2)1og(7’“(-‘ Dz ))

(t+1ym2 +1u(x—1)x (t+uym2 +tu(x—1)x m2 (t+u)+tu(x—1)x m2 (t+u)+tu(x—1)x

(t +u)?

401 - 202 (imlog (m? + u(x — 1)x))

(t+u)?
-
21 201 — 0P — - 1)+ 1) log(m?) . "(U*X)*l)log(%) B u((1-2)~1)(log(u-u(1-2)~log(m? +u((1-1)~1)(1-v))) . Tog(m? +u((1-9)-1)(1-v)
5 =04 " 2 () (12~ D)1 =x)+u0) m2 (t+u)+u((1=x) = 1)(t(1=x)+10) u((1-x)-T)
(t + u)?
. 2 [ rw(m? +ue-1)x) 2012 _
a2 m*=(t+u) _ _ 2 _ _ u(x—1) 2 u(x—1)(tx+u)

4120 (le ((l+u)mz+u(u+/x)(«\‘fl)) L ( (t+uym2 +u(ut0(x=1) log (m +ulx l)x) log 2 (t+u)+uCx—1)(1x-+10) +log (m )log ( m2(1+u)+u(%1)(l«\‘+tl))

D.1
(t+ u)? ©D
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Appendix E

Integral Over Penultimate Variable for
Y(12)(34)

In this appendix, we show the result of the integration over the penultimate parameter for
Y12)34):

(2mz +25x2 = 3sx + s)z (ln (mz) —1In (mz + 5(x — l)x)) (=2sx+s+u)?ln (*i) (s3=2x)+u)In ( l””)
+

s+ux

(x—=1) (mz(.v + u) + su(x — l)x) (mz(s +u)+ s(x—D(s+ ux)) (s +u)? (mz(s + u) + su(x — l)x) N (s +u)? (mz(x +u)+s(x—D(s+ ux))

(1= 20252 = 1) + 2020n(s + 0~ Inoy) (1= 20262 = D+ 2= P In (9l ) (1= 2072 (22 + 16 = D) (1n () = (m + 106~ 1)
+

+
§2 (m25+t(x— l)x(x+t)) 52 (m2s+t(x— D(sx + (x — 1))) (x— 1)(,,,23‘4_,(‘,(_ 1)X(S+I‘))(m2s+t(x— 1)(sx + 10x - 1)))
2 2
(r(] - 2,\')2 —2ux+ u) (In(—u) — In(-1)) (1- 2x)2(t(2x -+ u)z(ln(tx +u) — In(u — ux)) 1- 2x)2 (Zm2 +u(x — 1)) (ln (mz) —1In (mz +u(x — I)x))
+ + .
(¢ + w2 (m2( + ) + tu(x = 1)x) (¢ + w2 (m2( + ) + ux = D(ex + ) (o= 1) (20 1)+t — 1) (200 + 1)+ - Diex +0)
32500 D(sQx - D= u(x+ D)In(=£) 325 - D@s(r-2) —ux+ (L) 463 - 20 + w2(sr-2) —ux) 80— D (521 =207 + 5u(2 - 8x2) + u?(4x + 1))
+ - + +
(s +uy (s+ut SCr— (s + 103(s + ) s+ )
8x(s? (462 = 200+ 21) + 2su (4% +4x + 5) + 12 @x + D) dx— D(s—up(-2sx+ s+ w2 81 —=202(x—1)  4(1 = 20%x(sx+ 24(x = 1) 8(1 — 2
(s+u)d(s +ux) sux(s +u)3 sx(s + 1) Stx— D(sx+1(x—1))  s(sx+1(x—1))
. 8(1 - 2x)2(x -1 8(1 — 2x)2x . 41 - 2x)2x(u(x —2)—1x) 32 (— (1112 + s(x — l)x)]n (mz + s(x — l)x) +m?1In (;;12) + s(x — l)x)
x(t + u) (t + u)(tx + u) u(x — 1)t + u)(tx + u) S — (s + )2
2 2 4 se-1)x)(s-+u 2 (x—1)x
2 201 22 4 e YRy w2 (s+u) [P GGy 2, el O P DA (&)
162065 +10 - 31 207 + 2ot D 4 )( Ho ((»w)mhm( H)x) *Li ( ety ) T (m? + s(x= Dx)n prpen (m?)n 2 (s suCe—)x
+
(s+ u)4
2 PSP
o2 2 (4,2 _ _ 2, N[ _1; w2 (s+u) . (m? +s(e=1)x)(s+u) ) ~ e
16( 2m=(s + u) + s (4)( 14x + ll) 2su (x +x 3) +u )( Li ((r+l¢)n12+s(s+ux)(.x—l) ) + Lip ((:+u)m2+r(y+ux)(x—l) +In (m + s(x l)x) In P IT—e
+
(s+uy*
-2m? 2 (42 - - 24 xo 2\ (1 (m2) In [ o S@=Distur)
. 16( 2m=(s +u) + 5 (4x 14x + ll) 2su (x + X 3) +u )( In (m )ln(m2(3+u)+s(,\-—1)(5+ux) ))
(s +u)*
o) | e i onsn) 0 DH) g
—3)— _Qm2 2 2 42 B 2 n(m s(x=1)(In(m=+s(x—1)x)-In(s—sx] B SHux n(m?2 +s(x—1)x
4(s(2x = 3) = u) (=8m2(s + u) + 52 (422 = 20x + 17) + 2su (—4x% + 2x +3) + 12| S S ere st e T D
+
(s+uyt
4(sx—1)— u)(—SmZ(S )+ s2(1 = 2002 — 8su(x — Dx — uz) (u ((5 +u) (mz +s(x— l)x) In (mz +s(r— l)x) + 820 = DxIn(u(=x)) — s2(x = I).x]n(s,\‘)) +msin (mz)(s N H))
sux(s + uy* (mz(s +u) + su(x — l)x)
2 2
In(m? +s(x-1)x) "("*‘)(*w*»\(X*l)ln(nlzwkl)X)fx(xfl)ln(f.\'x)wnu) -Y(X*l)(w+.V(X*1)ln(mz)7A(xfl)ln(ux)+.\'(xfl)) ()
4(-2sx+ s+ u)2 (mz(s + u) + su(x — l)x) - W) + = - = + =
A (m2 (s su(x—1)x) (m2 (surtsue=1)2) 2
+
(s+ u)4
4053 = 20 + ) (mz(s b+ sGom D(s + ux)) =52 (=% In(m? +5(e= D) e s+mu+s% x+ ;2(x_21 )2 In(s—sx)—s2 +s10x2 —sux . |n(/n§+y(,\'—zl )x) B In(,,,ZZ
(m2 (s+uysx=1)(s+ux)) s2(x=1) (s+ux)?
+

(s +uy*
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2
) .v(xfl)( M 4 s=1) ()51 InCs 410+ (61 >)

4(=2sx + s+ w2 (m2(s + ) + su(x - 1)x 5
(2 (s+uyse=1)(s+ux))

+
(s +u)*
42x - 1)? (x4 In(=12)1% = 223 In(=1)1° + 22 In(=1)1% = x* In((s + D)0 + 23 In((s + D)0 = X2 In((s + NN = sx*5 + 25385 — sx265 + 252t ln(—rx)rS)
+
$212(s +1)2x2 (smz +12x2 + stx2 — 2x — stx)
4Q2x = D? (=453 In(=1)> + 2532 In(=10r% = 253 In((s + D) + 4533 In((s + DX = 2537 In((s + 007 + 2534 In (m? + 106 = Dx) 1 = dsx In (m? + 1x = D) 1)
+
S212(s +1)2x2 (Sm2 + 1222 4 5122 = 2x - stx)
42x — 1)2 (2sx2 In ()712 +1(x— l)x) £ =224 1482314 = 2620214 — 2m25x2 In (mz) 4+ 2m%sxIn (mz) A4 23 ln(—t)c)t4 —252:3 ln(—tx)t4)
+
$202(s +1)2x2 (sm2 +12x2 + stx? —2x - stx)
42x — 1)2 (.v2x2 ln(—uc)l4 —2x4 In((s + I)x)14 +252x3 In((s + l)x)14 — 252 In((s + 1)x)14 +552x%In (1;12 +t(x— l)x) # - 10s2x3 In (m2 +1(x— l)x) 14)
+
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Integral Over Penultimate Variable for
Y(1234)

In this appendix, we show the result of the integration over the penultimate parameter for
Y(1234):
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